WO2024116564A1 - Polyarylene sulfide resin composition and method for producing molded article - Google Patents

Polyarylene sulfide resin composition and method for producing molded article Download PDF

Info

Publication number
WO2024116564A1
WO2024116564A1 PCT/JP2023/034212 JP2023034212W WO2024116564A1 WO 2024116564 A1 WO2024116564 A1 WO 2024116564A1 JP 2023034212 W JP2023034212 W JP 2023034212W WO 2024116564 A1 WO2024116564 A1 WO 2024116564A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polyarylene sulfide
sulfide resin
pas resin
producing
Prior art date
Application number
PCT/JP2023/034212
Other languages
French (fr)
Japanese (ja)
Inventor
拓 茨木
啓介 山田
繁明 永野
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2024502523A priority Critical patent/JP7491486B1/en
Publication of WO2024116564A1 publication Critical patent/WO2024116564A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a polyarylene sulfide resin composition and a method for producing a molded article.
  • PAS resins polyarylene sulfide resins
  • PPS resins polyphenylene sulfide resins
  • PPS resin has the property of low electrical conductivity, and to improve this, resin compositions containing conductive fillers such as carbon black and carbon fiber have been developed.
  • conductive fillers such as carbon black and carbon fiber
  • the required electrical conductivity performance increases year by year, and in order to impart sufficient electrical conductivity to the resin composition, it has become necessary to highly fill the resin with conductive filler. This high filler filling causes the inherent mechanical properties and molding processability of PPS resin to be impaired, which has been an issue.
  • CNT carbon nanotubes
  • a manufacturing method has been considered in which CNT is highly dispersed in PAS resin by polymerizing the PAS resin in the presence of CNT (e.g., Patent Documents 1 and 2, etc.).
  • Patent Documents 1 and 2, etc. the degree of polymerization of the PAS resin obtained with this manufacturing method is low, so there are limitations on the processing conditions and applications.
  • the problem that the present invention aims to solve is to provide a method for producing a PAS resin composition with excellent electrical conductivity by highly dispersing CNTs in the PAS resin.
  • the present disclosure provides a method for producing a PAS resin composition in which CNTs are dispersed in a PAS resin, comprising: A step (1) of mixing a PAS resin, a CNT dispersion, an organic polar solvent, and a dispersion aid to obtain a mixture (A); Step (2) of stirring the mixture (A) at 200° C. or higher; (3) cooling the mixture (A),
  • the CNT dispersion contains at least CNTs and an organic polar solvent and/or water
  • the present invention relates to a method for producing a PAS resin composition, wherein the hydrogen bond term (dH) in the Hansen solubility parameters of the dispersion aid is 1 to 10 [MPa 0.5 ].
  • the present disclosure also provides a method for producing a PAS resin composition, comprising a step of melt-kneading the PAS resin composition obtained by the above-described production method with a PAS resin,
  • the present invention relates to a method for producing a PAS resin composition, in which the CNT content per 100 parts by mass of the obtained PAS resin composition is 1.0 part by mass or less, and the volume resistivity is 1.0 ⁇ 10 10 ⁇ cm or less.
  • the present invention provides a method for producing a PAS resin composition with excellent electrical conductivity by highly dispersing CNTs in the PAS resin.
  • the method for producing a PAS resin composition according to the first embodiment of the present disclosure includes a step (1) of mixing a PAS resin, a CNT dispersion, an organic polar solvent, and a dispersion aid to obtain a mixture (A), a step (2) of stirring the mixture (A) at 200° C. or higher, and a step (3) of cooling the mixture (A).
  • the steps are described in detail below.
  • Step (1) is a step of mixing a PAS resin, a CNT dispersion, an organic polar solvent, and a dispersion aid to obtain a mixture (A).
  • the obtained mixture (A) contains at least the PAS resin, the CNT dispersion, the organic polar solvent, and the dispersion aid.
  • the PAS resin that can be used in this embodiment has a resin structure with a repeating unit in which an aromatic ring and a sulfur atom are bonded, specifically, the following general formula (1)
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group), and, if necessary, a structural portion represented by the following general formula (2):
  • the trifunctional structural unit represented by formula (2) is preferably in the range of 0.001 to 3 mol %, particularly preferably 0.01 to 1 mol %, based on the total number of moles of the trifunctional structural unit and other structural units.
  • the structural portion represented by the general formula (1) are preferably hydrogen atoms from the viewpoint of the mechanical strength of the PAS resin.
  • examples of the structural portion include those bonded at the para position represented by the following formula (3) and those bonded at the meta position represented by the following formula (4).
  • a structure in which the bond between the sulfur atom and the aromatic ring in the repeating unit is bonded at the para position represented by the general formula (3) is particularly preferred in terms of heat resistance and crystallinity of the PAS resin.
  • the PAS resin has structural moieties represented by the general formulas (1) and (2) above, as well as the following structural formulas (5) to (8):
  • the structural moiety represented by the general formula (1) and the structural moiety represented by the general formula (2) may be contained in an amount of 30 mol % or less of the total of the structural moieties represented by the general formula (1) and the general formula (2).
  • the structural moieties represented by the general formulas (5) to (8) are 10 mol % or less in terms of the heat resistance and mechanical strength of the PAS resin.
  • the bonding mode thereof may be either a random copolymer or a block copolymer.
  • the PAS resin may also have naphthyl sulfide bonds in its molecular structure, but this is preferably 3 mol % or less, and more preferably 1 mol % or less, relative to the total number of moles including other structural parts.
  • the physical properties of the PAS resin are not particularly limited as long as they do not impair the effects of the present invention, but are as follows:
  • the melt viscosity of the PAS resin used in this embodiment is not particularly limited, but in order to obtain a good balance between fluidity and mechanical strength, the melt viscosity (V6) measured at 300°C is preferably in the range of 1 Pa ⁇ s or more, and preferably in the range of 1000 Pa ⁇ s or less, more preferably in the range of 500 Pa ⁇ s or less, and even more preferably in the range of 200 Pa ⁇ s or less.
  • the non-Newtonian index of the PAS resin used in this embodiment is not particularly limited, but is preferably in the range of 0.90 to 2.00.
  • the method for producing the PAS resin is not particularly limited, but examples thereof include (production method 1) a method in which a dihalogeno aromatic compound is polymerized in the presence of sulfur and sodium carbonate, and if necessary, a polyhalogeno aromatic compound or other copolymerization component is added, (production method 2) a method in which a dihalogeno aromatic compound is polymerized in the presence of a sulfidizing agent or the like in a polar solvent, and if necessary, a polyhalogeno aromatic compound or other copolymerization component is added, (production method 3) a method in which p-chlorothiophenol is added, and if necessary, other copolymerization components are added, and self-condensed, and (production method 4) a method in which a diiodo aromatic compound and elemental sulfur are melt-polymerized under reduced pressure in the presence of a polymerization inhibitor that may have a functional group such as a carboxy group or an amino group.
  • production method 2 is preferred because it is versatile.
  • an alkali metal salt of a carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization.
  • (Production Method 2) methods there is a method for producing a PAS resin by introducing a water-containing sulfidizing agent into a mixture containing a heated organic polar solvent and a dihalogeno aromatic compound at a rate at which water can be removed from the reaction mixture, and reacting the dihalogeno aromatic compound and the sulfidizing agent in the organic polar solvent, and optionally adding a polyhalogeno aromatic compound, and controlling the amount of water in the reaction system to within a range of 0.02 to 0.5 mol per mol of the organic polar solvent (see JP-A-07-228699).
  • Particularly preferred is a method in which a dihalogeno-aromatic compound and, if necessary, a polyhalogeno-aromatic compound or other copolymerization component are added in the presence of an alkali metal sulfide and an aprotic polar organic solvent, and an alkali metal hydrosulfide and an organic acid alkali metal salt are reacted while controlling the organic acid alkali metal salt in the range of 0.01 to 0.9 mol per mol of the sulfur source and the amount of water in the reaction system to be 0.02 mol or less per mol of the aprotic polar organic solvent (see WO2010/058713 pamphlet).
  • dihalogeno aromatic compound examples include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4,4'-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p,p'-dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-di
  • polyhalogeno aromatic compounds include 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1,2,4,5-tetrahal
  • the method of post-treatment of the reaction mixture containing the PAS resin obtained by the polymerization step is not particularly limited, but for example, (post-treatment 1) after the polymerization reaction is completed, first, the reaction mixture is left as is or after adding an acid or base, and the solvent is distilled off under reduced pressure or normal pressure, and then the solid matter remaining after the solvent distillation is washed once or twice or more times with a solvent such as water, the reaction solvent (or an organic solvent having a similar solubility to the low molecular weight polymer), acetone, methyl ethyl ketone, alcohols, etc., and then neutralized, washed with water, filtered and dried, or (post-treatment 2) after the polymerization reaction is completed, the reaction mixture is dissolved in a solvent such as water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, aliphatic hydrocarbons, etc.
  • a solvent such as water, acetone
  • a solvent that is soluble in the polymerization solvent used and is a poor solvent for at least the PAS resin (a solvent that is soluble in the polymerization solvent used and is a poor solvent for at least the PAS resin). (a solvent having a solubility of about 100% or less) is added as a precipitant to precipitate solid products such as PAS resin and inorganic salts, which are then filtered, washed with water, and dried; or (post-treatment 3) after the polymerization reaction is completed, a reaction solvent (or an organic solvent having a solubility equivalent to that of the low molecular weight polymer) is added to the reaction mixture, the mixture is stirred, filtered to remove the low molecular weight polymer, and the mixture is washed once or twice with a solvent such as water, acetone, methyl ethyl ketone, or alcohols, and then neutralized, washed with water, filtered, and dried; (post-treatment 4) after the polymerization reaction is completed, water is added to the reaction
  • the PAS resin may be dried in a vacuum, in air, or in an inert gas atmosphere such as nitrogen.
  • the PAS resin used in this embodiment may be a recycled PAS resin.
  • the proportion of the recycled material in the resin is not particularly limited, but is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the processing (recycling process) of PAS resin molded products into recycled materials can be carried out by a known method. For example, a method of dividing the molded product into chips or pellets by cutting or crushing, a method of dissolving the divided molded product in a solvent and then performing solid-liquid separation to remove fillers, and a method of contacting the divided molded product with a solvent to extract and remove components other than PAS resin.
  • Recycling processes are often carried out based on collected PAS resin molded products provided by consumers, out-of-spec PAS resin molded products provided by molded product manufacturers, and losses generated during molding (such as runners in injection molding).
  • recycled PAS resin the amount of waste resin and molded products can be reduced, thereby reducing the environmental load.
  • CNT dispersions applicable to this embodiment contain at least CNT and an organic polar solvent and/or water.
  • a dispersion refers to one in which CNT is dispersed in an organic polar solvent and/or water, and moreover, in this disclosure, it is preferable that the CNT is dispersed without forming aggregates.
  • CNTs have a cylindrical shape formed by rolling up one surface of graphite.
  • Examples of CNTs include single-walled nanotubes (SWNTs) with a structure of one layer rolled up, and multi-walled nanotubes (MWNTs) with two or more layers rolled up. Any of these can be used in the present invention.
  • SWNTs with a diameter of 20 nm or less are preferred from the viewpoint of exhibiting conductivity with a smaller amount of addition, and those that form bundles with a bundle diameter of 1 ⁇ m or less are preferred, and those that form bundles of 100 nm or less are even more preferred.
  • those with a length of 100 nm or more are preferred.
  • CNTs can generally be manufactured by laser ablation, arc thermal CVD, plasma CVD, gas phase, combustion, etc., but CNTs manufactured by any method can be used.
  • the surface and ends of the CNT used in this embodiment may be modified with functional groups to increase affinity with resins, for example, functionalized with hydroxyl groups, carboxyl groups, or amino groups using an acid or alkali, as long as this does not impair the effects of the present invention.
  • the CNT may be pre-treated with a coupling agent before use, and examples of such coupling agents include isocyanate compounds, organic silane compounds, organic titanate compounds, and epoxy compounds.
  • the organic polar solvent contained in the CNT dispersion liquid used in this embodiment is not particularly limited, but from the viewpoint of affinity, it is preferable to use an organic polar solvent similar to the organic polar solvent mixed with the PAS resin in this process.
  • the content of the organic polar solvent and/or water in the CNT dispersion liquid is preferably 10 parts by mass or more and 500 parts by mass or less per 100 parts by mass of the CNT dispersion liquid. Within this range, the CNTs can maintain an optimal bundle diameter for imparting electrical conductivity.
  • the amount of CNT dispersion liquid added is not particularly limited, but from the viewpoint of highly dispersing CNT in the PAS resin while suppressing aggregation, it is preferable to adjust the amount of CNT to 20 parts by mass or less, and more preferably to 5 parts by mass or less, per 100 parts by mass of PAS resin contained in the mixture (A). It is also preferable that the amount is 0.05 parts by mass or more. If the CNT content is too low, a conductive path is not formed in the resin composition, making it difficult to exhibit excellent conductive properties. On the other hand, if the CNT content is too high, material costs will increase, and there may be an increase in viscosity and a decrease in physical properties due to an increase in the interface between the CNT and the resin in the resin composition.
  • Organic polar solvents that can be used in this embodiment include, for example, amides, ureas, and lactams such as formamide, acetamide, N-methylformamide, N,N-dimethylacetamide, tetramethylurea, N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl- ⁇ -caprolactam, ⁇ -caprolactam, hexamethylphosphoramide, N-dimethylpropyleneurea, and 1,3-dimethyl-2-imidazolidinoic acid; sulfolanes such as sulfolane and dimethylsulfolane; nitriles such as benzonitrile; ketones such as methylphenylketone, and mixtures thereof.
  • amides, ureas, and lactams such as formamide, acetamide, N-methylformamide, N,N-dimethylacetamide, tetramethylurea, N-methyl-2-pyrroli
  • amides having an aliphatic cyclic structure such as N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl- ⁇ -caprolactam, ⁇ -caprolactam, hexamethylphosphoramide, N-dimethylpropyleneurea, and 1,3-dimethyl-2-imidazolidinoic acid are preferred, and N-methyl-2-pyrrolidone is even more preferred.
  • the amount of organic polar solvent added is not particularly limited, but is preferably 150 parts by mass or more, more preferably 300 parts by mass or more, and preferably 2000 parts by mass or less, and more preferably 1000 parts by mass or less, relative to 100 parts by mass of the PAS resin contained in the mixture (A). Within this range, the CNTs are highly dispersed in the PAS resin dissolved in the organic polar solvent.
  • the dispersion aid that can be applied to this embodiment is not particularly limited as long as it does not impair the effects of the present invention, and any known dispersion aid having a hydrogen bond term (dH) in the Hansen solubility parameter of 1 to 10 [MPa 0.5 ] can be used.
  • water-soluble resins such as polyvinylidene fluoride (PVDF), polyvinylpyrrolidone (PVP), and polythiophene (PT) can be mentioned.
  • PVDF polyvinylidene fluoride
  • PVP polyvinylpyrrolidone
  • PT polythiophene
  • the affinity between CNT and PAS resin can be improved, so that the added CNT can exhibit functions (electrical conductivity and thermal conductivity) with a smaller amount.
  • the hydrogen bond term (dH) in the Hansen solubility parameter in this disclosure is a value calculated by the atomic group contribution method based on the chemical structure using Hansen Solubility Parameter Software (HSPiP).
  • the amount of the dispersion aid added is preferably 10 parts by mass or more, more preferably 50 parts by mass or more, even more preferably 100 parts by mass or more, and preferably 500 parts by mass or less, and more preferably 400 parts by mass or less, relative to 100 parts by mass of CNT contained in the mixture (A). Within this range, the affinity between the CNT and the resin can be efficiently improved.
  • the dispersion aid may also be mixed in advance with the CNT dispersion liquid or the organic polar solvent before use.
  • Step (2) is a step of stirring the mixture (A) at 200° C. or higher.
  • the method of heating and stirring the mixture (A) is not particularly limited, and known methods and devices can be used.
  • the heating conditions may be either an open system or a closed system, and are not particularly limited, but heating in a closed system is preferred from the viewpoint of improving productivity.
  • the temperature range of mixture (A) is from 200°C or higher, preferably from 220°C or higher to 270°C or lower, in terms of the solubility of the PAS resin in the organic polar solvent.
