WO2024114688A1 - 一种混合储能变流器仿真测试系统和性能检测方法 - Google Patents

一种混合储能变流器仿真测试系统和性能检测方法 Download PDF

Info

Publication number
WO2024114688A1
WO2024114688A1 PCT/CN2023/135134 CN2023135134W WO2024114688A1 WO 2024114688 A1 WO2024114688 A1 WO 2024114688A1 CN 2023135134 W CN2023135134 W CN 2023135134W WO 2024114688 A1 WO2024114688 A1 WO 2024114688A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
hybrid energy
simulation
switch
storage converter
Prior art date
Application number
PCT/CN2023/135134
Other languages
English (en)
French (fr)
Inventor
杨再欣
阿敏夫
尹柏清
胡宏彬
菅旭生
翟寅
高鑫哲
Original Assignee
内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 filed Critical 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司
Publication of WO2024114688A1 publication Critical patent/WO2024114688A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Definitions

  • the present disclosure relates to the technical field of simulation testing, and in particular to a hybrid energy storage converter simulation testing system and a performance detection method.
  • Energy storage power stations are regarded as a grid-side technical solution to improve system frequency stability. They have unique advantages in peak shaving and valley filling and rapid frequency regulation, and can provide power response and inertia support for the power system.
  • the power storage converter (PCS) is the core component of the power energy storage system.
  • the topological structure and control strategy of the energy storage converter have a great influence on the grid-connected performance.
  • the traditional solution based on two-level converter has been difficult to adapt to the high-proportion new energy power system with large-scale energy storage.
  • Large capacity and hybrid have become the two major development trends and technical directions of energy storage system configuration.
  • the distributed configuration scheme based on multi-level (three-level and above) converters is the preferred solution for realizing medium-voltage large-capacity AC-DC power conversion.
  • the performance of commonly used silicon-based power devices IGBT has been difficult to further improve.
  • the hybrid multi-level converter with heterogeneous power devices that mix silicon carbide MOSFET and silicon devices is conducive to saving costs, reducing losses, and improving power density and overall efficiency.
  • related research is still in its infancy.
  • the model verification of power electronic devices is mainly carried out by simulation modeling with relatively mature software such as PLECS, MATLAB/Simulink, etc., which can analyze the electrical characteristics of components, converter topology, modulation strategy, etc. at the device level.
  • relatively mature software such as PLECS, MATLAB/Simulink, etc.
  • there is no reference for the simulation model and dynamic model test platform of large-capacity energy storage converter integrated with hybrid energy storage units and there is a lack of effective means and methods for whether the control strategy after the integration of heterogeneous power devices is suitable for large power grids.
  • the purpose of the present invention is to provide a hybrid energy storage inverter simulation test system and performance detection method, to provide a semi-physical closed-loop simulation system and detection method with strong adaptability and good compatibility for the grid-connected performance of the hybrid energy storage inverter, to verify the electrical performance and control strategy of the hybrid energy storage inverter, so as to be suitable for the safe and stable operation of large-scale energy storage power stations.
  • an embodiment of the present disclosure provides a hybrid energy storage converter simulation test system, wherein the hybrid energy storage converter
  • the flow device simulation test system includes a simulation workstation, a real-time digital simulator, an I/O interface device and a hybrid energy storage controller to be tested, wherein the simulation workstation is communicatively connected to the real-time digital simulator, the real-time digital simulator is connected to the I/O interface device via an optical fiber, and the I/O interface device is communicatively connected to the hybrid energy storage controller to be tested;
  • the simulation workstation is used to generate an operation control instruction in response to a user operation, and send the operation control instruction to the real-time digital simulator;
  • the real-time digital simulator is used to simulate the operating conditions of the simulation workstation or abnormal conditions of various faults in real time, and complete the operation processing according to the operation control instruction, generate the corresponding data volume, and send the data volume to the I/O interface device through the optical fiber; wherein the data volume includes the grid side voltage and current, the DC side voltage and current, the grid side switch state and the DC side switch state;
  • the I/O interface device is used to realize data interaction between the real-time digital simulator and the hybrid energy storage controller to be tested, and send the data volume generated by the real-time digital simulator to the hybrid energy storage controller to be tested;
  • the hybrid energy storage controller to be tested is used to generate a switch tripping and closing instruction and a trigger pulse signal based on the received data volume, and send the switch tripping and closing instruction and the trigger pulse signal to the real-time digital simulator through the I/O interface device; wherein the switch tripping and closing instruction includes a grid-side switch tripping and closing instruction and a DC-side switch tripping and closing instruction;
  • the real-time digital simulator is used to send the switch tripping and closing instructions and the trigger pulse signal to the simulation workstation, so that the simulation workstation performs simulation based on the switch tripping and closing instructions and the trigger pulse signal.
