WO2024116545A1 - 作業機械、及び、作業機械を制御するための方法 - Google Patents

作業機械、及び、作業機械を制御するための方法 Download PDF

Info

Publication number
WO2024116545A1
WO2024116545A1 PCT/JP2023/033262 JP2023033262W WO2024116545A1 WO 2024116545 A1 WO2024116545 A1 WO 2024116545A1 JP 2023033262 W JP2023033262 W JP 2023033262W WO 2024116545 A1 WO2024116545 A1 WO 2024116545A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
work machine
brake
transmission
controller
Prior art date
Application number
PCT/JP2023/033262
Other languages
English (en)
French (fr)
Inventor
陽 竹野
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024116545A1 publication Critical patent/WO2024116545A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic

Definitions

  • the present invention relates to a work machine and a method for controlling the work machine.
  • Some work machines are equipped with a transmission. When the operator is not operating the accelerator pedal, a braking force is applied to the work machine by the inertial braking force from the transmission.
  • the work machine of Patent Document 1 is equipped with an HST (Hydrostatic Transmission).
  • the HST is equipped with a hydraulic pump and a hydraulic motor.
  • an inertial braking force is generated by the internal load of the hydraulic pump, hydraulic motor, and engine. The operator uses this inertial braking force to adjust the vehicle speed of the work machine.
  • the inertial braking force from the transmission there is a limit to the inertial braking force from the transmission. Therefore, for example, when going downhill, the inertial braking force from the transmission may be insufficient to provide the required braking force. Furthermore, the inertial braking force may change depending on the state of the transmission. For this reason, it is difficult to stably adjust the vehicle speed of a work machine using the inertial braking force.
  • the object of this disclosure is to obtain a stable braking force in a work machine, regardless of a shortage or fluctuation of the inertial braking force.
  • a work machine includes a drive source, a transmission, a traveling device, a brake device, and a controller.
  • the transmission is connected to the drive source.
  • the traveling device is connected to the transmission and drives the work machine.
  • the brake device brakes the traveling device.
  • the controller obtains a braking command for braking the work machine.
  • the controller determines a target braking force based on the braking command.
  • the controller obtains transmission information indicating a state of the transmission.
  • the controller calculates an inertial braking force from the transmission based on the transmission information.
  • the controller controls the braking force applied by the brake device based on the difference between the target braking force and the inertial braking force.
  • a method is a method for controlling a work machine.
  • the work machine includes a drive source, a transmission, a traveling device, and a brake device.
  • the transmission is connected to the drive source.
  • the traveling device is connected to the transmission and drives the work machine.
  • the brake device brakes the traveling device.
  • the method includes obtaining a braking command for braking the work machine, determining a target braking force based on the braking command, obtaining transmission information indicating a state of the transmission, calculating an inertial braking force from the transmission based on the transmission information, and controlling the braking force by the brake device based on a difference between the target braking force and the inertial braking force.
  • the braking force applied by the brake device is controlled based on the difference between the target braking force and the inertial braking force. Therefore, when the inertial braking force is insufficient relative to the target braking force, the shortfall is compensated for by the braking force applied by the brake device. Furthermore, even if the inertial braking force fluctuates, a stable braking force is obtained by determining the target braking force. As a result, a stable braking force is obtained in the work machine regardless of a shortage or fluctuation of the inertial braking force.
  • FIG. 1 is a side view of a work machine according to an embodiment.
  • FIG. 2 is a block diagram showing the configuration of a work machine.
  • FIG. 4 is a diagram showing an example of driving force characteristics of a work machine.
  • FIG. 11 is a diagram showing an example of a first level target braking force.
  • FIG. 11 is a diagram showing an example of a second level target braking force.
  • FIG. 13 is a diagram showing an example of a third level target braking force.
  • Fig. 1 is a side view of a work machine 1 according to an embodiment.
  • Fig. 2 is a block diagram showing the configuration of the work machine 1.
  • the work machine 1 is a wheel loader.
  • the work machine 1 includes a vehicle body 2 and a work implement 3.
  • the vehicle body 2 includes a front vehicle body 2a and a rear vehicle body 2b.
  • the rear vehicle body 2b is connected to the front vehicle body 2a so that it can turn left and right.
  • a hydraulic cylinder 15 is connected to the front vehicle body 2a and the rear vehicle body 2b. The hydraulic cylinder 15 extends and retracts, causing the front vehicle body 2a to turn left and right relative to the rear vehicle body 2b.
  • the work machine 3 is used for work such as excavation.
  • the work machine 3 is attached to the front body 2a so as to be operable.
  • the work machine 3 includes a boom 11, a bucket 12, and hydraulic cylinders 13 and 14.
  • the boom 11 and the bucket 12 operate as the hydraulic cylinders 13 and 14 extend and retract.
  • the work machine 1 includes a drive source 21, a transmission 24, and a traveling device 25.
  • the drive source 21 is, for example, a diesel engine.
  • the drive source 21 is provided with a fuel injection device 30.
  • the fuel injection device 30 controls the output of the drive source 21 by adjusting the amount of fuel injected into the cylinder of the drive source 21.
  • the transmission 24 is connected to the drive source 21.
  • the transmission 24 transmits the driving force from the drive source 21 to the traveling device 25.
  • the transmission 24 is an HST, and includes a hydraulic pump 38 and a hydraulic motor 39.
  • the transmission 24 can change the gear ratio steplessly by controlling the respective capacities of the hydraulic pump 38 and the hydraulic motor 39.
  • the transmission 24 may be another type of transmission, such as an Electric Mechanical Transmission (EMT) or a Hydraulic Mechanical Transmission (HMT).
  • EMT Electric Mechanical Transmission
  • HMT Hydraulic Mechanical Transmission
  • the transmission 24 may be a transmission that includes a torque converter and multiple shift gears.
  • the running device 25 is mounted on the vehicle body 2 and is driven by the driving force from the drive source 21 to cause the vehicle body 2 to run.
  • the running device 25 includes axles 26, 27, front wheels 28A, 28B, and rear wheels 28C, 28D.
  • the axles 26, 27 are connected to the transmission 24.
  • the front wheels 28A, 28B are provided on the front vehicle body 2a.
  • the rear wheels 28C, 28D are provided on the rear vehicle body 2b.
  • the axle 26 transmits the driving force from the transmission 24 to the front wheels 28A, 28B.
  • the axle 27 transmits the driving force from the transmission 24 to the rear wheels 28C, 28D.
  • the work machine 1 includes a PTO (Power Take Off) 31, a work implement pump 32, and a control valve 33.
  • the PTO 31 distributes the driving force of the drive source 21 to the transmission 24 and the work implement pump 32. Note that only one work implement pump 32 is illustrated in FIG. 2. However, two or more hydraulic pumps may be connected to the drive source 21 via the PTO 31.
  • the work implement pump 32 is connected to the drive source 21 via the PTO 31.
  • the work implement pump 32 is a hydraulic pump.
  • the work implement pump 32 is driven by the drive source 21 and discharges hydraulic oil.
  • the hydraulic oil discharged from the work implement pump 32 is supplied to the hydraulic cylinders 13-15 described above.
  • the control valve 33 controls the flow rate of the hydraulic oil supplied from the work implement pump 32 to the hydraulic cylinders 13-15.
  • the control valve 33 is, for example, an electromagnetic proportional control valve, and is controlled in response to an input electrical signal.
  • the control valve 33 may be a pressure proportional control valve, and is controlled in response to an input pilot pressure.
  • the work machine 1 includes a brake pump 36 and braking devices 37A-37D.
