WO2024116464A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2024116464A1
WO2024116464A1 PCT/JP2023/027303 JP2023027303W WO2024116464A1 WO 2024116464 A1 WO2024116464 A1 WO 2024116464A1 JP 2023027303 W JP2023027303 W JP 2023027303W WO 2024116464 A1 WO2024116464 A1 WO 2024116464A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
bush
hole
oil
substrate
Prior art date
Application number
PCT/JP2023/027303
Other languages
French (fr)
Japanese (ja)
Inventor
海 稲津
謙 並木
裕之 小林
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2024116464A1 publication Critical patent/WO2024116464A1/en

Links

Images

Definitions

  • the present invention relates to a scroll compressor.
  • the scroll type compressor includes a housing, a support shaft, a first scroll, and a second scroll.
  • the support shaft is supported relative to the housing.
  • the first scroll has a first substrate and a first spiral wall.
  • the first spiral wall stands up from the first substrate.
  • the second scroll has a second substrate and a second spiral wall.
  • the second substrate faces the first substrate.
  • the second spiral wall stands up from the second substrate toward the first substrate.
  • the second spiral wall meshes with the first spiral wall.
  • the scroll compressor includes an eccentric shaft and a bush.
  • the eccentric shaft protrudes from the tip surface of the support shaft.
  • the eccentric shaft extends parallel to the support shaft at a position eccentric to the axis of the support shaft.
  • the bush has a through hole into which the eccentric shaft is inserted.
  • the bush is capable of swinging about the eccentric shaft.
  • the scroll compressor includes a cylindrical holding portion.
  • the holding portion is provided on the end surface of the second substrate opposite the first substrate.
  • a bush is disposed inside the holding portion.
  • a bearing is disposed between the inner peripheral surface of the holding portion and the outer peripheral surface of the bush. The bush is held by the holding portion via the bearing.
  • a supply passage for supplying oil to the bearings is formed in the bush.
  • the supply passage has an axial passage section extending in the axial direction of the bush and a radial passage section extending in the radial direction of the bush.
  • the axial passage section has an inlet of the supply passage.
  • the radial passage section has an outlet of the supply passage. Then, oil introduced from the inlet into the axial passage section flows through the axial passage section and into the radial passage section. The oil flowing through the radial passage section is supplied to the bearings via the outlet. This improves the lubrication of the bearings, thereby improving the durability of the scroll compressor.
  • Patent Document 1 in order to supply oil to the bearing, an axial flow passage portion is formed in the bush, which is a through hole separate from the through hole into which the eccentric shaft is inserted. Therefore, it is necessary to ensure that the bush has a sufficient thickness to form the axial flow passage portion, which results in the bush becoming larger. As a result, the scroll compressor becomes larger.
  • a scroll compressor in order to solve the above problem, includes a housing, a support shaft supported by the housing, a first scroll having a first base plate and a first spiral wall standing from the first base plate, a second base plate facing the first base plate, and a second scroll having a second spiral wall standing from the second base plate toward the first base plate and meshing with the first spiral wall, an eccentric shaft protruding from the tip surface of the support shaft and extending parallel to the support shaft at a position eccentric with respect to the axis of the support shaft, a bush having a through hole into which the eccentric shaft is inserted and capable of swinging around the eccentric shaft, a cylindrical holding portion provided on the end surface of the second base plate opposite the first base plate and with the bush disposed inside, and a bearing disposed between the inner peripheral surface of the holding portion and the outer peripheral surface of the bush.
  • the bush is held by the holding portion via the bearing.
  • the bush has an oil passage on the opposing surface facing the tip surface of the support shaft.
  • the oil passage extends from the through hole toward the outer peripheral surface of the bush and has an inlet opening on the outer peripheral surface of the bush.
  • An oil groove is formed on at least one of the inner peripheral surface of the through hole and the outer peripheral surface of the eccentric shaft, except for the portion where the compressive load transmitted from the second scroll acts between the inner peripheral surface of the through hole and the outer peripheral surface of the eccentric shaft, and communicates with the oil passage and opens on the end face of the bush on the second scroll wall side.
  • oil present around the bush flows into the oil passage from the inlet and is supplied to the oil groove.
  • the oil supplied to the oil groove passes through the oil groove and flows out into the space between the end face of the bush on the second volute wall side and the second base plate.
  • the oil that flows out into this space is then supplied to the bearing. This improves the lubrication of the bearing, improving the durability of the scroll compressor.
  • the oil groove is formed on at least one of the inner circumferential surface of the through hole and the outer circumferential surface of the eccentric shaft. Therefore, unlike the conventional technology, there is no need to form a through hole in the bush other than the through hole into which the eccentric shaft is inserted in order to supply oil to the bearing. Therefore, there is no need to ensure the thickness of the bush. As a result, it is possible to avoid the bush becoming larger. This allows the scroll compressor to be made smaller.
  • the oil groove is formed on at least one of the inner circumferential surface of the through hole and the outer circumferential surface of the eccentric shaft, excluding the portion where the compressive load transmitted from the second scroll acts between the inner circumferential surface of the through hole and the outer circumferential surface of the eccentric shaft.
  • the scroll compressor can be made smaller while improving its durability.
  • the support shaft is a rotating shaft rotatably supported relative to the housing
  • the first scroll is a fixed scroll having a fixed base plate as the first substrate and a fixed spiral wall as the first spiral wall standing up from the fixed base plate
  • the second scroll is an orbiting scroll having a rotating base plate as the second substrate facing the fixed base plate and a orbiting spiral wall as the second spiral wall standing up from the orbiting base plate toward the fixed base plate and meshing with the fixed spiral wall, and revolving with the rotation of the rotating shaft.
  • the oil passage has a guide surface that curves from the through hole in the rotation direction of the bush when the rotating shaft is rotating in the forward direction and extends toward the inlet, and the guide surface guides the oil flowing through the oil passage toward the through hole.
  • the oil from the inlet is guided toward the through hole by the guide surface, making it easier for the oil from the inlet to be supplied to the oil groove via the oil passage.
  • the oil is supplied to the bearings more efficiently, further improving the lubrication of the bearings. This can therefore further improve the durability of the scroll compressor.
  • the first scroll is a drive scroll having a drive substrate as the first substrate and a drive spiral wall as the first spiral wall standing up from the drive substrate, and rotating around the axis of the support shaft
  • the second scroll is a driven scroll having a driven substrate as the second substrate facing the drive substrate and a driven spiral wall as the second spiral wall standing up from the driven substrate toward the drive substrate and meshing with the drive spiral wall, and rotating following the rotation of the drive scroll.
  • the inlet may open to a portion of an outer circumferential surface of the bush that is located vertically upward. This allows the oil around the bush to easily fall under its own weight and flow into the inlet, so that the oil around the bush can easily flow from the inlet into the oil passage and be supplied to the oil groove, thereby improving the lubrication of the bearing and further improving the durability of the scroll compressor.
  • the oil passage has a guide surface that curves from the through hole in the opposite direction to the rotation direction of the driven scroll when the drive scroll rotates in the forward direction and extends toward the inlet, and the guide surface guides the oil flowing through the oil passage toward the through hole.
  • Oil present around the bush flows in the rotational direction of the driven scroll, following the rotation of the driven scroll when the drive scroll rotates in the forward direction.
  • the guide surface curves from the through hole toward the inlet in a direction opposite to the rotational direction of the driven scroll when the drive scroll rotates in the forward direction. Therefore, oil present around the bush and flowing in the rotational direction of the driven scroll is easily guided by the guide surface toward the through hole via the inlet. This makes it easier for oil from the inlet to be supplied to the oil groove via the oil passage. As a result, oil is efficiently supplied to the bearing, which further improves the lubrication of the bearing. This makes it possible to further improve the durability of the scroll compressor.
  • the outer circumferential surface of the eccentric shaft may be configured to block oil flowing through the oil passage and guide the oil to the oil groove. According to this, the oil flowing from the inlet through the oil passage is blocked by the outer circumferential surface of the eccentric shaft and guided to the oil groove, so that the oil from the inlet is easily supplied to the oil groove through the oil passage. As a result, the oil is efficiently supplied to the bearing, and the lubrication of the bearing is further improved. Therefore, the durability of the scroll compressor can be further improved.
  • the oil groove may be formed on an inner circumferential surface of the through hole. According to this, since the oil groove is also formed in the bushing in which the oil passage is formed, it is easy to set the position of the oil groove relative to the oil passage. Therefore, the configuration in which the oil groove is formed on the inner circumferential surface of the through hole can facilitate the design of the scroll compressor.
  • the oil groove may be formed in an outer circumferential surface of the eccentric shaft. It is relatively easy to form an oil groove on the outer circumferential surface of the eccentric shaft. In this manner, a configuration in which an oil groove is formed on the outer circumferential surface of the eccentric shaft can facilitate the design of the scroll compressor.
  • This invention makes it possible to reduce the size of a scroll compressor while improving its durability.
  • FIG. 1 is a cross-sectional view of a scroll compressor according to a first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of a portion of the scroll compressor.
  • FIG. 3 is a front view showing the bush and the eccentric shaft.
  • FIG. 4 is a cross-sectional view showing the bush and the eccentric shaft.
  • FIG. 5 is a cross-sectional view of a scroll compressor according to the second embodiment.
  • FIG. 6 is an enlarged cross-sectional view showing a part of the scroll compressor.
  • FIG. 7 is a front view showing the bush and the eccentric shaft.
  • FIG. 8 is a cross-sectional view showing the bush and the eccentric shaft.
  • FIG. 9 is a cross-sectional view showing a bush and an eccentric shaft in a modified example.
  • FIG. 10 is a cross-sectional view showing a bush and an eccentric shaft in a modified example.
  • a scroll compressor according to a first embodiment will now be described with reference to Figures 1 to 4.
  • the scroll compressor according to the first embodiment is used, for example, in a vehicle air conditioner.
  • the scroll compressor 10 includes a cylindrical housing 11.
  • the housing 11 includes a motor housing 12, a journal housing 13, and a discharge housing 14.
  • the motor housing 12, the journal housing 13, and the discharge housing 14 are made of a metal material.
  • the motor housing 12, the journal housing 13, and the discharge housing 14 are made of aluminum, for example.
  • the scroll compressor 10 also includes a rotating shaft 15 serving as a support shaft. The rotating shaft 15 is accommodated in the housing 11.
  • the motor housing 12 has a plate-shaped end wall 12a and a cylindrical peripheral wall 12b.
  • the peripheral wall 12b extends cylindrically from the outer periphery of the end wall 12a.
  • the axial direction of the peripheral wall 12b coincides with the axial direction of the rotating shaft 15.
  • the motor housing 12 has a plurality of female threaded holes 12c. Each female threaded hole 12c is formed at the open end of the peripheral wall 12b. For convenience of explanation, only one female threaded hole 12c is shown in FIG. 1.
  • the motor housing 12 also has an intake port 12h.
  • the intake port 12h draws in a refrigerant.
  • the intake port 12h is formed in the peripheral wall 12b near the end wall 12a.
  • the intake port 12h communicates between the inside and outside of the motor housing 12.
  • the motor housing 12 has a cylindrical bearing holder 12d.
  • the bearing holder 12d protrudes from the center of the inner surface of the end wall 12a.
  • the first end, which is one end in the axial direction of the rotating shaft 15, is inserted into the bearing holder 12d.
  • the scroll compressor 10 is equipped with a bearing 16.
  • the bearing 16 is, for example, a rolling bearing.
  • the bearing 16 is provided between the inner peripheral surface of the bearing holder 12d and the outer peripheral surface of the first end of the rotating shaft 15.
  • the first end of the rotating shaft 15 is rotatably supported by the motor housing 12 via the bearing 16.
  • the journal housing 13 has a plate-shaped end wall 17 and a cylindrical peripheral wall 18.
  • the peripheral wall 18 extends cylindrically from the outer periphery of the end wall 17.
  • the axial direction of the peripheral wall 18 coincides with the axial direction of the rotating shaft 15.
  • the journal housing 13 also has an annular flange wall 19.
  • the flange wall 19 extends radially outward from the rotating shaft 15 from the end of the outer periphery of the peripheral wall 18 opposite the end wall 17.
  • the support housing 13 has a circular through hole 17a.
  • the through hole 17a is formed in the center of the end wall 17.
  • the through hole 17a penetrates the end wall 17 in the thickness direction.
  • the rotating shaft 15 is inserted into the through hole 17a.
  • the tip surface 15e located on the second end side, which is the other end in the axial direction of the rotating shaft 15, is located inside the peripheral wall 18.
  • the scroll compressor 10 includes a bearing 21.
  • the bearing 21 is, for example, a rolling bearing.
  • the bearing 21 is provided between the inner circumferential surface of the peripheral wall 18 and the outer circumferential surface of the rotating shaft 15.
  • the rotating shaft 15 is rotatably supported by the support housing 13 via the bearing 21. In this manner, the rotating shaft 15 is rotatably supported relative to the housing 11.
  • the support shaft in this embodiment is the rotating shaft 15 rotatably supported relative to the housing 11.
  • the support housing 13 has multiple bolt insertion holes 19a.
  • Each bolt insertion hole 19a is formed on the outer periphery of the flange wall 19.
  • Each bolt insertion hole 19a penetrates the flange wall 19 in the thickness direction.
  • Each bolt insertion hole 19a in the flange wall 19 is connected to each female threaded hole 12c in the motor housing 12. Note that for ease of explanation, only one bolt insertion hole 19a is shown in FIG. 1.
  • the scroll compressor 10 has a motor chamber 20.
  • the motor chamber 20 is defined by the motor housing 12 and the support housing 13.
  • the motor housing 12 defines the motor chamber 20 together with the support housing 13. In this manner, the motor chamber 20 is formed within the housing 11.
  • the motor chamber 20 is connected to the suction port 12h. Refrigerant is drawn into the motor chamber 20 from the suction port 12h.
  • the scroll compressor 10 includes a motor 22.
  • the motor 22 is housed in the motor chamber 20.
  • the motor 22 includes a cylindrical stator 23 and a cylindrical rotor 24.
  • the rotor 24 is disposed inside the stator 23.
  • the rotor 24 rotates integrally with the rotating shaft 15.
  • the stator 23 surrounds the rotor 24.
  • the rotor 24 includes a rotor core 24a fixed to the rotating shaft 15 and a plurality of permanent magnets (not shown) provided on the rotor core 24a.
  • the stator 23 has a cylindrical stator core 23a and a motor coil 23b.
  • the stator core 23a is fixed to the inner peripheral surface of the peripheral wall 12b of the motor housing 12.
  • the motor coil 23b is wound around the stator core 23a.
  • the rotor 24 rotates when power controlled by an inverter (not shown) is supplied to the motor coil 23b. This causes the rotating shaft 15 to rotate integrally with the rotor 24. Therefore, the motor 22 rotates the rotating shaft 15.
  • the scroll type compressor 10 has a compression mechanism C1.
  • the compression mechanism C1 has a fixed scroll 25 as a first scroll, and an orbiting scroll 26 as a second scroll.
  • the scroll type compressor 10 has a first scroll and a second scroll.
  • the compression mechanism C1 is of a scroll type.
  • the orbiting scroll 26 revolves around the fixed scroll 25 by the rotation of the rotating shaft 15.
  • the fixed scroll 25 has a fixed substrate 25a as a first substrate, and a fixed spiral wall 25b as a first spiral wall.
  • the fixed substrate 25a is disk-shaped.
  • a discharge port 25h is formed in the center of the fixed substrate 25a.
  • the discharge port 25h is a circular hole.
  • the discharge port 25h penetrates the fixed substrate 25a in the thickness direction.
  • the fixed spiral wall 25b stands up from the fixed substrate 25a.
  • the first scroll of this embodiment is a fixed scroll 25 having a fixed substrate 25a and a fixed spiral wall 25b.
  • the fixed scroll 25 also has an outer peripheral wall 25c.
  • the outer peripheral wall 25c stands up from the outer periphery of the fixed substrate 25a.
  • the outer peripheral wall 25c surrounds the fixed spiral wall 25b.
  • the scroll compressor 10 is equipped with a valve mechanism 25v.
  • the valve mechanism 25v is attached to the surface of the fixed base plate 25a opposite the fixed spiral wall 25b.
  • the valve mechanism 25v is configured to be able to open and close the discharge port 25h.
  • the orbiting scroll 26 has an orbiting base plate 26a as a second base plate, and an orbiting spiral wall 26b as a second spiral wall.
  • the orbiting base plate 26a is disk-shaped.
  • the orbiting base plate 26a faces the fixed base plate 25a.
  • the orbiting spiral wall 26b stands up from the orbiting base plate 26a toward the fixed base plate 25a.
  • the orbiting spiral wall 26b meshes with the fixed spiral wall 25b.
  • the second scroll of this embodiment is an orbiting scroll 26 having an orbiting base plate 26a and an orbiting spiral wall 26b.
  • the orbiting scroll 26 is located inside the outer peripheral wall 25c.
  • the orbiting scroll 26 revolves inside the outer peripheral wall 25c.
  • the tip surface of the fixed spiral wall 25b is in contact with the orbiting base plate 26a.
  • the tip surface of the orbiting spiral wall 26b is in contact with the fixed base plate 25a.
  • the scroll compressor 10 has a compression chamber 27.
  • the compression chamber 27 is defined by a fixed base plate 25a, a fixed spiral wall 25b, a rotating base plate 26a, and a rotating spiral wall 26b. Therefore, the compression chamber 27 is defined between the fixed scroll 25 and the rotating scroll 26.
  • the compression chamber 27 takes in a refrigerant from the outside and compresses it.
  • the scroll compressor 10 has a boss portion 28 as a retaining portion.
  • the swiveling base plate 26a has a cylindrical boss portion 28.
  • the boss portion 28 protrudes in a cylindrical shape from the end face 26e of the swiveling base plate 26a opposite the fixed base plate 25a. Therefore, the boss portion 28 is provided on the end face of the swiveling base plate 26a opposite the fixed base plate 25a.
  • the axial direction of the boss portion 28 coincides with the axial direction of the rotating shaft 15.
  • the rotating base plate 26a has a plurality of grooves 26d.
  • the grooves 26d are formed around the boss portion 28 on the end face 26e of the rotating base plate 26a.
  • the grooves 26d are arranged at a predetermined interval in the circumferential direction of the rotating shaft 15. For the sake of explanation, only one groove 26d is shown in FIG. 1.
  • An annular ring member 29 is fitted into each groove 26d.
  • a pin 30 is inserted into each ring member 29. Each pin 30 protrudes from the end face 13e of the support housing 13 on the rotating scroll 26 side.
  • the scroll compressor 10 is equipped with an elastic plate 31.
  • the elastic plate 31 is annular.
  • the elastic plate 31 is sandwiched between the end face 13e of the support housing 13 and the open end face of the outer peripheral wall 25c.
  • the elastic plate 31 constantly biases the orbiting scroll 26 toward the fixed scroll 25.
  • the discharge housing 14 has a plate-shaped end wall 14a and a cylindrical peripheral wall 14b.
  • the peripheral wall 14b extends cylindrically from the outer periphery of the end wall 14a.
  • the axial direction of the peripheral wall 14b coincides with the axial direction of the rotating shaft 15.
  • the peripheral wall 14b surrounds the fixed scroll 25. Therefore, the fixed scroll 25 is accommodated within the housing 11.
  • the discharge housing 14 has multiple bolt insertion holes 14c. Each bolt insertion hole 14c is formed in the peripheral wall 14b. For ease of explanation, only one bolt insertion hole 14c is shown in FIG. 1. Each bolt insertion hole 14c is connected to a corresponding bolt insertion hole 19a in the flange wall 19.
  • each bolt insertion hole 14c passes through each bolt insertion hole 19a of the flange wall 19 and is screwed into each female threaded hole 12c of the motor housing 12.
  • the fixed scroll 25 is sandwiched between the end wall 14a of the discharge housing 14 and the journal housing 13. In this way, the fixed scroll 25 is fixed to the housing 11.
  • the scroll compressor 10 has a suction passage 35.
  • the suction passage 35 has a first groove 36, a first hole 37, a second groove 38, and a second hole 39.
  • the first groove 36 is formed in a part of the inner circumferential surface of the peripheral wall 12b of the motor housing 12.
  • the first groove 36 opens to the opening end of the peripheral wall 12b.
  • the first hole 37 is formed in the outer circumferential portion of the flange wall 19 of the journal housing 13.
  • the first hole 37 penetrates the flange wall 19 in the thickness direction.
  • the first hole 37 is connected to the first groove 36.
  • the second groove 38 is formed in a part of the inner circumferential surface of the peripheral wall 14b of the discharge housing 14.
  • the second groove 38 is connected to the first hole 37.
  • the second hole 39 is formed in the outer circumferential wall 25c of the fixed scroll 25.
  • the second hole 39 penetrates the outer circumferential wall 25c in the thickness direction.
  • the second hole 39 is connected to the second groove 38.
  • the second hole 39 is connected to the outermost part of the compression chamber 27.
  • the refrigerant in the motor chamber 20 passes through the first groove 36, the first hole 37, the second groove 38, and the second hole 39 and is sucked into the compression chamber 27.
  • the refrigerant sucked into the compression chamber 27 is compressed within the compression chamber 27 by the orbital motion of the orbiting scroll 26. In this way, the compression mechanism C1 compresses the refrigerant sucked into the housing 11.
  • the scroll compressor 10 has a discharge chamber 40.
  • the discharge chamber 40 is defined between the fixed base plate 25a and the end wall 14a of the discharge housing 14.
  • the discharge chamber 40 is connected to the discharge port 25h.
  • the refrigerant compressed in the compression chamber 27 is discharged into the discharge chamber 40.
  • the scroll compressor 10 also has an oil storage chamber 41.
  • the oil storage chamber 41 is formed in the end wall 14a of the discharge housing 14.
  • the scroll compressor 10 has an oil separation chamber 42.
  • the oil separation chamber 42 is formed inside the discharge housing 14.
  • the oil separation chamber 42 is formed inside an elongated cylindrical outer cylinder 43 that is part of the end wall 14a of the discharge housing 14.
  • the first end of the outer cylinder 43 forms a discharge port 44 that discharges the refrigerant to the outside.
  • the discharge port 44 is connected to the oil separation chamber 42.
  • An inner cylinder 45 is fitted into the oil separation chamber 42.
  • the axial direction of the inner cylinder 45 coincides with the radial direction of the rotating shaft 15.
  • a first end of the inner cylinder 45 communicates with the discharge port 44.
  • a second end of the inner cylinder 45 communicates with the side of the oil separation chamber 42 opposite the discharge port 44.
  • An introduction hole 46 is formed in the outer cylinder 43. The introduction hole 46 communicates with the discharge chamber 40 and the oil separation chamber 42. The introduction hole 46 introduces the refrigerant discharged into the discharge chamber 40 into the oil separation chamber 42.
  • An oil drain hole 47 is formed in the discharge housing 14. A first end of the oil drain hole 47 is connected to the side of the oil separation chamber 42 opposite the discharge port 44. A second end of the oil drain hole 47 is connected to the oil storage chamber 41. The oil separation chamber 42 is connected to the oil storage chamber 41 via the oil drain hole 47.
  • the refrigerant compressed in the compression chamber 27 and discharged into the discharge chamber 40 through the discharge port 25h is introduced into the oil separation chamber 42 through the introduction hole 46.
  • the refrigerant introduced into the oil separation chamber 42 swirls around the inner cylinder 45. This applies centrifugal force to the oil contained in the refrigerant, and the oil is separated from the refrigerant in the oil separation chamber 42. Therefore, the oil separation chamber 42 separates the oil contained in the refrigerant discharged into the discharge chamber 40.
  • the refrigerant from which the oil has been separated flows into and passes through the inner cylinder 45.
  • the refrigerant that has passed through the inner cylinder 45 flows out through the discharge port 44 to an external refrigerant circuit (not shown).
  • the oil separated from the refrigerant in the oil separation chamber 42 flows toward the oil drain hole 47.
  • the oil flowing toward the oil drain hole 47 is discharged through the oil drain hole 47 into the oil storage chamber 41 and is stored in the oil storage chamber 41.
  • the scroll compressor 10 is equipped with an oil return passage 48.
  • the oil return passage 48 passes from the oil storage chamber 41 through the discharge housing 14 and the support housing 13 to the inside of the peripheral wall 18 of the support housing 13. Therefore, the oil return passage 48 connects the oil storage chamber 41 to the inside of the peripheral wall 18 of the support housing 13. The oil stored in the oil storage chamber 41 is returned to the inside of the peripheral wall 18 of the support housing 13 via the oil return passage 48.
  • the scroll compressor 10 is equipped with an eccentric shaft 50.
  • the eccentric shaft 50 protrudes from the tip surface 15e of the rotating shaft 15 and extends parallel to the rotating shaft 15 at a position eccentric with respect to the axis L1 of the rotating shaft 15.
  • the eccentric shaft 50 is integrally formed with the rotating shaft 15.
  • the axial direction of the eccentric shaft 50 coincides with the axial direction of the rotating shaft 15.
  • the eccentric shaft 50 protrudes from the tip surface 15e of the rotating shaft 15 toward the orbiting scroll 26.
  • the eccentric shaft 50 is inserted into the boss portion 28.
  • the scroll compressor 10 includes a bush 51.
  • the bush 51 has a bush cylindrical portion 52 and a bush flange portion 53.
  • the inside of the bush cylindrical portion 52 is formed as a through hole 54. Therefore, the bush 51 has the through hole 54.
  • the eccentric shaft 50 is inserted into the through hole 54.
  • the bush cylindrical portion 52 is disposed inside the boss portion 28. Therefore, the bush 51 is disposed inside the boss portion 28.
  • the end of the bushing cylinder 52 opposite the swivel base plate 26a protrudes from the boss 28.
  • the bushing flange 53 protrudes outward in a ring shape from the end of the bushing cylinder 52 opposite the swivel base plate 26a.
  • the bushing flange 53 overlaps with the end face of the boss 28 in the axial direction of the boss 28.
  • the bushing 51 can swing around the eccentric shaft 50.
  • the scroll compressor 10 is equipped with a balance weight 55.
  • the balance weight 55 is integrated with the bush 51.
  • the balance weight 55 is formed integrally with the bush 51.
  • the balance weight 55 protrudes outward from a portion of the outer circumferential surface of the bush flange portion 53.
  • the balance weight 55 is housed within the peripheral wall 18 of the support housing 13.
  • the scroll compressor 10 includes a bearing 56.
  • the bearing 56 is a cylindrical sliding bearing.
  • the bearing 56 has a bearing tube portion 57 and a bearing flange portion 58.
  • the bearing tube portion 57 is disposed inside the boss portion 28.
  • the bearing tube portion 57 is disposed between the inner peripheral surface of the boss portion 28 and the outer peripheral surface of the bushing tube portion 52. Therefore, the bearing 56 is disposed between the inner peripheral surface of the boss portion 28 and the outer peripheral surface of the bushing 51.
  • the bushing 51 is rotatably held by the boss portion 28 via the bearing 56.
  • the end of the bearing tube 57 opposite the swivel base plate 26a protrudes from the boss 28.
  • the bearing flange 58 protrudes outward in an annular shape from the end of the bearing tube 57 opposite the swivel base plate 26a.
  • the bearing flange 58 is disposed between the end face of the boss 28 and the bush flange 53.
  • the bearing 56 is prevented from coming loose from the boss 28 by the bearing flange 58 abutting against the bush flange 53.
  • the rotation of the rotating shaft 15 is transmitted to the orbiting scroll 26 via the eccentric shaft 50, the bush 51, and the bearing 56.
  • This causes the orbiting scroll 26 to rotate on its axis.
  • the contact between each pin 30 and the inner peripheral surface of each ring member 29 prevents the orbiting scroll 26 from rotating on its axis, and only the revolution of the orbiting scroll 26 is permitted.
  • the orbiting scroll 26 revolves while the orbiting spiral wall 26b is in contact with the fixed spiral wall 25b.
  • the volume of the compression chamber 27 decreases, and the refrigerant is compressed in the compression chamber 27.
  • the orbiting scroll 26 revolves inside the outer peripheral wall 25c as the rotating shaft 15 rotates.
  • the balance weight 55 offsets the centrifugal force acting on the orbiting scroll 26 when it revolves. This reduces the amount of imbalance in the orbiting scroll 26.
  • ⁇ Follower crank mechanism 59 The center L2 of the bushing cylindrical portion 52 is located radially outward of the axis L1 of the rotating shaft 15.
  • the center of the orbiting base plate 26a coincides with the center L2 of the bushing cylindrical portion 52.
  • the distance between the center L2 of the bushing cylindrical portion 52 and the axis L1 of the rotating shaft 15 is the orbital radius of the orbiting scroll 26.
  • the through hole 54 has a center L3 that is eccentric to the center L2 of the bushing cylindrical portion 52. Therefore, in the bushing cylindrical portion 52, the thickness of the portion closer to the center L3 of the through hole 54 than the center L2 of the bushing cylindrical portion 52 is smaller than the thickness of the portion closer to the center L2 of the bushing cylindrical portion 52 than the center L3 of the through hole 54.
  • a compressive load F1 is applied from the orbiting scroll 26 between the inner peripheral surface of the through hole 54 and the outer peripheral surface of the eccentric shaft 50.
  • the compressive load F1 is applied from the orbiting scroll 26 to the eccentric shaft 50 via the bearing 56 and the bush 51.
  • the compressive load F1 is uniquely determined by the shapes of the fixed spiral wall 25b and the orbiting spiral wall 26b, the pressure of the refrigerant compressed in the compression chamber 27, and the like.
  • a location A1 where the compressive load F1 transmitted from the orbiting scroll 26 acts between the inner peripheral surface of the through hole 54 and the outer peripheral surface of the eccentric shaft 50 is grasped in advance by experiments, etc.
  • the compressive load F1 is applied to the eccentric shaft 50 from a portion of the bushing cylindrical portion 52 that is closer to the center L3 of the through hole 54 than the center L2 of the bushing cylindrical portion 52.
  • the bush 51 oscillates around the eccentric shaft 50 based on the compressive load F1 acting on the orbiting scroll 26.
  • the distance between the center L2 of the bush 51 and the axis L1 of the rotating shaft 15 increases, and the orbital radius of the orbiting scroll 26 increases.
  • the orbiting spiral wall 26b comes into contact with the fixed spiral wall 25b, the oscillation of the bush 51 around the eccentric shaft 50 is restricted. This fixes the orbital radius of the orbiting scroll 26.
  • the rotation of the rotating shaft 15 is transmitted to the orbiting scroll 26 via the eccentric shaft 50, the bush 51, and the bearing 56, so that the orbiting scroll 26 rotates in the forward direction.
  • the pin 30 comes into contact with the ring member 29.
  • the orbiting scroll 26 revolves in the forward direction while the orbiting spiral wall 26b comes into contact with the fixed spiral wall 25b. This prevents the refrigerant from leaking from the compression chamber 27, and the volume of the compression chamber 27 decreases, compressing the refrigerant.
  • the bush 51 When assembling the orbiting scroll 26 to the fixed scroll 25, the bush 51 is swung around the eccentric shaft 50 in the opposite direction to when the rotating shaft 15 is rotating in the forward direction. This reduces the distance between the center L2 of the bush 51 and the axis L1 of the rotating shaft 15, thereby reducing the orbital radius of the orbiting scroll 26. As a result, the position of the orbiting spiral wall 26b relative to the fixed spiral wall 25b becomes a position where the orbiting spiral wall 26b does not come into contact with the fixed spiral wall 25b. This makes it possible to easily assemble the orbiting scroll 26 to the fixed scroll 25.
  • the bush 51 oscillates around the eccentric shaft 50 in the opposite direction to when the rotating shaft 15 is rotating in the forward direction, the bush 51 is restricted from oscillating until the distance between the center L2 of the bush 51 and the axis L1 of the rotating shaft 15 increases.
  • the bush 51 oscillates around the eccentric shaft 50 in the opposite direction to when the rotating shaft 15 is rotating in the forward direction, the bush 51 is restricted from oscillating when the distance between the center L2 of the bush 51 and the axis L1 of the rotating shaft 15 becomes the shortest distance.
  • the bush 51 has an oil passage 60.
  • the oil passage 60 is formed in an opposing surface 51a of the bush 51 that faces the tip surface 15e of the rotary shaft 15.
  • the oil passage 60 extends from the through hole 54 toward the outer peripheral surface of the bush flange 53. Therefore, the oil passage 60 extends from the through hole 54 toward the outer peripheral surface of the bush 51.
  • the oil passage 60 has an inlet 61 that opens into the outer peripheral surface of the bush flange 53. Therefore, the oil passage 60 has an inlet 61 that opens into the outer peripheral surface of the bush 51.
  • a first end of the oil passage 60 is the inlet 61 that opens into the outer peripheral surface of the bush 51.
  • a second end of the oil passage 60 is connected to the through hole 54.
  • the oil passage 60 is defined by a passage forming recess 62 formed in the opposing surface 51a.
  • the passage forming recess 62 has a bottom surface 63 and a first side surface 64 and a second side surface 65 standing upright from the bottom surface 63.
  • the bottom surface 63 connects the first side surface 64 and the second side surface 65 to each other.
  • the bottom surface 63 is continuous with the through hole 54.
  • the bottom surface 63 extends from the through hole 54 toward the outer peripheral surface of the bush flange portion 53.
  • the direction of rotation of the bush 51 when the rotating shaft 15 is rotating in the positive direction is indicated by arrow R1.
  • the first side 64 is located further ahead of the second side 65 in the direction of rotation of the bush 51 when the rotating shaft 15 is rotating in the positive direction.
  • the first side 64 and the second side 65 extend from the outer circumferential surface of the eccentric shaft 50 toward the outer circumferential surface of the bush flange portion 53.
  • the first side surface 64 and the second side surface 65 are curved from the outer circumferential surface of the eccentric shaft 50 in the rotation direction of the bush 51 when the rotating shaft 15 is rotating in the positive direction. Therefore, the first side surface 64 and the second side surface 65 each have a guide surface 66 that curves from the through hole 54 in the rotation direction of the bush 51 when the rotating shaft 15 is rotating in the positive direction and extends toward the inlet 61. Therefore, the oil passage 60 has a guide surface 66 that curves from the through hole 54 in the rotation direction of the bush 51 when the rotating shaft 15 is rotating in the positive direction and extends toward the inlet 61. Each guide surface 66 guides the oil flowing through the oil passage 60 toward the through hole 54.
  • an oil groove 70 is formed on the inner circumferential surface of the through hole 54.
  • the oil groove 70 is formed on the inner circumferential surface of the through hole 54.
  • the oil groove 70 is formed on the inner circumferential surface of the through hole 54 at a portion closer to the center L2 of the bushing cylindrical portion 52 than the center L3 of the through hole 54.
  • the oil groove 70 is formed on the inner circumferential surface of the through hole 54 at a portion that is out of phase with the portion on which the compressive load F1 transmitted from the orbiting scroll 26 acts between the inner circumferential surface of the through hole 54 and the outer circumferential surface of the eccentric shaft 50.
  • the oil groove 70 is formed on the inner circumferential surface of the through hole 54 at a portion excluding the portion on which the compressive load F1 transmitted from the orbiting scroll 26 acts between the inner circumferential surface of the through hole 54 and the outer circumferential surface of the eccentric shaft 50.
  • the first end of the oil groove 70 is connected to the second end of the oil passage 60.
  • the second end of the oil groove 70 opens to the end face of the bush 51 on the side of the swirling volute wall 26b.
  • the oil groove 70 connects the second end of the oil passage 60 to the space 71 between the end face of the bush 51 on the side of the swirling volute wall 26b and the swirling base plate 26a.
  • the outer peripheral surface of the eccentric shaft 50 blocks the second end of the oil passage 60.
  • the outer peripheral surface of the eccentric shaft 50 blocks the oil flowing through the oil passage 60 and guides it to the oil groove 70.