  • the processing time in this step is not particularly limited as long as it does not impair the effects of the present invention, and it is preferable to stir at 200°C or higher until the PAS resin dissolves in the organic polar solvent, the molecular chains of the PAS resin are sufficiently entangled with the CNTs, and the stirring torque stabilizes.
  • Step (3) is a step of cooling the mixture (A).
  • the method for cooling the mixture (A) is not particularly limited, and known methods and devices can be used.
  • the cooling conditions may be either an open system or a closed system, and are not particularly limited, but cooling in a closed system is preferred from the viewpoint of improving productivity.
  • the cooling temperature for cooling the mixture (A) is not particularly limited as long as it does not impair the effects of the present invention, but for example, a rate of 2°C/min or more is preferable, and 5°C/min or more is more preferable. Furthermore, the temperature of the mixture (A) after cooling is preferably 150°C or less, and more preferably 60°C or less. Within this range, productivity is high, and the molecular chains of the PAS resin and the CNTs can be removed from the reaction vessel in a well-entangled state.
  • the cooled mixture (A) is recovered, and then the solid-liquid separation is performed.
  • the solid phase component can be dried as is and used as a PAS resin composition powder, or it can be washed with warm water, hot water, carbonated water, etc., and then subjected to solid-liquid separation and drying to prepare a powdered or granular PAS resin composition.
  • the PAS resin composition obtained by the method for producing a PAS resin composition according to the present embodiment has a structure in which CNTs are highly dispersed in the PAS resin, and therefore exhibits excellent electrical conductivity.
  • the electrical conductivity of the PAS resin composition in the present disclosure is not particularly limited, but for example, the volume resistivity is 1.0 ⁇ 10 10 [ ⁇ cm] or less.
  • the volume resistivity is a value measured by the method in the examples.
  • the method for producing a PAS resin composition according to the second embodiment of the present disclosure is a method for producing a PAS resin composition comprising a step of melt-kneading the PAS resin composition obtained by the above-described method with a PAS resin.
  • the method for producing a PAS resin composition is a method for producing a PAS resin composition in which the PAS resin composition obtained by the above-described method is used as a master batch and further diluted with a PAS resin.
  • the PAS resin for dilution that can be applied to this embodiment (hereinafter sometimes abbreviated as diluted PAS resin) can be the same as the PAS resin used in step (1) in the first embodiment.
  • the physical properties of the diluted PAS resin are not particularly limited as long as they do not impair the effects of the present invention, and can be selected according to the processing conditions and applications of the PAS resin composition obtained after melt kneading.
  • the method for producing the PAS resin composition of this embodiment includes a step of blending the essential components and melt-kneading them at a temperature range equal to or higher than the melting point of the PAS resin. More specifically, the PAS resin composition of this embodiment is composed of the essential components and, as necessary, the optional components described below.
  • the method for producing the resin composition used in the present invention is not particularly limited, but includes a method of blending the essential components and, as necessary, the optional components, and melt-kneading them, and more specifically, a method of uniformly dry-mixing them in a tumbler or Henschel mixer, as necessary, and then feeding them into a twin-screw extruder and melt-kneading them.
  • the melt kneading can be carried out by heating the resin to a temperature range in which the resin temperature is equal to or higher than the melting point of the PAS resin, preferably equal to or higher than said melting point + 10°C, more preferably equal to or higher than said melting point + 10°C, even more preferably equal to or higher than said melting point + 20°C, preferably equal to or lower than said melting point + 100°C, more preferably equal to or lower than said melting point + 50°C.
  • the melt kneader is preferably a twin-screw kneading extruder from the viewpoint of dispersibility and productivity.
  • the addition and mixing of each component to the melt kneader may be performed simultaneously or in portions.
  • the position of the side feeder is preferably such that the ratio of the distance from the extruder resin input section (top feeder) to the side feeder to the total screw length of the twin-screw kneading extruder is 0.1 or more, and more preferably 0.3 or more. In addition, such a ratio is preferably 0.9 or less, and more preferably 0.7 or less.
  • the blending ratio of the diluted PAS resin to the PAS resin composition is preferably adjusted so that the CNT content of the PAS resin composition obtained after melt kneading is 0.05 to 1.0 parts by mass per 100 parts by mass of PAS resin. In this range, the resulting PAS resin composition exhibits excellent electrical conductivity and mechanical strength.
  • a filler can be blended as an optional component, if necessary.
  • these fillers well-known and commonly used materials can be used as long as they do not impair the effects of the present invention, and examples include fillers of various shapes, such as granular, plate-like, and fibrous fillers.
  • fillers such as glass fiber, carbon fiber, aramid fiber, glass beads, glass flakes, barium sulfate, clay, pyrophyllite, bentonite, sericite, mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, magnesium carbonate, zeolite, milled fiber, and calcium sulfate can also be used.
  • a silane coupling agent can be blended as an optional component, if necessary.
  • the silane coupling agent there are no particular limitations on the silane coupling agent as long as it does not impair the effects of the present invention, but preferred examples include silane coupling agents having a functional group that reacts with a carboxy group, such as an epoxy group, an isocyanato group, an amino group, or a hydroxyl group.
  • silane coupling agents include epoxy group-containing alkoxysilane compounds such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane; isocyanato group-containing alkoxysilane compounds such as ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇ -isocyanatopropylethyldimethoxysilane, ⁇ -isocyanatopropylethyldiethoxysilane, and ⁇ -isocyanatopropyltrichlorosilane; amino group-containing alkoxysilane compounds such
  • the method for producing the PAS resin composition according to this embodiment can further include optional synthetic resins (hereinafter simply referred to as synthetic resins) such as polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polycarbonate resin, polyphenylene ether resin, polysulfone resin, polyphenylene sulfide sulfone resin, polyethersulfone resin, polyetheretherketone resin, polyetherketone resin, polyarylene resin, polyethylene resin, polypropylene resin, polytetrafluoroethylene resin, polyethylenedifluoroethylene resin, polystyrene resin, ABS resin, phenolic resin, urethane resin, liquid crystal polymer, and thermoplastic elastomer, as appropriate, depending on the application.
  • synthetic resins such as polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polycarbonate resin, polyphenylene ether resin, polysulfone resin, polyphenylene sulfide sulfone resin, polyethersul
  • additives such as colorants, antistatic agents, antioxidants, heat stabilizers, UV stabilizers, UV absorbers, foaming agents, flame retardants, flame retardant assistants, rust inhibitors, and release agents (metal salts or esters of fatty acids having 18 to 30 carbon atoms, including stearic acid or montanic acid, polyolefin waxes such as polyethylene, etc.) can be blended as optional components as necessary.
  • additives are not essential components, and may be used in an amount of, for example, preferably 0.01 parts by mass or more relative to 100 parts by mass of PAS resin, and preferably 1000 parts by mass or less, more preferably 100 parts by mass or less, and even more preferably 10 parts by mass or less, depending on the purpose and application so as not to impair the effects of the present invention.
  • the method for producing a PAS resin composition according to this embodiment provides a PAS resin composition with excellent electrical conductivity.
  • the volume resistivity is 1.0 ⁇ 10 10 ⁇ cm or less.
  • the volume resistivity is a value measured by the method of the example.
  • the volume resistivity is a value measured by the method of the example.
  • the PAS resin composition and PAS resin molded article obtained by the above manufacturing method contain PAS resin, CNT, and a dispersing aid as essential components, and may contain the optional components listed above.
  • the resin composition and molded article have a morphology in which the PAS resin forms a continuous phase and the CNT and optional components are dispersed. By having the PAS resin composition have such a morphology, molded articles can be obtained that have excellent thermal conductivity and electrical conductivity while retaining the heat resistance and chemical resistance of PAS resin.
  • the PAS resin composition disclosed herein can be subjected to various molding processes such as injection molding, compression molding, extrusion molding of composites, sheets, pipes, etc., pultrusion molding, blow molding, and transfer molding, but is particularly suitable for injection molding.
  • various molding conditions are not particularly limited, and molding can be performed by a normal general method.
  • the PAS resin composition is melted at a resin temperature in a temperature range of the melting point of the PAS resin or higher, preferably in a temperature range of the melting point + 10°C or higher, more preferably in a temperature range of the melting point + 10°C to the melting point + 100°C, and even more preferably in a temperature range of the melting point + 20°C to the melting point + 50°C, and then the resin is injected into a mold from a resin outlet and molded.
  • the mold temperature may be set to a known temperature range, for example, room temperature (23°C) to 300°C, preferably 130 to 190°C.
  • the manufacturing method of the molded product disclosed herein may include a step of annealing the molded product.
  • the optimum conditions for the annealing treatment are selected depending on the application or shape of the molded product, and the annealing temperature is in a temperature range equal to or higher than the glass transition temperature of the PAS resin, preferably in a temperature range equal to or higher than the glass transition temperature + 10°C, and more preferably in a temperature range equal to or higher than the glass transition temperature + 30°C.
  • the annealing temperature is in a range of 260°C or lower, and more preferably in a range of 240°C or lower.
  • the annealing time is not particularly limited, but is preferably in a range of 0.5 hours or higher, and more preferably in a range of 1 hour or higher. On the other hand, it is preferable that the annealing time is in a range of 10 hours or lower, and more preferably in a range of 8 hours or lower. In such a range, the distortion of the molded product obtained is reduced and the crystallinity of the resin is improved, which is preferable.
  • the annealing treatment may be performed in air, but is preferably performed in an inert gas such as nitrogen gas.
  • PAS resin molded products are not particularly limited and can be used in a variety of products, but since they are characterized by excellent electrical conductivity in addition to the inherent chemical resistance of PAS resin, they are particularly suitable for use in parts that require chemical resistance and antistatic properties, such as fuels (the term fuel includes fossil fuels such as crude oil, shale oil, shale gas, LNG, gasoline, kerosene, diesel, heavy oil, etc., saturated hydrocarbons such as n-hexane, isohexane, n-nonane, isononane, dodecane, isododecane, 1-hexene, 1-hexane, etc.).
  • fuels includes fossil fuels such as crude oil, shale oil, shale gas, LNG, gasoline, kerosene, diesel, heavy oil, etc., saturated hydrocarbons such as n-hexane, isohexane, n-nonane, isononane, dodecane,
  • the hydrocarbons may be one or more of unsaturated hydrocarbons such as cyclohexane, cycloheptane, cyclooctane, cyclodecane, decalin, etc., cyclic unsaturated hydrocarbons such as cyclohexene, cycloheptene, cyclooctene, 1,1,3,5,7-cyclooctatetraene, cyclododecene, etc., and aromatic hydrocarbons such as benzene, toluene, xylene, etc.
  • the hydrocarbons may be one or more of unsaturated hydrocarbons such as cyclohexane ...
  • the PAS resin molded article of the present disclosure can also be suitably used for containers that come into contact with or are immersed in inks or paints containing the above-mentioned hydrocarbons, for example, printing parts and painting parts used in printing equipment such as nozzles, brushes, cartridges, pumps, transfer bodies, and transfer belts, sliding parts exemplified by gears that come into contact with lubricating oil, and parts of cleaning equipment such as brushes, hoses, and nozzles used in cleaning using hydrocarbons as a solvent.
  • the PAS resin molded article can also be made into the following ordinary resin molded articles.
  • electrical and electronic components such as protective and supporting members for box-shaped integrated modules of electrical and electronic components, multiple individual semiconductors or modules, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable capacitor cases, optical pickups, oscillators, various terminal boards, transformers, plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, terminal blocks, semiconductors, liquid crystal, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer-related components, etc.; VTR components, television components, irons, hair dryers, rice cooker components, microwave oven components, sound Home and office electrical appliance parts such as resonator parts, audio/visual equipment parts such as audio/laser discs, compact discs, DVD discs, and Blu-ray discs, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, and water-related equipment parts such as water heaters, bath water volume and temperature sensors; office computer related parts, telephone related parts,
  • Example 1-1 Mixing process of PPS and CNT dispersion A mixture was obtained by mixing 30 g of PPS resin (linear type, melt viscosity (V6) 106 Pa ⁇ s), 60 g of CNT dispersion (0.4% of OCSiAl's TUBALL (registered trademark) powdered SWCNT (product name: TUBALL 01RW03), 1% of polyvinylidene fluoride (PVDF) as a dispersing agent, and N-methylpyrrolidone (NMP) as a solvent), and NMP adjusted so that the solvent ratio to PPS was 5.
  • PPS resin linear type, melt viscosity (V6) 106 Pa ⁇ s
  • CNT dispersion (0.4% of OCSiAl's TUBALL (registered trademark) powdered SWCNT (product name: TUBALL 01RW03)
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Example 1-2 Stirring step at 200°C or higher>
  • the above mixture was placed in a 500 mL autoclave equipped with a pressure gauge, a thermometer, and a stirring blade, and the atmosphere was replaced with nitrogen.
  • the autoclave was then sealed and heated to 240° C. and stirred at 240° C. and 300 rpm for 1 hour.
  • Example 1-3 Cooling and purification process> The 240 ° C autoclave was cooled to 150 ° C at 5 ° C / min while stirring, and the stirring speed was reduced to 100 rpm and further cooled to 40 ° C at 5 ° C / min.
  • the obtained black cake-like mixture was mixed uniformly in a mortar, and then the slurry was weighed out so that the PPS resin was 20 g, and 200 g of 70 ° C hot water was added to obtain a reslurry, which was stirred for 10 minutes. While suction filtering the mixture, 200 g of 70 ° C hot water was poured in three times to wash the cake. This reslurry and cake washing operation with hot water was performed three times in total, and the obtained cake was dried at 120 ° C for 4 hours to obtain a PPS resin composition (1) with a CNT content of 0.8%.
  • Example 2 A PPS resin composition (2) having a CNT content of 0.8% was obtained in the same manner as in Example 1, except that the dispersing aid was changed from PVDF to polyvinylpyrrolidone (PVP).
  • PVP polyvinylpyrrolidone
  • Example 3 A PPS resin composition (3) having a CNT content of 0.1% was obtained in the same manner as in Example 2, except that the amount of the CNT dispersion was changed from 60 g to 7.5 g.
  • Example 4-1 A PPS resin composition (4-1) having a CNT content of 5% was obtained in the same manner as in Example 2, except that the amount of PPS resin was changed from 30 g to 10 g and the amount of CNT dispersion was changed from 60 g to 125 g.
  • Example 4-2 0.5 g of the obtained PPS resin composition (4-1) and 24.5 g of PPS resin (linear type, melt viscosity (V6) 106 Pa s) were blended, melt-kneaded using a Labo Plastomill at 310°C for 10 minutes, and diluted to obtain a PPS resin composition (4-2) with a CNT content of 0.1%.
  • the p-DCB distilled by azeotropy was separated in the decanter and returned to the kettle as needed.
  • the temperature inside the autoclave was cooled to 160° C., and 324.6 g of the same CNT dispersion liquid as that used in Example 1-1 and 132.6 g of NMP were added, and the temperature was then raised to 220° C. and stirred for 2 hours, and then the temperature was raised to 250° C. and stirred for 1 hour, thereby polymerizing the PPS resin in the presence of CNT.
  • the CNT-containing PAS resin crude product after polymerization was cooled to 40° C. and taken out in a slurry state.
  • the obtained crude product was weighed out so that the PPS resin was 20 g in slurry, and the slurry was heated to 150°C under vacuum while stirring, and NMP was removed over 5 hours. After that, it was cooled to room temperature, and 200 g of 70°C hot water was added to reslurry, and stirred for 10 minutes. The mixture was suction filtered, and 200 g of 70°C hot water was poured in three times to wash the cake. After repeating the reslurry and cake washing three times, the obtained cake and 200 g of water were charged into a 500 ml autoclave and washed with hot water at 230°C for 1 hour. After the hot water washing, the mixture was cooled to room temperature, and 200 g of 70°C hot water was poured in three times while suction filtering to wash the cake. The obtained cake was dried at 120°C for 4 hours to obtain PPS resin composition (C4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a method for producing a PAS resin composition having excellent electrical conductivity by highly dispersing carbon nanotubes (CNT) in a polyarylene sulfide (PAS) resin. The present invention more specifically provides a method for producing a PAS resin composition wherein CNT are dispersed in a PAS resin, the method comprising a step (1) for obtaining a mixture (A) by mixing a PAS resin, a CNT dispersion liquid, an organic polar solvent and a dispersing assistant, a step (2) for stirring the mixture (A) at 200°C or higher, and a step (3) for cooling the mixture (A), wherein: the CNT dispersion liquid contains at least CNT and an organic polar solvent and/or water; and the hydrogen bonding term (dH) in the Hansen solubility parameter of the dispersing assistant is 1 to 10 (MPa0.5).

