WO2020230773A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2020230773A1
WO2020230773A1 PCT/JP2020/018912 JP2020018912W WO2020230773A1 WO 2020230773 A1 WO2020230773 A1 WO 2020230773A1 JP 2020018912 W JP2020018912 W JP 2020018912W WO 2020230773 A1 WO2020230773 A1 WO 2020230773A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
scroll
impeller
drive shaft
thrust receiving
Prior art date
Application number
PCT/JP2020/018912
Other languages
French (fr)
Japanese (ja)
Inventor
飯塚 二郎
淳夫 手島
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020078861A external-priority patent/JP7458884B2/en
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2020230773A1 publication Critical patent/WO2020230773A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to a scroll type compressor that has fixed scrolls and movable scrolls that are meshed with each other and compresses a fluid by changing the volume of a closed space formed by these.
  • the scroll type compressor is equipped with a fixed scroll and a movable scroll that are meshed with each other and a drive mechanism for transmitting a revolving driving force around the axis of the fixed scroll to the movable scroll.
  • a closed space whose volume changes with revolution is formed between the two, and the compressible fluid is compressed and discharged by this closed space.
  • the sealed case 4 as a housing in the scroll type compressor described in Patent Document 1 is divided into a front block 2 and a rear block 3.
  • a drive shaft (specifically, a rotation shaft 6 and an eccentric shaft 12) forming a part of the drive mechanism extends in the front block 2, and a swing scroll as a movable scroll is in the rear block 3.
  • a member 20 hereinafter referred to as a movable scroll
  • a fixed scroll member 30 hereinafter referred to as a fixed scroll
  • This scroll type compressor is a compressor incorporated in the refrigerant circuit of the vehicle air conditioner, compresses and discharges the refrigerant (fluid) guided from the low pressure side of the refrigerant circuit, and is a refrigerant suction port 41 in the rear block 3. Is formed.
  • the refrigerant suction port 41 communicates with a suction space 43 formed near the outer end of the spiral of the spiral wrap of the movable scroll and the fixed scroll.
  • the refrigerant guided to the suction space 43 is taken into the compression chamber 40 as a closed space between the movable scroll and the fixed scroll, compressed, and discharged to the high pressure side of the refrigerant circuit.
  • this type of scroll compressor is often incorporated into a device such as a refrigerant circuit of a vehicle air conditioner like the scroll compressor described in Patent Document 1 to form a part of the device. Therefore, in this type of scroll type compressor, the installation space in the apparatus may be restricted, and some measures for miniaturization are required.
  • the present invention has been made by paying attention to the above problems, and an object of the present invention is to provide a scroll type compressor capable of effectively reducing the size.
  • the fixed scroll and the movable scroll having spiral wraps and meshing with each other, the thrust receiving portion provided on the back side of the movable scroll and receiving the thrust force of the movable scroll, and the movable scroll
  • a scroll type compressor is provided in which a drive shaft forming a part of a drive mechanism for transmitting a revolution drive force is provided in a housing.
  • the movable scroll revolves to form a closed space whose volume changes with the revolution between the movable scroll and the fixed scroll, and the compressible fluid is compressed and discharged by this closed space.
  • the thrust receiving portion divides the inside of the housing into a first region and a second region.
  • the first region is a space in which the drive shaft extends and the fluid is guided from the outside
  • the second region is a space in which the fixed scroll and the movable scroll are arranged.
  • the thrust receiving portion has a communication hole that communicates the fluid intake region near the spiral outer end portion of the lap of the fixed scroll and the movable scroll in the first region and the second region.
  • An impeller that rotates integrally with the drive shaft and sends the fluid in the first region to the thrust receiving portion side is attached to the drive shaft.
  • the space inside the housing is arranged by the thrust receiving portion, the first region in which the drive shaft extends and the fluid is guided from the outside, and the fixed scroll and the movable scroll. It is divided into regions, and the first region and the fluid intake region near the outer end of the spiral of the wrap are communicated with each other by a communication hole in the thrust receiving portion. Then, the fluid in the first region is sent out to the thrust receiving portion side by the impeller attached to the drive shaft in the first region. Therefore, the fluid in the first region is pushed into the fluid intake region through the communication hole by the impeller and is taken into the fluid intake region.
  • the blower composed of the impeller, the drive shaft, and the housing has a function as a so-called supercharger. Then, the fluid taken into the fluid intake region is compressed and discharged in the closed space between the fixed scroll and the movable scroll via the outer end of the spiral of the wrap. Therefore, in the scroll type compressor with one side surface, the fluid in the first region can be pushed into the fluid intake region to increase the pressure, so that the amount of fluid flowing into the closed space from the fluid intake region is increased. It is possible to increase the amount of the fluid as it is, and to increase the amount of the compressed fluid to be discharged.
  • the capacity required for the compressor for example, the amount of discharged gas
  • the volume of the enclosed space can be made smaller than before, so that the compressor can be made smaller than before.
  • the size of the compressor may be the same as the conventional one, the capacity of the compressor can be increased while maintaining the size of the compressor.
  • FIG. 7 is a cross-sectional view taken along the line BB shown in FIG.
  • FIG. 7 is a cross-sectional view taken along the line CC shown in FIG.
  • FIG. 1 is a schematic cross-sectional view showing the overall configuration of the scroll type compressor according to the present embodiment
  • FIG. 2 is a cross-sectional view taken along the line AA shown in FIG. 3 to 6 are component views of the scroll compressor
  • FIG. 3 is a front view of the drive shaft
  • FIG. 4 is a front view of the swing member
  • FIG. 5 is a front view of the thrust receiving portion
  • FIG. It is a rear view of a scroll.
  • the scroll type compressor 100 in the present embodiment is a compressible fluid incorporated in a refrigerant circuit of a vehicle air conditioner capable of performing, for example, cooling operation and heating operation by a heat pump, and sucked from the low pressure side of the refrigerant circuit.
  • the scroll type compressor 100 includes a scroll unit 1, a housing 10, and a drive mechanism 20 for transmitting a revolution driving force to the scroll unit 1.
  • the scroll unit 1 and the drive mechanism 20 are provided in the housing 10.
  • the scroll type compressor 100 also includes an electric motor 30 which is a drive source of the scroll unit 1 in the housing 10.
  • the scroll type compressor 100 includes an inverter 40 for controlling the drive of the electric motor 30 in the housing 10, and is a so-called inverter-integrated electric compressor.
  • the scroll unit 1 has a fixed scroll 2 and a movable scroll 3 that are meshed with each other.
  • the movable scroll 3 revolves around the axis X'of the fixed scroll 2 while being in contact with the fixed scroll 2, and the volume of the movable scroll 3 changes with the fixed scroll 2 in accordance with the revolution. Is formed, and the refrigerant is compressed and discharged by the closed space S.
  • the fixed scroll 2 and the movable scroll 3 are made of an aluminum alloy.
  • the fixed scroll 2 has a first bottom plate 2a formed in a disk shape and having a discharge hole 2a1 opened in the center thereof, and a spiral first plate erected on one end surface of the first bottom plate 2a. It has a wrap 2b.
  • the movable scroll 3 has a disk-shaped second bottom plate 3a having one end surface facing the one end surface of the first bottom plate 2a, and a spiral second wrap 3b erected on one end surface of the second bottom plate 3a. ..
  • the first bottom plate 2a of the fixed scroll 2 has a larger diameter than the second bottom plate 3a of the movable scroll 3.
  • the first lap 2b corresponds to the "lap" of the "fixed scroll” according to the present invention
  • the second lap 3b corresponds to the "lap" of the "movable scroll” according to the present invention.
  • the fixed scroll 2 and the movable scroll 3 are arranged so that the first lap 2b and the second lap 3b mesh with each other.
  • the fixed scroll 2 and the movable scroll 3 have the side wall of the first lap 2b and the second lap in a state where the circumferential angle of the first lap 2b and the circumferential angle of the second lap 3b are deviated from each other.
  • the side walls of 3b are arranged so as to partially contact each other. As a result, a plurality of crescent-shaped sealed spaces S are formed between the first lap 2b and the second lap 3b.
  • the fixed scroll 2 and the movable scroll 3 have a gap between the protruding end of the first wrap 2b and the second bottom plate 3a, and between the protruding end of the second wrap 3b and the first bottom plate 2a. It is arranged so as to have a gap.
  • the tip seal member 4 is fitted into the groove portion formed at the protruding end portion of the first wrap 2b and the groove portion formed at the protruding end portion of the second wrap 3b, respectively.
  • the chip seal member 4 appropriately maintains the airtightness of the sealed space S, and maintains the compression performance of the refrigerant in the scroll type compressor 100.
  • the fixed scroll 2 has a cylindrical cylindrical portion 2c that is erected on an outer edge portion on one end surface of the first bottom plate 2a on the lap side.
  • the cylindrical portion 2c has an outer diameter that matches the inner diameter of the opening on one end side (upper side in FIG. 1) of the center housing 11 described later in the housing 10.
  • the fixed scroll 2 is fitted in the center housing 11 so that the first wrap 2b and the cylindrical portion 2c face the inside of the center housing 11 and close the opening on one end side of the center housing 11.
  • the movable scroll 3 is fitted inside the cylindrical portion 2c through the opening of the cylindrical portion 2c of the fixed scroll 2 with the second wrap 3b facing the first bottom plate 2a side.
  • the fluid intake region H1 is formed in the vicinity of the spiral outer end portion of the first lap 2b and the second lap 3b in the scroll unit 1.
  • the fluid intake region H1 is open at the end surface of the scroll unit 1 on the second bottom plate 3a side.
  • the movable scroll 3 is configured to revolve around the axis X'of the fixed scroll 2 in a state where its rotation is prevented via the drive mechanism 20.
  • the scroll unit 1 gradually reduces the volume of the closed space S while moving the closed space S to the central portion.
  • the scroll unit 1 compresses the refrigerant flowing into the closed space S from the fluid intake region H1 in the closed space S.
  • the housing 10 has a center housing 11, a front housing 12, and a rear housing 13. Then, these (11, 12, 13) are integrally fastened by a fastening member such as a bolt 14, so that the housing 10 of the scroll type compressor 100 is configured.
  • the housing 10 is made of, for example, an aluminum alloy.
  • the space inside the housing 10 is divided into a first region V1 and a second region V2 by a thrust receiving portion 24 described later.
  • a drive shaft 21, which will be described later, forms a part of the drive mechanism 20 extends in the first region V1, and a refrigerant is guided from the outside (a portion on the low voltage side of the refrigerant circuit) via the suction port P1.
  • the scroll unit 1 is arranged in the second region V2. Further, in the present embodiment, the electric motor 30 is also provided in the first region V1.
  • the center housing 11 has a substantially cylindrical peripheral wall portion 11a having a first region V1 and a second region V2 inside, and an annular protrusion projecting inward along an inner peripheral surface intermediate in the longitudinal direction of the peripheral wall portion 11a. It has a setting portion 11b.
  • the scroll unit 1, the drive mechanism 20, and the electric motor 30 are mainly housed in the center housing 11.
  • the end surface of the outer edge portion 13a of the rear housing 13 is in contact with one end of the peripheral wall portion 11a. Further, the opening on the other end side (lower side in FIG. 1) of the peripheral wall portion 11a is closed by the box bottom portion 12a described later of the front housing 12.
  • the above-mentioned suction port P1 is not particularly limited, but is formed at a portion of the peripheral wall portion 11a corresponding to the first region V1.
  • the housing 10 (the peripheral wall portion 11a in the present embodiment) is formed with the suction port P1 for guiding the refrigerant (fluid) into the housing 10 from the outside.
  • the suction port P1 is provided at a portion of the peripheral wall portion 11a corresponding to the end portion of the electric motor 30 opposite to the thrust receiving portion 24.
  • the opening end P11 on the first region V1 side that is, the internal space side of the housing 10) of the suction port P1 is opened in the end region V11 opposite to the thrust receiving portion 24 in the first region V1. ing.
  • the suction port P1 is open to the first region V1, and the first region V1 functions as a suction chamber.
  • the electric motor 30 is cooled by circulating the refrigerant from the suction port P1 around the electric motor 30 and in the gap in the electric motor 30 in the first region V1. ing. Then, in FIG.
  • the space on the upper side (thrust receiving portion 24 side) of the electric motor 30 in the first region V1 is the space on the lower side (opposite side of the thrust receiving portion 24) of the electric motor 30 in the first region V1. That is, it communicates with the above-mentioned end region V11) and constitutes one first region (suction chamber) V1 together with the space under the electric motor 30. Further, an appropriate amount of lubricating oil is stored in the first region V1 for lubrication of sliding portions such as the drive mechanism 20. Therefore, in the first region V1, the refrigerant flows as a mixed fluid with the lubricating oil.
  • the end surface 11b1 on the rear housing 13 side of the projecting portion 11b is formed as an annular surface orthogonal to the rotation axis X of the drive shaft 21 (detailed later described later) of the drive mechanism 20.
  • the end surface of the outer edge portion of the thrust receiving portion 24 of the drive mechanism 20 is brought into contact with the end surface 11b1. Since the fixed scroll 2 is sandwiched between the thrust receiving portion 24 and the rear housing 13, the fixed scroll 2 is fixed in the center housing 11 together with the thrust receiving portion 24.
  • the front housing 12 is formed in a box shape having one end opened as a whole, and is projected from the box bottom portion 12a that closes the opening on the other end side of the peripheral wall portion 11a of the center housing 11 and the outer edge portion of the box bottom portion 12a. It has a side wall portion 12b and houses the inverter 40 inside. In other words, the box bottom portion 12a closes the opening on the first region V1 side in the peripheral wall portion 11a of the center housing 11. At the center of the surface of the box bottom 12a on the first region V1 side, a tubular support portion 12a1 for holding a front bearing 16 that rotatably supports the end portion (lower end portion in FIG. 1) of the spindle 21a is provided as a center housing.
  • the housing 10 has a tubular peripheral wall portion 11a having a first region V1 and a second region V2 inside, and a box bottom portion 12a that closes the opening on the first region V1 side in the peripheral wall portion 11a. And have.
  • the box bottom portion 12a corresponds to the "bottom wall portion" according to the present invention.
  • the rear housing 13 is formed in a substantially disk shape having an outer diameter matching the outer diameter of the peripheral wall portion 11a of the center housing 11, and the central portion 13b thereof is formed so as to bulge outward.
  • the outer edge portion 13a of the rear housing 13 is fastened to one end of the peripheral wall portion 11a by an appropriate number of fastening members such as bolts 14.
  • the radial inner portion 13a1 of the outer edge portion 13a of the rear housing 13 projects radially inward from the inner peripheral surface of the peripheral wall portion 11a of the center housing 11.
  • the end surface of the inner portion 13a1 comes into contact with the outer edge portion of the other end surface (the end surface on the side opposite to the end surface on the wrap 2b side) of the first bottom plate 2a of the fixed scroll 2, the fixed scroll 2 and the thrust receiving portion 24 It is sandwiched between the outer edge portion 13a (specifically, the inner portion 13a1) of the rear housing 13.
  • the refrigerant discharge chamber H2 is partitioned by the bulging central portion 13b of the rear housing 13 and the first bottom plate 2a.
  • a seal member 17 is provided at a contact portion (the outer edge portion) of the fixed scroll 2 with the inner portion 13a1 of the rear housing 13.
  • the discharge chamber H2 communicates with the closed space S via the discharge hole 2a1 formed in the central portion of the first bottom plate 2a.
  • a valve 18 is provided in the discharge chamber H2 so as to cover the opening of the discharge hole 2a1.
  • the valve 18 is a check valve that allows the refrigerant to flow from the closed space S to the discharge chamber H2 and prevents the refrigerant from flowing back from the discharge chamber H2 to the closed space S.
  • the discharge chamber H2 the refrigerant compressed in the closed space S is discharged through the discharge holes 2a1 and the one-side valve 18.
  • the compressed refrigerant in the discharge chamber H2 is discharged to the high pressure side of the refrigerant circuit through a discharge port (not shown) formed in the rear housing 13.
  • the drive mechanism 20 is a mechanism for transmitting the revolution driving force around the axis X'of the fixed scroll 2 to the movable scroll 3.
  • the drive mechanism 20 also has a function of preventing the movable scroll 3 from rotating.
  • the drive mechanism 20 includes a drive shaft 21, a swivel bearing 22, an annular swing member 23, a thrust receiving portion 24, and a rotation prevention mechanism portion 25. , A rear bearing 26 and a connecting pin 25a.
  • the drive shaft 21 has a main shaft 21a and an eccentric shaft 21b.
  • the spindle 21a is rotationally driven around the rotation axis X.
  • the rotation axis X of the spindle 21a is aligned with the axis X'of the fixed scroll 2.
  • the eccentric shaft 21b is provided at one end of the main shaft 21a in the axial direction so as to be eccentric with respect to the rotation axis X.
  • the drive shaft 21 is made of, for example, a steel material.
  • An impeller 27 is attached to the drive shaft 21 that rotates integrally with the drive shaft 21 and sends out the refrigerant in the first region V1 to the thrust receiving portion 24 side. That is, the blower is composed of the casing composed of the center housing 11 forming the first region V1, the drive shaft 21, and the impeller 27. Further, in the present embodiment, a counterweight 28 for ensuring a weight balance with respect to the movable scroll 3 is provided integrally with the impeller 27. The impeller 27 and the counterweight 28 will be described in detail later.
  • a flange-shaped flange portion 21a1 is provided integrally with the eccentric shaft 21b.
  • the other end of the spindle 21a is reduced in diameter and is rotatably supported by a front bearing 16 fitted to the support 12a1.
  • the eccentric shaft 21b has a circular cross section centered on the axis eccentric with respect to the rotation axis X of the main shaft 21a, and extends toward the scroll unit 1 side.
  • the eccentric shaft 21b is formed with a circular hole 21b1 concentric with the rotation axis X. That is, the center of the outer diameter of the eccentric shaft 21b is located on the axis eccentric with respect to the rotation axis X of the spindle 21a, but the center of the inner diameter of the eccentric shaft 21b is on the rotation axis X of the spindle 21a. positioned.
  • the eccentric shaft 21b is formed in a tubular shape, and the center of the outer diameter of the cylinder is the inner diameter of the cylinder so that the first lap 2b of the fixed scroll 2 and the second lap 3b of the movable scroll 3 slide appropriately. Is eccentric with respect to the center of.
  • the eccentric shaft 21b is formed separately from the main shaft 21a.
  • the circular hole 21b1 of the eccentric shaft 21b has a hole diameter that matches the outer diameter of the main shaft 21a and penetrates the eccentric shaft 21b.
  • the flange portion 21a1 is formed in an eccentric flange shape on the outer circumference of one end of the eccentric shaft 21b.
  • the eccentric shaft 21b is fixed to one end of the main shaft 21a by press-fitting one end of the main shaft 21a into the circular hole 21b1 of the eccentric shaft 21b while leaving the accommodation area of the rear bearing 26.
  • a circular recess is formed at one end (eccentric shaft side end) of the drive shaft 21 by the hole wall surface of the circular hole 21b1 and the end surface of one end of the main shaft 21a.
  • the convex portion 24b of the thrust receiving portion 24, which will be described later, is inserted into the circular concave portion.
  • the swivel bearing 22 is a bearing mounted on the outer peripheral surface of the eccentric shaft 21b, and is, for example, a cylindrical slide bearing.
  • the swivel bearing 22 has a height substantially matching the height of the flange portion 21a1 of the eccentric shaft 21b from the flange surface.
  • the swing member 23 is mounted on the outer peripheral surface of the swivel bearing 22.
  • the rocking member 23 is formed in a disk shape having a thickness corresponding to the height of the swivel bearing 22, and is made of, for example, an aluminum alloy material.
  • a swivel bearing mounting hole 23a having an inner diameter matching the outer diameter of the swivel bearing 22 is opened in the central portion of the swing member 23. The swivel bearing 22 is fitted into the swivel bearing mounting hole 23a.
  • connecting pins 25a which will be described later, are inserted into a plurality of portions (6 locations in FIGS. 2 and 4) at equal intervals in the circumferential direction at the outer edge portion of the rocking member 23.
  • a hole (hereinafter referred to as an insertion hole) 23b is penetrated.
  • the rocking member 23 is formed so that the region between the insertion holes 23b at the outer edge thereof is recessed inward in the radial direction. As a result, the weight of the swing member 23 is reduced.
  • the recess of the outer edge portion of the swing member 23 is formed from the first region V1 to the first lap 2b of the scroll unit 1 together with the communication hole 24a1 which is at least a part of the through hole 24a of the thrust receiving portion 24 described later. It functions as a refrigerant introduction passage for introducing a refrigerant (specifically, a mixed fluid of a refrigerant and a lubricating oil) into a fluid intake region H1 formed near the outer end of the spiral of the second wrap 3b. Therefore, the dent on the outer edge of the rocking member 23 sufficiently secures the refrigerant introduction passage, and the pressure loss of the refrigerant introduction passage can be easily reduced.
  • a refrigerant specifically, a mixed fluid of a refrigerant and a lubricating oil
  • a swivel bearing 22 is mounted between the wall surface of the swivel bearing mounting hole 23a of the swing member 23 and the outer peripheral surface of the eccentric shaft 21b.
  • the swing member 23 is rotatably attached to the eccentric shaft 21b via the swivel bearing 22 around the axis of the eccentric shaft 21b (that is, the axis eccentric with respect to the rotation axis X of the spindle 21a). Has been done.
  • the thrust receiving portion 24 is provided on the back side of the movable scroll 3 and receives the thrust force of the movable scroll 3.
  • the thrust receiving portion 24 is provided between the second bottom plate 3a of the movable scroll 3 and the swing member 23.
  • the rocking member 23 is arranged so as to sandwich the thrust receiving portion 24 between the rocking member 23 and the second bottom plate 3a of the movable scroll 3.
  • the thrust receiving portion 24 is formed separately from the housing 10.
  • the thrust receiving portion 24 is appropriately made of, for example, a steel material having better wear resistance than the material (for example, an aluminum alloy) used for the movable scroll 3, the swing member 23, and the housing 10. It consists of members.
  • the thrust receiving portion 24 is formed in a substantially disk shape having an outer diameter matching the inner diameter of the opening on one end side (upper side in FIG. 1) of the center housing 11. The end surface of the outer edge portion of the thrust receiving portion 24 is in contact with the end surface 11b1 of the projecting portion 11b of the center housing 11 as described above.
  • the thrust receiving portion 24 is fixed in the center housing 11 by, for example, its outer edge portion being sandwiched between the tip surface of the cylindrical portion 2c of the fixed scroll 2 and the end surface 11b1 of the projecting portion 11b.
  • the angular position of the thrust receiving portion 24 with respect to the fixed scroll 2 in the circumferential direction is determined by an appropriate positioning means such as a pin and a pin hole (not shown).
  • the space inside the housing 10 (specifically, the peripheral wall portion 11a of the center housing 11) is divided into a first region V1 and a second region V2 by the thrust receiving portion 24.
  • the amount of play in the rotation axis X direction is regulated by the thrust receiving portion 24 and the front bearing 16.
  • a plurality of through holes 24a penetrating the outer edge portion are formed in the outer edge portion of the thrust receiving portion 24.
  • the through holes 24a are opened in a circular shape, and are opened at a plurality of (six locations in FIG. 5) portions of the outer edge portion of the thrust receiving portion 24 that are spaced apart at equal intervals in the circumferential direction.
  • a columnar convex portion 24b is projected from the central portion of the end surface of the thrust receiving portion 24 on the swing member side.
  • the convex portion 24b has an outer diameter that matches the inner diameter of the rear bearing 26.
  • the protruding height of the convex portion 24b is substantially matched to the height of the swivel bearing 22.
  • the rear bearing 26 is mounted on the outer peripheral surface of the convex portion 24b.
  • the seal member 19 is arranged on the other end surface (that is, the end surface on the thrust receiving portion side) which is the back surface of the second bottom plate 3a of the movable scroll 3.
  • the annular sealing member 19 maintains the airtightness of the back pressure chamber H3 partitioned between the back surface of the second bottom plate 3a and the movable scroll side end surface of the thrust receiving portion 24.
  • the back pressure chamber H3 has a gap height (for example, less than 0.5 mm) in the rotation axis X direction of the spindle 21a determined by the crushing allowance of the seal member 19, and in FIG. 1, this gap height is It has not appeared.
  • a communication passage 3d that connects the closed space S and the back pressure chamber H3 is opened in the central portion of the second bottom plate 3a of the movable scroll 3. Further, the back pressure chamber H3 is blocked from communicating with a region whose pressure is lower than the pressure in the back pressure chamber H3. Therefore, even if a part of the high-pressure refrigerant obtained by the compression operation is supplied to the back pressure chamber H3 via the communication passage 3d for back pressure formation, the refrigerant is in a region lower than the pressure in the back pressure chamber H3. It will not be washed away. As a result, energy loss can be reduced.
  • a groove 3e for attaching the seal member 19 is formed on the back surface of the second bottom plate 3a of the movable scroll 3. As shown in FIGS. 1 and 6, when the movable scroll 3 revolves around the axis X'of the fixed scroll 2, the seal member 19 does not enter the regions of the plurality of through holes 24a in the thrust receiving portion 24. As described above, the formation path of the groove portion 3e is defined.
  • the thrust receiving portion 24 has a communication hole 24a1 that communicates the first lap 2b and the fluid intake region H1 near the outer end of the spiral of the second lap 3b in the first region V1 and the second region V2. There is.
  • the opening of the communication hole 24a1 is formed in the thrust receiving portion 24 so as to face the opened portion of the fluid intake region H1 at the end surface of the scroll unit 1 on the second bottom plate 3a side.
  • the communication hole 24a1 is composed of at least a part of a plurality of through holes 24a (for example, one through hole 24a), and functions as a refrigerant introduction passage for introducing the refrigerant into the fluid intake region H1.
  • a plurality of holes 3c are opened in the outer edge portion of the second bottom plate 3a of the movable scroll 3.
  • the hole 3c of the movable scroll 3 is opened at the same position as the opening position of the insertion hole 23b opened in the swing member 23.
  • the rotation prevention mechanism unit 25 is a mechanism for preventing the rotation of the movable scroll 3.
  • the rotation prevention mechanism portion 25 penetrates the plurality of through holes 24a described above that penetrate the outer edge portion of the thrust receiving portion 24, and penetrates the through holes 24a, and also penetrates the outer edge portion of the swing member 23 and the movable scroll 3. It is composed of a connecting pin 25a that connects the second bottom plate 3a to the outer edge portion.
