WO2024114752A1 - 综采工作面无人化采煤系统和控制方法 - Google Patents

综采工作面无人化采煤系统和控制方法 Download PDF

Info

Publication number
WO2024114752A1
WO2024114752A1 PCT/CN2023/135568 CN2023135568W WO2024114752A1 WO 2024114752 A1 WO2024114752 A1 WO 2024114752A1 CN 2023135568 W CN2023135568 W CN 2023135568W WO 2024114752 A1 WO2024114752 A1 WO 2024114752A1
Authority
WO
WIPO (PCT)
Prior art keywords
mining
data
control
unit
module
Prior art date
Application number
PCT/CN2023/135568
Other languages
English (en)
French (fr)
Inventor
王峰
冯银辉
李森
曹宁宁
郑闯
高思伟
陈凯
刘姗姗
李丹宁
宋国利
王建兵
贺鹏
王帅
李再峰
姜绪超
Original Assignee
北京天玛智控科技股份有限公司
北京煤科天玛自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京天玛智控科技股份有限公司, 北京煤科天玛自动化科技有限公司 filed Critical 北京天玛智控科技股份有限公司
Publication of WO2024114752A1 publication Critical patent/WO2024114752A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present disclosure relates to the field of coal mining, and in particular to an unmanned coal mining system and control method for a fully mechanized mining face, electronic equipment, a computer-readable storage medium, a computer program product, and a computer program.
  • Single-machine automation refers to the automatic control of a single type of equipment, such as hydraulic support follow-up automatic control, coal mining machine memory cutting control, etc.
  • the equipment automatically performs actions without manual operation based on its own control logic.
  • this automation method cannot achieve coordinated control between different types of equipment.
  • Multi-machine collaborative automation refers to two or more types of equipment cooperating with each other to perform a specific control process or procedure in the production process based on a collaborative relationship, such as the collaborative control of coal flow load between a coal mining machine and a scraper conveyor.
  • multi-machine collaborative automation includes all the equipment for the entire production process of mining-support-transportation in the comprehensive mining face, it forms a fully automated operation according to the production process and takes into account the influencing factors of the external environment, thus forming an automated mode for the entire production system.
  • the Chinese patent application with the publication number CN 102337891 A discloses an unmanned automated mining technology for thin coal seams using a drum coal mining machine. Its characteristics are that the operator monitors the working face through video and completes the operation in the control center far away from the working face.
  • the coal mining machine and hydraulic support in the working face are automatically controlled according to the preset program. When the thickness of the coal seam and the roof change, When the coal mining machine and the hydraulic support are in operation, the operator adjusts the operating procedures and parameters in the control center, and manually intervenes in the coal mining machine and the hydraulic support to realize remote control of the working face and unmanned automatic mining.
  • this patent is still based on the automation of the hydraulic support and the coal mining machine, and the operator adjusts the operating procedures and parameters in the control center on the basis of the single machine automation to realize the single machine intervention. Therefore, the technical method proposed in this patent is still far from realizing the automated operation mode of the entire comprehensive mining production system.
  • the Chinese patent application publication number CN 113685179 A discloses an automatic control system for a coal mine fully mechanized mining face and a control method thereof. Its main feature is that the system includes an underground equipment control layer for acquiring and uploading the operation data of underground equipment, and receiving and executing the control instructions sent by the centralized control center; a centralized control center layer for receiving the operation data sent by the underground equipment control layer, analyzing and processing the operation data and sending control instructions to the underground equipment control layer, and uploading the operation data of underground equipment to the ground dispatching and command center layer; a ground dispatching and command center layer for receiving the operation data of underground equipment sent by the centralized control center layer and sending remote control instructions for underground equipment control to the centralized control center layer.
  • the patent is structured and functionally positioned according to the underground equipment control layer, the centralized control center layer, and the ground dispatching and command center layer.
  • the centralized control center layer is the core and hub of the automatic control system of the working face. On the one hand, it sends control instructions formed by data analysis to the underground equipment control layer, and on the other hand, it uploads the operation data of underground equipment to the ground dispatching and command center layer and receives the remote control instructions issued by the ground dispatching and command center layer.
  • This kind of patent associates the structural layering and functional positioning of the automation system with the spatial location of the equipment at each level (and the functions it is equipped with), but does not organize and position the system around the goal of fully automated operation of the working face production system. Therefore, the technical method introduced in this patent cannot solve the problem of fully automated operation of the actual working face and achieve the goal of unmanned coal mining.
  • the present disclosure aims to solve one of the technical problems in the related art at least to some extent.
  • the purpose of the embodiments of the present disclosure is to achieve unmanned intervention control of coal mining equipment in a fully mechanized mining face, and to propose an unmanned coal mining system for a fully mechanized mining face.
  • Another object of the embodiments of the present disclosure is to provide an unmanned coal mining control method for a fully mechanized mining face, an electronic device, a computer-readable storage medium, a computer program product, and a computer program.
  • an unmanned coal mining system for a fully mechanized mining face including:
  • Auxiliary decision support module human-computer interaction control module, unit execution feedback module and system analysis and control module, among which,
  • the auxiliary decision support module is used to generate decision suggestions based on the information of factors affecting production during the fully mechanized mining face mining process, and send the decision suggestions to the system analysis and control module;
  • the human-machine interactive control module is used to receive and display the production status data of the fully mechanized mining face, generate adjustment data, and send the adjustment data to the system analysis and control module;
  • the unit execution feedback module is used to generate feedback data according to the device execution result and send the feedback data to the system analysis control module;
  • the system analysis control module is used to summarize and analyze the received decision suggestions, the adjustment data and the feedback data to generate control instructions, and send the control instructions to the unit execution feedback module.
  • the auxiliary decision support module includes:
  • a staff positioning unit used to obtain the position movement information of the staff, wherein the position movement information includes the information of abnormal entry of staff into the mining area and abnormal movement trajectory of staff during production;
  • An equipment digital twin unit is used to analyze the coupling relationship of the comprehensive mining equipment group based on the position data and posture data of the comprehensive mining equipment, and generate warning information of abnormal equipment coupling and correction control suggestions;
  • a geological three-dimensional model unit used to generate the occurrence data of the coal seam to be mined based on the coal seam geological exploration data and the mining distance data of the fully mechanized mining working face;
  • a working face space model unit used to analyze a three-dimensional laser point cloud model of the mining space and generate abnormal situation information of the mining space
  • the periodic pressure warning unit is used to generate periodic pressure warning information according to the column pressure data during the hydraulic support advancement process
  • Mine production scheduling unit used to generate production control decision opinions based on production scheduling plans and production delays
  • An intelligent anomaly recognition unit is used to generate production anomaly information based on the video and audio data of the fully mechanized mining working face.
  • the human-computer interaction control module includes:
  • An underground drift monitoring unit used for generating first adjustment data according to the production status data of the fully mechanized mining working face
  • the ground sub-control center unit is used to generate the second adjustment data according to the production status data of the comprehensive mining working face.
  • system analysis control module includes:
  • An underground chute centralized control unit configured to summarize and analyze the received decision suggestion, the first adjustment data and the feedback data to generate a first control instruction
  • the ground centralized control unit is used to summarize and analyze the received decision suggestions, the first adjustment data, the second adjustment data, and the feedback data to generate a second control instruction; wherein the priority of the second control instruction is higher than that of the first control instruction.
  • the human-computer interaction control module is further configured to generate a risk avoidance control instruction according to the second adjustment data, and send the risk avoidance control instruction to the unit execution feedback module.
  • the unmanned coal mining system for a fully mechanized mining face further includes:
  • the network communication module is used to realize the communication among the auxiliary decision support module, the human-computer interaction control module, the unit execution feedback module and the system analysis and control module.
  • the network communication module includes:
  • a fully mechanized mining face communication unit used to realize the communication between the unit execution feedback module and the system analysis and control module;
  • An underground chute centralized control communication unit used to realize the communication between the unit execution feedback module, the human-machine interaction control module and the system analysis and control module;
  • a ground centralized control communication unit used to realize communication between the auxiliary decision support module, the human-computer interaction control module and the system analysis and control module;
  • the backbone communication link unit is used to realize the communication between the fully mechanized mining face communication unit, the underground drift centralized control communication unit and the ground centralized control communication unit.
  • the network communication module is further used to divide the network into VLANs according to the type, quantity and control method of network devices.
  • the network communication module is also used to privatize the internal network address.