Description

ポリアリーレンスルフィド樹脂組成物及び成形品の製造方法Polyarylene sulfide resin composition and method for producing molded article
 本発明は、ポリアリーレンスルフィド樹脂組成物及び成形品の製造方法に関する。 The present invention relates to a polyarylene sulfide resin composition and a method for producing a molded article.
 ポリフェニレンスルフィド樹脂(以下、PPS樹脂と略記する。)に代表されるポリアリーレンスルフィド樹脂(以下、PAS樹脂と略記する。)は、耐熱性に優れつつ、かつ、機械的強度、耐薬品性、成形加工性、寸法安定性にも優れるため、自動車部品や電気電子などの分野で、広範に利用されている。 Polyarylene sulfide resins (hereafter abbreviated as PAS resins), such as polyphenylene sulfide resins (hereafter abbreviated as PPS resins), are widely used in fields such as automotive parts and electrical and electronic equipment because they have excellent heat resistance, mechanical strength, chemical resistance, moldability, and dimensional stability.
 一方で、PPS樹脂は導電性が低い性質を有することから、これを改良する為に、例えば、カーボンブラックや炭素繊維等の導電性フィラーを配合した樹脂組成物が開発されている。しかしながら、PPS樹脂の使用用途拡大に伴って導電性の要求性能は年々高まり、十分な導電性を樹脂組成物に付与するためには、導電性フィラーを高充填する必要があった。このフィラーの高充填により、PPS樹脂が本来有する機械的特性や成形加工特性が損なわれることが課題であった。 On the other hand, PPS resin has the property of low electrical conductivity, and to improve this, resin compositions containing conductive fillers such as carbon black and carbon fiber have been developed. However, as the range of uses for PPS resin expands, the required electrical conductivity performance increases year by year, and in order to impart sufficient electrical conductivity to the resin composition, it has become necessary to highly fill the resin with conductive filler. This high filler filling causes the inherent mechanical properties and molding processability of PPS resin to be impaired, which has been an issue.
 当該課題を解決する方法として、少量添加で高い導電性を付与できるカーボンナノチューブ(以下CNTと略記する。)の利用が検討されている。例えば、CNTの存在下でPAS樹脂の重合を行う事で、PAS樹脂中にCNTを高分散させる製造方法が検討されている(例えば特許文献1、2等)。しかし当該製造方法では得られるPAS樹脂の重合度が低いことから、加工条件や用途に制限があった。 As a method to solve this problem, the use of carbon nanotubes (hereafter abbreviated as CNT), which can impart high conductivity with the addition of a small amount, is being considered. For example, a manufacturing method has been considered in which CNT is highly dispersed in PAS resin by polymerizing the PAS resin in the presence of CNT (e.g., Patent Documents 1 and 2, etc.). However, the degree of polymerization of the PAS resin obtained with this manufacturing method is low, so there are limitations on the processing conditions and applications.
 また、CNT存在下で有機溶媒に可溶な樹脂については、有機溶媒中で樹脂を完全に溶解させてから混合する事で樹脂中にCNTを高分散させる方法が提案されているが(例えば特許文献3等)、当該方法によるPAS樹脂中へのCNTの分散性は更なる改良の余地があった。 Furthermore, for resins that are soluble in organic solvents in the presence of CNTs, a method has been proposed in which the resin is completely dissolved in an organic solvent before being mixed to highly disperse the CNTs in the resin (e.g., Patent Document 3, etc.), but there is still room for improvement in the dispersibility of CNTs in PAS resin using this method.
特開2005-232247号公報JP 2005-232247 A 特表2007-507562号公報JP 2007-507562 A 特開2010-242091号公報JP 2010-242091 A
 そこで本発明が解決しようとする課題は、PAS樹脂中にCNTを高度に分散させることにより、導電性に優れるPAS樹脂組成物の製造方法を提供することにある。 The problem that the present invention aims to solve is to provide a method for producing a PAS resin composition with excellent electrical conductivity by highly dispersing CNTs in the PAS resin.
 本願発明者らは種々の検討を行った結果、PAS樹脂とCNT分散液と有機極性溶媒と分散助剤とを混合し、得られた混合物を加熱攪拌してから冷却することで、PAS樹脂中にCNTが高度に分散したPAS樹脂組成物を得られることを見出し、本発明を完成するに至った。 After extensive investigation, the inventors discovered that by mixing PAS resin, a CNT dispersion, an organic polar solvent, and a dispersion aid, and then heating and stirring the resulting mixture and then cooling it, a PAS resin composition in which CNTs are highly dispersed in the PAS resin can be obtained, which led to the completion of the present invention.
 すなわち、本開示は、PAS樹脂中にCNTが分散したPAS樹脂組成物の製造方法であって、
 PAS樹脂とCNT分散液と有機極性溶媒と分散助剤とを混合し、混合物(A)を得る工程(1)、
 前記混合物(A)を200℃以上で攪拌する工程(2)、
 前記混合物(A)を冷却する工程(3)を有し、
 前記CNT分散液が、少なくともCNTと有機極性溶媒及び/又は水とを含むものであり、
 前記分散助剤のハンセンの溶解度パラメータにおける水素結合項(dH)が1~10〔MPa0.5〕である、PAS樹脂組成物の製造方法に関する。
That is, the present disclosure provides a method for producing a PAS resin composition in which CNTs are dispersed in a PAS resin, comprising:
A step (1) of mixing a PAS resin, a CNT dispersion, an organic polar solvent, and a dispersion aid to obtain a mixture (A);
Step (2) of stirring the mixture (A) at 200° C. or higher;
(3) cooling the mixture (A),
The CNT dispersion contains at least CNTs and an organic polar solvent and/or water,
The present invention relates to a method for producing a PAS resin composition, wherein the hydrogen bond term (dH) in the Hansen solubility parameters of the dispersion aid is 1 to 10 [MPa 0.5 ].
 また、本開示は前記記載の製造方法で得られたPAS樹脂組成物を、さらにPAS樹脂と溶融混練する工程を有するPAS樹脂組成物の製造方法であって、
 得られるPAS樹脂組成物100質量部におけるCNTの含有量が1.0質量部以下であり、体積抵抗値が1.0×1010〔Ω・cm〕以下である、PAS樹脂組成物の製造方法に関する。
The present disclosure also provides a method for producing a PAS resin composition, comprising a step of melt-kneading the PAS resin composition obtained by the above-described production method with a PAS resin,
The present invention relates to a method for producing a PAS resin composition, in which the CNT content per 100 parts by mass of the obtained PAS resin composition is 1.0 part by mass or less, and the volume resistivity is 1.0×10 10 Ω·cm or less.
 本発明によれば、PAS樹脂中にCNTを高度に分散させることにより、導電性に優れるPAS樹脂組成物の製造方法を提供することができる。 The present invention provides a method for producing a PAS resin composition with excellent electrical conductivity by highly dispersing CNTs in the PAS resin.
 以下、本発明の実施形態について詳細に説明するが、本発明の範囲はここで説明する一実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができる。また、特定のパラメータについて、複数の上限値及び下限値が記載されている場合、これらの上限値及び下限値の内、任意の上限値と下限値とを組合せて好適な数値範囲とすることができる。 The following describes in detail an embodiment of the present invention, but the scope of the present invention is not limited to the embodiment described here, and various modifications can be made without departing from the spirit of the present invention. Furthermore, when multiple upper and lower limit values are listed for a specific parameter, any of these upper and lower limit values can be combined to create a suitable numerical range.
<第1の実施形態>
 本開示の第一の実施形態に係るPAS樹脂組成物の製造方法は、PAS樹脂とCNT分散液と有機極性溶媒と分散助剤とを混合し、混合物(A)を得る工程(1)、前記混合物(A)を200℃以上で攪拌する工程(2)、及び、前記混合物(A)を冷却する工程(3)を有する。以下、詳述する。
First Embodiment
The method for producing a PAS resin composition according to the first embodiment of the present disclosure includes a step (1) of mixing a PAS resin, a CNT dispersion, an organic polar solvent, and a dispersion aid to obtain a mixture (A), a step (2) of stirring the mixture (A) at 200° C. or higher, and a step (3) of cooling the mixture (A). The steps are described in detail below.
<工程(1)>
 工程(1)は、PAS樹脂とCNT分散液と有機極性溶媒と分散助剤とを混合し、混合物(A)を得る工程である。得られた混合物(A)は、少なくともPAS樹脂、CNT分散液、有機極性溶媒及び分散助剤を含む。
<Step (1)>
Step (1) is a step of mixing a PAS resin, a CNT dispersion, an organic polar solvent, and a dispersion aid to obtain a mixture (A). The obtained mixture (A) contains at least the PAS resin, the CNT dispersion, the organic polar solvent, and the dispersion aid.
 本実施形態に適用できるPAS樹脂としては、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記一般式(1) The PAS resin that can be used in this embodiment has a resin structure with a repeating unit in which an aromatic ring and a sulfur atom are bonded, specifically, the following general formula (1)
Figure JPOXMLDOC01-appb-C000001
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1~4の範囲のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)で表される構造部位と、必要に応じてさらに下記一般式(2)
Figure JPOXMLDOC01-appb-C000001
(wherein R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group), and, if necessary, a structural portion represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000002
で表される3官能性の構造部位と、を繰り返し単位とする樹脂である。式(2)で表される3官能性の構造部位は、他の構造部位との合計モル数に対して0.001~3モル%の範囲が好ましく、特に0.01~1モル%の範囲であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
The trifunctional structural unit represented by formula (2) is preferably in the range of 0.001 to 3 mol %, particularly preferably 0.01 to 1 mol %, based on the total number of moles of the trifunctional structural unit and other structural units.
 ここで、前記一般式(1)で表される構造部位は、特に該式中のR及びRは、前記PAS樹脂の機械的強度の点から水素原子であることが好ましく、その場合、下記式(3)で表されるパラ位で結合するもの、及び下記式(4)で表されるメタ位で結合するものが挙げられる。 Here, the structural portion represented by the general formula (1), particularly R1 and R2 in the formula, are preferably hydrogen atoms from the viewpoint of the mechanical strength of the PAS resin. In this case, examples of the structural portion include those bonded at the para position represented by the following formula (3) and those bonded at the meta position represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000003
 これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記一般式(3)で表されるパラ位で結合した構造であることが前記PAS樹脂の耐熱性や結晶性の面で好ましい。
Figure JPOXMLDOC01-appb-C000003
Among these, a structure in which the bond between the sulfur atom and the aromatic ring in the repeating unit is bonded at the para position represented by the general formula (3) is particularly preferred in terms of heat resistance and crystallinity of the PAS resin.
 また、前記PAS樹脂は、前記一般式(1)や(2)で表される構造部位のみならず、下記の構造式(5)~(8) The PAS resin has structural moieties represented by the general formulas (1) and (2) above, as well as the following structural formulas (5) to (8):
Figure JPOXMLDOC01-appb-C000004
で表される構造部位を、前記一般式(1)と一般式(2)で表される構造部位との合計の30モル%以下で含んでいてもよい。特に本発明では上記一般式(5)~(8)で表される構造部位は10モル%以下であることが、PAS樹脂の耐熱性、機械的強度の点から好ましい。前記PAS樹脂中に、上記一般式(5)~(8)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。
Figure JPOXMLDOC01-appb-C000004
The structural moiety represented by the general formula (1) and the structural moiety represented by the general formula (2) may be contained in an amount of 30 mol % or less of the total of the structural moieties represented by the general formula (1) and the general formula (2). In particular, in the present invention, it is preferable that the structural moieties represented by the general formulas (5) to (8) are 10 mol % or less in terms of the heat resistance and mechanical strength of the PAS resin. When the structural moieties represented by the general formulas (5) to (8) are contained in the PAS resin, the bonding mode thereof may be either a random copolymer or a block copolymer.
 また、前記PAS樹脂は、その分子構造中に、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。 The PAS resin may also have naphthyl sulfide bonds in its molecular structure, but this is preferably 3 mol % or less, and more preferably 1 mol % or less, relative to the total number of moles including other structural parts.
 また、PAS樹脂の物性は、本発明の効果を損ねない限り特に限定されないが、以下の通りである。 The physical properties of the PAS resin are not particularly limited as long as they do not impair the effects of the present invention, but are as follows:
(溶融粘度)
 本実施形態に用いるPAS樹脂の溶融粘度は特に限定されないが、流動性及び機械的強度のバランスが良好となることから、300℃で測定した溶融粘度(V6)が、好ましくは1Pa・s以上の範囲であり、そして、好ましくは1000Pa・s以下の範囲、より好ましくは500Pa・s以下の範囲であり、さらに好ましくは200Pa・s以下の範囲である。ただし、溶融粘度(V6)の測定は、PAS樹脂を島津製作所製フローテスター、CFT-500Dを用いて行い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)にて、6分間保持した後に測定した溶融粘度の測定値とする。
(Melt Viscosity)
The melt viscosity of the PAS resin used in this embodiment is not particularly limited, but in order to obtain a good balance between fluidity and mechanical strength, the melt viscosity (V6) measured at 300°C is preferably in the range of 1 Pa·s or more, and preferably in the range of 1000 Pa·s or less, more preferably in the range of 500 Pa·s or less, and even more preferably in the range of 200 Pa·s or less. However, the melt viscosity (V6) is measured by using a Shimadzu flow tester, CFT-500D, and is the measured value of the melt viscosity after holding the PAS resin at 300°C, load: 1.96×10 6 Pa, L/D=10 (mm)/1 (mm) for 6 minutes.
(非ニュートン指数)
 本実施形態に用いるPAS樹脂の非ニュートン指数は特に限定されないが、0.90以上から2.00以下の範囲以下の範囲であることが好ましい。ただし、本発明において非ニュートン指数(N値)は、キャピログラフを用いて融点+20℃、オリフィス長(L)とオリフィス径(D)の比、L/D=40の条件下で、剪断速度(SR)及び剪断応力(SS)を測定し、下記式を用いて算出した値である。非ニュートン指数(N値)が1に近いほど線状に近い構造であり、非ニュートン指数(N値)が高いほど分岐が進んだ構造であることを示す。
(Non-Newtonian Exponents)
The non-Newtonian index of the PAS resin used in this embodiment is not particularly limited, but is preferably in the range of 0.90 to 2.00. However, in the present invention, the non-Newtonian index (N value) is a value calculated using the following formula by measuring the shear rate (SR) and shear stress (SS) using a capillograph under the conditions of melting point +20°C and the ratio of the orifice length (L) to the orifice diameter (D) L/D=40. The closer the non-Newtonian index (N value) is to 1, the closer the structure is to a linear structure, and the higher the non-Newtonian index (N value), the more branched the structure is.
Figure JPOXMLDOC01-appb-M000005
[ただし、SRは剪断速度(秒-1)、SSは剪断応力(ダイン/cm)、そしてKは定数を示す。]
Figure JPOXMLDOC01-appb-M000005
[where SR is the shear rate (sec -1 ), SS is the shear stress (dynes/ cm2 ), and K is a constant.]
(製造方法)
 PAS樹脂の製造方法としては特に限定されないが、例えば(製造法1)硫黄と炭酸ソーダの存在下でジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、(製造法2)極性溶媒中でスルフィド化剤等の存在下にジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、(製造法3)p-クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法、(製造法4)ジヨード芳香族化合物と単体硫黄を、カルボキシ基やアミノ基等の官能基を有していてもよい重合禁止剤の存在下、減圧させながら溶融重合させる方法、等が挙げられる。これらの方法のなかでも、(製造法2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加しても良い。上記(製造法2)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物とを含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを、必要に応じてポリハロゲノ芳香族化合物と加え、反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02~0.5モルの範囲にコントロールすることによりPAS樹脂を製造する方法(特開平07-228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01~0.9モルの範囲の有機酸アルカリ金属塩及び反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モル以下の範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。ジハロゲノ芳香族化合物の具体的な例としては、p-ジハロベンゼン、m-ジハロベンゼン、o-ジハロベンゼン、2,5-ジハロトルエン、1,4-ジハロナフタレン、1-メトキシ-2,5-ジハロベンゼン、4,4’-ジハロビフェニル、3,5-ジハロ安息香酸、2,4-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,4-ジハロニトロベンゼン、2,4-ジハロアニソール、p,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、4,4’-ジハロジフェニルスルホン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1~18の範囲のアルキル基を有する化合物が挙げられ、ポリハロゲノ芳香族化合物としては1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレンなどが挙げられる。また、上記各化合物中に含まれるハロゲン原子は、塩素原子、臭素原子であることが望ましい。
(Production method)
The method for producing the PAS resin is not particularly limited, but examples thereof include (production method 1) a method in which a dihalogeno aromatic compound is polymerized in the presence of sulfur and sodium carbonate, and if necessary, a polyhalogeno aromatic compound or other copolymerization component is added, (production method 2) a method in which a dihalogeno aromatic compound is polymerized in the presence of a sulfidizing agent or the like in a polar solvent, and if necessary, a polyhalogeno aromatic compound or other copolymerization component is added, (production method 3) a method in which p-chlorothiophenol is added, and if necessary, other copolymerization components are added, and self-condensed, and (production method 4) a method in which a diiodo aromatic compound and elemental sulfur are melt-polymerized under reduced pressure in the presence of a polymerization inhibitor that may have a functional group such as a carboxy group or an amino group. Among these methods, (production method 2) is preferred because it is versatile. During the reaction, an alkali metal salt of a carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization. Among the above-mentioned (Production Method 2) methods, there is a method for producing a PAS resin by introducing a water-containing sulfidizing agent into a mixture containing a heated organic polar solvent and a dihalogeno aromatic compound at a rate at which water can be removed from the reaction mixture, and reacting the dihalogeno aromatic compound and the sulfidizing agent in the organic polar solvent, and optionally adding a polyhalogeno aromatic compound, and controlling the amount of water in the reaction system to within a range of 0.02 to 0.5 mol per mol of the organic polar solvent (see JP-A-07-228699). Particularly preferred is a method in which a dihalogeno-aromatic compound and, if necessary, a polyhalogeno-aromatic compound or other copolymerization component are added in the presence of an alkali metal sulfide and an aprotic polar organic solvent, and an alkali metal hydrosulfide and an organic acid alkali metal salt are reacted while controlling the organic acid alkali metal salt in the range of 0.01 to 0.9 mol per mol of the sulfur source and the amount of water in the reaction system to be 0.02 mol or less per mol of the aprotic polar organic solvent (see WO2010/058713 pamphlet). Specific examples of the dihalogeno aromatic compound include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4,4'-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p,p'-dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-di Examples of the polyhalogeno aromatic compounds include 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1,2,4,5-tetrahalobenzene, 1,4,6-trihalonaphthalene, etc. The halogen atoms contained in the above compounds are preferably chlorine atoms or bromine atoms.