  • the connecting pin 25a prevents the movable scroll 3 from rotating and transmits the revolution driving force of the movable scroll 3 to the movable scroll 3 by sliding the intermediate portion thereof against the hole wall surface of the through hole 24a.
  • the connecting pin 25a has both a function of transmitting the revolution driving force and a function of preventing the rotation of the movable scroll 3.
  • the insertion hole 23b in the swing member 23 and the hole 3c in the movable scroll 3 are formed at positions corresponding to the through holes 24a.
  • the inner diameter of the through hole 24a is larger than the inner diameter of the insertion hole 23b and the hole 3c, and is determined according to, for example, the revolution turning radius required by the movable scroll 3.
  • the connecting pin 25a is made of a steel material like the thrust receiving portion 24, and is formed in a columnar shape having a diameter smaller than that of the through hole 24a, for example.
  • the rotation prevention mechanism portion 25 for preventing the rotation of the movable scroll 3 is configured by the intermediate portion of the connecting pin 25a sliding in contact with the hole wall surface of the through hole 24a. Further, the drive mechanism 20 including the rotation prevention mechanism unit 25 has a connecting pin 25a, and transmits the revolution driving force to the movable scroll 3 via the connecting pin 25a.
  • the rear bearing 26 is fitted between the outer peripheral surface of the convex portion 24b of the thrust receiving portion 24 and the inner peripheral surface of the circular hole 21b1 of the eccentric shaft 21b, and rotates the eccentric shaft 21b which is one end of the drive shaft 21. It is a bearing that rotatably supports around X.
  • the outer peripheral surface of the rear bearing 26 slides with respect to the inner peripheral surface of the circular hole 21b1, and the inner peripheral surface of the rear bearing 26 slides with respect to the outer peripheral surface of the convex portion 24b.
  • It is fitted between the outer peripheral surface of the convex portion 24b and the inner peripheral surface of the circular hole 21b1.
  • the rear bearing 26 is made of, for example, a cylindrical slide bearing similar to the swivel bearing 22.
  • one end portion (eccentric shaft side end portion) of the drive shaft 21 is rotatably supported by the rear bearing 26, and the other end portion (inverter side end portion) of the drive shaft 21 is fitted into the support portion 12a1. It is rotatably supported by the front bearing 16 and both ends of the drive shaft 21 are rotatably supported in the housing 10. Further, one end of the drive shaft 21 is rotatably supported via the convex portion 24b of the thrust receiving portion 24.
  • the eccentric shaft 21b (in other words, the end of the drive shaft 21 on the thrust receiving portion 24 side), which is one end portion of the drive shaft 21, can be rotated around the rotation axis X by the thrust receiving portion 24. Is supported by.
  • the electric motor 30 is a drive source for the scroll unit 1 and generates a rotational driving force for the drive shaft 21 (specifically, the spindle 21a).
  • the electric motor 30 is provided integrally with the drive shaft 21 in the first region V1 of the housing 10.
  • the electric motor 30 includes a rotor 31 and a stator core unit 32 arranged on the radial outer side of the rotor 31.
  • a direct current from a vehicle battery (not shown) is converted into an alternating current by the inverter 40 and supplied to the electric motor 30.
  • the rotor 31 is rotatably supported inside the stator core unit 32 via a spindle 21a fitted (for example, press-fitted) into a shaft hole formed at the center of the rotor 31 in the radial direction.
  • the electric motor 30 is provided by a plurality of holding members 33 provided at intervals in the circumferential direction between the outer peripheral surface of the stator core unit 32 and the inner peripheral surface of the peripheral wall portion 11a of the housing 10 (center housing 11). It is held against the housing 10. There is a gap between the holding members 33. Therefore, the refrigerant can flow around the electric motor 30.
  • the scroll type compressor 100 configured as described above, when the spindle 21a is rotationally driven by the electric motor 30, the eccentric shaft 21b is moved along with the swivel bearing 22 and the swing member 23, and the axis X'of the fixed scroll 2 is It revolves around, and this revolving driving force is transmitted to the movable scroll 3 via the connecting pin 25a. At this time, the movable scroll 3 is integrally coupled with the swing member 23 via the connecting pin 25a, and revolves and turns integrally with the swing member 23.
  • the scroll type compressor 100 compresses the refrigerant flowing into the closed space S between the fixed scroll 2 and the movable scroll 3 by this revolving turning motion.
  • 7 is a front view of the impeller 27,
  • FIG. 8 is a cross-sectional view taken along the line BB shown in FIG. 7,
  • FIG. 9 is a cross-sectional view taken along the line CC shown in FIG.
  • the impeller 27 has an annular shape connecting the hub 27a to which the drive shaft 21 is fitted, the plurality of blades 27b radially extending from the outer peripheral surface of the hub 27a, and the tips of the plurality of blades 27b. It has a rim portion 27c.
  • the impeller 27 is an impeller for a so-called axial fan that sucks fluid from one end side in the extending direction of the rotation axis (that is, the rotation axis X of the main shaft 21a) and sends the fluid toward the other end.
  • the hub 27a is formed, for example, in a cylindrical shape.
  • Each blade 27b is inclined so that the front end portion in the rotation direction R (see FIGS.
  • the impeller 27 is attached to a portion of the drive shaft 21 between the electric motor 30 and the thrust receiving portion 24.
  • the impeller 27 is mounted on the outer peripheral surface of the flange portion 21a1 integrally formed with the eccentric shaft 21b of the drive shaft 21. That is, the flange portion 21a1 is fitted inside the hub 27a of the impeller 27, and the impeller 27 is arranged in the region between the electric motor 30 and the thrust receiving portion 24 in the first region V1.
  • at least the thrust receiving portion 24, the swivel bearing 22, and the swing member 23 are arranged between the impeller 27 and the movable scroll 3.
  • the rim portion 27c of the impeller 27 has a thickness equivalent to that of the flange portion 21a1 and is arranged so as to be substantially flush with the flange surface of the flange portion 21a1.
  • an inclined surface 27c1 is formed on the inner surface of the rim portion 27c so as to approach the outer peripheral side of the rim portion 27c toward the thrust receiving portion 24 side.
  • the impeller 27 rocks when the gap between the outer peripheral surface of the impeller 27 (specifically, the rim portion 27c) and the inner peripheral surface of the housing 10 (specifically, the center housing 11) swings. It is formed so as to be smaller than the minimum gap between the outer peripheral surface of the moving member 23 and the inner peripheral surface of the housing 10. That is, the impeller 27 has a gap between the impeller 27 and the inner peripheral surface of the housing 10 so that the impeller 27 can rotate, and this gap is set to be, for example, less than 1 mm, preferably less than 0.5 mm. ing.
  • the impeller 27 is arranged inside the annular projecting portion 11b projecting inside the center housing 11, and is located between the inner peripheral surface of the projecting portion 11b and the rim portion 27c.
  • the gap is formed so as to be smaller than the minimum gap between the outer peripheral surface of the swing member 23 and the inner peripheral surface of the housing 10.
  • the counterweight 28 is provided integrally with the impeller 27. Specifically, the counterweight 28 is provided so as to project inside the rim portion 27c at an angular position in the circumferential direction opposite to the eccentric direction of the eccentric shaft 21b with respect to the rotation axis X in the rim portion 27c. .. Further, the inclined surface 27c1 of the rim portion 27c is also formed inside the counterweight 28, and is formed in an annular shape as a whole.
  • the flow of the refrigerant in the scroll type compressor 100 will be described.
  • the movable scroll 3 revolves around the axis X'of the fixed scroll 2, and the impeller 27 rotates. Due to the rotation of the impeller 27, a flow of refrigerant is generated in the first region V1 from the end region V11 side opposite to the thrust receiving portion 24 toward the thrust receiving portion 24 side.
  • the refrigerant from the low pressure side of the refrigerant circuit is introduced into the first region V1 (end region V11) via the suction port P1 and is introduced into the electric motor 30 and around the electric motor 30 (specifically, the motor winding).
  • the electric motor 30 is cooled by passing through gaps between lines, gaps between teeth, gaps between holding members 33, etc., and then flows between the blades 27b of the impeller 27 to the thrust receiving portion 24 side. Is sent to. Therefore, in the present embodiment, the impeller 27 is provided on the downstream side of the electric motor 30 in the flow direction of the refrigerant with respect to the electric motor 30.
  • the refrigerant is generally sent toward the thrust receiving portion 24 side along the extension direction of the rotation axis of the impeller 27, but a part of the refrigerant is radially outward of the impeller 27 along each blade 27b by centrifugal force. It flows and collides with the inclined surface 27c1 of the rim portion 27c.
  • the refrigerant that collides with the inclined surface 27c1 is sent out to the thrust receiving portion 24 side by the inclined surface 27c1.
  • the refrigerant sent out from the impeller 27 is then pushed into the fluid intake region H1 near the outer end of the spiral of the scroll unit 1 through the communication hole 24a1 as the refrigerant introduction passage and the recess of the outer edge of the rocking member 23. Is taken into the fluid uptake region H1. Then, the refrigerant taken into the fluid intake region H1 is compressed in the closed space S via the outer ends of the spirals of the first lap 2b and the second lap 3b.
  • the compressed refrigerant is discharged to the discharge chamber H2 via the discharge hole 2a1 and the one-side valve 18, and then discharged from the discharge chamber H2 to the high pressure side of the refrigerant circuit via a discharge port (not shown). That is, in the present embodiment, the refrigerant flowing into the first region V1 from the suction port P1 cools the electric motor 30 in the housing 10 and takes fluid through the communication holes 24a1 by the blowing action of the impeller 27. It is pushed into the filling region H1 and boosted.
  • the space in the housing 10 is divided into the first region V1 and the second region V2 by the thrust receiving portion 24, and the communication hole 24a1 in the thrust receiving portion 24 is used to divide the space inside the housing 10.
  • One region V1 and the fluid intake region H1 are communicated with each other.
  • the refrigerant in the first region V1 is sent out to the thrust receiving portion 24 side by the impeller 27 attached to the drive shaft 21 in the first region V1. Therefore, the refrigerant in the first region V1 is pushed into the fluid intake region H1 by the impeller 27 through the communication hole 24a1 and is taken into the fluid intake region H1.
  • the blower including the impeller 27, the drive shaft 21, and the housing 10 has a function as a so-called supercharger. Then, the refrigerant taken into the fluid intake region H1 is compressed and discharged in the closed space S via the outer ends of the spirals of the first lap 2b and the second lap 3b. Therefore, in the scroll type compressor 100, the refrigerant in the first region V1 can be pushed into the fluid intake region H1 to increase the pressure, so that the amount of fluid flowing into the closed space S from the fluid intake region H1 ( The mass flow rate) can be increased as compared with the case where the fluid is flowed in as it is without being boosted, and the amount of the compressed refrigerant to be discharged can be increased.
  • the capacity required for the compressor for example, the amount of discharged gas
  • the volume of the closed space S can be made smaller than before, so that the compressor can be made smaller than before.
  • the size of the compressor may be the same as the conventional one, the capacity of the compressor can be increased while maintaining the size of the compressor. In this way, it is possible to provide the scroll type compressor 100 that can be effectively miniaturized.
  • the scroll type compressor 100 can increase the pressure of the sucked refrigerant by the impeller 27 even if the low pressure, that is, the low density refrigerant is sucked in the heating operation. As a result, the amount of the compressed refrigerant to be discharged can be increased. That is, the scroll type compressor 100 is a compressor suitable for a refrigerant circuit capable of heating operation.
  • an inclined surface 27c1 is formed on the inner surface of the rim portion 27c of the impeller 27 so as to approach the outer peripheral side of the rim portion 27c toward the thrust receiving portion 24 side.
  • a plurality of through holes 24a are formed in the outer edge portion of the thrust receiving portion 24, and the drive mechanism 20 penetrates the through holes 24a and the outer edge portion of the swing member 23 and the movable scroll 3. It has a connecting pin 25a that connects the second bottom plate 3a to the outer edge portion. Therefore, when the spindle 21a is rotationally driven, the eccentric shaft 21b revolves around the axis X'of the fixed scroll 2 together with the swing bearing 22 and the swing member 23, and this revolution driving force is transmitted via the connecting pin 25a. Is transmitted to the movable scroll 3.
  • At least the thrust receiving portion 24, the swivel bearing 22 and the swing member 23 are arranged between the impeller 27 and the movable scroll 3, so that the drive mechanism 20 other than the drive shaft 21 is configured.
  • the members can be integrated between the impeller 27 and the movable scroll 3. As a result, the size of the compressor can be reduced more efficiently.
  • the impeller 27 has the outer circumference of the swing member 23 when the gap between the outer peripheral surface of the rim portion 27c and the inner peripheral surface of the housing 10 (protruding portion 11b of the center housing 11) swings. It is formed so as to be smaller than the minimum gap between the surface and the inner peripheral surface of the housing 10 (protruding portion 11b).
  • the refrigerant sent from the impeller 27 to the thrust receiving portion 24 side passes through the gap between the outer peripheral surface of the rim portion 27c and the inner peripheral surface of the housing 10 (protruding portion 11b of the center housing 11). It is possible to prevent or suppress backflow to one region V1. As a result, the refrigerant can be effectively pushed into the fluid uptake region H1.
  • the rotation prevention mechanism portion 25 is composed of a through hole 24a and a connecting pin 25a, and the intermediate portion of the connecting pin 25a is in sliding contact with the hole wall surface of the through hole 24a to prevent the movable scroll 3 from rotating. Therefore, the hole wall surface of the through hole 24a is slid over the entire wall surface of the through hole 24a in the hole depth direction (that is, the entire thickness of the thrust receiving portion 24 in the present embodiment). It can be effectively used as a contact surface. Further, the connecting pin 25a of the drive mechanism 20 has a function of preventing the rotation of the movable scroll 3 in addition to the function of transmitting the revolution driving force. Thereby, the structure of the drive mechanism 20 can be simplified.
  • the communication hole 24a1 that communicates the first region V1 and the fluid intake region H1 in the second region V2 is composed of at least a part of the plurality of through holes 24a. That is, a part of the through hole 24a has not only a function as a rotation prevention mechanism portion 25 but also a function as a refrigerant introduction passage for introducing the refrigerant from the first region V1 to the fluid intake region H1. .. Therefore, it is not necessary to separately form the refrigerant introduction passage in the housing 10 or the like, and the productivity of the scroll type compressor 100 or the like can be improved. Further, the recess on the outer edge of the rocking member 23 also has a function as a refrigerant introduction passage, and has the same effect as the through hole 24a.
  • the electric motor 30 is provided integrally with the drive shaft 21 (spindle 21a) in the first region V1, and the opening end P11 on the first region V1 side of the suction port P1 is the thrust receiving portion 24 in the first region V1. It is opened in the end region V11 on the opposite side to the above.
  • the impeller 27 provided in the first region V1 is rotated, the refrigerant flows into the first region V1 from the end region V11 side opposite to the thrust receiving portion 24 toward the thrust receiving portion 24 side.
  • a flow can be generated. Therefore, a flow of the refrigerant passing through the electric motor 30 and its surroundings can be formed in the housing 10, and the electric motor 30 can be efficiently cooled by the refrigerant.
  • the impeller 27 is attached to a portion of the drive shaft 21 between the electric motor 30 and the thrust receiving portion 24. As a result, it is possible to construct a structure in which the impeller 27 is arranged on the downstream side of the electric motor 30 in the flow direction of the refrigerant.
  • the counterweight 28 is integrally formed with the impeller 27. As a result, the manufacturing cost of the counterweight 28 can be reduced.
  • the counterweight 28 is formed on the rim portion 27c, which is the outermost diameter portion of the impeller 27. Therefore, the position of the center of gravity of the counterweight 28 can be moved away from the rotation axis X of the main shaft 21a only by increasing the outer diameter of the rim portion 27c as much as possible. As a result, the counterweight 28 can be effectively reduced in weight.
  • the back pressure chamber H3 is partitioned as one space by the back surface of the second bottom plate 3a, the movable scroll side end surface of the thrust receiving portion 24, and one annular seal member 19.
  • the back pressure chamber H3 may be divided into a plurality of regions as shown in FIG. 10, which is a schematic cross-sectional view for explaining a modification of the scroll type compressor 100.
  • the back pressure chamber H3 is multiplexed between the back surface of the second bottom plate 3a, the movable scroll side end surface of the thrust receiving portion 24, and the back surface of the second bottom plate 3a and the movable scroll side end surface of the thrust receiving portion 24.
  • sealing members 19 and 19 arranged in an annular shape divide the area into a plurality of (two in FIG. 10) regions. Then, the communication passage 3d that penetrates the second bottom plate 3a of the movable scroll 3 and communicates the closed space S and the back pressure chamber H3 is opened corresponding to each region of the plurality of regions of the back pressure chamber H3. To. Each region of the plurality of regions of the back pressure chamber H3 communicates with the closed space S in which the continuous passage 3d opens among the plurality of closed spaces S via the communication passage 3d corresponding to the region.
  • the pressure distribution of the entire back pressure acting on the back surface of the second bottom plate 3a can be roughly matched with the overall pressure distribution of the plurality of closed spaces S acting on the end faces of the second bottom plate 3a on the closed space S side. ..
  • the communication passage 3d simply penetrates the second bottom plate 3a in the plate thickness direction, the flow path length is short and the flow path is simple. Therefore, the pressure loss in the flow process of the refrigerant through the communication passage 3d can be suppressed to a low level.
  • the load imbalance between the load in the thrust direction and the back pressure load acting on the movable scroll 3 can be effectively reduced.
  • the impeller 27 has an annular rim portion 27c connecting the tip portions of the plurality of blades 27b, but the impeller portion 27c may not be provided.
  • the blades 27b are formed in a substantially fan-shaped propeller shape, the shape of the blades 27b is not limited to this.
  • an inclined surface 27c1 is formed on the inner surface of the rim portion 27c, and the inclined surface 27c1 guides the flow of the refrigerant.
  • the present invention is not limited to this, and the member for guiding the flow of the refrigerant is separated from the impeller 27. It may be provided.
  • the swivel bearing 22 and the rear bearing 26 are made of a sliding bearing, the present invention is not limited to this, and a rolling bearing may be used.
  • the eccentric shaft 21b is composed of one component, but is not limited to this, and may be composed of two components, an eccentric bush and a collar.
  • the counterweight 28 is integrally formed with the impeller 27, but the present invention is not limited to this, and the counterweight 28 may be integrally formed with the drive shaft 21, or the impeller 27 may be formed as a separate component from the impeller 27 and the drive shaft 21. Or may be attached to the drive shaft 21.
  • the rotation prevention mechanism portion 25 is composed of a through hole 24a and a connecting pin 25a, but is not limited to this.
  • the rotation prevention mechanism portion 25 may employ an Oldham coupling method, or a ball coupling method in which a ball coupling is provided between the back surface of the second bottom plate 3a of the movable scroll 3 and the thrust receiving portion 24. May be adopted.
  • FIG. 11 is a schematic cross-sectional view for explaining another modified example of the scroll type compressor 100
  • FIG. 12 is a front view of the impeller 27 in the modified example shown in FIG.
  • the impeller 27 is attached to a portion of the drive shaft 21 between the electric motor 30 and the thrust receiving portion 24, but the present invention is not limited to this, and as shown in FIG. It may be attached to a portion of the drive shaft 21 between the end portion 211 on the opposite side of the thrust receiving portion 24 and the electric motor 30.
  • the impeller 27 is provided on the upstream side of the electric motor 30 in the flow direction of the refrigerant with respect to the electric motor 30.
  • the impeller 27 has an end surface of the electric motor 30 opposite to the thrust receiving portion 24 and a surface of the front housing 12 on the box bottom 12a opposite to the inverter 40 (first). It is located between the area V1 side surface). In other words, the impeller 27 is located upstream of the electric motor 30 in the flow direction of the refrigerant, and is arranged in the end region V11 on the inverter 40 side in the first region V1.
  • the impeller 27 is not limited to those for axial fans.
  • the impeller 27 may be for a centrifugal fan.
  • the impeller 27 for a centrifugal fan has a disk-shaped base 271 attached to a drive shaft 21 and a plurality of centrifugal blades 272 formed on an end surface of the base 271 opposite to the electric motor 30. Have.
  • a cylindrical boss portion 273 is provided at the center portion in the radial direction of the base 271.
  • the drive shaft 21 is fitted into the boss portion 273.
  • the impeller 27 is attached to the drive shaft 21 so that the end surface of the base 271 on the centrifugal blade 272 side faces the box bottom portion 12a.
  • the suction port P1 may be formed, for example, on the box bottom 12a of the front housing 12 facing the base 271 of the impeller 27. Also in this case, the opening end P11 on the first region V1 side of the suction port P1 is opened in the end region V11 on the opposite side of the thrust receiving portion 24 in the first region V1. Specifically, the opening end P11 on the first region V1 side of the suction port P1 faces the end surface on the centrifugal blade 272 side of the base 271 of the impeller 27. The opening end P11 on the first region V1 side of the suction port P1 may be located inward in the radial direction with respect to the outer peripheral surface of the impeller 27.
  • the suction port P1 has a radial flow path portion extending from the outer peripheral surface of the box bottom portion 12a toward the center side (support portion 12a1 side) and the inside of the support portion 12a1 parallel to the rotation axis X of the drive shaft 21. It has an extending axial flow path portion.
  • the opening end P11 on the first region V1 side of the suction port P1 is open in the vicinity of the drive shaft 21 in the radial direction. As a result, the refrigerant from the suction port P1 is efficiently taken into the impeller 27.
  • the scroll type compressor 100 is located on the outer peripheral surface of the electric motor 30 and the housing 10. It is preferable to further include a sealing member 34 that seals the gap between the inner peripheral surface (the inner peripheral surface of the peripheral wall portion 11a of the center housing 11).
  • the seal member 34 is formed so as to fill a gap between the outer peripheral surface of the electric motor 30 and the inner peripheral surface of the peripheral wall portion 11a.
  • the seal member 34 is formed in a tubular shape and has the outer peripheral surface and the peripheral wall of the electric motor 30. It exists over the entire circumference in the circumferential direction with the inner peripheral surface of the portion 11a.
  • the box bottom 12a is cooled by the refrigerant flowing in the suction port P1 and the refrigerant flowing in the end region V11, and as a result, the inverter 40 is cooled.
  • a flow of the refrigerant is generated along the box bottom portion 12a and from the radial center side to the radial outer side. That is, when the impeller 27 rotates, the flow of the refrigerant (fluid) along the box bottom portion 12a is generated in the end region V11 of the first region V1.
  • the flow of the refrigerant cools the inverter 40 more effectively.
  • velocity energy is applied to the refrigerant.
  • the width of the flow path of the refrigerant composed of the adjacent centrifugal blades 272 and 272 becomes wider toward the outer side in the radial direction. Therefore, the refrigerant decelerates toward the outer side in the radial direction in the flow path, and the velocity energy is converted into pressure energy, and as a result, the pressure of the refrigerant guided into the end region V11 is increased by the impeller 27. ..
  • the impeller 27 since the impeller 27 is arranged on the upstream side of the electric motor 30 in the flow direction of the refrigerant, the refrigerant compressed by the impeller 27 is the impeller 27 and the peripheral wall portion 11a. It is positively sent to the electric motor 30 side through the gap between the two.
  • the refrigerant positively sent to the electric motor 30 side passes through the electric motor 30 and effectively cools the electric motor 30 (specifically, the motor winding or the like). Then, the refrigerant flows out from the end surface of the electric motor 30 on the thrust receiving portion 24 side and flows to the thrust receiving portion 24 side.
  • the refrigerant flowing to the thrust receiving portion 24 side then enters the fluid intake region H1 near the outer end of the spiral of the scroll unit 1 via the communication hole 24a1 as the refrigerant introduction passage and the recess of the outer edge portion of the swing member 23. It is pushed in and taken into the fluid uptake region H1. That is, even in the modified example shown in FIG.
  • the refrigerant flowing into the first region V1 from the suction port P1 is pushed into the fluid intake region H1 via the communication hole 24a1 by the blowing action of the impeller 27 and boosted. Has been done. Therefore, even in the modified example shown in FIG. 11, the blower including the impeller 27, the drive shaft 21, and the housing 10 has a function as a so-called supercharger.
  • the seal member 34 is provided between the outer peripheral surface of the electric motor 30 and the inner peripheral surface of the peripheral wall portion 11a of the center housing 11, the thrust receiver in the electric motor 30 is received. It is possible to prevent or suppress the refrigerant flowing out from the end surface on the portion 24 side from flowing back to the end region V11 through the gap between the electric motor 30 and the peripheral wall portion 11a. As a result, the refrigerant can be effectively pushed into the fluid uptake region H1. Further, by providing the seal member 34, the refrigerant flows more effectively in the electric motor 30, so that the electric motor 30 can be cooled more effectively. Further, in the modified example shown in FIG.
  • the scroll type compressor 100 shown in FIG. 11 has a fluid intake region H1 more than the scroll type compressor 100 shown in FIG. 1 in which the impeller 27 is provided downstream of the electric motor 30 in the flow direction.
  • the amount of fluid (mass flow rate) flowing into the closed space S can be increased, and the amount of compressed refrigerant to be discharged can be increased more effectively.
  • the seal member 34 is provided between the outer peripheral surface of the electric motor 30 and the inner peripheral surface of the peripheral wall portion 11a of the center housing 11, but the seal member 34 is not provided. May be good.
  • the scroll type compressor 100 has one impeller 27, but the present invention is not limited to this, and a plurality of impellers 27 may be provided. That is, the impeller 27 may be provided in multiple stages. Specifically, the impeller 27 is provided not only on either the upstream side or the downstream side in the flow direction of the electric motor 30, but also on both the upstream side and the downstream side in the flow direction of the electric motor 30. You may.
  • the scroll type compressor 100 has been described by taking the case of the so-called inverter integrated type as an example, but the present invention is not limited to this, and the scroll type compressor 100 may be separate from the inverter 40.
  • the electric motor 30 is built in, the electric motor 30 may be provided outside the housing 10.
  • the electric motor 30 is used as the drive source, but the present invention is not limited to this, and the rotational power may be transmitted from the engine of the vehicle to the spindle 21a.
  • the fluid is assumed to be a refrigerant, but the present invention is not limited to this, and an appropriate fluid can be applied.