  • the simulation workstation includes an energy storage substation and external power grid module, a hybrid energy storage converter test model, an energy storage battery pack model and a fault simulation module;
  • the energy storage substation and external power grid module are used to simulate the working status of the energy storage substation and the external equivalent power grid;
  • the hybrid energy storage converter test model is used to simulate the hybrid energy storage converter
  • the energy storage battery group model is used to form a battery cluster in series and parallel mode to access the DC side of the energy storage substation and the external power grid module;
  • the fault simulation module is used to simulate a fault state to verify the control and protection function of the hybrid energy storage converter in the hybrid energy storage converter test model.
  • the energy storage substation and external grid module includes a primary system model of the 220kV side of the energy storage substation, an external grid model and a primary system model of the 10kV energy storage side;
  • the 220kV side primary system model also includes 220kV bus, 110kV bus, 10kV bus, circuit breaker, transformer and reactive power compensation equipment in the station;
  • the external power grid model also includes two 220kV transmission lines, a wind farm, a photovoltaic power station and a thermal power plant;
  • the 10kV energy storage side primary system model also includes a grid-connected switch, a step-up transformer switch, a load switch and a comprehensive load;
  • the hybrid energy storage converter test model includes at least one conventional energy storage converter and a hybrid energy storage converter model; wherein the simulation of the hybrid energy storage converter adopts a hybrid three-level ANPC topology.
  • the hybrid energy storage controller to be tested includes a sampling unit, a switch quantity control unit and a drive circuit;
  • the sampling unit is used to collect the grid-side voltage and current and the DC-side voltage and current sent by the I/O interface device;
  • the switch quantity control unit is used to generate the grid-side switch tripping and closing instructions and the DC-side switch tripping and closing instructions based on the grid-side switch state and the DC-side switch state;
  • the driving circuit is used to generate the trigger pulse signal.
  • the hybrid energy storage converter simulation test system further comprises a digital oscilloscope, and the real-time digital simulator and the hybrid energy storage controller to be tested are respectively connected to the digital oscilloscope;
  • the digital oscilloscope is used to collect electrical quantities at multiple measuring points in the real-time digital simulator, as well as the real-time waveforms of the voltage and current of the sampling unit in the hybrid energy storage controller to be tested and the control signal of the switch quantity control unit; wherein the multiple measuring points include the AC side outlet of the hybrid energy storage inverter, the AC side outlet of the conventional energy storage inverter, the bus side of the boost transformer, one side of the grid-connected switch and the load side of the load switch.