  • the braking devices 37A-37D are hydraulic brakes.
  • the brake pump 36 is driven by the drive source 21 and discharges hydraulic oil.
  • the hydraulic oil discharged from the brake pump 36 is supplied to the braking devices 37A-37D.
  • the braking devices 37A-37D are driven by the hydraulic oil to brake the traveling device 25.
  • the braking devices 37A-37D are, for example, wet-type multi-plate brakes.
  • the braking devices 37A-37D include front brakes 37A, 37B and rear brakes 37C, 37D.
  • the front brakes 37A, 37B brake the front wheels 28A, 28B.
  • the rear brakes 37C, 37D brake the rear wheels 28C, 28D.
  • the work machine 1 includes an engine sensor 34 and a vehicle speed sensor 35.
  • the engine sensor 34 detects the engine rotation speed.
  • the vehicle speed sensor 35 detects the vehicle speed.
  • the vehicle speed sensor 35 detects, for example, the output rotation speed of the traveling device 25 as the vehicle speed.
  • the output rotation speed of the traveling device 25 corresponds to the vehicle speed of the work machine 1.
  • the output rotation speed of the traveling device 25 is, for example, the rotation speed of the output shaft of the transmission 24. However, the output rotation speed may also be the rotation speed of another rotating element located within the transmission 24 or downstream of the transmission 24.
  • the work machine 1 includes a controller 41.
  • the controller 41 includes a processor such as a CPU (central processing unit) and storage devices such as RAM and ROM.
  • the controller 41 may include an auxiliary storage device such as a hard disk or an SSD (Solid State Drive).
  • the controller 41 stores programs and data for controlling the work machine 1.
  • the controller 41 executes processing for controlling the work machine 1 in accordance with the stored programs and data.
  • the controller 41 receives a signal indicating the engine rotation speed from the engine sensor 34.
  • the controller 41 receives a signal indicating the output rotation speed from the vehicle speed sensor 35.
  • the controller 41 controls the output of the drive source 21 by sending a command signal to the drive source 21.
  • the controller 41 switches between the forward gear and reverse gear of the transmission 24 by sending a command signal to the transmission 24.
  • the controller 41 controls the gear ratio of the transmission 24 by sending a command signal to the transmission 24.
  • the controller 41 controls the work implement 3 by sending a command signal to the work implement pump 32 and the control valve 33.
  • the work machine 1 includes an FR operating member 42, an accelerator operating member 43, a work equipment operating member 44, a brake operating member 45, and a setting device 46.
  • the FR operating member 42 can be operated by an operator to switch the work machine 1 between forward and reverse.
  • the FR operating member 42 can be operated from a neutral position to a forward position and a reverse position.
  • the FR operating member 42 is, for example, a lever.
  • the FR operating member 42 may also be another member such as a switch or a pedal.
  • the accelerator operating member 43 can be operated by an operator to control the vehicle speed of the work machine 1.
  • the accelerator operating member 43 is, for example, a pedal.
  • the accelerator operating member 43 may be a lever, a switch, or other member.
  • the work machine operating member 44 can be operated by an operator to control the work machine 3.
  • the work machine operating member 44 is, for example, a lever.
  • the work machine operating member 44 may be a switch, a pedal, or other member.
  • the controller 41 receives a signal indicating the operating position of the FR operating member 42 from the FR operating member 42.
  • the controller 41 switches between the forward gear and the reverse gear of the transmission 24 in response to the signal from the FR operating member 42.
  • the controller 41 receives a signal indicating the accelerator operation amount from the accelerator operating member 43.
  • the accelerator operation amount is the operation amount of the accelerator operating member 43.
  • Figure 3 is a diagram showing the driving force characteristics of the work machine 1.
  • the solid line F1 shows the driving force characteristics when the accelerator operation amount is 100%.
  • the dashed line F2 shows the driving force characteristics when the accelerator operation amount is 0%.
  • the controller 41 controls the driving source 21 and the transmission 24 according to the accelerator operation amount and the vehicle speed so as to obtain the driving force characteristics shown in Figure 3.
  • the driving force includes positive and negative values.
  • a positive driving force indicates a positive driving force that drives the work machine 1.
  • a negative driving force indicates a negative driving force that brakes the work machine 1, i.e., an inertial braking force from the transmission 24.
  • the inertial braking force is a so-called engine brake, and is a braking force due to the internal load of the transmission 24 and the drive source 21.
  • the brake operating member 45 can be operated by an operator to drive the brake devices 37A-37D.
  • the brake operating member 45 is, for example, a pedal.
  • the brake operating member 45 may be another member such as a lever or a switch.
  • the hydraulic pressure of the hydraulic oil supplied to the brake devices 37A-37D is controlled in response to the operation of the brake operating member 45.
  • the brake devices 37A-37D generate a braking force in response to the amount of operation of the brake operating member 45.
  • FIG. 4 is a diagram showing a hydraulic circuit 50 for driving the brake devices 37A-37D.
  • the hydraulic circuit 50 includes a flow dividing valve 51, a first flow path 52, a second flow path 53, a third flow path 54, an automatic brake valve 55, a manual brake valve 56, and a shuttle valve 57.
  • the flow dividing valve 51 divides the hydraulic oil from the brake pump 36 described above into the second flow path 53 and the third flow path 54.
  • the first flow path 52 is connected to the second flow path 53.
  • the automatic brake valve 55 is electrically connected to the controller 41.
  • the automatic brake valve 55 is, for example, a solenoid valve, and is electrically controlled in response to a command signal from the controller 41.
  • the automatic brake valve 55 changes the hydraulic pressure (hereinafter referred to as the first hydraulic pressure) supplied from the automatic brake valve 55 to the brake devices 37A-37D via the first flow path 52.
  • the manual brake valve 56 is connected to the brake operating member 45.
  • the manual brake valve 56 is mechanically connected to the brake operating member 45 via a link member such as a spring.
  • the manual brake valve 56 is connected to the second flow path 53 and the third flow path 54.
  • the manual brake valve 56 changes the hydraulic pressure (hereinafter referred to as the second hydraulic pressure) supplied from the manual brake valve 56 to the brake devices 37A-37D via the second flow path 53 and the third flow path 54 according to the amount of operation of the brake operating member 45.
  • the shuttle valve 57 is connected to the first flow path 52, the second flow path 53, and the third flow path 54.
  • the shuttle valve 57 selectively supplies the first hydraulic pressure from the automatic brake valve 55 and the second hydraulic pressure from the manual brake valve 56 to the brake devices 37A-37D.
  • the shuttle valve 57 supplies the larger of the first hydraulic pressure and the second hydraulic pressure to the brake devices 37A-37D. Therefore, for example, when the first hydraulic pressure due to the operation of the brake operating member 45 by the operator is larger than the second hydraulic pressure due to the command signal from the controller 41, the first hydraulic pressure is supplied to the brake devices 37A-37D. Thereby, the braking force of the brake devices 37A-37D is controlled according to the amount of operation of the brake operating member 45 by the operator.
  • the second hydraulic pressure based on the command signal from the controller 41 is greater than the first hydraulic pressure based on the operator's operation of the brake operating member 45, the second hydraulic pressure is supplied to the brake devices 37A-37D. This controls the braking force of the brake devices 37A-37D in response to the command signal from the controller 41.
  • the controller 41 executes automatic brake control that automatically controls the braking force when the work machine 1 is running by inertia.