  • Oil supplied to oil groove 70 passes through oil groove 70 and flows out into space 71 between the end face of bush 51 facing swivel base plate 26a and swivel base plate 26a. The oil that flows out into space 71 is then supplied to bearing 56. This ensures good lubrication of bearing 56.
  • the first embodiment can provide the following effects.
  • (1-1) The bush 51 has an oil passage 60 on the facing surface 51a facing the tip surface 15e of the rotating shaft 15.
  • the oil passage 60 extends from the through hole 54 toward the outer circumferential surface of the bush 51 and has an inlet 61 that opens on the outer circumferential surface of the bush 51.
  • An oil groove 70 is formed on the inner circumferential surface of the through hole 54, except for the portion where the compression load F1 transmitted from the orbiting scroll 26 acts between the inner circumferential surface of the through hole 54 and the outer circumferential surface of the eccentric shaft 50.
  • the oil groove 70 communicates with the oil passage 60 and opens on the end surface of the bush 51 on the orbiting scroll wall 26b side.
  • the oil present around the bush 51 flows into the oil passage 60 from the inlet 61 and is supplied to the oil groove 70.
  • the oil supplied to the oil groove 70 passes through the oil groove 70 and flows out into the space 71 between the end surface of the bush 51 on the orbiting scroll wall 26b side and the orbiting base plate 26a.
  • the oil that has flowed out into the space 71 is supplied to the bearing 56. This improves the lubrication of the bearing 56, thereby improving the durability of the scroll compressor 10.
  • the oil groove 70 is formed on the inner peripheral surface of the through hole 54. Therefore, unlike the conventional technology, there is no need to form a through hole in the bush 51 other than the through hole 54 into which the eccentric shaft 50 is inserted in order to supply oil to the bearing 56. Therefore, there is no need to ensure the thickness of the bush 51. As a result, it is possible to avoid the bush 51 becoming larger. Therefore, it is possible to reduce the size of the scroll compressor 10.
  • the oil groove 70 is formed on the inner peripheral surface of the through hole 54, and in a portion excluding the portion where the compression load F1 transmitted from the orbiting scroll 26 acts between the inner peripheral surface of the through hole 54 and the outer peripheral surface of the eccentric shaft 50.
  • the oil passage 60 has a guide surface 66 that curves in the rotation direction of the bush 51 when the rotating shaft 15 rotates in the forward direction from the through hole 54 and extends toward the inlet 61.
  • the guide surface 66 guides the oil flowing through the oil passage 60 toward the through hole 54. With this, the oil from the inlet 61 is guided toward the through hole 54 by the guide surface 66, so that the oil from the inlet 61 is easily supplied to the oil groove 70 via the oil passage 60. As a result, the oil is efficiently supplied to the bearing 56, and the lubrication of the bearing 56 is further improved. Therefore, the durability of the scroll compressor 10 can be further improved.
  • the outer peripheral surface of the eccentric shaft 50 blocks the oil flowing through the oil passage 60 and guides it to the oil groove 70.
  • the oil flowing through the oil passage 60 from the inlet 61 is blocked by the outer peripheral surface of the eccentric shaft 50 and guided to the oil groove 70.
  • oil is efficiently supplied to the bearing 56, which further improves the lubrication of the bearing 56. This further improves the durability of the scroll compressor 10.
  • the oil groove 70 is formed on the inner circumferential surface of the through hole 54.
  • the oil groove 70 is also formed in the bush 51 in which the oil passage 60 is formed, it is easy to set the position of the oil groove 70 relative to the oil passage 60. Therefore, a configuration in which the oil groove 70 is formed on the inner circumferential surface of the through hole 54 can facilitate the design of the scroll compressor 10.
  • FIG. 5 A second embodiment of a scroll compressor will be described below with reference to Figures 5 to 8.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted or simplified.
  • the scroll compressor of the second embodiment is a double-rotating scroll compressor.
  • the scroll compressor 100 includes a housing 101.
  • the housing 101 includes a housing body 102 and a housing cover 103.
  • the housing body 102 and the housing cover 103 are made of a metal material.
  • the housing body 102 and the housing cover 103 are made of aluminum, for example.
  • the housing body 102 has a disk-shaped end wall 102a and a cylindrical peripheral wall 102b.
  • the peripheral wall 102b extends from the outer periphery of the end wall 102a.
  • the housing body 102 has an intake port 104.
  • the intake port 104 draws in a refrigerant.
  • the intake port 104 is formed, for example, in the end wall 102a.
  • the intake port 104 connects the inside and outside of the housing body 102.
  • the scroll compressor 100 is equipped with a support shaft 105.
  • the support shaft 105 is provided in the housing body 102. Therefore, the support shaft 105 is supported relative to the housing 101.
  • the support shaft 105 protrudes from the center of the inner surface of the end wall 102a of the housing body 102.
  • the axis L11 of the support shaft 105 coincides with the axis of the peripheral wall 102b of the housing body 102.
  • the support shaft 105 is formed integrally with the housing body 102.
  • the housing cover 103 is plate-shaped.
  • the housing cover 103 is connected to the end of the peripheral wall 102b of the housing body 102 opposite the end wall 102a.
  • the housing cover 103 is connected to the housing body 102 while closing the opening of the peripheral wall 102b.
  • the housing body 102 and the housing cover 103 define a scroll chamber 106.
  • the housing 101 therefore defines the scroll chamber 106. Refrigerant is drawn into the scroll chamber 106 from the suction port 104.
  • the housing cover 103 has a bearing retaining portion 107.
  • the bearing retaining portion 107 is cylindrical and protrudes from the center of the inner surface of the housing cover 103.
  • the axis of the bearing retaining portion 107 coincides with the axis of the peripheral wall 102b of the housing body 102.
  • the bearing retaining portion 107 retains a bearing 108.
  • the bearing 108 is, for example, a needle bearing.
  • the housing cover 103 has a discharge hole 109.
  • the discharge hole 109 passes through the center of the housing cover 103.
  • the discharge hole 109 is connected to the inside of the bearing retaining portion 107.
  • the scroll compressor 100 includes a motor 110.
  • the motor 110 is housed in the scroll chamber 106. Therefore, the scroll chamber 106 also serves as a motor chamber in which the motor 110 is housed.
  • the motor 110 includes a cylindrical stator 111 and a cylindrical rotor 112.
  • the stator 111 includes a cylindrical stator core 113 and a motor coil 114.
  • the stator core 113 is fixed to the inner circumferential surface of the peripheral wall 102b of the housing body 102.
  • the motor coil 114 is wound around the stator core 113.
  • the rotor 112 is disposed inside the stator 111.
  • the rotor 112 includes a cylindrical rotor core 115 and a plurality of permanent magnets (not shown) provided in the rotor core 115.
  • the scroll type compressor 100 includes a compression mechanism 116.
  • the compression mechanism 116 is housed in the scroll chamber 106.
  • the compression mechanism 116 includes a driving scroll 117 as a first scroll, and a driven scroll 118 as a second scroll.
  • the compression mechanism 116 is of a scroll type.
  • the driven scroll 118 rotates following the rotation of the driving scroll 117.
  • the driving scroll 117 has a driving substrate 117a as a first substrate, and a driving spiral wall 117b as a first spiral wall.
  • the driving substrate 117a is disk-shaped.
  • a discharge port 119 is formed in the center of the driving substrate 117a.
  • the discharge port 119 is a circular hole.
  • the discharge port 119 penetrates the driving substrate 117a in the thickness direction.
  • the driving spiral wall 117b stands upright from the driving substrate 117a.
  • the first scroll of this embodiment is a driving scroll having a driving substrate 117a and a driving spiral wall 117b.
  • the outer periphery of the surface of the drive substrate 117a that faces the drive spiral wall 117b is in contact with the first end face of the rotor core 115.
  • the drive spiral wall 117b is located inside the rotor core 115. Therefore, the rotor core 115 surrounds the drive spiral wall 117b.
  • the driving scroll 117 has a first boss portion 120.
  • the first boss portion 120 protrudes from the center of the surface of the driving substrate 117a located on the opposite side to the driving spiral wall 117b.
  • the first boss portion 120 is cylindrical.
  • the driving scroll 117 is accommodated in the scroll chamber 106 with the axis of the first boss portion 120 coinciding with the axis L11 of the support shaft 105.
  • the inside of the first boss portion 120 communicates with the discharge port 119.
  • the first boss portion 120 fits into the inside of the bearing holder 107.
  • the first boss portion 120 is rotatably supported by the bearing holder 107 via the bearing 108.
  • the driving scroll 117 has a driving cover body 121.
  • the driving cover body 121 has a disk-shaped cover end wall 121a and a cylindrical cover peripheral wall 121b.
  • the cover peripheral wall 121b extends from the outer periphery of the cover end wall 121a.
  • the driving cover body 121 is accommodated in the scroll chamber 106 with the axis of the cover peripheral wall 121b coinciding with the axis L11 of the support shaft 105.
  • the inner diameter of the cover peripheral wall 121b is the same as the inner diameter of the rotor core 115.
  • the end face located on the opening side of the cover peripheral wall 121b abuts against the second end face of the rotor core 115 with the inner peripheral surface of the cover peripheral wall 121b and the inner peripheral surface of the rotor core 115 located on the same plane.
  • the cover peripheral wall 121b and the drive board 117a sandwich the rotor core 115.
  • the drive board 117a, the rotor core 115, and the cover peripheral wall 121b are connected by a plurality of bolts 122. Therefore, the drive scroll 117 is integrated with the rotor 112.
  • the drive scroll 117 can rotate integrally with the rotor 112.
  • the drive cover body 121 has a second boss portion 123.
  • the second boss portion 123 protrudes from the center of the surface of the cover end wall 121a located opposite the cover peripheral wall 121b.
  • the second boss portion 123 is cylindrical.
  • the axis of the second boss portion 123 coincides with the axis of the cover peripheral wall 121b.
  • the cover end wall 121a has an insertion hole 124.
  • the insertion hole 124 penetrates the cover end wall 121a in the thickness direction.
  • the insertion hole 124 communicates with the inside of the second boss portion 123.
  • the hole diameter of the insertion hole 124 is the same as the inner diameter of the second boss portion 123.
  • the inner peripheral surface of the insertion hole 124 and the inner peripheral surface of the second boss portion 123 are located on the same plane.
  • the support shaft 105 is inserted inside the second boss portion 123 and into the insertion hole 124.
  • a bearing 125 is provided between the support shaft 105 and the second boss portion 123 and the insertion hole 124.
  • the bearing 125 is, for example, a sliding bearing.
  • the drive cover body 121 is supported rotatably relative to the support shaft 105 via the bearing 125. In this way, the drive scroll 117 rotates around the axis L11 of the support shaft 105.
  • the drive cover body 121 has a plurality of grooves 126.
  • the grooves 126 are formed on the surface of the cover end wall 121a that faces the cover peripheral wall 121b.
  • Each groove 126 is a circular recess.
  • the grooves 126 are arranged around the insertion hole 124 at predetermined intervals in the circumferential direction of the cover peripheral wall 121b.
  • An annular ring member 127 is fitted into each groove 126.
  • the drive cover body 121 has a suction port 121h.
  • the suction port 121h is formed on the outer periphery of the cover end wall 121a.
  • the suction port 121h draws the refrigerant drawn into the scroll chamber 106 from the suction port 104 into the inside of the cover peripheral wall 121b.
  • the scroll compressor 100 is equipped with a valve mechanism 128.
  • the valve mechanism 128 is attached to the surface of the drive substrate 117a that is located on the opposite side to the drive volute wall 117b.
  • the valve mechanism 128 is configured to be able to open and close the discharge port 119.
  • the driven scroll 118 has a driven substrate 118a as a second substrate, and a driven spiral wall 118b as a second spiral wall.
  • the driven substrate 118a is disk-shaped.
  • the driven substrate 118a faces the driving substrate 117a.
  • the driven spiral wall 118b stands up from the driven substrate 118a toward the driving substrate 117a.
  • the driven spiral wall 118b is engaged with the driving spiral wall 117b.
  • the second scroll of this embodiment is a driven scroll 118 having a driven substrate 118a and a driven spiral wall 118b.
  • the driven scroll 118 is disposed inside the cover peripheral wall 121b and the rotor core 115.
  • the tip surface of the driving spiral wall 117b is in contact with the driven substrate 118a.
  • the tip surface of the driving spiral wall 118b is in contact with the driving substrate 117a.
  • the scroll compressor 100 has a compression chamber 129.
  • the compression chamber 129 is defined by the drive base plate 117a, the drive spiral wall 117b, the driven base plate 118a, and the driven spiral wall 118b.
  • the compression chamber 129 is defined between the drive scroll 117 and the driven scroll 118.
  • the compression chamber 129 takes in and compresses the refrigerant from the suction port 121h.
  • the scroll compressor 100 is provided with a holding portion 130.
  • the holding portion 130 is formed on the driven substrate 118a.
  • the holding portion 130 is a circular hole-shaped recess formed in the center of the surface of the driven substrate 118a located opposite the driven spiral wall 118b. Therefore, the holding portion 130 is cylindrical and provided on the end surface of the driven substrate 118a opposite the drive substrate 117a.
  • a plurality of pins 131 protrude from the end surface of the driven substrate 118a opposite the drive substrate 117a. Each pin 131 is inserted into each ring member 127.
  • the scroll compressor 100 is equipped with an eccentric shaft 132.
  • the eccentric shaft 132 protrudes from the tip surface 105a of the support shaft 105.
  • the eccentric shaft 132 extends parallel to the support shaft 105 at a position eccentric with respect to the axis L11 of the support shaft 105.
  • the eccentric shaft 132 is fixed to the support shaft 105 by being pressed into a press-fit hole 105h formed in the tip surface 105a of the support shaft 105.
  • the eccentric shaft 132 is inserted inside the retaining portion 130.
  • the scroll compressor 100 includes a bush 133.
  • the bush 133 is cylindrical.
  • the inside of the bush 133 is formed with a through hole 134. Therefore, the bush 133 has the through hole 134.
  • the eccentric shaft 132 is inserted into the through hole 134.
  • the bush 133 is disposed inside the holding portion 130. Therefore, the bush 133 is disposed inside the holding portion 130.
  • the bush 133 can oscillate (swing) around the eccentric shaft 132.
  • the scroll compressor 100 includes a bearing 135.
  • the bearing 135 is disposed inside the holding portion 130.
  • the bearing 135 is disposed between an inner peripheral surface of the holding portion 130 and an outer peripheral surface of the bush 133.
  • the bush 133 is held by the holding portion 130 via the bearing 135.
  • the driven scroll 118 rotates around the center L12 of the bush 133.
  • the contact between each pin 131 and each ring member 127 causes the driven scroll 118 to revolve relative to the driving scroll 117.
  • the driven scroll 118 rotates with the driven spiral wall 118b in contact with the driving spiral wall 117b.
  • the driven scroll 118 rotates following the rotation of the driving scroll 117.
  • the volume of the compression chamber 129 decreases, and the refrigerant is compressed in the compression chamber 129.
  • the center L12 of the bushing 133 is located radially outward of the axis L11 of the support shaft 105.
  • the center of the driven base plate 118a coincides with the center L12 of the bushing 133.
  • the distance between the center L12 of the bushing 133 and the axis L11 of the support shaft 105 is the orbital radius of the driven scroll 118, which revolves relative to the driving scroll 117.
  • the eccentric shaft 132, the bush 133, and the bearing 135 constitute a so-called driven crank mechanism 136 that varies the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105.
  • Such a driven crank mechanism 136 is already known.
  • the through hole 134 has a center L13 at a position eccentric to the center L12 of the bush 133. Therefore, in the bush 133, the thickness of the portion closer to the center L13 of the through hole 134 than the center L12 of the bush 133 is smaller than the thickness of the portion closer to the center L12 of the bush 133 than the center L13 of the through hole 134.
  • a compressive load F1 is applied between the inner peripheral surface of the through hole 134 and the outer peripheral surface of the eccentric shaft 132 from the driven scroll 118.
  • the compressive load F1 is applied to the eccentric shaft 132 from the driven scroll 118 via the bearing 108 and the bush 133.
  • the compressive load F1 is uniquely determined by the shapes of the driving spiral wall 117b and the driven spiral wall 118b, the pressure of the refrigerant compressed in the compression chamber 129, and the like.
  • the compressive load F1 is uniquely determined by the eccentric direction of the eccentric shaft 132 with respect to the axis L11 of the support shaft 105.
  • a location A1 where the compressive load F1 transmitted from the driven scroll 118 acts between the inner peripheral surface of the through hole 134 and the outer peripheral surface of the eccentric shaft 132 is grasped in advance by experiments, etc.
  • the compressive load F1 is applied to the eccentric shaft 132 from a portion of the bush 133 closer to the center L13 of the through hole 134 than the center L12 of the bush 133.
  • the driven scroll 118 follows and rotates in the forward direction. Then, the bush 133 oscillates around the eccentric shaft 132 based on the compressive load F1 acting on the driven scroll 118.
  • the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105 increases. Then, when the driven spiral wall 118b comes into contact with the driving spiral wall 117b, the oscillation of the bush 133 around the eccentric shaft 132 is restricted. This fixes the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105.
  • the bush 133 When assembling the driven scroll 118 to the driving scroll 117, the bush 133 is swung around the eccentric shaft 132 in the opposite direction to when the driving scroll 117 is rotating in the forward direction. This reduces the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105. This causes the position of the driven spiral wall 118b relative to the driving spiral wall 117b to be such that the driven spiral wall 118b does not come into contact with the driving spiral wall 117b. This makes it possible to easily assemble the driven scroll 118 to the driving scroll 117.
  • the bush 133 oscillates around the eccentric shaft 132 in the opposite direction to when the drive scroll 117 is rotating in the forward direction
  • the bush 133 is restricted from oscillating until the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105 increases.
  • the bush 133 oscillates around the eccentric shaft 132 in the opposite direction to when the drive scroll 117 is rotating in the forward direction
  • the bush 133 is restricted from oscillating when the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105 becomes the shortest distance.
  • the bushing 133 has an oil passage 137.
  • the oil passage 137 is formed in an opposing surface 133a of the bushing 133 that faces the tip end surface 105a of the support shaft 105.
  • the oil passage 137 extends from the through hole 134 toward the outer peripheral surface of the bush 133.
  • the oil passage 137 has an inlet 139 that opens into the outer peripheral surface of the bush 133.
  • a first end of the oil passage 137 is the inlet 139 that opens into the outer peripheral surface of the bush 133.
  • a second end of the oil passage 137 is connected to the through hole 134.
  • the inlet 139 opens at a portion of the outer circumferential surface of the bush 133 that is located above the vertical direction Z1.
  • the inlet 139 opens at a portion of the outer circumferential surface of the bush 133 that is located above the vertical direction Z1 of an imaginary plane 140 that passes horizontally through the center L12 of the bush 133.
  • the bush 133 is held by the holding portion 130 so that the inlet 139 opens at a portion of the outer circumferential surface of the bush 133 that is located above the vertical direction Z1 when the oscillation of the bush 133 about the eccentric shaft 132 is restricted.
  • the oil passage 137 is defined by a passage forming recess 141 formed in the opposing surface 133a.
  • the passage forming recess 141 has a bottom surface 142 and a first side surface 143 and a second side surface 144 standing upright from the bottom surface 142.
  • the bottom surface 142 connects the first side surface 143 and the second side surface 144 to each other.
  • the bottom surface 142 is continuous with the through hole 134.
  • the bottom surface 142 extends from the through hole 134 toward the outer peripheral surface of the bush 133.
  • the direction of rotation of the driven scroll 118 when the driving scroll 117 is rotating in the forward direction is indicated by arrow R2.
  • the first side surface 143 is located on the leading side of the second side surface 144 in the direction of rotation of the driven scroll 118 when the driving scroll 117 is rotating in the forward direction.
  • the first side surface 143 and the second side surface 144 extend from the outer circumferential surface of the eccentric shaft 132 toward the outer circumferential surface of the bush 133.
  • the first side surface 143 and the second side surface 144 are curved in the opposite direction to the rotation direction of the driven scroll 118 when the driving scroll 117 rotates in the forward direction from the outer peripheral surface of the eccentric shaft 132. Therefore, the first side surface 143 and the second side surface 144 each have a guide surface 145 that curves in the opposite direction to the rotation direction of the driven scroll 118 when the driving scroll 117 rotates in the forward direction from the through hole 134 and extends toward the inlet 139. Therefore, the oil passage 137 has a guide surface 145 that curves in the opposite direction to the rotation direction of the driven scroll 118 when the driving scroll 117 rotates in the forward direction from the through hole 134 and extends toward the inlet 139. Each guide surface 145 guides the oil flowing through the oil passage 137 toward the through hole 134.
  • an oil groove 146 is formed on the inner circumferential surface of the through hole 134.
  • the oil groove 146 is formed in a portion of the inner circumferential surface of the through hole 134 closer to the center L12 of the bush 133 than the center L13 of the through hole 134.
  • the oil groove 146 is formed on the inner circumferential surface of the through hole 134, and in a portion that is out of phase with the portion on which the compressive load F1 transmitted from the driven scroll 118 acts between the inner circumferential surface of the through hole 134 and the outer circumferential surface of the eccentric shaft 132.
  • the oil groove 146 is formed on the inner circumferential surface of the through hole 134, and in a portion excluding the portion on which the compressive load F1 transmitted from the driven scroll 118 acts between the inner circumferential surface of the through hole 134 and the outer circumferential surface of the eccentric shaft 132.
  • the first end of the oil groove 146 is connected to the second end of the oil passage 137.
  • the second end of the oil groove 146 opens to the end face of the bushing 133 on the driven spiral wall 118b side.
  • the oil groove 146 connects the second end of the oil passage 137 to the space 147 between the end face of the bushing 133 on the driven spiral wall 118b side and the driven base plate 118a.
  • the outer peripheral surface of the eccentric shaft 132 blocks the second end of the oil passage 137.
  • the outer peripheral surface of the eccentric shaft 132 blocks the oil flowing through the oil passage 137 and guides it to the oil groove 146.
  • Oil present around the bush 133 flows from the inlet 139 into the oil passage 137 and is supplied to the oil groove 146.
  • the oil present around the bush 133 follows the rotation of the driven scroll 118 when the driving scroll 117 rotates in the forward direction and flows in the rotation direction of the driven scroll 118.
  • the guide surface 145 curves from the through hole 134 in the opposite direction to the rotation direction of the driven scroll 118 when the driving scroll 117 rotates in the forward direction and extends toward the inlet 139. Therefore, the oil present around the bush 133 and flowing in the rotation direction of the driven scroll 118 is easily guided by the guide surface 145 toward the through hole 134 via the inlet 139.
  • the oil from the inlet 139 is easily supplied to the oil groove 146 via the oil passage 137.
  • the oil flowing from the inlet 139 through the oil passage 137 is blocked by the outer circumferential surface of the eccentric shaft 132 and guided to the oil groove 146. This makes it easier for oil from the inlet 139 to be supplied to the oil groove 146 via the oil passage 137 .
  • the inlet 139 opens to a portion of the outer circumferential surface of the bush 133 that is located above the vertical direction Z1. This makes it easier for oil present around the bush 133 to fall under its own weight and flow into the inlet 139. This makes it easier for oil present around the bush 133 to flow from the inlet 139 into the oil passage 137 and be supplied to the oil groove 146.
  • Oil supplied to oil groove 146 passes through oil groove 146 and flows out into space 147 between the end face of bushing 133 on the driven spiral wall 118b side and driven base plate 118a. The oil that flows out into space 147 is then supplied to bearing 135. This ensures good lubrication of bearing 135.
  • the bushing 133 has an oil passage 137 on the opposing surface 133a that faces the tip surface 105a of the support shaft 105.
  • the oil passage 137 extends from the through hole 134 toward the outer peripheral surface of the bushing 133 and has an inlet 139 that opens into the outer peripheral surface of the bushing 133.
  • An oil groove 146 is formed on the inner peripheral surface of the through hole 134, except for the portion where the compressive load F1 transmitted from the driven scroll 118 acts between the inner peripheral surface of the through hole 134 and the outer peripheral surface of the eccentric shaft 132.
  • the oil groove 146 communicates with the oil passage 137 and opens into the end surface of the bushing 133 on the side of the driven scroll wall 118b.
  • oil present around the bushing 133 flows from the inlet 139 into the oil passage 137 and is supplied to the oil groove 146.
  • the oil supplied to the oil groove 146 passes through the oil groove 146 and flows out into the space 147 between the end face of the bush 133 on the driven spiral wall 118b side and the driven base plate 118a.
  • the oil that flows out into the space 147 is then supplied to the bearing 135. This improves the lubrication of the bearing 135, improving the durability of the scroll compressor 100.
  • the oil groove 146 is formed on the inner circumferential surface of the through hole 134. Therefore, unlike the conventional technology, there is no need to form a through hole in the bush 133 other than the through hole 134 into which the eccentric shaft 132 is inserted in order to supply oil to the bearing 135. Therefore, there is no need to ensure the thickness of the bush 133. As a result, it is possible to avoid the bush 133 becoming larger. Therefore, it is possible to reduce the size of the scroll compressor 100.
  • the oil groove 146 is formed on the inner circumferential surface of the through hole 134, and in a portion excluding the portion where the compression load F1 transmitted from the driven scroll 118 acts between the inner circumferential surface of the through hole 134 and the outer circumferential surface of the eccentric shaft 132.
  • the inlet 139 opens to a portion of the outer circumferential surface of the bush 133 that is located above in the vertical direction Z1. This makes it easier for oil present around the bush 133 to fall under its own weight and flow into the inlet 139. This makes it easier for oil present around the bush 133 to flow from the inlet 139 into the oil passage 137 and be supplied to the oil groove 146. This further improves the lubrication of the bearing 135, thereby further improving the durability of the scroll compressor 100.
  • the oil passage 137 has a guide surface 145 that curves in the opposite direction to the rotation direction of the driven scroll 118 when the driving scroll 117 rotates in the forward direction from the through hole 134 and extends toward the inlet 139.
  • the guide surface 145 guides the oil flowing through the oil passage 137 toward the through hole 134.
  • the oil present around the bush 133 follows the rotation of the driven scroll 118 when the driving scroll 117 rotates in the forward direction and flows in the rotation direction of the driven scroll 118.
  • the guide surface 145 curves in the opposite direction to the rotation direction of the driven scroll 118 when the driving scroll 117 rotates in the forward direction from the through hole 134 and extends toward the inlet 139.
  • the oil present around the bush 133 and flowing in the rotation direction of the driven scroll 118 is easily guided by the guide surface 145 toward the through hole 134 via the inlet 139.
  • oil is efficiently supplied to the bearing 135, which further improves the lubrication of the bearing 135. This further improves the durability of the scroll compressor 100.
  • the compressive load F1 may act on the eccentric shaft 50 from a portion of the bushing cylindrical portion 52 that is closer to the center L2 of the bushing cylindrical portion 52 than the center L3 of the through hole 54.
  • the oil groove 70 is formed in a portion of the inner circumferential surface of the through hole 54 that is closer to the center L3 of the through hole 54 than the center L2 of the bushing cylindrical portion 52. In short, it is sufficient that the oil groove 70 is formed on the inner circumferential surface of the through hole 54, except for the portion where the compressive load F1 acts.
  • the compressive load F1 may act on the eccentric shaft 132 from a portion of the bushing 133 closer to the center L12 of the bushing 133 than the center L13 of the through hole 134.
  • the oil groove 146 is formed in a portion of the inner surface of the through hole 134 closer to the portion closer to the center L13 of the through hole 134 than the center L12 of the bushing 133. In short, it is sufficient that the oil groove 146 is formed on the inner surface of the through hole 134, except for the portion where the compressive load F1 acts.
  • the inlet 139 may open to a portion of the outer circumferential surface of the bush 133 that is located downward in the vertical direction Z1.
  • the oil groove 70 may be formed on the outer peripheral surface of the eccentric shaft 50.
  • the oil groove 70 is formed on the outer peripheral surface of the eccentric shaft 50, except for the portion on which the compression load F1 transmitted from the orbiting scroll 26 acts between the inner peripheral surface of the through hole 54 and the outer peripheral surface of the eccentric shaft 50.
  • the oil groove 70 is not formed on the inner peripheral surface of the through hole 54.
  • the oil groove 70 is formed on the outer peripheral surface of the eccentric shaft 50, it is necessary to form the oil groove 70 at a position where the oil groove 70 and the oil passage 60 can always communicate with each other even if the bush 51 oscillates around the eccentric shaft 50.
  • the oil groove 70 is relatively easy to form on the outer peripheral surface of the eccentric shaft 50. In this way, the configuration in which the oil groove 70 is formed on the outer peripheral surface of the eccentric shaft 50 can facilitate the design of the scroll compressor 10.
  • the oil groove 146 may be formed on the outer peripheral surface of the eccentric shaft 132.
  • the oil groove 146 is formed on the outer peripheral surface of the eccentric shaft 132, except for the portion on which the compressive load F1 transmitted from the driven scroll 118 acts between the inner peripheral surface of the through hole 134 and the outer peripheral surface of the eccentric shaft 132.
  • the oil groove 146 is not formed on the inner peripheral surface of the through hole 134.
  • the oil groove 146 is formed on the outer peripheral surface of the eccentric shaft 132, it is necessary to form the oil groove 146 at a position where the oil groove 146 and the oil passage 137 can always communicate with each other even if the bush 133 oscillates around the eccentric shaft 132. It is relatively easy to form the oil groove 146 on the outer peripheral surface of the eccentric shaft 132. In this way, the configuration in which the oil groove 146 is formed on the outer peripheral surface of the eccentric shaft 132 can facilitate the design of the scroll compressor 100.
  • the oil groove 70 may be formed on both the inner circumferential surface of the through hole 54 and the outer circumferential surface of the eccentric shaft 50. In short, it is sufficient that the oil groove 70 is formed on at least one of the inner circumferential surface of the through hole 54 and the outer circumferential surface of the eccentric shaft 50, excluding the portion where the compressive load F1 transmitted from the orbiting scroll 26 acts between the inner circumferential surface of the through hole 54 and the outer circumferential surface of the eccentric shaft 50.
  • the oil groove 146 may be formed on both the inner circumferential surface of the through hole 134 and the outer circumferential surface of the eccentric shaft 132. In short, it is sufficient that the oil groove 146 is formed on at least one of the inner circumferential surface of the through hole 134 and the outer circumferential surface of the eccentric shaft 132, excluding the portion where the compressive load F1 transmitted from the driven scroll 118 acts between the inner circumferential surface of the through hole 134 and the outer circumferential surface of the eccentric shaft 132.
  • the first side 64 and the second side 65 of the passage forming recess 62 may extend straight from the outer peripheral surface of the eccentric shaft 50 toward the outer peripheral surface of the bush flange portion 53.
  • the oil passage 60 does not need to have a guide surface 66.
  • the first side 143 and the second side 144 of the passage forming recess 141 may extend straight from the outer peripheral surface of the eccentric shaft 132 toward the outer peripheral surface of the bush 133.
  • the oil passage 137 does not need to have a guide surface 145.
  • the second end of the oil passage 60 may open to the outer peripheral surface of the bush 51.
  • the outer peripheral surface of the eccentric shaft 50 does not have to close the second end of the oil passage 60.
  • the eccentric shaft 50 is not integrally formed with the rotating shaft 15, and may be separate from the rotating shaft 15. In this case, the eccentric shaft 50 is attached to the tip surface 15e of the rotating shaft 15.
  • the eccentric shaft 132 may be formed integrally with the support shaft 105 .
  • the balance weight 55 may be separate from the bush 51 .
  • the scroll compressor 10, 100 does not have to be a type that is driven by the motor 22, 110, but may be a type that is driven by, for example, a vehicle engine.
  • the object to be compressed by the scroll compressors 10 and 100 is not limited to a refrigerant, but may be a fluid such as air.
  • the object to be compressed by the scroll compressors 10 and 100 is not limited to a refrigerant, but may be a fluid such as air.
  • the above embodiments includes the configurations described in the following supplementary notes.
  • the bush has an oil passage on a surface facing the tip end surface of the support shaft, the oil passage extends from the through hole toward an outer circumferential surface of the bush and has an inlet opening in the outer circumferential surface of the bush, an oil groove communicating with the oil passage and opening into an end face of the bushing on the second scroll wall side is formed in at least one of an inner circumferential surface of the through hole and an outer circumferential surface of the eccentric shaft, excluding a portion where a compressive load transmitted from the second scroll acts between the inner circumferential surface of the through hole and the outer circumferential surface of the eccentric shaft.
  • the support shaft is a rotation shaft rotatably supported with respect to the housing
  • the first scroll is a fixed scroll having a fixed base plate as the first base plate and a fixed spiral wall as the first spiral wall standing up from the fixed base plate
  • the second scroll is an orbiting scroll that has a rotating base plate as the second base plate facing the fixed base plate, and a orbiting spiral wall as the second spiral wall that stands from the orbiting base plate toward the fixed base plate and meshes with the fixed spiral wall, and that revolves by rotation of the rotation shaft.
  • the oil passage has a guide surface that curves in a rotation direction of the bush when the rotation shaft rotates in a forward direction and extends from the through hole toward the inlet,
  • the first scroll is a drive scroll having a drive substrate as the first substrate and a drive spiral wall as the first spiral wall standing from the drive substrate and rotating around an axis of the support shaft
  • the second scroll is a driven scroll having a driven substrate as the second substrate facing the drive substrate, and a driven spiral wall as the second spiral wall rising from the driven substrate toward the drive substrate and meshing with the drive spiral wall, and rotating following the rotation of the drive scroll.
  • ⁇ Appendix 5> The scroll compressor according to ⁇ Appendix 4>, wherein the inlet is open to a portion of the outer circumferential surface of the bush that is located vertically upward.
  • the oil passage has a guide surface that curves in a direction opposite to a rotation direction of the driven scroll when the driving scroll rotates in a forward direction from the through hole toward the inlet,
  • ⁇ Appendix 7> The scroll compressor according to any one of ⁇ Appendix 1> to ⁇ Appendix 6>, wherein an outer peripheral surface of the eccentric shaft blocks oil flowing through the oil passage and guides it to the oil groove.
  • ⁇ Appendix 8> The scroll compressor according to any one of ⁇ Appendix 1> to ⁇ Appendix 7>, wherein the oil groove is formed on an inner circumferential surface of the through hole.
  • ⁇ Appendix 9> The scroll compressor according to any one of ⁇ Appendix 1> to ⁇ Appendix 7>, wherein the oil groove is formed on an outer circumferential surface of the eccentric shaft.
  • 10,100...Scroll type compressor 11,101...Housing, 15...Rotating shaft (support shaft), 15e...Tip surface, 25...Fixed scroll (first scroll), 25a...Fixed base plate (first base plate), 25b...Fixed spiral wall (first spiral wall), 26...Orbiting scroll (second scroll), 26a...Orbiting base plate (second base plate), 26b...Orbiting spiral wall (second spiral wall), 26e...End surface, 28...Boss portion (retaining portion), 50,132...Eccentric shaft, 51,133...Bush, 51a,133a...