Abstract

[Problem] To provide a scroll compressor with which effective miniaturization can be achieved. [Solution] A scroll compressor 100 comprises, in a housing 10, the following: a fixed scroll 2 and a moving scroll 3; a thrust receiving part 24 that receives a thrust force of the moving scroll 3; and a drive shaft 21. The thrust receiving part 24 includes a through-hole 24a1 that: provides a partition between a first region V1 in which the drive shaft 21 extends within the housing 10 and into which fluid is guided from outside, and a second region V2 in which the fixed scroll 2 and the moving scroll 3 are arranged; and establishes communication between the first region V1 and a fluid intake region H1 close to the outer spiral end of wraps 2b, 3b in the second region V2. An impeller 27, which is attached to the drive shaft 21, rotates integrally with the drive shaft 21 and sends the fluid in the first region V1 toward the thrust receiving part 24.

Description

スクロール型圧縮機Scroll compressor
 本発明は、互いに噛み合わされる固定スクロール及び可動スクロールを有し、これらにより形成される密閉空間の容積を変化させることで流体を圧縮するスクロール型圧縮機に関する。 The present invention relates to a scroll type compressor that has fixed scrolls and movable scrolls that are meshed with each other and compresses a fluid by changing the volume of a closed space formed by these.
 スクロール型圧縮機は、互いに噛み合わされる固定スクロール及び可動スクロールと、可動スクロールに固定スクロールの軸心周りの公転駆動力を伝達するための駆動機構とをハウジング内に備え、可動スクロールが固定スクロールとの間に公転に伴って容積変化する密閉空間を形成し、この密閉空間により圧縮性の流体を圧縮して吐出している。 The scroll type compressor is equipped with a fixed scroll and a movable scroll that are meshed with each other and a drive mechanism for transmitting a revolving driving force around the axis of the fixed scroll to the movable scroll. A closed space whose volume changes with revolution is formed between the two, and the compressible fluid is compressed and discharged by this closed space.
 この種のスクロール型圧縮機としては、例えば、特許文献1に記載されたものが一般的に知られている。特許文献1に記載されたスクロール型圧縮機におけるハウジングとしての密閉ケース4は、フロントブロック2とリアブロック3とに分割されている。フロントブロック2内には、駆動機構の一部を構成する駆動軸(詳しくは、回転軸6及び偏心軸12)が延在しており、リアブロック3内には、可動スクロールとしての揺動スクロール部材20(以下では、可動スクロールという)と固定スクロールとしての固定スクロール部材30(以下では、固定スクロールという)とが設けられている。このスクロール型圧縮機は、車両用空調装置の冷媒回路に組み込まれ、冷媒回路の低圧側から導かれた冷媒(流体)を圧縮して吐出する圧縮機であり、リアブロック3に冷媒吸入口41が形成されている。この冷媒吸入口41は、可動スクロール及び固定スクロールの渦巻状のラップの渦巻外端部付近に形成された吸入空間43に連通している。吸入空間43に導かれた冷媒は、可動スクロールと固定スクロールとの間の密閉空間としての圧縮室40内に取り込まれて圧縮され、冷媒回路の高圧側に吐出される。 As a scroll type compressor of this type, for example, the one described in Patent Document 1 is generally known. The sealed case 4 as a housing in the scroll type compressor described in Patent Document 1 is divided into a front block 2 and a rear block 3. A drive shaft (specifically, a rotation shaft 6 and an eccentric shaft 12) forming a part of the drive mechanism extends in the front block 2, and a swing scroll as a movable scroll is in the rear block 3. A member 20 (hereinafter referred to as a movable scroll) and a fixed scroll member 30 (hereinafter referred to as a fixed scroll) as a fixed scroll are provided. This scroll type compressor is a compressor incorporated in the refrigerant circuit of the vehicle air conditioner, compresses and discharges the refrigerant (fluid) guided from the low pressure side of the refrigerant circuit, and is a refrigerant suction port 41 in the rear block 3. Is formed. The refrigerant suction port 41 communicates with a suction space 43 formed near the outer end of the spiral of the spiral wrap of the movable scroll and the fixed scroll. The refrigerant guided to the suction space 43 is taken into the compression chamber 40 as a closed space between the movable scroll and the fixed scroll, compressed, and discharged to the high pressure side of the refrigerant circuit.
特開平11-44295号公報Japanese Unexamined Patent Publication No. 11-44295
 ここで、この種のスクロール型圧縮機は、特許文献1に記載されたスクロール型圧縮機のように車両用空調装置の冷媒回路といった装置に組み込まれ、装置の一部を構成する場合が多い。そのため、この種のスクロール型圧縮機では、装置内における設置スペースについて制約を受けることがあり、小型化についての工夫が求められている。 Here, this type of scroll compressor is often incorporated into a device such as a refrigerant circuit of a vehicle air conditioner like the scroll compressor described in Patent Document 1 to form a part of the device. Therefore, in this type of scroll type compressor, the installation space in the apparatus may be restricted, and some measures for miniaturization are required.
 本発明は上記問題点に着目してなされたものであり、効果的に小型化を図ることができるスクロール型圧縮機を提供することを目的とする。 The present invention has been made by paying attention to the above problems, and an object of the present invention is to provide a scroll type compressor capable of effectively reducing the size.
 本発明の一側面によると、渦巻状のラップをそれぞれ有し互いに噛み合わされる固定スクロール及び可動スクロールと、可動スクロールの背面側に設けられ可動スクロールのスラスト力を受けるスラスト受け部と、可動スクロールに公転駆動力を伝達するための駆動機構の一部を構成する駆動軸とを、ハウジング内に備えたスクロール型圧縮機が提供される。このスクロール型圧縮機では、可動スクロールが公転して固定スクロールとの間に公転に伴って容積変化する密閉空間を形成し、この密閉空間により圧縮性の流体を圧縮して吐出する。スラスト受け部はハウジング内を第1領域と第2領域とに区画する。第1領域は駆動軸が延在すると共に外部から流体が導かれる空間であり、第2領域は固定スクロール及び可動スクロールが配置される空間である。スラスト受け部は第1領域と第2領域における固定スクロール及び可動スクロールのラップの渦巻外端部付近の流体取込領域とを連通する連通孔を有している。駆動軸には、この駆動軸と一体に回転して第1領域内の流体をスラスト受け部側に送り出す羽根車が取り付けられている。 According to one aspect of the present invention, the fixed scroll and the movable scroll having spiral wraps and meshing with each other, the thrust receiving portion provided on the back side of the movable scroll and receiving the thrust force of the movable scroll, and the movable scroll A scroll type compressor is provided in which a drive shaft forming a part of a drive mechanism for transmitting a revolution drive force is provided in a housing. In this scroll type compressor, the movable scroll revolves to form a closed space whose volume changes with the revolution between the movable scroll and the fixed scroll, and the compressible fluid is compressed and discharged by this closed space. The thrust receiving portion divides the inside of the housing into a first region and a second region. The first region is a space in which the drive shaft extends and the fluid is guided from the outside, and the second region is a space in which the fixed scroll and the movable scroll are arranged. The thrust receiving portion has a communication hole that communicates the fluid intake region near the spiral outer end portion of the lap of the fixed scroll and the movable scroll in the first region and the second region. An impeller that rotates integrally with the drive shaft and sends the fluid in the first region to the thrust receiving portion side is attached to the drive shaft.
 前記一側面によるスクロール型圧縮機では、スラスト受け部によって、ハウジング内の空間が、駆動軸が延在すると共に外部から流体が導かれる第1領域と、固定スクロール及び可動スクロールが配置される第2領域とに区画されると共に、スラスト受け部における連通孔によって、第1領域とラップの渦巻外端部付近の流体取込領域とが連通されている。そして、第1領域内の流体は、第1領域内の駆動軸に取り付けられた羽根車によってスラスト受け部側に送り出される。したがって、第1領域内の流体は羽根車によって連通孔を介して流体取込領域に押し込まれて、流体取込領域に取り込まれる。つまり、羽根車と駆動軸とハウジングとからなる送風装置がいわば過給機としての機能を有する。そして、流体取込領域に取り込まれた流体はラップの渦巻外端部を経由して固定スクロールと可動スクロールとの間の密閉空間で圧縮されて吐出される。したがって、前記一側面によるスクロール型圧縮機では、第1領域内の流体を流体取込領域に押し込んでその圧力を高めることができるため、流体取込領域から密閉空間に流入させる流体の量を昇圧させずにそのまま流入させた場合よりも多くすることができ、ひいては、吐出する圧縮後の流体の量を増加させることができる。したがって、圧縮機に求められる能力(例えば吐出ガス量)が同じ場合には、従来よりも密閉空間の容積を小さくすることができるため、従来よりも圧縮機の小型化を図ることができる。また、圧縮機のサイズが従来と同等でよい場合には、圧縮機のサイズを維持しつつ、圧縮機の能力を高めることができる。 In the scroll type compressor with one side surface, the space inside the housing is arranged by the thrust receiving portion, the first region in which the drive shaft extends and the fluid is guided from the outside, and the fixed scroll and the movable scroll. It is divided into regions, and the first region and the fluid intake region near the outer end of the spiral of the wrap are communicated with each other by a communication hole in the thrust receiving portion. Then, the fluid in the first region is sent out to the thrust receiving portion side by the impeller attached to the drive shaft in the first region. Therefore, the fluid in the first region is pushed into the fluid intake region through the communication hole by the impeller and is taken into the fluid intake region. That is, the blower composed of the impeller, the drive shaft, and the housing has a function as a so-called supercharger. Then, the fluid taken into the fluid intake region is compressed and discharged in the closed space between the fixed scroll and the movable scroll via the outer end of the spiral of the wrap. Therefore, in the scroll type compressor with one side surface, the fluid in the first region can be pushed into the fluid intake region to increase the pressure, so that the amount of fluid flowing into the closed space from the fluid intake region is increased. It is possible to increase the amount of the fluid as it is, and to increase the amount of the compressed fluid to be discharged. Therefore, when the capacity required for the compressor (for example, the amount of discharged gas) is the same, the volume of the enclosed space can be made smaller than before, so that the compressor can be made smaller than before. Further, when the size of the compressor may be the same as the conventional one, the capacity of the compressor can be increased while maintaining the size of the compressor.
 このようにして、小型化を図ることができるスクロール型圧縮機を提供することができる。 In this way, it is possible to provide a scroll type compressor that can be miniaturized.
本発明の一実施形態におけるスクロール型圧縮機の概略断面図である。It is the schematic sectional drawing of the scroll type compressor in one Embodiment of this invention. 図1に示すA-A矢視の断面図である。It is sectional drawing of the arrow AA shown in FIG. スクロール型圧縮機の駆動軸の正面図である。It is a front view of the drive shaft of a scroll type compressor. スクロール型圧縮機の揺動部材の正面図である。It is a front view of the rocking member of a scroll type compressor. スクロール型圧縮機のスラスト受け部の正面図である。It is a front view of the thrust receiving part of a scroll type compressor. スクロール型圧縮機の可動スクロールの背面図である。It is a rear view of the movable scroll of a scroll type compressor. スクロール型圧縮機の羽根車の正面図である。It is a front view of the impeller of a scroll type compressor. 図7に示すB-B矢視の断面図である。FIG. 7 is a cross-sectional view taken along the line BB shown in FIG. 図7に示すC-C矢視の断面図である。FIG. 7 is a cross-sectional view taken along the line CC shown in FIG. スクロール型圧縮機の変形例を説明するための概略断面図である。It is schematic cross-sectional view for demonstrating the modification of the scroll type compressor. スクロール型圧縮機の別の変形例を説明するための概略断面図である。It is the schematic sectional drawing for demonstrating another modification of a scroll type compressor. 上記別の変形例における羽根車の正面図である。It is a front view of the impeller in the above-mentioned another modification.
 以下、本発明の実施の形態について、図を参照して詳細に説明する。
 図1は本実施形態におけるスクロール型圧縮機の全体構成を示す概略の断面図であり、図2は図1に示すA-A矢視の断面図である。図3~図6はそれぞれスクロール型圧縮機の部品図であり、図3は駆動軸の正面図、図4は揺動部材の正面図、図5はスラスト受け部の正面図、図6は可動スクロールの背面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing the overall configuration of the scroll type compressor according to the present embodiment, and FIG. 2 is a cross-sectional view taken along the line AA shown in FIG. 3 to 6 are component views of the scroll compressor, FIG. 3 is a front view of the drive shaft, FIG. 4 is a front view of the swing member, FIG. 5 is a front view of the thrust receiving portion, and FIG. It is a rear view of a scroll.
 本実施形態におけるスクロール型圧縮機100は、例えば冷房運転とヒートポンプによる暖房運転とを行うことができる車両用空調装置の冷媒回路に組み込まれ、冷媒回路の低圧側から吸入した圧縮性の流体である冷媒を圧縮して吐出する圧縮機である。このスクロール型圧縮機100は、スクロールユニット1と、ハウジング10と、スクロールユニット1に公転駆動力を伝達するための駆動機構20とを備えている。スクロールユニット1及び駆動機構20は、ハウジング10内に備えられている。なお、本実施形態においては、スクロール型圧縮機100は、スクロールユニット1の駆動源である電動モータ30をもハウジング10内に備える。さらに、スクロール型圧縮機100は、電動モータ30の駆動を制御するインバータ40をハウジング10内に備えており、いわゆるインバータ一体型電動圧縮機である。 The scroll type compressor 100 in the present embodiment is a compressible fluid incorporated in a refrigerant circuit of a vehicle air conditioner capable of performing, for example, cooling operation and heating operation by a heat pump, and sucked from the low pressure side of the refrigerant circuit. A compressor that compresses and discharges the refrigerant. The scroll type compressor 100 includes a scroll unit 1, a housing 10, and a drive mechanism 20 for transmitting a revolution driving force to the scroll unit 1. The scroll unit 1 and the drive mechanism 20 are provided in the housing 10. In the present embodiment, the scroll type compressor 100 also includes an electric motor 30 which is a drive source of the scroll unit 1 in the housing 10. Further, the scroll type compressor 100 includes an inverter 40 for controlling the drive of the electric motor 30 in the housing 10, and is a so-called inverter-integrated electric compressor.
 スクロールユニット1は、図1に示すように、互いに噛み合わされる固定スクロール2及び可動スクロール3を有する。スクロール型圧縮機100は、可動スクロール3が固定スクロール2に接しつつ固定スクロール2の軸心X’周りに公転して固定スクロール2との間に前記公転に伴って容積変化する後述する密閉空間Sを形成し、密閉空間Sにより冷媒を圧縮して吐出するように構成されている。例えば、固定スクロール2及び可動スクロール3はアルミニウム合金からなる。 As shown in FIG. 1, the scroll unit 1 has a fixed scroll 2 and a movable scroll 3 that are meshed with each other. In the scroll type compressor 100, the movable scroll 3 revolves around the axis X'of the fixed scroll 2 while being in contact with the fixed scroll 2, and the volume of the movable scroll 3 changes with the fixed scroll 2 in accordance with the revolution. Is formed, and the refrigerant is compressed and discharged by the closed space S. For example, the fixed scroll 2 and the movable scroll 3 are made of an aluminum alloy.
 具体的には、固定スクロール2は、円盤状に形成されると共に中心部に吐出孔2a1が開口された第1底板2aと、第1底板2aの一端面に立設される渦巻状の第1ラップ2bとを有する。可動スクロール3は、第1底板2aの一端面と対向する一端面を有する円盤状の第2底板3aと、第2底板3aの一端面に立設される渦巻状の第2ラップ3bとを有する。また、固定スクロール2の第1底板2aは可動スクロール3の第2底板3aより大きな径を有する。なお、本実施形態において、第1ラップ2bが本発明に係る「固定スクロール」の「ラップ」に相当し、第2ラップ3bが本発明に係る「可動スクロール」の「ラップ」に相当する。 Specifically, the fixed scroll 2 has a first bottom plate 2a formed in a disk shape and having a discharge hole 2a1 opened in the center thereof, and a spiral first plate erected on one end surface of the first bottom plate 2a. It has a wrap 2b. The movable scroll 3 has a disk-shaped second bottom plate 3a having one end surface facing the one end surface of the first bottom plate 2a, and a spiral second wrap 3b erected on one end surface of the second bottom plate 3a. .. Further, the first bottom plate 2a of the fixed scroll 2 has a larger diameter than the second bottom plate 3a of the movable scroll 3. In the present embodiment, the first lap 2b corresponds to the "lap" of the "fixed scroll" according to the present invention, and the second lap 3b corresponds to the "lap" of the "movable scroll" according to the present invention.
 固定スクロール2と可動スクロール3は、第1ラップ2bと第2ラップ3bとを互いに噛み合わせるように配置される。具体的には、固定スクロール2と可動スクロール3は、第1ラップ2bの周方向の角度と第2ラップ3bの周方向の角度が互いにずれた状態で、第1ラップ2bの側壁と第2ラップ3bの側壁が互いに部分的に接触するように配設される。これにより、第1ラップ2bと第2ラップ3bとの間に、三日月状の密閉空間Sが複数形成される。また、固定スクロール2と可動スクロール3は、第1ラップ2bの突出端部と第2底板3aとの間に隙間を有すると共に、第2ラップ3bの突出端部と第1底板2aとの間に隙間を有するように配設される。本実施形態では、第1ラップ2bの突出端部に形成される溝部と、第2ラップ3bの突出端部に形成される溝部とに、それぞれチップシール部材4が嵌め込まれている。このチップシール部材4により、密閉空間Sの気密性が適切に維持され、スクロール型圧縮機100における冷媒の圧縮性能が維持される。 The fixed scroll 2 and the movable scroll 3 are arranged so that the first lap 2b and the second lap 3b mesh with each other. Specifically, the fixed scroll 2 and the movable scroll 3 have the side wall of the first lap 2b and the second lap in a state where the circumferential angle of the first lap 2b and the circumferential angle of the second lap 3b are deviated from each other. The side walls of 3b are arranged so as to partially contact each other. As a result, a plurality of crescent-shaped sealed spaces S are formed between the first lap 2b and the second lap 3b. Further, the fixed scroll 2 and the movable scroll 3 have a gap between the protruding end of the first wrap 2b and the second bottom plate 3a, and between the protruding end of the second wrap 3b and the first bottom plate 2a. It is arranged so as to have a gap. In the present embodiment, the tip seal member 4 is fitted into the groove portion formed at the protruding end portion of the first wrap 2b and the groove portion formed at the protruding end portion of the second wrap 3b, respectively. The chip seal member 4 appropriately maintains the airtightness of the sealed space S, and maintains the compression performance of the refrigerant in the scroll type compressor 100.
 より具体的には、固定スクロール2は、第1底板2aのラップ側の一端面における外縁部に立設される円筒状の円筒部2cを有している。円筒部2cは、ハウジング10の後述するセンターハウジング11の一端側(図1では上側)の開口の内径に合せた外径を有している。固定スクロール2は、第1ラップ2b及び円筒部2cをセンターハウジング11の内側に向けて、センターハウジング11の一端側の開口を塞ぐように、センターハウジング11内に嵌め込まれている。 More specifically, the fixed scroll 2 has a cylindrical cylindrical portion 2c that is erected on an outer edge portion on one end surface of the first bottom plate 2a on the lap side. The cylindrical portion 2c has an outer diameter that matches the inner diameter of the opening on one end side (upper side in FIG. 1) of the center housing 11 described later in the housing 10. The fixed scroll 2 is fitted in the center housing 11 so that the first wrap 2b and the cylindrical portion 2c face the inside of the center housing 11 and close the opening on one end side of the center housing 11.
 可動スクロール3は、第2ラップ3bを第1底板2a側に向けた状態で固定スクロール2の円筒部2cの開口から円筒部2cの内側に嵌め込まれている。この状態で、スクロールユニット1における第1ラップ2b及び第2ラップ3bの渦巻外端部付近に流体取込領域H1が形成されている。この流体取込領域H1は、スクロールユニット1における第2底板3a側の端面において開口している。 The movable scroll 3 is fitted inside the cylindrical portion 2c through the opening of the cylindrical portion 2c of the fixed scroll 2 with the second wrap 3b facing the first bottom plate 2a side. In this state, the fluid intake region H1 is formed in the vicinity of the spiral outer end portion of the first lap 2b and the second lap 3b in the scroll unit 1. The fluid intake region H1 is open at the end surface of the scroll unit 1 on the second bottom plate 3a side.
 可動スクロール3は、駆動機構20を介して、その自転が阻止された状態で、固定スクロール2の軸心X’周りに公転可能に構成されている。これにより、スクロールユニット1は、密閉空間Sを中央部に移動させつつ、密閉空間Sの容積を徐々に減少させる。その結果、スクロールユニット1は、流体取込領域H1から密閉空間S内に流入する冷媒を密閉空間S内で圧縮する。 The movable scroll 3 is configured to revolve around the axis X'of the fixed scroll 2 in a state where its rotation is prevented via the drive mechanism 20. As a result, the scroll unit 1 gradually reduces the volume of the closed space S while moving the closed space S to the central portion. As a result, the scroll unit 1 compresses the refrigerant flowing into the closed space S from the fluid intake region H1 in the closed space S.
 ハウジング10は、センターハウジング11とフロントハウジング12とリアハウジング13とを有する。そして、これら(11,12,13)がボルト14などの締結部材によって一体的に締結されることによって、スクロール型圧縮機100のハウジング10が構成される。ハウジング10は、例えば、アルミニウム合金からなる。 The housing 10 has a center housing 11, a front housing 12, and a rear housing 13. Then, these (11, 12, 13) are integrally fastened by a fastening member such as a bolt 14, so that the housing 10 of the scroll type compressor 100 is configured. The housing 10 is made of, for example, an aluminum alloy.
 ハウジング10内の空間は、後述するスラスト受け部24によって第1領域V1と第2領域V2とに区画されている。第1領域V1内には、駆動機構20の一部を構成する後述する駆動軸21が延在すると共に、外部(冷媒回路の低圧側の部分)から吸入ポートP1を介して冷媒が導かれる。第2領域V2内には、スクロールユニット1が配置される。また、本実施形態では、第1領域V1内には、電動モータ30も設けられている。 The space inside the housing 10 is divided into a first region V1 and a second region V2 by a thrust receiving portion 24 described later. A drive shaft 21, which will be described later, forms a part of the drive mechanism 20 extends in the first region V1, and a refrigerant is guided from the outside (a portion on the low voltage side of the refrigerant circuit) via the suction port P1. The scroll unit 1 is arranged in the second region V2. Further, in the present embodiment, the electric motor 30 is also provided in the first region V1.
 センターハウジング11は、第1領域V1及び第2領域V2を内部に有する概ね円筒状の周壁部11aと、周壁部11aの長手方向中間の内周面に沿って内側に突設される環状の突設部11bとを有する。センターハウジング11内には、主に、スクロールユニット1、駆動機構20、電動モータ30が収容される。周壁部11aの一端部には、リアハウジング13の外縁部13aの端面が当接されている。また、周壁部11aの他端側(図1では下側)の開口はフロントハウジング12の後述する箱底部12aにより塞がれている。 The center housing 11 has a substantially cylindrical peripheral wall portion 11a having a first region V1 and a second region V2 inside, and an annular protrusion projecting inward along an inner peripheral surface intermediate in the longitudinal direction of the peripheral wall portion 11a. It has a setting portion 11b. The scroll unit 1, the drive mechanism 20, and the electric motor 30 are mainly housed in the center housing 11. The end surface of the outer edge portion 13a of the rear housing 13 is in contact with one end of the peripheral wall portion 11a. Further, the opening on the other end side (lower side in FIG. 1) of the peripheral wall portion 11a is closed by the box bottom portion 12a described later of the front housing 12.
 前述した吸入ポートP1は、特に限定されるものではないが、周壁部11aにおける第1領域V1に対応する部位に形成されている。このように、ハウジング10(本実施形態では周壁部11a)には、外部からハウジング10内に冷媒(流体)を導くための吸入ポートP1が形成されている。具体的には、吸入ポートP1は、周壁部11aにおける、電動モータ30のスラスト受け部24と反対側の端部に対応する部分に設けられている。本実施形態では、吸入ポートP1における第1領域V1側(つまり、ハウジング10の内部空間側)の開口端P11は、第1領域V1におけるスラスト受け部24と反対側の端部領域V11に開口されている。この端部領域V11に、フロントハウジング12の後述する箱底部12aの第1領域V1側の面が露出している。そして、冷媒回路の低圧側からの冷媒は、この吸入ポートP1を介してハウジング10(センターハウジング11)内に吸入される。つまり、吸入ポートP1は第1領域V1に開口しており、第1領域V1は吸入室として機能している。なお、本実施形態では、吸入ポートP1からの冷媒が第1領域V1内で電動モータ30の周囲及び電動モータ30内の隙間等を流通することにより、電動モータ30が冷却されるように構成されている。そして、図1において、第1領域V1における電動モータ30の上側(スラスト受け部24側)の空間は、第1領域V1における電動モータ30の下側(スラスト受け部24と反対側)の空間(つまり、上述した端部領域V11)と連通し、電動モータ30の下側の空間と共に一つの第1領域(吸入室)V1を構成する。また、第1領域V1内には、駆動機構20等の摺動部位の潤滑のために、適量の潤滑オイルが貯留されている。そのため、第1領域V1において、冷媒は潤滑オイルとの混合流体として流れている。 The above-mentioned suction port P1 is not particularly limited, but is formed at a portion of the peripheral wall portion 11a corresponding to the first region V1. As described above, the housing 10 (the peripheral wall portion 11a in the present embodiment) is formed with the suction port P1 for guiding the refrigerant (fluid) into the housing 10 from the outside. Specifically, the suction port P1 is provided at a portion of the peripheral wall portion 11a corresponding to the end portion of the electric motor 30 opposite to the thrust receiving portion 24. In the present embodiment, the opening end P11 on the first region V1 side (that is, the internal space side of the housing 10) of the suction port P1 is opened in the end region V11 opposite to the thrust receiving portion 24 in the first region V1. ing. The surface of the front housing 12 on the first region V1 side of the box bottom portion 12a, which will be described later, is exposed in this end region V11. Then, the refrigerant from the low pressure side of the refrigerant circuit is sucked into the housing 10 (center housing 11) through the suction port P1. That is, the suction port P1 is open to the first region V1, and the first region V1 functions as a suction chamber. In the present embodiment, the electric motor 30 is cooled by circulating the refrigerant from the suction port P1 around the electric motor 30 and in the gap in the electric motor 30 in the first region V1. ing. Then, in FIG. 1, the space on the upper side (thrust receiving portion 24 side) of the electric motor 30 in the first region V1 is the space on the lower side (opposite side of the thrust receiving portion 24) of the electric motor 30 in the first region V1. That is, it communicates with the above-mentioned end region V11) and constitutes one first region (suction chamber) V1 together with the space under the electric motor 30. Further, an appropriate amount of lubricating oil is stored in the first region V1 for lubrication of sliding portions such as the drive mechanism 20. Therefore, in the first region V1, the refrigerant flows as a mixed fluid with the lubricating oil.
 突設部11bにおけるリアハウジング13側の端面11b1は駆動機構20の駆動軸21(詳しくは後述する主軸21a)の回転軸心Xと直交する円環状の面として形成されている。この端面11b1には、駆動機構20のスラスト受け部24の外縁部の端面が当接される。スラスト受け部24とリアハウジング13との間に、固定スクロール2が挟持されることにより、固定スクロール2がスラスト受け部24と伴にセンターハウジング11内に固定されている。 The end surface 11b1 on the rear housing 13 side of the projecting portion 11b is formed as an annular surface orthogonal to the rotation axis X of the drive shaft 21 (detailed later described later) of the drive mechanism 20. The end surface of the outer edge portion of the thrust receiving portion 24 of the drive mechanism 20 is brought into contact with the end surface 11b1. Since the fixed scroll 2 is sandwiched between the thrust receiving portion 24 and the rear housing 13, the fixed scroll 2 is fixed in the center housing 11 together with the thrust receiving portion 24.