  • the second aspect of the embodiment of the present disclosure proposes an unmanned coal mining control method for a fully mechanized mining face, comprising:
  • auxiliary decision support module decision suggestions are generated according to the information of factors affecting production during the mining process of the fully mechanized mining face, and the decision suggestions are sent to the system analysis and control module;
  • the production status data of the fully mechanized mining face is received and displayed, and adjustment data is generated, and the adjustment data is sent to the system analysis and control module;
  • the system analysis control module summarizes and analyzes the received decision suggestions, adjustment data and feedback data to generate control instructions, and sends the control instructions to the unit execution feedback module.
  • the third aspect of an embodiment of the present disclosure proposes an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the computer program, the unmanned coal mining control method for a comprehensive mining face as described in the second aspect is implemented.
  • the fourth aspect of an embodiment of the present disclosure proposes a computer-readable storage medium, which stores computer instructions, and the computer instructions are used to enable the computer to execute the unmanned coal mining control method for the comprehensive mining face as described in the second aspect.
  • the fifth aspect of the embodiment of the present disclosure proposes a computer program product, including a computer program, which, when executed by a processor, implements the unmanned coal mining control method for a fully mechanized mining face according to the second aspect.
  • the sixth aspect of the embodiment of the present disclosure proposes a computer program, which includes computer program code.
  • the computer program code When the computer program code is run on a computer, the computer executes the unmanned coal mining control method for the comprehensive mining face as described in the second aspect.
  • the unmanned coal mining system of the fully mechanized mining face includes: an auxiliary decision support module, a human-computer interaction control module, a unit execution feedback module and a system analysis control module, wherein the auxiliary decision support module is used to generate decision suggestions based on the information of the factors affecting the production during the fully mechanized mining face mining process, and send the decision suggestions to the system analysis control module;
  • the human-computer interaction control module is used to receive and display the production status data of the fully mechanized mining face, and generate adjustment data, and send the adjustment data to the system analysis control module;
  • the unit execution feedback module is used to generate feedback data based on the equipment execution results, and send the feedback data to the system analysis control module;
  • the system analysis control module is used to summarize and analyze the received decision suggestions, adjustment data and feedback data to generate control instructions, and send the control instructions to the unit execution feedback module.
  • the disclosed embodiment can improve the intelligence level of the unmanned coal mining process of the fully mechanized mining face by improving the functional positioning of the unmanned coal mining system of the fully me
  • FIG1 is a schematic structural diagram of an unmanned coal mining system for a fully mechanized mining face according to an embodiment of the present disclosure
  • FIG2 is a schematic diagram of a framework of an auxiliary decision support module according to an embodiment of the present disclosure
  • FIG3 is a schematic diagram of the structure of a network communication module according to an embodiment of the present disclosure.
  • FIG4 is a flow chart of an unmanned coal mining control method for a fully mechanized mining face according to an embodiment of the present disclosure.
  • FIG1 is a schematic structural diagram of an unmanned coal mining system for a fully mechanized mining face according to an embodiment of the present disclosure.
  • the unmanned coal mining system of the fully mechanized mining face includes:
  • Auxiliary decision support module 110 human-computer interaction control module 120, unit execution feedback module 130 and system analysis control module 140, wherein:
  • the auxiliary decision support module 110 is used to generate decision suggestions based on the information of factors affecting production during the fully mechanized mining face mining process, and send the decision suggestions to the system analysis and control module 140;
  • the human-machine interaction control module 120 is used to receive and display the production status data of the fully mechanized mining face, generate adjustment data, and send the adjustment data to the system analysis and control module 140;
  • the unit execution feedback module 130 is used to generate feedback data according to the device execution result and send the feedback data to the system analysis control module 140;
  • the system analysis control module 140 is used to summarize and analyze the received decision suggestions, adjustment data and feedback data to generate control instructions, and send the control instructions to the unit execution feedback module 130.
  • the unmanned coal mining system for the fully mechanized mining face may include: an auxiliary decision support module 110 , a human-computer interaction control module 120 , a unit execution feedback module 130 and a system analysis control module 140 .
  • the auxiliary decision support module 110 can generate decision suggestions based on the information of factors affecting production during the mining process of the comprehensive mining face, and send the decision suggestions to the system analysis and control module 140.
  • the auxiliary decision support module 110 can provide intelligent analysis and form decision suggestions for specific production scenarios of different complexity levels of "people, machines, environment, and management" in the comprehensive mining face, thereby supporting the system analysis and control module 140 to make decisions.
  • the auxiliary decision support module can deploy an intelligent analysis system for specific production scenarios covering the four aspects of "people, machines, environment, and management" in the mining process of the comprehensive mining face, analyze the impact of specific production scenarios on production, form reference decision suggestions to support continuous, efficient and automated production of the comprehensive mining face, and realize data interaction and docking with the system analysis and control module 140.
  • the human-machine interaction control module 120 can receive and display the production status data of the comprehensive mining face, as well as generate adjustment data, and send the adjustment data to the system analysis and control module 140.
  • the human-machine interaction control module 120 can monitor and control the fully automated production process of the comprehensive mining face, and the remote monitoring personnel can realize the production process regulation through the human-machine interaction interface configured by the human-machine interaction control module 120.
  • the human-machine interaction control module 120 can be configured with a monitoring platform and a control medium, receive and display the production status data of the comprehensive mining face, including the production process status and the working condition of the comprehensive mining equipment, and the remote monitoring personnel can make a comprehensive judgment based on the displayed production status data, for example, the feasibility of continuous operation of the production system can be evaluated, and the production control process and process can be adjusted through the control medium. Therefore, the human-machine interaction control module 120 can generate adjustment data according to the adjustment of the remote monitoring personnel, and provide the adjustment data to the system analysis and control module 140.
  • the unit execution feedback module 130 can generate feedback data according to the equipment execution results, and send the feedback data to the system analysis control module 140.
  • the unit execution feedback module 130 can be used as a collection of the control unit, execution components, and sensor devices of the single-machine equipment of the comprehensive mining working face, thereby constituting an execution feedback system for each single-machine device.
  • the single-machine device can also be configured with a communication interface, and the control unit can receive the control instructions sent to the single-machine device by the system analysis control module 140 through the communication interface, thereby driving the execution components to execute the control instructions, and the sensor device can generate the equipment execution result by sensing the execution result.
  • the control unit can generate feedback data according to the equipment execution result, and send the feedback data to the system analysis control module 140 through the communication interface.
  • the system analysis control module 140 can summarize and analyze the received decision suggestions, adjustment data and feedback data to generate control instructions, and send the control instructions to the unit execution feedback module 130.
  • the system analysis control module 140 can control the actual operating conditions of the comprehensive mining equipment and the mining field status of the comprehensive mining face through the feedback data of the unit execution feedback module 130, and conduct a comprehensive analysis of the auxiliary decision suggestions on the four aspects of "people, machines, environment, and management" sent by the auxiliary decision support module 110, and make decisions on the factors that affect the actual production.
  • the final control instructions of the comprehensive mining equipment of the unit execution feedback module 130 are generated, and the control instructions are sent to the unit execution feedback module 130.
  • the system analysis control module 140 can generate the control instruction according to the received adjustment data and feedback data, and send the control instruction to the unit execution feedback module 130.
  • the unit execution feedback module 130 receives the control instruction, that is, it is started by default, so that feedback data can be generated according to the equipment execution result, and the feedback data can be sent to the system analysis control module 140.
  • the unmanned coal mining system of the fully mechanized working face can achieve complete closed-loop operation.
  • the unmanned coal mining system for the fully mechanized mining face includes: an auxiliary decision support module, a human-computer interaction control module, a unit execution feedback module and a system analysis and control module, wherein the auxiliary decision support module is used to generate decision suggestions based on the information of the factors affecting the production during the fully mechanized mining face mining process, and send the decision suggestions to the system analysis and control module;
  • the human-computer interaction control module is used to receive and display the production status data of the fully mechanized mining face, as well as to generate adjustment data, and send the adjustment data to the system analysis and control module;