  • an embodiment of the present disclosure further provides a hybrid energy storage converter simulation test method, which is applied to a hybrid energy storage converter simulation test system, wherein the hybrid energy storage converter simulation test system includes a simulation workstation, a real-time digital simulator, an I/O interface device, and a hybrid energy storage controller to be tested, and the hybrid energy storage converter simulation test method includes:
  • the simulation workstation generates an operation control instruction in response to a user operation, and sends the operation control instruction to the real-time digital simulator;
  • the real-time digital simulator simulates the operating conditions of the simulation workstation or abnormal conditions of various faults in real time, completes the operation processing according to the operation control instruction, generates the corresponding data volume, and sends the data volume to the I/O interface device through the optical fiber; wherein the data volume includes the grid-side voltage and current, the DC-side voltage and current, the grid-side switch state and the DC-side switch state;
  • the I/O interface device realizes data interaction between the real-time digital simulator and the hybrid energy storage controller to be tested, and sends the data volume generated by the real-time digital simulator to the hybrid energy storage controller to be tested;
  • the hybrid energy storage controller to be tested generates a switch tripping and closing instruction and a trigger pulse signal based on the received data volume, and sends the switch tripping and closing instruction and the trigger pulse signal to the real-time digital simulator through the I/O interface device; wherein the switch tripping and closing instruction includes a grid-side switch tripping and closing instruction and a DC-side switch tripping and closing instruction;
  • the real-time digital simulator sends the switch tripping and closing instructions and the trigger pulse signal to the simulation workstation, so that the simulation workstation performs simulation based on the switch tripping and closing instructions and the trigger pulse signal.
  • an embodiment of the present disclosure further provides a hybrid energy storage converter performance detection method based on dynamic simulation, wherein the hybrid energy storage converter performance detection method is applied to a hybrid energy storage converter simulation test system, and the hybrid energy storage converter performance detection method includes:
  • the simulation workstation controls the grid-connected switches and booster switches in the energy storage substation and external grid module to close, and the switches corresponding to the conventional energy storage converter in the hybrid energy storage converter test model to close, so as to conduct a grid-connected performance test of a megawatt-class conventional energy storage converter.
  • the simulation workstation controls the grid-connected switch and the boost transformer switch in the control energy storage substation and the external power grid module to close, and the switch corresponding to the hybrid energy storage converter in the hybrid energy storage converter test model to close, so as to perform a megawatt-level hybrid energy storage converter grid-connected performance test.
  • hybrid energy storage converter performance detection method further includes:
  • the simulation workstation controls the closing of the boost transformer switch, the closing of the load switch in the control energy storage substation and the external power grid module, the closing of the switch corresponding to the conventional energy storage converter, and the closing of the switch corresponding to the hybrid energy storage converter, and sets the conventional energy storage converter to operate in V/f mode, and the hybrid energy storage converter to be tested to operate in P/Q mode, so as to form a power self-loop form of multiple types of energy storage converters, so as to carry out island protection function tests of hybrid energy storage converters and conventional energy storage converters with multiple types of adjustable loads;
  • the simulation workstation controls the closure of the grid-connected switch, the closure of the boost transformer switch, the closure of the switch corresponding to the conventional energy storage converter, and the closure of the switch corresponding to the hybrid energy storage converter to perform interactive testing of grid connection of multiple types of energy storage converters.
  • an embodiment of the present disclosure further provides an electronic device, comprising: a processor, a memory and a bus, wherein the memory stores machine-readable instructions executable by the processor, and when the electronic device is running, the processor and the memory communicate through the bus, and when the machine-readable instructions are executed by the processor, the steps of the hybrid energy storage inverter simulation test method and the hybrid energy storage inverter performance detection method based on dynamic simulation are performed.
  • an embodiment of the present disclosure further provides a computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, executes the steps of the hybrid energy storage converter simulation test method and the hybrid energy storage converter performance detection method based on dynamic simulation as described above.
  • the disclosed embodiment provides a hybrid energy storage converter simulation test system and performance detection method.
  • the simulation test system is equipped with a host computer simulation workstation, a lower computer real-time digital simulator, an IO interface device, a hybrid energy storage controller to be tested, and a digital recorder.
  • the modular modeling idea is used to complete the real-time digital simulation modeling foundation.
  • the simulation workstation has built a primary system of energy storage power stations and thermal power and new energy stations, and provides a hybrid energy storage converter topology simulation model. It can perform system modeling and simulation on megawatt-level conventional energy storage converters and hybrid energy storage converters, and can realize the simulation of SiC MOSFET.