 フロントハウジング12は、全体として一端が開口した箱状に形成されており、センターハウジング11の周壁部11aの他端側の開口を塞ぐ箱底部12aと、箱底部12aの外縁部に突設される側壁部12bとを有し、内部にインバータ40を収容する。換言すると、箱底部12aは、センターハウジング11の周壁部11aにおける第1領域V1側の開口を塞いでいる。箱底部12aの第1領域V1側の面の中央部には、主軸21aの端部(図1では下端部)を回転可能に支持するフロントベアリング16を保持する筒状の支持部12a1がセンターハウジング11の内側に向って突設されている。箱底部12aの第1領域V1と反対側の面に、インバータ40が固定されている。また、フロントハウジング12の一端側の開口は、板状に形成されたインバータカバー15により塞がれている。インバータカバー15はボルト14によりフロントハウジング12の側壁部12bに締結される。このように、本実施形態では、ハウジング10は、第1領域V1及び第2領域V2を内部に有する筒状の周壁部11aと、周壁部11aにおける第1領域V1側の開口を塞ぐ箱底部12aと、を有している。なお、本実施形態において、箱底部12aが本発明に係る「底壁部」に相当する。 The front housing 12 is formed in a box shape having one end opened as a whole, and is projected from the box bottom portion 12a that closes the opening on the other end side of the peripheral wall portion 11a of the center housing 11 and the outer edge portion of the box bottom portion 12a. It has a side wall portion 12b and houses the inverter 40 inside. In other words, the box bottom portion 12a closes the opening on the first region V1 side in the peripheral wall portion 11a of the center housing 11. At the center of the surface of the box bottom 12a on the first region V1 side, a tubular support portion 12a1 for holding a front bearing 16 that rotatably supports the end portion (lower end portion in FIG. 1) of the spindle 21a is provided as a center housing. It is projected toward the inside of 11. The inverter 40 is fixed to the surface of the box bottom 12a opposite to the first region V1. Further, the opening on one end side of the front housing 12 is closed by the inverter cover 15 formed in a plate shape. The inverter cover 15 is fastened to the side wall portion 12b of the front housing 12 by bolts 14. As described above, in the present embodiment, the housing 10 has a tubular peripheral wall portion 11a having a first region V1 and a second region V2 inside, and a box bottom portion 12a that closes the opening on the first region V1 side in the peripheral wall portion 11a. And have. In the present embodiment, the box bottom portion 12a corresponds to the "bottom wall portion" according to the present invention.
 リアハウジング13は、センターハウジング11の周壁部11aの外径に合わせた外径を有する概ね円盤状に形成され、その中央部13bが外方に膨出するように形成されている。そして、このリアハウジング13は、その外縁部13aが周壁部11aの一端部に適宜本数のボルト14などの締結部材によって締結されている。 The rear housing 13 is formed in a substantially disk shape having an outer diameter matching the outer diameter of the peripheral wall portion 11a of the center housing 11, and the central portion 13b thereof is formed so as to bulge outward. The outer edge portion 13a of the rear housing 13 is fastened to one end of the peripheral wall portion 11a by an appropriate number of fastening members such as bolts 14.
 また、リアハウジング13の外縁部13aにおける径方向の内側部位13a1は、センターハウジング11の周壁部11aの内周面より径方向内側に張り出している。この内側部位13a1の端面が固定スクロール2の第1底板2aの他端面(ラップ2b側の端面と反対側の端面)のうちの外縁部に当接することにより、固定スクロール2がスラスト受け部24とリアハウジング13の外縁部13a(詳しくは、内側部位13a1)との間に挟持される。リアハウジング13の膨出形成された中央部13bと第1底板2aとにより、冷媒の吐出室H2が区画される。固定スクロール2におけるリアハウジング13の内側部位13a1との当接部位(前記外縁部)には、シール部材17が設けられている。吐出室H2は第1底板2aの中心部に形成された吐出孔2a1を経由して密閉空間Sに連通する。そして、この吐出室H2には、一方弁18が吐出孔2a1の開口を覆うように設けられている。この一方弁18は、冷媒が密閉空間Sから吐出室H2へ流れることを許容すると共に、冷媒が吐出室H2から密閉空間Sへ逆流することを防止する逆止弁である。吐出室H2内には、密閉空間Sで圧縮された冷媒が吐出孔2a1及び一方弁18を介して吐出される。吐出室H2内の圧縮冷媒はリアハウジング13に形成される吐出ポート(図示省略)を介して冷媒回路の高圧側に吐出される。 Further, the radial inner portion 13a1 of the outer edge portion 13a of the rear housing 13 projects radially inward from the inner peripheral surface of the peripheral wall portion 11a of the center housing 11. When the end surface of the inner portion 13a1 comes into contact with the outer edge portion of the other end surface (the end surface on the side opposite to the end surface on the wrap 2b side) of the first bottom plate 2a of the fixed scroll 2, the fixed scroll 2 and the thrust receiving portion 24 It is sandwiched between the outer edge portion 13a (specifically, the inner portion 13a1) of the rear housing 13. The refrigerant discharge chamber H2 is partitioned by the bulging central portion 13b of the rear housing 13 and the first bottom plate 2a. A seal member 17 is provided at a contact portion (the outer edge portion) of the fixed scroll 2 with the inner portion 13a1 of the rear housing 13. The discharge chamber H2 communicates with the closed space S via the discharge hole 2a1 formed in the central portion of the first bottom plate 2a. A valve 18 is provided in the discharge chamber H2 so as to cover the opening of the discharge hole 2a1. On the other hand, the valve 18 is a check valve that allows the refrigerant to flow from the closed space S to the discharge chamber H2 and prevents the refrigerant from flowing back from the discharge chamber H2 to the closed space S. In the discharge chamber H2, the refrigerant compressed in the closed space S is discharged through the discharge holes 2a1 and the one-side valve 18. The compressed refrigerant in the discharge chamber H2 is discharged to the high pressure side of the refrigerant circuit through a discharge port (not shown) formed in the rear housing 13.
 駆動機構20は、可動スクロール3に固定スクロール2の軸心X’周りの公転駆動力を伝達するための機構である。本実施形態では、駆動機構20は、可動スクロール3の自転を阻止する機能も有している。 The drive mechanism 20 is a mechanism for transmitting the revolution driving force around the axis X'of the fixed scroll 2 to the movable scroll 3. In the present embodiment, the drive mechanism 20 also has a function of preventing the movable scroll 3 from rotating.
 図1及び図2に示すように、本実施形態において、駆動機構20は、駆動軸21と、旋回軸受22と、環状の揺動部材23と、スラスト受け部24と、自転阻止機構部25と、リアベアリング26と、連結ピン25aと、を含む。 As shown in FIGS. 1 and 2, in the present embodiment, the drive mechanism 20 includes a drive shaft 21, a swivel bearing 22, an annular swing member 23, a thrust receiving portion 24, and a rotation prevention mechanism portion 25. , A rear bearing 26 and a connecting pin 25a.
 駆動軸21は、図1から図3に示すように、主軸21aと偏心軸21bとを有する。主軸21aは、回転軸心X周りに回転駆動される。主軸21aの回転軸心Xは固定スクロール2の軸心X’に合わせられている。偏心軸21bは主軸21aの軸方向の一端部に回転軸心Xに対して偏心して設けられる。駆動軸21は例えば鋼材からなる。 As shown in FIGS. 1 to 3, the drive shaft 21 has a main shaft 21a and an eccentric shaft 21b. The spindle 21a is rotationally driven around the rotation axis X. The rotation axis X of the spindle 21a is aligned with the axis X'of the fixed scroll 2. The eccentric shaft 21b is provided at one end of the main shaft 21a in the axial direction so as to be eccentric with respect to the rotation axis X. The drive shaft 21 is made of, for example, a steel material.
 駆動軸21には、この駆動軸21と一体に回転して第1領域V1内の冷媒をスラスト受け部24側に送り出す羽根車27が取り付けられている。つまり、第1領域V1を形成するセンターハウジング11からなるケーシングと駆動軸21と羽根車27とにより送風装置が構成されている。また、本実施形態では、可動スクロール3に対する重量バランスを確保するためのカウンターウェイト28が、羽根車27と一体的に設けられている。なお、羽根車27及びカウンターウェイト28については後に詳述する。 An impeller 27 is attached to the drive shaft 21 that rotates integrally with the drive shaft 21 and sends out the refrigerant in the first region V1 to the thrust receiving portion 24 side. That is, the blower is composed of the casing composed of the center housing 11 forming the first region V1, the drive shaft 21, and the impeller 27. Further, in the present embodiment, a counterweight 28 for ensuring a weight balance with respect to the movable scroll 3 is provided integrally with the impeller 27. The impeller 27 and the counterweight 28 will be described in detail later.
 主軸21aの一端部には、フランジ状に形成されたフランジ部21a1が偏心軸21bと一体に設けられている。主軸21aの他端部は、縮径され、支持部12a1に嵌合されるフロントベアリング16によって回転可能に支持されている。 At one end of the main shaft 21a, a flange-shaped flange portion 21a1 is provided integrally with the eccentric shaft 21b. The other end of the spindle 21a is reduced in diameter and is rotatably supported by a front bearing 16 fitted to the support 12a1.
 偏心軸21bは、具体的には、主軸21aの回転軸心Xに対して偏心した軸心を中心とした円形断面を有し、スクロールユニット1側に向って延伸している。 Specifically, the eccentric shaft 21b has a circular cross section centered on the axis eccentric with respect to the rotation axis X of the main shaft 21a, and extends toward the scroll unit 1 side.
 本実施形態では、偏心軸21bには、回転軸心Xと同心の円形孔21b1が形成されている。つまり、偏心軸21bの外径の中心は、主軸21aの回転軸心Xに対して偏心した軸心上に位置するが、偏心軸21bの内径の中心は、主軸21aの回転軸心X上に位置している。換言すると、偏心軸21bは筒状に形成されており、筒外径の中心は、固定スクロール2の第1ラップ2b及び可動スクロール3の第2ラップ3bが適切に摺動するように、筒内径の中心に対して偏心している。 In the present embodiment, the eccentric shaft 21b is formed with a circular hole 21b1 concentric with the rotation axis X. That is, the center of the outer diameter of the eccentric shaft 21b is located on the axis eccentric with respect to the rotation axis X of the spindle 21a, but the center of the inner diameter of the eccentric shaft 21b is on the rotation axis X of the spindle 21a. positioned. In other words, the eccentric shaft 21b is formed in a tubular shape, and the center of the outer diameter of the cylinder is the inner diameter of the cylinder so that the first lap 2b of the fixed scroll 2 and the second lap 3b of the movable scroll 3 slide appropriately. Is eccentric with respect to the center of.
 本実施形態では、偏心軸21bは、主軸21aと別体で形成されている。具体的には、偏心軸21bの円形孔21b1は主軸21aの外径に合わせた孔径を有して偏心軸21bを貫通している。フランジ部21a1は偏心軸21bの一端部の外周に偏心した鍔状に形成されている。主軸21aの一端部が偏心軸21bの円形孔21b1にリアベアリング26の収容領域を残して圧入されることにより、偏心軸21bが主軸21aの一端部に固定されている。つまり、円形孔21b1の孔壁面と主軸21aの一端部の端面とにより、駆動軸21の一端部(偏心軸側端部)に、円形凹部が形成される。この円形凹部には、後述するスラスト受け部24の凸部24bが挿入される。 In the present embodiment, the eccentric shaft 21b is formed separately from the main shaft 21a. Specifically, the circular hole 21b1 of the eccentric shaft 21b has a hole diameter that matches the outer diameter of the main shaft 21a and penetrates the eccentric shaft 21b. The flange portion 21a1 is formed in an eccentric flange shape on the outer circumference of one end of the eccentric shaft 21b. The eccentric shaft 21b is fixed to one end of the main shaft 21a by press-fitting one end of the main shaft 21a into the circular hole 21b1 of the eccentric shaft 21b while leaving the accommodation area of the rear bearing 26. That is, a circular recess is formed at one end (eccentric shaft side end) of the drive shaft 21 by the hole wall surface of the circular hole 21b1 and the end surface of one end of the main shaft 21a. The convex portion 24b of the thrust receiving portion 24, which will be described later, is inserted into the circular concave portion.
 旋回軸受22は、偏心軸21bの外周面に装着される軸受であり、例えば、円筒状のすべり軸受からなる。旋回軸受22は、概ね偏心軸21bのフランジ部21a1のフランジ面からの突設高さに合わせた高さを有している。 The swivel bearing 22 is a bearing mounted on the outer peripheral surface of the eccentric shaft 21b, and is, for example, a cylindrical slide bearing. The swivel bearing 22 has a height substantially matching the height of the flange portion 21a1 of the eccentric shaft 21b from the flange surface.
 揺動部材23は、旋回軸受22の外周面に装着される。揺動部材23は、旋回軸受22の高さに合わせた厚みを有した円盤状に形成され、例えば、アルミニウム系合金材からなる。揺動部材23の中心部には、旋回軸受22の外径に合わせた内径を有する旋回軸受用取付孔23aが開口されている。この旋回軸受用取付孔23aに、旋回軸受22が嵌め込まれる。 The swing member 23 is mounted on the outer peripheral surface of the swivel bearing 22. The rocking member 23 is formed in a disk shape having a thickness corresponding to the height of the swivel bearing 22, and is made of, for example, an aluminum alloy material. A swivel bearing mounting hole 23a having an inner diameter matching the outer diameter of the swivel bearing 22 is opened in the central portion of the swing member 23. The swivel bearing 22 is fitted into the swivel bearing mounting hole 23a.
 図4に示すように、揺動部材23の外縁部における周方向に等間隔に離間した複数(図2及び図4では、6箇所)の部位には、それぞれ、後述する連結ピン25aが挿通される孔(以下では、挿通孔という)23bが貫通されている。揺動部材23は、その外縁部における各挿通孔23bの間の領域がそれぞれ径方向内側に凹むように形成されている。これにより、揺動部材23の軽量化が図られている。また、揺動部材23の外縁部の凹みは、後述するスラスト受け部24の貫通孔24aの少なくとも一部である連通孔24a1と伴に、第1領域V1からスクロールユニット1の第1ラップ2b及び第2ラップ3bの渦巻外端部付近に形成される流体取込領域H1へ冷媒(詳しくは冷媒と潤滑オイルとの混合流体)を導入するための冷媒導入通路として機能することになる。したがって、揺動部材23の外縁部の凹みにより、冷媒導入通路が十分に確保され、冷媒導入通路の圧損の低減を容易に図ることができる。そして、揺動部材23の旋回軸受用取付孔23aの孔壁面と偏心軸21bの外周面との間に、旋回軸受22が取り付けられている。これにより、揺動部材23は、旋回軸受22を介して偏心軸21bの軸心(つまり、主軸21aの回転軸心Xに対して偏心した軸心)周りに回動可能に偏心軸21bに取り付けられている。 As shown in FIG. 4, connecting pins 25a, which will be described later, are inserted into a plurality of portions (6 locations in FIGS. 2 and 4) at equal intervals in the circumferential direction at the outer edge portion of the rocking member 23. A hole (hereinafter referred to as an insertion hole) 23b is penetrated. The rocking member 23 is formed so that the region between the insertion holes 23b at the outer edge thereof is recessed inward in the radial direction. As a result, the weight of the swing member 23 is reduced. Further, the recess of the outer edge portion of the swing member 23 is formed from the first region V1 to the first lap 2b of the scroll unit 1 together with the communication hole 24a1 which is at least a part of the through hole 24a of the thrust receiving portion 24 described later. It functions as a refrigerant introduction passage for introducing a refrigerant (specifically, a mixed fluid of a refrigerant and a lubricating oil) into a fluid intake region H1 formed near the outer end of the spiral of the second wrap 3b. Therefore, the dent on the outer edge of the rocking member 23 sufficiently secures the refrigerant introduction passage, and the pressure loss of the refrigerant introduction passage can be easily reduced. A swivel bearing 22 is mounted between the wall surface of the swivel bearing mounting hole 23a of the swing member 23 and the outer peripheral surface of the eccentric shaft 21b. As a result, the swing member 23 is rotatably attached to the eccentric shaft 21b via the swivel bearing 22 around the axis of the eccentric shaft 21b (that is, the axis eccentric with respect to the rotation axis X of the spindle 21a). Has been done.
 スラスト受け部24は、図1に示すように、可動スクロール3の背面側に設けられ、可動スクロール3のスラスト力を受けるものである。本実施形態では、スラスト受け部24は、可動スクロール3の第2底板3aと揺動部材23との間に設けられている。換言すると、揺動部材23は、当該揺動部材23と可動スクロール3の第2底板3aとの間にスラスト受け部24を挟むように配置されている。 As shown in FIG. 1, the thrust receiving portion 24 is provided on the back side of the movable scroll 3 and receives the thrust force of the movable scroll 3. In the present embodiment, the thrust receiving portion 24 is provided between the second bottom plate 3a of the movable scroll 3 and the swing member 23. In other words, the rocking member 23 is arranged so as to sandwich the thrust receiving portion 24 between the rocking member 23 and the second bottom plate 3a of the movable scroll 3.
 本実施形態では、スラスト受け部24は、ハウジング10と別体で形成されている。具体的には、スラスト受け部24は、例えば、可動スクロール3、揺動部材23及びハウジング10に採用される材料(例えば、アルミニウム系合金)よりも良好な耐摩耗性を有する鋼材等の適宜の部材からなる。スラスト受け部24は、センターハウジング11の一端側(図1では上側)の開口の内径に合せた外径を有した概ね円盤状に形成されている。スラスト受け部24の外縁部の端面は前述したようにセンターハウジング11の突設部11bの端面11b1に当接している。スラスト受け部24は、例えば、その外縁部が固定スクロール2の円筒部2cの先端面と突設部11bの端面11b1との間に挟持されることにより、センターハウジング11内に固定される。固定スクロール2に対するスラスト受け部24の周方向についての角度位置は、図示省略したピン及びピン穴等の適宜の位置決め手段により定められている。前述したようにハウジング10(詳しくはセンターハウジング11の周壁部11a)内の空間は、スラスト受け部24によって第1領域V1と第2領域V2とに区画されている。また、駆動軸21は、スラスト受け部24とフロントベアリング16によって回転軸心X方向の遊び量が規制されている。 In the present embodiment, the thrust receiving portion 24 is formed separately from the housing 10. Specifically, the thrust receiving portion 24 is appropriately made of, for example, a steel material having better wear resistance than the material (for example, an aluminum alloy) used for the movable scroll 3, the swing member 23, and the housing 10. It consists of members. The thrust receiving portion 24 is formed in a substantially disk shape having an outer diameter matching the inner diameter of the opening on one end side (upper side in FIG. 1) of the center housing 11. The end surface of the outer edge portion of the thrust receiving portion 24 is in contact with the end surface 11b1 of the projecting portion 11b of the center housing 11 as described above. The thrust receiving portion 24 is fixed in the center housing 11 by, for example, its outer edge portion being sandwiched between the tip surface of the cylindrical portion 2c of the fixed scroll 2 and the end surface 11b1 of the projecting portion 11b. The angular position of the thrust receiving portion 24 with respect to the fixed scroll 2 in the circumferential direction is determined by an appropriate positioning means such as a pin and a pin hole (not shown). As described above, the space inside the housing 10 (specifically, the peripheral wall portion 11a of the center housing 11) is divided into a first region V1 and a second region V2 by the thrust receiving portion 24. Further, in the drive shaft 21, the amount of play in the rotation axis X direction is regulated by the thrust receiving portion 24 and the front bearing 16.
 図1及び図5に示すように、スラスト受け部24の外縁部には、当該外縁部を貫通する複数の貫通孔24aが形成されている。本実施形態では、貫通孔24aは、円形に開口され、スラスト受け部24の外縁部における周方向に等間隔に離間した複数(図5では、6箇所)の部位に開口されている。 As shown in FIGS. 1 and 5, a plurality of through holes 24a penetrating the outer edge portion are formed in the outer edge portion of the thrust receiving portion 24. In the present embodiment, the through holes 24a are opened in a circular shape, and are opened at a plurality of (six locations in FIG. 5) portions of the outer edge portion of the thrust receiving portion 24 that are spaced apart at equal intervals in the circumferential direction.
 本実施形態では、スラスト受け部24の揺動部材側端面の中央部位に、円柱状の凸部24bが突設されている。凸部24bはリアベアリング26の内径に合せた外径を有する。凸部24bの突出高さは、概ね旋回軸受22の高さに合わせられている。凸部24bの外周面に、リアベアリング26が装着される。 In the present embodiment, a columnar convex portion 24b is projected from the central portion of the end surface of the thrust receiving portion 24 on the swing member side. The convex portion 24b has an outer diameter that matches the inner diameter of the rear bearing 26. The protruding height of the convex portion 24b is substantially matched to the height of the swivel bearing 22. The rear bearing 26 is mounted on the outer peripheral surface of the convex portion 24b.
 図1に示すように、可動スクロール3の第2底板3aの背面である他端面(つまり、スラスト受け部側端面)には、シール部材19が配置される。環状のシール部材19により、第2底板3aの背面とスラスト受け部24の可動スクロール側端面との間に区画される背圧室H3の気密性が保たれる。背圧室H3は、シール部材19のつぶし代等により定まる主軸21aの回転軸心X方向についての隙間高さ(例えば、0.5mm未満)を有しており、図1ではこの隙間高さは現れていない。可動スクロール3の第2底板3aの中央部には、密閉空間Sと背圧室H3とを連通する連通路3dが開口されている。また、背圧室H3は、この背圧室H3内の圧力より低圧の領域との連通が遮断されている。したがって、圧縮動作により得た高圧の冷媒の一部を背圧形成のために連通路3dを介して背圧室H3へ供給したとしても、その冷媒が背圧室H3内の圧力より低圧の領域へ垂れ流されることはない。その結果、エネルギーロスの低減を図ることができる。 As shown in FIG. 1, the seal member 19 is arranged on the other end surface (that is, the end surface on the thrust receiving portion side) which is the back surface of the second bottom plate 3a of the movable scroll 3. The annular sealing member 19 maintains the airtightness of the back pressure chamber H3 partitioned between the back surface of the second bottom plate 3a and the movable scroll side end surface of the thrust receiving portion 24. The back pressure chamber H3 has a gap height (for example, less than 0.5 mm) in the rotation axis X direction of the spindle 21a determined by the crushing allowance of the seal member 19, and in FIG. 1, this gap height is It has not appeared. A communication passage 3d that connects the closed space S and the back pressure chamber H3 is opened in the central portion of the second bottom plate 3a of the movable scroll 3. Further, the back pressure chamber H3 is blocked from communicating with a region whose pressure is lower than the pressure in the back pressure chamber H3. Therefore, even if a part of the high-pressure refrigerant obtained by the compression operation is supplied to the back pressure chamber H3 via the communication passage 3d for back pressure formation, the refrigerant is in a region lower than the pressure in the back pressure chamber H3. It will not be washed away. As a result, energy loss can be reduced.
 可動スクロール3の第2底板3aの背面には、シール部材19を取り付けるための溝部3eが形成されている。図1及び図6に示すように、可動スクロール3が固定スクロール2の軸心X’周りに公転旋回運動する際に、シール部材19がスラスト受け部24における複数の貫通孔24aの領域に入り込まないように、溝部3eの形成経路が定められている。 A groove 3e for attaching the seal member 19 is formed on the back surface of the second bottom plate 3a of the movable scroll 3. As shown in FIGS. 1 and 6, when the movable scroll 3 revolves around the axis X'of the fixed scroll 2, the seal member 19 does not enter the regions of the plurality of through holes 24a in the thrust receiving portion 24. As described above, the formation path of the groove portion 3e is defined.
 また、スラスト受け部24は、第1領域V1と第2領域V2における第1ラップ2b及び第2ラップ3bの渦巻外端部付近の流体取込領域H1とを連通する連通孔24a1を有している。連通孔24a1の開口は、流体取込領域H1のうちスクロールユニット1における第2底板3a側の端面において開口した部分に対向するようにスラスト受け部24に形成されている。本実施形態では、連通孔24a1は、複数の貫通孔24aの少なくとも一部(例えば、一つの貫通孔24a)からなり、流体取込領域H1へ冷媒を導入するための冷媒導入通路として機能する。 Further, the thrust receiving portion 24 has a communication hole 24a1 that communicates the first lap 2b and the fluid intake region H1 near the outer end of the spiral of the second lap 3b in the first region V1 and the second region V2. There is. The opening of the communication hole 24a1 is formed in the thrust receiving portion 24 so as to face the opened portion of the fluid intake region H1 at the end surface of the scroll unit 1 on the second bottom plate 3a side. In the present embodiment, the communication hole 24a1 is composed of at least a part of a plurality of through holes 24a (for example, one through hole 24a), and functions as a refrigerant introduction passage for introducing the refrigerant into the fluid intake region H1.
 図1及び図6に示すように、可動スクロール3の第2底板3aの外縁部には、複数の孔3cが開口されている。この可動スクロール3の孔3cは、揺動部材23に開口される挿通孔23bの開口位置と同一の位置に開口されている。 As shown in FIGS. 1 and 6, a plurality of holes 3c are opened in the outer edge portion of the second bottom plate 3a of the movable scroll 3. The hole 3c of the movable scroll 3 is opened at the same position as the opening position of the insertion hole 23b opened in the swing member 23.
 自転阻止機構部25は、可動スクロール3の自転を阻止するための機構である。本実施形態では、自転阻止機構部25は、スラスト受け部24の外縁部を貫通する前述した複数の貫通孔24aと、貫通孔24aを貫通すると共に揺動部材23の外縁部と可動スクロール3の第2底板3aの外縁部との間を連結する連結ピン25aとにより構成されている。連結ピン25aは、その中間部が貫通孔24aの孔壁面に摺接することにより、可動スクロール3の自転を阻止すると共に可動スクロール3の公転駆動力を可動スクロール3に伝達する。つまり、本実施形態では、連結ピン25aは、公転駆動力の伝達機能と可動スクロール3の自転阻止機能とを兼ね備えている。揺動部材23における挿通孔23b及び可動スクロール3における孔3cは、貫通孔24aに対応した位置に形成されている。貫通孔24aの内径は、挿通孔23b及び孔3cの内径より大きく、例えば、可動スクロール3の必要とする公転旋回半径に応じて定められる。連結ピン25aは、例えば、スラスト受け部24と同様に鋼材からなり、貫通孔24aより小径の円柱状に形成されている。このようにして、連結ピン25aの中間部が貫通孔24aの孔壁面に摺接することにより、可動スクロール3の自転を阻止する自転阻止機構部25が構成されている。また、自転阻止機構部25を備える駆動機構20は、連結ピン25aを有し、当該連結ピン25aを介して公転駆動力を可動スクロール3に伝達している。 The rotation prevention mechanism unit 25 is a mechanism for preventing the rotation of the movable scroll 3. In the present embodiment, the rotation prevention mechanism portion 25 penetrates the plurality of through holes 24a described above that penetrate the outer edge portion of the thrust receiving portion 24, and penetrates the through holes 24a, and also penetrates the outer edge portion of the swing member 23 and the movable scroll 3. It is composed of a connecting pin 25a that connects the second bottom plate 3a to the outer edge portion. The connecting pin 25a prevents the movable scroll 3 from rotating and transmits the revolution driving force of the movable scroll 3 to the movable scroll 3 by sliding the intermediate portion thereof against the hole wall surface of the through hole 24a. That is, in the present embodiment, the connecting pin 25a has both a function of transmitting the revolution driving force and a function of preventing the rotation of the movable scroll 3. The insertion hole 23b in the swing member 23 and the hole 3c in the movable scroll 3 are formed at positions corresponding to the through holes 24a. The inner diameter of the through hole 24a is larger than the inner diameter of the insertion hole 23b and the hole 3c, and is determined according to, for example, the revolution turning radius required by the movable scroll 3. The connecting pin 25a is made of a steel material like the thrust receiving portion 24, and is formed in a columnar shape having a diameter smaller than that of the through hole 24a, for example. In this way, the rotation prevention mechanism portion 25 for preventing the rotation of the movable scroll 3 is configured by the intermediate portion of the connecting pin 25a sliding in contact with the hole wall surface of the through hole 24a. Further, the drive mechanism 20 including the rotation prevention mechanism unit 25 has a connecting pin 25a, and transmits the revolution driving force to the movable scroll 3 via the connecting pin 25a.