  • the inertial running of the work machine 1 means a state in which the work machine 1 is running by inertia with the accelerator operating member 43 and the brake operating member 45 not being operated.
  • the setting device 46 can be operated by an operator to set the target braking force during inertial running in the automatic brake control.
  • the setting device 46 is, for example, a dial switch. However, the setting device may be other devices such as a slide switch, a push button switch, or a touch panel.
  • the setting device 46 outputs a braking command indicating the target braking force in response to operation by the operator.
  • the target braking force is indicated in a plurality of levels.
  • the plurality of levels includes, for example, a first level, a second level, and a third level.
  • the first level has the largest target braking force.
  • the third level has the smallest target braking force.
  • the second level has a target braking force between the first and second levels.
  • FIG. 5 is a flowchart showing the process of automatic brake control. As shown in FIG. 5, in step S101, the controller 41 obtains a braking command. The controller 41 obtains a braking command indicating a target braking force set by the operator using the setting device 46.
  • step S102 the controller 41 determines a target braking force.
  • the controller 41 determines the target braking force based on a braking command from the setting device 46.
  • step S103 the controller 41 acquires transmission information.
  • the transmission information indicates the state of the transmission 24.
  • the transmission information includes, for example, the gear ratio of the transmission 24. If the transmission 24 is an HST, the transmission information may include the capacity of the hydraulic pump and the capacity of the hydraulic motor. If the transmission 24 includes multiple shift gears, the transmission information may include the gear ratio of the shift gears.
  • the transmission information may include the vehicle speed.
  • step S104 the controller 41 calculates the inertial braking force from the transmission 24.
  • the controller 41 calculates the inertial braking force from the transmission 24 based on the above-mentioned transmission information.
  • step S105 the controller 41 determines the auxiliary braking force.
  • the controller 41 determines the auxiliary braking force so that the target braking force is obtained by the inertial braking force from the transmission 24 and the auxiliary braking force from the brake devices 37A-37D.
  • the controller 41 determines the braking force equivalent to the difference between the target braking force and the inertial braking force as the auxiliary braking force.
  • step S106 the controller 41 controls the automatic brake valve 55.
  • the controller 41 calculates the target brake hydraulic pressure for the brake devices 37A-37D, which corresponds to the auxiliary braking force.
  • the controller 41 controls the opening of the automatic brake valve 55 so that the target brake hydraulic pressure is supplied to the brake devices 37A-37D.
  • L1 shows an example of a first level target braking force.
  • L2 shows an example of a second level target braking force.
  • L3 shows an example of a third level target braking force.
  • Data showing the relationship between the first to third level target braking forces L1-L3 and the vehicle speed is stored in the controller 41.
  • the controller 41 determines a target braking force L1 according to the vehicle speed.
  • L0 indicates the inertial braking force from the transmission 24 during inertial running.
  • the controller 41 calculates the inertial braking force L0 from the transmission information.
  • the controller 41 calculates the target brake oil pressure of the brake devices 37A-37D so as to generate an auxiliary braking force equivalent to the difference dF between the target braking force L1 and the inertial braking force L0.
  • the controller 41 controls the opening degree of the automatic brake valve 55 so that the target brake oil pressure is supplied to the brake devices 37A-37D.
  • the target braking force L2 of the second level is smaller than the target braking force L1 of the first level.
  • the controller 41 determines the target braking force L2 according to the vehicle speed. Thereafter, in the same manner as when the first level is set, the controller 41 calculates the target brake hydraulic pressure of the brake devices 37A-37D so as to generate an auxiliary braking force equivalent to the difference between the target braking force L2 and the inertial braking force L0, and controls the opening of the automatic brake valve 55 according to the target brake hydraulic pressure.
  • the target braking force L3 of the third level is smaller than the target braking force L2 of the second level.
  • the controller 41 determines the target braking force L3 according to the vehicle speed. Thereafter, in the same manner as when the first level is set, the controller 41 calculates the target brake hydraulic pressure of the brake devices 37A-37D so as to generate an auxiliary braking force equivalent to the difference between the target braking force L3 and the inertial braking force L0, and controls the opening of the automatic brake valve 55 according to the target brake hydraulic pressure.
  • the braking force during inertial running can be changed. Therefore, when the work machine 1 runs on the same downhill slope, the vehicle speed at which the work machine 1 is stabilized during inertial running can be changed. Furthermore, even on a downhill slope that cannot be stabilized by the inertial braking force from the transmission 24 alone, the work machine 1 can run at a constant vehicle speed. Note that “stabilized” refers to a state in which the work machine 1 runs at a constant speed during inertial running.
  • the static braking force that balances the force accelerating the work machine 1 (hereinafter referred to as the static braking force) is assumed to be A1. If the inertial braking force L0 from the transmission 24 is smaller than the static braking force A1, the work machine 1 cannot be stabilized by the inertial braking force from the transmission 24 alone.
  • the work machine 1 can travel at a constant speed at a vehicle speed V1 where the target braking force L1 is balanced with the static braking force A1.
  • the work machine 1 can travel at a constant speed at a vehicle speed V2 where the target braking force L2 is balanced with the static braking force A1.
  • a braking force equivalent to the target braking force L3 of level 3 can be obtained.
  • This allows the work machine 1 to travel at a constant speed at a vehicle speed V3 where the target braking force L3 is balanced with the static braking force A1.
  • the operator can change the vehicle speed at which the work machine 1 is statically determined during inertial traveling by changing the target braking force using the setting device 46.
  • the braking force by the brake devices 37A-37D is controlled based on the difference between the target braking force and the inertial braking force. Therefore, when the inertial braking force is insufficient compared to the target braking force, the shortfall can be made up for by the braking force by the brake devices 37A-37D. Furthermore, even if the inertial braking force fluctuates, a stable braking force can be obtained by determining the target braking force. As a result, in the work machine 1, a stable braking force can be obtained regardless of a shortage or fluctuation of the inertial braking force.
  • the work machine 1 is not limited to a wheel loader, but may be other machines such as a bulldozer or a motor grader.
  • the work machine 1 may be operable remotely.
  • the FR operation member 42, the accelerator operation member 43, the work machine operation member 44, the brake operation member 45, and the setting device 46 may be disposed outside the work machine 1.
  • the driving source 21 is not limited to an engine, and may include an electric motor.
  • the controller 41 may be composed of multiple controllers. The above-mentioned control processing of the work machine 1 may be distributed and executed by multiple controllers.
  • the automatic brake control process is not limited to that of the above-described embodiment, and may be modified.
  • the number of levels of the target braking force is not limited to three.
  • the number of levels of the target braking force may be more than three, or less than three.
  • the target braking force may be indicated by a numerical value of the braking force.
  • a stable braking force can be obtained in a work machine regardless of a lack of or fluctuation in the inertial braking force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