  • the test can be used to test the grid-connected performance of hybrid multi-level converters with Si IGBT.
  • the grid-connected performance test of megawatt-class energy storage converters By switching the switch, the grid-connected performance test of megawatt-class energy storage converters, the island protection function test of hybrid energy storage converters and conventional energy storage converters with multiple types of adjustable loads, and the interaction impact test between energy storage converters can be performed. It has high integration and strong compatibility. It can meet the grid-connected performance test needs of various hybrid multi-level energy storage converters and their controllers on the market.
  • FIG1 is a schematic structural diagram of a hybrid energy storage converter simulation test system provided by an embodiment of the present disclosure
  • FIG2 is a schematic diagram of the structure of an energy storage substation and an external power grid module provided by an embodiment of the present disclosure
  • FIG3 is a schematic structural diagram of a hybrid energy storage converter test model provided by an embodiment of the present disclosure.
  • FIG4 is a flow chart of a hybrid energy storage converter simulation test method provided by an embodiment of the present disclosure.
  • FIG5 is a schematic diagram of the structure of an electronic device provided by an embodiment of the present disclosure.
  • the present disclosure can be applied in the field of simulation test technology.
  • Energy storage power stations are regarded as a grid-side technical solution to improve system frequency stability. They have unique advantages in peak shaving and valley filling and rapid frequency regulation, and can provide power response and inertia support for the power system.
  • the power storage converter (PCS) is the core component of the power energy storage system.
  • the topological structure and control strategy of the energy storage converter have a great influence on the grid-connected performance.
  • the traditional solution based on two-level converter has been difficult to adapt to the high-proportion new energy power system with large-scale energy storage.
  • Large capacity and hybrid have become the two major development trends and technical directions of energy storage system configuration.
  • the model verification of power electronic devices is mainly carried out by simulation modeling with relatively mature software such as PLECS, MATLAB/Simulink, etc., which can analyze the electrical characteristics of components, converter topology, modulation strategy, etc. at the device level.
  • relatively mature software such as PLECS, MATLAB/Simulink, etc.
  • there is no reference for the simulation model and dynamic model test platform of large-capacity energy storage converter integrated with hybrid energy storage units and there is a lack of effective means and methods for whether the control strategy after the integration of heterogeneous power devices is suitable for large power grids.
  • the embodiments of the present disclosure provide a hybrid energy storage inverter simulation test system and performance detection method, which provides a semi-physical closed-loop simulation system and detection method with strong adaptability and good compatibility for the grid-connected performance of the hybrid energy storage inverter, verifies the electrical performance and control strategy of the hybrid energy storage inverter, so as to be suitable for the safe and stable operation of large-scale energy storage power stations.
  • the hybrid energy storage converter simulation test system 100 includes a simulation workstation 101, a real-time digital simulator 102, an I/O interface device 103 and a hybrid energy storage controller to be tested 104, wherein the simulation workstation 101 is connected to the real-time digital simulator 102 in communication, the real-time digital simulator 102 is connected to the I/O interface device 103 via an optical fiber, and the I/O interface device 103 is connected to the hybrid energy storage controller to be tested 104 in communication.
  • the simulation workstation 101 is used to generate an operation control instruction in response to a user operation, and send the operation control instruction to the real-time digital simulator 102 .
  • the operation control instruction refers to an instruction generated by the simulation workstation based on user operations.
  • the operation control instruction may be a control switch closing instruction, etc., which is not specifically limited in the present disclosure.
  • the simulation workstation 101 is mainly responsible for model simulation.
  • the simulation workstation 101 generates operation control instructions in response to user operations, and sends the generated operation control instructions to the real-time digital simulator 102.