 リアベアリング26は、スラスト受け部24の凸部24bの外周面と偏心軸21bの円形孔21b1の内周面との間に嵌め込まれ、駆動軸21における一端部である偏心軸21bを回転軸心X周りに回転可能に支持する軸受である。リアベアリング26は、例えば、リアベアリング26の外周面が円形孔21b1の内周面に対して摺動すると共に、リアベアリング26の内周面が凸部24bの外周面に対して摺動可能に、凸部24bの外周面と円形孔21b1の内周面との間に嵌め込まれている。リアベアリング26は、例えば、旋回軸受22と同様に円筒状のすべり軸受からなる。これにより、駆動軸21における一端部(偏心軸側端部)は、リアベアリング26により回転可能に支持され、駆動軸21における他端部(インバータ側端部)は、支持部12a1内に嵌め込まれるフロントベアリング16によって回転可能に支持され、駆動軸21の両端部がハウジング10内において回動可能に支持される。また、駆動軸21の一端部はスラスト受け部24の凸部24bを介して回転可能に支持されている。つまり、本実施形態では、駆動軸21における一端部である偏心軸21b(換言すると、駆動軸21におけるスラスト受け部24側の端部)は、スラスト受け部24によって回転軸心X周りに回転可能に支持されている。 The rear bearing 26 is fitted between the outer peripheral surface of the convex portion 24b of the thrust receiving portion 24 and the inner peripheral surface of the circular hole 21b1 of the eccentric shaft 21b, and rotates the eccentric shaft 21b which is one end of the drive shaft 21. It is a bearing that rotatably supports around X. In the rear bearing 26, for example, the outer peripheral surface of the rear bearing 26 slides with respect to the inner peripheral surface of the circular hole 21b1, and the inner peripheral surface of the rear bearing 26 slides with respect to the outer peripheral surface of the convex portion 24b. , It is fitted between the outer peripheral surface of the convex portion 24b and the inner peripheral surface of the circular hole 21b1. The rear bearing 26 is made of, for example, a cylindrical slide bearing similar to the swivel bearing 22. As a result, one end portion (eccentric shaft side end portion) of the drive shaft 21 is rotatably supported by the rear bearing 26, and the other end portion (inverter side end portion) of the drive shaft 21 is fitted into the support portion 12a1. It is rotatably supported by the front bearing 16 and both ends of the drive shaft 21 are rotatably supported in the housing 10. Further, one end of the drive shaft 21 is rotatably supported via the convex portion 24b of the thrust receiving portion 24. That is, in the present embodiment, the eccentric shaft 21b (in other words, the end of the drive shaft 21 on the thrust receiving portion 24 side), which is one end portion of the drive shaft 21, can be rotated around the rotation axis X by the thrust receiving portion 24. Is supported by.
 電動モータ30は、スクロールユニット1の駆動源であり、駆動軸21(詳しくは主軸21a)の回転駆動力を発生させるものである。電動モータ30は、ハウジング10の第1領域V1内において駆動軸21と一体に設けられている。電動モータ30は、ロータ31と、ロータ31の径方向外側に配置されるステータコアユニット32とを含んで構成される。例えば車両のバッテリー(図示省略)からの直流電流が、インバータ40により交流電流に変換され、電動モータ30へ給電される。ロータ31は、その径方向中心に形成された軸孔に嵌合(例えば圧入)される主軸21aを介して、ステータコアユニット32の径方向内側で回転可能に支持される。インバータ40からの給電によりステータコアユニット32に磁界が発生すると、ロータ31に回転動力が作用して主軸21aが回転駆動される。また、駆動軸21のフランジ部21a1は、第1領域V1内における電動モータ30とスラスト受け部24との間に配置されている。 The electric motor 30 is a drive source for the scroll unit 1 and generates a rotational driving force for the drive shaft 21 (specifically, the spindle 21a). The electric motor 30 is provided integrally with the drive shaft 21 in the first region V1 of the housing 10. The electric motor 30 includes a rotor 31 and a stator core unit 32 arranged on the radial outer side of the rotor 31. For example, a direct current from a vehicle battery (not shown) is converted into an alternating current by the inverter 40 and supplied to the electric motor 30. The rotor 31 is rotatably supported inside the stator core unit 32 via a spindle 21a fitted (for example, press-fitted) into a shaft hole formed at the center of the rotor 31 in the radial direction. When a magnetic field is generated in the stator core unit 32 by the power supply from the inverter 40, rotational power acts on the rotor 31 to rotationally drive the spindle 21a. Further, the flange portion 21a1 of the drive shaft 21 is arranged between the electric motor 30 and the thrust receiving portion 24 in the first region V1.
 そして、電動モータ30は、ステータコアユニット32の外周面とハウジング10(センターハウジング11)の周壁部11aの内周面との間において、周方向に間隔をあけて設けられる複数の保持部材33によって、ハウジング10に対して保持されている。各保持部材33の間には隙間があけられている。したがって、冷媒は電動モータ30の周囲を流れ得る。 Then, the electric motor 30 is provided by a plurality of holding members 33 provided at intervals in the circumferential direction between the outer peripheral surface of the stator core unit 32 and the inner peripheral surface of the peripheral wall portion 11a of the housing 10 (center housing 11). It is held against the housing 10. There is a gap between the holding members 33. Therefore, the refrigerant can flow around the electric motor 30.
 以上のように構成されたスクロール型圧縮機100では、電動モータ30により主軸21aが回転駆動されると、偏心軸21bが旋回軸受22、揺動部材23と伴に固定スクロール2の軸心X’周りに公転し、この公転駆動力は、連結ピン25aを介して可動スクロール3へ伝達される。このとき、可動スクロール3は、連結ピン25aを介して揺動部材23と一体に結合されて、揺動部材23と一体的に公転旋回運動する。スクロール型圧縮機100は、この公転旋回運動により、固定スクロール2と可動スクロール3との間の密閉空間Sに流入する冷媒を圧縮する。 In the scroll type compressor 100 configured as described above, when the spindle 21a is rotationally driven by the electric motor 30, the eccentric shaft 21b is moved along with the swivel bearing 22 and the swing member 23, and the axis X'of the fixed scroll 2 is It revolves around, and this revolving driving force is transmitted to the movable scroll 3 via the connecting pin 25a. At this time, the movable scroll 3 is integrally coupled with the swing member 23 via the connecting pin 25a, and revolves and turns integrally with the swing member 23. The scroll type compressor 100 compresses the refrigerant flowing into the closed space S between the fixed scroll 2 and the movable scroll 3 by this revolving turning motion.
 次に、羽根車27とカウンターウェイト28について、図1、図2及び図7から図9を参照して詳述する。図7は羽根車27の正面図、図8は図7に示すB-B矢視の断面図、図9は図7に示すC-C矢視の断面図である。 Next, the impeller 27 and the counterweight 28 will be described in detail with reference to FIGS. 1, 2, and 7 to 9. 7 is a front view of the impeller 27, FIG. 8 is a cross-sectional view taken along the line BB shown in FIG. 7, and FIG. 9 is a cross-sectional view taken along the line CC shown in FIG.
 本実施形態では、羽根車27は、駆動軸21が嵌合するハブ27aと、ハブ27aの外周面から放射状に延びる複数の羽根27bと、複数の羽根27bの先端部間を接続する円環状のリム部27cとを有する。羽根車27は、その回転軸心(つまり主軸21aの回転軸心X)の延伸方向の一端側から流体を吸い込み他端側に向って流体を送り出すいわゆる軸流ファン用の羽根車である。ハブ27aは例えば円筒状に形成されている。各羽根27bは、例えば、その回転方向R(図1及び図7参照)の前端部が吸込み側(図1、図8及び図9では下側)に傾くように傾斜し、正面視(平面視)で概ね扇形のプロペラ状に形成されている。リム部27cは、ハブ27aと同心円状に設けられている。 In the present embodiment, the impeller 27 has an annular shape connecting the hub 27a to which the drive shaft 21 is fitted, the plurality of blades 27b radially extending from the outer peripheral surface of the hub 27a, and the tips of the plurality of blades 27b. It has a rim portion 27c. The impeller 27 is an impeller for a so-called axial fan that sucks fluid from one end side in the extending direction of the rotation axis (that is, the rotation axis X of the main shaft 21a) and sends the fluid toward the other end. The hub 27a is formed, for example, in a cylindrical shape. Each blade 27b is inclined so that the front end portion in the rotation direction R (see FIGS. 1 and 7) is inclined toward the suction side (lower side in FIGS. 1, 8 and 9), and the blades 27b are viewed from the front (plan view). ) Is formed in the shape of a fan-shaped propeller. The rim portion 27c is provided concentrically with the hub 27a.
 本実施形態では、羽根車27は駆動軸21における電動モータ30とスラスト受け部24との間の部位に取り付けられている。具体的には、羽根車27は、駆動軸21の偏心軸21bと一体に形成されたフランジ部21a1の外周面に装着されている。つまり、羽根車27のハブ27aの内側にフランジ部21a1が嵌め込まれており、羽根車27は、第1領域V1内における電動モータ30とスラスト受け部24との間の領域に配置されている。そして、本実施形態では、羽根車27と可動スクロール3との間に、少なくとも、スラスト受け部24、旋回軸受22及び揺動部材23が配置されている。また、羽根車27のリム部27cは、フランジ部21a1の厚みと同等の厚みを有し、フランジ部21a1のフランジ面と概ね面一になるように配置されている。 In the present embodiment, the impeller 27 is attached to a portion of the drive shaft 21 between the electric motor 30 and the thrust receiving portion 24. Specifically, the impeller 27 is mounted on the outer peripheral surface of the flange portion 21a1 integrally formed with the eccentric shaft 21b of the drive shaft 21. That is, the flange portion 21a1 is fitted inside the hub 27a of the impeller 27, and the impeller 27 is arranged in the region between the electric motor 30 and the thrust receiving portion 24 in the first region V1. Then, in the present embodiment, at least the thrust receiving portion 24, the swivel bearing 22, and the swing member 23 are arranged between the impeller 27 and the movable scroll 3. Further, the rim portion 27c of the impeller 27 has a thickness equivalent to that of the flange portion 21a1 and is arranged so as to be substantially flush with the flange surface of the flange portion 21a1.
 本実施形態では、リム部27cの内側面には、スラスト受け部24側に向かうほどリム部27cの外周側に近づくように傾斜した傾斜面27c1が形成されている。 In the present embodiment, an inclined surface 27c1 is formed on the inner surface of the rim portion 27c so as to approach the outer peripheral side of the rim portion 27c toward the thrust receiving portion 24 side.
 本実施形態では、羽根車27は、この羽根車27(詳しくはリム部27c)の外周面とハウジング10(詳しくはセンターハウジング11)の内周面との間の隙間が揺動の際の揺動部材23の外周面とハウジング10の内周面との間の最小の隙間よりも小さくなるように形成されている。つまり、羽根車27はハウジング10の内周面との間に、羽根車27が回転可能な隙間を有しており、この隙間は例えば1mm未満、好ましくは0.5mm未満になるように設定されている。本実施形態では、羽根車27は、センターハウジング11の内側に突設される環状の突設部11bの内側に配置されており、この突設部11bの内周面とリム部27cとの間の隙間が、揺動部材23の外周面とハウジング10の内周面との間の最小の隙間よりも小さくなるように形成されている。 In the present embodiment, the impeller 27 rocks when the gap between the outer peripheral surface of the impeller 27 (specifically, the rim portion 27c) and the inner peripheral surface of the housing 10 (specifically, the center housing 11) swings. It is formed so as to be smaller than the minimum gap between the outer peripheral surface of the moving member 23 and the inner peripheral surface of the housing 10. That is, the impeller 27 has a gap between the impeller 27 and the inner peripheral surface of the housing 10 so that the impeller 27 can rotate, and this gap is set to be, for example, less than 1 mm, preferably less than 0.5 mm. ing. In the present embodiment, the impeller 27 is arranged inside the annular projecting portion 11b projecting inside the center housing 11, and is located between the inner peripheral surface of the projecting portion 11b and the rim portion 27c. The gap is formed so as to be smaller than the minimum gap between the outer peripheral surface of the swing member 23 and the inner peripheral surface of the housing 10.
 本実施形態では、カウンターウェイト28は、羽根車27と一体的に設けられている。具体的には、カウンターウェイト28は、リム部27cにおける回転軸心Xに対する偏心軸21bの偏心方向と反対側の周方向の角度位置において、リム部27cの内側に張り出すように設けられている。また、リム部27cの傾斜面27c1はこのカウンターウェイト28の内側にも形成されており、全体として環状に形成されている。 In the present embodiment, the counterweight 28 is provided integrally with the impeller 27. Specifically, the counterweight 28 is provided so as to project inside the rim portion 27c at an angular position in the circumferential direction opposite to the eccentric direction of the eccentric shaft 21b with respect to the rotation axis X in the rim portion 27c. .. Further, the inclined surface 27c1 of the rim portion 27c is also formed inside the counterweight 28, and is formed in an annular shape as a whole.
 次に、スクロール型圧縮機100における冷媒の流れを説明する。
 駆動軸21が回転すると、可動スクロール3が固定スクロール2の軸心X’周りに公転旋回運動すると共に、羽根車27が回転する。この羽根車27の回転により、第1領域V1内には、スラスト受け部24と反対側の端部領域V11側からスラスト受け部24側に向かう冷媒の流れが発生する。そして、冷媒回路の低圧側からの冷媒は、吸入ポートP1を介して第1領域V1(端部領域V11)に導入され、電動モータ30内及び電動モータ30の周囲(具体的には、モータ巻き線間の隙間やティース部の隙間や各保持部材33間の隙間等)を通過して電動モータ30を冷却し、その後、羽根車27の各羽根27bの間を流れて、スラスト受け部24側に送り出される。したがって、本実施形態では、羽根車27は、電動モータ30を基準とすると冷媒の流れ方向について電動モータ30よりも下流側に設けられている。冷媒は概ね羽根車27の回転軸心の延伸方向に沿ってスラスト受け部24側に向かって送り出されるが、冷媒の一部は遠心力によって各羽根27bに沿って羽根車27の径方向外側に流れてリム部27cの傾斜面27c1に衝突する。この傾斜面27c1に衝突した冷媒は、傾斜面27c1によってスラスト受け部24側に送り出される。羽根車27から送り出された冷媒は、その後、冷媒導入通路としての連通孔24a1や揺動部材23の外縁部の凹みを介してスクロールユニット1の渦巻外端部付近の流体取込領域H1に押し込まれて流体取込領域H1に取り込まれる。そして、流体取込領域H1に取り込まれた冷媒は、第1ラップ2bと第2ラップ3bの渦巻外端部を経由して密閉空間S内で圧縮される。圧縮された冷媒は、吐出孔2a1及び一方弁18を経由して吐出室H2に吐出され、その後、吐出室H2から図示省略した吐出ポートを介して冷媒回路の高圧側に吐出される。つまり、本実施形態では、吸入ポートP1から第1領域V1内に流入した冷媒は、ハウジング10内の電動モータ30を冷却しつつ、羽根車27の送風作用により連通孔24a1を経由して流体取込領域H1に押し込まれて昇圧されている。
Next, the flow of the refrigerant in the scroll type compressor 100 will be described.
When the drive shaft 21 rotates, the movable scroll 3 revolves around the axis X'of the fixed scroll 2, and the impeller 27 rotates. Due to the rotation of the impeller 27, a flow of refrigerant is generated in the first region V1 from the end region V11 side opposite to the thrust receiving portion 24 toward the thrust receiving portion 24 side. Then, the refrigerant from the low pressure side of the refrigerant circuit is introduced into the first region V1 (end region V11) via the suction port P1 and is introduced into the electric motor 30 and around the electric motor 30 (specifically, the motor winding). The electric motor 30 is cooled by passing through gaps between lines, gaps between teeth, gaps between holding members 33, etc., and then flows between the blades 27b of the impeller 27 to the thrust receiving portion 24 side. Is sent to. Therefore, in the present embodiment, the impeller 27 is provided on the downstream side of the electric motor 30 in the flow direction of the refrigerant with respect to the electric motor 30. The refrigerant is generally sent toward the thrust receiving portion 24 side along the extension direction of the rotation axis of the impeller 27, but a part of the refrigerant is radially outward of the impeller 27 along each blade 27b by centrifugal force. It flows and collides with the inclined surface 27c1 of the rim portion 27c. The refrigerant that collides with the inclined surface 27c1 is sent out to the thrust receiving portion 24 side by the inclined surface 27c1. The refrigerant sent out from the impeller 27 is then pushed into the fluid intake region H1 near the outer end of the spiral of the scroll unit 1 through the communication hole 24a1 as the refrigerant introduction passage and the recess of the outer edge of the rocking member 23. Is taken into the fluid uptake region H1. Then, the refrigerant taken into the fluid intake region H1 is compressed in the closed space S via the outer ends of the spirals of the first lap 2b and the second lap 3b. The compressed refrigerant is discharged to the discharge chamber H2 via the discharge hole 2a1 and the one-side valve 18, and then discharged from the discharge chamber H2 to the high pressure side of the refrigerant circuit via a discharge port (not shown). That is, in the present embodiment, the refrigerant flowing into the first region V1 from the suction port P1 cools the electric motor 30 in the housing 10 and takes fluid through the communication holes 24a1 by the blowing action of the impeller 27. It is pushed into the filling region H1 and boosted.
 本実施形態によるスクロール型圧縮機100では、スラスト受け部24によって、ハウジング10内の空間が第1領域V1と第2領域V2とに区画されると共に、スラスト受け部24における連通孔24a1によって、第1領域V1と流体取込領域H1とが連通されている。そして、第1領域V1内の冷媒は、第1領域V1内の駆動軸21に取り付けられた羽根車27によってスラスト受け部24側に送り出される。したがって、第1領域V1内の冷媒は羽根車27によって連通孔24a1を介して流体取込領域H1に押し込まれて、流体取込領域H1に取り込まれる。つまり、羽根車27と駆動軸21とハウジング10とからなる送風装置がいわば過給機としての機能を有する。そして、流体取込領域H1に取り込まれた冷媒は第1ラップ2b及び第2ラップ3bの渦巻外端部を経由して密閉空間Sで圧縮されて吐出される。したがって、スクロール型圧縮機100では、第1領域V1内の冷媒を流体取込領域H1に押し込んでその圧力を高めることができるため、流体取込領域H1から密閉空間Sに流入させる流体の量(質量流量)を昇圧させずにそのまま流入させた場合よりも多くすることができ、ひいては、吐出する圧縮後の冷媒の量を増加させることができる。したがって、圧縮機に求められる能力(例えば吐出ガス量)が同じ場合には、従来よりも密閉空間Sの容積を小さくすることができるため、従来よりも圧縮機の小型化を図ることができる。また、圧縮機のサイズが従来と同等でよい場合には、圧縮機のサイズを維持しつつ、圧縮機の能力を高めることができる。このようにして、効果的に小型化を図ることができるスクロール型圧縮機100を提供することができる。 In the scroll type compressor 100 according to the present embodiment, the space in the housing 10 is divided into the first region V1 and the second region V2 by the thrust receiving portion 24, and the communication hole 24a1 in the thrust receiving portion 24 is used to divide the space inside the housing 10. One region V1 and the fluid intake region H1 are communicated with each other. Then, the refrigerant in the first region V1 is sent out to the thrust receiving portion 24 side by the impeller 27 attached to the drive shaft 21 in the first region V1. Therefore, the refrigerant in the first region V1 is pushed into the fluid intake region H1 by the impeller 27 through the communication hole 24a1 and is taken into the fluid intake region H1. That is, the blower including the impeller 27, the drive shaft 21, and the housing 10 has a function as a so-called supercharger. Then, the refrigerant taken into the fluid intake region H1 is compressed and discharged in the closed space S via the outer ends of the spirals of the first lap 2b and the second lap 3b. Therefore, in the scroll type compressor 100, the refrigerant in the first region V1 can be pushed into the fluid intake region H1 to increase the pressure, so that the amount of fluid flowing into the closed space S from the fluid intake region H1 ( The mass flow rate) can be increased as compared with the case where the fluid is flowed in as it is without being boosted, and the amount of the compressed refrigerant to be discharged can be increased. Therefore, when the capacity required for the compressor (for example, the amount of discharged gas) is the same, the volume of the closed space S can be made smaller than before, so that the compressor can be made smaller than before. Further, when the size of the compressor may be the same as the conventional one, the capacity of the compressor can be increased while maintaining the size of the compressor. In this way, it is possible to provide the scroll type compressor 100 that can be effectively miniaturized.
 ここで、従来のスクロール型圧縮機において、暖房運転における冷媒回路の低圧側からスクロール型圧縮機に吸入される冷媒の圧力(冷媒の吸入圧)は冷房運転の場合の冷媒の吸入圧よりも低くなるという傾向があり、このままでは、十分な暖房能力(例えば吐出ガス量)を得ることが困難な場合がある。この点、本実施形態に係るスクロール型圧縮機100は、暖房運転において、圧力の低い、つまり、密度の低い冷媒を吸入したとしても、吸入した冷媒の圧力を羽根車27により昇圧させることができ、ひいては、吐出する圧縮後の冷媒の量を増加させることができる。つまり、スクロール型圧縮機100は、暖房運転可能な冷媒回路に好適な圧縮機である。 Here, in the conventional scroll type compressor, the pressure of the refrigerant sucked into the scroll type compressor from the low pressure side of the refrigerant circuit in the heating operation (refrigerant suction pressure) is lower than the suction pressure of the refrigerant in the cooling operation. If nothing is done, it may be difficult to obtain a sufficient heating capacity (for example, the amount of discharged gas). In this respect, the scroll type compressor 100 according to the present embodiment can increase the pressure of the sucked refrigerant by the impeller 27 even if the low pressure, that is, the low density refrigerant is sucked in the heating operation. As a result, the amount of the compressed refrigerant to be discharged can be increased. That is, the scroll type compressor 100 is a compressor suitable for a refrigerant circuit capable of heating operation.
 本実施形態では、羽根車27のリム部27cの内側面には、スラスト受け部24側に向かうほどリム部27cの外周側に近づくように傾斜した傾斜面27c1が形成されている。これにより、いわゆる軸流ファン用の羽根車27において、遠心力によって羽根車27の径方向外側に向かう冷媒流れが生じたとしても、傾斜面27c1によってその冷媒流れの向きを変えてスラスト受け部24側(つまり羽根車の回転軸心方向)に流れるように冷媒をガイドすることができる。 In the present embodiment, an inclined surface 27c1 is formed on the inner surface of the rim portion 27c of the impeller 27 so as to approach the outer peripheral side of the rim portion 27c toward the thrust receiving portion 24 side. As a result, in the impeller 27 for so-called axial flow fans, even if a refrigerant flow is generated outward in the radial direction of the impeller 27 due to centrifugal force, the direction of the refrigerant flow is changed by the inclined surface 27c1 and the thrust receiving portion 24 The refrigerant can be guided so that it flows to the side (that is, in the direction of the rotation axis of the impeller).
 本実施形態では、スラスト受け部24の外縁部には、複数の貫通孔24aが形成されており、駆動機構20は、貫通孔24aを貫通すると共に揺動部材23の外縁部と可動スクロール3の第2底板3aの外縁部との間を連結する連結ピン25aを有している。したがって、主軸21aが回転駆動されると、偏心軸21bが旋回軸受22及び揺動部材23と伴に固定スクロール2の軸心X’周りに公転し、この公転駆動力は、連結ピン25aを介して可動スクロール3へ伝達される。このように、可動スクロール3を固定スクロール2の軸心X’周りの公転させる公転駆動力は、連結ピン25aにより安定して伝達されるため、公転駆動力の伝達構造に起因した可動スクロール3の第2底板3aの歪みは抑制又は防止され、ひいては、圧縮機の性能低下の抑制又は防止を図ることができる。 In the present embodiment, a plurality of through holes 24a are formed in the outer edge portion of the thrust receiving portion 24, and the drive mechanism 20 penetrates the through holes 24a and the outer edge portion of the swing member 23 and the movable scroll 3. It has a connecting pin 25a that connects the second bottom plate 3a to the outer edge portion. Therefore, when the spindle 21a is rotationally driven, the eccentric shaft 21b revolves around the axis X'of the fixed scroll 2 together with the swing bearing 22 and the swing member 23, and this revolution driving force is transmitted via the connecting pin 25a. Is transmitted to the movable scroll 3. In this way, the revolution driving force that causes the movable scroll 3 to revolve around the axis X'of the fixed scroll 2 is stably transmitted by the connecting pin 25a, so that the movable scroll 3 is caused by the transmission structure of the revolution driving force. Distortion of the second bottom plate 3a can be suppressed or prevented, and thus deterioration of the performance of the compressor can be suppressed or prevented.
 本実施形態では、羽根車27と可動スクロール3との間に、少なくとも、スラスト受け部24、旋回軸受22及び揺動部材23が配置される構造としたため、駆動軸21以外の駆動機構20の構成部材を羽根車27と可動スクロール3との間に集約させることができる。その結果、圧縮機の小型化をより効率的に図ることができる。 In the present embodiment, at least the thrust receiving portion 24, the swivel bearing 22 and the swing member 23 are arranged between the impeller 27 and the movable scroll 3, so that the drive mechanism 20 other than the drive shaft 21 is configured. The members can be integrated between the impeller 27 and the movable scroll 3. As a result, the size of the compressor can be reduced more efficiently.
 本実施形態では、羽根車27は、リム部27cの外周面とハウジング10(センターハウジング11の突設部11b)の内周面との間の隙間が揺動の際の揺動部材23の外周面とハウジング10(突設部11b)の内周面との間の最小の隙間よりも小さくなるように形成されている。これにより、羽根車27からスラスト受け部24側に送り出された冷媒がリム部27cの外周面とハウジング10(センターハウジング11の突設部11b)の内周面との間の隙間を介して第1領域V1に逆流することを防止又は抑制することができる。その結果、冷媒を流体取込領域H1に効果的に押し込むことができる。 In the present embodiment, the impeller 27 has the outer circumference of the swing member 23 when the gap between the outer peripheral surface of the rim portion 27c and the inner peripheral surface of the housing 10 (protruding portion 11b of the center housing 11) swings. It is formed so as to be smaller than the minimum gap between the surface and the inner peripheral surface of the housing 10 (protruding portion 11b). As a result, the refrigerant sent from the impeller 27 to the thrust receiving portion 24 side passes through the gap between the outer peripheral surface of the rim portion 27c and the inner peripheral surface of the housing 10 (protruding portion 11b of the center housing 11). It is possible to prevent or suppress backflow to one region V1. As a result, the refrigerant can be effectively pushed into the fluid uptake region H1.
 本実施形態では、自転阻止機構部25は、貫通孔24aと連結ピン25aとにより構成され、連結ピン25aの中間部が貫通孔24aの孔壁面に摺接することにより、可動スクロール3の自転を阻止する構成であるため、貫通孔24aの孔壁面における孔深さ方向の全体(つまり、本実施形態では、スラスト受け部24の厚み全体)に亘って貫通孔24aの孔壁面を連結ピン25aの摺接用の面として有効に用いることができる。また、駆動機構20の連結ピン25aは、公転駆動力の伝達機能に加えて、可動スクロール3の自転阻止機能も有している。これにより、駆動機構20の構造を簡素化することができる。 In the present embodiment, the rotation prevention mechanism portion 25 is composed of a through hole 24a and a connecting pin 25a, and the intermediate portion of the connecting pin 25a is in sliding contact with the hole wall surface of the through hole 24a to prevent the movable scroll 3 from rotating. Therefore, the hole wall surface of the through hole 24a is slid over the entire wall surface of the through hole 24a in the hole depth direction (that is, the entire thickness of the thrust receiving portion 24 in the present embodiment). It can be effectively used as a contact surface. Further, the connecting pin 25a of the drive mechanism 20 has a function of preventing the rotation of the movable scroll 3 in addition to the function of transmitting the revolution driving force. Thereby, the structure of the drive mechanism 20 can be simplified.
 本実施形態では、第1領域V1と第2領域V2における流体取込領域H1とを連通する連通孔24a1は、複数の貫通孔24aの少なくとも一部からなる。つまり、貫通孔24aの一部は、自転阻止機構部25としての機能だけでなく、第1領域V1から流体取込領域H1へ冷媒を導入するための冷媒導入通路としての機能も有している。したがって、冷媒導入通路をハウジング10等に別に形成する必要がなく、スクロール型圧縮機100の生産性等を向上させることができる。また、揺動部材23の外縁部の前記凹みについても冷媒導入通路としての機能を有し、貫通孔24aと同様の効果を奏する。 In the present embodiment, the communication hole 24a1 that communicates the first region V1 and the fluid intake region H1 in the second region V2 is composed of at least a part of the plurality of through holes 24a. That is, a part of the through hole 24a has not only a function as a rotation prevention mechanism portion 25 but also a function as a refrigerant introduction passage for introducing the refrigerant from the first region V1 to the fluid intake region H1. .. Therefore, it is not necessary to separately form the refrigerant introduction passage in the housing 10 or the like, and the productivity of the scroll type compressor 100 or the like can be improved. Further, the recess on the outer edge of the rocking member 23 also has a function as a refrigerant introduction passage, and has the same effect as the through hole 24a.