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A scroll compressor (51) comprises an oil passage (60) formed on an opposing surface (51a) of a bush (51). The oil passage (60) has an inflow port (61) extending from a through-hole (54) to an outer peripheral surface of the bush (51) and opening into the outer peripheral surface of the bush (51). An oil groove (70) is formed on an inner peripheral surface of the through-hole (54) and at a portion excluding a place on which a compression load transmitted from a turning scroll acts between the inner peripheral surface of the through-hole (54) and an outer peripheral surface of an eccentric shaft (50). The oil groove (70) opens into an end surface on a turning spiral wall side in the bush (51), while being in communication with the oil passage (60).

Description

スクロール型圧縮機Scroll Compressor
 本発明は、スクロール型圧縮機に関する。 The present invention relates to a scroll compressor.
 スクロール型圧縮機は、ハウジングと、支持軸と、第1スクロールと、第2スクロールと、を備えている。支持軸は、ハウジングに対して支持されている。第1スクロールは、第1基板、及び第1渦巻壁を有している。第1渦巻壁は、第1基板から起立している。第2スクロールは、第2基板、及び第2渦巻壁を有している。第2基板は、第1基板と対向する。第2渦巻壁は、第2基板から第1基板に向けて起立している。第2渦巻壁は、第1渦巻壁と噛み合っている。 The scroll type compressor includes a housing, a support shaft, a first scroll, and a second scroll. The support shaft is supported relative to the housing. The first scroll has a first substrate and a first spiral wall. The first spiral wall stands up from the first substrate. The second scroll has a second substrate and a second spiral wall. The second substrate faces the first substrate. The second spiral wall stands up from the second substrate toward the first substrate. The second spiral wall meshes with the first spiral wall.
 スクロール型圧縮機は、偏心軸と、ブッシュと、を備えている。偏心軸は、支持軸の先端面から突出している。偏心軸は、支持軸の軸線に対して偏心した位置で支持軸と平行に延びている。ブッシュは、偏心軸が挿入される貫通孔を有している。ブッシュは、偏心軸を中心に揺動可能である。スクロール型圧縮機は、筒状の保持部を備えている。保持部は、第2基板における第1基板とは反対側の端面に設けられている。保持部の内側には、ブッシュが配置されている。保持部の内周面とブッシュの外周面との間には、軸受が配置されている。ブッシュは、軸受を介して保持部に保持されている。 The scroll compressor includes an eccentric shaft and a bush. The eccentric shaft protrudes from the tip surface of the support shaft. The eccentric shaft extends parallel to the support shaft at a position eccentric to the axis of the support shaft. The bush has a through hole into which the eccentric shaft is inserted. The bush is capable of swinging about the eccentric shaft. The scroll compressor includes a cylindrical holding portion. The holding portion is provided on the end surface of the second substrate opposite the first substrate. A bush is disposed inside the holding portion. A bearing is disposed between the inner peripheral surface of the holding portion and the outer peripheral surface of the bush. The bush is held by the holding portion via the bearing.
 ところで、スクロール型圧縮機の耐久性を向上させるためには、軸受にオイルを効率良く供給することが望まれている。そこで、例えば特許文献1では、軸受にオイルを供給するための供給流路がブッシュに形成されている。供給流路は、ブッシュの軸方向に延びる軸方向流路部と、ブッシュの径方向に延びる径方向流路部と、を有している。軸方向流路部は、供給流路の流入口を有している。径方向流路部は、供給流路の流出口を有している。そして、流入口から軸方向流路部に導入されたオイルは、軸方向流路部を流れて径方向流路部へ流れ込む。径方向流路部を流れるオイルは、排出口を介して軸受に供給される。これにより、軸受の潤滑が良好なものとなるため、スクロール型圧縮機の耐久性が向上する。 In order to improve the durability of scroll compressors, it is desirable to efficiently supply oil to the bearings. Therefore, for example, in Patent Document 1, a supply passage for supplying oil to the bearings is formed in the bush. The supply passage has an axial passage section extending in the axial direction of the bush and a radial passage section extending in the radial direction of the bush. The axial passage section has an inlet of the supply passage. The radial passage section has an outlet of the supply passage. Then, oil introduced from the inlet into the axial passage section flows through the axial passage section and into the radial passage section. The oil flowing through the radial passage section is supplied to the bearings via the outlet. This improves the lubrication of the bearings, thereby improving the durability of the scroll compressor.
特開2022-83044号公報JP 2022-83044 A
 しかしながら、特許文献1では、軸受にオイルを供給するために、偏心軸が挿入される貫通孔とは別の貫通孔である軸方向流路部をブッシュに形成している。したがって、軸方向流路部を形成する分だけ、ブッシュの肉厚を確保しておく必要があるため、ブッシュが大型化してしまう。その結果として、スクロール型圧縮機が大型化してしまう。 However, in Patent Document 1, in order to supply oil to the bearing, an axial flow passage portion is formed in the bush, which is a through hole separate from the through hole into which the eccentric shaft is inserted. Therefore, it is necessary to ensure that the bush has a sufficient thickness to form the axial flow passage portion, which results in the bush becoming larger. As a result, the scroll compressor becomes larger.
 上記課題を解決するため、本発明の一態様によれば、ハウジングと、前記ハウジングに対して支持された支持軸と、第1基板、及び前記第1基板から起立する第1渦巻壁を有する第1スクロールと、前記第1基板に対向する第2基板、及び前記第2基板から前記第1基板に向けて起立して前記第1渦巻壁と噛み合う第2渦巻壁を有する第2スクロールと、前記支持軸の先端面から突出するとともに前記支持軸の軸線に対して偏心した位置で前記支持軸と平行に延びる偏心軸と、前記偏心軸が挿入される貫通孔を有するとともに前記偏心軸を中心に揺動可能なブッシュと、前記第2基板における前記第1基板とは反対側の端面に設けられるとともに前記ブッシュが内側に配置される筒状の保持部と、前記保持部の内周面と前記ブッシュの外周面との間に配置される軸受と、を備えるスクロール型圧縮機が提供される。前記ブッシュは、前記軸受を介して前記保持部に保持されている。前記ブッシュは、前記支持軸の先端面と対向する対向面にオイル通路を有している。前記オイル通路は、前記貫通孔から前記ブッシュの外周面に向けて延びるとともに前記ブッシュの外周面に開口する流入口を有している。前記貫通孔の内周面及び前記偏心軸の外周面の少なくとも一方であって、且つ、前記貫通孔の内周面と前記偏心軸の外周面との間で前記第2スクロールから伝達される圧縮荷重が作用する箇所を除く部分には、前記オイル通路に連通するとともに前記ブッシュにおける前記第2渦巻壁側の端面に開口するオイル溝が形成されている。 In order to solve the above problem, according to one aspect of the present invention, a scroll compressor is provided that includes a housing, a support shaft supported by the housing, a first scroll having a first base plate and a first spiral wall standing from the first base plate, a second base plate facing the first base plate, and a second scroll having a second spiral wall standing from the second base plate toward the first base plate and meshing with the first spiral wall, an eccentric shaft protruding from the tip surface of the support shaft and extending parallel to the support shaft at a position eccentric with respect to the axis of the support shaft, a bush having a through hole into which the eccentric shaft is inserted and capable of swinging around the eccentric shaft, a cylindrical holding portion provided on the end surface of the second base plate opposite the first base plate and with the bush disposed inside, and a bearing disposed between the inner peripheral surface of the holding portion and the outer peripheral surface of the bush. The bush is held by the holding portion via the bearing. The bush has an oil passage on the opposing surface facing the tip surface of the support shaft. The oil passage extends from the through hole toward the outer peripheral surface of the bush and has an inlet opening on the outer peripheral surface of the bush. An oil groove is formed on at least one of the inner peripheral surface of the through hole and the outer peripheral surface of the eccentric shaft, except for the portion where the compressive load transmitted from the second scroll acts between the inner peripheral surface of the through hole and the outer peripheral surface of the eccentric shaft, and communicates with the oil passage and opens on the end face of the bush on the second scroll wall side.
 これによれば、ブッシュの周囲に存在するオイルが流入口からオイル通路に流入してオイル溝に供給される。オイル溝に供給されたオイルは、オイル溝を通過して、ブッシュにおける第2渦巻壁側の端面と第2基板との間の空間に流出する。そして、当該空間に流出したオイルが、軸受に供給される。これにより、軸受の潤滑が良好なものとなるため、スクロール型圧縮機の耐久性が向上する。 With this, oil present around the bush flows into the oil passage from the inlet and is supplied to the oil groove. The oil supplied to the oil groove passes through the oil groove and flows out into the space between the end face of the bush on the second volute wall side and the second base plate. The oil that flows out into this space is then supplied to the bearing. This improves the lubrication of the bearing, improving the durability of the scroll compressor.
 オイル溝は、貫通孔の内周面及び偏心軸の外周面の少なくとも一方に形成されている。したがって、従来技術のように、軸受にオイルを供給するために、偏心軸が挿入される貫通孔とは別の貫通孔をブッシュに形成する必要が無い。このため、ブッシュの肉厚を確保する必要が無い。その結果、ブッシュが大型化してしまうことを回避することができる。このため、スクロール型圧縮機の小型化を図ることができる。また、オイル溝が、貫通孔の内周面及び偏心軸の外周面の少なくとも一方であって、且つ、貫通孔の内周面と偏心軸の外周面との間で第2スクロールから伝達される圧縮荷重が作用する箇所を除く部分に形成されている。したがって、貫通孔の内周面及び偏心軸の外周面の少なくとも一方にオイル溝を形成しても、ブッシュにおける偏心軸を中心とした揺動が、オイル溝によって阻害されることも無い。以上により、スクロール型圧縮機において、小型化を図りつつも、耐久性を向上させることができる。 The oil groove is formed on at least one of the inner circumferential surface of the through hole and the outer circumferential surface of the eccentric shaft. Therefore, unlike the conventional technology, there is no need to form a through hole in the bush other than the through hole into which the eccentric shaft is inserted in order to supply oil to the bearing. Therefore, there is no need to ensure the thickness of the bush. As a result, it is possible to avoid the bush becoming larger. This allows the scroll compressor to be made smaller. In addition, the oil groove is formed on at least one of the inner circumferential surface of the through hole and the outer circumferential surface of the eccentric shaft, excluding the portion where the compressive load transmitted from the second scroll acts between the inner circumferential surface of the through hole and the outer circumferential surface of the eccentric shaft. Therefore, even if the oil groove is formed on at least one of the inner circumferential surface of the through hole and the outer circumferential surface of the eccentric shaft, the rocking of the bush around the eccentric shaft is not hindered by the oil groove. As a result, the scroll compressor can be made smaller while improving its durability.
 上記スクロール型圧縮機において、前記支持軸は、前記ハウジングに対して回転可能に支持された回転軸であり、前記第1スクロールは、前記第1基板としての固定基板、及び前記固定基板から起立する前記第1渦巻壁としての固定渦巻壁を有する固定スクロールであり、前記第2スクロールは、前記固定基板に対向する前記第2基板としての旋回基板、及び前記旋回基板から前記固定基板に向けて起立して前記固定渦巻壁と噛み合う前記第2渦巻壁としての旋回渦巻壁を有するとともに前記回転軸の回転によって公転する旋回スクロールであるとよい。このように、固定スクロール及び旋回スクロールを備えたスクロール型圧縮機において、小型化を図りつつも、耐久性を向上させることができる。 In the scroll-type compressor, the support shaft is a rotating shaft rotatably supported relative to the housing, the first scroll is a fixed scroll having a fixed base plate as the first substrate and a fixed spiral wall as the first spiral wall standing up from the fixed base plate, and the second scroll is an orbiting scroll having a rotating base plate as the second substrate facing the fixed base plate and a orbiting spiral wall as the second spiral wall standing up from the orbiting base plate toward the fixed base plate and meshing with the fixed spiral wall, and revolving with the rotation of the rotating shaft. In this way, in a scroll-type compressor equipped with a fixed scroll and an orbiting scroll, it is possible to improve durability while achieving miniaturization.
 上記スクロール型圧縮機において、前記オイル通路は、前記貫通孔から前記回転軸が正方向へ回転しているときの前記ブッシュの回転方向に湾曲して前記流入口に向けて延びる案内面を有し、前記案内面は、前記オイル通路を流れるオイルを前記貫通孔に向けて案内するとよい。 In the scroll compressor, the oil passage has a guide surface that curves from the through hole in the rotation direction of the bush when the rotating shaft is rotating in the forward direction and extends toward the inlet, and the guide surface guides the oil flowing through the oil passage toward the through hole.
 これによれば、流入口からのオイルが案内面によって貫通孔に向けて案内されるため、流入口からのオイルがオイル通路を介してオイル溝に供給され易くなる。その結果、軸受にオイルが効率良く供給されるため、軸受の潤滑がさらに良好なものとなる。したがって、スクロール型圧縮機の耐久性をさらに向上させることができる。 As a result, the oil from the inlet is guided toward the through hole by the guide surface, making it easier for the oil from the inlet to be supplied to the oil groove via the oil passage. As a result, the oil is supplied to the bearings more efficiently, further improving the lubrication of the bearings. This can therefore further improve the durability of the scroll compressor.
 上記スクロール型圧縮機において、前記第1スクロールは、前記第1基板としての駆動基板、及び前記駆動基板から起立する前記第1渦巻壁としての駆動渦巻壁を有するとともに前記支持軸の軸線回りで回転する駆動スクロールであり、前記第2スクロールは、前記駆動基板に対向する前記第2基板としての従動基板、及び前記従動基板から前記駆動基板に向けて起立して前記駆動渦巻壁と噛み合う前記第2渦巻壁としての従動渦巻壁を有するとともに前記駆動スクロールの回転に追従して回転する従動スクロールであるとよい。このように、駆動スクロール及び従動スクロールを備えたスクロール型圧縮機において、小型化を図りつつも、耐久性を向上させることができる。 In the above scroll-type compressor, the first scroll is a drive scroll having a drive substrate as the first substrate and a drive spiral wall as the first spiral wall standing up from the drive substrate, and rotating around the axis of the support shaft, and the second scroll is a driven scroll having a driven substrate as the second substrate facing the drive substrate and a driven spiral wall as the second spiral wall standing up from the driven substrate toward the drive substrate and meshing with the drive spiral wall, and rotating following the rotation of the drive scroll. In this way, in a scroll-type compressor equipped with a drive scroll and a driven scroll, it is possible to improve durability while achieving miniaturization.
 上記スクロール型圧縮機において、前記流入口は、前記ブッシュの外周面における鉛直方向の上方に位置する部分に開口しているとよい。
 これによれば、ブッシュの周囲に存在するオイルが自重によって落下して流入口に流入し易くなるため、ブッシュの周囲に存在するオイルが流入口からオイル通路に流入してオイル溝に供給され易くなる。したがって、軸受の潤滑がさらに良好なものとなるため、スクロール型圧縮機の耐久性をさらに向上させることができる。
In the scroll compressor, the inlet may open to a portion of an outer circumferential surface of the bush that is located vertically upward.
This allows the oil around the bush to easily fall under its own weight and flow into the inlet, so that the oil around the bush can easily flow from the inlet into the oil passage and be supplied to the oil groove, thereby improving the lubrication of the bearing and further improving the durability of the scroll compressor.
 上記スクロール型圧縮機において、前記オイル通路は、前記貫通孔から前記駆動スクロールが正方向へ回転しているときの前記従動スクロールの回転方向とは逆方向に湾曲して前記流入口に向けて延びる案内面を有し、前記案内面は、前記オイル通路を流れるオイルを前記貫通孔に向けて案内するとよい。 In the scroll compressor, the oil passage has a guide surface that curves from the through hole in the opposite direction to the rotation direction of the driven scroll when the drive scroll rotates in the forward direction and extends toward the inlet, and the guide surface guides the oil flowing through the oil passage toward the through hole.
 ブッシュの周囲に存在するオイルは、駆動スクロールが正方向へ回転しているときの従動スクロールの回転に追従して、従動スクロールの回転方向に流れる。このとき、案内面が、貫通孔から駆動スクロールが正方向へ回転しているときの従動スクロールの回転方向とは逆方向に湾曲して流入口に向けて延びている。したがって、ブッシュの周囲に存在して、従動スクロールの回転方向に流れているオイルが、流入口を介して案内面によって貫通孔に向けて案内され易くなる。このため、流入口からのオイルがオイル通路を介してオイル溝に供給され易くなる。その結果、軸受にオイルが効率良く供給されるため、軸受の潤滑がさらに良好なものとなる。したがって、スクロール型圧縮機の耐久性をさらに向上させることができる。 Oil present around the bush flows in the rotational direction of the driven scroll, following the rotation of the driven scroll when the drive scroll rotates in the forward direction. At this time, the guide surface curves from the through hole toward the inlet in a direction opposite to the rotational direction of the driven scroll when the drive scroll rotates in the forward direction. Therefore, oil present around the bush and flowing in the rotational direction of the driven scroll is easily guided by the guide surface toward the through hole via the inlet. This makes it easier for oil from the inlet to be supplied to the oil groove via the oil passage. As a result, oil is efficiently supplied to the bearing, which further improves the lubrication of the bearing. This makes it possible to further improve the durability of the scroll compressor.
 上記スクロール型圧縮機において、前記偏心軸の外周面は、前記オイル通路を流れるオイルを堰き止めて前記オイル溝に案内するとよい。
 これによれば、流入口からオイル通路を流れるオイルが偏心軸の外周面に堰き止められてオイル溝に案内されるため、流入口からのオイルがオイル通路を介してオイル溝に供給され易くなる。その結果、軸受にオイルが効率良く供給されるため、軸受の潤滑がさらに良好なものとなる。したがって、スクロール型圧縮機の耐久性をさらに向上させることができる。
In the above scroll compressor, the outer circumferential surface of the eccentric shaft may be configured to block oil flowing through the oil passage and guide the oil to the oil groove.
According to this, the oil flowing from the inlet through the oil passage is blocked by the outer circumferential surface of the eccentric shaft and guided to the oil groove, so that the oil from the inlet is easily supplied to the oil groove through the oil passage. As a result, the oil is efficiently supplied to the bearing, and the lubrication of the bearing is further improved. Therefore, the durability of the scroll compressor can be further improved.
 上記スクロール型圧縮機において、前記オイル溝は、前記貫通孔の内周面に形成されているとよい。
 これによれば、オイル通路が形成されているブッシュにオイル溝も形成されているため、オイル通路に対するオイル溝の位置が設定し易い。したがって、貫通孔の内周面にオイル溝が形成されている構成は、スクロール型圧縮機の設計を容易にすることができる。
In the scroll compressor, the oil groove may be formed on an inner circumferential surface of the through hole.
According to this, since the oil groove is also formed in the bushing in which the oil passage is formed, it is easy to set the position of the oil groove relative to the oil passage. Therefore, the configuration in which the oil groove is formed on the inner circumferential surface of the through hole can facilitate the design of the scroll compressor.
 上記スクロール型圧縮機において、前記オイル溝は、前記偏心軸の外周面に形成されているとよい。
 偏心軸の外周面には、オイル溝が比較的形成し易い。このように、偏心軸の外周面にオイル溝が形成されている構成は、スクロール型圧縮機の設計を容易にすることができる。
In the scroll compressor, the oil groove may be formed in an outer circumferential surface of the eccentric shaft.
It is relatively easy to form an oil groove on the outer circumferential surface of the eccentric shaft. In this manner, a configuration in which an oil groove is formed on the outer circumferential surface of the eccentric shaft can facilitate the design of the scroll compressor.
 この発明によれば、スクロール型圧縮機において、小型化を図りつつも、耐久性を向上させることができる。 This invention makes it possible to reduce the size of a scroll compressor while improving its durability.
図1は、第1実施形態におけるスクロール型圧縮機の断面図である。FIG. 1 is a cross-sectional view of a scroll compressor according to a first embodiment. 図2は、スクロール型圧縮機の一部分を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view of a portion of the scroll compressor. 図3は、ブッシュ及び偏心軸を示す正面図である。FIG. 3 is a front view showing the bush and the eccentric shaft. 図4は、ブッシュ及び偏心軸を示す断面図である。FIG. 4 is a cross-sectional view showing the bush and the eccentric shaft. 図5は、第2実施形態におけるスクロール型圧縮機の断面図である。FIG. 5 is a cross-sectional view of a scroll compressor according to the second embodiment. 図6は、スクロール型圧縮機の一部分を拡大して示す断面図である。FIG. 6 is an enlarged cross-sectional view showing a part of the scroll compressor. 図7は、ブッシュ及び偏心軸を示す正面図である。FIG. 7 is a front view showing the bush and the eccentric shaft. 図8は、ブッシュ及び偏心軸を示す断面図である。FIG. 8 is a cross-sectional view showing the bush and the eccentric shaft. 図9は、変更例におけるブッシュ及び偏心軸を示す断面図である。FIG. 9 is a cross-sectional view showing a bush and an eccentric shaft in a modified example. 図10は、変更例におけるブッシュ及び偏心軸を示す断面図である。FIG. 10 is a cross-sectional view showing a bush and an eccentric shaft in a modified example.
 [第1実施形態]
 以下、スクロール型圧縮機を具体化した第1実施形態を図1~図4にしたがって説明する。第1実施形態のスクロール型圧縮機は、例えば、車両空調装置に用いられる。
[First embodiment]
A scroll compressor according to a first embodiment will now be described with reference to Figures 1 to 4. The scroll compressor according to the first embodiment is used, for example, in a vehicle air conditioner.
 <スクロール型圧縮機10の基本構成>
 図1に示すように、スクロール型圧縮機10は、筒状のハウジング11を備えている。ハウジング11は、モータハウジング12と、軸支ハウジング13と、吐出ハウジング14と、を有している。モータハウジング12、軸支ハウジング13、及び吐出ハウジング14は、金属材料製である。モータハウジング12、軸支ハウジング13、及び吐出ハウジング14は、例えば、アルミニウム製である。また、スクロール型圧縮機10は、支持軸としての回転軸15を備えている。回転軸15は、ハウジング11内に収容されている。
<Basic configuration of scroll compressor 10>
As shown in Fig. 1, the scroll compressor 10 includes a cylindrical housing 11. The housing 11 includes a motor housing 12, a journal housing 13, and a discharge housing 14. The motor housing 12, the journal housing 13, and the discharge housing 14 are made of a metal material. The motor housing 12, the journal housing 13, and the discharge housing 14 are made of aluminum, for example. The scroll compressor 10 also includes a rotating shaft 15 serving as a support shaft. The rotating shaft 15 is accommodated in the housing 11.
 モータハウジング12は、板状の端壁12aと、筒状の周壁12bと、を有している。周壁12bは、端壁12aの外周部から筒状に延びている。周壁12bの軸方向は、回転軸15の軸方向に一致している。モータハウジング12は、雌ねじ孔12cを複数有している。各雌ねじ孔12cは、周壁12bの開口端に形成されている。なお、図1では、説明の都合上、雌ねじ孔12cを1つだけ図示している。また、モータハウジング12は、吸入口12hを有している。吸入口12hは、冷媒を吸入する。吸入口12hは、周壁12bにおける端壁12a付近に形成されている。吸入口12hは、モータハウジング12内外を連通している。 The motor housing 12 has a plate-shaped end wall 12a and a cylindrical peripheral wall 12b. The peripheral wall 12b extends cylindrically from the outer periphery of the end wall 12a. The axial direction of the peripheral wall 12b coincides with the axial direction of the rotating shaft 15. The motor housing 12 has a plurality of female threaded holes 12c. Each female threaded hole 12c is formed at the open end of the peripheral wall 12b. For convenience of explanation, only one female threaded hole 12c is shown in FIG. 1. The motor housing 12 also has an intake port 12h. The intake port 12h draws in a refrigerant. The intake port 12h is formed in the peripheral wall 12b near the end wall 12a. The intake port 12h communicates between the inside and outside of the motor housing 12.
 モータハウジング12は、円筒状の軸受保持部12dを有している。軸受保持部12dは、端壁12aの内面の中央部から突出している。回転軸15の軸方向の一方の端部である第1端部は、軸受保持部12d内に挿入されている。スクロール型圧縮機10は、軸受16を備えている。軸受16は、例えば、転がり軸受である。軸受16は、軸受保持部12dの内周面と回転軸15の第1端部の外周面との間に設けられている。そして、回転軸15の第1端部は、軸受16を介してモータハウジング12に回転可能に支持されている。 The motor housing 12 has a cylindrical bearing holder 12d. The bearing holder 12d protrudes from the center of the inner surface of the end wall 12a. The first end, which is one end in the axial direction of the rotating shaft 15, is inserted into the bearing holder 12d. The scroll compressor 10 is equipped with a bearing 16. The bearing 16 is, for example, a rolling bearing. The bearing 16 is provided between the inner peripheral surface of the bearing holder 12d and the outer peripheral surface of the first end of the rotating shaft 15. The first end of the rotating shaft 15 is rotatably supported by the motor housing 12 via the bearing 16.
 軸支ハウジング13は、板状の端壁17と、筒状の周壁18と、を有している。周壁18は、端壁17の外周部から筒状に延びている。周壁18の軸方向は、回転軸15の軸方向に一致している。また、軸支ハウジング13は、円環状のフランジ壁19を有している。フランジ壁19は、周壁18の外周面における端壁17とは反対側の端部から回転軸15の径方向外側に向けて延びている。 The journal housing 13 has a plate-shaped end wall 17 and a cylindrical peripheral wall 18. The peripheral wall 18 extends cylindrically from the outer periphery of the end wall 17. The axial direction of the peripheral wall 18 coincides with the axial direction of the rotating shaft 15. The journal housing 13 also has an annular flange wall 19. The flange wall 19 extends radially outward from the rotating shaft 15 from the end of the outer periphery of the peripheral wall 18 opposite the end wall 17.
 軸支ハウジング13は、円孔状の挿通孔17aを有している。挿通孔17aは、端壁17の中央部に形成されている。挿通孔17aは、端壁17を厚み方向に貫通している。挿通孔17aには、回転軸15が挿通されている。回転軸15の軸方向の他方の端部である第2端部側に位置する先端面15eは、周壁18の内側に位置している。 The support housing 13 has a circular through hole 17a. The through hole 17a is formed in the center of the end wall 17. The through hole 17a penetrates the end wall 17 in the thickness direction. The rotating shaft 15 is inserted into the through hole 17a. The tip surface 15e located on the second end side, which is the other end in the axial direction of the rotating shaft 15, is located inside the peripheral wall 18.
 スクロール型圧縮機10は、軸受21を備えている。軸受21は、例えば、転がり軸受である。軸受21は、周壁18の内周面と回転軸15の外周面との間に設けられている。そして、回転軸15は、軸受21を介して軸支ハウジング13に回転可能に支持されている。このように、回転軸15は、ハウジング11に対して回転可能に支持されている。本実施形態の支持軸は、ハウジング11に対して回転可能に支持された回転軸15である。 The scroll compressor 10 includes a bearing 21. The bearing 21 is, for example, a rolling bearing. The bearing 21 is provided between the inner circumferential surface of the peripheral wall 18 and the outer circumferential surface of the rotating shaft 15. The rotating shaft 15 is rotatably supported by the support housing 13 via the bearing 21. In this manner, the rotating shaft 15 is rotatably supported relative to the housing 11. The support shaft in this embodiment is the rotating shaft 15 rotatably supported relative to the housing 11.
 軸支ハウジング13は、ボルト挿通孔19aを複数有している。各ボルト挿通孔19aは、フランジ壁19の外周部に形成されている。各ボルト挿通孔19aは、フランジ壁19を厚み方向に貫通している。フランジ壁19の各ボルト挿通孔19aは、モータハウジング12の各雌ねじ孔12cにそれぞれ連通している。なお、図1では、説明の都合上、ボルト挿通孔19aを1つだけ図示している。 The support housing 13 has multiple bolt insertion holes 19a. Each bolt insertion hole 19a is formed on the outer periphery of the flange wall 19. Each bolt insertion hole 19a penetrates the flange wall 19 in the thickness direction. Each bolt insertion hole 19a in the flange wall 19 is connected to each female threaded hole 12c in the motor housing 12. Note that for ease of explanation, only one bolt insertion hole 19a is shown in FIG. 1.
 スクロール型圧縮機10は、モータ室20を備えている。モータ室20は、モータハウジング12及び軸支ハウジング13により区画されている。モータハウジング12は、モータ室20を軸支ハウジング13と共に区画する。このように、ハウジング11内には、モータ室20が形成されている。モータ室20は、吸入口12hに連通している。モータ室20内には、吸入口12hからの冷媒が吸入される。 The scroll compressor 10 has a motor chamber 20. The motor chamber 20 is defined by the motor housing 12 and the support housing 13. The motor housing 12 defines the motor chamber 20 together with the support housing 13. In this manner, the motor chamber 20 is formed within the housing 11. The motor chamber 20 is connected to the suction port 12h. Refrigerant is drawn into the motor chamber 20 from the suction port 12h.
 スクロール型圧縮機10は、モータ22を備えている。モータ22は、モータ室20内に収容されている。モータ22は、筒状のステータ23と、筒状のロータ24と、を備えている。ロータ24は、ステータ23の内側に配置されている。ロータ24は、回転軸15と一体的に回転する。ステータ23は、ロータ24を取り囲んでいる。ロータ24は、回転軸15に固定されたロータコア24aと、ロータコア24aに設けられた図示しない複数の永久磁石と、を有している。 The scroll compressor 10 includes a motor 22. The motor 22 is housed in the motor chamber 20. The motor 22 includes a cylindrical stator 23 and a cylindrical rotor 24. The rotor 24 is disposed inside the stator 23. The rotor 24 rotates integrally with the rotating shaft 15. The stator 23 surrounds the rotor 24. The rotor 24 includes a rotor core 24a fixed to the rotating shaft 15 and a plurality of permanent magnets (not shown) provided on the rotor core 24a.