  • the unit execution feedback module is used to generate decision suggestions based on the equipment execution results The system generates feedback data based on the results, and sends the feedback data to the system analysis control module;
  • the system analysis control module is used to summarize and analyze the received decision suggestions, adjustment data and feedback data to generate control instructions, and send the control instructions to the unit execution feedback module.
  • the present disclosure can improve the intelligence level of the unmanned coal mining process of the fully mechanized
  • the auxiliary decision support module 110 includes a staff positioning unit, a comprehensive mining equipment fault analysis and early warning unit, an equipment digital twin unit, a geological three-dimensional model unit, a working face space model unit, a periodic pressure early warning unit, a mine production scheduling unit and an intelligent abnormality recognition unit.
  • the staff positioning unit is used to obtain the position movement information of the staff, wherein the position movement information includes the information of abnormal entry of staff into the mining area during production and the abnormal movement trajectory of the staff.
  • the comprehensive mining equipment fault analysis and early warning unit is used to generate equipment fault early warning information and equipment operation and maintenance suggestions based on the comprehensive mining equipment operating condition data.
  • the equipment digital twin unit is used to analyze the coupling relationship of the comprehensive mining equipment group based on the position data and posture data of the comprehensive mining equipment, and generate early warning information on abnormal equipment coupling and corrective control suggestions.
  • the geological three-dimensional model unit is used to generate the occurrence data of the coal seam to be mined based on the coal seam geological exploration data and mining distance data of the fully mechanized mining working face.
  • the working face space model unit is used to analyze the three-dimensional laser point cloud model of the mining space and generate abnormal situation information of the mining space.
  • the periodic pressure warning unit is used to generate periodic pressure warning information according to the column pressure data during the hydraulic support advancement process.
  • the mine production scheduling unit is used to generate production control decision opinions based on the production scheduling plan and production delays.
  • the intelligent anomaly recognition unit is used to generate production anomaly information based on the video and audio data of the fully mechanized mining working face.
  • the auxiliary decision support module 110 can construct an analysis and decision-making functional unit platform for the "people, machines, environment, and management" scenarios of the comprehensive mining working face, realize intelligent analysis of specific production scenarios, and thus form decision-making recommendations.
  • FIG2 is a schematic diagram of the framework of the auxiliary decision support module 110 according to an embodiment of the present disclosure.
  • the auxiliary decision support module 110 may include a staff positioning unit for the "person" scenario of the comprehensive mining face.
  • the staff positioning unit may obtain the position movement information of the staff, and the position movement information includes the abnormal entry of personnel into the mining area during production and the abnormal movement trajectory of personnel, wherein the position movement information of the staff may be obtained through the personnel positioning device.
  • the "machine” scenario it may include a comprehensive mining equipment fault analysis and early warning unit and an equipment digital twin unit.
  • the comprehensive mining equipment fault analysis and early warning unit may obtain the comprehensive mining equipment working condition data, and analyze the equipment operating condition through the equipment fault model, thereby realizing the generation of equipment fault early warning information and equipment operation and maintenance suggestions based on the comprehensive mining equipment working condition data;
  • the equipment digital twin unit may obtain the position data and posture data of the comprehensive mining equipment, and analyze the coupling relationship of the comprehensive mining equipment group through the constructed equipment digital twin unit, thereby generating equipment coupling abnormality warning information and correction control suggestions.
  • the "ring” scenario may include a geological three-dimensional model unit, a working face space model unit and a periodic pressure warning unit, among which the address three-dimensional unit can obtain the coal seam geological exploration data of the comprehensive mining working face, and construct a geological three-dimensional model based on the coal seam address exploration data, and generate the coal seam occurrence data to be mined based on the address three-dimensional model and the mining distance data of the comprehensive mining working face;
  • the working face space model unit can construct a three-dimensional laser point cloud model of the mining space through three-dimensional laser scanning of the comprehensive mining working face, and analyze the three-dimensional laser point cloud model of the mining space to generate abnormal situation information of the mining space;
  • the periodic pressure warning unit can obtain the column pressure data during the advancement of the hydraulic support, and construct a periodic trend model of the roof pressure of the comprehensive mining working face based on the column pressure data, and generate periodic pressure warning information by analyzing the periodic trend model of the roof pressure of the comprehensive mining working face.
  • the mine production scheduling unit can determine whether the monthly, weekly, and daily output meets the demand based on the production scheduling plan through the production scheduling system, thereby obtaining production delays, and generating production control decision opinions based on production scheduling technology and production delays.
  • the production scheduling plan can be a pre-established monthly, weekly, and daily production plan for the mine; the intelligent anomaly recognition unit can obtain the video and audio data of the fully-mechanized mining face, and perform intelligent analysis of the video and audio data, and generate production anomaly information based on the analysis results.
  • the auxiliary decision support module can realize the intelligent analysis of the "man, machine, environment, and management" scenario through the aforementioned units, thereby generating decision-making suggestions, and then providing the intelligence level of the unmanned coal mining system of the fully-mechanized mining face.
  • an intelligent anti-collision control unit can also be included, which can realize the control of coal seam impact ground pressure.
  • the above-mentioned intelligent abnormality recognition unit can be further subdivided into an intelligent image abnormality recognition unit and an intelligent voiceprint abnormality recognition unit.
  • the intelligent image abnormality recognition unit can generate production abnormality image information based on the video of the comprehensive mining working face
  • the intelligent voiceprint abnormality recognition unit can generate production abnormality voiceprint information based on the audio data of the comprehensive mining working face.
  • auxiliary decision support module 110 can continuously expand functional units and realize data interaction with the system analysis control module 140 through a communication interface.
  • the human-machine interactive control module 120 includes an underground drift monitoring unit and a ground sub-control center unit.
  • the underground drift monitoring unit is used to generate the first adjustment data according to the production status data of the fully mechanized mining working face.
  • the ground sub-control center unit is used to generate the second adjustment data according to the production status data of the comprehensive mining working face.
  • the human-machine interaction control module 120 may include an underground chute monitoring unit and a ground sub-control center unit.
  • the underground chute monitoring unit can generate first adjustment data based on the production status data of the comprehensive mining face, and the ground sub-control center unit can generate second adjustment data based on the production status data of the comprehensive mining face.
  • an underground chute monitoring unit and a ground sub-control center unit can be set up to realize the unmanned operation of the underground comprehensive mining face.
  • the first adjustment data may be the adjustment data generated by the underground drift monitoring unit through intelligent analysis of the production status data of the comprehensive mining face.
  • the second adjustment data may be the adjustment data generated by the ground sub-control center unit through intelligent analysis of the production status data of the comprehensive mining face, wherein the second adjustment data includes the adjustment data generated according to the analysis of the production status data of the comprehensive mining face by the monitoring personnel.
  • the system analysis control module 140 includes an underground drift centralized control unit and a surface centralized control unit.
  • the underground drift centralized control unit is used to summarize and analyze the received decision suggestions, first adjustment data and feedback data to generate a first control instruction.
  • the ground centralized control unit is used to summarize and analyze the received decision suggestions, the first adjustment data and the second adjustment data, and the feedback data to generate a second control instruction; wherein the second control instruction has a higher priority than the first control instruction.
  • the system analysis control module 140 may include an underground chute centralized control unit and a ground centralized control unit.
  • the underground chute centralized control unit may summarize and analyze the received decision suggestions, the first adjustment data and the feedback data to generate a first control instruction
  • the ground centralized control unit may summarize and analyze the received decision suggestions, the first adjustment data and the second adjustment data, and the feedback data to generate a second control instruction; wherein the second control instruction has a higher priority than the first control instruction.
  • the level of the ground centralized control unit is higher than that of the underground chute centralized control unit, and the priority of the second control instruction is higher than that of the first control instruction.
  • the ground sub-control center unit cannot obtain the production status data of the comprehensive mining face, and cannot generate valid first adjustment data, and the underground chute monitoring unit cannot upload the second adjustment data. Therefore, the ground centralized control unit cannot obtain the first adjustment data and the second adjustment data, decision suggestions and feedback data, and therefore cannot generate and transmit valid second control instructions.
  • the underground chute centralized control unit can temporarily take over the system control of the ground centralized control unit, and send the first control instruction to the unit execution feedback module, thereby ensuring the normal operation of the system. After the communication is restored, the underground chute centralized control unit returns the system control to the ground centralized control unit.