 本実施形態では、電動モータ30が第1領域V1において駆動軸21(主軸21a)と一体に設けられ、吸入ポートP1における第1領域V1側の開口端P11は第1領域V1におけるスラスト受け部24と反対側の端部領域V11に開口されている。これにより、第1領域V1内に設けられた羽根車27を回転させると、第1領域V1内に、スラスト受け部24と反対側の端部領域V11側からスラスト受け部24側に向かう冷媒の流れを発生させることができる。したがって、ハウジング10内に電動モータ30内及びその周囲を通過する冷媒の流れを形成することができ、冷媒によって、電動モータ30を効率的に冷却することができる。また、本実施形態では、羽根車27は駆動軸21における電動モータ30とスラスト受け部24との間の部位に取り付けられている。これにより、冷媒の流れ方向について電動モータ30よりも下流側に、羽根車27が配置される構造を構築することができる。 In the present embodiment, the electric motor 30 is provided integrally with the drive shaft 21 (spindle 21a) in the first region V1, and the opening end P11 on the first region V1 side of the suction port P1 is the thrust receiving portion 24 in the first region V1. It is opened in the end region V11 on the opposite side to the above. As a result, when the impeller 27 provided in the first region V1 is rotated, the refrigerant flows into the first region V1 from the end region V11 side opposite to the thrust receiving portion 24 toward the thrust receiving portion 24 side. A flow can be generated. Therefore, a flow of the refrigerant passing through the electric motor 30 and its surroundings can be formed in the housing 10, and the electric motor 30 can be efficiently cooled by the refrigerant. Further, in the present embodiment, the impeller 27 is attached to a portion of the drive shaft 21 between the electric motor 30 and the thrust receiving portion 24. As a result, it is possible to construct a structure in which the impeller 27 is arranged on the downstream side of the electric motor 30 in the flow direction of the refrigerant.
 本実施形態では、カウンターウェイト28が羽根車27と一体に形成されている。これにより、カウンターウェイト28の製造コストを低減することができる。カウンターウェイト28が羽根車27の最外径部位であるリム部27cに形成されている。したがって、リム部27cの外径を可能な範囲で大きくするだけで、カウンターウェイト28の重心位置を主軸21aの回転軸心Xから遠ざけることができる。その結果、カウンターウェイト28を効果的に軽量化することができる。 In this embodiment, the counterweight 28 is integrally formed with the impeller 27. As a result, the manufacturing cost of the counterweight 28 can be reduced. The counterweight 28 is formed on the rim portion 27c, which is the outermost diameter portion of the impeller 27. Therefore, the position of the center of gravity of the counterweight 28 can be moved away from the rotation axis X of the main shaft 21a only by increasing the outer diameter of the rim portion 27c as much as possible. As a result, the counterweight 28 can be effectively reduced in weight.
 なお、本実施形態では、背圧室H3は、第2底板3aの背面とスラスト受け部24の可動スクロール側端面と一つの環状のシール部材19とにより、一つの空間として区画されるものとしたが、これに限定されるものではない。背圧室H3は、スクロール型圧縮機100の変形例を説明するための概略断面図である図10に示すように、複数の領域に区画されてもよい。この場合、背圧室H3は、第2底板3aの背面と、スラスト受け部24の可動スクロール側端面と、第2底板3aの背面とスラスト受け部24の可動スクロール側端面との間において多重の環状に配置される複数(図10では二つ)のシール部材19、19により複数(図10では二つ)の領域に区画される。そして、可動スクロール3の第2底板3aを貫通して、密閉空間Sと背圧室H3とを連通する連通路3dは、背圧室H3の複数の領域のそれぞれの領域に対応して開口される。この背圧室H3の複数の領域のそれぞれの領域は、当該領域に対応する連通路3dを介して、複数の密閉空間Sのうちこの連通路3dが開口する密閉空間Sに連通している。これにより、第2底板3aの背面に作用する背圧全体の圧力分布を、第2底板3aの密閉空間S側の端面に作用する複数の密閉空間Sの全体の圧力分布に概ね合わせることができる。また、連通路3dは単に第2底板3aを板厚方向に貫通しているだけであるため、その流路長が短いと共に流路経路が簡素である。したがって、連通路3dを介した冷媒の流通過程における圧力損失が低く抑えられる。これらにより、図10に示すスクロール型圧縮機100では、可動スクロール3に作用するスラスト方向の荷重と背圧荷重との荷重アンバランスを効果的に低減することができる。 In the present embodiment, the back pressure chamber H3 is partitioned as one space by the back surface of the second bottom plate 3a, the movable scroll side end surface of the thrust receiving portion 24, and one annular seal member 19. However, it is not limited to this. The back pressure chamber H3 may be divided into a plurality of regions as shown in FIG. 10, which is a schematic cross-sectional view for explaining a modification of the scroll type compressor 100. In this case, the back pressure chamber H3 is multiplexed between the back surface of the second bottom plate 3a, the movable scroll side end surface of the thrust receiving portion 24, and the back surface of the second bottom plate 3a and the movable scroll side end surface of the thrust receiving portion 24. A plurality of (two in FIG. 10) sealing members 19 and 19 arranged in an annular shape divide the area into a plurality of (two in FIG. 10) regions. Then, the communication passage 3d that penetrates the second bottom plate 3a of the movable scroll 3 and communicates the closed space S and the back pressure chamber H3 is opened corresponding to each region of the plurality of regions of the back pressure chamber H3. To. Each region of the plurality of regions of the back pressure chamber H3 communicates with the closed space S in which the continuous passage 3d opens among the plurality of closed spaces S via the communication passage 3d corresponding to the region. As a result, the pressure distribution of the entire back pressure acting on the back surface of the second bottom plate 3a can be roughly matched with the overall pressure distribution of the plurality of closed spaces S acting on the end faces of the second bottom plate 3a on the closed space S side. .. Further, since the communication passage 3d simply penetrates the second bottom plate 3a in the plate thickness direction, the flow path length is short and the flow path is simple. Therefore, the pressure loss in the flow process of the refrigerant through the communication passage 3d can be suppressed to a low level. As a result, in the scroll type compressor 100 shown in FIG. 10, the load imbalance between the load in the thrust direction and the back pressure load acting on the movable scroll 3 can be effectively reduced.
 また、本実施形態では、羽根車27は、複数の羽根27bの先端部間を接続する円環状のリム部27cを有するものとしたが、リム部27cを有さなくてもよい。また、羽根27bは概ね扇形のプロペラ状に形成されるものとしたが、羽根27bの形状はこれに限らない。また、リム部27cの内側面に傾斜面27c1が形成され、この傾斜面27c1により冷媒の流れをガイドする構成としたが、これに限らず、冷媒の流れをガイドする部材を羽根車27と別に設けてもよい。また、旋回軸受22及びリアベアリング26はすべり軸受からなるものとしたが、これに限らず、転がり軸受であってもよい。また、偏心軸21bは一部品により構成されているが、これに限らず、偏心ブッシュとカラーの二部品により構成されていてもよい。カウンターウェイト28は羽根車27に一体に形成されるものとしたが、これに限らず、駆動軸21と一体に形成されてもよいし、羽根車27や駆動軸21と別部品で羽根車27や駆動軸21に取り付けられていてもよい。自転阻止機構部25は、貫通孔24aと連結ピン25aとにより構成されるものとしたが、これに限らない。例えば、自転阻止機構部25として、オルダムカップリング方式を採用してもよいし、可動スクロール3の第2底板3aの背面とスラスト受け部24との間にボールカップリングを設けたボールカップリング方式を採用してもよい。 Further, in the present embodiment, the impeller 27 has an annular rim portion 27c connecting the tip portions of the plurality of blades 27b, but the impeller portion 27c may not be provided. Further, although the blades 27b are formed in a substantially fan-shaped propeller shape, the shape of the blades 27b is not limited to this. Further, an inclined surface 27c1 is formed on the inner surface of the rim portion 27c, and the inclined surface 27c1 guides the flow of the refrigerant. However, the present invention is not limited to this, and the member for guiding the flow of the refrigerant is separated from the impeller 27. It may be provided. Further, although the swivel bearing 22 and the rear bearing 26 are made of a sliding bearing, the present invention is not limited to this, and a rolling bearing may be used. Further, the eccentric shaft 21b is composed of one component, but is not limited to this, and may be composed of two components, an eccentric bush and a collar. The counterweight 28 is integrally formed with the impeller 27, but the present invention is not limited to this, and the counterweight 28 may be integrally formed with the drive shaft 21, or the impeller 27 may be formed as a separate component from the impeller 27 and the drive shaft 21. Or may be attached to the drive shaft 21. The rotation prevention mechanism portion 25 is composed of a through hole 24a and a connecting pin 25a, but is not limited to this. For example, the rotation prevention mechanism portion 25 may employ an Oldham coupling method, or a ball coupling method in which a ball coupling is provided between the back surface of the second bottom plate 3a of the movable scroll 3 and the thrust receiving portion 24. May be adopted.
 図11はスクロール型圧縮機100の別の変形例を説明するための概略断面図であり、図12は図11に示す変形例における羽根車27の正面図である。本実施形態では、羽根車27は、駆動軸21における電動モータ30とスラスト受け部24との間の部位に取り付けられているが、これに限定されるものではなく、図11に示すように、駆動軸21におけるスラスト受け部24と反対側の端部211と電動モータ30との間の部位に取り付けられてもよい。この場合、羽根車27は、電動モータ30を基準とすると冷媒の流れ方向について電動モータ30よりも上流側に設けられている。 FIG. 11 is a schematic cross-sectional view for explaining another modified example of the scroll type compressor 100, and FIG. 12 is a front view of the impeller 27 in the modified example shown in FIG. In the present embodiment, the impeller 27 is attached to a portion of the drive shaft 21 between the electric motor 30 and the thrust receiving portion 24, but the present invention is not limited to this, and as shown in FIG. It may be attached to a portion of the drive shaft 21 between the end portion 211 on the opposite side of the thrust receiving portion 24 and the electric motor 30. In this case, the impeller 27 is provided on the upstream side of the electric motor 30 in the flow direction of the refrigerant with respect to the electric motor 30.
 具体的には、図11に示すように、羽根車27は、電動モータ30におけるスラスト受け部24と反対側の端面と、フロントハウジング12の箱底部12aにおけるインバータ40と反対側の面(第1領域V1側の面)との間に位置している。換言すると、羽根車27は、冷媒の流れ方向について電動モータ30よりも上流側であり、且つ、第1領域V1におけるインバータ40側の端部領域V11に配置されている。 Specifically, as shown in FIG. 11, the impeller 27 has an end surface of the electric motor 30 opposite to the thrust receiving portion 24 and a surface of the front housing 12 on the box bottom 12a opposite to the inverter 40 (first). It is located between the area V1 side surface). In other words, the impeller 27 is located upstream of the electric motor 30 in the flow direction of the refrigerant, and is arranged in the end region V11 on the inverter 40 side in the first region V1.
 また、羽根車27は軸流ファン用のものに限定されるものではない。例えば、図11及び図12に示すように、羽根車27は遠心ファン用のものでもよい。具体的には、遠心ファン用の羽根車27は、駆動軸21に取り付けられる円盤状のベース271と、ベース271における電動モータ30とは反対側の端面に形成される複数の遠心翼272とを有する。ベース271の径方向の中央部には、円筒状のボス部273が設けられる。このボス部273に、駆動軸21が嵌め込まれる。そして、羽根車27は、ベース271における遠心翼272側の端面が箱底部12aに対向するように、駆動軸21に取り付けられている。 Also, the impeller 27 is not limited to those for axial fans. For example, as shown in FIGS. 11 and 12, the impeller 27 may be for a centrifugal fan. Specifically, the impeller 27 for a centrifugal fan has a disk-shaped base 271 attached to a drive shaft 21 and a plurality of centrifugal blades 272 formed on an end surface of the base 271 opposite to the electric motor 30. Have. A cylindrical boss portion 273 is provided at the center portion in the radial direction of the base 271. The drive shaft 21 is fitted into the boss portion 273. The impeller 27 is attached to the drive shaft 21 so that the end surface of the base 271 on the centrifugal blade 272 side faces the box bottom portion 12a.
 また、図11に示すように、吸入ポートP1は、例えば、羽根車27のベース271に対向するフロントハウジング12の箱底部12aに形成されてもよい。この場合においても、吸入ポートP1における第1領域V1側の開口端P11は、第1領域V1におけるスラスト受け部24と反対側の端部領域V11に開口されている。具体的には、吸入ポートP1における第1領域V1側の開口端P11は、羽根車27のベース271における遠心翼272側の端面に対向している。そして、吸入ポートP1における第1領域V1側の開口端P11は、羽根車27の外周面よりも径方向について内側に位置しているとよい。詳しくは、吸入ポートP1は、箱底部12aの外周面から中心側(支持部12a1側)に向かって伸びる径方向流路部と、支持部12a1内を駆動軸21の回転軸心Xと平行に伸びる軸心方向流路部を有している。本実施形態では、吸入ポートP1における第1領域V1側の開口端P11は、径方向について駆動軸21の近傍に開口している。これにより、吸入ポートP1からの冷媒が効率的に羽根車27に取り込まれる。 Further, as shown in FIG. 11, the suction port P1 may be formed, for example, on the box bottom 12a of the front housing 12 facing the base 271 of the impeller 27. Also in this case, the opening end P11 on the first region V1 side of the suction port P1 is opened in the end region V11 on the opposite side of the thrust receiving portion 24 in the first region V1. Specifically, the opening end P11 on the first region V1 side of the suction port P1 faces the end surface on the centrifugal blade 272 side of the base 271 of the impeller 27. The opening end P11 on the first region V1 side of the suction port P1 may be located inward in the radial direction with respect to the outer peripheral surface of the impeller 27. Specifically, the suction port P1 has a radial flow path portion extending from the outer peripheral surface of the box bottom portion 12a toward the center side (support portion 12a1 side) and the inside of the support portion 12a1 parallel to the rotation axis X of the drive shaft 21. It has an extending axial flow path portion. In the present embodiment, the opening end P11 on the first region V1 side of the suction port P1 is open in the vicinity of the drive shaft 21 in the radial direction. As a result, the refrigerant from the suction port P1 is efficiently taken into the impeller 27.
 また、図11に示すように、羽根車27が冷媒の流れ方向について電動モータ30よりも上流側に配置される場合には、スクロール型圧縮機100は、電動モータ30の外周面とハウジング10の内周面(センターハウジング11の周壁部11aの内周面)との間の隙間を密封するシール部材34を更に含むとよい。このシール部材34は、電動モータ30の外周面と周壁部11aの内周面との間の隙間を埋めるように形成されており、例えば、筒状に形成され、電動モータ30の外周面と周壁部11aの内周面との間において周方向の全周に亘って存在している。 Further, as shown in FIG. 11, when the impeller 27 is arranged on the upstream side of the electric motor 30 in the flow direction of the refrigerant, the scroll type compressor 100 is located on the outer peripheral surface of the electric motor 30 and the housing 10. It is preferable to further include a sealing member 34 that seals the gap between the inner peripheral surface (the inner peripheral surface of the peripheral wall portion 11a of the center housing 11). The seal member 34 is formed so as to fill a gap between the outer peripheral surface of the electric motor 30 and the inner peripheral surface of the peripheral wall portion 11a. For example, the seal member 34 is formed in a tubular shape and has the outer peripheral surface and the peripheral wall of the electric motor 30. It exists over the entire circumference in the circumferential direction with the inner peripheral surface of the portion 11a.
 次に、図11に示す変形例における冷媒の流れ(図11に白抜き矢印で示す)を説明する。羽根車27が回転すると、冷媒回路の低圧側からの冷媒は、吸入ポートP1を介して第1領域V1におけるスラスト受け部24と反対側の端部領域V11に導かれる。吸入ポートP1における第1領域V1側の開口端P11から端部領域V11内に導かれた冷媒は、羽根車27の回転により生じる遠心力によって、ベース271における径方向中心側から径方向外側に向かって流れる。この時、吸入ポートP1内を流れる冷媒及び端部領域V11内を流れる冷媒によって、箱底部12aが冷却され、その結果、インバータ40が冷却される。具体的には、第1領域V1の端部領域V11内においては、箱底部12aに沿い、且つ、径方向中心側から径方向外側に向かう冷媒の流れが発生している。つまり、羽根車27が回転すると、第1領域V1の端部領域V11内に箱底部12aに沿う冷媒(流体)の流れが生じるように構成されている。この冷媒の流れによって、インバータ40がより効果的に冷却されている。ここで、羽根車27が回転すると、冷媒に速度エネルギーが付与される。そして、隣り合う遠心翼272、272によって構成される冷媒の流路の幅は径方向外側に向かうほど広くなっている。したがって、冷媒は上記流路において径方向外側に向かうほど減速すると共に上記速度エネルギーが圧力エネルギーに変換され、その結果、端部領域V11内に導かれた冷媒の圧力が羽根車27により昇圧される。そして、図11に示す変形例では、羽根車27が冷媒の流れ方向について電動モータ30よりも上流側に配置されているため、羽根車27によって圧縮された冷媒は、羽根車27と周壁部11aとの間の隙間を通じて、積極的に電動モータ30側に送り出される。その結果、電動モータ30側に積極的に送り出された冷媒は、電動モータ30内を通過して電動モータ30(詳しくは、モータ巻き線等)を効果的に冷却する。そして、冷媒は、電動モータ30におけるスラスト受け部24側の端面から流出して、スラスト受け部24側に流れる。スラスト受け部24側に流れた冷媒は、その後、冷媒導入通路としての連通孔24a1や揺動部材23の外縁部の凹みを介してスクロールユニット1の渦巻外端部付近の流体取込領域H1に押し込まれて流体取込領域H1に取り込まれる。つまり、図11に示す変形例においても、吸入ポートP1から第1領域V1内に流入した冷媒は、羽根車27の送風作用により連通孔24a1を経由して流体取込領域H1に押し込まれて昇圧されている。したがって、図11に示す変形例においても、羽根車27と駆動軸21とハウジング10とからなる送風装置がいわば過給機としての機能を有している。 Next, the flow of the refrigerant (indicated by the white arrow in FIG. 11) in the modified example shown in FIG. 11 will be described. When the impeller 27 rotates, the refrigerant from the low pressure side of the refrigerant circuit is guided to the end region V11 on the opposite side of the thrust receiving portion 24 in the first region V1 via the suction port P1. The refrigerant guided from the opening end P11 on the first region V1 side of the suction port P1 into the end region V11 is directed radially outward from the radial center side of the base 271 by the centrifugal force generated by the rotation of the impeller 27. Flows. At this time, the box bottom 12a is cooled by the refrigerant flowing in the suction port P1 and the refrigerant flowing in the end region V11, and as a result, the inverter 40 is cooled. Specifically, in the end region V11 of the first region V1, a flow of the refrigerant is generated along the box bottom portion 12a and from the radial center side to the radial outer side. That is, when the impeller 27 rotates, the flow of the refrigerant (fluid) along the box bottom portion 12a is generated in the end region V11 of the first region V1. The flow of the refrigerant cools the inverter 40 more effectively. Here, when the impeller 27 rotates, velocity energy is applied to the refrigerant. The width of the flow path of the refrigerant composed of the adjacent centrifugal blades 272 and 272 becomes wider toward the outer side in the radial direction. Therefore, the refrigerant decelerates toward the outer side in the radial direction in the flow path, and the velocity energy is converted into pressure energy, and as a result, the pressure of the refrigerant guided into the end region V11 is increased by the impeller 27. .. In the modified example shown in FIG. 11, since the impeller 27 is arranged on the upstream side of the electric motor 30 in the flow direction of the refrigerant, the refrigerant compressed by the impeller 27 is the impeller 27 and the peripheral wall portion 11a. It is positively sent to the electric motor 30 side through the gap between the two. As a result, the refrigerant positively sent to the electric motor 30 side passes through the electric motor 30 and effectively cools the electric motor 30 (specifically, the motor winding or the like). Then, the refrigerant flows out from the end surface of the electric motor 30 on the thrust receiving portion 24 side and flows to the thrust receiving portion 24 side. The refrigerant flowing to the thrust receiving portion 24 side then enters the fluid intake region H1 near the outer end of the spiral of the scroll unit 1 via the communication hole 24a1 as the refrigerant introduction passage and the recess of the outer edge portion of the swing member 23. It is pushed in and taken into the fluid uptake region H1. That is, even in the modified example shown in FIG. 11, the refrigerant flowing into the first region V1 from the suction port P1 is pushed into the fluid intake region H1 via the communication hole 24a1 by the blowing action of the impeller 27 and boosted. Has been done. Therefore, even in the modified example shown in FIG. 11, the blower including the impeller 27, the drive shaft 21, and the housing 10 has a function as a so-called supercharger.
 ここで、図11に示す変形例では、電動モータ30の外周面とセンターハウジング11の周壁部11aの内周面との間にはシール部材34が設けられているため、電動モータ30におけるスラスト受け部24側の端面から流出した冷媒が電動モータ30と周壁部11aとの間の隙間を介して端部領域V11に逆流することを防止又は抑制することができる。その結果、冷媒を流体取込領域H1に効果的に押し込むことができる。また、シール部材34が設けられることによって、冷媒が電動モータ30内をより効果的に流れるようになるため、電動モータ30をより効果的に冷却することができる。また、図11に示す変形例では、羽根車27は冷媒の流れ方向について電動モータ30よりも流れ方向で上流側に設けられているため、電動モータ30によって加熱される前の冷媒が羽根車27に取り込まれる。したがって、羽根車27は、加熱により比容積が大きくなる(密度が低くなる)前の冷媒を取り込んで圧縮している。その結果、図11に示すスクロール型圧縮機100は、羽根車27が電動モータ30よりも流れ方向で下流側に設けられた図1に示すスクロール型圧縮機100よりも、流体取込領域H1から密閉空間Sに流入させる流体の量(質量流量)を多くすることができ、ひいては、吐出する圧縮後の冷媒の量をより効果的に増加させることができる。なお、図11に示す変形例では、シール部材34が電動モータ30の外周面とセンターハウジング11の周壁部11aの内周面との間に設けられているが、シール部材34は設けられなくてもよい。 Here, in the modified example shown in FIG. 11, since the seal member 34 is provided between the outer peripheral surface of the electric motor 30 and the inner peripheral surface of the peripheral wall portion 11a of the center housing 11, the thrust receiver in the electric motor 30 is received. It is possible to prevent or suppress the refrigerant flowing out from the end surface on the portion 24 side from flowing back to the end region V11 through the gap between the electric motor 30 and the peripheral wall portion 11a. As a result, the refrigerant can be effectively pushed into the fluid uptake region H1. Further, by providing the seal member 34, the refrigerant flows more effectively in the electric motor 30, so that the electric motor 30 can be cooled more effectively. Further, in the modified example shown in FIG. 11, since the impeller 27 is provided upstream of the electric motor 30 in the flow direction of the refrigerant, the refrigerant before being heated by the electric motor 30 is the impeller 27. Is taken in by. Therefore, the impeller 27 takes in and compresses the refrigerant before the specific volume becomes large (the density becomes low) due to heating. As a result, the scroll type compressor 100 shown in FIG. 11 has a fluid intake region H1 more than the scroll type compressor 100 shown in FIG. 1 in which the impeller 27 is provided downstream of the electric motor 30 in the flow direction. The amount of fluid (mass flow rate) flowing into the closed space S can be increased, and the amount of compressed refrigerant to be discharged can be increased more effectively. In the modified example shown in FIG. 11, the seal member 34 is provided between the outer peripheral surface of the electric motor 30 and the inner peripheral surface of the peripheral wall portion 11a of the center housing 11, but the seal member 34 is not provided. May be good.
 上記の説明では、スクロール型圧縮機100は一つの羽根車27を有するものとしたが、これに限定されるものでなく、複数の羽根車27を有してもよい。つまり、羽根車27は多段に設けられてもよい。具体的には、羽根車27は、電動モータ30よりも流れ方向で上流側と下流側とのいずれか一方に限らず、電動モータ30の流れ方向で上流側と下流側との両方に設けられてもよい。 In the above description, the scroll type compressor 100 has one impeller 27, but the present invention is not limited to this, and a plurality of impellers 27 may be provided. That is, the impeller 27 may be provided in multiple stages. Specifically, the impeller 27 is provided not only on either the upstream side or the downstream side in the flow direction of the electric motor 30, but also on both the upstream side and the downstream side in the flow direction of the electric motor 30. You may.
 また、スクロール型圧縮機100は、いわゆるインバータ一体型の場合を一例に挙げて説明したが、これに限らず、インバータ40と別体であってもよい。また、電動モータ30を内蔵するものとしたが、電動モータ30をハウジング10外に設けてもよい。そして、駆動源として電動モータ30を用いたが、これに限らず、車両のエンジンから主軸21aに回転動力を伝達するように構成してもよい。また、流体は冷媒であるものとしたが、これに限らず、適宜の流体を適用することができる。 Further, the scroll type compressor 100 has been described by taking the case of the so-called inverter integrated type as an example, but the present invention is not limited to this, and the scroll type compressor 100 may be separate from the inverter 40. Further, although the electric motor 30 is built in, the electric motor 30 may be provided outside the housing 10. The electric motor 30 is used as the drive source, but the present invention is not limited to this, and the rotational power may be transmitted from the engine of the vehicle to the spindle 21a. Further, the fluid is assumed to be a refrigerant, but the present invention is not limited to this, and an appropriate fluid can be applied.
 以上、本発明の好ましい実施形態について説明したが、本発明は上記実施形態及び上記変形例に制限されるものではなく、本発明の技術的思想に基づいて種々の変形及び変更が可能である。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment and the above-mentioned modification, and various modifications and modifications can be made based on the technical idea of the present invention.
2…固定スクロール、2b…第1ラップ(ラップ)、3…可動スクロール、3b…第2ラップ(ラップ)、10…ハウジング、11a…周壁部、12a…箱底部(底壁部)、20…駆動機構、21…駆動軸、21a…主軸、21b…偏心軸、22…旋回軸受、23…揺動部材、24…スラスト受け部、24a…貫通孔、24a1…連通孔、25…自転阻止機構部、25a…連結ピン、27…羽根車、27a…ハブ、27b…羽根、27c…リム部、27c1…傾斜面、271…ベース、272…遠心翼、28…カウンターウェイト、30…電動モータ、34…シール部材、40…インバータ、100…スクロール型圧縮機、H1…流体取込領域、P1…吸入ポート、P11…開口端、S…密閉空間、V1…第1領域、V11…端部領域、V2…第2領域、X…回転軸心、X’…固定スクロールの軸心 2 ... Fixed scroll, 2b ... 1st lap (lap), 3 ... Movable scroll, 3b ... 2nd lap (lap), 10 ... Housing, 11a ... Circumferential wall, 12a ... Box bottom (bottom wall), 20 ... Drive Mechanism, 21 ... Drive shaft, 21a ... Main shaft, 21b ... Eccentric shaft, 22 ... Swivel bearing, 23 ... Swing member, 24 ... Thrust receiving part, 24a ... Through hole, 24a1 ... Communication hole, 25 ... Rotation prevention mechanism part, 25a ... Connecting pin, 27 ... Impeller, 27a ... Hub, 27b ... Blade, 27c ... Rim part, 27c1 ... Inclined surface, 271 ... Base, 272 ... Centrifugal blade, 28 ... Counter weight, 30 ... Electric motor, 34 ... Seal Member, 40 ... Inverter, 100 ... Scroll compressor, H1 ... Fluid intake area, P1 ... Suction port, P11 ... Open end, S ... Sealed space, V1 ... 1st area, V11 ... End area, V2 ... 2 areas, X ... rotation axis, X'... fixed scroll axis