 重合工程により得られたPAS樹脂を含む反応混合物の後処理方法としては、特に制限されるものではないが、例えば、(後処理1)重合反応終了後、先ず反応混合物をそのまま、あるいは酸又は塩基を加えた後、減圧下又は常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回又は2回以上洗浄し、更に中和、水洗、濾過及び乾燥する方法、或いは、(後処理2)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、かつ少なくともPAS樹脂に対しては貧溶媒である溶媒)を沈降剤として添加して、PAS樹脂や無機塩等の固体状生成物を沈降させ、これらを濾別、水洗、乾燥する方法、或いは、(後処理3)重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回又は2回以上洗浄し、その後中和、水洗、濾過及び乾燥をする方法、(後処理4)重合反応終了後、反応混合物に水を加えて水洗浄、濾過、必要に応じて水洗浄の時に酸又は塩基を加えて処理し、乾燥をする方法、(後処理5)重合反応終了後、反応混合物を濾過し、必要に応じ、反応溶媒で1回又は2回以上洗浄し、更に水洗浄、濾過及び乾燥する方法、等が挙げられる。  The method of post-treatment of the reaction mixture containing the PAS resin obtained by the polymerization step is not particularly limited, but for example, (post-treatment 1) after the polymerization reaction is completed, first, the reaction mixture is left as is or after adding an acid or base, and the solvent is distilled off under reduced pressure or normal pressure, and then the solid matter remaining after the solvent distillation is washed once or twice or more times with a solvent such as water, the reaction solvent (or an organic solvent having a similar solubility to the low molecular weight polymer), acetone, methyl ethyl ketone, alcohols, etc., and then neutralized, washed with water, filtered and dried, or (post-treatment 2) after the polymerization reaction is completed, the reaction mixture is dissolved in a solvent such as water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, aliphatic hydrocarbons, etc. (a solvent that is soluble in the polymerization solvent used and is a poor solvent for at least the PAS resin). (a solvent having a solubility of about 100% or less) is added as a precipitant to precipitate solid products such as PAS resin and inorganic salts, which are then filtered, washed with water, and dried; or (post-treatment 3) after the polymerization reaction is completed, a reaction solvent (or an organic solvent having a solubility equivalent to that of the low molecular weight polymer) is added to the reaction mixture, the mixture is stirred, filtered to remove the low molecular weight polymer, and the mixture is washed once or twice with a solvent such as water, acetone, methyl ethyl ketone, or alcohols, and then neutralized, washed with water, filtered, and dried; (post-treatment 4) after the polymerization reaction is completed, water is added to the reaction mixture, the mixture is washed with water, filtered, and if necessary, an acid or base is added during the water washing, and the mixture is dried; (post-treatment 5) after the polymerization reaction is completed, the reaction mixture is filtered, and if necessary, the mixture is washed once or twice or more with the reaction solvent, and then washed with water, filtered, and dried.
 なお、上記(後処理1)~(後処理5)に例示したような後処理方法において、PAS樹脂の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。 In the post-treatment methods exemplified above in (Post-treatment 1) to (Post-treatment 5), the PAS resin may be dried in a vacuum, in air, or in an inert gas atmosphere such as nitrogen.
 また、本実施形態に用いるPAS樹脂としては、リサイクルされたPAS樹脂でもよい。本実施形態に用いるPAS樹脂が該リサイクル材料を含む場合、当該樹脂中の当該リサイクル材料の割合は特に限定されないが、例えば、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。PAS樹脂成形品のリサイクル材料への加工(リサイクル処理)は、公知の方法によって実施することができる。例えば、裁断又は粉砕等によって、成形品をチップ状もしくはペレット状等に細分化する方法や、細分化された成形品を溶媒に溶解させてから固液分離することで充填剤等を除去する方法、細分化された成形品と溶媒を接触させてPAS樹脂以外の成分を抽出除去する方法等が挙げられる。リサイクル処理は、消費者から提供されるPAS樹脂成形品の回収品や、成形品製造者から提供されるPAS樹脂成形品のスペックアウト品や成形時に生じるロス(射出成形におけるランナー等)等をもとに行われることが多い。リサイクルされたPAS樹脂を用いることによって、樹脂や成形品の廃棄処理量を減らして、環境負荷を低減できる。 The PAS resin used in this embodiment may be a recycled PAS resin. When the PAS resin used in this embodiment contains the recycled material, the proportion of the recycled material in the resin is not particularly limited, but is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less. The processing (recycling process) of PAS resin molded products into recycled materials can be carried out by a known method. For example, a method of dividing the molded product into chips or pellets by cutting or crushing, a method of dissolving the divided molded product in a solvent and then performing solid-liquid separation to remove fillers, and a method of contacting the divided molded product with a solvent to extract and remove components other than PAS resin. Recycling processes are often carried out based on collected PAS resin molded products provided by consumers, out-of-spec PAS resin molded products provided by molded product manufacturers, and losses generated during molding (such as runners in injection molding). By using recycled PAS resin, the amount of waste resin and molded products can be reduced, thereby reducing the environmental load.
 本実施形態に適用できるCNT分散液としては、少なくともCNTと有機極性溶媒及び/又は水とを含むものである。本開示における分散液とは、CNTが有機極性溶媒及び/又は水中で分散状態にあるものをさし、さらに本開示ではCNTが凝集体を形成しないで分散状態であるものが好ましい。 CNT dispersions applicable to this embodiment contain at least CNT and an organic polar solvent and/or water. In this disclosure, a dispersion refers to one in which CNT is dispersed in an organic polar solvent and/or water, and moreover, in this disclosure, it is preferable that the CNT is dispersed without forming aggregates.
 CNTは、グラファイトの一枚面を巻いて円筒状にした形状を有しており、1層で巻いた構造を持つシングルウォールナノチューブ(SWNT)、2層以上で巻いたマルチウォールナノチューブ(MWNT)等の種類が挙げられるが、本発明においてはいずれも使用することができる。これらの中でもより少量添加で導電性を発現させる観点から、SWNTで直径20nm以下のものが好ましく、またバンドル径が1μm以下のバンドルを形成するものが好ましく、100nm以下のバンドルを形成するものがより好ましい。また、PAS樹脂中における導電性パス形成が容易になる観点から、長さが100nm以上のものが好ましい。また、CNTは、一般にレーザーアブレーション法、アーク放熱CVD法、プラズマCVD法、気相法、燃焼法などで製造できるが、どのような方法で製造したCNTも用いることができる。 CNTs have a cylindrical shape formed by rolling up one surface of graphite. Examples of CNTs include single-walled nanotubes (SWNTs) with a structure of one layer rolled up, and multi-walled nanotubes (MWNTs) with two or more layers rolled up. Any of these can be used in the present invention. Among these, SWNTs with a diameter of 20 nm or less are preferred from the viewpoint of exhibiting conductivity with a smaller amount of addition, and those that form bundles with a bundle diameter of 1 μm or less are preferred, and those that form bundles of 100 nm or less are even more preferred. Furthermore, from the viewpoint of facilitating the formation of conductive paths in the PAS resin, those with a length of 100 nm or more are preferred. Furthermore, CNTs can generally be manufactured by laser ablation, arc thermal CVD, plasma CVD, gas phase, combustion, etc., but CNTs manufactured by any method can be used.
 本実施形態で用いるCNTの表面及び末端は、本発明の効果を損なわない限りにおいて、樹脂との親和性を増すために、官能基で修飾して用いてもよく、例えば酸やアルカリによって水酸基、カルボキシル基、アミノ基で官能基化を施してもよい。更にCNTをカップリング剤で予備処理して使用してもよく、かかるカップリング剤としては、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、エポキシ化合物などが挙げられる。 The surface and ends of the CNT used in this embodiment may be modified with functional groups to increase affinity with resins, for example, functionalized with hydroxyl groups, carboxyl groups, or amino groups using an acid or alkali, as long as this does not impair the effects of the present invention. Furthermore, the CNT may be pre-treated with a coupling agent before use, and examples of such coupling agents include isocyanate compounds, organic silane compounds, organic titanate compounds, and epoxy compounds.
 本実施形態で用いるCNT分散液が含有する有機極性溶媒は、特に限定されないが、本工程でPAS樹脂と混合する有機極性溶媒と同様のものを用いることが、親和性の観点から好ましい。また、前記CNT分散液における有機極性溶媒及び/又は水の含有量は、CNT分散液100質量部に対して、10質量部以上が好ましく、500質量部以下が好ましい。かかる範囲において、CNTは導電性を付与するのに最適なバンドル径を維持する事ができる。 The organic polar solvent contained in the CNT dispersion liquid used in this embodiment is not particularly limited, but from the viewpoint of affinity, it is preferable to use an organic polar solvent similar to the organic polar solvent mixed with the PAS resin in this process. Furthermore, the content of the organic polar solvent and/or water in the CNT dispersion liquid is preferably 10 parts by mass or more and 500 parts by mass or less per 100 parts by mass of the CNT dispersion liquid. Within this range, the CNTs can maintain an optimal bundle diameter for imparting electrical conductivity.
 CNT分散液の添加量は特に限定されないが、CNTの凝集を抑制しながらPAS樹脂中に高度に分散させる観点から、前記混合物(A)に含まれるPAS樹脂100質量部に対して、CNTが20質量部以下になるように調整することが好ましく、5質量部以下になるように調整することがより好ましい。また、0.05質量部以上であることが好ましい。CNTの含有量が少なすぎると、導電パスが樹脂組成物中に形成されず、優れた導電特性を呈することが難しい。一方、CNTの含有量が多すぎると材料コストが増加し、また、樹脂組成物中のCNTと樹脂の界面増加に伴う粘度上昇や、物性低下が生じる場合がある。 The amount of CNT dispersion liquid added is not particularly limited, but from the viewpoint of highly dispersing CNT in the PAS resin while suppressing aggregation, it is preferable to adjust the amount of CNT to 20 parts by mass or less, and more preferably to 5 parts by mass or less, per 100 parts by mass of PAS resin contained in the mixture (A). It is also preferable that the amount is 0.05 parts by mass or more. If the CNT content is too low, a conductive path is not formed in the resin composition, making it difficult to exhibit excellent conductive properties. On the other hand, if the CNT content is too high, material costs will increase, and there may be an increase in viscosity and a decrease in physical properties due to an increase in the interface between the CNT and the resin in the resin composition.
 本実施形態に適用できる有機極性溶媒としては、例えば、ホルムアミド、アセトアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素、N-メチル-2-ピロリドン、2-ピロリドン、N-メチル-ε-カプロラクタム、ε-カプロラクタム、ヘキサメチルホスホルアミド、N-ジメチルプロピレン尿素、1,3-ジメチル-2-イミダゾリジノン酸などのアミド、尿素及びラクタム類;スルホラン、ジメチルスルホラン等のスルホラン類;ベンゾニトリル等のニトリル類;メチルフェニルケトン等のケトン類及びこれらの混合物を挙げることができ、これらの中でもN-メチル-2-ピロリドン、2-ピロリドン、N-メチル-ε-カプロラクタム、ε-カプロラクタム、ヘキサメチルホスホルアミド、N-ジメチルプロピレン尿素、1,3-ジメチル-2-イミダゾリジノン酸の脂肪族系環状構造を有するアミドが好ましく、N-メチル-2-ピロリドンがさらに好ましい。 Organic polar solvents that can be used in this embodiment include, for example, amides, ureas, and lactams such as formamide, acetamide, N-methylformamide, N,N-dimethylacetamide, tetramethylurea, N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl-ε-caprolactam, ε-caprolactam, hexamethylphosphoramide, N-dimethylpropyleneurea, and 1,3-dimethyl-2-imidazolidinoic acid; sulfolanes such as sulfolane and dimethylsulfolane; nitriles such as benzonitrile; ketones such as methylphenylketone, and mixtures thereof. Among these, amides having an aliphatic cyclic structure such as N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl-ε-caprolactam, ε-caprolactam, hexamethylphosphoramide, N-dimethylpropyleneurea, and 1,3-dimethyl-2-imidazolidinoic acid are preferred, and N-methyl-2-pyrrolidone is even more preferred.
 有機極性溶媒の添加量は特に限定されないが、前記混合物(A)に含まれるPAS樹脂100質量部に対して、150質量部以上が好ましく、300質量部以上がより好ましく、2000質量部以下が好ましく、1000質量部以下がより好ましい。かかる範囲において、有機極性溶媒に溶解したPAS樹脂にCNTが高度に分散される。 The amount of organic polar solvent added is not particularly limited, but is preferably 150 parts by mass or more, more preferably 300 parts by mass or more, and preferably 2000 parts by mass or less, and more preferably 1000 parts by mass or less, relative to 100 parts by mass of the PAS resin contained in the mixture (A). Within this range, the CNTs are highly dispersed in the PAS resin dissolved in the organic polar solvent.
 本実施形態に適用できる分散助剤としては、本発明の効果を損ねるものでなければ特に限定されず、ハンセンの溶解度パラメータにおける水素結合項(dH)が1~10〔MPa0.5〕の分散助剤であれば公知のものを用いることができる。例えば、ポリビニリデンフルオライド(PVDF)、ポリビニルピロリドン(PVP)、ポリチオフェン(PT)等の水溶性樹脂を挙げることができる。分散助剤を用いることで、CNTとPAS樹脂の親和性を向上させることができるため、添加されたCNTがより少量で機能(導電性や熱伝導性)を発現する事ができる。なお、本開示におけるハンセンの溶解度パラメータにおける水素結合項(dH)は、ハンセン溶解度パラメータ・ソフト(HSPiP)を用いて、化学構造に基づいて原子団寄与法により算出した値である。 The dispersion aid that can be applied to this embodiment is not particularly limited as long as it does not impair the effects of the present invention, and any known dispersion aid having a hydrogen bond term (dH) in the Hansen solubility parameter of 1 to 10 [MPa 0.5 ] can be used. For example, water-soluble resins such as polyvinylidene fluoride (PVDF), polyvinylpyrrolidone (PVP), and polythiophene (PT) can be mentioned. By using a dispersion aid, the affinity between CNT and PAS resin can be improved, so that the added CNT can exhibit functions (electrical conductivity and thermal conductivity) with a smaller amount. Note that the hydrogen bond term (dH) in the Hansen solubility parameter in this disclosure is a value calculated by the atomic group contribution method based on the chemical structure using Hansen Solubility Parameter Software (HSPiP).
 分散助剤の添加量は、前記混合物(A)に含まれるCNT100質量部に対して、10質量部以上が好ましく、50質量部以上がより好ましく、100質量部以上がさらに好ましく、500質量部以下が好ましく、400質量部以下がより好ましい。かかる範囲において、効率的にCNTと樹脂の親和性を向上させることができる。また、分散助剤は前記CNT分散液や前記有機極性溶媒と予め混合してから用いても良い。 The amount of the dispersion aid added is preferably 10 parts by mass or more, more preferably 50 parts by mass or more, even more preferably 100 parts by mass or more, and preferably 500 parts by mass or less, and more preferably 400 parts by mass or less, relative to 100 parts by mass of CNT contained in the mixture (A). Within this range, the affinity between the CNT and the resin can be efficiently improved. The dispersion aid may also be mixed in advance with the CNT dispersion liquid or the organic polar solvent before use.
<工程(2)>
 工程(2)は、前記混合物(A)を200℃以上で攪拌する工程である。
<Step (2)>
The step (2) is a step of stirring the mixture (A) at 200° C. or higher.
 本工程において、前記混合物(A)を加熱攪拌する方法は特に限定されず、公知の方法や装置を用いることができる。加熱する際の条件は開放系、密閉系のいずれであってもよく、特に限定されるものではないが、密閉系で加熱することが生産性を向上させる観点から好ましい。 In this step, the method of heating and stirring the mixture (A) is not particularly limited, and known methods and devices can be used. The heating conditions may be either an open system or a closed system, and are not particularly limited, but heating in a closed system is preferred from the viewpoint of improving productivity.
 混合物(A)の温度範囲としては、有機極性溶媒に対するPAS樹脂の溶解性の観点から200度以上の範囲、好ましくは220℃以上の範囲から、好ましくは270℃以下の範囲である。かかる範囲で攪拌することによって、PAS樹脂とCNT分散液が分子鎖スケールで絡み合うことができ、良好な分散性を呈することができる。本工程における処理時間は、本発明の効果を損ない限り特に限定されず、PAS樹脂が有機極性溶媒に溶解し、PAS樹脂の分子鎖がCNTと十分に絡み合った状態になって攪拌トルクが安定するまで200℃以上で攪拌することが好ましい。 The temperature range of mixture (A) is from 200°C or higher, preferably from 220°C or higher to 270°C or lower, in terms of the solubility of the PAS resin in the organic polar solvent. By stirring within this range, the PAS resin and the CNT dispersion can be entangled on a molecular chain scale, and good dispersibility can be exhibited. The processing time in this step is not particularly limited as long as it does not impair the effects of the present invention, and it is preferable to stir at 200°C or higher until the PAS resin dissolves in the organic polar solvent, the molecular chains of the PAS resin are sufficiently entangled with the CNTs, and the stirring torque stabilizes.
<工程(3)>
 工程(3)は、前記混合物(A)を冷却する工程である。
<Step (3)>
The step (3) is a step of cooling the mixture (A).
 本工程において、前記混合物(A)を冷却する方法は特に限定されず、公知の方法や装置を用いることができる。冷却する際の条件は開放系、密閉系のいずれであってもよく、特に限定されるものではないが、密閉系で冷却することが生産性を向上させる観点から好ましい。 In this step, the method for cooling the mixture (A) is not particularly limited, and known methods and devices can be used. The cooling conditions may be either an open system or a closed system, and are not particularly limited, but cooling in a closed system is preferred from the viewpoint of improving productivity.
 前記混合物(A)を冷却する際の冷却温度は、本発明の効果を損ねない限り特に限定されないが、例えば、2℃/分以上が好ましく、5℃/分以上がより好ましい。また、冷却後の混合物(A)の温度は150℃以下が好ましく、60℃以下がより好ましい。かかる範囲において、生産性が高く、かつPAS樹脂の分子鎖とCNTが良く絡み合った状態で反応釜から取出す事ができる。 The cooling temperature for cooling the mixture (A) is not particularly limited as long as it does not impair the effects of the present invention, but for example, a rate of 2°C/min or more is preferable, and 5°C/min or more is more preferable. Furthermore, the temperature of the mixture (A) after cooling is preferably 150°C or less, and more preferably 60°C or less. Within this range, productivity is high, and the molecular chains of the PAS resin and the CNTs can be removed from the reaction vessel in a well-entangled state.