  • the underground chute centralized control unit and the ground centralized control unit can avoid shutdowns and production stops due to communication interruptions, thereby ensuring the normal operation of the system.
  • the human-machine interaction control module 120 is further configured to generate a risk avoidance control instruction according to the second adjustment data, and send the risk avoidance control instruction to the unit execution feedback module.
  • the reaction of the system analysis control module 140 may be relatively slow. Therefore, the human-machine interaction operation module 120 may generate a risk avoidance control instruction based on the second adjustment data, and send the risk avoidance control instruction to the unit execution feedback module.
  • the monitoring personnel may adjust the equipment in response to the emergency situation through the human-machine interaction control module 120.
  • the monitoring personnel may directly adjust the comprehensive mining equipment through the control media such as the operating console and the touch screen in response to the emergency situation.
  • the human-machine interaction control module 120 may obtain the second adjustment data corresponding to the emergency situation.
  • the unit execution feedback module 130 can perform risk avoidance actions according to the risk avoidance control instruction, and generate feedback data according to the execution result and send it to the system analysis control module 140. In this way, timely and effective handling of emergency situations can be achieved, and the safety of the unmanned coal mining system of the fully mechanized mining face can be improved.
  • the unmanned coal mining system for a fully mechanized mining face further includes:
  • the network communication module is used to realize the communication between the auxiliary decision support module, the human-computer interaction control module, the unit execution feedback module and the system analysis and control module.
  • a network communication module may be provided in consideration of the communication problem of the system.
  • the devices of the auxiliary decision support module, the human-computer interaction control module, the unit execution feedback module, and the system analysis and control module may be connected to the network communication module through the communication interface, so as to realize the transmission of feedback data, decision suggestions, adjustment data, and control instructions within the unmanned coal mining system of the fully mechanized mining face, thereby realizing the communication between the auxiliary decision support module, the human-computer interaction control module, the unit execution feedback module, and the system analysis and control module.
  • normal communication within the unmanned coal mining system of the fully mechanized mining face may be provided through the network communication module.
  • the network communication module includes a fully mechanized mining face communication unit, an underground drift centralized control communication unit, a ground centralized control communication unit and a trunk communication link unit.
  • the fully mechanized mining face communication unit is used to realize the communication between the unit execution feedback module and the system analysis and control module.
  • the underground chute centralized control communication unit is used to realize the communication between the unit execution feedback module, the human-computer interaction control module and the system analysis and control module.
  • the ground centralized control communication unit is used to realize the communication between the auxiliary decision support module, the human-computer interaction control module and the system analysis and control module.
  • the backbone communication link unit is used to realize the communication between the fully mechanized mining face communication unit, the underground drift centralized control communication unit and the ground centralized control communication unit.
  • FIG3 is a schematic diagram of the structure of the network communication module according to the embodiment of the present disclosure.
  • the network communication module can be divided into a comprehensive mining face communication unit, an underground chute centralized control communication unit, a ground centralized control communication unit and a trunk communication link unit according to the spatial distribution characteristics of the unmanned coal mining system of the comprehensive mining face.
  • the data generated by the unit execution feedback module may include support monitoring data, audio and video monitoring data, coal mining machine monitoring data, transportation system monitoring data and pump station monitoring data; the data generated by the system analysis and control module may include underground chute centralized control data and ground centralized control data; the data generated by the auxiliary decision support module may include audio analysis data and video analysis data; the data generated by the human-computer interaction control module may include equipment adjustment data.
  • the comprehensive mining face communication unit can realize the communication between the unit execution feedback module and the system analysis and control module;
  • the underground chute centralized control communication unit can realize the communication between the unit execution feedback module, the human-computer interaction control module and the system analysis and control module;
  • the ground centralized control communication unit can realize the communication between the auxiliary decision support module, the human-computer interaction control module and the system analysis and control module.
  • the backbone communication link unit can realize the communication between the fully-mechanized mining face communication unit, the underground chute centralized control communication unit and the ground centralized control communication unit.
  • the normal communication within the unmanned coal mining system of the fully-mechanized mining face can be realized in a refined manner.
  • the network communication module is also used to divide the network VLAN (Virtual Local Area Network) according to the type, quantity and control method of network devices.
  • VLAN Virtual Local Area Network
  • the network communication module can also divide the network VLAN according to the type, quantity and control mode of the network device.
  • the hydraulic support monitoring data, audio and video multimedia data, and other equipment centralized monitoring data can be divided into three categories, and the communication network interface of the corresponding device can be configured to achieve the division of network VLAN.
  • clustering can achieve transmission isolation between different types of data and improve the reliability of the network communication module.
  • the network communication module is also used to privatize the internal network address.
  • the network communication module can also privatize the internal network address, so as to achieve network isolation between the network communication module and the mine network platform, and ensure the safety of system operation.
  • the network communication module can also set up a firewall to realize the privatization management of the communication LAN of the comprehensive mining working face. It can also set up an online status monitoring function to conduct real-time analysis and early warning of network congestion status.
  • l is the length of fully automated production time of the comprehensive mining face
  • H is the length of the production shift.
  • this embodiment also provides an unmanned coal mining control method for a fully mechanized mining face, including steps S410 to S440.
  • Step S410 through the auxiliary decision support module, a decision suggestion is generated according to the information of the factors affecting the production during the comprehensive mining face mining process, and the decision suggestion is sent to the system analysis and control module.
  • Step S420 through the human-computer interaction control module, receive and display the production status data of the comprehensive mining working face, generate adjustment data, and send the adjustment data to the system analysis and control module.
  • Step S430 the unit executes the feedback module to generate feedback data according to the device execution result, and sends the feedback data to the system analysis control module.
  • Step S440 through the system analysis control module, summarize and analyze the received decision suggestions, adjustment data and feedback data to generate control instructions, and send the control instructions to the unit execution feedback module.
  • a decision suggestion is generated according to the information of the factors affecting the production during the fully mechanized mining face mining process through the auxiliary decision support module, and the decision suggestion is sent to the system analysis control module; through the human-computer interaction control module, the production status data of the fully mechanized mining face is received and displayed, and the adjustment data is generated, and the adjustment data is sent to the system analysis control module; through the unit execution feedback module, feedback data is generated according to the equipment execution result, and the feedback data is sent to the system analysis control module; through the system analysis control module, the received decision suggestions, adjustment data and feedback data are summarized and analyzed to generate control instructions, and the control instructions are sent to the unit execution feedback module.
  • the present disclosure can improve the intelligence level of the unmanned coal mining process of the fully mechanized mining face by improving the functional positioning of the unmanned coal mining system of the fully mechanized mining face.
  • an electronic device including a memory, a processor, and a computer program stored in the memory and executable on the processor, and when the processor executes the computer program, the unmanned coal mining control method for the comprehensive mining face as described above is implemented.
  • a computer-readable storage medium is also provided in the embodiments of the present disclosure, wherein the computer-readable storage medium stores computer instructions, and the computer instructions are used to enable the computer to execute the unmanned coal mining control method for the comprehensive mining face as described above.
  • a computer program product is also provided in the embodiments of the present disclosure, including a computer program, which, when executed by a processor, implements the unmanned coal mining control method for a fully mechanized mining face as described above.
  • a computer program is also provided in the embodiment of the present disclosure, and the computer program includes computer program code.
  • the computer program code When the computer program code is run on a computer, the computer executes the unmanned coal mining control method for a comprehensive mining face as described above.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • a feature defined as “first” or “second” may explicitly or implicitly include at least one of the features.
  • the meaning of “plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