Claims (12)

  1.  渦巻状のラップをそれぞれ有し互いに噛み合わされる固定スクロール及び可動スクロールと、前記可動スクロールの背面側に設けられ前記可動スクロールのスラスト力を受けるスラスト受け部と、前記可動スクロールに公転駆動力を伝達するための駆動機構の一部を構成する駆動軸とを、ハウジング内に備え、前記可動スクロールが公転して前記固定スクロールとの間に前記公転に伴って容積変化する密閉空間を形成し、該密閉空間により圧縮性の流体を圧縮して吐出するスクロール型圧縮機であって、
     前記スラスト受け部は、前記ハウジング内を前記駆動軸が延在すると共に外部から前記流体が導かれる第1領域と前記固定スクロール及び前記可動スクロールが配置される第2領域とに区画すると共に、前記第1領域と前記第2領域における前記ラップの渦巻外端部付近の流体取込領域とを連通する連通孔を有しており、
     前記駆動軸には、該駆動軸と一体に回転して前記第1領域内の前記流体を前記スラスト受け部側に送り出す羽根車が取り付けられている、スクロール型圧縮機。
    A fixed scroll and a movable scroll that have spiral wraps and are meshed with each other, a thrust receiving portion provided on the back side of the movable scroll and receiving the thrust force of the movable scroll, and a revolution driving force transmitted to the movable scroll. A drive shaft forming a part of the drive mechanism for the above is provided in the housing, and the movable scroll revolves to form a closed space between the movable scroll and the fixed scroll whose volume changes with the revolve. A scroll-type compressor that compresses and discharges compressible fluid in a closed space.
    The thrust receiving portion is divided into a first region in which the drive shaft extends and the fluid is guided from the outside in the housing and a second region in which the fixed scroll and the movable scroll are arranged, and the thrust receiving portion is described. It has a communication hole that communicates the first region and the fluid intake region near the outer end of the spiral of the lap in the second region.
    A scroll type compressor to which an impeller that rotates integrally with the drive shaft and sends the fluid in the first region to the thrust receiving portion side is attached to the drive shaft.
  2.  前記駆動軸は、前記固定スクロールの軸心に合わせた回転軸心周りに回転駆動される主軸、及び、前記主軸の軸方向の一端部に前記回転軸心に対して偏心して設けられる偏心軸を有し、
     前記駆動機構は、
     前記駆動軸と、
     前記偏心軸の外周面に装着される旋回軸受と、
     前記旋回軸受の外周面に装着される環状の揺動部材であって、前記可動スクロールとの間に前記スラスト受け部を挟むように配置される揺動部材と、
     前記スラスト受け部と、
     前記可動スクロールの自転を阻止する自転阻止機構部と、
     を含み、
     前記スラスト受け部の外縁部には、複数の貫通孔が形成されており、
     前記駆動機構は、前記貫通孔を貫通すると共に前記揺動部材の外縁部と前記可動スクロールの外縁部との間を連結する連結ピンを有し、当該連結ピンを介して前記公転駆動力を前記可動スクロールに伝達し、
     前記羽根車と前記可動スクロールとの間に、少なくとも、前記スラスト受け部、前記旋回軸受及び前記揺動部材が配置されている、請求項1に記載のスクロール型圧縮機。
    The drive shaft includes a spindle that is rotationally driven around a rotation axis aligned with the axis of the fixed scroll, and an eccentric shaft that is eccentrically provided at one end of the spindle in the axial direction with respect to the rotation axis. Have and
    The drive mechanism
    With the drive shaft
    A swivel bearing mounted on the outer peripheral surface of the eccentric shaft,
    An annular swing member mounted on the outer peripheral surface of the swivel bearing, which is arranged so as to sandwich the thrust receiving portion between the movable scroll and the swing member.
    With the thrust receiving part
    The rotation prevention mechanism unit that prevents the rotation of the movable scroll, and
    Including
    A plurality of through holes are formed in the outer edge portion of the thrust receiving portion.
    The drive mechanism has a connecting pin that penetrates the through hole and connects the outer edge portion of the rocking member and the outer edge portion of the movable scroll, and the revolution driving force is applied via the connecting pin. Transmit to the movable scroll,
    The scroll type compressor according to claim 1, wherein at least the thrust receiving portion, the swivel bearing, and the swinging member are arranged between the impeller and the movable scroll.
  3.  前記羽根車は、該羽根車の外周面と前記ハウジングの内周面との間の隙間が揺動の際の前記揺動部材の外周面と前記ハウジングの内周面との間の最小の隙間よりも小さくなるように形成されている、請求項2に記載のスクロール型圧縮機。 In the impeller, the minimum gap between the outer peripheral surface of the rocking member and the inner peripheral surface of the housing when the gap between the outer peripheral surface of the impeller and the inner peripheral surface of the housing swings. The scroll type compressor according to claim 2, which is formed so as to be smaller than.
  4.  前記複数の貫通孔はそれぞれ円形に開口され、
     前記連結ピンは前記貫通孔より小径に形成され、
     前記自転阻止機構部は、前記貫通孔と前記連結ピンとにより構成され、前記連結ピンの中間部が前記貫通孔の孔壁面に摺接することにより前記可動スクロールの自転を阻止し、
     前記連通孔は、前記複数の貫通孔の少なくとも一部からなる、請求項2又は3に記載のスクロール型圧縮機。
    Each of the plurality of through holes is opened in a circular shape.
    The connecting pin is formed to have a smaller diameter than the through hole.
    The rotation prevention mechanism portion is composed of the through hole and the connecting pin, and the intermediate portion of the connecting pin is slidably contacted with the hole wall surface of the through hole to prevent the movable scroll from rotating.
    The scroll type compressor according to claim 2 or 3, wherein the communication hole comprises at least a part of the plurality of through holes.
  5.  前記可動スクロールに対する重量バランスを確保するためのカウンターウェイトが、前記羽根車と一体的に設けられている、請求項1~4のいずれか一つに記載のスクロール型圧縮機。 The scroll type compressor according to any one of claims 1 to 4, wherein a counterweight for ensuring a weight balance with respect to the movable scroll is provided integrally with the impeller.
  6.  前記駆動軸の回転駆動力を発生させる電動モータが前記第1領域内において前記駆動軸と一体に設けられ、
     前記ハウジングには、外部から当該ハウジング内に前記流体を導くための吸入ポートが形成され、
     前記吸入ポートにおける前記第1領域側の開口端は前記第1領域における前記スラスト受け部と反対側の端部領域に開口されている、請求項1~5のいずれか一つに記載のスクロール型圧縮機。
    An electric motor that generates a rotational driving force of the drive shaft is provided integrally with the drive shaft in the first region.
    The housing is formed with a suction port for guiding the fluid into the housing from the outside.
    The scroll type according to any one of claims 1 to 5, wherein the open end of the suction port on the first region side is opened in the end region on the opposite side of the thrust receiving portion in the first region. Compressor.
  7.  前記羽根車は前記駆動軸における前記電動モータと前記スラスト受け部との間の部位に取り付けられている、請求項6に記載のスクロール型圧縮機。 The scroll type compressor according to claim 6, wherein the impeller is attached to a portion of the drive shaft between the electric motor and the thrust receiving portion.
  8.  前記羽根車は前記駆動軸における前記スラスト受け部と反対側の端部と前記電動モータとの間の部位に取り付けられている、請求項6に記載のスクロール型圧縮機。 The scroll type compressor according to claim 6, wherein the impeller is attached to a portion of the drive shaft between the end of the drive shaft on the opposite side of the thrust receiving portion and the electric motor.
  9.  前記電動モータの外周面と前記ハウジングの内周面との間の隙間を密封するシール部材を更に含む、請求項8に記載のスクロール型圧縮機。 The scroll type compressor according to claim 8, further comprising a sealing member for sealing a gap between the outer peripheral surface of the electric motor and the inner peripheral surface of the housing.
  10.  前記羽根車は、前記駆動軸が嵌合するハブと、前記ハブの外周面から放射状に延びる複数の羽根と、前記複数の羽根の先端部間を接続する円環状のリム部とを有し、
     前記リム部の内側面には、前記スラスト受け部側に向うほど前記リム部の外周側に近づくように傾斜した傾斜面が形成されている、請求項1~9のいずれか一つに記載のスクロール型圧縮機。
    The impeller has a hub to which the drive shaft is fitted, a plurality of blades extending radially from the outer peripheral surface of the hub, and an annular rim portion connecting between the tips of the plurality of blades.
    The method according to any one of claims 1 to 9, wherein an inclined surface is formed on the inner surface of the rim portion so as to be closer to the outer peripheral side of the rim portion toward the thrust receiving portion side. Scroll type compressor.
  11.  前記羽根車は、前記駆動軸に取り付けられる円盤状のベースと、前記ベースにおける前記電動モータとは反対側の端面に形成される複数の遠心翼とを有する、請求項8又は9に記載のスクロール型圧縮機。 The scroll according to claim 8 or 9, wherein the impeller has a disk-shaped base attached to the drive shaft and a plurality of centrifugal blades formed on an end surface of the base opposite to the electric motor. Mold compressor.
  12.  前記電動モータの駆動を制御するインバータを、
     更に含み、
     前記ハウジングは、前記第1領域及び前記第2領域を内部に有する筒状の周壁部と、前記周壁部における前記第1領域側の開口を塞ぐ底壁部と、を有し、
     前記インバータは、前記底壁部における前記第1領域と反対側の面に固定され、
     前記羽根車が回転すると、前記第1領域の前記端部領域内に前記底壁部に沿う前記流体の流れが生じるように構成されている、請求項11に記載のスクロール型圧縮機。
    An inverter that controls the drive of the electric motor
    Including more
    The housing has a tubular peripheral wall portion having the first region and the second region inside, and a bottom wall portion that closes the opening on the first region side in the peripheral wall portion.
    The inverter is fixed to the surface of the bottom wall portion opposite to the first region.
    The scroll type compressor according to claim 11, wherein when the impeller rotates, a flow of the fluid along the bottom wall portion is generated in the end region of the first region.
PCT/JP2020/018912 2019-05-16 2020-05-12 Scroll compressor WO2020230773A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019092799 2019-05-16
JP2019-092799 2019-05-16
JP2020-078861 2020-04-28
JP2020078861A JP7458884B2 (en) 2019-05-16 2020-04-28 scroll compressor