作業機械は、駆動源と、トランスミッションと、走行装置と、ブレーキ装置と、コントローラとを備える。トランスミッションは、駆動源に接続される。走行装置は、トランスミッションに接続され、作業機械を走行させる。ブレーキ装置は、走行装置を制動する。コントローラは、作業機械を制動するための制動指令を取得する。コントローラは、制動指令に基づいて目標制動力を決定する。コントローラは、トランスミッションの状態を示すトランスミッション情報を取得する。コントローラは、トランスミッション情報に基づいてトランスミッションからの慣性制動力を算出する。コントローラは、目標制動力と慣性制動力との差分に基づいて、ブレーキ装置による制動力を制御する。

Description

作業機械、及び、作業機械を制御するための方法
 本発明は、作業機械、及び、作業機械を制御するための方法に関する。
 作業機械には、トランスミッションを備えるものがある。オペレータがアクセルペダルを操作していない場合には、トランスミッションからの慣性制動力によって、作業機械に制動力が作用する。例えば、特許文献1の作業機械は、HST(Hydro Static Transmission)を備えている。HSTは、油圧ポンプと油圧モータとを備えている。HSTでは、油圧ポンプと油圧モータとエンジンとの内部負荷により、慣性制動力が発生する。オペレータは、このような慣性制動力を利用することで、作業機械の車速を調整する。
国際公開第2021/066019号
 しかし、トランスミッションからの慣性制動力には限界がある。そのため、例えば降坂時などに、トランスミッションからの慣性制動力では、必要な制動力に対して不足する場合がある。また、トランスミッションの状態に応じて、慣性制動力が変化する場合もある。そのため、慣性制動力によって作業機械の車速を安定して調整することは困難である。本開示の目的は、作業機械において、慣性制動力の不足、或いは変動に関わらず、安定した制動力を得ることにある。
 本開示の一態様に係る作業機械は、駆動源と、トランスミッションと、走行装置と、ブレーキ装置と、コントローラとを備える。トランスミッションは、駆動源に接続される。走行装置は、トランスミッションに接続され、作業機械を走行させる。ブレーキ装置は、走行装置を制動する。コントローラは、作業機械を制動するための制動指令を取得する。コントローラは、制動指令に基づいて目標制動力を決定する。コントローラは、トランスミッションの状態を示すトランスミッション情報を取得する。コントローラは、トランスミッション情報に基づいてトランスミッションからの慣性制動力を算出する。コントローラは、目標制動力と慣性制動力との差分に基づいて、ブレーキ装置による制動力を制御する。
 本開示の他の態様に係る方法は、作業機械を制御するための方法である。作業機械は、駆動源と、トランスミッションと、走行装置と、ブレーキ装置とを備える。トランスミッションは、駆動源に接続される。走行装置は、トランスミッションに接続され、作業機械を走行させる。ブレーキ装置は、走行装置を制動する。当該方法は、作業機械を制動するための制動指令を取得することと、制動指令に基づいて目標制動力を決定することと、トランスミッションの状態を示すトランスミッション情報を取得することと、トランスミッション情報に基づいてトランスミッションからの慣性制動力を算出することと、目標制動力と慣性制動力との差分に基づいて、ブレーキ装置による制動力を制御すること、を備える。
 本開示によれば、目標制動力と慣性制動力との差分に基づいて、ブレーキ装置による制動力が制御される。そのため、慣性制動力が目標制動力に対して不足する場合に、ブレーキ装置による制動力によって、不足分が補われる。また、慣性制動力が変動しても、目標制動力が決定されることで、安定した制動力が得られる。それにより、作業機械において、慣性制動力の不足、或いは変動に関わらず、安定した制動力が得られる。
実施形態に係る作業機械の側面図である。 作業機械の構成を示すブロック図である。 作業機械の駆動力特性の一例を示す図である。 ブレーキ装置を駆動するための油圧回路の構成を示す図である。 自動ブレーキ制御の処理を示すフローチャートである。 第1レベルの目標制動力の一例を示す図である。 第2レベルの目標制動力の一例を示す図である。 第3レベルの目標制動力の一例を示す図である。
 以下、図面を参照して、本開示の一実施形態について説明する。図1は、実施形態に係る作業機械1の側面図である。図2は、作業機械1の構成を示すブロック図である。本実施形態において、作業機械1は、ホイールローダである。図1に示すように、作業機械1は、車体2と作業機3とを備えている。
 車体2は、前車体2aと後車体2bとを含む。後車体2bは、前車体2aに対して左右に旋回可能に接続されている。前車体2aと後車体2bとには、油圧シリンダ15が連結されている。油圧シリンダ15が伸縮することで、前車体2aが、後車体2bに対して、左右に旋回する。
 作業機3は、掘削等の作業に用いられる。作業機3は、前車体2aに対して動作可能に、取り付けられている。作業機3は、ブーム11と、バケット12と、油圧シリンダ13,14とを含む。油圧シリンダ13,14が伸縮することによって、ブーム11及びバケット12が動作する。
 図2に示すように、作業機械1は、駆動源21と、トランスミッション24と、走行装置25とを含む。駆動源21は、例えばディーゼルエンジンである。駆動源21には、燃料噴射装置30が設けられている。燃料噴射装置30は、駆動源21のシリンダ内に噴射する燃料量を調整することで、駆動源21の出力を制御する。
 トランスミッション24は、駆動源21に接続される。トランスミッション24は、駆動源21からの駆動力を走行装置25に伝達する。例えば、トランスミッション24は、HSTであり、油圧ポンプ38と油圧モータ39とを含む。トランスミッション24は、油圧ポンプ38と油圧モータ39とのそれぞれの容量を制御することで、変速比を無段階に変更可能である。