提供了一种综采工作面无人化采煤系统及控制方法、电子设备、计算机可读存储介质、计算机程序产品和计算机程序。其中,该系统包括:辅助决策支持模块,用于根据综采工作面开采过程对生产的影响因素信息生成决策建议,并将决策建议发送至系统分析控制模块;人机交互操控模块,用于接收并展示综采工作面生产状态数据,以及生成调整数据,并将调整数据发送至系统分析控制模块;单元执行反馈模块,用于根据设备执行结果生成反馈数据,并将反馈数据发送至系统分析控制模块;系统分析控制模块,用于汇总分析接收到的决策建议、调整数据和反馈数据以生成控制指令,并将控制指令发送至单元执行反馈模块。

Description

综采工作面无人化采煤系统和控制方法
相关申请的交叉引用
本公开要求在2022年12月01日在中国提交的中国专利申请号2022115314754的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及煤矿开采领域,具体涉及一种综采工作面无人化采煤系统及控制方法、电子设备、计算机可读存储介质、计算机程序产品和计算机程序。
背景技术
由于井工煤矿煤层条件复杂的特殊性,同时开采过程中伴随水、火、瓦斯、煤尘、顶板五大自然灾害,提升综采工作面自动化控制水平,实现采煤系统无人化自动运行,达到工作面内无人作业,实现“无人则安”成为综采工作面采煤技术发展的核心目标。
为实现综采工作面无人化采煤目标,综采工作面自动化开采由开始的单机自动化、多机协同自动化、向全生产系统自动化模式的不断完善发展。
单机自动化是指单个类型设备实现自动控制,如液压支架跟机自动化控制、采煤机记忆割煤控制等方式,这种控制方式下设备依据自身控制逻辑,在无人工操作的情况下自动执行动作。但是这种自动化方式无法实现不同类型设备间协同控制。
针对以上问题,自动化开采模式由单机自动向多机协同自动化发展。多机协同自动化是指两种或者两种以上类型设备依据协同关系在生产过程中相互配合执行某种特定的控制工艺或工序,如采煤机与刮板运输机之间的煤流负荷协同控制。当多机协同自动化将综采工作面采-支-运整个生产流程的装备全部包括,形成按照生产工艺,兼顾外部环境影响因素进行全自动化运行就形成了全生产系统自动化模式。
然而,实际井工煤矿综采工作面设备类型多样、各类型设备间工艺差异性大,而工作面全生产系统的自动化工序复杂,同时工作面煤层赋存条件、顶板来压、上窜下滑、瓦斯分布等非设备因素影响众多,导致当前综采工作面自动化开采处于单机自动化、多机协同自动化程度,全生产系统自动化仍未能实现。这样就导致绝大多数情况下,人员仍需要进入工作面内进行现场操作,干预生产过程。
申请公布号为CN 102337891 A的中国专利公开了一种滚筒采煤机薄煤层无人自动化开采技术。其特点为操作人员在远离工作面的控制中心通过视频监控工作面情况并完成操控,工作面内采煤机、液压支架根据预设程序进展自动化控制,当煤层厚度和顶板有变化 时,操作人员在控制中心调整运行程序和参数,对采煤机和液压支架实施人工干预,实现工作面远程控制无人自动化开采。但是,该专利仍是以液压支架单机自动化、采煤机单机自动化为基础,在单机自动化基础上通过操作人员在控制中心调整运行程序和参数实现单机干预。因此,该专利所提出的技术方法距离实现整个综采生产系统的自动化运行模式仍有很大差距。
申请公布号为CN 113685179 A的中国专利公开了一种煤矿综采工作面自动化控制系统及其控制方法。其特点主要是系统包括了用于获取并上传井下设备的运行数据,以及接收并执行集控中心发送的控制指令的井下设备控制层;用于接收井下设备控制层发送的运行数据,分析处理运行数据并向井下设备控制层下发控制指令,以及向地面调度指挥中心层上传井下设备运行数据的集控中心层;用于接收集控中心层发送的井下设备的运行数据,向集控中心层发送针对井下设备控制的远程控制指令的地面调度指挥中心层。然而,该专利是按照井下设备控制层、集控中心层、地面调度指挥中心层进行了结构分层及功能定位,集控中心层属于工作面自动化控制系统的核心、枢纽,其一方面向井下设备控制层下发经过数据分析形成的控制指令,另外一方面向地面调度指挥中心层上传井下设备运行数据并接收地面调度指挥中心层下达的远程控制指令。此种围绕自动化系统的结构分层、功能定位与各层级设备(及其所配备的功能)所在空间位置进行了关联,并没有围绕工作面生产系统全自动化运行目标对系统进行梳理与定位,因此该专利所介绍技术方法也不能解决实际工作面全自动化运行,实现无人化采煤目标。
因此,要真正达到综采工作面无人化采煤仍需要新的技术方法,需要打破目前综采工作面以单机设备自动化控制为主、设备协同关联控制为辅,操作人员远程干预工况为支撑的无人化采煤模式,形成综采工作面“人、机、环、管”四因素与开采控制工艺深度融合的全生产系统自动化控制方法,实现综采工作面采煤系统感知、决策、控制,执行、反馈闭环,达到无需人员直接参与综采设备干预控制的完全无人化采煤。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开实施例的目的在于实现综采工作面采煤设备的无人化干预控制,提出一种综采工作面无人化采煤系统。
本公开实施例的另一个目的在于提出一种综采工作面无人化采煤控制方法、电子设备、计算机可读存储介质、计算机程序产品和计算机程序。
为达上述目的,本公开实施例一方面提出了综采工作面无人化采煤系统,包括:
辅助决策支持模块、人机交互操控模块、单元执行反馈模块和系统分析控制模块,其中,
所述辅助决策支持模块,用于根据综采工作面开采过程对生产的影响因素信息生成决策建议,并将所述决策建议发送至所述系统分析控制模块;
所述人机交互操控模块,用于接收并展示所述综采工作面生产状态数据,以及生成调整数据,并将所述调整数据发送至所述系统分析控制模块;
所述单元执行反馈模块,用于根据设备执行结果生成反馈数据,并将所述反馈数据发送至所述系统分析控制模块;
所述系统分析控制模块,用于汇总分析接收到的所述决策建议、所述调整数据和所述反馈数据以生成控制指令,并将所述控制指令发送至所述单元执行反馈模块。
在一种可能的实施方式中,所述辅助决策支持模块,包括:
工作人员定位单元,用于获取工作人员的位置移动信息,其中,所述位置移动信息包括生产期间人员异常进入开采区域信息和人员运动轨迹异常信息;
综采装备故障分析与预警单元,用于根据综采设备工况数据生成设备故障预警信息和设备运维建议;
装备数字孪生单元,用于基于所述综采设备的位置数据和姿态数据对综采设备群的耦合关系进行分析,生成装备耦合异常情况预警信息和修正控制建议;
地质三维模型单元,用于基于所述综采工作面的煤层地质勘探数据和回采距离数据生成待开采煤层赋存数据;
工作面空间模型单元,用于分析开采空间三维激光点云模型,生成所述开采空间异常情况信息;
周期来压预警单元,用于根据液压支架推进过程中的立柱压力数据,生成周期来压预警信息;
矿井生产调度单元,用于根据生产调度计划和生产滞后情况,生成生产调控决策意见;
智能异常识别单元,用于根据所述综采工作面的视频和音频数据,生成生产异常信息。
在一种可能的实施方式中,所述人机交互操控模块,包括:
井下顺槽监控单元,用于根据所述综采工作面生产状态数据,生成第一调整数据;
地面分控中心单元,用于根据所述综采工作面生产状态数据,生成第二调整数据。
在一种可能的实施方式中,所述系统分析控制模块,包括:
井下顺槽集控单元,用于汇总分析接收到的所述决策建议、所述第一调整数据和所述反馈数据以生成第一控制指令;
地面集控单元,用于汇总分析接收到的所述决策建议、所述第一调整数据和所述第二调整数据,以及所述反馈数据以生成第二控制指令;其中,所述第二控制指令的优先级高于所述第一控制指令。
在一种可能的实施方式中,所述人机交互操控模块,还用于根据所述第二调整数据生成避险控制指令,并将所述避险控制指令发送至所述单元执行反馈模块。
在一种可能的实施方式中,所述综采工作面无人化采煤系统,还包括:
网络通信模块,用于实现所述辅助决策支持模块、所述人机交互操控模块、所述单元执行反馈模块和所述系统分析控制模块之间的通信。
在一种可能的实施方式中,所述网络通信模块,包括:
综采工作面通信单元,用于实现所述单元执行反馈模块和所述系统分析控制模块之间的通信;
井下顺槽集控通信单元,用于实现所述单元执行反馈模块、所述人机交互操控模块和所述系统分析控制模块之间的通信;
地面集控通信单元,用于实现所述辅助决策支持模块、所述人机交互操控模块和所述系统分析控制模块之间的通信;
主干通信链路单元,用于实现所述综采工作面通信单元、所述井下顺槽集控通信单元和所述地面集控通信单元之间的通信。
在一种可能的实施方式中,所述网络通信模块,还用于根据网络设备类型、数量及控制方式进行网络VLAN划分。
在一种可能的实施方式中,所述网络通信模块,还用于私有化内部网络地址。
为达到上述目的,本公开实施例第二方面提出了一种综采工作面无人化采煤控制方法,包括:
通过辅助决策支持模块,根据综采工作面开采过程对生产的影响因素信息生成决策建议,并将所述决策建议发送至系统分析控制模块;
通过人机交互操控模块,接收并展示所述综采工作面生产状态数据,以及生成调整数据,并将所述调整数据发送至所述系统分析控制模块;
通过单元执行反馈模块,根据设备执行结果生成反馈数据,并将所述反馈数据发送至所述系统分析控制模块;
通过所述系统分析控制模块,汇总分析接收到的所述决策建议、所述调整数据和所述反馈数据以生成控制指令,并将所述控制指令发送至所述单元执行反馈模块。
为达到上述目的,本公开实施例第三方面提出了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第二方面所述的综采工作面无人化采煤控制方法。
为达到上述目的,本公开实施例第四方面提出了一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行如第二方面所述的综采工作面无人化采煤控制方法。
为达到上述目的,本公开实施例第五方面提出了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现根据第二方面所述的综采工作面无人化采煤控制方法。
为达到上述目的,本公开实施例第六方面提出了一种计算机程序,所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以使得计算机执行如第二方面所述的综采工作面无人化采煤控制方法。
本公开实施例的有益效果:
在本公开实施例中,综采工作面无人化采煤系统包括:辅助决策支持模块、人机交互操控模块、单元执行反馈模块和系统分析控制模块,其中,辅助决策支持模块,用于根据综采工作面开采过程对生产的影响因素信息生成决策建议,并将决策建议发送至系统分析控制模块;人机交互操控模块,用于接收并展示综采工作面生产状态数据,以及生成调整数据,并将调整数据发送至系统分析控制模块;单元执行反馈模块,用于根据设备执行结果生成反馈数据,并将反馈数据发送至系统分析控制模块;系统分析控制模块,用于汇总分析接收到的决策建议、调整数据和反馈数据以生成控制指令,并将控制指令发送至单元执行反馈模块。本公开实施例通过改进综采工作面无人化采煤系统的功能定位,可以提高综采工作面无人化采煤过程的智能程度。
本公开实施例附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开实施例的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开实施例的综采工作面无人化采煤系统的结构示意图;
图2为根据本公开实施例的辅助决策支持模块的框架示意图;
图3为根据本公开实施例的网络通信模块的结构示意图;
图4为根据本公开实施例的综采工作面无人化采煤控制方法的流程示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
下面参照附图描述根据本公开实施例提出的综采工作面无人化采煤系统及控制方法、电子设备、计算机可读存储介质、计算机程序产品和计算机程序,首先将参照附图描述根据本公开实施例提出的综采工作面无人化采煤系统。
图1为根据本公开实施例的综采工作面无人化采煤系统的结构示意图。
如图1所示,该综采工作面无人化采煤系统包括:
辅助决策支持模块110、人机交互操控模块120、单元执行反馈模块130和系统分析控制模块140,其中,
辅助决策支持模块110,用于根据综采工作面开采过程对生产的影响因素信息生成决策建议,并将决策建议发送至系统分析控制模块140;
人机交互操控模块120,用于接收并展示综采工作面生产状态数据,以及生成调整数据,并将调整数据发送至系统分析控制模块140;
单元执行反馈模块130,用于根据设备执行结果生成反馈数据,并将反馈数据发送至系统分析控制模块140;
系统分析控制模块140,用于汇总分析接收到的决策建议、调整数据和反馈数据以生成控制指令,并将控制指令发送至单元执行反馈模块130。
在本公开实施例中,该综采工作面无人化采煤系统可以包括:辅助决策支持模块110、人机交互操控模块120、单元执行反馈模块130和系统分析控制模块140。
其中,辅助决策支持模块110可以根据综采工作面开采过程对生产的影响因素信息生成决策建议,并将决策建议发送至系统分析控制模块140。示例性的,辅助决策支持模块110可以针对综采工作面“人、机、环、管”不同复杂程度的特定化生产场景提供智能化分析并形成决策建议,从而支持系统分析控制模块140进行决策。进一步地,在辅助决策支持模块可以部署针对综采工作面开采过程覆盖“人、机、环、管”四个方面的特定生产场景的智能化分析系统,针对具体生产场景对生产影响情况进行分析,形成支持综采工作面连续高效自动化生产的参考决策建议,并与系统分析控制模块140实现数据交互与对接。
人机交互操控模块120可以接收并展示综采工作面生产状态数据,以及生成调整数据,并将调整数据发送至系统分析控制模块140。示例性的,人机交互操控模块120可以对综采工作面全自动化生产过程进行监视控制,远程监控人员通过人机交互操控模块120配置的人机交互接口可以实现生产过程调控。具体地,人机交互操控模块120可以配置监视平台与操控媒介,接收并展示综采工作面生产状态数据,包括生产过程状态和综采装备工况,远程监控人员可根据展示的生产状态数据进行综合判断,例如,可以评估生产系统连续运行可行性,并通过操控媒介对生产控制工艺、流程进行调整。由此,人机交互操控模块120可以根据远程监控人员的调整,生成调整数据,并将调整数据提供给系统分析控制模块140。
单元执行反馈模块130可以根据设备执行结果生成反馈数据,并将反馈数据发送至系统分析控制模块140。示例性的,单元执行反馈模块130可以作为综采工作面单机装备控制单元、执行部件、传感设备的集合,从而构成每台单机设备的执行反馈系统。进一步地,单机设备还可以配置通信接口,控制单元通过通信接口可以接收系统分析控制模块140下发至单机设备的控制指令,从而驱动执行部件执行控制指令,传感设备通过对执行结果的感知可以生成设备执行结果,控制单元可以根据设备执行结果生成反馈数据,并将反馈数据通过通信接口发送至系统分析控制模块140。
系统分析控制模块140可以汇总分析接收到的决策建议、调整数据和反馈数据以生成控制指令,并将控制指令发送至单元执行反馈模块130。示例性的,系统分析控制模块140可以通过单元执行反馈模块130的反馈数据掌控综采装备的实际运行工况和综采工作面的采场状态,并通过辅助决策支持模块110发送的关于“人、机、环、管”四方面的辅助决策建议进行综合分析,对影响实际生产开展的因素进行决策。再结合人机交互操控模块120发送的调整数据,以生成最终的单元执行反馈模块130综采装备的控制指令,并将控制指令发送至单元执行反馈模块130。
需要说明的是,在单元执行反馈模块130未执行控制指令之前,即未启动之前,系统分析控制模块140可以根据接收到调整数据和反馈数据生成控制指令,并将控制指令发送至单元执行反馈模块130,单元执行反馈模块130接收到控制指令,即默认启动,从而可以根据设备执行结果生成反馈数据,并将反馈数据发送至系统分析控制模块140。至此,综采工作面无人化采煤系统可以实现完整的闭环运行。
在本公开实施例中,综采工作面无人化采煤系统包括:辅助决策支持模块、人机交互操控模块、单元执行反馈模块和系统分析控制模块,其中,辅助决策支持模块,用于根据综采工作面开采过程对生产的影响因素信息生成决策建议,并将决策建议发送至系统分析控制模块;人机交互操控模块,用于接收并展示综采工作面生产状态数据,以及生成调整数据,并将调整数据发送至系统分析控制模块;单元执行反馈模块,用于根据设备执行结 果生成反馈数据,并将反馈数据发送至系统分析控制模块;系统分析控制模块,用于汇总分析接收到的决策建议、调整数据和反馈数据以生成控制指令,并将控制指令发送至单元执行反馈模块。本公开通过改进综采工作面无人化采煤系统的功能定位,可以提高综采工作面无人化采煤过程的智能程度。
在一种可能的实施方式中,辅助决策支持模块110,包括工作人员定位单元、综采装备故障分析与预警单元、装备数字孪生单元、地质三维模型单元、工作面空间模型单元、周期来压预警单元、矿井生产调度单元和智能异常识别单元。
工作人员定位单元,用于获取工作人员的位置移动信息,其中,位置移动信息包括生产期间人员异常进入开采区域信息和人员运动轨迹异常信息。
综采装备故障分析与预警单元,用于根据综采设备工况数据生成设备故障预警信息和设备运维建议。
装备数字孪生单元,用于基于综采设备的位置数据和姿态数据对综采设备群的耦合关系进行分析,生成装备耦合异常情况预警信息和修正控制建议。
地质三维模型单元,用于基于综采工作面的煤层地质勘探数据和回采距离数据生成待开采煤层赋存数据。
工作面空间模型单元,用于分析开采空间三维激光点云模型,生成开采空间异常情况信息。
周期来压预警单元,用于根据液压支架推进过程中的立柱压力数据,生成周期来压预警信息。
矿井生产调度单元,用于根据生产调度计划和生产滞后情况,生成生产调控决策意见。
智能异常识别单元,用于根据综采工作面的视频和音频数据,生成生产异常信息。
在本公开实施例中,辅助决策支持模块110可以针对综采工作面“人、机、环、管”场景构建分析决策功能单元平台,实现对特定化生产场景智能化分析,从而形成决策建议。
图2为根据本公开实施例的辅助决策支持模块110的框架示意图,如图2所示,辅助决策支持模块110针对综采工作面“人”的场景可以包括工作人员定位单元,工作人员定位单元可以获取工作人员的位置移动信息,位置移动信息包括生产期间人员异常进入开采区域信息和人员运动轨迹异常信息,其中,工作人员的位置移动信息可以通过人员定位装置获取。针对“机”场景可以包括综采装备故障分析与预警单元和装备数字孪生单元,综采装备故障分析与预警单元可以获取综采设备工况数据,并通过设备故障模型对设备运行工况进行分析,从而实现根据综采设备工况数据生成设备故障预警信息和设备运维建议;装备数字孪生单元可以获取综采设备的位置数据和姿态数据,并通过构建的装备数字孪生单元对综采设备群的耦合关系进行分析,从而生成装备耦合异常情况预警信息和修正控制建议。 针对“环”场景可以包括地质三维模型单元、工作面空间模型单元和周期来压预警单元,其中,地址三维单元可以获取综采工作面的煤层地质勘探数据,并根据煤层地址勘探数据构建地质三维模型,根据地址三维模型和综采工作面的回采距离数据生成待开采煤层赋存数据;工作面空间模型单元可以通过对综采工作面的三维激光扫描构建开采空间三维激光点云模型,并分析开采空间三维激光点云模型,生成开采空间异常情况信息;周期来压预警单元可以获取液压支架推进过程中的立柱压力数据,根据立柱压力数据构建综采工作面顶板来压周期趋势模型,通过分析综采工作面顶板来压周期趋势模型可以生成周期来压预警信息。针对“管”场景可以有矿井生产调度单元和智能异常识别单元,其中,矿井生产调度单元可以通过生产调度系统根据生产调度计划判断月、周、日的产量是否满足需求,从而获取生产滞后情况,并根据生产调度技术和生产滞后情况生成生产调控决策意见,其中,生产调度计划可以是预先制定的矿井月、周、日的生产计划;智能异常识别单元可以获取综采工作面的视频和音频数据,并对视频和音频数据进行智能化分析,并根据分析结果生成生产异常信息。如此,辅助决策支持模块通过前述各单元可以实现对“人、机、环、管”场景的智能化分析,从而生成决策建议,进而可以提供综采工作面无人化采煤系统的智能程度。
需要说明的是,针对“环”场景还可以包括智能防冲管控单元,智能防冲管控单元可以实现针对煤层冲击地压的管控。上述智能异常识别单元可以进一步细分为智能图像异常识别单元和智能声纹异常识别单元,智能图像异常识别单元可以根据综采工作面的视频,生成生产异常图像信息,智能声纹异常识别单元可以根据综采工作面的音频数据,生成生产异常声纹信息。
需要说明的是,辅助决策支持模块110可以不断扩展功能单元,并通过通信接口与系统分析控制模块140实现数据交互。
在一种可能的实施方式中,人机交互操控模块120,包括井下顺槽监控单元和地面分控中心单元。