Publications (1)

Publication Number Publication Date
WO2020230773A1 true WO2020230773A1 (en) 2020-11-19

Family

ID=73289885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018912 WO2020230773A1 (en) 2019-05-16 2020-05-12 Scroll compressor

Country Status (1)

Country Link
WO (1) WO2020230773A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246204A1 (en) * 2022-06-24 2023-12-28 清华大学 Dual-mode compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140027638A (en) * 2012-08-27 2014-03-07 한라비스테온공조 주식회사 Electric motor-driven compressor for vehicle
CN104100498A (en) * 2013-04-08 2014-10-15 上海日立电器有限公司 Auto scroll compressor equipped with supercharger
CN104989629A (en) * 2015-07-16 2015-10-21 上海星易汽车空调股份有限公司 Electric scroll compressor having supercharging function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140027638A (en) * 2012-08-27 2014-03-07 한라비스테온공조 주식회사 Electric motor-driven compressor for vehicle
CN104100498A (en) * 2013-04-08 2014-10-15 上海日立电器有限公司 Auto scroll compressor equipped with supercharger
CN104989629A (en) * 2015-07-16 2015-10-21 上海星易汽车空调股份有限公司 Electric scroll compressor having supercharging function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246204A1 (en) * 2022-06-24 2023-12-28 清华大学 Dual-mode compressor

Similar Documents

Publication Publication Date Title
JP4143827B2 (en) Scroll compressor
EP0665921B1 (en) Scroll apparatus with reduced inlet pressure drop
JP7075407B2 (en) Scroll compressor
WO2020230773A1 (en) Scroll compressor
JP2016223351A (en) Scroll compressor
KR101693044B1 (en) Scroll compressor
JP7458884B2 (en) scroll compressor
KR20120062415A (en) Scroll compressor
JP2000337256A (en) Fluid machinery
WO2017138131A1 (en) Scroll compressor
JPH07158571A (en) Scroll type compressor
JP7166177B2 (en) scroll type fluid machinery
JP2674113B2 (en) Horizontal scroll compressor
KR20190140327A (en) Motor-operated compressor
JPH0942177A (en) Scroll compressor
WO2022130893A1 (en) Scroll-type compressor
JP3580758B2 (en) Scroll compressor
WO2022113558A1 (en) Scroll fluid machine
WO2021015115A1 (en) Compressor
KR102566589B1 (en) Scroll compressor
CN219327627U (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
JP7233935B2 (en) scroll type fluid machinery
WO2022137923A1 (en) Scroll-type compressor
WO2022064947A1 (en) Scroll-type compressor
JPH0932765A (en) Scroll-type electric compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805259

Country of ref document: EP

Kind code of ref document: A1