 冷却した前記混合物(A)は回収され、その後、固液分離してから固相成分をそのまま乾燥してPAS樹脂組成物粉末として用いても良いし、更に温水や熱水、炭酸水等で洗浄処理した後、固液分離し、乾燥を行って粉末状ないし顆粒状のPAS樹脂組成物として調製することもできる。 The cooled mixture (A) is recovered, and then the solid-liquid separation is performed. The solid phase component can be dried as is and used as a PAS resin composition powder, or it can be washed with warm water, hot water, carbonated water, etc., and then subjected to solid-liquid separation and drying to prepare a powdered or granular PAS resin composition.
 以上の本実施形態に係るPAS樹脂組成物の製造方法により得られるPAS樹脂組成物は、PAS樹脂中にCNTが高度に分散された構造を有することから、優れた導電性を呈する。本開示におけるPAS樹脂組成物の導電性は特に限定されないが、例えば、体積抵抗値が1.0×1010〔Ω・cm〕以下である。なお、体積抵抗値は実施例の方法で測定した値である。 The PAS resin composition obtained by the method for producing a PAS resin composition according to the present embodiment has a structure in which CNTs are highly dispersed in the PAS resin, and therefore exhibits excellent electrical conductivity. The electrical conductivity of the PAS resin composition in the present disclosure is not particularly limited, but for example, the volume resistivity is 1.0×10 10 [Ω·cm] or less. The volume resistivity is a value measured by the method in the examples.
<第二の実施形態>
 本開示の第二の実施形態に係るPAS樹脂組成物の製造方法は、前記記載の製造方法で得られたPAS樹脂組成物を、さらにPAS樹脂と溶融混練する工程を有するPAS樹脂組成物の製造方法である。換言すると、前記記載の製造方法で得られたPAS樹脂組成物をマスターバッチとして用いて、さらにPAS樹脂で希釈するPAS樹脂組成物の製造方法である。
Second Embodiment
The method for producing a PAS resin composition according to the second embodiment of the present disclosure is a method for producing a PAS resin composition comprising a step of melt-kneading the PAS resin composition obtained by the above-described method with a PAS resin. In other words, the method for producing a PAS resin composition is a method for producing a PAS resin composition in which the PAS resin composition obtained by the above-described method is used as a master batch and further diluted with a PAS resin.
 本実施形態に適用できる希釈用のPAS樹脂(以下、希釈PAS樹脂と略記することがある)は、第一の実施形態における工程(1)で用いたPAS樹脂と同様のものを用いることができる。希釈PAS樹脂の物性は、本発明の効果を損ねない限り特に限定されず、溶融混練後に得られるPAS樹脂組成物の加工条件や用途に合わせて、種々選択することができる。 The PAS resin for dilution that can be applied to this embodiment (hereinafter sometimes abbreviated as diluted PAS resin) can be the same as the PAS resin used in step (1) in the first embodiment. The physical properties of the diluted PAS resin are not particularly limited as long as they do not impair the effects of the present invention, and can be selected according to the processing conditions and applications of the PAS resin composition obtained after melt kneading.
 本実施形態のPAS樹脂組成物の製造方法は、上記必須成分を配合し、PAS樹脂の融点以上の温度範囲で溶融混錬する工程を有する。より詳しくは、本実施形態のPAS樹脂組成物は、各必須成分、及び、必要に応じて後述する任意成分を配合してなる。本発明に用いる樹脂組成物を製造する方法としては、特に限定されないが、必須成分と必要に応じて任意成分を配合して、溶融混錬する方法、より詳しくは、必要に応じてタンブラー又はヘンシェルミキサー等で均一に乾式混合し、次いで、二軸押出機に投入して溶融混練する方法が挙げられる。 The method for producing the PAS resin composition of this embodiment includes a step of blending the essential components and melt-kneading them at a temperature range equal to or higher than the melting point of the PAS resin. More specifically, the PAS resin composition of this embodiment is composed of the essential components and, as necessary, the optional components described below. The method for producing the resin composition used in the present invention is not particularly limited, but includes a method of blending the essential components and, as necessary, the optional components, and melt-kneading them, and more specifically, a method of uniformly dry-mixing them in a tumbler or Henschel mixer, as necessary, and then feeding them into a twin-screw extruder and melt-kneading them.
 溶融混錬は、樹脂温度がPAS樹脂の融点以上となる温度範囲、好ましくは該融点+10℃以上となる温度範囲、より好ましくは該融点+10℃以上、さらに好ましくは該融点+20℃以上から、好ましくは該融点+100℃以下、より好ましくは該融点+50℃以下までの範囲の温度に加熱して行うことができる。 The melt kneading can be carried out by heating the resin to a temperature range in which the resin temperature is equal to or higher than the melting point of the PAS resin, preferably equal to or higher than said melting point + 10°C, more preferably equal to or higher than said melting point + 10°C, even more preferably equal to or higher than said melting point + 20°C, preferably equal to or lower than said melting point + 100°C, more preferably equal to or lower than said melting point + 50°C.
 前記溶融混練機としては分散性や生産性の観点から二軸混練押出機が好ましく、例えば、樹脂成分の吐出量5~500(kg/hr)の範囲と、スクリュー回転数50~500(rpm)の範囲とを適宜調整しながら溶融混練することが好ましく、それらの比率(吐出量/スクリュー回転数)が0.02~5(kg/hr/rpm)の範囲となる条件下に溶融混練することがさらに好ましい。また、溶融混練機への各成分の添加、混合は同時に行ってもよいし、分割して行っても良い。例えば、任意成分として繊維状充填剤等を添加する場合は、前記二軸混練押出機のサイドフィーダーから該押出機内に投入することが分散性の観点から好ましい。かかるサイドフィーダーの位置は、前記二軸混練押出機のスクリュー全長に対する、該押出機樹脂投入部(トップフィーダー)から該サイドフィーダーまでの距離の比率が、0.1以上であることが好ましく、0.3以上であることがより好ましい。また、かかる比率は0.9以下であることが好ましく、0.7以下であることがより好ましい。 The melt kneader is preferably a twin-screw kneading extruder from the viewpoint of dispersibility and productivity. For example, it is preferable to melt knead while appropriately adjusting the resin component discharge rate in the range of 5 to 500 (kg/hr) and the screw rotation speed in the range of 50 to 500 (rpm), and it is even more preferable to melt knead under conditions where the ratio (discharge rate/screw rotation speed) is in the range of 0.02 to 5 (kg/hr/rpm). In addition, the addition and mixing of each component to the melt kneader may be performed simultaneously or in portions. For example, when adding a fibrous filler or the like as an optional component, it is preferable from the viewpoint of dispersibility to feed the extruder from a side feeder of the twin-screw kneading extruder. The position of the side feeder is preferably such that the ratio of the distance from the extruder resin input section (top feeder) to the side feeder to the total screw length of the twin-screw kneading extruder is 0.1 or more, and more preferably 0.3 or more. In addition, such a ratio is preferably 0.9 or less, and more preferably 0.7 or less.
 本実施形態におけるPAS樹脂組成物に対する希釈PAS樹脂の配合割合は、溶融混練後に得られるPAS樹脂組成物のCNT含有量がPAS樹脂100質量部に対して0.05~1.0質量部になるように調整することが好ましい。かかる範囲において、得られるPAS樹脂組成物が優れた導電性と機械的強度を呈する。 In this embodiment, the blending ratio of the diluted PAS resin to the PAS resin composition is preferably adjusted so that the CNT content of the PAS resin composition obtained after melt kneading is 0.05 to 1.0 parts by mass per 100 parts by mass of PAS resin. In this range, the resulting PAS resin composition exhibits excellent electrical conductivity and mechanical strength.
 本実施形態に係るPAS樹脂組成物の製造方法は、必要に応じて、充填剤を任意成分として配合することができる。これら充填剤としては本発明の効果を損なうものでなければ公知慣用の材料を用いることもでき、粒状や板状、繊維状のものなど、さまざまな形状の充填剤等が挙げられる。例えば、ガラス繊維、炭素繊維、アラミド繊維、ガラスビーズ、ガラスフレーク、硫酸バリウム、クレー、パイロフィライト、ベントナイト、セリサイト、マイカ、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ゼオライト、ミルドファイバー、硫酸カルシウム等の充填剤も使用できる。 In the method for producing a PAS resin composition according to this embodiment, a filler can be blended as an optional component, if necessary. As these fillers, well-known and commonly used materials can be used as long as they do not impair the effects of the present invention, and examples include fillers of various shapes, such as granular, plate-like, and fibrous fillers. For example, fillers such as glass fiber, carbon fiber, aramid fiber, glass beads, glass flakes, barium sulfate, clay, pyrophyllite, bentonite, sericite, mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, magnesium carbonate, zeolite, milled fiber, and calcium sulfate can also be used.
 本実施形態に係るPAS樹脂組成物の製造方法は、必要に応じて、シランカップリング剤を任意成分として配合することができる。シランカップリング剤としては、本発明の効果を損ねなければ特に限定されないが、カルボキシ基と反応する官能基、例えば、エポキシ基、イソシアナト基、アミノ基又は水酸基を有するシランカップリング剤が好ましいものとして挙げられる。このようなシランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有アルコキシシラン化合物、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシラン等のイソシアナト基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン化合物、γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシラン等の水酸基含有アルコキシシラン化合物が挙げられる。 In the method for producing the PAS resin composition according to this embodiment, a silane coupling agent can be blended as an optional component, if necessary. There are no particular limitations on the silane coupling agent as long as it does not impair the effects of the present invention, but preferred examples include silane coupling agents having a functional group that reacts with a carboxy group, such as an epoxy group, an isocyanato group, an amino group, or a hydroxyl group. Examples of such silane coupling agents include epoxy group-containing alkoxysilane compounds such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; isocyanato group-containing alkoxysilane compounds such as γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane, γ-isocyanatopropylethyldiethoxysilane, and γ-isocyanatopropyltrichlorosilane; amino group-containing alkoxysilane compounds such as γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-(2-aminoethyl)aminopropyltrimethoxysilane, and γ-aminopropyltrimethoxysilane; and hydroxyl group-containing alkoxysilane compounds such as γ-hydroxypropyltrimethoxysilane and γ-hydroxypropyltriethoxysilane.
 本実施形態に係るPAS樹脂組成物の製造方法は、上記成分に加えて、さらに用途に応じて、適宜、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスルフォン樹脂、ポリフェニレンスルフィドスルホン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアリーレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ四フッ化エチレン樹脂、ポリ二フッ化エチレン樹脂、ポリスチレン樹脂、ABS樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー、熱可塑性エラストマー等の合成樹脂(以下、単に合成樹脂という)を任意成分として配合することができる。 In addition to the above components, the method for producing the PAS resin composition according to this embodiment can further include optional synthetic resins (hereinafter simply referred to as synthetic resins) such as polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polycarbonate resin, polyphenylene ether resin, polysulfone resin, polyphenylene sulfide sulfone resin, polyethersulfone resin, polyetheretherketone resin, polyetherketone resin, polyarylene resin, polyethylene resin, polypropylene resin, polytetrafluoroethylene resin, polyethylenedifluoroethylene resin, polystyrene resin, ABS resin, phenolic resin, urethane resin, liquid crystal polymer, and thermoplastic elastomer, as appropriate, depending on the application.
 本実施形態に係るPAS樹脂組成物の製造方法は、その他にも着色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、防錆剤、及び離型剤(ステアリン酸やモンタン酸を含む炭素原子数18~30の脂肪酸の金属塩やエステル、ポリエチレン等のポリオレフィン系ワックスなど)等の公知慣用の添加剤を必要に応じ、任意成分として配合することができる。これらの添加剤は必須成分ではなく、例えば、PAS樹脂100質量部に対して、好ましくは0.01質量部以上の範囲であり、そして、好ましくは1000質量部以下、より好ましくは100質量部以下、さらに好ましくは10質量部以下の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。 In the method for producing the PAS resin composition according to this embodiment, other known and commonly used additives such as colorants, antistatic agents, antioxidants, heat stabilizers, UV stabilizers, UV absorbers, foaming agents, flame retardants, flame retardant assistants, rust inhibitors, and release agents (metal salts or esters of fatty acids having 18 to 30 carbon atoms, including stearic acid or montanic acid, polyolefin waxes such as polyethylene, etc.) can be blended as optional components as necessary. These additives are not essential components, and may be used in an amount of, for example, preferably 0.01 parts by mass or more relative to 100 parts by mass of PAS resin, and preferably 1000 parts by mass or less, more preferably 100 parts by mass or less, and even more preferably 10 parts by mass or less, depending on the purpose and application so as not to impair the effects of the present invention.
 また、本実施形態に係るPAS樹脂組成物の製造方法は、得られるPAS樹脂組成物の導電性に優れる。具体的には、体積抵抗値が1.0×1010〔Ω・cm〕以下である。なお、体積抵抗値は実施例の方法で測定した値である。なお、体積抵抗値は実施例の方法で測定した値である。 In addition, the method for producing a PAS resin composition according to this embodiment provides a PAS resin composition with excellent electrical conductivity. Specifically, the volume resistivity is 1.0×10 10 Ω·cm or less. The volume resistivity is a value measured by the method of the example. The volume resistivity is a value measured by the method of the example.
 上記の製造方法によって得られたPAS樹脂組成物及びPAS樹脂成形品は、PAS樹脂とCNTと分散助剤とを必須成分として含有し、上記の任意成分を含有しうるものである。当該樹脂組成物及び成形品は、PAS樹脂が連続相を形成し、CNTや任意成分が分散されたモルフォロジーを有する。PAS樹脂組成物が、かかるモルフォロジーを有することにより、PAS樹脂の有する耐熱性や耐薬品性を有しながら、熱伝導性や導電性に優れた成形品が得られる。 The PAS resin composition and PAS resin molded article obtained by the above manufacturing method contain PAS resin, CNT, and a dispersing aid as essential components, and may contain the optional components listed above. The resin composition and molded article have a morphology in which the PAS resin forms a continuous phase and the CNT and optional components are dispersed. By having the PAS resin composition have such a morphology, molded articles can be obtained that have excellent thermal conductivity and electrical conductivity while retaining the heat resistance and chemical resistance of PAS resin.
 本開示のPAS樹脂組成物は、射出成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形など各種成形に供することが可能であるが、特に射出成形用途に適している。射出成形にて成形する場合、各種成形条件は特に限定されず、通常一般的な方法にて成形することができる。例えば、射出成形機内で、樹脂温度がPAS樹脂の融点以上の温度範囲、好ましくは該融点+10℃以上の温度範囲、より好ましくは融点+10℃~融点+100℃の温度範囲、さらに好ましくは融点+20℃~融点+50℃の温度範囲で前記PAS樹脂組成物を溶融する工程を経た後、樹脂吐出口よりを金型内に注入して成形すればよい。その際、金型温度も公知の温度範囲、例えば、室温(23℃)~300℃、好ましくは130~190℃に設定すればよい。 The PAS resin composition disclosed herein can be subjected to various molding processes such as injection molding, compression molding, extrusion molding of composites, sheets, pipes, etc., pultrusion molding, blow molding, and transfer molding, but is particularly suitable for injection molding. When molding by injection molding, the various molding conditions are not particularly limited, and molding can be performed by a normal general method. For example, in an injection molding machine, the PAS resin composition is melted at a resin temperature in a temperature range of the melting point of the PAS resin or higher, preferably in a temperature range of the melting point + 10°C or higher, more preferably in a temperature range of the melting point + 10°C to the melting point + 100°C, and even more preferably in a temperature range of the melting point + 20°C to the melting point + 50°C, and then the resin is injected into a mold from a resin outlet and molded. At that time, the mold temperature may be set to a known temperature range, for example, room temperature (23°C) to 300°C, preferably 130 to 190°C.
 本開示の成形品の製造方法は、前記成形品にアニール処理する工程を有してもよい。アニール処理は、成形品の用途あるいは形状等により最適な条件が選ばれるが、アニール温度はPAS樹脂のガラス転移温度以上の温度範囲、好ましくは該ガラス転移温度+10℃以上の温度範囲であり、より好ましくは該ガラス転移温度+30℃以上の温度範囲である。一方、260℃以下の範囲であることが好ましく、240℃以下の範囲であることがより好ましい。アニール時間は特に限定されないが、0.5時間以上の範囲であることが好ましく、1時間以上の範囲であることがより好ましい。一方、10時間以下の範囲であることが好ましく、8時間以下の範囲であることがより好ましい。かかる範囲において、得られる成形品のひずみが低減し、かつ、樹脂の結晶性が向上するため好ましい。アニール処理は空気中で行ってもよいが、窒素ガス等の不活性ガス中で行うことが好ましい。 The manufacturing method of the molded product disclosed herein may include a step of annealing the molded product. The optimum conditions for the annealing treatment are selected depending on the application or shape of the molded product, and the annealing temperature is in a temperature range equal to or higher than the glass transition temperature of the PAS resin, preferably in a temperature range equal to or higher than the glass transition temperature + 10°C, and more preferably in a temperature range equal to or higher than the glass transition temperature + 30°C. On the other hand, it is preferable that the annealing temperature is in a range of 260°C or lower, and more preferably in a range of 240°C or lower. The annealing time is not particularly limited, but is preferably in a range of 0.5 hours or higher, and more preferably in a range of 1 hour or higher. On the other hand, it is preferable that the annealing time is in a range of 10 hours or lower, and more preferably in a range of 8 hours or lower. In such a range, the distortion of the molded product obtained is reduced and the crystallinity of the resin is improved, which is preferable. The annealing treatment may be performed in air, but is preferably performed in an inert gas such as nitrogen gas.