 ステータ23は、筒状のステータコア23aと、モータコイル23bと、を有している。ステータコア23aは、モータハウジング12の周壁12bの内周面に固定されている。モータコイル23bは、ステータコア23aに巻回されている。そして、図示しないインバータによって制御された電力がモータコイル23bに供給されることによりロータ24が回転する。これにより、回転軸15がロータ24と一体的に回転する。したがって、モータ22は、回転軸15を回転させる。 The stator 23 has a cylindrical stator core 23a and a motor coil 23b. The stator core 23a is fixed to the inner peripheral surface of the peripheral wall 12b of the motor housing 12. The motor coil 23b is wound around the stator core 23a. The rotor 24 rotates when power controlled by an inverter (not shown) is supplied to the motor coil 23b. This causes the rotating shaft 15 to rotate integrally with the rotor 24. Therefore, the motor 22 rotates the rotating shaft 15.
 スクロール型圧縮機10は、圧縮機構C1を備えている。圧縮機構C1は、第1スクロールとしての固定スクロール25、及び第2スクロールとしての旋回スクロール26を有している。したがって、スクロール型圧縮機10は、第1スクロールと、第2スクロールと、を備えている。圧縮機構C1は、スクロール式である。旋回スクロール26は、回転軸15の回転によって固定スクロール25に対して公転する。 The scroll type compressor 10 has a compression mechanism C1. The compression mechanism C1 has a fixed scroll 25 as a first scroll, and an orbiting scroll 26 as a second scroll. Thus, the scroll type compressor 10 has a first scroll and a second scroll. The compression mechanism C1 is of a scroll type. The orbiting scroll 26 revolves around the fixed scroll 25 by the rotation of the rotating shaft 15.
 固定スクロール25は、第1基板としての固定基板25a、及び第1渦巻壁としての固定渦巻壁25bを有している。固定基板25aは、円板状である。固定基板25aの中央には、吐出ポート25hが形成されている。吐出ポート25hは、円孔状である。吐出ポート25hは、固定基板25aを厚み方向に貫通している。固定渦巻壁25bは、固定基板25aから起立している。このように、本実施形態の第1スクロールは、固定基板25a、及び固定渦巻壁25bを有する固定スクロール25である。また、固定スクロール25は、外周壁25cを有している。外周壁25cは、固定基板25aの外周部から起立している。外周壁25cは、固定渦巻壁25bを囲繞している。 The fixed scroll 25 has a fixed substrate 25a as a first substrate, and a fixed spiral wall 25b as a first spiral wall. The fixed substrate 25a is disk-shaped. A discharge port 25h is formed in the center of the fixed substrate 25a. The discharge port 25h is a circular hole. The discharge port 25h penetrates the fixed substrate 25a in the thickness direction. The fixed spiral wall 25b stands up from the fixed substrate 25a. In this way, the first scroll of this embodiment is a fixed scroll 25 having a fixed substrate 25a and a fixed spiral wall 25b. The fixed scroll 25 also has an outer peripheral wall 25c. The outer peripheral wall 25c stands up from the outer periphery of the fixed substrate 25a. The outer peripheral wall 25c surrounds the fixed spiral wall 25b.
 スクロール型圧縮機10は、弁機構25vを備えている。弁機構25vは、固定基板25aにおける固定渦巻壁25bとは反対側の面に取り付けられている。弁機構25vは、吐出ポート25hを開閉可能に構成されている。 The scroll compressor 10 is equipped with a valve mechanism 25v. The valve mechanism 25v is attached to the surface of the fixed base plate 25a opposite the fixed spiral wall 25b. The valve mechanism 25v is configured to be able to open and close the discharge port 25h.
 旋回スクロール26は、第2基板としての旋回基板26a、及び第2渦巻壁としての旋回渦巻壁26bを有している。旋回基板26aは、円板状である。旋回基板26aは、固定基板25aに対向している。旋回渦巻壁26bは、旋回基板26aから固定基板25aに向けて起立している。旋回渦巻壁26bは、固定渦巻壁25bと噛み合っている。このように、本実施形態の第2スクロールは、旋回基板26a、及び旋回渦巻壁26bを有する旋回スクロール26である。旋回スクロール26は、外周壁25cの内側に位置している。旋回スクロール26は、外周壁25cの内側で公転する。固定渦巻壁25bの先端面は、旋回基板26aに接触している。旋回渦巻壁26bの先端面は、固定基板25aに接触している。 The orbiting scroll 26 has an orbiting base plate 26a as a second base plate, and an orbiting spiral wall 26b as a second spiral wall. The orbiting base plate 26a is disk-shaped. The orbiting base plate 26a faces the fixed base plate 25a. The orbiting spiral wall 26b stands up from the orbiting base plate 26a toward the fixed base plate 25a. The orbiting spiral wall 26b meshes with the fixed spiral wall 25b. In this way, the second scroll of this embodiment is an orbiting scroll 26 having an orbiting base plate 26a and an orbiting spiral wall 26b. The orbiting scroll 26 is located inside the outer peripheral wall 25c. The orbiting scroll 26 revolves inside the outer peripheral wall 25c. The tip surface of the fixed spiral wall 25b is in contact with the orbiting base plate 26a. The tip surface of the orbiting spiral wall 26b is in contact with the fixed base plate 25a.
 スクロール型圧縮機10は、圧縮室27を備えている。圧縮室27は、固定基板25a、固定渦巻壁25b、旋回基板26a、及び旋回渦巻壁26bによって区画されている。したがって、圧縮室27は、固定スクロール25と旋回スクロール26との間に区画形成されている。圧縮室27は、外部からの冷媒を取り込み圧縮する。 The scroll compressor 10 has a compression chamber 27. The compression chamber 27 is defined by a fixed base plate 25a, a fixed spiral wall 25b, a rotating base plate 26a, and a rotating spiral wall 26b. Therefore, the compression chamber 27 is defined between the fixed scroll 25 and the rotating scroll 26. The compression chamber 27 takes in a refrigerant from the outside and compresses it.
 スクロール型圧縮機10は、保持部としてのボス部28を備えている。旋回基板26aは、円筒状のボス部28を有している。ボス部28は、旋回基板26aにおける固定基板25aとは反対側の端面26eから筒状に突出している。したがって、ボス部28は、旋回基板26aにおける固定基板25aとは反対側の端面に設けられている。ボス部28の軸方向は、回転軸15の軸方向に一致している。 The scroll compressor 10 has a boss portion 28 as a retaining portion. The swiveling base plate 26a has a cylindrical boss portion 28. The boss portion 28 protrudes in a cylindrical shape from the end face 26e of the swiveling base plate 26a opposite the fixed base plate 25a. Therefore, the boss portion 28 is provided on the end face of the swiveling base plate 26a opposite the fixed base plate 25a. The axial direction of the boss portion 28 coincides with the axial direction of the rotating shaft 15.
 旋回基板26aは、溝部26dを複数有している。複数の溝部26dは、旋回基板26aの端面26eにおけるボス部28の周囲にそれぞれ形成されている。複数の溝部26dは、回転軸15の周方向に所定の間隔をあけて配置されている。なお、図1では、説明の都合上、溝部26dを1つだけ図示している。各溝部26d内には、円環状のリング部材29が嵌着されている。各リング部材29内には、ピン30が挿入されている。各ピン30は、軸支ハウジング13における旋回スクロール26側の端面13eに突設されている。 The rotating base plate 26a has a plurality of grooves 26d. The grooves 26d are formed around the boss portion 28 on the end face 26e of the rotating base plate 26a. The grooves 26d are arranged at a predetermined interval in the circumferential direction of the rotating shaft 15. For the sake of explanation, only one groove 26d is shown in FIG. 1. An annular ring member 29 is fitted into each groove 26d. A pin 30 is inserted into each ring member 29. Each pin 30 protrudes from the end face 13e of the support housing 13 on the rotating scroll 26 side.
 スクロール型圧縮機10は、弾性プレート31を備えている。弾性プレート31は、環状である。弾性プレート31は、軸支ハウジング13の端面13eと外周壁25cの開口端面との間に挟持されている。そして、弾性プレート31は、旋回スクロール26を固定スクロール25に向けて常に付勢している。 The scroll compressor 10 is equipped with an elastic plate 31. The elastic plate 31 is annular. The elastic plate 31 is sandwiched between the end face 13e of the support housing 13 and the open end face of the outer peripheral wall 25c. The elastic plate 31 constantly biases the orbiting scroll 26 toward the fixed scroll 25.
 吐出ハウジング14は、板状の端壁14aと、筒状の周壁14bと、を有している。周壁14bは、端壁14aの外周部から筒状に延びている。周壁14bの軸線方向は、回転軸15の軸線方向に一致している。周壁14bは、固定スクロール25を囲繞している。したがって、固定スクロール25は、ハウジング11内に収容されている。 The discharge housing 14 has a plate-shaped end wall 14a and a cylindrical peripheral wall 14b. The peripheral wall 14b extends cylindrically from the outer periphery of the end wall 14a. The axial direction of the peripheral wall 14b coincides with the axial direction of the rotating shaft 15. The peripheral wall 14b surrounds the fixed scroll 25. Therefore, the fixed scroll 25 is accommodated within the housing 11.
 吐出ハウジング14は、ボルト挿通孔14cを複数有している。各ボルト挿通孔14cは、周壁14bに形成されている。なお、図1では、説明の都合上、ボルト挿通孔14cを1つだけ図示している。各ボルト挿通孔14cは、フランジ壁19の各ボルト挿通孔19aに連通している。 The discharge housing 14 has multiple bolt insertion holes 14c. Each bolt insertion hole 14c is formed in the peripheral wall 14b. For ease of explanation, only one bolt insertion hole 14c is shown in FIG. 1. Each bolt insertion hole 14c is connected to a corresponding bolt insertion hole 19a in the flange wall 19.
 各ボルト挿通孔14cを通過するボルトB1は、フランジ壁19の各ボルト挿通孔19aを通過してモータハウジング12の各雌ねじ孔12cに螺合されている。これにより、軸支ハウジング13がモータハウジング12の周壁12bに連結されるとともに、吐出ハウジング14が軸支ハウジング13のフランジ壁19に連結されている。したがって、モータハウジング12、軸支ハウジング13、及び吐出ハウジング14は、この順序で、回転軸15の軸線方向に並んで配置されている。固定スクロール25は、吐出ハウジング14の端壁14aと軸支ハウジング13とによって挟み込まれている。このようにして、固定スクロール25は、ハウジング11に固定されている。 The bolt B1 passing through each bolt insertion hole 14c passes through each bolt insertion hole 19a of the flange wall 19 and is screwed into each female threaded hole 12c of the motor housing 12. This connects the journal housing 13 to the peripheral wall 12b of the motor housing 12, and the discharge housing 14 to the flange wall 19 of the journal housing 13. Therefore, the motor housing 12, journal housing 13, and discharge housing 14 are arranged in this order in the axial direction of the rotating shaft 15. The fixed scroll 25 is sandwiched between the end wall 14a of the discharge housing 14 and the journal housing 13. In this way, the fixed scroll 25 is fixed to the housing 11.
 スクロール型圧縮機10は、吸入通路35を備えている。吸入通路35は、第1溝36と、第1孔37と、第2溝38と、第2孔39と、を有している。第1溝36は、モータハウジング12の周壁12bの内周面の一部に形成されている。第1溝36は、周壁12bの開口端に開口している。第1孔37は、軸支ハウジング13のフランジ壁19の外周部に形成されている。第1孔37は、フランジ壁19を厚み方向に貫通する。第1孔37は、第1溝36に連通している。第2溝38は、吐出ハウジング14の周壁14bの内周面の一部に形成されている。第2溝38は、第1孔37に連通している。第2孔39は、固定スクロール25の外周壁25cに形成されている。第2孔39は、外周壁25cを厚み方向に貫通している。第2孔39は、第2溝38に連通している。第2孔39は、圧縮室27における最外周部分に連通している。 The scroll compressor 10 has a suction passage 35. The suction passage 35 has a first groove 36, a first hole 37, a second groove 38, and a second hole 39. The first groove 36 is formed in a part of the inner circumferential surface of the peripheral wall 12b of the motor housing 12. The first groove 36 opens to the opening end of the peripheral wall 12b. The first hole 37 is formed in the outer circumferential portion of the flange wall 19 of the journal housing 13. The first hole 37 penetrates the flange wall 19 in the thickness direction. The first hole 37 is connected to the first groove 36. The second groove 38 is formed in a part of the inner circumferential surface of the peripheral wall 14b of the discharge housing 14. The second groove 38 is connected to the first hole 37. The second hole 39 is formed in the outer circumferential wall 25c of the fixed scroll 25. The second hole 39 penetrates the outer circumferential wall 25c in the thickness direction. The second hole 39 is connected to the second groove 38. The second hole 39 is connected to the outermost part of the compression chamber 27.
 モータ室20内の冷媒は、第1溝36、第1孔37、第2溝38、及び第2孔39を通過して、圧縮室27に吸入される。圧縮室27に吸入された冷媒は、旋回スクロール26の公転運動により圧縮室27内で圧縮される。このように、圧縮機構C1は、ハウジング11内に吸入された冷媒を圧縮する。 The refrigerant in the motor chamber 20 passes through the first groove 36, the first hole 37, the second groove 38, and the second hole 39 and is sucked into the compression chamber 27. The refrigerant sucked into the compression chamber 27 is compressed within the compression chamber 27 by the orbital motion of the orbiting scroll 26. In this way, the compression mechanism C1 compresses the refrigerant sucked into the housing 11.
 スクロール型圧縮機10は、吐出室40を備えている。吐出室40は、固定基板25aと吐出ハウジング14の端壁14aとの間に区画されている。吐出室40は、吐出ポート25hに連通している。吐出室40には、圧縮室27で圧縮された冷媒が吐出される。また、スクロール型圧縮機10は、貯油室41を備えている。貯油室41は、吐出ハウジング14の端壁14aに形成されている。 The scroll compressor 10 has a discharge chamber 40. The discharge chamber 40 is defined between the fixed base plate 25a and the end wall 14a of the discharge housing 14. The discharge chamber 40 is connected to the discharge port 25h. The refrigerant compressed in the compression chamber 27 is discharged into the discharge chamber 40. The scroll compressor 10 also has an oil storage chamber 41. The oil storage chamber 41 is formed in the end wall 14a of the discharge housing 14.
 スクロール型圧縮機10は、油分離室42を備えている。油分離室42は、吐出ハウジング14の内部に形成されている。油分離室42は、吐出ハウジング14の端壁14aの一部である細長筒状の外筒43内に形成されている。外筒43の第1端は、冷媒を外部へ吐出する吐出口44になっている。吐出口44は、油分離室42に連通している。 The scroll compressor 10 has an oil separation chamber 42. The oil separation chamber 42 is formed inside the discharge housing 14. The oil separation chamber 42 is formed inside an elongated cylindrical outer cylinder 43 that is part of the end wall 14a of the discharge housing 14. The first end of the outer cylinder 43 forms a discharge port 44 that discharges the refrigerant to the outside. The discharge port 44 is connected to the oil separation chamber 42.
 油分離室42内には、内筒45が嵌め込まれている。内筒45の軸方向は、回転軸15の径方向に一致している。内筒45の第1端は、吐出口44に連通している。内筒45の第2端は、油分離室42内における吐出口44とは反対側に連通している。外筒43には、導入孔46が形成されている。導入孔46は、吐出室40と油分離室42とを連通している。導入孔46は、吐出室40に吐出された冷媒を油分離室42に導入する。 An inner cylinder 45 is fitted into the oil separation chamber 42. The axial direction of the inner cylinder 45 coincides with the radial direction of the rotating shaft 15. A first end of the inner cylinder 45 communicates with the discharge port 44. A second end of the inner cylinder 45 communicates with the side of the oil separation chamber 42 opposite the discharge port 44. An introduction hole 46 is formed in the outer cylinder 43. The introduction hole 46 communicates with the discharge chamber 40 and the oil separation chamber 42. The introduction hole 46 introduces the refrigerant discharged into the discharge chamber 40 into the oil separation chamber 42.
 吐出ハウジング14には、排油孔47が形成されている。排油孔47の第1端は、油分離室42内における吐出口44とは反対側に連通している。排油孔47の第2端は、貯油室41に連通している。油分離室42は、排油孔47を介して貯油室41に連通している。 An oil drain hole 47 is formed in the discharge housing 14. A first end of the oil drain hole 47 is connected to the side of the oil separation chamber 42 opposite the discharge port 44. A second end of the oil drain hole 47 is connected to the oil storage chamber 41. The oil separation chamber 42 is connected to the oil storage chamber 41 via the oil drain hole 47.
 圧縮室27内で圧縮されて吐出ポート25hを介して吐出室40内に吐出された冷媒は、導入孔46を介して油分離室42内に導入される。油分離室42内に導入された冷媒は、内筒45の周囲を旋回する。これにより、冷媒に含まれているオイルに遠心力が付与され、油分離室42内でオイルが冷媒から分離される。したがって、油分離室42は、吐出室40に吐出された冷媒に含まれるオイルを分離する。 The refrigerant compressed in the compression chamber 27 and discharged into the discharge chamber 40 through the discharge port 25h is introduced into the oil separation chamber 42 through the introduction hole 46. The refrigerant introduced into the oil separation chamber 42 swirls around the inner cylinder 45. This applies centrifugal force to the oil contained in the refrigerant, and the oil is separated from the refrigerant in the oil separation chamber 42. Therefore, the oil separation chamber 42 separates the oil contained in the refrigerant discharged into the discharge chamber 40.
 オイルが分離された冷媒は、内筒45内に流入するとともに内筒45内を通過する。そして、内筒45内を通過した冷媒は、吐出口44を介して図示しない外部冷媒回路に流出する。油分離室42内で冷媒から分離されたオイルは、排油孔47に向けて流れる。そして、排油孔47に向けて流れるオイルは、排油孔47を介して貯油室41に排出されて、貯油室41に貯留される。 The refrigerant from which the oil has been separated flows into and passes through the inner cylinder 45. The refrigerant that has passed through the inner cylinder 45 flows out through the discharge port 44 to an external refrigerant circuit (not shown). The oil separated from the refrigerant in the oil separation chamber 42 flows toward the oil drain hole 47. The oil flowing toward the oil drain hole 47 is discharged through the oil drain hole 47 into the oil storage chamber 41 and is stored in the oil storage chamber 41.
 スクロール型圧縮機10は、オイル還流通路48を備えている。オイル還流通路48は、貯油室41から吐出ハウジング14及び軸支ハウジング13を貫通して軸支ハウジング13の周壁18の内側に至る。したがって、オイル還流通路48は、貯油室41と軸支ハウジング13の周壁18の内側とを接続している。そして、貯油室41に貯留されているオイルは、オイル還流通路48を介して軸支ハウジング13の周壁18の内側に還流される。 The scroll compressor 10 is equipped with an oil return passage 48. The oil return passage 48 passes from the oil storage chamber 41 through the discharge housing 14 and the support housing 13 to the inside of the peripheral wall 18 of the support housing 13. Therefore, the oil return passage 48 connects the oil storage chamber 41 to the inside of the peripheral wall 18 of the support housing 13. The oil stored in the oil storage chamber 41 is returned to the inside of the peripheral wall 18 of the support housing 13 via the oil return passage 48.
 スクロール型圧縮機10は、偏心軸50を備えている。偏心軸50は、回転軸15の先端面15eから突出するとともに回転軸15の軸線L1に対して偏心した位置で回転軸15と平行に延びている。偏心軸50は、回転軸15に一体形成されている。偏心軸50の軸方向は、回転軸15の軸方向に一致している。偏心軸50は、回転軸15の先端面15eから旋回スクロール26に向けて突出している。偏心軸50は、ボス部28内に挿入されている。 The scroll compressor 10 is equipped with an eccentric shaft 50. The eccentric shaft 50 protrudes from the tip surface 15e of the rotating shaft 15 and extends parallel to the rotating shaft 15 at a position eccentric with respect to the axis L1 of the rotating shaft 15. The eccentric shaft 50 is integrally formed with the rotating shaft 15. The axial direction of the eccentric shaft 50 coincides with the axial direction of the rotating shaft 15. The eccentric shaft 50 protrudes from the tip surface 15e of the rotating shaft 15 toward the orbiting scroll 26. The eccentric shaft 50 is inserted into the boss portion 28.
 <ブッシュ51>
 図2に示すように、スクロール型圧縮機10は、ブッシュ51を備えている。ブッシュ51は、ブッシュ筒部52と、ブッシュ鍔部53と、を有している。ブッシュ筒部52の内側は、貫通孔54になっている。したがって、ブッシュ51は、貫通孔54を有している。貫通孔54には、偏心軸50が挿入されている。ブッシュ筒部52は、ボス部28の内側に配置されている。したがって、ボス部28の内側には、ブッシュ51が配置されている。
<Bush 51>
As shown in Fig. 2, the scroll compressor 10 includes a bush 51. The bush 51 has a bush cylindrical portion 52 and a bush flange portion 53. The inside of the bush cylindrical portion 52 is formed as a through hole 54. Therefore, the bush 51 has the through hole 54. The eccentric shaft 50 is inserted into the through hole 54. The bush cylindrical portion 52 is disposed inside the boss portion 28. Therefore, the bush 51 is disposed inside the boss portion 28.
 ブッシュ筒部52における旋回基板26aとは反対側の端部は、ボス部28から突出している。ブッシュ鍔部53は、ブッシュ筒部52における旋回基板26aとは反対側の端部から外方へ環状に突出している。ブッシュ鍔部53は、ボス部28の端面とボス部28の軸方向で重なっている。ブッシュ51は、偏心軸50を中心に揺動(スイング)可能である。 The end of the bushing cylinder 52 opposite the swivel base plate 26a protrudes from the boss 28. The bushing flange 53 protrudes outward in a ring shape from the end of the bushing cylinder 52 opposite the swivel base plate 26a. The bushing flange 53 overlaps with the end face of the boss 28 in the axial direction of the boss 28. The bushing 51 can swing around the eccentric shaft 50.
 スクロール型圧縮機10は、バランスウェイト55を備えている。バランスウェイト55は、ブッシュ51に一体化されている。バランスウェイト55は、ブッシュ51に一体形成されている。バランスウェイト55は、ブッシュ鍔部53の外周面の一部分から外方へ突出している。バランスウェイト55は、軸支ハウジング13の周壁18内に収容されている。 The scroll compressor 10 is equipped with a balance weight 55. The balance weight 55 is integrated with the bush 51. The balance weight 55 is formed integrally with the bush 51. The balance weight 55 protrudes outward from a portion of the outer circumferential surface of the bush flange portion 53. The balance weight 55 is housed within the peripheral wall 18 of the support housing 13.
 <軸受56>
 スクロール型圧縮機10は、軸受56を備えている。軸受56は、円筒状の滑り軸受である。軸受56は、軸受筒部57と、軸受鍔部58と、を有している。軸受筒部57は、ボス部28の内側に配置されている。そして、軸受筒部57は、ボス部28の内周面とブッシュ筒部52の外周面との間に配置されている。したがって、軸受56は、ボス部28の内周面とブッシュ51の外周面との間に配置されている。ブッシュ51は、軸受56を介してボス部28に回転可能に保持されている。
<Bearing 56>
The scroll compressor 10 includes a bearing 56. The bearing 56 is a cylindrical sliding bearing. The bearing 56 has a bearing tube portion 57 and a bearing flange portion 58. The bearing tube portion 57 is disposed inside the boss portion 28. The bearing tube portion 57 is disposed between the inner peripheral surface of the boss portion 28 and the outer peripheral surface of the bushing tube portion 52. Therefore, the bearing 56 is disposed between the inner peripheral surface of the boss portion 28 and the outer peripheral surface of the bushing 51. The bushing 51 is rotatably held by the boss portion 28 via the bearing 56.
 軸受筒部57における旋回基板26aとは反対側の端部は、ボス部28から突出している。軸受鍔部58は、軸受筒部57における旋回基板26aとは反対側の端部から外方へ環状に突出している。軸受鍔部58は、ボス部28の端面とブッシュ鍔部53との間に配置されている。軸受56は、軸受鍔部58がブッシュ鍔部53に当接することにより、ボス部28に対する抜け止めがなされている。 The end of the bearing tube 57 opposite the swivel base plate 26a protrudes from the boss 28. The bearing flange 58 protrudes outward in an annular shape from the end of the bearing tube 57 opposite the swivel base plate 26a. The bearing flange 58 is disposed between the end face of the boss 28 and the bush flange 53. The bearing 56 is prevented from coming loose from the boss 28 by the bearing flange 58 abutting against the bush flange 53.
 回転軸15の回転は、偏心軸50、ブッシュ51、及び軸受56を介して旋回スクロール26に伝達される。これにより、旋回スクロール26は自転する。そして、各ピン30と各リング部材29の内周面とが接触することにより、旋回スクロール26の自転が阻止されて、旋回スクロール26の公転運動のみが許容される。これにより、旋回スクロール26は、旋回渦巻壁26bが固定渦巻壁25bに接触しながら公転運動する。そして、旋回スクロール26の公転運動に伴って、圧縮室27の容積が減少することにより、冷媒が圧縮室27で圧縮される。旋回スクロール26は、回転軸15の回転に伴い、外周壁25cの内側で公転する。バランスウェイト55は、旋回スクロール26が公転運動する際に旋回スクロール26に作用する遠心力を相殺する。これにより、旋回スクロール26のアンバランス量が低減される。 The rotation of the rotating shaft 15 is transmitted to the orbiting scroll 26 via the eccentric shaft 50, the bush 51, and the bearing 56. This causes the orbiting scroll 26 to rotate on its axis. Then, the contact between each pin 30 and the inner peripheral surface of each ring member 29 prevents the orbiting scroll 26 from rotating on its axis, and only the revolution of the orbiting scroll 26 is permitted. As a result, the orbiting scroll 26 revolves while the orbiting spiral wall 26b is in contact with the fixed spiral wall 25b. As the orbiting scroll 26 revolves, the volume of the compression chamber 27 decreases, and the refrigerant is compressed in the compression chamber 27. The orbiting scroll 26 revolves inside the outer peripheral wall 25c as the rotating shaft 15 rotates. The balance weight 55 offsets the centrifugal force acting on the orbiting scroll 26 when it revolves. This reduces the amount of imbalance in the orbiting scroll 26.
 <従動クランク機構59>
 ブッシュ筒部52の中心L2は、回転軸15の軸線L1よりも回転軸15の径方向外側に位置している。旋回基板26aの中心は、ブッシュ筒部52の中心L2と一致している。そして、ブッシュ筒部52の中心L2と回転軸15の軸線L1との距離が、旋回スクロール26の公転半径となる。
<Follower crank mechanism 59>
The center L2 of the bushing cylindrical portion 52 is located radially outward of the axis L1 of the rotating shaft 15. The center of the orbiting base plate 26a coincides with the center L2 of the bushing cylindrical portion 52. The distance between the center L2 of the bushing cylindrical portion 52 and the axis L1 of the rotating shaft 15 is the orbital radius of the orbiting scroll 26.
 ブッシュ51が偏心軸50を中心に揺動することにより、ブッシュ51の中心L2と回転軸15の軸線L1との距離が変化するため、旋回スクロール26の公転半径が可変する。このように、偏心軸50、ブッシュ51、及び軸受56は、旋回スクロール26の公転半径を可変させる、所謂、従動クランク機構59を構成している。このような従動クランク機構59は既に公知である。 When the bush 51 swings around the eccentric shaft 50, the distance between the center L2 of the bush 51 and the axis L1 of the rotating shaft 15 changes, and the orbital radius of the orbiting scroll 26 becomes variable. In this way, the eccentric shaft 50, the bush 51, and the bearing 56 constitute a so-called driven crank mechanism 59 that changes the orbital radius of the orbiting scroll 26. Such a driven crank mechanism 59 is already known.
 図3に示すように、貫通孔54は、ブッシュ筒部52の中心L2に対して偏心した位置に中心L3を有している。したがって、ブッシュ筒部52では、ブッシュ筒部52の中心L2よりも貫通孔54の中心L3に近い部分の肉厚が、貫通孔54の中心L3よりもブッシュ筒部52の中心L2に近い部分の肉厚よりも小さくなっている。 As shown in FIG. 3, the through hole 54 has a center L3 that is eccentric to the center L2 of the bushing cylindrical portion 52. Therefore, in the bushing cylindrical portion 52, the thickness of the portion closer to the center L3 of the through hole 54 than the center L2 of the bushing cylindrical portion 52 is smaller than the thickness of the portion closer to the center L2 of the bushing cylindrical portion 52 than the center L3 of the through hole 54.
 <圧縮荷重F1>
 貫通孔54の内周面と偏心軸50の外周面との間には、旋回スクロール26から圧縮荷重F1が作用する。圧縮荷重F1は、旋回スクロール26から軸受56及びブッシュ51を介して偏心軸50に作用する。圧縮荷重F1は、固定渦巻壁25b及び旋回渦巻壁26bそれぞれの形状や圧縮室27で圧縮される冷媒の圧力等によって一義的に決まる。貫通孔54の内周面と偏心軸50の外周面との間で旋回スクロール26から伝達される圧縮荷重F1が作用する箇所A1は、予め実験等によって把握されている。本実施形態では、ブッシュ筒部52におけるブッシュ筒部52の中心L2よりも貫通孔54の中心L3に近い部分から偏心軸50に圧縮荷重F1が作用する。
<Compressive load F1>
A compressive load F1 is applied from the orbiting scroll 26 between the inner peripheral surface of the through hole 54 and the outer peripheral surface of the eccentric shaft 50. The compressive load F1 is applied from the orbiting scroll 26 to the eccentric shaft 50 via the bearing 56 and the bush 51. The compressive load F1 is uniquely determined by the shapes of the fixed spiral wall 25b and the orbiting spiral wall 26b, the pressure of the refrigerant compressed in the compression chamber 27, and the like. A location A1 where the compressive load F1 transmitted from the orbiting scroll 26 acts between the inner peripheral surface of the through hole 54 and the outer peripheral surface of the eccentric shaft 50 is grasped in advance by experiments, etc. In this embodiment, the compressive load F1 is applied to the eccentric shaft 50 from a portion of the bushing cylindrical portion 52 that is closer to the center L3 of the through hole 54 than the center L2 of the bushing cylindrical portion 52.
 <従動クランク機構59の作用>
 固定スクロール25及び旋回スクロール26は、微小な加工誤差や組み立て誤差が生じるため、固定渦巻壁25bと旋回渦巻壁26bとの間には予めガタ(隙間)が設けてある。
<Function of the driven crank mechanism 59>
Since minute machining errors and assembly errors occur in the fixed scroll 25 and the orbiting scroll 26, a play (gap) is provided in advance between the fixed spiral wall 25b and the orbiting spiral wall 26b.
 回転軸15が正方向へ回転すると、ブッシュ51が、旋回スクロール26に作用する圧縮荷重F1に基づいて、偏心軸50を中心に揺動する。ブッシュ51が偏心軸50を中心に揺動すると、ブッシュ51の中心L2と回転軸15の軸線L1との距離が増大して、旋回スクロール26の公転半径が増大する。そして、旋回渦巻壁26bが固定渦巻壁25bに接触した時点で、ブッシュ51における偏心軸50を中心とした揺動が規制される。これにより、旋回スクロール26の公転半径が固定される。 When the rotating shaft 15 rotates in the forward direction, the bush 51 oscillates around the eccentric shaft 50 based on the compressive load F1 acting on the orbiting scroll 26. When the bush 51 oscillates around the eccentric shaft 50, the distance between the center L2 of the bush 51 and the axis L1 of the rotating shaft 15 increases, and the orbital radius of the orbiting scroll 26 increases. Then, when the orbiting spiral wall 26b comes into contact with the fixed spiral wall 25b, the oscillation of the bush 51 around the eccentric shaft 50 is restricted. This fixes the orbital radius of the orbiting scroll 26.