 ただし、トランスミッション24は、EMT(Electric Mechanical Transmission)、或いはHMT(Hydraulic Mechanical Transmission)などの他の種類のトランスミッションであってもよい。或いは、トランスミッション24は、トルクコンバータ及び複数の変速ギアを含むトランスミッションであってもよい。
 走行装置25は、車体2に搭載され、駆動源21からの駆動力によって駆動されることで車体2を走行させる。走行装置25は、アクスル26,27と、前輪28A,28Bと、後輪28C,28Dとを含む。アクスル26,27は、トランスミッション24に接続される。前輪28A,28Bは、前車体2aに設けられる。後輪28C,28Dは、後車体2bに設けられる。アクスル26は、トランスミッション24からの駆動力を前輪28A,28Bに伝達する。アクスル27は、トランスミッション24からの駆動力を後輪28C,28Dに伝達する。
 作業機械1は、PTO(Power Take Off)31と、作業機ポンプ32と、制御弁33とを含む。PTO31は、トランスミッション24と作業機ポンプ32とに、駆動源21の駆動力を分配する。なお、図2では、1つの作業機ポンプ32のみが図示されている。しかし、2つ以上の油圧ポンプが、PTO31を介して駆動源21に接続されてもよい。
 作業機ポンプ32は、PTO31を介して駆動源21に接続される。作業機ポンプ32は、油圧ポンプである。作業機ポンプ32は、駆動源21によって駆動され、作動油を吐出する。作業機ポンプ32から吐出された作動油は、上述した油圧シリンダ13-15に供給される。制御弁33は、作業機ポンプ32から油圧シリンダ13-15に供給される作動油の流量を制御する。制御弁33は、例えば、電磁比例制御弁であり、入力される電気信号に応じて、制御される。或いは、制御弁33は、圧力比例制御弁であり、入力されるパイロット圧に応じて制御されてもよい。
 作業機械1は、ブレーキポンプ36と、ブレーキ装置37A-37Dとを含む。ブレーキ装置37A-37Dは、油圧式ブレーキである。ブレーキポンプ36は、駆動源21によって駆動され、作動油を吐出する。ブレーキポンプ36から吐出された作動油は、ブレーキ装置37A-37Dに供給される。ブレーキ装置37A-37Dは、作動油によって駆動されることで走行装置25を制動する。ブレーキ装置37A-37Dは、例えば湿式多板ブレーキである。詳細には、ブレーキ装置37A-37Dは、フロントブレーキ37A,37Bとリアブレーキ37C,37Dとを含む。フロントブレーキ37A,37Bは、前輪28A,28Bを制動する。リアブレーキ37C,37Dは、後輪28C,28Dを制動する。
 作業機械1は、エンジンセンサ34と車速センサ35とを含む。エンジンセンサ34は、エンジン回転速度を検出する。車速センサ35は、車速を検出する。車速センサ35は、例えば、車速として、走行装置25の出力回転速度を検出する。走行装置25の出力回転速度は、作業機械1の車速に相当する。走行装置25の出力回転速度は、例えば、トランスミッション24の出力軸の回転速度である。ただし、出力回転速度は、トランスミッション24内、或いはトランスミッション24の下流に位置する他の回転要素の回転速度であってもよい。
 作業機械1は、コントローラ41を含む。コントローラ41は、CPU(central processing unit)などのプロセッサと、RAM及びROMなどの記憶装置とを含む。コントローラ41は、ハードディスク、或いはSSD(Solid State Drive)などの補助記憶装置を含んでもよい。コントローラ41は、作業機械1を制御するためのプログラム及びデータを記憶している。コントローラ41は、記憶されているプログラム及びデータに従って、作業機械1を制御するための処理を実行する。
 コントローラ41は、エンジンセンサ34から、エンジン回転速度を示す信号を受信する。コントローラ41は、車速センサ35から、出力回転速度を示す信号を受信する。
 コントローラ41は、駆動源21に指令信号を送信することで、駆動源21の出力を制御する。コントローラ41は、トランスミッション24に指令信号を送信することで、トランスミッション24の前進ギアと後進ギアとを切り替える。コントローラ41は、トランスミッション24に指令信号を送信することで、トランスミッション24の変速比を制御する。コントローラ41は、作業機ポンプ32及び制御弁33に指令信号を送信することで、作業機3を制御する。
 作業機械1は、FR操作部材42と、アクセル操作部材43と、作業機操作部材44と、ブレーキ操作部材45と、設定装置46とを含む。FR操作部材42は、作業機械1の前進と後進とを切り替えるために、オペレータによって操作可能である。FR操作部材42は、中立位置から前進位置と後進位置とに操作可能である。FR操作部材42は、例えばレバーである。ただし、FR操作部材42は、スイッチ、或いはペダルなどの他の部材であってもよい。
 アクセル操作部材43は、作業機械1の車速を制御するためにオペレータによって操作可能である。アクセル操作部材43は、例えばペダルである。ただし、アクセル操作部材43は、レバー、或いはスイッチなどの他の部材であってもよい。作業機操作部材44は、作業機3を制御するためにオペレータによって操作可能である。作業機操作部材44は、例えばレバーである。ただし、作業機操作部材44は、スイッチ、或いはペダルなどの他の部材であってもよい。
 コントローラ41は、FR操作部材42から、FR操作部材42の操作位置を示す信号を受信する。コントローラ41は、FR操作部材42からの信号に応じて、トランスミッション24の前進ギアと後進ギアとを切り替える。コントローラ41は、アクセル操作部材43から、アクセル操作量を示す信号を受信する。アクセル操作量は、アクセル操作部材43の操作量である。
 図3は、作業機械1の駆動力特性を示す図である。図3において、実線F1はアクセル操作量が100%である場合の駆動力特性を示している。図3において、破線F2はアクセル操作量が0%である場合の駆動力特性を示している。コントローラ41は、アクセル操作量と車速とに応じて、図3に示す駆動力特性が得られるように、駆動源21とトランスミッション24とを制御する。