 本開示のPAS樹脂成形品の用途としては、特に限定されるものではなく各種製品として用いることが可能であるが、PAS樹脂の本来有する耐薬品性に加えて導電性に優れることを特徴としたものであるから、特に耐薬品性と帯電防止性を要する部品、例えば、燃料(燃料の用語には、原油、シェールオイル、シェールガス、LNG、ガソリン、灯油、軽油、重油等の化石燃料等や、n-ヘキサン、イソヘキサン、n-ノナン、イソノナン、ドデカン、イソドデカン等の飽和炭化水素類、1-ヘキセン、1-ヘプテン、1-オクテン等の不飽和炭化水素類、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン、デカリン等の環状飽和炭化水素類、シクロヘキセン、シクロヘプテン、シクロオクテン、1,1,3,5,7-シクロオクタテトラエン、シクロドデセン等の環状不飽和炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類に代表される炭化水素類などの単独又は複数種であってもよい。)やそのミスト又は蒸気を輸送する配管や容器、継ぎ手、バルブ、化学プラント配管等に好適である。具体的には、燃料タンク、燃料チューブ、燃料センサー、燃料ポンプ、ベーンポンプ、オートレシオ流量計等といった部品に好適に用いることができる。また、本開示のPAS樹脂成形品は、その他にも、上記の炭化水素類を含むインクや塗料に接したり浸漬したりする容器、例えば、ノズル、ブラシ、カートリッジ、ポンプ、転写体、転写ベルト等の印刷用機器に用いる印刷用部品や塗装用部品、潤滑油に接するギアに例示される摺動部品、炭化水素類を溶剤とする洗浄に用いるブラシ、ホース、ノズルといった洗浄用機器の部品にも好適に用いることができる。さらに、この他にも、以下のような通常の樹脂成形品とすることもできる。例えば箱型の電気・電子部品集積モジュール用保護・支持部材・複数の個別半導体又はモジュール、センサ、LEDランプ、コネクタ、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサ、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナ、スピーカ、マイクロフォン、ヘッドフォン、小型モータ、磁気ヘッドベース、パワーモジュール、端子台、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダ、パラボラアンテナ、コンピュータ関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤ、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザディスク・コンパクトディスク・DVDディスク・ブルーレイディスク等の音声・映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライタ部品、ワードプロセッサ部品、あるいは給湯機や風呂の湯量、温度センサなどの水回り機器部品等に代表される家庭、事務電気製品部品;オフィスコンピュータ関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライタ、タイプライタなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクタ、ブラシホルダー、スリップリング、ICレギュレータ、ライトディマ用ポテンシオメーターベース、リレーブロック、インヒビタースイッチ、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、エンジン冷却水ジョイント、キャブレターメインボディ、キャブレタースペーサ、排気ガスセンサ、冷却水センサ、油温センサ、ブレーキパットウェアーセンサ、スロットルポジションセンサ、クランクシャフトポジションセンサ、温度センサ、エアーフローメータ、ブレーキパッド摩耗センサ、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダ、ウォーターポンプインペラ、タービンベイン、ワイパーモーター関係部品、デュストリビュータ、スタータースイッチ、イグニッションコイル及びそのボビン、モーターインシュレータ、モーターロータ、モーターコア、スターターリレ、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクタ、ホーンターミナル、電装部品絶縁板、ステップモーターロータ、ランプソケット、ランプリフレクタ、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルタ、点火装置ケース等の自動車・車両関連部品が挙げられ、その他各種用途にも適用可能である。 The uses of the PAS resin molded products disclosed herein are not particularly limited and can be used in a variety of products, but since they are characterized by excellent electrical conductivity in addition to the inherent chemical resistance of PAS resin, they are particularly suitable for use in parts that require chemical resistance and antistatic properties, such as fuels (the term fuel includes fossil fuels such as crude oil, shale oil, shale gas, LNG, gasoline, kerosene, diesel, heavy oil, etc., saturated hydrocarbons such as n-hexane, isohexane, n-nonane, isononane, dodecane, isododecane, 1-hexene, 1-hexane, etc.). The hydrocarbons may be one or more of unsaturated hydrocarbons such as cyclohexane, cycloheptane, cyclooctane, cyclodecane, decalin, etc., cyclic unsaturated hydrocarbons such as cyclohexene, cycloheptene, cyclooctene, 1,1,3,5,7-cyclooctatetraene, cyclododecene, etc., and aromatic hydrocarbons such as benzene, toluene, xylene, etc. The hydrocarbons may be one or more of unsaturated hydrocarbons such as cyclohexane ... In addition, the PAS resin molded article of the present disclosure can also be suitably used for containers that come into contact with or are immersed in inks or paints containing the above-mentioned hydrocarbons, for example, printing parts and painting parts used in printing equipment such as nozzles, brushes, cartridges, pumps, transfer bodies, and transfer belts, sliding parts exemplified by gears that come into contact with lubricating oil, and parts of cleaning equipment such as brushes, hoses, and nozzles used in cleaning using hydrocarbons as a solvent. Furthermore, in addition to the above, the PAS resin molded article can also be made into the following ordinary resin molded articles. For example, electrical and electronic components such as protective and supporting members for box-shaped integrated modules of electrical and electronic components, multiple individual semiconductors or modules, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable capacitor cases, optical pickups, oscillators, various terminal boards, transformers, plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, terminal blocks, semiconductors, liquid crystal, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer-related components, etc.; VTR components, television components, irons, hair dryers, rice cooker components, microwave oven components, sound Home and office electrical appliance parts such as resonator parts, audio/visual equipment parts such as audio/laser discs, compact discs, DVD discs, and Blu-ray discs, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, and water-related equipment parts such as water heaters, bath water volume and temperature sensors; office computer related parts, telephone related parts, facsimile related parts, copier related parts, cleaning jigs, motor parts, lighters, typewriters, and other machine related parts; optical equipment and precision machinery related parts such as microscopes, binoculars, cameras, and clocks; alternator terminals, alternator connectors, brush holders, slip rings, I C regulators, potentiometer bases for light dimmers, relay blocks, inhibitor switches, various valves such as exhaust gas valves, various pipes for fuel, exhaust systems and intake systems, air intake nozzle snorkels, intake manifolds, engine coolant joints, carburetor main bodies, carburetor spacers, exhaust gas sensors, coolant sensors, oil temperature sensors, brake pad wear sensors, throttle position sensors, crankshaft position sensors, temperature sensors, air flow meters, brake pad wear sensors, thermostat bases for air conditioners, heating hot air flow control valves, brush holders for radiator motors, water Examples of automobile and vehicle-related parts include pump impellers, turbine vanes, wiper motor-related parts, distributors, starter switches, ignition coils and their bobbins, motor insulators, motor rotors, motor cores, starter relays, transmission wire harnesses, windshield washer nozzles, air conditioner panel switch boards, coils for fuel-related electromagnetic valves, fuse connectors, horn terminals, electrical component insulating plates, step motor rotors, lamp sockets, lamp reflectors, lamp housings, brake pistons, solenoid bobbins, engine oil filters, ignition device cases, and other various other applications.
 以下、実施例、比較例を用いて説明するが、本発明はこれら実施例に限定されるものではない。なお、以下、特に断りが無い場合「%」や「部」は質量基準とする。 The following examples and comparative examples are used to explain the present invention, but the present invention is not limited to these examples. In the following, unless otherwise specified, "%" and "parts" are based on mass.
<実施例1-1 PPSとCNT分散液の混合工程>
PPS樹脂(リニア型、溶融粘度(V6)106Pa・s)30g、CNT分散液(OCSiAl(オクサイアル)社のTUBALL(登録商標)粉末SWCNT(商品名:TUBALL 01RW03)0.4%、分散助剤としてポリフッ化ビニリデン(PVDF)1%、溶媒としてN-メチルピロリドン(NMP))60g、PPSに対する溶媒比が5となる様に調整したNMPを混ぜ、混合物を得た。
Example 1-1: Mixing process of PPS and CNT dispersion
A mixture was obtained by mixing 30 g of PPS resin (linear type, melt viscosity (V6) 106 Pa·s), 60 g of CNT dispersion (0.4% of OCSiAl's TUBALL (registered trademark) powdered SWCNT (product name: TUBALL 01RW03), 1% of polyvinylidene fluoride (PVDF) as a dispersing agent, and N-methylpyrrolidone (NMP) as a solvent), and NMP adjusted so that the solvent ratio to PPS was 5.
<実施例1-2 200℃以上の攪拌工程>
圧力計、温度計が付帯された撹拌翼付き500mLオートクレーブに上記混合物を仕込み、窒素置換した後、密閉させ、240℃まで昇温し、240℃300rpmで1時間攪拌させた。
<Example 1-2 Stirring step at 200°C or higher>
The above mixture was placed in a 500 mL autoclave equipped with a pressure gauge, a thermometer, and a stirring blade, and the atmosphere was replaced with nitrogen. The autoclave was then sealed and heated to 240° C. and stirred at 240° C. and 300 rpm for 1 hour.
<実施例1-3 冷却と精製工程>
240℃のオートクレーブを攪拌させたまま5℃/分で150℃まで冷却させ、攪拌回転数を100rpmに下げて5℃/分で更に40℃まで冷却させた。得られた黒色ケーキ状の混合物を乳鉢で均一に混ぜた後、PPS樹脂が20gとなる様にスラリーを秤取り、70℃の温水を200g添加して得たリスラリーを10分間攪拌した。混合物を吸引ろ過しながら、200gの70℃温水を3回に分けて注いでケーキ洗浄した。この温水によるリスラリーとケーキ洗浄の操作を計3回実施し、得られたケーキを120℃で4時間かけて乾燥する事で、CNT含有率0.8%のPPS樹脂組成物(1)を得た。
<Example 1-3 Cooling and purification process>
The 240 ° C autoclave was cooled to 150 ° C at 5 ° C / min while stirring, and the stirring speed was reduced to 100 rpm and further cooled to 40 ° C at 5 ° C / min. The obtained black cake-like mixture was mixed uniformly in a mortar, and then the slurry was weighed out so that the PPS resin was 20 g, and 200 g of 70 ° C hot water was added to obtain a reslurry, which was stirred for 10 minutes. While suction filtering the mixture, 200 g of 70 ° C hot water was poured in three times to wash the cake. This reslurry and cake washing operation with hot water was performed three times in total, and the obtained cake was dried at 120 ° C for 4 hours to obtain a PPS resin composition (1) with a CNT content of 0.8%.
<実施例2>
 分散助剤をPVDFからポリビニルピロリドン(PVP)に変更した点以外は、実施例1と同様に実施してCNT含有率0.8%のPPS樹脂組成物(2)を得た。
Example 2
A PPS resin composition (2) having a CNT content of 0.8% was obtained in the same manner as in Example 1, except that the dispersing aid was changed from PVDF to polyvinylpyrrolidone (PVP).
<実施例3>
 CNT分散液の量を60gから7.5gに変更した点以外は、実施例2と同様に実施してCNT含有率0.1%のPPS樹脂組成物(3)を得た。
Example 3
A PPS resin composition (3) having a CNT content of 0.1% was obtained in the same manner as in Example 2, except that the amount of the CNT dispersion was changed from 60 g to 7.5 g.
<実施例4-1>
 PPS樹脂を30gから10g、CNT分散液を60gから125gに変更した点以外は、実施例2と同様に実施してCNT含有率5%のPPS樹脂組成物(4-1)を得た。
<Example 4-1>
A PPS resin composition (4-1) having a CNT content of 5% was obtained in the same manner as in Example 2, except that the amount of PPS resin was changed from 30 g to 10 g and the amount of CNT dispersion was changed from 60 g to 125 g.
<実施例4-2>
 得られたPPS樹脂組成物(4-1)0.5gと、PPS樹脂(リニア型、溶融粘度(V6)106Pa・s)を24.5gとを配合し、ラボプラストミルを用いて310℃、10分間で溶融混錬して希釈して、CNT含有率0.1%のPPS樹脂組成物(4-2)を得た。
<Example 4-2>
0.5 g of the obtained PPS resin composition (4-1) and 24.5 g of PPS resin (linear type, melt viscosity (V6) 106 Pa s) were blended, melt-kneaded using a Labo Plastomill at 310°C for 10 minutes, and diluted to obtain a PPS resin composition (4-2) with a CNT content of 0.1%.
<比較例1>
 添加するCNT分散液の量を60gから0gに変更した点以外は、実施例1と同様に実施して、PPS樹脂組成物(C1)を得た。
<Comparative Example 1>
A PPS resin composition (C1) was obtained in the same manner as in Example 1, except that the amount of the CNT dispersion liquid added was changed from 60 g to 0 g.
<比較例2>
 分散助剤をPVDFからポリビニルアルコール(PVA)に変更した点以外は、実施例1と同様に実施してCNT含有率0.8%のPPS樹脂組成物(C2)を得た。
<比較例3>
 分散助剤をPVDF1%から0%に変更した点以外は、実施例1と同様に実施してCNT含有率0.8%のPPS樹脂組成物(C3)を得た。
<Comparative Example 2>
A PPS resin composition (C2) having a CNT content of 0.8% was obtained in the same manner as in Example 1, except that the dispersing aid was changed from PVDF to polyvinyl alcohol (PVA).
<Comparative Example 3>
A PPS resin composition (C3) having a CNT content of 0.8% was obtained in the same manner as in Example 1, except that the dispersing aid was changed from 1% to 0% PVDF.
<比較例4>
圧力計、温度計、コンデンサ、デカンタを連結した撹拌翼及び底弁付き1Lオートクレーブにp-ジクロロベンゼン(p-DCB)220.5g(1.5モル)、NMP39.7g(0.30モル)、45%NaSH186.9g(1.5モル)、及び48%NaOH125.0g(1.5モル)を仕込み、撹拌しながら窒素雰囲気下で173℃まで昇温した。水を167.8g留出させた後、釜を密閉した。その際、共沸により留出したp-DCBはデカンタで分離して、随時釜内に戻した。脱水終了後、オートクレーブ内温を160℃まで冷却し、実施例1-1で用いたものと同様のCNT分散液324.6gとNMP132.6gを追加した後、220℃まで昇温して2時間撹拌し、続いて250℃まで昇温して1時間撹拌する事でCNT存在下においてPPS樹脂を重合した。重合後のCNT含有PAS樹脂粗生成物を40℃まで冷却し、スラリー状態で取り出した。
<Comparative Example 4>
220.5g (1.5 mol) of p-dichlorobenzene (p-DCB), 39.7g (0.30 mol) of NMP, 186.9g (1.5 mol) of 45% NaSH, and 125.0g (1.5 mol) of 48% NaOH were charged into a 1L autoclave equipped with a stirring blade and a bottom valve, to which a pressure gauge, a thermometer, a condenser, and a decanter were connected, and the temperature was raised to 173°C under a nitrogen atmosphere while stirring. After 167.8g of water was distilled out, the kettle was sealed. At that time, the p-DCB distilled by azeotropy was separated in the decanter and returned to the kettle as needed. After completion of dehydration, the temperature inside the autoclave was cooled to 160° C., and 324.6 g of the same CNT dispersion liquid as that used in Example 1-1 and 132.6 g of NMP were added, and the temperature was then raised to 220° C. and stirred for 2 hours, and then the temperature was raised to 250° C. and stirred for 1 hour, thereby polymerizing the PPS resin in the presence of CNT. The CNT-containing PAS resin crude product after polymerization was cooled to 40° C. and taken out in a slurry state.
 得られた粗生成物を、PPS樹脂が20gとなる様にスラリーを秤取り、さらに攪拌しながら真空下で150℃に加熱し、5時間かけてNMPを除去した。その後、室温まで冷却してから200gの70℃温水を添加してリスラリーし、10分間攪拌した。混合物を吸引ろ過しながら、200gの70℃温水を3回に分けて注いでケーキ洗浄した。リスラリーとケーキ洗浄を3回繰返した後、得られたケーキと200gの水を500mlのオートクレーブに仕込み、230℃で1時間熱水洗浄した。熱水洗浄後、混合物を室温まで冷却させて、吸引ろ過しながら200gの70℃温水を3回に分けて注ぎケーキ洗浄した。得られたケーキを120℃で4時間かけて乾燥させて、PPS樹脂組成物(C4)を得た。 The obtained crude product was weighed out so that the PPS resin was 20 g in slurry, and the slurry was heated to 150°C under vacuum while stirring, and NMP was removed over 5 hours. After that, it was cooled to room temperature, and 200 g of 70°C hot water was added to reslurry, and stirred for 10 minutes. The mixture was suction filtered, and 200 g of 70°C hot water was poured in three times to wash the cake. After repeating the reslurry and cake washing three times, the obtained cake and 200 g of water were charged into a 500 ml autoclave and washed with hot water at 230°C for 1 hour. After the hot water washing, the mixture was cooled to room temperature, and 200 g of 70°C hot water was poured in three times while suction filtering to wash the cake. The obtained cake was dried at 120°C for 4 hours to obtain PPS resin composition (C4).
<評価> <Evaluation>
(1)導電性の評価
 各実施例及び比較例で得られた樹脂組成物の体積抵抗率から導電性を評価した。体積抵抗率は、日東精工アナリテック株式会社製「ロレスタAX MCP-T370」(測定上限:10Ω・cm)を用いて、室温21℃、湿度67RH%の条件下における各試験片の体積抵抗率をJIS K 7194「導電性プラスチックの4探針法による抵抗率試験方法」に準拠して測定した。試験片は、各実施例及び比較例で得られた樹脂組成物を310℃で2分間プレスして、プレート形状(50mm×50mm×2mmt)に成形したものを用いた。結果を表1及び2に示す。なお、比較例1の樹脂組成物は機器の測定上限を超えたため、O.L.と記載した。
(1) Evaluation of Electrical Conductivity Electrical conductivity was evaluated from the volume resistivity of the resin composition obtained in each Example and Comparative Example. The volume resistivity was measured using "Loresta AX MCP-T370" (upper limit of measurement: 10 6 Ω·cm) manufactured by Nitto Seiko Analytech Co., Ltd., under conditions of room temperature of 21°C and humidity of 67 RH%, in accordance with JIS K 7194 "Test method for resistivity of conductive plastics by four-probe method". The test pieces were made by pressing the resin compositions obtained in each Example and Comparative Example at 310°C for 2 minutes and molding them into a plate shape (50 mm x 50 mm x 2 mmt). The results are shown in Tables 1 and 2. The resin composition of Comparative Example 1 exceeded the upper limit of measurement by the instrument, so it was described as O.L.
(2)溶融粘度(V6)の測定
 各実施例及び比較例で得られた樹脂組成物の溶融粘度(V6)は、島津製作所製フローテスター「CFT-500D」を用い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)の条件にて、6分間保持した後に測定した。結果を表1及び2に示す。
(2) Measurement of Melt Viscosity (V6) The melt viscosity (V6) of the resin compositions obtained in each of the Examples and Comparative Examples was measured using a Shimadzu Corporation flow tester "CFT-500D" under the conditions of 300°C, load: 1.96 x 106 Pa, L/D = 10 (mm)/1 (mm) after holding for 6 minutes. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1及び2から、実施例1-4と比較例1を対比すると、実施例で得られた樹脂組成物中にCNTが高度に分散されており、CNTの少量添加で体積抵抗率の低下を実現した事が示された。また実施例1-4と比較例2、3を対比すると、適切な分散助剤を選定する事で体積抵抗率の低下を実現する事が認められた。更に実施例1-4と比較例4を対比すると、実施例の樹脂組成物は同程度のCNT含有量でより大きい溶融粘度を示し、加工性や機械的強度により優れることが示された。 Comparing Examples 1-4 and Comparative Example 1 from Tables 1 and 2, it was shown that CNTs were highly dispersed in the resin compositions obtained in the Examples, and that adding a small amount of CNTs achieved a reduction in volume resistivity. Comparing Examples 1-4 and Comparative Examples 2 and 3, it was confirmed that a reduction in volume resistivity could be achieved by selecting an appropriate dispersing agent. Comparing Examples 1-4 and Comparative Example 4 further showed that the resin compositions of the Examples showed a higher melt viscosity at the same CNT content, and were superior in processability and mechanical strength.