 さらに、回転軸15の回転は、偏心軸50、ブッシュ51、及び軸受56を介して旋回スクロール26に伝達されているため、旋回スクロール26は正方向へ自転する。そして、旋回渦巻壁26bが固定渦巻壁25bに接触した時点で、ピン30とリング部材29とが接触する。これにより、旋回スクロール26の自転が阻止されて、旋回スクロール26の正方向への公転運動のみが許容される。そして、旋回スクロール26は、旋回渦巻壁26bが固定渦巻壁25bに接触しながら、正方向へ公転運動する。よって、圧縮室27からの冷媒の漏れが抑制されるとともに、圧縮室27の容積が減少して冷媒が圧縮される。 Furthermore, the rotation of the rotating shaft 15 is transmitted to the orbiting scroll 26 via the eccentric shaft 50, the bush 51, and the bearing 56, so that the orbiting scroll 26 rotates in the forward direction. Then, when the orbiting spiral wall 26b comes into contact with the fixed spiral wall 25b, the pin 30 comes into contact with the ring member 29. This prevents the orbiting scroll 26 from rotating on its axis, and only allows the orbiting scroll 26 to revolve in the forward direction. Then, the orbiting scroll 26 revolves in the forward direction while the orbiting spiral wall 26b comes into contact with the fixed spiral wall 25b. This prevents the refrigerant from leaking from the compression chamber 27, and the volume of the compression chamber 27 decreases, compressing the refrigerant.
 旋回スクロール26を固定スクロール25に対して組み付ける際には、ブッシュ51を、回転軸15が正方向に回転しているときとは逆方向へ、偏心軸50を中心に揺動させる。すると、ブッシュ51の中心L2と回転軸15の軸線L1との距離が減少して、旋回スクロール26の公転半径が減少する。これにより、固定渦巻壁25bに対する旋回渦巻壁26bの位置が、旋回渦巻壁26bが固定渦巻壁25bに対して接触しない位置となる。よって、旋回スクロール26を固定スクロール25に対して容易に組み付けることが可能となる。 When assembling the orbiting scroll 26 to the fixed scroll 25, the bush 51 is swung around the eccentric shaft 50 in the opposite direction to when the rotating shaft 15 is rotating in the forward direction. This reduces the distance between the center L2 of the bush 51 and the axis L1 of the rotating shaft 15, thereby reducing the orbital radius of the orbiting scroll 26. As a result, the position of the orbiting spiral wall 26b relative to the fixed spiral wall 25b becomes a position where the orbiting spiral wall 26b does not come into contact with the fixed spiral wall 25b. This makes it possible to easily assemble the orbiting scroll 26 to the fixed scroll 25.
 なお、ブッシュ51が、回転軸15が正方向に回転しているときとは逆方向へ偏心軸50を中心に揺動する際には、ブッシュ51の中心L2と回転軸15の軸線L1との距離が増大してしまうまで、ブッシュ51が揺動してしまうことが規制されている。ブッシュ51は、回転軸15が正方向に回転しているときとは逆方向へ偏心軸50を中心に揺動する場合、ブッシュ51の中心L2と回転軸15の軸線L1との距離が最短距離になったときに、ブッシュ51の揺動が規制されるようになっている。 When the bush 51 oscillates around the eccentric shaft 50 in the opposite direction to when the rotating shaft 15 is rotating in the forward direction, the bush 51 is restricted from oscillating until the distance between the center L2 of the bush 51 and the axis L1 of the rotating shaft 15 increases. When the bush 51 oscillates around the eccentric shaft 50 in the opposite direction to when the rotating shaft 15 is rotating in the forward direction, the bush 51 is restricted from oscillating when the distance between the center L2 of the bush 51 and the axis L1 of the rotating shaft 15 becomes the shortest distance.
 <オイル通路60>
 図2に示すように、ブッシュ51は、オイル通路60を有している。オイル通路60は、ブッシュ51における回転軸15の先端面15eと対向する対向面51aに形成されている。
<Oil passage 60>
2, the bush 51 has an oil passage 60. The oil passage 60 is formed in an opposing surface 51a of the bush 51 that faces the tip surface 15e of the rotary shaft 15.
 図4に示すように、オイル通路60は、貫通孔54からブッシュ鍔部53の外周面に向けて延びている。したがって、オイル通路60は、貫通孔54からブッシュ51の外周面に向けて延びている。そして、オイル通路60は、ブッシュ鍔部53の外周面に開口する流入口61を有している。したがって、オイル通路60は、ブッシュ51の外周面に開口する流入口61を有している。オイル通路60の第1端は、ブッシュ51の外周面に開口する流入口61になっている。オイル通路60の第2端は、貫通孔54に連通している。 As shown in FIG. 4, the oil passage 60 extends from the through hole 54 toward the outer peripheral surface of the bush flange 53. Therefore, the oil passage 60 extends from the through hole 54 toward the outer peripheral surface of the bush 51. The oil passage 60 has an inlet 61 that opens into the outer peripheral surface of the bush flange 53. Therefore, the oil passage 60 has an inlet 61 that opens into the outer peripheral surface of the bush 51. A first end of the oil passage 60 is the inlet 61 that opens into the outer peripheral surface of the bush 51. A second end of the oil passage 60 is connected to the through hole 54.
 オイル通路60は、対向面51aに形成される通路形成凹部62により区画されている。通路形成凹部62は、底面63と、底面63から立設する第1側面64及び第2側面65と、を有している。底面63は、第1側面64及び第2側面65同士を接続している。底面63は、貫通孔54に連続している。底面63は、貫通孔54からブッシュ鍔部53の外周面に向けて延びている。 The oil passage 60 is defined by a passage forming recess 62 formed in the opposing surface 51a. The passage forming recess 62 has a bottom surface 63 and a first side surface 64 and a second side surface 65 standing upright from the bottom surface 63. The bottom surface 63 connects the first side surface 64 and the second side surface 65 to each other. The bottom surface 63 is continuous with the through hole 54. The bottom surface 63 extends from the through hole 54 toward the outer peripheral surface of the bush flange portion 53.
 図4では、回転軸15が正方向へ回転しているときのブッシュ51の回転方向を矢印R1で示している。第1側面64は、第2側面65よりも、回転軸15が正方向へ回転しているときのブッシュ51の回転方向の先行側に位置している。第1側面64及び第2側面65は、偏心軸50の外周面からブッシュ鍔部53の外周面に向けて延びている。 In FIG. 4, the direction of rotation of the bush 51 when the rotating shaft 15 is rotating in the positive direction is indicated by arrow R1. The first side 64 is located further ahead of the second side 65 in the direction of rotation of the bush 51 when the rotating shaft 15 is rotating in the positive direction. The first side 64 and the second side 65 extend from the outer circumferential surface of the eccentric shaft 50 toward the outer circumferential surface of the bush flange portion 53.
 第1側面64及び第2側面65は、偏心軸50の外周面から回転軸15が正方向へ回転しているときのブッシュ51の回転方向に湾曲している。したがって、第1側面64及び第2側面65は、貫通孔54から回転軸15が正方向へ回転しているときのブッシュ51の回転方向に湾曲して流入口61に向けて延びる案内面66をそれぞれ有している。したがって、オイル通路60は、貫通孔54から回転軸15が正方向へ回転しているときのブッシュ51の回転方向に湾曲して流入口61に向けて延びる案内面66を有している。各案内面66は、オイル通路60を流れるオイルを貫通孔54に向けて案内する。 The first side surface 64 and the second side surface 65 are curved from the outer circumferential surface of the eccentric shaft 50 in the rotation direction of the bush 51 when the rotating shaft 15 is rotating in the positive direction. Therefore, the first side surface 64 and the second side surface 65 each have a guide surface 66 that curves from the through hole 54 in the rotation direction of the bush 51 when the rotating shaft 15 is rotating in the positive direction and extends toward the inlet 61. Therefore, the oil passage 60 has a guide surface 66 that curves from the through hole 54 in the rotation direction of the bush 51 when the rotating shaft 15 is rotating in the positive direction and extends toward the inlet 61. Each guide surface 66 guides the oil flowing through the oil passage 60 toward the through hole 54.
 <オイル溝70>
 図3に示すように、貫通孔54の内周面には、オイル溝70が形成されている。したがって、オイル溝70は、貫通孔54の内周面に形成されている。オイル溝70は、貫通孔54の内周面における貫通孔54の中心L3よりもブッシュ筒部52の中心L2に近い部分に形成されている。よって、オイル溝70は、貫通孔54の内周面であって、且つ、貫通孔54の内周面と偏心軸50の外周面との間で旋回スクロール26から伝達される圧縮荷重F1が作用する箇所とは位相が異なる部分に形成されている。したがって、オイル溝70は、貫通孔54の内周面であって、且つ、貫通孔54の内周面と偏心軸50の外周面との間で旋回スクロール26から伝達される圧縮荷重F1が作用する箇所を除く部分に形成されている。
<Oil groove 70>
As shown in FIG. 3, an oil groove 70 is formed on the inner circumferential surface of the through hole 54. The oil groove 70 is formed on the inner circumferential surface of the through hole 54. The oil groove 70 is formed on the inner circumferential surface of the through hole 54 at a portion closer to the center L2 of the bushing cylindrical portion 52 than the center L3 of the through hole 54. The oil groove 70 is formed on the inner circumferential surface of the through hole 54 at a portion that is out of phase with the portion on which the compressive load F1 transmitted from the orbiting scroll 26 acts between the inner circumferential surface of the through hole 54 and the outer circumferential surface of the eccentric shaft 50. The oil groove 70 is formed on the inner circumferential surface of the through hole 54 at a portion excluding the portion on which the compressive load F1 transmitted from the orbiting scroll 26 acts between the inner circumferential surface of the through hole 54 and the outer circumferential surface of the eccentric shaft 50.
 図2に示すように、オイル溝70の第1端は、オイル通路60の第2端に連通している。オイル溝70の第2端は、ブッシュ51における旋回渦巻壁26b側の端面に開口している。オイル溝70は、オイル通路60の第2端と、ブッシュ51における旋回渦巻壁26b側の端面と旋回基板26aとの間の空間71とを接続している。 As shown in FIG. 2, the first end of the oil groove 70 is connected to the second end of the oil passage 60. The second end of the oil groove 70 opens to the end face of the bush 51 on the side of the swirling volute wall 26b. The oil groove 70 connects the second end of the oil passage 60 to the space 71 between the end face of the bush 51 on the side of the swirling volute wall 26b and the swirling base plate 26a.
 図4に示すように、偏心軸50の外周面は、オイル通路60の第2端を閉塞している。偏心軸50の外周面は、オイル通路60を流れるオイルを堰き止めてオイル溝70に案内する。 As shown in FIG. 4, the outer peripheral surface of the eccentric shaft 50 blocks the second end of the oil passage 60. The outer peripheral surface of the eccentric shaft 50 blocks the oil flowing through the oil passage 60 and guides it to the oil groove 70.
 [第1実施形態の作用]
 次に、第1実施形態の作用について説明する。
 軸支ハウジング13の周壁18内には、貯油室41に貯留されているオイルがオイル還流通路48を介して還流されている。そして、ブッシュ51の外周面の周囲に存在するオイルが流入口61からオイル通路60に流入してオイル溝70に供給される。このとき、流入口61からのオイルが案内面66によって貫通孔54に向けて案内されるため、流入口61からのオイルがオイル通路60を介してオイル溝70に供給され易くなっている。また、流入口61からオイル通路60を流れるオイルが偏心軸50の外周面に堰き止められてオイル溝70に案内されるため、流入口61からのオイルがオイル通路60を介してオイル溝70に供給され易くなっている。
[Operation of the First Embodiment]
Next, the operation of the first embodiment will be described.
Within the peripheral wall 18 of the bearing housing 13, the oil stored in the oil reservoir 41 is returned via the oil return passage 48. Then, the oil present around the outer circumferential surface of the bush 51 flows from the inlet 61 into the oil passage 60 and is supplied to the oil groove 70. At this time, the oil from the inlet 61 is guided toward the through hole 54 by the guide surface 66, so that the oil from the inlet 61 is easily supplied to the oil groove 70 via the oil passage 60. Also, the oil flowing through the oil passage 60 from the inlet 61 is blocked by the outer circumferential surface of the eccentric shaft 50 and guided to the oil groove 70, so that the oil from the inlet 61 is easily supplied to the oil groove 70 via the oil passage 60.
 オイル溝70に供給されたオイルは、オイル溝70を通過して、ブッシュ51における旋回基板26a側の端面と旋回基板26aとの間の空間71に流出する。そして、空間71に流出したオイルが、軸受56に供給される。これにより、軸受56の潤滑が良好なものとなる。 Oil supplied to oil groove 70 passes through oil groove 70 and flows out into space 71 between the end face of bush 51 facing swivel base plate 26a and swivel base plate 26a. The oil that flows out into space 71 is then supplied to bearing 56. This ensures good lubrication of bearing 56.
 [第1実施形態の効果]
 第1実施形態では以下の効果を得ることができる。
 (1-1)ブッシュ51は、回転軸15の先端面15eと対向する対向面51aにオイル通路60を有している。オイル通路60は、貫通孔54からブッシュ51の外周面に向けて延びるとともにブッシュ51の外周面に開口する流入口61を有している。貫通孔54の内周面であって、且つ、貫通孔54の内周面と偏心軸50の外周面との間で旋回スクロール26から伝達される圧縮荷重F1が作用する箇所を除く部分には、オイル溝70が形成されている。オイル溝70は、オイル通路60に連通するとともにブッシュ51における旋回渦巻壁26b側の端面に開口する。これによれば、ブッシュ51の周囲に存在するオイルが流入口61からオイル通路60に流入してオイル溝70に供給される。オイル溝70に供給されたオイルは、オイル溝70を通過して、ブッシュ51における旋回渦巻壁26b側の端面と旋回基板26aとの間の空間71に流出する。そして、空間71に流出したオイルが、軸受56に供給される。これにより、軸受56の潤滑が良好なものとなるため、スクロール型圧縮機10の耐久性が向上する。
[Effects of the First Embodiment]
The first embodiment can provide the following effects.
(1-1) The bush 51 has an oil passage 60 on the facing surface 51a facing the tip surface 15e of the rotating shaft 15. The oil passage 60 extends from the through hole 54 toward the outer circumferential surface of the bush 51 and has an inlet 61 that opens on the outer circumferential surface of the bush 51. An oil groove 70 is formed on the inner circumferential surface of the through hole 54, except for the portion where the compression load F1 transmitted from the orbiting scroll 26 acts between the inner circumferential surface of the through hole 54 and the outer circumferential surface of the eccentric shaft 50. The oil groove 70 communicates with the oil passage 60 and opens on the end surface of the bush 51 on the orbiting scroll wall 26b side. According to this, the oil present around the bush 51 flows into the oil passage 60 from the inlet 61 and is supplied to the oil groove 70. The oil supplied to the oil groove 70 passes through the oil groove 70 and flows out into the space 71 between the end surface of the bush 51 on the orbiting scroll wall 26b side and the orbiting base plate 26a. The oil that has flowed out into the space 71 is supplied to the bearing 56. This improves the lubrication of the bearing 56, thereby improving the durability of the scroll compressor 10.
 オイル溝70は、貫通孔54の内周面に形成されている。したがって、従来技術のように、軸受56にオイルを供給するために、偏心軸50が挿入される貫通孔54とは別の貫通孔をブッシュ51に形成する必要が無い。このため、ブッシュ51の肉厚を確保する必要が無い。その結果、ブッシュ51が大型化してしまうことを回避することができる。このため、スクロール型圧縮機10の小型化を図ることができる。また、オイル溝70が、貫通孔54の内周面であって、且つ、貫通孔54の内周面と偏心軸50の外周面との間で旋回スクロール26から伝達される圧縮荷重F1が作用する箇所を除く部分に形成されている。したがって、貫通孔54の内周面にオイル溝70を形成しても、ブッシュ51における偏心軸50を中心とした揺動が、オイル溝70によって阻害されることも無い。以上により、スクロール型圧縮機10において、小型化を図りつつも、耐久性を向上させることができる。 The oil groove 70 is formed on the inner peripheral surface of the through hole 54. Therefore, unlike the conventional technology, there is no need to form a through hole in the bush 51 other than the through hole 54 into which the eccentric shaft 50 is inserted in order to supply oil to the bearing 56. Therefore, there is no need to ensure the thickness of the bush 51. As a result, it is possible to avoid the bush 51 becoming larger. Therefore, it is possible to reduce the size of the scroll compressor 10. In addition, the oil groove 70 is formed on the inner peripheral surface of the through hole 54, and in a portion excluding the portion where the compression load F1 transmitted from the orbiting scroll 26 acts between the inner peripheral surface of the through hole 54 and the outer peripheral surface of the eccentric shaft 50. Therefore, even if the oil groove 70 is formed on the inner peripheral surface of the through hole 54, the rocking motion of the bush 51 around the eccentric shaft 50 is not hindered by the oil groove 70. As a result, it is possible to improve the durability while reducing the size of the scroll compressor 10.
 (1-2)このように、固定スクロール25及び旋回スクロール26を備えたスクロール型圧縮機10において、小型化を図りつつも、耐久性を向上させることができる。
 (1-3)オイル通路60は、貫通孔54から回転軸15が正方向へ回転しているときのブッシュ51の回転方向に湾曲して流入口61に向けて延びる案内面66を有している。案内面66は、オイル通路60を流れるオイルを貫通孔54に向けて案内する。これによれば、流入口61からのオイルが案内面66によって貫通孔54に向けて案内されるため、流入口61からのオイルがオイル通路60を介してオイル溝70に供給され易くなる。その結果、軸受56にオイルが効率良く供給されるため、軸受56の潤滑がさらに良好なものとなる。したがって、スクロール型圧縮機10の耐久性をさらに向上させることができる。
(1-2) In this way, in the scroll-type compressor 10 having the fixed scroll 25 and the orbiting scroll 26, it is possible to reduce the size and improve the durability.
(1-3) The oil passage 60 has a guide surface 66 that curves in the rotation direction of the bush 51 when the rotating shaft 15 rotates in the forward direction from the through hole 54 and extends toward the inlet 61. The guide surface 66 guides the oil flowing through the oil passage 60 toward the through hole 54. With this, the oil from the inlet 61 is guided toward the through hole 54 by the guide surface 66, so that the oil from the inlet 61 is easily supplied to the oil groove 70 via the oil passage 60. As a result, the oil is efficiently supplied to the bearing 56, and the lubrication of the bearing 56 is further improved. Therefore, the durability of the scroll compressor 10 can be further improved.
 (1-4)偏心軸50の外周面は、オイル通路60を流れるオイルを堰き止めてオイル溝70に案内する。これによれば、流入口61からオイル通路60を流れるオイルが偏心軸50の外周面に堰き止められてオイル溝70に案内される。このため、流入口61からのオイルがオイル通路60を介してオイル溝70に供給され易くなる。その結果、軸受56にオイルが効率良く供給されるため、軸受56の潤滑がさらに良好なものとなる。したがって、スクロール型圧縮機10の耐久性をさらに向上させることができる。 (1-4) The outer peripheral surface of the eccentric shaft 50 blocks the oil flowing through the oil passage 60 and guides it to the oil groove 70. As a result, the oil flowing through the oil passage 60 from the inlet 61 is blocked by the outer peripheral surface of the eccentric shaft 50 and guided to the oil groove 70. This makes it easier for the oil from the inlet 61 to be supplied to the oil groove 70 via the oil passage 60. As a result, oil is efficiently supplied to the bearing 56, which further improves the lubrication of the bearing 56. This further improves the durability of the scroll compressor 10.
 (1-5)オイル溝70は、貫通孔54の内周面に形成されている。これによれば、オイル通路60が形成されているブッシュ51にオイル溝70も形成されているため、オイル通路60に対するオイル溝70の位置が設定し易い。したがって、貫通孔54の内周面にオイル溝70が形成されている構成は、スクロール型圧縮機10の設計を容易にすることができる。 (1-5) The oil groove 70 is formed on the inner circumferential surface of the through hole 54. With this, since the oil groove 70 is also formed in the bush 51 in which the oil passage 60 is formed, it is easy to set the position of the oil groove 70 relative to the oil passage 60. Therefore, a configuration in which the oil groove 70 is formed on the inner circumferential surface of the through hole 54 can facilitate the design of the scroll compressor 10.
 [第2実施形態]
 以下、スクロール型圧縮機を具体化した第2実施形態を図5~図8にしたがって説明する。なお、以下に説明する実施形態では、既に説明した第1実施形態と同一構成について同一符号を付すなどして、その重複する説明を省略又は簡略する。第2実施形態のスクロール型圧縮機は、両回転式スクロール型圧縮機である。
[Second embodiment]
A second embodiment of a scroll compressor will be described below with reference to Figures 5 to 8. In the embodiment described below, the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted or simplified. The scroll compressor of the second embodiment is a double-rotating scroll compressor.
 <スクロール型圧縮機100の基本構成>
 図5に示すように、スクロール型圧縮機100は、ハウジング101を備えている。ハウジング101は、ハウジング本体102と、ハウジングカバー103と、を有している。ハウジング本体102及びハウジングカバー103は、金属材料製である。ハウジング本体102及びハウジングカバー103は、例えば、アルミニウム製である。
<Basic configuration of scroll compressor 100>
As shown in Fig. 5, the scroll compressor 100 includes a housing 101. The housing 101 includes a housing body 102 and a housing cover 103. The housing body 102 and the housing cover 103 are made of a metal material. The housing body 102 and the housing cover 103 are made of aluminum, for example.
 ハウジング本体102は、円板状の端壁102aと、円筒状の周壁102bと、を有している。周壁102bは、端壁102aの外周部から延びている。ハウジング本体102は、吸入口104を有している。吸入口104は、冷媒を吸入する。吸入口104は、例えば、端壁102aに形成されている。吸入口104は、ハウジング本体102内外を連通している。 The housing body 102 has a disk-shaped end wall 102a and a cylindrical peripheral wall 102b. The peripheral wall 102b extends from the outer periphery of the end wall 102a. The housing body 102 has an intake port 104. The intake port 104 draws in a refrigerant. The intake port 104 is formed, for example, in the end wall 102a. The intake port 104 connects the inside and outside of the housing body 102.
 スクロール型圧縮機100は、支持軸105を備えている。支持軸105は、ハウジング本体102に設けられている。したがって、支持軸105は、ハウジング101に対して支持されている。支持軸105は、ハウジング本体102の端壁102aの内面の中央部から突出している。支持軸105の軸線L11は、ハウジング本体102の周壁102bの軸線に一致している。支持軸105は、ハウジング本体102に一体形成されている。 The scroll compressor 100 is equipped with a support shaft 105. The support shaft 105 is provided in the housing body 102. Therefore, the support shaft 105 is supported relative to the housing 101. The support shaft 105 protrudes from the center of the inner surface of the end wall 102a of the housing body 102. The axis L11 of the support shaft 105 coincides with the axis of the peripheral wall 102b of the housing body 102. The support shaft 105 is formed integrally with the housing body 102.
 ハウジングカバー103は、板状である。ハウジングカバー103は、ハウジング本体102の周壁102bにおける端壁102aとは反対側の端部に連結されている。ハウジングカバー103は、周壁102bの開口を閉塞した状態でハウジング本体102に連結されている。そして、ハウジング本体102とハウジングカバー103とによって、スクロール室106が区画されている。したがって、ハウジング101は、スクロール室106を区画する。スクロール室106内には、吸入口104からの冷媒が吸入される。 The housing cover 103 is plate-shaped. The housing cover 103 is connected to the end of the peripheral wall 102b of the housing body 102 opposite the end wall 102a. The housing cover 103 is connected to the housing body 102 while closing the opening of the peripheral wall 102b. The housing body 102 and the housing cover 103 define a scroll chamber 106. The housing 101 therefore defines the scroll chamber 106. Refrigerant is drawn into the scroll chamber 106 from the suction port 104.
 ハウジングカバー103は、軸受保持部107を有している。軸受保持部107は、ハウジングカバー103の内面の中央部から突出する円筒状である。軸受保持部107の軸線は、ハウジング本体102の周壁102bの軸線に一致している。軸受保持部107は、軸受108を保持する。軸受108は、例えば、ニードルベアリングである。ハウジングカバー103は、吐出孔109を有している。吐出孔109は、ハウジングカバー103の中央部を貫通している。吐出孔109は、軸受保持部107の内側に連通している。 The housing cover 103 has a bearing retaining portion 107. The bearing retaining portion 107 is cylindrical and protrudes from the center of the inner surface of the housing cover 103. The axis of the bearing retaining portion 107 coincides with the axis of the peripheral wall 102b of the housing body 102. The bearing retaining portion 107 retains a bearing 108. The bearing 108 is, for example, a needle bearing. The housing cover 103 has a discharge hole 109. The discharge hole 109 passes through the center of the housing cover 103. The discharge hole 109 is connected to the inside of the bearing retaining portion 107.
 スクロール型圧縮機100は、モータ110を備えている。モータ110は、スクロール室106内に収容されている。したがって、スクロール室106は、モータ110が収容されるモータ室を兼ねている。モータ110は、筒状のステータ111と、筒状のロータ112と、を備えている。ステータ111は、円筒状のステータコア113と、モータコイル114と、を有している。ステータコア113は、ハウジング本体102の周壁102bの内周面に固定されている。モータコイル114は、ステータコア113に巻回されている。ロータ112は、ステータ111の内側に配置されている。ロータ112は、円筒状のロータコア115と、ロータコア115に設けられた図示しない複数の永久磁石と、を有している。 The scroll compressor 100 includes a motor 110. The motor 110 is housed in the scroll chamber 106. Therefore, the scroll chamber 106 also serves as a motor chamber in which the motor 110 is housed. The motor 110 includes a cylindrical stator 111 and a cylindrical rotor 112. The stator 111 includes a cylindrical stator core 113 and a motor coil 114. The stator core 113 is fixed to the inner circumferential surface of the peripheral wall 102b of the housing body 102. The motor coil 114 is wound around the stator core 113. The rotor 112 is disposed inside the stator 111. The rotor 112 includes a cylindrical rotor core 115 and a plurality of permanent magnets (not shown) provided in the rotor core 115.
 スクロール型圧縮機100は、圧縮機構116を備えている。圧縮機構116は、スクロール室106内に収容されている。圧縮機構116は、第1スクロールとしての駆動スクロール117と、第2スクロールとしての従動スクロール118と、を備えている。圧縮機構116は、スクロール式である。従動スクロール118は、駆動スクロール117の回転に追従して回転する。 The scroll type compressor 100 includes a compression mechanism 116. The compression mechanism 116 is housed in the scroll chamber 106. The compression mechanism 116 includes a driving scroll 117 as a first scroll, and a driven scroll 118 as a second scroll. The compression mechanism 116 is of a scroll type. The driven scroll 118 rotates following the rotation of the driving scroll 117.
 駆動スクロール117は、第1基板としての駆動基板117a、及び第1渦巻壁としての駆動渦巻壁117bを有している。駆動基板117aは、円板状である。駆動基板117aの中央部には、吐出ポート119が形成されている。吐出ポート119は、円孔状である。吐出ポート119は、駆動基板117aを厚み方向に貫通している。駆動渦巻壁117bは、駆動基板117aから起立している。このように、本実施形態の第1スクロールは、駆動基板117a、及び駆動渦巻壁117bを有する駆動スクロールである。 The driving scroll 117 has a driving substrate 117a as a first substrate, and a driving spiral wall 117b as a first spiral wall. The driving substrate 117a is disk-shaped. A discharge port 119 is formed in the center of the driving substrate 117a. The discharge port 119 is a circular hole. The discharge port 119 penetrates the driving substrate 117a in the thickness direction. The driving spiral wall 117b stands upright from the driving substrate 117a. In this way, the first scroll of this embodiment is a driving scroll having a driving substrate 117a and a driving spiral wall 117b.
 駆動基板117aにおける駆動渦巻壁117b側に位置する面の外周部は、ロータコア115の第1端面に接触している。駆動渦巻壁117bは、ロータコア115の内側に位置している。したがって、ロータコア115は、駆動渦巻壁117bを囲繞している。 The outer periphery of the surface of the drive substrate 117a that faces the drive spiral wall 117b is in contact with the first end face of the rotor core 115. The drive spiral wall 117b is located inside the rotor core 115. Therefore, the rotor core 115 surrounds the drive spiral wall 117b.
 駆動スクロール117は、第1ボス部120を有している。第1ボス部120は、駆動基板117aにおける駆動渦巻壁117bとは反対側に位置する面の中央部から突出している。第1ボス部120は、円筒状である。駆動スクロール117は、第1ボス部120の軸線が支持軸105の軸線L11に一致した状態で、スクロール室106内に収容されている。第1ボス部120の内側は、吐出ポート119に連通している。第1ボス部120は、軸受保持部107の内側に入り込んでいる。第1ボス部120は、軸受108を介して軸受保持部107に回転可能に支持されている。 The driving scroll 117 has a first boss portion 120. The first boss portion 120 protrudes from the center of the surface of the driving substrate 117a located on the opposite side to the driving spiral wall 117b. The first boss portion 120 is cylindrical. The driving scroll 117 is accommodated in the scroll chamber 106 with the axis of the first boss portion 120 coinciding with the axis L11 of the support shaft 105. The inside of the first boss portion 120 communicates with the discharge port 119. The first boss portion 120 fits into the inside of the bearing holder 107. The first boss portion 120 is rotatably supported by the bearing holder 107 via the bearing 108.
 駆動スクロール117は、駆動カバー体121を有している。駆動カバー体121は、円板状のカバー端壁121aと、円筒状のカバー周壁121bと、を有している。カバー周壁121bは、カバー端壁121aの外周部から延びている。駆動カバー体121は、カバー周壁121bの軸線が支持軸105の軸線L11に一致した状態で、スクロール室106内に収容されている。 The driving scroll 117 has a driving cover body 121. The driving cover body 121 has a disk-shaped cover end wall 121a and a cylindrical cover peripheral wall 121b. The cover peripheral wall 121b extends from the outer periphery of the cover end wall 121a. The driving cover body 121 is accommodated in the scroll chamber 106 with the axis of the cover peripheral wall 121b coinciding with the axis L11 of the support shaft 105.