 図3に示すように、駆動力は、正の値と負の値とを含む。正の値の駆動力は、作業機械1を走行させる正の駆動力を示す。負の値の駆動力は、作業機械1を制動する負の駆動力、すなわちトランスミッション24からの慣性制動力を示す。慣性制動力は、いわゆるエンジンブレーキであり、トランスミッション24及び駆動源21の内部負荷による制動力である。
 ブレーキ操作部材45は、ブレーキ装置37A-37Dを駆動させるためにオペレータによって操作可能である。ブレーキ操作部材45は、例えばペダルである。ただし、ブレーキ操作部材45は、レバー、或いはスイッチなどの他の部材であってもよい。ブレーキ操作部材45の操作に応じて、ブレーキ装置37A-37Dに供給される作動油の油圧が制御される。それにより。ブレーキ装置37A-37Dは、ブレーキ操作部材45の操作量に応じて制動力を発生させる。
 図4は、ブレーキ装置37A-37Dを駆動するための油圧回路50を示す図である。図4に示すように、油圧回路50は、分流弁51と、第1流路52と、第2流路53と、第3流路54と、自動ブレーキ弁55と、手動ブレーキ弁56と、シャトル弁57とを備える。分流弁51は、上述したブレーキポンプ36からの作動油を、第2流路53と第3流路54とに分流する。第1流路52は、第2流路53に接続されている。
 自動ブレーキ弁55は、コントローラ41に電気的に接続されている。自動ブレーキ弁55は、例えば電磁弁であり、コントローラ41からの指令信号に応じて電気的に制御される。自動ブレーキ弁55は、コントローラ41からの指令信号に応じて、自動ブレーキ弁55から第1流路52を介してブレーキ装置37A-37Dに供給される油圧(以下、第1油圧と呼ぶ)を変更する。
 手動ブレーキ弁56は、ブレーキ操作部材45に接続されている。手動ブレーキ弁56は、ブレーキ操作部材45に、バネなどのリンク部材を介して、機械的に接続されている。手動ブレーキ弁56は、第2流路53と第3流路54とに接続されている。手動ブレーキ弁56は、ブレーキ操作部材45の操作量に応じて、手動ブレーキ弁56から、第2流路53及び第3流路54を介して、ブレーキ装置37A-37Dに供給される油圧(以下、第2油圧と呼ぶ)を変更する。
 シャトル弁57は、第1流路52と第2流路53と第3流路54とに接続されている。シャトル弁57は、自動ブレーキ弁55からの第1油圧と、手動ブレーキ弁56からの第2油圧とを、選択的にブレーキ装置37A-37Dに供給する。詳細には、シャトル弁57は、第1油圧と第2油圧とのうち大きい方をブレーキ装置37A-37Dに供給する。従って、例えば、オペレータのブレーキ操作部材45の操作による第1油圧が、コントローラ41からの指令信号による第2油圧よりも大きい場合には、第1油圧がブレーキ装置37A-37Dに供給される。それにより、オペレータのブレーキ操作部材45の操作量に応じて、ブレーキ装置37A-37Dの制動力が制御される。
 逆に、コントローラ41からの指令信号による第2油圧が、オペレータのブレーキ操作部材45の操作による第1油圧よりも大きい場合には、第2油圧がブレーキ装置37A-37Dに供給される。それにより、コントローラ41からの指令信号に応じて、ブレーキ装置37A-37Dの制動力が制御される。
 本実施形態に係る作業機械1では、コントローラ41は、作業機械1の慣性走行時における制動力を自動的に制御する自動ブレーキ制御を実行する。作業機械1の慣性走行とは、アクセル操作部材43とブレーキ操作部材45とが操作されていない状態で、作業機械1が慣性により走行している状態を意味する。設定装置46は、自動ブレーキ制御における慣性走行時の目標制動力を設定するためにオペレータによって操作可能である。設定装置46は、例えばダイヤル式のスイッチである。ただし、設定装置は、スライド式のスイッチ、プッシュボタン式のスイッチ、或いはタッチパネルなどの他の装置であってもよい。設定装置46は、オペレータによる操作に応じて、目標制動力を示す制動指令を出力する。
 目標制動力は、複数のレベルで示される。複数のレベルは、例えば第1レベルと第2レベルと第3レベルとを含む。第1レベルの目標制動力が最も大きく。第3レベルンも目標制動力が最も小さい。第2レベルの目標制動力は、第1レベルと第2レベルとの間の大きさである。
 図5は、自動ブレーキ制御の処理を示すフローチャートである。図5に示すように、ステップS101で、コントローラ41は、制動指令を取得する。コントローラ41は、設定装置46を用いてオペレータによって設定された目標制動力を示す制動指令を取得する。
 ステップS102では、コントローラ41は、目標制動力を決定する。コントローラ41は、設定装置46からの制動指令に基づいて目標制動力を決定する。ステップS103では、コントローラ41は、トランスミッション情報を取得する。トランスミッション情報は、トランスミッション24の状態を示す。トランスミッション情報は、例えばトランスミッション24の変速比を含む。トランスミッション24がHSTの場合、トランスミッション情報は、油圧ポンプの容量と油圧モータの容量とを含んでもよい。トランスミッション24が複数の変速ギアを含む場合、トランスミッション情報は、変速ギアのギア比を含んでもよい。トランスミッション情報は、車速を含んでもよい。
 ステップS104で、コントローラ41は、トランスミッション24からの慣性制動力を算出する。コントローラ41は、上述したトランスミッション情報に基づいて、トランスミッション24からの慣性制動力を算出する。
 ステップS105で、コントローラ41は、補助制動力を決定する。コントローラ41は、トランスミッション24からの慣性制動力と、ブレーキ装置37A-37Dによる補助制動力とによって、目標制動力が得られるように、補助制動力を決定する。コントローラ41は、目標制動力と慣性制動力との差分に相当する制動力を、補助制動力として決定する。
 ステップS106で、コントローラ41は、自動ブレーキ弁55を制御する。コントローラ41は、補助制動力に相当するブレーキ装置37A-37Dの目標ブレーキ油圧を算出する。コントローラ41は、ブレーキ装置37A-37Dに目標ブレーキ油圧が供給されるように、自動ブレーキ弁55の開度を制御する。