Claims (7)

  1.  ポリアリーレンスルフィド樹脂中にカーボンナノチューブが分散したポリアリーレンスルィド樹脂組成物の製造方法であって、
     ポリアリーレンスルフィド樹脂とカーボンナノチューブ分散液と有機極性溶媒と分散助剤とを混合し、混合物(A)を得る工程(1)、
     前記混合物(A)を200℃以上で攪拌する工程(2)、
     前記混合物(A)を冷却する工程(3)を有し、
     前記カーボンナノチューブ分散液が、少なくともカーボンナノチューブと有機極性溶媒及び/又は水とを含むものであり、
     前記分散助剤のハンセンの溶解度パラメータにおける水素結合項(dH)が1~10〔MPa0.5〕である、ポリアリーレンスルフィド樹脂組成物の製造方法。
    (ただし、水素結合項(dH)はハンセン溶解度パラメータ・ソフト(HSPiP)を用いて、原子団寄与法により算出した値である。)
    A method for producing a polyarylene sulfide resin composition in which carbon nanotubes are dispersed in a polyarylene sulfide resin, comprising the steps of:
    A step (1) of mixing a polyarylene sulfide resin, a carbon nanotube dispersion, an organic polar solvent, and a dispersion aid to obtain a mixture (A);
    Step (2) of stirring the mixture (A) at 200° C. or higher;
    (3) cooling the mixture (A),
    the carbon nanotube dispersion liquid contains at least carbon nanotubes and an organic polar solvent and/or water,
    The method for producing a polyarylene sulfide resin composition, wherein the hydrogen bond term (dH) in the Hansen solubility parameters of the dispersing aid is 1 to 10 [MPa 0.5 ].
    (Note that the hydrogen bond term (dH) is a value calculated by the atomic group contribution method using the Hansen Solubility Parameter software (HSPiP).)
  2.  得られるポリアリーレンスルフィド樹脂組成物100質量部における前記カーボンナノチューブの含有量が20質量部以下である、請求項1記載のポリアリーレンスルフィド樹脂組成物の製造方法。 The method for producing a polyarylene sulfide resin composition according to claim 1, wherein the content of the carbon nanotubes in 100 parts by mass of the resulting polyarylene sulfide resin composition is 20 parts by mass or less.
  3.  得られるポリアリーレンスルフィド樹脂組成物の体積抵抗値が1.0×1010〔Ω・cm〕以下である、請求項1又は2記載のポリアリーレンスルフィド樹脂組成物の製造方法。 3. The method for producing a polyarylene sulfide resin composition according to claim 1 or 2, wherein the volume resistivity of the obtained polyarylene sulfide resin composition is 1.0×10 10 Ω·cm or less.
  4.  請求項1又は2記載の製造方法で得られた前記ポリアリーレンスルフィド樹脂組成物を、さらにポリアリーレンスルフィド樹脂と溶融混練する工程を有するポリアリーレンスルフィド樹脂組成物の製造方法であって、
     得られるポリアリーレンスルフィド樹脂組成物100質量部における前記カーボンナノチューブの前記含有量が1.0質量部以下であり、体積抵抗値が1.0×1010〔Ω・cm〕以下である、ポリアリーレンスルフィド樹脂組成物の製造方法。
    A method for producing a polyarylene sulfide resin composition, comprising a step of melt-kneading the polyarylene sulfide resin composition obtained by the method for producing a polyarylene sulfide resin according to claim 1 or 2 with a polyarylene sulfide resin,
    The method for producing a polyarylene sulfide resin composition, wherein the content of the carbon nanotubes in 100 parts by mass of the obtained polyarylene sulfide resin composition is 1.0 part by mass or less, and the volume resistivity is 1.0×10 10 Ω·cm or less.
  5.  請求項4記載の製造方法で得られたポリアリーレンスルフィド樹脂組成物を、溶融成形する工程を有する、ポリアリーレンスルフィド樹脂成形品の製造方法。 A method for producing a polyarylene sulfide resin molded product, comprising a step of melt molding the polyarylene sulfide resin composition obtained by the manufacturing method described in claim 4.
  6.  ポリアリーレンスルフィド樹脂中にカーボンナノチューブが分散したポリアリーレンスルィド樹脂組成物であって、
     ポリアリーレンスルフィド樹脂とカーボンナノチューブと分散助剤とを含有し、
     前記カーボンナノチューブの含有量がポリアリーレンスルフィド樹脂組成物100質量部に対して20質量部以下であり、
     樹脂組成物の体積抵抗値が1.0×1010〔Ω・cm〕以下である、ポリアリーレンスルィド樹脂組成物。
    A polyarylene sulfide resin composition in which carbon nanotubes are dispersed in a polyarylene sulfide resin,
    Contains a polyarylene sulfide resin, carbon nanotubes, and a dispersion aid;
    The content of the carbon nanotubes is 20 parts by mass or less based on 100 parts by mass of the polyarylene sulfide resin composition,
    A polyarylene sulfide resin composition having a volume resistivity of 1.0×10 10 Ω·cm or less.
  7.  請求項6記載の樹脂組成物を溶融成形してなるポリアリーレンスルフィド樹脂成形品。 A polyarylene sulfide resin molded product obtained by melt molding the resin composition according to claim 6.
PCT/JP2023/034212 2022-11-29 2023-09-21 Polyarylene sulfide resin composition and method for producing molded article WO2024116564A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024502523A JP7491486B1 (en) 2022-11-29 2023-09-21 Polyarylene sulfide resin composition and method for producing molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-190121 2022-11-29
JP2022190121 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024116564A1 true WO2024116564A1 (en) 2024-06-06