 カバー周壁121bの内径は、ロータコア115の内径と同じである。カバー周壁121bにおける開口側に位置する端面は、カバー周壁121bの内周面とロータコア115の内周面とが同一面上に位置した状態で、ロータコア115の第2端面に当接している。そして、カバー周壁121bは、駆動基板117aと共にロータコア115を挟み込んでいる。駆動基板117a、ロータコア115、及びカバー周壁121bは、複数のボルト122によって連結されている。したがって、駆動スクロール117は、ロータ112に一体化されている。駆動スクロール117は、ロータ112と一体的に回転可能である。 The inner diameter of the cover peripheral wall 121b is the same as the inner diameter of the rotor core 115. The end face located on the opening side of the cover peripheral wall 121b abuts against the second end face of the rotor core 115 with the inner peripheral surface of the cover peripheral wall 121b and the inner peripheral surface of the rotor core 115 located on the same plane. The cover peripheral wall 121b and the drive board 117a sandwich the rotor core 115. The drive board 117a, the rotor core 115, and the cover peripheral wall 121b are connected by a plurality of bolts 122. Therefore, the drive scroll 117 is integrated with the rotor 112. The drive scroll 117 can rotate integrally with the rotor 112.
 駆動カバー体121は、第2ボス部123を有している。第2ボス部123は、カバー端壁121aにおけるカバー周壁121bとは反対側に位置する面の中央部から突出している。第2ボス部123は、円筒状である。第2ボス部123の軸線は、カバー周壁121bの軸線に一致している。カバー端壁121aは、挿通孔124を有している。挿通孔124は、カバー端壁121aを厚み方向に貫通している。挿通孔124は、第2ボス部123の内側に連通している。挿通孔124の孔径は、第2ボス部123の内径と同じである。挿通孔124の内周面と第2ボス部123の内周面とは同一面上に位置している。 The drive cover body 121 has a second boss portion 123. The second boss portion 123 protrudes from the center of the surface of the cover end wall 121a located opposite the cover peripheral wall 121b. The second boss portion 123 is cylindrical. The axis of the second boss portion 123 coincides with the axis of the cover peripheral wall 121b. The cover end wall 121a has an insertion hole 124. The insertion hole 124 penetrates the cover end wall 121a in the thickness direction. The insertion hole 124 communicates with the inside of the second boss portion 123. The hole diameter of the insertion hole 124 is the same as the inner diameter of the second boss portion 123. The inner peripheral surface of the insertion hole 124 and the inner peripheral surface of the second boss portion 123 are located on the same plane.
 第2ボス部123の内側及び挿通孔124内には、支持軸105が挿入されている。支持軸105と第2ボス部123及び挿通孔124との間には、軸受125が設けられている。軸受125は、例えば、滑り軸受である。そして、駆動カバー体121は、軸受125を介して支持軸105に対して回転可能に支持されている。このように、駆動スクロール117は、支持軸105の軸線L11回りで回転する。 The support shaft 105 is inserted inside the second boss portion 123 and into the insertion hole 124. A bearing 125 is provided between the support shaft 105 and the second boss portion 123 and the insertion hole 124. The bearing 125 is, for example, a sliding bearing. The drive cover body 121 is supported rotatably relative to the support shaft 105 via the bearing 125. In this way, the drive scroll 117 rotates around the axis L11 of the support shaft 105.
 駆動カバー体121は、溝部126を複数有している。複数の溝部126は、カバー端壁121aにおけるカバー周壁121b側に位置する面に形成されている。各溝部126は、円孔状の凹部である。複数の溝部126は、挿通孔124の周囲にカバー周壁121bの周方向に所定の間隔をあけて配置されている。各溝部126内には、円環状のリング部材127が嵌着されている。 The drive cover body 121 has a plurality of grooves 126. The grooves 126 are formed on the surface of the cover end wall 121a that faces the cover peripheral wall 121b. Each groove 126 is a circular recess. The grooves 126 are arranged around the insertion hole 124 at predetermined intervals in the circumferential direction of the cover peripheral wall 121b. An annular ring member 127 is fitted into each groove 126.
 駆動カバー体121は、吸入ポート121hを有している。吸入ポート121hは、カバー端壁121aの外周部に形成されている。吸入ポート121hは、吸入口104からスクロール室106内に吸入された冷媒をカバー周壁121bの内側に吸入する。 The drive cover body 121 has a suction port 121h. The suction port 121h is formed on the outer periphery of the cover end wall 121a. The suction port 121h draws the refrigerant drawn into the scroll chamber 106 from the suction port 104 into the inside of the cover peripheral wall 121b.
 スクロール型圧縮機100は、弁機構128を備えている。弁機構128は、駆動基板117aにおける駆動渦巻壁117bとは反対側に位置する面に取り付けられている。弁機構128は、吐出ポート119を開閉可能に構成されている。 The scroll compressor 100 is equipped with a valve mechanism 128. The valve mechanism 128 is attached to the surface of the drive substrate 117a that is located on the opposite side to the drive volute wall 117b. The valve mechanism 128 is configured to be able to open and close the discharge port 119.
 従動スクロール118は、第2基板としての従動基板118a、及び第2渦巻壁としての従動渦巻壁118bを有している。従動基板118aは、円板状である。従動基板118aは、駆動基板117aに対向している。従動渦巻壁118bは、従動基板118aから駆動基板117aに向けて起立している。従動渦巻壁118bは、駆動渦巻壁117bと噛み合っている。このように、本実施形態の第2スクロールは、従動基板118a、及び従動渦巻壁118bを有する従動スクロール118である。 The driven scroll 118 has a driven substrate 118a as a second substrate, and a driven spiral wall 118b as a second spiral wall. The driven substrate 118a is disk-shaped. The driven substrate 118a faces the driving substrate 117a. The driven spiral wall 118b stands up from the driven substrate 118a toward the driving substrate 117a. The driven spiral wall 118b is engaged with the driving spiral wall 117b. In this way, the second scroll of this embodiment is a driven scroll 118 having a driven substrate 118a and a driven spiral wall 118b.
 従動スクロール118は、カバー周壁121b及びロータコア115の内側に配置されている。駆動渦巻壁117bの先端面は、従動基板118aに接触している。従動渦巻壁118bの先端面は、駆動基板117aに接触している。 The driven scroll 118 is disposed inside the cover peripheral wall 121b and the rotor core 115. The tip surface of the driving spiral wall 117b is in contact with the driven substrate 118a. The tip surface of the driving spiral wall 118b is in contact with the driving substrate 117a.
 スクロール型圧縮機100は、圧縮室129を備えている。圧縮室129は、駆動基板117a、駆動渦巻壁117b、従動基板118a、及び従動渦巻壁118bによって区画されている。したがって、圧縮室129は、駆動スクロール117と従動スクロール118との間に区画形成されている。圧縮室129は、吸入ポート121hからの冷媒を取り込み圧縮する。 The scroll compressor 100 has a compression chamber 129. The compression chamber 129 is defined by the drive base plate 117a, the drive spiral wall 117b, the driven base plate 118a, and the driven spiral wall 118b. Thus, the compression chamber 129 is defined between the drive scroll 117 and the driven scroll 118. The compression chamber 129 takes in and compresses the refrigerant from the suction port 121h.
 スクロール型圧縮機100は、保持部130を備えている。保持部130は、従動基板118aに形成されている。保持部130は、従動基板118aにおける従動渦巻壁118bとは反対側に位置する面の中央部に形成される円孔状の凹部である。したがって、保持部130は、従動基板118aにおける駆動基板117aとは反対側の端面に設けられる円筒状である。従動基板118aにおける駆動基板117aとは反対側の端面には、ピン131が複数突設されている。各ピン131は、各リング部材127内に挿入されている。 The scroll compressor 100 is provided with a holding portion 130. The holding portion 130 is formed on the driven substrate 118a. The holding portion 130 is a circular hole-shaped recess formed in the center of the surface of the driven substrate 118a located opposite the driven spiral wall 118b. Therefore, the holding portion 130 is cylindrical and provided on the end surface of the driven substrate 118a opposite the drive substrate 117a. A plurality of pins 131 protrude from the end surface of the driven substrate 118a opposite the drive substrate 117a. Each pin 131 is inserted into each ring member 127.
 図6に示すように、スクロール型圧縮機100は、偏心軸132を備えている。偏心軸132は、支持軸105の先端面105aから突出している。偏心軸132は、支持軸105の軸線L11に対して偏心した位置で支持軸105と平行に延びている。偏心軸132は、支持軸105の先端面105aに形成された圧入孔105hに圧入されることにより支持軸105に固定されている。偏心軸132は、保持部130の内側に挿入されている。 As shown in FIG. 6, the scroll compressor 100 is equipped with an eccentric shaft 132. The eccentric shaft 132 protrudes from the tip surface 105a of the support shaft 105. The eccentric shaft 132 extends parallel to the support shaft 105 at a position eccentric with respect to the axis L11 of the support shaft 105. The eccentric shaft 132 is fixed to the support shaft 105 by being pressed into a press-fit hole 105h formed in the tip surface 105a of the support shaft 105. The eccentric shaft 132 is inserted inside the retaining portion 130.
 <ブッシュ133>
 スクロール型圧縮機100は、ブッシュ133を備えている。ブッシュ133は、円筒状である。ブッシュ133の内側は、貫通孔134になっている。したがって、ブッシュ133は、貫通孔134を有している。貫通孔134には、偏心軸132が挿入されている。ブッシュ133は、保持部130の内側に配置されている。したがって、保持部130の内側には、ブッシュ133が配置されている。ブッシュ133は、偏心軸132を中心に揺動(スイング)可能である。
<Bush 133>
The scroll compressor 100 includes a bush 133. The bush 133 is cylindrical. The inside of the bush 133 is formed with a through hole 134. Therefore, the bush 133 has the through hole 134. The eccentric shaft 132 is inserted into the through hole 134. The bush 133 is disposed inside the holding portion 130. Therefore, the bush 133 is disposed inside the holding portion 130. The bush 133 can oscillate (swing) around the eccentric shaft 132.
 <軸受135>
 スクロール型圧縮機100は、軸受135を備えている。軸受135は、保持部130の内側に配置されている。軸受135は、保持部130の内周面とブッシュ133の外周面との間に配置されている。ブッシュ133は、軸受135を介して保持部130に保持されている。
<Bearing 135>
The scroll compressor 100 includes a bearing 135. The bearing 135 is disposed inside the holding portion 130. The bearing 135 is disposed between an inner peripheral surface of the holding portion 130 and an outer peripheral surface of the bush 133. The bush 133 is held by the holding portion 130 via the bearing 135.
 <駆動スクロール117及び従動スクロール118の動作>
 図5に示すように、スクロール型圧縮機100においては、図示しないインバータによって制御された電力がモータコイル114に供給されることによりロータ112が回転する。すると、ロータ112の回転に伴って、駆動スクロール117が支持軸105の軸線L11を回転中心として回転する。そして、駆動スクロール117の回転は、各ピン131と各リング部材127とが摺接することにより従動スクロール118に伝達される。
<Operations of the driving scroll 117 and the driven scroll 118>
5, in the scroll compressor 100, the rotor 112 rotates when power controlled by an inverter (not shown) is supplied to the motor coil 114. Then, in conjunction with the rotation of the rotor 112, the driving scroll 117 rotates about the axis L11 of the support shaft 105. The rotation of the driving scroll 117 is transmitted to the driven scroll 118 by the sliding contact between each pin 131 and each ring member 127.
 図6に示すように、従動スクロール118は、ブッシュ133の中心L12を回転中心に回転する。このとき、各ピン131と各リング部材127との接触により、従動スクロール118は、駆動スクロール117に対して相対的に公転する。これにより、従動スクロール118は、従動渦巻壁118bが駆動渦巻壁117bに接触しながら回転運動する。このように、従動スクロール118は、駆動スクロール117の回転に追従して回転する。そして、駆動スクロール117及び従動スクロール118の回転運動に伴って、圧縮室129の容積が減少することにより、冷媒が圧縮室129で圧縮される。 As shown in FIG. 6, the driven scroll 118 rotates around the center L12 of the bush 133. At this time, the contact between each pin 131 and each ring member 127 causes the driven scroll 118 to revolve relative to the driving scroll 117. As a result, the driven scroll 118 rotates with the driven spiral wall 118b in contact with the driving spiral wall 117b. In this way, the driven scroll 118 rotates following the rotation of the driving scroll 117. Then, with the rotation of the driving scroll 117 and the driven scroll 118, the volume of the compression chamber 129 decreases, and the refrigerant is compressed in the compression chamber 129.
 ブッシュ133の中心L12は、支持軸105の軸線L11よりも支持軸105の径方向外側に位置している。従動基板118aの中心は、ブッシュ133の中心L12と一致している。そして、ブッシュ133の中心L12と支持軸105の軸線L11との距離が、駆動スクロール117に対して相対的に公転する従動スクロール118の公転半径となる。 The center L12 of the bushing 133 is located radially outward of the axis L11 of the support shaft 105. The center of the driven base plate 118a coincides with the center L12 of the bushing 133. The distance between the center L12 of the bushing 133 and the axis L11 of the support shaft 105 is the orbital radius of the driven scroll 118, which revolves relative to the driving scroll 117.
 ブッシュ133が偏心軸132を中心に揺動することにより、ブッシュ133の中心L12と支持軸105の軸線L11との距離が変化する。このように、偏心軸132、ブッシュ133、及び軸受135は、ブッシュ133の中心L12と支持軸105の軸線L11との距離を可変させる、所謂、従動クランク機構136を構成している。このような従動クランク機構136は既に公知である。 As the bush 133 swings around the eccentric shaft 132, the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105 changes. In this way, the eccentric shaft 132, the bush 133, and the bearing 135 constitute a so-called driven crank mechanism 136 that varies the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105. Such a driven crank mechanism 136 is already known.
 図7に示すように、貫通孔134は、ブッシュ133の中心L12に対して偏心した位置に中心L13を有している。したがって、ブッシュ133では、ブッシュ133の中心L12よりも貫通孔134の中心L13に近い部分の肉厚が、貫通孔134の中心L13よりもブッシュ133の中心L12に近い部分の肉厚よりも小さくなっている。 As shown in FIG. 7, the through hole 134 has a center L13 at a position eccentric to the center L12 of the bush 133. Therefore, in the bush 133, the thickness of the portion closer to the center L13 of the through hole 134 than the center L12 of the bush 133 is smaller than the thickness of the portion closer to the center L12 of the bush 133 than the center L13 of the through hole 134.
 <圧縮荷重F1>
 貫通孔134の内周面と偏心軸132の外周面との間には、従動スクロール118から圧縮荷重F1が作用する。圧縮荷重F1は、従動スクロール118から軸受108及びブッシュ133を介して偏心軸132に作用する。圧縮荷重F1は、駆動渦巻壁117b及び従動渦巻壁118bそれぞれの形状や圧縮室129で圧縮される冷媒の圧力等によって一義的に決まる。さらには、圧縮荷重F1は、支持軸105の軸線L11に対する偏心軸132の偏心方向によっても一義的に決まる。貫通孔134の内周面と偏心軸132の外周面との間で従動スクロール118から伝達される圧縮荷重F1が作用する箇所A1は、予め実験等によって把握されている。本実施形態では、ブッシュ133におけるブッシュ133の中心L12よりも貫通孔134の中心L13に近い部分から偏心軸132に圧縮荷重F1が作用する。
<Compressive load F1>
A compressive load F1 is applied between the inner peripheral surface of the through hole 134 and the outer peripheral surface of the eccentric shaft 132 from the driven scroll 118. The compressive load F1 is applied to the eccentric shaft 132 from the driven scroll 118 via the bearing 108 and the bush 133. The compressive load F1 is uniquely determined by the shapes of the driving spiral wall 117b and the driven spiral wall 118b, the pressure of the refrigerant compressed in the compression chamber 129, and the like. Furthermore, the compressive load F1 is uniquely determined by the eccentric direction of the eccentric shaft 132 with respect to the axis L11 of the support shaft 105. A location A1 where the compressive load F1 transmitted from the driven scroll 118 acts between the inner peripheral surface of the through hole 134 and the outer peripheral surface of the eccentric shaft 132 is grasped in advance by experiments, etc. In this embodiment, the compressive load F1 is applied to the eccentric shaft 132 from a portion of the bush 133 closer to the center L13 of the through hole 134 than the center L12 of the bush 133.
 <従動クランク機構136の作用>
 駆動スクロール117及び従動スクロール118は、微小な加工誤差や組み立て誤差が生じるため、駆動渦巻壁117bと従動渦巻壁118bとの間には予めガタ(隙間)が設けてある。
<Function of the driven crank mechanism 136>
Since minute processing errors and assembly errors occur in the driving scroll 117 and the driven scroll 118, a play (gap) is provided in advance between the driving spiral wall 117b and the driven spiral wall 118b.
 駆動スクロール117が正方向へ回転することにより、従動スクロール118が追従して正方向へ回転する。すると、ブッシュ133が、従動スクロール118に作用する圧縮荷重F1に基づいて、偏心軸132を中心に揺動する。ブッシュ133が偏心軸132を中心に揺動すると、ブッシュ133の中心L12と支持軸105の軸線L11との距離が増大する。そして、従動渦巻壁118bが駆動渦巻壁117bに接触した時点で、ブッシュ133における偏心軸132を中心とした揺動が規制される。これにより、ブッシュ133の中心L12と支持軸105の軸線L11との距離が固定される。 When the driving scroll 117 rotates in the forward direction, the driven scroll 118 follows and rotates in the forward direction. Then, the bush 133 oscillates around the eccentric shaft 132 based on the compressive load F1 acting on the driven scroll 118. When the bush 133 oscillates around the eccentric shaft 132, the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105 increases. Then, when the driven spiral wall 118b comes into contact with the driving spiral wall 117b, the oscillation of the bush 133 around the eccentric shaft 132 is restricted. This fixes the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105.
 従動スクロール118を駆動スクロール117に対して組み付ける際には、ブッシュ133を、駆動スクロール117が正方向に回転しているときとは逆方向へ、偏心軸132を中心に揺動させる。すると、ブッシュ133の中心L12と支持軸105の軸線L11との距離が減少する。これにより、駆動渦巻壁117bに対する従動渦巻壁118bの位置が、従動渦巻壁118bが駆動渦巻壁117bに対して接触しない位置となる。よって、従動スクロール118を駆動スクロール117に対して容易に組み付けることが可能となる。 When assembling the driven scroll 118 to the driving scroll 117, the bush 133 is swung around the eccentric shaft 132 in the opposite direction to when the driving scroll 117 is rotating in the forward direction. This reduces the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105. This causes the position of the driven spiral wall 118b relative to the driving spiral wall 117b to be such that the driven spiral wall 118b does not come into contact with the driving spiral wall 117b. This makes it possible to easily assemble the driven scroll 118 to the driving scroll 117.
 なお、ブッシュ133が、駆動スクロール117が正方向に回転しているときとは逆方向へ偏心軸132を中心に揺動する際には、ブッシュ133の中心L12と支持軸105の軸線L11との距離が増大してしまうまで、ブッシュ133が揺動してしまうことが規制されている。ブッシュ133は、駆動スクロール117が正方向に回転しているときとは逆方向へ偏心軸132を中心に揺動する場合、ブッシュ133の中心L12と支持軸105の軸線L11との距離が最短距離になったときに、ブッシュ133の揺動が規制されるようになっている。 When the bush 133 oscillates around the eccentric shaft 132 in the opposite direction to when the drive scroll 117 is rotating in the forward direction, the bush 133 is restricted from oscillating until the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105 increases. When the bush 133 oscillates around the eccentric shaft 132 in the opposite direction to when the drive scroll 117 is rotating in the forward direction, the bush 133 is restricted from oscillating when the distance between the center L12 of the bush 133 and the axis L11 of the support shaft 105 becomes the shortest distance.
 <オイル通路137>
 図6に示すように、ブッシュ133は、オイル通路137を有している。オイル通路137は、ブッシュ133における支持軸105の先端面105aと対向する対向面133aに形成されている。
<Oil passage 137>
6, the bushing 133 has an oil passage 137. The oil passage 137 is formed in an opposing surface 133a of the bushing 133 that faces the tip end surface 105a of the support shaft 105.
 図8に示すように、オイル通路137は、貫通孔134からブッシュ133の外周面に向けて延びている。そして、オイル通路137は、ブッシュ133の外周面に開口する流入口139を有している。オイル通路137の第1端は、ブッシュ133の外周面に開口する流入口139になっている。オイル通路137の第2端は、貫通孔134に連通している。 As shown in FIG. 8, the oil passage 137 extends from the through hole 134 toward the outer peripheral surface of the bush 133. The oil passage 137 has an inlet 139 that opens into the outer peripheral surface of the bush 133. A first end of the oil passage 137 is the inlet 139 that opens into the outer peripheral surface of the bush 133. A second end of the oil passage 137 is connected to the through hole 134.
 流入口139は、ブッシュ133の外周面における鉛直方向Z1の上方に位置する部分に開口している。流入口139は、ブッシュ133の外周面において、ブッシュ133の中心L12を水平方向に通過する仮想平面140よりも鉛直方向Z1の上方に位置する部分に開口している。ブッシュ133は、ブッシュ133における偏心軸132を中心とした揺動が規制された状態において、ブッシュ133の外周面における鉛直方向Z1の上方に位置する部分に流入口139が開口するように、保持部130に保持されている。 The inlet 139 opens at a portion of the outer circumferential surface of the bush 133 that is located above the vertical direction Z1. The inlet 139 opens at a portion of the outer circumferential surface of the bush 133 that is located above the vertical direction Z1 of an imaginary plane 140 that passes horizontally through the center L12 of the bush 133. The bush 133 is held by the holding portion 130 so that the inlet 139 opens at a portion of the outer circumferential surface of the bush 133 that is located above the vertical direction Z1 when the oscillation of the bush 133 about the eccentric shaft 132 is restricted.
 オイル通路137は、対向面133aに形成される通路形成凹部141により区画されている。通路形成凹部141は、底面142と、底面142から立設する第1側面143及び第2側面144と、を有している。底面142は、第1側面143及び第2側面144同士を接続している。底面142は、貫通孔134に連続している。底面142は、貫通孔134からブッシュ133の外周面に向けて延びている。 The oil passage 137 is defined by a passage forming recess 141 formed in the opposing surface 133a. The passage forming recess 141 has a bottom surface 142 and a first side surface 143 and a second side surface 144 standing upright from the bottom surface 142. The bottom surface 142 connects the first side surface 143 and the second side surface 144 to each other. The bottom surface 142 is continuous with the through hole 134. The bottom surface 142 extends from the through hole 134 toward the outer peripheral surface of the bush 133.
 図8では、駆動スクロール117が正方向へ回転しているときの従動スクロール118の回転方向を矢印R2で示している。第1側面143は、第2側面144よりも駆動スクロール117が正方向へ回転しているときの従動スクロール118の回転方向の先行側に位置している。第1側面143及び第2側面144は、偏心軸132の外周面からブッシュ133の外周面に向けて延びている。 In FIG. 8, the direction of rotation of the driven scroll 118 when the driving scroll 117 is rotating in the forward direction is indicated by arrow R2. The first side surface 143 is located on the leading side of the second side surface 144 in the direction of rotation of the driven scroll 118 when the driving scroll 117 is rotating in the forward direction. The first side surface 143 and the second side surface 144 extend from the outer circumferential surface of the eccentric shaft 132 toward the outer circumferential surface of the bush 133.
 第1側面143及び第2側面144は、偏心軸132の外周面から駆動スクロール117が正方向へ回転しているときの従動スクロール118の回転方向とは逆方向に湾曲している。したがって、第1側面143及び第2側面144は、貫通孔134から駆動スクロール117が正方向へ回転しているときの従動スクロール118の回転方向とは逆方向に湾曲して流入口139に向けて延びる案内面145をそれぞれ有している。したがって、オイル通路137は、貫通孔134から駆動スクロール117が正方向へ回転しているときの従動スクロール118の回転方向とは逆方向に湾曲して流入口139に向けて延びる案内面145を有している。各案内面145は、オイル通路137を流れるオイルを貫通孔134に向けて案内する。 The first side surface 143 and the second side surface 144 are curved in the opposite direction to the rotation direction of the driven scroll 118 when the driving scroll 117 rotates in the forward direction from the outer peripheral surface of the eccentric shaft 132. Therefore, the first side surface 143 and the second side surface 144 each have a guide surface 145 that curves in the opposite direction to the rotation direction of the driven scroll 118 when the driving scroll 117 rotates in the forward direction from the through hole 134 and extends toward the inlet 139. Therefore, the oil passage 137 has a guide surface 145 that curves in the opposite direction to the rotation direction of the driven scroll 118 when the driving scroll 117 rotates in the forward direction from the through hole 134 and extends toward the inlet 139. Each guide surface 145 guides the oil flowing through the oil passage 137 toward the through hole 134.
 <オイル溝146>
 図7に示すように、貫通孔134の内周面には、オイル溝146が形成されている。オイル溝146は、貫通孔134の内周面における貫通孔134の中心L13よりもブッシュ133の中心L12に近い部分に形成されている。よって、オイル溝146は、貫通孔134の内周面であって、且つ、貫通孔134の内周面と偏心軸132の外周面との間で従動スクロール118から伝達される圧縮荷重F1が作用する箇所とは位相が異なる部分に形成されている。したがって、オイル溝146は、貫通孔134の内周面であって、且つ、貫通孔134の内周面と偏心軸132の外周面との間で従動スクロール118から伝達される圧縮荷重F1が作用する箇所を除く部分に形成されている。
<Oil groove 146>
As shown in FIG. 7, an oil groove 146 is formed on the inner circumferential surface of the through hole 134. The oil groove 146 is formed in a portion of the inner circumferential surface of the through hole 134 closer to the center L12 of the bush 133 than the center L13 of the through hole 134. Thus, the oil groove 146 is formed on the inner circumferential surface of the through hole 134, and in a portion that is out of phase with the portion on which the compressive load F1 transmitted from the driven scroll 118 acts between the inner circumferential surface of the through hole 134 and the outer circumferential surface of the eccentric shaft 132. Thus, the oil groove 146 is formed on the inner circumferential surface of the through hole 134, and in a portion excluding the portion on which the compressive load F1 transmitted from the driven scroll 118 acts between the inner circumferential surface of the through hole 134 and the outer circumferential surface of the eccentric shaft 132.
 図6に示すように、オイル溝146の第1端は、オイル通路137の第2端に連通している。オイル溝146の第2端は、ブッシュ133における従動渦巻壁118b側の端面に開口している。オイル溝146は、オイル通路137の第2端と、ブッシュ133における従動渦巻壁118b側の端面と従動基板118aとの間の空間147とを接続している。 As shown in FIG. 6, the first end of the oil groove 146 is connected to the second end of the oil passage 137. The second end of the oil groove 146 opens to the end face of the bushing 133 on the driven spiral wall 118b side. The oil groove 146 connects the second end of the oil passage 137 to the space 147 between the end face of the bushing 133 on the driven spiral wall 118b side and the driven base plate 118a.
 図8に示すように、偏心軸132の外周面は、オイル通路137の第2端を閉塞している。偏心軸132の外周面は、オイル通路137を流れるオイルを堰き止めてオイル溝146に案内する。 As shown in FIG. 8, the outer peripheral surface of the eccentric shaft 132 blocks the second end of the oil passage 137. The outer peripheral surface of the eccentric shaft 132 blocks the oil flowing through the oil passage 137 and guides it to the oil groove 146.
 [第2実施形態の作用]
 次に、第2実施形態の作用について説明する。
 ブッシュ133の周囲に存在するオイルが流入口139からオイル通路137に流入してオイル溝146に供給される。ブッシュ133の周囲に存在するオイルは、駆動スクロール117が正方向へ回転しているときの従動スクロール118の回転に追従して、従動スクロール118の回転方向に流れる。このとき、案内面145が、貫通孔134から駆動スクロール117が正方向へ回転しているときの従動スクロール118の回転方向とは逆方向に湾曲して流入口139に向けて延びている。したがって、ブッシュ133の周囲に存在して、従動スクロール118の回転方向に流れているオイルが、流入口139を介して案内面145によって貫通孔134に向けて案内され易くなっている。このため、流入口139からのオイルがオイル通路137を介してオイル溝146に供給され易くなっている。また、流入口139からオイル通路137を流れるオイルが偏心軸132の外周面に堰き止められてオイル溝146に案内される。このため、流入口139からのオイルがオイル通路137を介してオイル溝146に供給され易くなっている。
[Operation of the second embodiment]
Next, the operation of the second embodiment will be described.
Oil present around the bush 133 flows from the inlet 139 into the oil passage 137 and is supplied to the oil groove 146. The oil present around the bush 133 follows the rotation of the driven scroll 118 when the driving scroll 117 rotates in the forward direction and flows in the rotation direction of the driven scroll 118. At this time, the guide surface 145 curves from the through hole 134 in the opposite direction to the rotation direction of the driven scroll 118 when the driving scroll 117 rotates in the forward direction and extends toward the inlet 139. Therefore, the oil present around the bush 133 and flowing in the rotation direction of the driven scroll 118 is easily guided by the guide surface 145 toward the through hole 134 via the inlet 139. For this reason, the oil from the inlet 139 is easily supplied to the oil groove 146 via the oil passage 137. In addition, the oil flowing from the inlet 139 through the oil passage 137 is blocked by the outer circumferential surface of the eccentric shaft 132 and guided to the oil groove 146. This makes it easier for oil from the inlet 139 to be supplied to the oil groove 146 via the oil passage 137 .