井下顺槽监控单元,用于根据综采工作面生产状态数据,生成第一调整数据。
地面分控中心单元,用于根据综采工作面生产状态数据,生成第二调整数据。
在本公开实施例中,考虑到井下综采工作面的无人化目标,监控人员需要位于地面上。因此,人机交互操控模块120可以包括井下顺槽监控单元和地面分控中心单元。井下顺槽监控单元可以根据综采工作面生产状态数据,生成第一调整数据,地面分控中心单元,可以根据综采工作面生产状态数据,生成第二调整数据。如此,可以设置井下顺槽监控单元和地面分控中心单元,可以实现井下综采工作面的无人化。
需要说明的是,第一调整数据可以是井下顺槽监控单元通过对综采工作面生产状态数据的智能化分析,生成的调整数据。第二调整数据可以是地面分控中心单元通过对综采工作面生产状态数据的智能化分析,生成的调整数据,其中,第二调整数据包括根据监控人员对综采工作面生产状态数据的分析生成的调整数据。
在一种可能的实施方式中,系统分析控制模块140,包括井下顺槽集控单元和地面集控单元。
井下顺槽集控单元,用于汇总分析接收到的决策建议、第一调整数据和反馈数据以生成第一控制指令。
地面集控单元,用于汇总分析接收到的决策建议、第一调整数据和第二调整数据,以及反馈数据以生成第二控制指令;其中,第二控制指令的优先级高于第一控制指令。
在本公开实施例中,对应于井下顺槽监控单元和地面分控中心单元,系统分析控制模块140可以包括井下顺槽集控单元和地面集控单元。井下顺槽集控单元可以汇总分析接收到的决策建议、第一调整数据和反馈数据以生成第一控制指令,地面集控单元可以汇总分析接收到的决策建议、第一调整数据和第二调整数据,以及反馈数据以生成第二控制指令;其中,第二控制指令的优先级高于第一控制指令。
需要说明的是,在井下和地面通信正常的情况下,地面集控单元的级别高于井下顺槽集控单元,第二控制指令的优先级也就高于第一控制指令。在井下和地面通信中断的情况下,地面分控中心单元无法获取综采工作面生产状态数据,也就无法生成有效的第一调整数据,井下顺槽监控单元也无法上传第二调整数据,地面集控单元因此无法获取第一调整数据和第二调整数据、决策建议和反馈数据,故而无法生成和下传有效的第二控制指令。在地面集控单元无法生成和下传有效的第二控制指令的情况下,井下顺槽集控单元可以暂时接管地面集控单元的系统控制权,将第一控制指令发送至单元执行反馈模块,从而保证系统的正常运行,通信恢复后,井下顺槽集控单元再将系统控制权返还地面集控单元。
如此,通过井下顺槽集控单元和地面集控单元可以避免通信中断情况下的停工停产,从而能够保证系统的正常运行。
在一种可能的实施方式中,人机交互操控模块120,还用于根据第二调整数据生成避险控制指令,并将避险控制指令发送至单元执行反馈模块。
在本公开实施例中,考虑到采煤过程出现的紧急情况,系统分析控制模块140的反应会较为迟缓。因此,人机交互操作模块120可以根据第二调整数据生成避险控制指令,并将避险控制指令发送至单元执行反馈模块。示例性的,监控人员通过人机交互操控模块120对出现的紧急情况进行设备调整,例如,监控人员针对紧急情况通过操作台、触摸屏等操控媒介对综采设备进行直接调整。人机交互操控模块120可以获取与紧急情况对应的第二 调整数据,并根据第二调整数据生成避险控制指令,并将避险控制指令直接发送至单元执行反馈模块130,单元执行反馈模块130可以根据避险控制指令执行避险动作,并根据执行结果生成反馈数据发送至系统分析控制模块140。如此,可以实现针对紧急情况的及时有效的处理,提高综采工作面无人化采煤系统的安全性。
在一种可能的实施方式中,综采工作面无人化采煤系统,还包括:
网络通信模块,用于实现辅助决策支持模块、人机交互操控模块、单元执行反馈模块和系统分析控制模块之间的通信。
在本公开实施例中,考虑到系统的通信问题,可以设置网络通信模块。辅助决策支持模块、人机交互操控模块、单元执行反馈模块和系统分析控制模块的设备可以通过通信接口接入到网络通信模块,实现反馈数据、决策建议、调整数据、控制指令在综采工作面无人化采煤系统内部的传输,从而可以实现辅助决策支持模块、人机交互操控模块、单元执行反馈模块和系统分析控制模块之间的通信。如此,通过网络通信模块可以提供综采工作面无人化采煤系统内部的正常通信。
在一种可能的实施方式中,网络通信模块,包括综采工作面通信单元、井下顺槽集控通信单元、地面集控通信单元和主干通信链路单元。
综采工作面通信单元,用于实现单元执行反馈模块和系统分析控制模块之间的通信。
井下顺槽集控通信单元,用于实现单元执行反馈模块、人机交互操控模块和系统分析控制模块之间的通信。
地面集控通信单元,用于实现辅助决策支持模块、人机交互操控模块和系统分析控制模块之间的通信。
主干通信链路单元,用于实现综采工作面通信单元、井下顺槽集控通信单元和地面集控通信单元之间的通信。
在本公开实施例中,图3为根据本公开实施例的网络通信模块的结构示意图,如图3所示,可以根据综采工作面无人化采煤系统的空间分布特点,将网络通信模块划分为综采工作面通信单元、井下顺槽集控通信单元、地面集控通信单元和主干通信链路单元。单元执行反馈模块生成的数据可以包括支架监控数据、音视频监控数据、采煤机监控数据、运输系统监控数据和泵站监控数据,系统分析控制模块生成的数据可以包括井下顺槽集控数据、地面集控数据,辅助决策支持模块生成的数据可以包括音频分析数据和视频分析数据,人机交互操控模块生成的数据可以包括设备调整数据。针对前述各类数据的通信,综采工作面通信单元可以实现单元执行反馈模块和系统分析控制模块之间的通信;井下顺槽集控通信单元可以实现单元执行反馈模块、人机交互操控模块和系统分析控制模块之间的通信;地面集控通信单元可以实现辅助决策支持模块、人机交互操控模块和系统分析控制模块之 间的通信;主干通信链路单元可以实现综采工作面通信单元、井下顺槽集控通信单元和地面集控通信单元之间的通信。如此,通过将网络通信模块划分为综采工作面通信单元、井下顺槽集控通信单元、地面集控通信单元和主干通信链路单元,可以精细化实现综采工作面无人化采煤系统内部的正常通信。
在一种可能的实施方式中,网络通信模块,还用于根据网络设备类型、数量及控制方式进行网络VLAN(Virtual Local Area Network,虚拟局域网络)划分。
在本公开实施例中,网络通信模块还可以根据网络设备类型、数量及控制方式进行网络VLAN划分。示例性的,可以按照液压支架监控数据、音视频多媒体数据、其他设备集中监控数据划分为三类,将对应设备的通信网络接口进行配置,从而实现网络VLAN的划分。如簇,可以实现不同类型数据之间传输隔离,提高网络通信模块的可靠性。
在一种可能的实施方式中,网络通信模块,还用于私有化内部网络地址。
在本公开实施例中,网络通信模块还可以私有化内部网络地址。如此,可以实现网络通信模块与矿井网络平台的网络隔离,保证系统运行的安全性。
需要说明的是,网络通信模块还可以设置防火墙实现综采工作面通信局域网的私有化管理。还可以设置在线状态监控功能,对网络拥堵状态进行实时分析、预警。
可以理解的是,当综采工作面自动化采煤过程中出现综采设备、工作人员危险或必须需要人员直接干预操作时,可以通过人机交互操控模块对设备进行直接干预和控制,此时综采工作面退出自动化生产,进入人工远程干预生产。因此为衡量综采工作面自动化开采程度,可以定义综采工作面自动化开采率p:
p=l/H
其中,l为综采工作面全自动化生产时间长度,H为生产班时间长度。
为了实现上述实施例,如图4所示,本实施例中还提供了一种综采工作面无人化采煤控制方法,包括步骤S410至步骤S440。
步骤S410,通过辅助决策支持模块,根据综采工作面开采过程对生产的影响因素信息生成决策建议,并将决策建议发送至系统分析控制模块。
步骤S420,通过人机交互操控模块,接收并展示综采工作面生产状态数据,以及生成调整数据,并将调整数据发送至系统分析控制模块。
步骤S430,通过单元执行反馈模块,根据设备执行结果生成反馈数据,并将反馈数据发送至系统分析控制模块。
步骤S440,通过系统分析控制模块,汇总分析接收到的决策建议、调整数据和反馈数据以生成控制指令,并将控制指令发送至单元执行反馈模块。
根据本公开实施例的综采工作面无人化采煤控制方法,通过辅助决策支持模块,根据综采工作面开采过程对生产的影响因素信息生成决策建议,并将决策建议发送至系统分析控制模块;通过人机交互操控模块,接收并展示综采工作面生产状态数据,以及生成调整数据,并将调整数据发送至系统分析控制模块;通过单元执行反馈模块,根据设备执行结果生成反馈数据,并将反馈数据发送至系统分析控制模块;通过系统分析控制模块,汇总分析接收到的决策建议、调整数据和反馈数据以生成控制指令,并将控制指令发送至单元执行反馈模块。本公开通过改进综采工作面无人化采煤系统的功能定位,可以提高综采工作面无人化采煤过程的智能程度。
为了实现上述实施例,本公开实施例中还提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的综采工作面无人化采煤控制方法。
为了实现上述实施例,本公开实施例中还提供了一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行如上所述的综采工作面无人化采煤控制方法。
为了实现上述实施例,本公开实施例中还提供了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如上所述的综采工作面无人化采煤控制方法。
为了实现上述实施例,本公开实施例中还提供了一种计算机程序,所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以使得计算机执行如上所述的综采工作面无人化采煤控制方法。
需要说明的是,前述对综采工作面无人化采煤系统实施例的解释说明也适用于该实施例的综采工作面无人化采煤控制方法、电子设备、计算机可读存储介质、计算机程序产品和计算机程序,此处不再赘述。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开实施例的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技 术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。
本公开所有实施例均可以单独被执行,也可以与其他实施例相结合被执行,均视为本公开要求的保护范围。