Family

ID=91323545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034212 WO2024116564A1 (en) 2022-11-29 2023-09-21 Polyarylene sulfide resin composition and method for producing molded article

Country Status (1)

Country Link
WO (1) WO2024116564A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508417A (en) * 2004-08-02 2008-03-21 ユニバーシティー オブ ヒューストン Carbon nanotube reinforced polymer nanocomposite
JP2010006856A (en) * 2008-06-24 2010-01-14 Nissei Plastics Ind Co Carbon nanocomposite resin material
JP2010196018A (en) * 2009-02-27 2010-09-09 Dic Corp Production method for polyarylene sulfide resin composition in which metal element-containing nanoparticles are dispersed
JP2010275464A (en) * 2009-05-29 2010-12-09 Dic Corp Method for producing composite of polyarylene sulfide resin with inorganic fine particle
JP2013023579A (en) * 2011-07-21 2013-02-04 Tosoh Corp Master batch
JP2013036021A (en) * 2011-07-08 2013-02-21 Ube Industries Ltd Carbon nanotube dispersant including polyamic acid
CN108641358A (en) * 2018-05-17 2018-10-12 合肥工业大学 A kind of preparation method of the carbon nano-tube/poly diphenyl sulfide with negative permittivity
WO2020129872A1 (en) * 2018-12-17 2020-06-25 レジノカラー工業株式会社 Carbon nanotube dispersion liquid and method for producing same
WO2022210974A1 (en) * 2021-03-30 2022-10-06 日本ゼオン株式会社 Elastomer composition, method for producing same, crosslinked product, and molded body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508417A (en) * 2004-08-02 2008-03-21 ユニバーシティー オブ ヒューストン Carbon nanotube reinforced polymer nanocomposite
JP2010006856A (en) * 2008-06-24 2010-01-14 Nissei Plastics Ind Co Carbon nanocomposite resin material
JP2010196018A (en) * 2009-02-27 2010-09-09 Dic Corp Production method for polyarylene sulfide resin composition in which metal element-containing nanoparticles are dispersed
JP2010275464A (en) * 2009-05-29 2010-12-09 Dic Corp Method for producing composite of polyarylene sulfide resin with inorganic fine particle
JP2013036021A (en) * 2011-07-08 2013-02-21 Ube Industries Ltd Carbon nanotube dispersant including polyamic acid
JP2013023579A (en) * 2011-07-21 2013-02-04 Tosoh Corp Master batch
CN108641358A (en) * 2018-05-17 2018-10-12 合肥工业大学 A kind of preparation method of the carbon nano-tube/poly diphenyl sulfide with negative permittivity
WO2020129872A1 (en) * 2018-12-17 2020-06-25 レジノカラー工業株式会社 Carbon nanotube dispersion liquid and method for producing same
WO2022210974A1 (en) * 2021-03-30 2022-10-06 日本ゼオン株式会社 Elastomer composition, method for producing same, crosslinked product, and molded body

Similar Documents

Publication Publication Date Title
EP2762530A1 (en) Polyphenylene sulfide resin composition, method for producing same, and molded product of same
WO2013141364A1 (en) Polyarylene sulfide resin composition and molded body
KR102535459B1 (en) Polyphenylene sulfide resin composition, manufacturing method and molded product thereof
WO2017069109A1 (en) Polyarylene sulfide resin composition, molded product, and methods for producing said composition and product
JP7501359B2 (en) Polyphenylene sulfide resin composition and molded article
JP2018141149A (en) Polyphenylene sulfide resin composition and molding
JP7491486B1 (en) Polyarylene sulfide resin composition and method for producing molded article
JP2021172675A (en) Polyphenylene sulfide resin composition and molding
JP7485254B1 (en) Polyarylene sulfide resin composition and method for producing molded article
JP5131125B2 (en) Polyphenylene sulfide resin composition and molded body
WO2024116564A1 (en) Polyarylene sulfide resin composition and method for producing molded article
WO2024116563A1 (en) Method for producing polyarylene sulfide resin composition and molded article
WO2021100758A1 (en) Polyphenylene sulfide resin composition for automobile cooling component, and automobile cooling component
WO2021100757A1 (en) Polyphenylene sulfide resin composition for automotive cooling parts, and automotive cooling parts
JP6828414B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP6701877B2 (en) Polyphenylene sulfide resin composition
KR20230028762A (en) Polyarylene sulfide resin composition, molded article and manufacturing method thereof
JP2022010455A (en) Polyphenylene sulfide resin composition, and molding
JP7311051B2 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP7136394B1 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
WO2020116434A1 (en) Resin composition and molded body thereof
JP2020143274A (en) Polyphenylene sulfide resin composition and molded article comprising the same
JP2021080363A (en) Polyarylene sulfide resin composition, molding, composite molding and method for producing them
JP7453635B1 (en) Polyarylene sulfide resin compositions, molded products and methods for producing them
JP7197066B1 (en) Polyarylene sulfide resin composition, molded article and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897223

Country of ref document: EP

Kind code of ref document: A1