 流入口139が、ブッシュ133の外周面における鉛直方向Z1の上方に位置する部分に開口している。よって、ブッシュ133の周囲に存在するオイルが自重によって落下して流入口139に流入し易くなる。このため、ブッシュ133の周囲に存在するオイルが流入口139からオイル通路137に流入してオイル溝146に供給され易くなっている。 The inlet 139 opens to a portion of the outer circumferential surface of the bush 133 that is located above the vertical direction Z1. This makes it easier for oil present around the bush 133 to fall under its own weight and flow into the inlet 139. This makes it easier for oil present around the bush 133 to flow from the inlet 139 into the oil passage 137 and be supplied to the oil groove 146.
 オイル溝146に供給されたオイルは、オイル溝146を通過して、ブッシュ133における従動渦巻壁118b側の端面と従動基板118aとの間の空間147に流出する。そして、空間147に流出したオイルが、軸受135に供給される。これにより、軸受135の潤滑が良好なものとなる。 Oil supplied to oil groove 146 passes through oil groove 146 and flows out into space 147 between the end face of bushing 133 on the driven spiral wall 118b side and driven base plate 118a. The oil that flows out into space 147 is then supplied to bearing 135. This ensures good lubrication of bearing 135.
 [第2実施形態の効果]
 第2実施形態では、第1実施形態の効果(1-4)及び(1-5)と同様な効果に加えて、以下の効果を得ることができる。
[Effects of the second embodiment]
In the second embodiment, in addition to the effects (1-4) and (1-5) of the first embodiment, the following effects can be obtained.
 (2-1)ブッシュ133は、支持軸105の先端面105aと対向する対向面133aにオイル通路137を有している。オイル通路137は、貫通孔134からブッシュ133の外周面に向けて延びるとともにブッシュ133の外周面に開口する流入口139を有している。貫通孔134の内周面であって、且つ、貫通孔134の内周面と偏心軸132の外周面との間で従動スクロール118から伝達される圧縮荷重F1が作用する箇所を除く部分には、オイル溝146が形成されている。オイル溝146は、オイル通路137に連通するとともにブッシュ133における従動渦巻壁118b側の端面に開口する。これによれば、ブッシュ133の周囲に存在するオイルが流入口139からオイル通路137に流入してオイル溝146に供給される。オイル溝146に供給されたオイルは、オイル溝146を通過して、ブッシュ133における従動渦巻壁118b側の端面と従動基板118aとの間の空間147に流出する。そして、空間147に流出したオイルが、軸受135に供給される。これにより、軸受135の潤滑が良好なものとなるため、スクロール型圧縮機100の耐久性が向上する。 (2-1) The bushing 133 has an oil passage 137 on the opposing surface 133a that faces the tip surface 105a of the support shaft 105. The oil passage 137 extends from the through hole 134 toward the outer peripheral surface of the bushing 133 and has an inlet 139 that opens into the outer peripheral surface of the bushing 133. An oil groove 146 is formed on the inner peripheral surface of the through hole 134, except for the portion where the compressive load F1 transmitted from the driven scroll 118 acts between the inner peripheral surface of the through hole 134 and the outer peripheral surface of the eccentric shaft 132. The oil groove 146 communicates with the oil passage 137 and opens into the end surface of the bushing 133 on the side of the driven scroll wall 118b. As a result, oil present around the bushing 133 flows from the inlet 139 into the oil passage 137 and is supplied to the oil groove 146. The oil supplied to the oil groove 146 passes through the oil groove 146 and flows out into the space 147 between the end face of the bush 133 on the driven spiral wall 118b side and the driven base plate 118a. The oil that flows out into the space 147 is then supplied to the bearing 135. This improves the lubrication of the bearing 135, improving the durability of the scroll compressor 100.
 オイル溝146は、貫通孔134の内周面に形成されている。したがって、従来技術のように、軸受135にオイルを供給するために、偏心軸132が挿入される貫通孔134とは別の貫通孔をブッシュ133に形成する必要が無い。このため、ブッシュ133の肉厚を確保する必要が無い。その結果、ブッシュ133が大型化してしまうことを回避することができる。このため、スクロール型圧縮機100の小型化を図ることができる。また、オイル溝146が、貫通孔134の内周面であって、且つ、貫通孔134の内周面と偏心軸132の外周面との間で従動スクロール118から伝達される圧縮荷重F1が作用する箇所を除く部分に形成されている。したがって、貫通孔134の内周面にオイル溝146を形成しても、ブッシュ133における偏心軸132を中心とした揺動が、オイル溝146によって阻害されることも無い。以上により、スクロール型圧縮機100において、小型化を図りつつも、耐久性を向上させることができる。 The oil groove 146 is formed on the inner circumferential surface of the through hole 134. Therefore, unlike the conventional technology, there is no need to form a through hole in the bush 133 other than the through hole 134 into which the eccentric shaft 132 is inserted in order to supply oil to the bearing 135. Therefore, there is no need to ensure the thickness of the bush 133. As a result, it is possible to avoid the bush 133 becoming larger. Therefore, it is possible to reduce the size of the scroll compressor 100. In addition, the oil groove 146 is formed on the inner circumferential surface of the through hole 134, and in a portion excluding the portion where the compression load F1 transmitted from the driven scroll 118 acts between the inner circumferential surface of the through hole 134 and the outer circumferential surface of the eccentric shaft 132. Therefore, even if the oil groove 146 is formed on the inner circumferential surface of the through hole 134, the rocking motion of the bush 133 about the eccentric shaft 132 is not hindered by the oil groove 146. As a result, it is possible to improve the durability while reducing the size of the scroll compressor 100.
 (2-2)このように、駆動スクロール117及び従動スクロール118を備えたスクロール型圧縮機100において、小型化を図りつつも、耐久性を向上させることができる。 (2-2) In this way, the scroll compressor 100 equipped with the driving scroll 117 and the driven scroll 118 can be made compact while improving durability.
 (2-3)流入口139は、ブッシュ133の外周面における鉛直方向Z1の上方に位置する部分に開口している。これによれば、ブッシュ133の周囲に存在するオイルが自重によって落下して流入口139に流入し易くなる。このため、ブッシュ133の周囲に存在するオイルが流入口139からオイル通路137に流入してオイル溝146に供給され易くなる。したがって、軸受135の潤滑がさらに良好なものとなるため、スクロール型圧縮機100の耐久性をさらに向上させることができる。 (2-3) The inlet 139 opens to a portion of the outer circumferential surface of the bush 133 that is located above in the vertical direction Z1. This makes it easier for oil present around the bush 133 to fall under its own weight and flow into the inlet 139. This makes it easier for oil present around the bush 133 to flow from the inlet 139 into the oil passage 137 and be supplied to the oil groove 146. This further improves the lubrication of the bearing 135, thereby further improving the durability of the scroll compressor 100.
 (2-4)オイル通路137は、貫通孔134から駆動スクロール117が正方向へ回転しているときの従動スクロール118の回転方向とは逆方向に湾曲して流入口139に向けて延びる案内面145を有している。案内面145は、オイル通路137を流れるオイルを貫通孔134に向けて案内する。ブッシュ133の周囲に存在するオイルは、駆動スクロール117が正方向へ回転しているときの従動スクロール118の回転に追従して、従動スクロール118の回転方向に流れる。このとき、案内面145が、貫通孔134から駆動スクロール117が正方向へ回転しているときの従動スクロール118の回転方向とは逆方向に湾曲して流入口139に向けて延びている。したがって、ブッシュ133の周囲に存在して、従動スクロール118の回転方向に流れているオイルが、流入口139を介して案内面145によって貫通孔134に向けて案内され易くなる。このため、流入口139からのオイルがオイル通路137を介してオイル溝146に供給され易くなる。その結果、軸受135にオイルが効率良く供給されるため、軸受135の潤滑がさらに良好なものとなる。したがって、スクロール型圧縮機100の耐久性をさらに向上させることができる。 (2-4) The oil passage 137 has a guide surface 145 that curves in the opposite direction to the rotation direction of the driven scroll 118 when the driving scroll 117 rotates in the forward direction from the through hole 134 and extends toward the inlet 139. The guide surface 145 guides the oil flowing through the oil passage 137 toward the through hole 134. The oil present around the bush 133 follows the rotation of the driven scroll 118 when the driving scroll 117 rotates in the forward direction and flows in the rotation direction of the driven scroll 118. At this time, the guide surface 145 curves in the opposite direction to the rotation direction of the driven scroll 118 when the driving scroll 117 rotates in the forward direction from the through hole 134 and extends toward the inlet 139. Therefore, the oil present around the bush 133 and flowing in the rotation direction of the driven scroll 118 is easily guided by the guide surface 145 toward the through hole 134 via the inlet 139. This makes it easier for oil from the inlet 139 to be supplied to the oil groove 146 via the oil passage 137. As a result, oil is efficiently supplied to the bearing 135, which further improves the lubrication of the bearing 135. This further improves the durability of the scroll compressor 100.
 [変更例]
 なお、上記各実施形態は、以下のように変更して実施することができる。上記各実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
[Example of change]
The above-described embodiments may be modified as follows: The above-described embodiments and the following modifications may be combined with each other to the extent that no technical contradiction occurs.
 第1実施形態において、ブッシュ筒部52における貫通孔54の中心L3よりもブッシュ筒部52の中心L2に近い部分から偏心軸50に圧縮荷重F1が作用していてもよい。この場合、オイル溝70は、貫通孔54の内周面におけるブッシュ筒部52の中心L2よりも貫通孔54の中心L3に近い部分に近い部分に形成されている。要は、貫通孔54の内周面であって、且つ、圧縮荷重F1が作用する箇所を除く部分に、オイル溝70が形成されていればよい。 In the first embodiment, the compressive load F1 may act on the eccentric shaft 50 from a portion of the bushing cylindrical portion 52 that is closer to the center L2 of the bushing cylindrical portion 52 than the center L3 of the through hole 54. In this case, the oil groove 70 is formed in a portion of the inner circumferential surface of the through hole 54 that is closer to the center L3 of the through hole 54 than the center L2 of the bushing cylindrical portion 52. In short, it is sufficient that the oil groove 70 is formed on the inner circumferential surface of the through hole 54, except for the portion where the compressive load F1 acts.
 第2実施形態において、ブッシュ133における貫通孔134の中心L13よりもブッシュ133の中心L12に近い部分から偏心軸132に圧縮荷重F1が作用していてもよい。この場合、オイル溝146は、貫通孔134の内周面におけるブッシュ133の中心L12よりも貫通孔134の中心L13に近い部分に近い部分に形成されている。要は、貫通孔134の内周面であって、且つ、圧縮荷重F1が作用する箇所を除く部分に、オイル溝146が形成されていればよい。 In the second embodiment, the compressive load F1 may act on the eccentric shaft 132 from a portion of the bushing 133 closer to the center L12 of the bushing 133 than the center L13 of the through hole 134. In this case, the oil groove 146 is formed in a portion of the inner surface of the through hole 134 closer to the portion closer to the center L13 of the through hole 134 than the center L12 of the bushing 133. In short, it is sufficient that the oil groove 146 is formed on the inner surface of the through hole 134, except for the portion where the compressive load F1 acts.
 第2実施形態において、流入口139が、ブッシュ133の外周面における鉛直方向Z1の下方に位置する部分に開口していてもよい。
 図9に示すように、第1実施形態において、オイル溝70が、偏心軸50の外周面に形成されていてもよい。この場合、偏心軸50の外周面であって、且つ、貫通孔54の内周面と偏心軸50の外周面との間で旋回スクロール26から伝達される圧縮荷重F1が作用する箇所を除く部分に、オイル溝70が形成されている。図9に示す実施形態では、貫通孔54の内周面には、オイル溝70が形成されていない。また、偏心軸50の外周面にオイル溝70を形成する場合、偏心軸50の外周面に対して、ブッシュ51が偏心軸50を中心に揺動しても、オイル溝70とオイル通路60とが常に連通可能な位置にオイル溝70を形成する必要がある。偏心軸50の外周面には、オイル溝70が比較的形成し易い。このように、偏心軸50の外周面にオイル溝70が形成されている構成は、スクロール型圧縮機10の設計を容易にすることができる。
In the second embodiment, the inlet 139 may open to a portion of the outer circumferential surface of the bush 133 that is located downward in the vertical direction Z1.
As shown in FIG. 9, in the first embodiment, the oil groove 70 may be formed on the outer peripheral surface of the eccentric shaft 50. In this case, the oil groove 70 is formed on the outer peripheral surface of the eccentric shaft 50, except for the portion on which the compression load F1 transmitted from the orbiting scroll 26 acts between the inner peripheral surface of the through hole 54 and the outer peripheral surface of the eccentric shaft 50. In the embodiment shown in FIG. 9, the oil groove 70 is not formed on the inner peripheral surface of the through hole 54. In addition, when the oil groove 70 is formed on the outer peripheral surface of the eccentric shaft 50, it is necessary to form the oil groove 70 at a position where the oil groove 70 and the oil passage 60 can always communicate with each other even if the bush 51 oscillates around the eccentric shaft 50. The oil groove 70 is relatively easy to form on the outer peripheral surface of the eccentric shaft 50. In this way, the configuration in which the oil groove 70 is formed on the outer peripheral surface of the eccentric shaft 50 can facilitate the design of the scroll compressor 10.
 図10に示すように、第2実施形態において、オイル溝146が、偏心軸132の外周面に形成されていてもよい。この場合、偏心軸132の外周面であって、且つ、貫通孔134の内周面と偏心軸132の外周面との間で従動スクロール118から伝達される圧縮荷重F1が作用する箇所を除く部分に、オイル溝146が形成されている。図10に示す実施形態では、貫通孔134の内周面には、オイル溝146が形成されていない。また、偏心軸132の外周面にオイル溝146を形成する場合、偏心軸132の外周面に対して、ブッシュ133が偏心軸132を中心に揺動しても、オイル溝146とオイル通路137とが常に連通可能な位置にオイル溝146を形成する必要がある。偏心軸132の外周面には、オイル溝146が比較的形成し易い。このように、偏心軸132の外周面にオイル溝146が形成されている構成は、スクロール型圧縮機100の設計を容易にすることができる。 As shown in FIG. 10, in the second embodiment, the oil groove 146 may be formed on the outer peripheral surface of the eccentric shaft 132. In this case, the oil groove 146 is formed on the outer peripheral surface of the eccentric shaft 132, except for the portion on which the compressive load F1 transmitted from the driven scroll 118 acts between the inner peripheral surface of the through hole 134 and the outer peripheral surface of the eccentric shaft 132. In the embodiment shown in FIG. 10, the oil groove 146 is not formed on the inner peripheral surface of the through hole 134. In addition, when the oil groove 146 is formed on the outer peripheral surface of the eccentric shaft 132, it is necessary to form the oil groove 146 at a position where the oil groove 146 and the oil passage 137 can always communicate with each other even if the bush 133 oscillates around the eccentric shaft 132. It is relatively easy to form the oil groove 146 on the outer peripheral surface of the eccentric shaft 132. In this way, the configuration in which the oil groove 146 is formed on the outer peripheral surface of the eccentric shaft 132 can facilitate the design of the scroll compressor 100.
 第1実施形態において、貫通孔54の内周面及び偏心軸50の外周面の両方にオイル溝70が形成されていてもよい。要は、貫通孔54の内周面及び偏心軸50の外周面の少なくとも一方であって、且つ、貫通孔54の内周面と偏心軸50の外周面との間で旋回スクロール26から伝達される圧縮荷重F1が作用する箇所を除く部分に、オイル溝70が形成されていればよい。 In the first embodiment, the oil groove 70 may be formed on both the inner circumferential surface of the through hole 54 and the outer circumferential surface of the eccentric shaft 50. In short, it is sufficient that the oil groove 70 is formed on at least one of the inner circumferential surface of the through hole 54 and the outer circumferential surface of the eccentric shaft 50, excluding the portion where the compressive load F1 transmitted from the orbiting scroll 26 acts between the inner circumferential surface of the through hole 54 and the outer circumferential surface of the eccentric shaft 50.
 第2実施形態において、貫通孔134の内周面及び偏心軸132の外周面の両方にオイル溝146が形成されていてもよい。要は、貫通孔134の内周面及び偏心軸132の外周面の少なくとも一方であって、且つ、貫通孔134の内周面と偏心軸132の外周面との間で従動スクロール118から伝達される圧縮荷重F1が作用する箇所を除く部分に、オイル溝146が形成されていればよい。 In the second embodiment, the oil groove 146 may be formed on both the inner circumferential surface of the through hole 134 and the outer circumferential surface of the eccentric shaft 132. In short, it is sufficient that the oil groove 146 is formed on at least one of the inner circumferential surface of the through hole 134 and the outer circumferential surface of the eccentric shaft 132, excluding the portion where the compressive load F1 transmitted from the driven scroll 118 acts between the inner circumferential surface of the through hole 134 and the outer circumferential surface of the eccentric shaft 132.
 第1実施形態において、通路形成凹部62の第1側面64及び第2側面65が、偏心軸50の外周面からブッシュ鍔部53の外周面に向けて真っ直ぐに延びていてもよい。要は、オイル通路60は、案内面66を有していなくてもよい。 In the first embodiment, the first side 64 and the second side 65 of the passage forming recess 62 may extend straight from the outer peripheral surface of the eccentric shaft 50 toward the outer peripheral surface of the bush flange portion 53. In other words, the oil passage 60 does not need to have a guide surface 66.
 第2実施形態において、通路形成凹部141の第1側面143及び第2側面144が、偏心軸132の外周面からブッシュ133の外周面に向けて真っ直ぐに延びていてもよい。要は、オイル通路137は、案内面145を有していなくてもよい。 In the second embodiment, the first side 143 and the second side 144 of the passage forming recess 141 may extend straight from the outer peripheral surface of the eccentric shaft 132 toward the outer peripheral surface of the bush 133. In other words, the oil passage 137 does not need to have a guide surface 145.
 第1実施形態において、オイル通路60の第2端が、ブッシュ51の外周面に開口していてもよい。要は、偏心軸50の外周面が、オイル通路60の第2端を閉塞していなくてもよい。 In the first embodiment, the second end of the oil passage 60 may open to the outer peripheral surface of the bush 51. In other words, the outer peripheral surface of the eccentric shaft 50 does not have to close the second end of the oil passage 60.
 第2実施形態において、オイル通路137の第2端が、ブッシュ133の外周面に開口していてもよい。要は、偏心軸132の外周面が、オイル通路137の第2端を閉塞していなくてもよい。 In the second embodiment, the second end of the oil passage 137 may open to the outer peripheral surface of the bush 133. In other words, the outer peripheral surface of the eccentric shaft 132 does not have to close the second end of the oil passage 137.
 第1実施形態において、偏心軸50は、回転軸15に一体形成されておらず、回転軸15とは別体であってもよい。この場合、偏心軸50は、回転軸15の先端面15eに取り付けられている。 In the first embodiment, the eccentric shaft 50 is not integrally formed with the rotating shaft 15, and may be separate from the rotating shaft 15. In this case, the eccentric shaft 50 is attached to the tip surface 15e of the rotating shaft 15.
 第2実施形態において、偏心軸132は、支持軸105に一体形成されていてもよい。
 第1実施形態において、バランスウェイト55が、ブッシュ51とは別体であってもよい。
In the second embodiment, the eccentric shaft 132 may be formed integrally with the support shaft 105 .
In the first embodiment, the balance weight 55 may be separate from the bush 51 .
 上記各実施形態において、スクロール型圧縮機10,100は、モータ22,110によって駆動されるタイプでなくてもよく、例えば、車両のエンジンによって駆動されるタイプであってもよい。 In each of the above embodiments, the scroll compressor 10, 100 does not have to be a type that is driven by the motor 22, 110, but may be a type that is driven by, for example, a vehicle engine.
 上記各実施形態において、スクロール型圧縮機10,100は、車両空調装置に用いられていたが、これに限らない。要は、スクロール型圧縮機10,100は、冷媒を圧縮するものであればよく、スクロール型圧縮機10,100の用途は適宜変更可能である。 In each of the above embodiments, the scroll compressor 10, 100 is used in a vehicle air conditioner, but this is not limited to this. In short, the scroll compressor 10, 100 may be used in any manner that compresses a refrigerant, and the use of the scroll compressor 10, 100 may be changed as appropriate.
 上記各実施形態において、スクロール型圧縮機10,100の圧縮対象は冷媒に限らず、例えば、空気などの流体であってもよい。
 上記各実施形態は、以下の付記に記載する構成を含む。
In each of the above-described embodiments, the object to be compressed by the scroll compressors 10 and 100 is not limited to a refrigerant, but may be a fluid such as air.
Each of the above embodiments includes the configurations described in the following supplementary notes.
 <付記1>
 ハウジングと、
 前記ハウジングに対して支持された支持軸と、
 第1基板、及び前記第1基板から起立する第1渦巻壁を有する第1スクロールと、
 前記第1基板に対向する第2基板、及び前記第2基板から前記第1基板に向けて起立して前記第1渦巻壁と噛み合う第2渦巻壁を有する第2スクロールと、
 前記支持軸の先端面から突出するとともに前記支持軸の軸線に対して偏心した位置で前記支持軸と平行に延びる偏心軸と、
 前記偏心軸が挿入される貫通孔を有するとともに前記偏心軸を中心に揺動可能なブッシュと、
 前記第2基板における前記第1基板とは反対側の端面に設けられるとともに前記ブッシュが内側に配置される筒状の保持部と、
 前記保持部の内周面と前記ブッシュの外周面との間に配置される軸受と、を備え、
 前記ブッシュは、前記軸受を介して前記保持部に保持されているスクロール型圧縮機であって、
 前記ブッシュは、前記支持軸の先端面と対向する対向面にオイル通路を有し、
 前記オイル通路は、前記貫通孔から前記ブッシュの外周面に向けて延びるとともに前記ブッシュの外周面に開口する流入口を有し、
 前記貫通孔の内周面及び前記偏心軸の外周面の少なくとも一方であって、且つ、前記貫通孔の内周面と前記偏心軸の外周面との間で前記第2スクロールから伝達される圧縮荷重が作用する箇所を除く部分には、前記オイル通路に連通するとともに前記ブッシュにおける前記第2渦巻壁側の端面に開口するオイル溝が形成されていることを特徴とするスクロール型圧縮機。
<Appendix 1>
Housing and
a support shaft supported relative to the housing;
a first scroll having a first base plate and a first scroll wall standing upright from the first base plate;
a second scroll including a second substrate facing the first substrate, and a second spiral wall rising from the second substrate toward the first substrate and meshing with the first spiral wall;
an eccentric shaft protruding from a tip end surface of the support shaft and extending parallel to the support shaft at a position eccentric with respect to an axis of the support shaft;
a bushing having a through hole into which the eccentric shaft is inserted and capable of swinging around the eccentric shaft;
a cylindrical holding portion provided on an end surface of the second substrate opposite to the first substrate, the bushing being disposed inside the cylindrical holding portion;
a bearing disposed between an inner circumferential surface of the retaining portion and an outer circumferential surface of the bush,
The bush is held by the holding portion via the bearing.
the bush has an oil passage on a surface facing the tip end surface of the support shaft,
the oil passage extends from the through hole toward an outer circumferential surface of the bush and has an inlet opening in the outer circumferential surface of the bush,
an oil groove communicating with the oil passage and opening into an end face of the bushing on the second scroll wall side is formed in at least one of an inner circumferential surface of the through hole and an outer circumferential surface of the eccentric shaft, excluding a portion where a compressive load transmitted from the second scroll acts between the inner circumferential surface of the through hole and the outer circumferential surface of the eccentric shaft.
 <付記2>
 前記支持軸は、前記ハウジングに対して回転可能に支持された回転軸であり、
 前記第1スクロールは、前記第1基板としての固定基板、及び前記固定基板から起立する前記第1渦巻壁としての固定渦巻壁を有する固定スクロールであり、
 前記第2スクロールは、前記固定基板に対向する前記第2基板としての旋回基板、及び前記旋回基板から前記固定基板に向けて起立して前記固定渦巻壁と噛み合う前記第2渦巻壁としての旋回渦巻壁を有するとともに前記回転軸の回転によって公転する旋回スクロールであることを特徴とする<付記1>に記載のスクロール型圧縮機。
<Appendix 2>
the support shaft is a rotation shaft rotatably supported with respect to the housing,
the first scroll is a fixed scroll having a fixed base plate as the first base plate and a fixed spiral wall as the first spiral wall standing up from the fixed base plate,
The second scroll is an orbiting scroll that has a rotating base plate as the second base plate facing the fixed base plate, and a orbiting spiral wall as the second spiral wall that stands from the orbiting base plate toward the fixed base plate and meshes with the fixed spiral wall, and that revolves by rotation of the rotation shaft.
 <付記3>
 前記オイル通路は、前記貫通孔から前記回転軸が正方向へ回転しているときの前記ブッシュの回転方向に湾曲して前記流入口に向けて延びる案内面を有し、
 前記案内面は、前記オイル通路を流れるオイルを前記貫通孔に向けて案内することを特徴とする<付記2>に記載のスクロール型圧縮機。
<Appendix 3>
the oil passage has a guide surface that curves in a rotation direction of the bush when the rotation shaft rotates in a forward direction and extends from the through hole toward the inlet,
The scroll compressor according to <Appendix 2>, wherein the guide surface guides the oil flowing through the oil passage toward the through hole.
 <付記4>
 前記第1スクロールは、前記第1基板としての駆動基板、及び前記駆動基板から起立する前記第1渦巻壁としての駆動渦巻壁を有するとともに前記支持軸の軸線回りで回転する駆動スクロールであり、
 前記第2スクロールは、前記駆動基板に対向する前記第2基板としての従動基板、及び前記従動基板から前記駆動基板に向けて起立して前記駆動渦巻壁と噛み合う前記第2渦巻壁としての従動渦巻壁を有するとともに前記駆動スクロールの回転に追従して回転する従動スクロールであることを特徴とする<付記1>に記載のスクロール型圧縮機。
<Appendix 4>
the first scroll is a drive scroll having a drive substrate as the first substrate and a drive spiral wall as the first spiral wall standing from the drive substrate and rotating around an axis of the support shaft,
The second scroll is a driven scroll having a driven substrate as the second substrate facing the drive substrate, and a driven spiral wall as the second spiral wall rising from the driven substrate toward the drive substrate and meshing with the drive spiral wall, and rotating following the rotation of the drive scroll.
 <付記5>
 前記流入口は、前記ブッシュの外周面における鉛直方向の上方に位置する部分に開口していることを特徴とする<付記4>に記載のスクロール型圧縮機。
<Appendix 5>
The scroll compressor according to <Appendix 4>, wherein the inlet is open to a portion of the outer circumferential surface of the bush that is located vertically upward.
 <付記6>
 前記オイル通路は、前記貫通孔から前記駆動スクロールが正方向へ回転しているときの前記従動スクロールの回転方向とは逆方向に湾曲して前記流入口に向けて延びる案内面を有し、
 前記案内面は、前記オイル通路を流れるオイルを前記貫通孔に向けて案内することを特徴とする<付記4>又は<付記5>に記載のスクロール型圧縮機。
<Appendix 6>
The oil passage has a guide surface that curves in a direction opposite to a rotation direction of the driven scroll when the driving scroll rotates in a forward direction from the through hole toward the inlet,
The scroll compressor according to <Appendix 4> or <Appendix 5>, wherein the guide surface guides the oil flowing through the oil passage toward the through hole.
 <付記7>
 前記偏心軸の外周面は、前記オイル通路を流れるオイルを堰き止めて前記オイル溝に案内することを特徴とする<付記1>~<付記6>のいずれか1つに記載のスクロール型圧縮機。
<Appendix 7>
The scroll compressor according to any one of <Appendix 1> to <Appendix 6>, wherein an outer peripheral surface of the eccentric shaft blocks oil flowing through the oil passage and guides it to the oil groove.
 <付記8>
 前記オイル溝は、前記貫通孔の内周面に形成されていることを特徴とする<付記1>~<付記7>のいずれか1つに記載のスクロール型圧縮機。
<Appendix 8>
The scroll compressor according to any one of <Appendix 1> to <Appendix 7>, wherein the oil groove is formed on an inner circumferential surface of the through hole.
 <付記9>
 前記オイル溝は、前記偏心軸の外周面に形成されていることを特徴とする<付記1>~<付記7>のいずれか1つに記載のスクロール型圧縮機。
<Appendix 9>
The scroll compressor according to any one of <Appendix 1> to <Appendix 7>, wherein the oil groove is formed on an outer circumferential surface of the eccentric shaft.
 10,100…スクロール型圧縮機、11,101…ハウジング、15…回転軸(支持軸)、15e…先端面、25…固定スクロール(第1スクロール)、25a…固定基板(第1基板)、25b…固定渦巻壁(第1渦巻壁)、26…旋回スクロール(第2スクロール)、26a…旋回基板(第2基板)、26b…旋回渦巻壁(第2渦巻壁)、26e…端面、28…ボス部(保持部)、50,132…偏心軸、51,133…ブッシュ、51a,133a…対向面、54,134…貫通孔、56,135…軸受、60,137…オイル通路、61,139…流入口、66,145…案内面、70,146…オイル溝、105…支持軸、105a…先端面、117…駆動スクロール(第1スクロール)、117a…駆動基板(第1基板)、117b…駆動渦巻壁(第1渦巻壁)、118…従動スクロール(第2スクロール)、118a…従動基板(第2基板)、118b…従動渦巻壁(第2渦巻壁)、130…保持部。 10,100...Scroll type compressor, 11,101...Housing, 15...Rotating shaft (support shaft), 15e...Tip surface, 25...Fixed scroll (first scroll), 25a...Fixed base plate (first base plate), 25b...Fixed spiral wall (first spiral wall), 26...Orbiting scroll (second scroll), 26a...Orbiting base plate (second base plate), 26b...Orbiting spiral wall (second spiral wall), 26e...End surface, 28...Boss portion (retaining portion), 50,132...Eccentric shaft, 51,133...Bush, 51a,133a... Opposing surface, 54, 134...through hole, 56, 135...bearing, 60, 137...oil passage, 61, 139...inlet, 66, 145...guide surface, 70, 146...oil groove, 105...support shaft, 105a...tip surface, 117...driving scroll (first scroll), 117a...driving substrate (first substrate), 117b...driving spiral wall (first spiral wall), 118...driven scroll (second scroll), 118a...driven substrate (second substrate), 118b...driven spiral wall (second spiral wall), 130...retaining portion.