 例えば、図6においてL1は、第1レベルの目標制動力の一例を示している。図7においてL2は、第2レベルの目標制動力の一例を示している。図8においてL3は、第3レベルの目標制動力の一例を示している。第1~第3レベルの目標制動力L1-L3と車速との関係を示すデータが、コントローラ41に記憶されている。
 図6に示すように、コントローラ41は、設定装置46によって目標制動力として第1レベルが設定されると、車速に応じた目標制動力L1を決定する。図6において、L0は、慣性走行時のトランスミッション24からの慣性制動力を示している。コントローラ41は、トランスミッション情報から慣性制動力L0を算出する。コントローラ41は、目標制動力L1と慣性制動力L0との差分dFに相当する補助制動力を発生させるように、ブレーキ装置37A-37Dの目標ブレーキ油圧を算出する。コントローラ41は、ブレーキ装置37A-37Dに目標ブレーキ油圧が供給されるように、自動ブレーキ弁55の開度を制御する。それにより、慣性制動力L0が第1レベルの目標制動力L1に対して不足していても、ブレーキ装置37A-37Dによる補助制動力によって補われることで、第1レベルの目標制動力L1に従う制動力が得られる。
 図7に示すように、第2レベルの目標制動力L2は、第1レベルの目標制動力L1よりも小さい。コントローラ41は、設定装置46によって目標制動力として第2レベルが設定されると、車速に応じた目標制動力L2を決定する。以下、第1レベルが設定されている場合と同様に、コントローラ41は、目標制動力L2と慣性制動力L0との差分に相当する補助制動力を発生させるように、ブレーキ装置37A-37Dの目標ブレーキ油圧を算出し、目標ブレーキ油圧に従って自動ブレーキ弁55の開度を制御する。
 図8に示すように、第3レベルの目標制動力L3は、第2レベルの目標制動力L2よりも小さい。コントローラ41は、設定装置46によって目標制動力として第3レベルが設定されると、車速に応じた目標制動力L3を決定する。以下、第1レベルが設定されている場合と同様に、コントローラ41は、目標制動力L3と慣性制動力L0との差分に相当する補助制動力を発生させるように、ブレーキ装置37A-37Dの目標ブレーキ油圧を算出し、目標ブレーキ油圧に従って自動ブレーキ弁55の開度を制御する。
 以上のように、設定装置46によって目標制動力を変更することで、慣性走行時の制動力を変更することができる。そのため、作業機械1が同じ下り坂を走行する場合に、慣性走行時に作業機械1が静定する車速を変更することができる。また、トランスミッション24からの慣性制動力だけでは静定できない下り坂であっても、一定車速で走行することができる。なお、静定とは、作業機械1が慣性走行時に一定速度で走行する状態を意味する。
 例えば、図6から図8に示すように、作業機械1が、ある下り坂を走行する場合に、作業機械1を加速させる力と釣り合う制動力(以下、静定制動力と呼ぶ)がA1であるものとする。トランスミッション24からの慣性制動力L0が、静定制動力A1がよりも小さい場合には、作業機械1は、トランスミッション24からの慣性制動力だけでは静定することはできない。
 そこで、図6に示すように、設定装置46によって目標制動力をレベル1に設定することで、レベル1の目標制動力L1に相当する制動力が得られる。それにより、目標制動力L1が静定制動力A1と釣り合う車速V1において、作業機械1は、一定速度で走行することができる。
 図7に示すように、設定装置46によって目標制動力をレベル2に設定することで、レベル2の目標制動力L2に相当する制動力が得られる。それにより、目標制動力L2が静定制動力A1と釣り合う車速V2において、作業機械1は、一定速度で走行することができる。
 また、図8に示すように、設定装置46によって目標制動力をレベル3に設定することで、レベル3の目標制動力L3に相当する制動力が得られる。それにより、目標制動力L3が静定制動力A1と釣り合う車速V3において、作業機械1は、一定速度で走行することができる。以上のように、作業機械1が同じ下り坂を走行する場合に、オペレータは設定装置46によって目標制動力を変更することで、慣性走行時に作業機械1が静定する車速を変更することができる。
 以上説明した本実施形態に係る作業機械1では、目標制動力と慣性制動力との差分に基づいて、ブレーキ装置37A-37Dによる制動力が制御される。そのため、慣性制動力が目標制動力に対して不足する場合に、ブレーキ装置37A-37Dによる制動力によって、不足分を補うことができる。また、慣性制動力が変動しても、目標制動力が決定されることで、安定した制動力が得られる。それにより、作業機械1において、慣性制動力の不足、或いは変動に関わらず、安定した制動力が得られる。
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 作業機械1は、ホイールローダに限らず、ブルドーザ、或いはモータグレーダなどの他の機械であってもよい。作業機械1は、遠隔から操作可能であってもよい。その場合、FR操作部材42、アクセル操作部材43、作業機操作部材44、ブレーキ操作部材45、及び設定装置46は、作業機械1の外部に配置されてもよい。
 駆動源21は、エンジンに限らず、電動モータを含んでもよい。コントローラ41は、複数のコントローラによって構成されてもよい。上述した作業機械1の制御の処理は、複数のコントローラに分散して実行されてもよい。
 自動ブレーキ制御の処理は、上述した実施形態のものに限らず、変更されてもよい。例えば、目標制動力のレベルの数は3つに限らない。目標制動力のレベルの数は3つより多くてもよく、或いは3つより少なくてもよい。目標制動力は、制動力の数値で示されてもよい。
 本開示によれば、作業機械において、慣性制動力の不足、或いは変動に関わらず、安定した制動力が得られる。
21:駆動源
24:トランスミッション
25:走行装置
37A:ブレーキ装置
41:コントローラ
45:ブレーキ操作部材
46:設定装置
55:自動ブレーキ弁
56:手動ブレーキ弁
57:シャトル弁