Claims (14)

  1. 一种综采工作面无人化采煤系统,其特征在于,包括:辅助决策支持模块、人机交互操控模块、单元执行反馈模块和系统分析控制模块,其中,
    所述辅助决策支持模块,用于根据综采工作面开采过程对生产的影响因素信息生成决策建议,并将所述决策建议发送至所述系统分析控制模块;
    所述人机交互操控模块,用于接收并展示所述综采工作面生产状态数据,以及生成调整数据,并将所述调整数据发送至所述系统分析控制模块;
    所述单元执行反馈模块,用于根据设备执行结果生成反馈数据,并将所述反馈数据发送至所述系统分析控制模块;
    所述系统分析控制模块,用于汇总分析接收到的所述决策建议、所述调整数据和所述反馈数据以生成控制指令,并将所述控制指令发送至所述单元执行反馈模块。
  2. 根据权利要求1所述的综采工作面无人化采煤系统,其特征在于,所述辅助决策支持模块,包括:
    工作人员定位单元,用于获取工作人员的位置移动信息,其中,所述位置移动信息包括生产期间人员异常进入开采区域信息和人员运动轨迹异常信息;
    综采装备故障分析与预警单元,用于根据综采设备工况数据生成设备故障预警信息和设备运维建议;
    装备数字孪生单元,用于基于所述综采设备的位置数据和姿态数据对综采设备群的耦合关系进行分析,生成装备耦合异常情况预警信息和修正控制建议;
    地质三维模型单元,用于基于所述综采工作面的煤层地质勘探数据和回采距离数据生成待开采煤层赋存数据;
    工作面空间模型单元,用于分析开采空间三维激光点云模型,生成所述开采空间异常情况信息;
    周期来压预警单元,用于根据液压支架推进过程中的立柱压力数据,生成周期来压预警信息;
    矿井生产调度单元,用于根据生产调度计划和生产滞后情况,生成生产调控决策意见;
    智能异常识别单元,用于根据所述综采工作面的视频和音频数据,生成生产异常信息。
  3. 根据权利要求1或2所述的综采工作面无人化采煤系统,其特征在于,所述人机交互操控模块,包括:
    井下顺槽监控单元,用于根据所述综采工作面生产状态数据,生成第一调整数据;
    地面分控中心单元,用于根据所述综采工作面生产状态数据,生成第二调整数据。
  4. 根据权利要求3所述的综采工作面无人化采煤系统,其特征在于,所述系统分析控制模块,包括:
    井下顺槽集控单元,用于汇总分析接收到的所述决策建议、所述第一调整数据和所述反馈数据以生成第一控制指令;
    地面集控单元,用于汇总分析接收到的所述决策建议、所述第一调整数据和所述第二调整数据,以及所述反馈数据以生成第二控制指令;其中,所述第二控制指令的优先级高于所述第一控制指令。
  5. 根据权利要求3或4所述的综采工作面无人化采煤系统,其特征在于,所述人机交互操控模块,还用于根据所述第二调整数据生成避险控制指令,并将所述避险控制指令发送至所述单元执行反馈模块。
  6. 根据权利要求1至5中任一项所述的综采工作面无人化采煤系统,其特征在于,还包括:
    网络通信模块,用于实现所述辅助决策支持模块、所述人机交互操控模块、所述单元执行反馈模块和所述系统分析控制模块之间的通信。
  7. 根据权利要求6所述的综采工作面无人化采煤系统,其特征在于,所述网络通信模块,包括:
    综采工作面通信单元,用于实现所述单元执行反馈模块和所述系统分析控制模块之间的通信;
    井下顺槽集控通信单元,用于实现所述单元执行反馈模块、所述人机交互操控模块和所述系统分析控制模块之间的通信;
    地面集控通信单元,用于实现所述辅助决策支持模块、所述人机交互操控模块和所述系统分析控制模块之间的通信;
    主干通信链路单元,用于实现所述综采工作面通信单元、所述井下顺槽集控通信单元和所述地面集控通信单元之间的通信。
  8. 根据权利要求6或7所述的综采工作面无人化采煤系统,其特征在于,所述网络通信模块,还用于根据网络设备类型、数量及控制方式进行网络VLAN划分。
  9. 根据权利要求6至8中任一项所述的综采工作面无人化采煤系统,其特征在于,所述网络通信模块,还用于私有化内部网络地址。
  10. 一种综采工作面无人化采煤控制方法,其特征在于,包括:
    通过辅助决策支持模块,根据综采工作面开采过程对生产的影响因素信息生成决策建议,并将所述决策建议发送至系统分析控制模块;
    通过人机交互操控模块,接收并展示所述综采工作面生产状态数据,以及生成调整数据,并将所述调整数据发送至所述系统分析控制模块;
    通过单元执行反馈模块,根据设备执行结果生成反馈数据,并将所述反馈数据发送至所述系统分析控制模块;
    通过所述系统分析控制模块,汇总分析接收到的所述决策建议、所述调整数据和所述反馈数据以生成控制指令,并将所述控制指令发送至所述单元执行反馈模块。
  11. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求10所述的综采工作面无人化采煤控制方法。
  12. 一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,其特征在于,所述计算机指令用于使所述计算机执行如权利要求10所述的综采工作面无人化采煤控制方法。
  13. 一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现根据权利要求10所述的综采工作面无人化采煤控制方法。
  14. 一种计算机程序,其特征在于,所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以使得计算机执行如权利要求10所述的综采工作面无人化采煤控制方法。
PCT/CN2023/135568 2022-12-01 2023-11-30 综采工作面无人化采煤系统和控制方法 WO2024114752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211531475.4 2022-12-01
CN202211531475.4A CN115755723A (zh) 2022-12-01 2022-12-01 综采工作面无人化采煤系统和控制方法

Publications (1)

Publication Number Publication Date
WO2024114752A1 true WO2024114752A1 (zh) 2024-06-06

Family

ID=85342397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/135568 WO2024114752A1 (zh) 2022-12-01 2023-11-30 综采工作面无人化采煤系统和控制方法

Country Status (2)

Country Link
CN (1) CN115755723A (zh)
WO (1) WO2024114752A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115755723A (zh) * 2022-12-01 2023-03-07 北京天玛智控科技股份有限公司 综采工作面无人化采煤系统和控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002561A1 (en) * 2003-07-02 2005-01-06 Lockheed Martin Corporation Scene analysis surveillance system
CN111173510A (zh) * 2020-03-14 2020-05-19 天地科技股份有限公司 一种用于复杂条件工作面的综采装备智能控制方法及系统
CN111208759A (zh) * 2019-12-30 2020-05-29 中国矿业大学(北京) 矿井无人化综采工作面数字孪生智能监控系统
CN112666911A (zh) * 2020-12-29 2021-04-16 煤炭科学研究总院 协同控制系统
CN114622912A (zh) * 2022-03-17 2022-06-14 中国矿业大学 一种采煤机智能控制装置及其控制方法
CN115755723A (zh) * 2022-12-01 2023-03-07 北京天玛智控科技股份有限公司 综采工作面无人化采煤系统和控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002561A1 (en) * 2003-07-02 2005-01-06 Lockheed Martin Corporation Scene analysis surveillance system
CN111208759A (zh) * 2019-12-30 2020-05-29 中国矿业大学(北京) 矿井无人化综采工作面数字孪生智能监控系统
CN111173510A (zh) * 2020-03-14 2020-05-19 天地科技股份有限公司 一种用于复杂条件工作面的综采装备智能控制方法及系统
CN112666911A (zh) * 2020-12-29 2021-04-16 煤炭科学研究总院 协同控制系统
CN114622912A (zh) * 2022-03-17 2022-06-14 中国矿业大学 一种采煤机智能控制装置及其控制方法
CN115755723A (zh) * 2022-12-01 2023-03-07 北京天玛智控科技股份有限公司 综采工作面无人化采煤系统和控制方法

Also Published As

Publication number Publication date
CN115755723A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024114752A1 (zh) 综采工作面无人化采煤系统和控制方法
CN109298699B (zh) 一种智能化矿山系统
Li et al. Integrating field data and 3D simulation for tower crane activity monitoring and alarming
CN111176245A (zh) 基于数字孪生技术的多终端工业设备巡检监控系统及方法
CN113050649A (zh) 一种数字孪生驱动的巡检机器人远程控制系统及方法
US20140032169A1 (en) Systems and methods for improving control system reliability
CN107942792A (zh) 一种多平台的生产流水线机械设备控制系统及方法
WO2020087647A1 (zh) 核电厂数字化辅助控制盘系统,设计方法以及控制系统
CN113264449B (zh) 实现智能塔吊的智慧工地物联网协同系统和方法
CN106408153A (zh) 一种基于案例推理的钢铁企业生产动态调度调整方法及其专家系统
CN114859839B (zh) 煤炭生产安全监控系统及方法
WO2024108871A1 (zh) 基于边缘计算架构的盾构施工预警系统及预警方法
CN106559501B (zh) 一种扁平式工控方法与系统
CN113592326A (zh) 一种适用于智慧工厂的远程智能化监控系统
CN114013923A (zh) 一种皮带纠偏方法、装置、系统及计算机可读存储介质
CN106269198A (zh) 基于dcs的立磨智能控制系统
JP2007148611A (ja) 水処理施設統合運用管理システム
Miao et al. Construction of digital twin system for intelligent mining in coal mines
CN111224709A (zh) 一种集群无人机测控系统
CN113970908B (zh) 大型露天矿轮斗全连续工艺装备的智能控制系统及方法
CN115441581A (zh) 基于大数据的大规模电网安全及智能调度系统
CN108399389B (zh) 机器视觉的多机监管系统、方法及客户机、服务器、存储介质
CN113685179A (zh) 一种煤矿综采工作面自动化控制系统及其控制方法
CN202748648U (zh) 工业生产库区钢卷实时监测系统
CN203101936U (zh) 基于图形化的矿井多系统联动控制系统