Claims (9)

  1.  ハウジングと、
     前記ハウジングに対して支持された支持軸と、
     第1基板、及び前記第1基板から起立する第1渦巻壁を有する第1スクロールと、
     前記第1基板に対向する第2基板、及び前記第2基板から前記第1基板に向けて起立して前記第1渦巻壁と噛み合う第2渦巻壁を有する第2スクロールと、
     前記支持軸の先端面から突出するとともに前記支持軸の軸線に対して偏心した位置で前記支持軸と平行に延びる偏心軸と、
     前記偏心軸が挿入される貫通孔を有するとともに前記偏心軸を中心に揺動可能なブッシュと、
     前記第2基板における前記第1基板とは反対側の端面に設けられるとともに前記ブッシュが内側に配置される筒状の保持部と、
     前記保持部の内周面と前記ブッシュの外周面との間に配置される軸受と、を備え、
     前記ブッシュは、前記軸受を介して前記保持部に保持されているスクロール型圧縮機であって、
     前記ブッシュは、前記支持軸の先端面と対向する対向面にオイル通路を有し、
     前記オイル通路は、前記貫通孔から前記ブッシュの外周面に向けて延びるとともに前記ブッシュの外周面に開口する流入口を有し、
     前記貫通孔の内周面及び前記偏心軸の外周面の少なくとも一方であって、且つ、前記貫通孔の内周面と前記偏心軸の外周面との間で前記第2スクロールから伝達される圧縮荷重が作用する箇所を除く部分には、前記オイル通路に連通するとともに前記ブッシュにおける前記第2渦巻壁側の端面に開口するオイル溝が形成されていることを特徴とするスクロール型圧縮機。
    Housing and
    a support shaft supported relative to the housing;
    a first scroll having a first base plate and a first scroll wall standing upright from the first base plate;
    a second scroll including a second substrate facing the first substrate, and a second spiral wall rising from the second substrate toward the first substrate and meshing with the first spiral wall;
    an eccentric shaft protruding from a tip end surface of the support shaft and extending parallel to the support shaft at a position eccentric with respect to an axis of the support shaft;
    a bushing having a through hole into which the eccentric shaft is inserted and capable of swinging around the eccentric shaft;
    a cylindrical holding portion provided on an end surface of the second substrate opposite to the first substrate, the bushing being disposed inside the cylindrical holding portion;
    a bearing disposed between an inner circumferential surface of the retaining portion and an outer circumferential surface of the bush,
    The bush is held by the holding portion via the bearing.
    The bush has an oil passage on a surface facing the tip end surface of the support shaft,
    the oil passage extends from the through hole toward an outer circumferential surface of the bush and has an inlet opening in the outer circumferential surface of the bush,
    an oil groove communicating with the oil passage and opening into an end face of the bushing on the second scroll wall side is formed in at least one of an inner circumferential surface of the through hole and an outer circumferential surface of the eccentric shaft, excluding a portion where a compressive load transmitted from the second scroll acts between the inner circumferential surface of the through hole and the outer circumferential surface of the eccentric shaft.
  2.  前記支持軸は、前記ハウジングに対して回転可能に支持された回転軸であり、
     前記第1スクロールは、前記第1基板としての固定基板、及び前記固定基板から起立する前記第1渦巻壁としての固定渦巻壁を有する固定スクロールであり、
     前記第2スクロールは、前記固定基板に対向する前記第2基板としての旋回基板、及び前記旋回基板から前記固定基板に向けて起立して前記固定渦巻壁と噛み合う前記第2渦巻壁としての旋回渦巻壁を有するとともに前記回転軸の回転によって公転する旋回スクロールであることを特徴とする請求項1に記載のスクロール型圧縮機。
    the support shaft is a rotation shaft rotatably supported with respect to the housing,
    the first scroll is a fixed scroll having a fixed base plate as the first base plate and a fixed spiral wall as the first spiral wall standing up from the fixed base plate,
    2. The scroll compressor according to claim 1, wherein the second scroll is an orbiting scroll that has a rotating base plate as the second base plate facing the fixed base plate, and a orbiting spiral wall as the second spiral wall that stands from the orbiting base plate toward the fixed base plate and meshes with the fixed spiral wall, and that revolves by rotation of the rotating shaft.
  3.  前記オイル通路は、前記貫通孔から前記回転軸が正方向へ回転しているときの前記ブッシュの回転方向に湾曲して前記流入口に向けて延びる案内面を有し、
     前記案内面は、前記オイル通路を流れるオイルを前記貫通孔に向けて案内することを特徴とする請求項2に記載のスクロール型圧縮機。
    the oil passage has a guide surface that curves in a rotation direction of the bush when the rotation shaft rotates in a forward direction from the through hole toward the inlet,
    The scroll compressor according to claim 2 , wherein the guide surface guides the oil flowing through the oil passage toward the through hole.
  4.  前記第1スクロールは、前記第1基板としての駆動基板、及び前記駆動基板から起立する前記第1渦巻壁としての駆動渦巻壁を有するとともに前記支持軸の軸線回りで回転する駆動スクロールであり、
     前記第2スクロールは、前記駆動基板に対向する前記第2基板としての従動基板、及び前記従動基板から前記駆動基板に向けて起立して前記駆動渦巻壁と噛み合う前記第2渦巻壁としての従動渦巻壁を有するとともに前記駆動スクロールの回転に追従して回転する従動スクロールであることを特徴とする請求項1に記載のスクロール型圧縮機。
    the first scroll is a drive scroll having a drive substrate as the first substrate and a drive spiral wall as the first spiral wall standing from the drive substrate and rotating around an axis of the support shaft,
    2. The scroll-type compressor according to claim 1, wherein the second scroll is a driven scroll that rotates following the rotation of the driving scroll, the driven scroll having a driven substrate as the second substrate facing the driving substrate, and a driven spiral wall as the second spiral wall that stands from the driven substrate toward the driving substrate and meshes with the driving spiral wall.
  5.  前記流入口は、前記ブッシュの外周面における鉛直方向の上方に位置する部分に開口していることを特徴とする請求項4に記載のスクロール型圧縮機。 The scroll compressor according to claim 4, characterized in that the inlet opens to a portion of the outer circumferential surface of the bush that is located vertically above the bush.
  6.  前記オイル通路は、前記貫通孔から前記駆動スクロールが正方向へ回転しているときの前記従動スクロールの回転方向とは逆方向に湾曲して前記流入口に向けて延びる案内面を有し、
     前記案内面は、前記オイル通路を流れるオイルを前記貫通孔に向けて案内することを特徴とする請求項4又は請求項5に記載のスクロール型圧縮機。
    The oil passage has a guide surface that curves in a direction opposite to a rotation direction of the driven scroll when the driving scroll rotates in a forward direction from the through hole toward the inlet,
    6. The scroll compressor according to claim 4, wherein the guide surface guides the oil flowing through the oil passage toward the through hole.
  7.  前記偏心軸の外周面は、前記オイル通路を流れるオイルを堰き止めて前記オイル溝に案内することを特徴とする請求項1~請求項6のいずれか一項に記載のスクロール型圧縮機。 The scroll compressor according to any one of claims 1 to 6, characterized in that the outer peripheral surface of the eccentric shaft blocks the oil flowing through the oil passage and guides it to the oil groove.
  8.  前記オイル溝は、前記貫通孔の内周面に形成されていることを特徴とする請求項1に記載のスクロール型圧縮機。 The scroll compressor according to claim 1, characterized in that the oil groove is formed on the inner circumferential surface of the through hole.
  9.  前記オイル溝は、前記偏心軸の外周面に形成されていることを特徴とする請求項1に記載のスクロール型圧縮機。 The scroll compressor according to claim 1, characterized in that the oil groove is formed on the outer peripheral surface of the eccentric shaft.
PCT/JP2023/027303 2022-11-29 2023-07-26 Scroll compressor WO2024116464A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022189864 2022-11-29
JP2022-189864 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024116464A1 true WO2024116464A1 (en) 2024-06-06

Family

ID=91323249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027303 WO2024116464A1 (en) 2022-11-29 2023-07-26 Scroll compressor

Country Status (1)

Country Link
WO (1) WO2024116464A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447102U (en) * 1990-08-23 1992-04-22
JPH07332260A (en) * 1994-06-03 1995-12-22 Daikin Ind Ltd Corotation type scroll fluid machinery
WO2012165431A1 (en) * 2011-05-30 2012-12-06 サンデン株式会社 Scroll compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447102U (en) * 1990-08-23 1992-04-22
JPH07332260A (en) * 1994-06-03 1995-12-22 Daikin Ind Ltd Corotation type scroll fluid machinery
WO2012165431A1 (en) * 2011-05-30 2012-12-06 サンデン株式会社 Scroll compressor

Similar Documents

Publication Publication Date Title
JPH04121478A (en) Scroll type compressor
JPS60192894A (en) Scroll compressor
JPH0472998B2 (en)
WO2024116464A1 (en) Scroll compressor
JP3455993B2 (en) Refrigerant compressor
WO2022137923A1 (en) Scroll-type compressor
WO2020230773A1 (en) Scroll compressor
CN114810587B (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
WO2015049745A1 (en) Scroll compressor
JP3574904B2 (en) Closed displacement compressor
JP6729159B2 (en) Scroll compressor
WO2018212076A1 (en) Scroll compressor
CN112424475B (en) Compressor
US12012959B2 (en) Scroll compressor
JP2023108766A (en) Scroll type electric compressor
JP2000027776A (en) Scroll type fluid machinery
WO2023203939A1 (en) Scroll compressor
JP2022152796A (en) scroll compressor
JP2023144250A (en) Scroll type compressor
JP2024062277A (en) Scroll Fluid Machine
JP2024061411A (en) Scroll Compressor
WO2018047904A1 (en) Open-type compressor
JP2020112142A (en) Scroll type fluid machine
JP2023178771A (en) Scroll-type electric compressor
JP2022150992A (en) Scroll type compressor