Claims (8)

  1.  作業機械であって、
     駆動源と、
     前記駆動源に接続されるトランスミッションと、
     前記トランスミッションに接続され、前記作業機械を走行させる走行装置と、
     前記走行装置を制動するブレーキ装置と、
     コントローラと、
    を備え、
     前記コントローラは、
      前記作業機械を制動するための制動指令を取得し、
      前記制動指令に基づいて目標制動力を決定し、
      前記トランスミッションの状態を示すトランスミッション情報を取得し、
      前記トランスミッション情報に基づいて前記トランスミッションからの慣性制動力を算出し、
      前記目標制動力と前記慣性制動力との差分に基づいて、前記ブレーキ装置による制動力を制御する、
    作業機械。
  2.  前記目標制動力を設定するためにオペレータによって操作可能な設定装置をさらに備え、
     前記コントローラは、前記設定装置の操作に応じた前記制動指令を取得する、
    請求項1に記載の作業機械。
  3.  前記ブレーキ装置は、油圧式ブレーキであり、
     前記コントローラによって制御されることで前記ブレーキ装置への第1油圧を変更する自動ブレーキ弁をさらに備え、
     前記コントローラは、前記目標制動力と前記慣性制動力との差分に応じて前記ブレーキ装置への前記第1油圧を変更するように、前記自動ブレーキ弁を制御する、
    請求項1に記載の作業機械。
  4.  前記ブレーキ装置による制動力を調整するためにオペレータによって操作可能なブレーキ操作部材と、
     前記ブレーキ操作部材の操作に応じて前記ブレーキ装置への第2油圧を変更する手動ブレーキ弁と、
     前記自動ブレーキ弁からの前記第1油圧と、前記手動ブレーキ弁からの前記第2油圧とを選択的に前記ブレーキ装置に供給するシャトル弁と、
    をさらに備える請求項3に記載の作業機械。
  5.  前記シャトル弁は、前記第1油圧と前記第2油圧とのうち大きい方を前記ブレーキ装置に供給する、
    請求項4に記載の作業機械。
  6.  駆動源と、前記駆動源に接続されるトランスミッションと、前記トランスミッションに接続され、前記作業機械を走行させる走行装置と、前記走行装置を制動するブレーキ装置とを備える作業機械を制御するための方法であって、
     前記作業機械を制動するための制動指令を取得することと、
     前記制動指令に基づいて目標制動力を決定することと、
     前記トランスミッションの状態を示すトランスミッション情報を取得することと、
     前記トランスミッション情報に基づいて前記トランスミッションからの慣性制動力を算出することと、
     前記目標制動力と前記慣性制動力との差分に基づいて、前記ブレーキ装置による制動力を制御すること、
    を備える方法。
  7.  前記目標制動力を設定するためにオペレータによって操作可能な設定装置の操作に応じた前記制動指令を取得すること、
    を備える請求項6に記載の方法。
  8.  前記ブレーキ装置は、油圧式ブレーキであり、
     前記作業機械は、前記ブレーキ装置への第1油圧を変更する自動ブレーキ弁をさらに備え、
     前記目標制動力と前記慣性制動力との差分に応じて前記ブレーキ装置への前記第1油圧を変更するように、前記自動ブレーキ弁を制御することを備える、
    請求項6に記載の方法。
PCT/JP2023/033262 2022-11-30 2023-09-12 作業機械、及び、作業機械を制御するための方法 WO2024116545A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022191549A JP2024078926A (ja) 2022-11-30 2022-11-30 作業機械、及び、作業機械を制御するための方法
JP2022-191549 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024116545A1 true WO2024116545A1 (ja) 2024-06-06

Family

ID=91323494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033262 WO2024116545A1 (ja) 2022-11-30 2023-09-12 作業機械、及び、作業機械を制御するための方法

Country Status (2)

Country Link
JP (1) JP2024078926A (ja)
WO (1) WO2024116545A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365644A (ja) * 1991-06-12 1992-12-17 Yanmar Diesel Engine Co Ltd カートの速度制御機構
JPH08177544A (ja) * 1994-12-27 1996-07-09 Komatsu Ltd 車速制限装置及びその方法
US9855951B1 (en) * 2016-11-11 2018-01-02 Caterpillar Inc. CVT target engine speed control for coasting and retarding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365644A (ja) * 1991-06-12 1992-12-17 Yanmar Diesel Engine Co Ltd カートの速度制御機構
JPH08177544A (ja) * 1994-12-27 1996-07-09 Komatsu Ltd 車速制限装置及びその方法
US9855951B1 (en) * 2016-11-11 2018-01-02 Caterpillar Inc. CVT target engine speed control for coasting and retarding

Also Published As

Publication number Publication date
JP2024078926A (ja) 2024-06-11

Similar Documents

Publication Publication Date Title
KR101358570B1 (ko) 유압식 주행 차량의 주행 제어 장치
KR101694328B1 (ko) 작업 차량의 제어 장치
KR101344836B1 (ko) 작업차량의 주행구동장치, 작업차량 및 주행구동방법
JP5113946B1 (ja) 作業車両及び作業車両の制御方法
CN110226058B (zh) 作业车辆以及作业车辆的控制方法
US11214942B2 (en) Hydraulic system of construction machine
JP7197433B2 (ja) 作業車両の制御装置、作業車両、および作業車両の制御方法
JP2023121768A (ja) 作業車両、動力機械の制御装置および制御方法
JP5138216B2 (ja) 油圧式走行車両の走行制御装置
JP5092059B1 (ja) 作業車両及び作業車両の制御方法
WO2024116545A1 (ja) 作業機械、及び、作業機械を制御するための方法
WO2024116544A1 (ja) 作業機械、及び、作業機械を制御するための方法
WO2020195727A1 (ja) 作業機械、及び作業機械の制御方法
JP2005299732A (ja) 作業車両のクラッチ制御装置
WO2024090061A1 (ja) 作業機械、及び、作業機械を制御するための方法
WO2024084871A1 (ja) 作業機械、及び、作業機械を制御するための方法
JP7357455B2 (ja) 作業機械、及び作業機械の制御方法
JP2004176919A (ja) 油圧走行車両の車速制限システム