  • the simulation workstation 101 is a host computer, and the simulation workstation 101 is the control host of the entire dynamic simulation system. It is equipped with power system real-time simulation software, and is used to build energy storage substations and their external power grid simulation modules, hybrid energy storage converter models, energy storage battery group models and fault simulation modules. After the model is verified, the compiled code is automatically loaded into the real-time simulator. Through the human-computer interactive operation interface, the simulation process can be accessed and controlled in real time.
  • the simulation workstation 101 includes an energy storage substation and external power grid module, a hybrid energy storage converter test model, an energy storage battery group model and a fault simulation module.
  • the energy storage substation and external power grid module are used to simulate the working status of the energy storage substation and the external equivalent power grid.
  • the hybrid energy storage converter test model is used for simulating the hybrid energy storage converter.
  • the energy storage substation and the external power grid module include a primary system model of the 220kV side of the energy storage substation, an external power grid model and a primary system model of the 10kV energy storage side;
  • the 220kV side primary system model also includes a 220kV bus, a 110kV bus, a 10kV bus, a circuit breaker, a transformer and reactive power compensation equipment in the station;
  • the external power grid model also includes two 220kV transmission lines, a wind farm, a photovoltaic power station and a thermal power plant;
  • the 10kV energy storage side primary system model also includes a grid-connected switch, a step-up transformer switch, a load switch and a comprehensive load.
  • the hybrid energy storage converter test model includes at least one conventional energy storage converter and a hybrid energy storage converter model.
  • the simulation of the hybrid energy storage converter adopts a hybrid three-level ANPC topology.
  • the hybrid energy storage converter test model includes at least one conventional energy storage converter and a hybrid energy storage converter model, and the hybrid energy storage controller is used to connect multiple conventional energy storage converters to achieve synchronous operation of multiple energy storage converters.
  • Figure 3 is a structural schematic diagram of a hybrid energy storage converter test model provided by an embodiment of the present disclosure. As shown in Figure 3, Figure 3 only gives an example of a conventional energy storage converter included in the hybrid energy storage converter test model. In practice, the hybrid energy storage converter test model may include multiple conventional energy storage converters.
  • the simulation in the hybrid energy storage converter provided by the embodiment of the present disclosure adopts a hybrid three-level ANPC topology, and the S2 and S3 switches in each phase are SiC MOSFETs, and S1, S4, S5, and S6 are Si IGBTs, and the SiC accounts for 1/3.
  • the SiC MOSFETs SiC MOSFETs
  • S1, S4, S5, and S6 Si IGBTs
  • the SiC accounts for 1/3.
  • the switch K1 is connected to the conventional energy storage converter
  • the switch K2 is connected to the hybrid energy storage converter
  • T1 is a transformer.
  • the energy storage battery group model is used to form a battery cluster in a series-parallel manner to access the energy storage substation and the DC side of the external power grid module.
  • the energy storage battery group model is mainly responsible for simulating the energy storage battery group, providing power for the energy storage substation and the external grid module.
  • the energy storage battery group model is connected to the DC side of the energy storage substation and the external grid module by forming a battery cluster in series and parallel.
  • the energy storage battery group model is a lithium iron phosphate battery group, which is connected to the DC side of the energy storage converter by forming a battery cluster in series and parallel.
  • the battery state of charge SOC (State of Charge) is solved using a second-order RC equivalent circuit model and a state estimation method.
  • the fault simulation module is used to simulate a fault state to verify the control and protection function of the hybrid energy storage converter in the hybrid energy storage converter test model.
  • the fault simulation module is mainly responsible for simulating the fault state to verify the control and protection functions of the hybrid energy storage converter in the hybrid energy storage converter test model. Specifically, the fault simulation module configures multiple short-circuit models in the simulation software and sets the fault point, trigger time, and fault type. It also configures passive reactors to simulate grid voltage drops to verify the hybrid energy storage converter test model. Control and protection functions of energy storage converter.
  • the hybrid energy storage converter adopts a hybrid three-level topology, using SiC MOSFET switches and Si IGBT switches respectively, and can detect the grid-connected performance of SiC MOSFET and Si IGBT hybrid multi-level converters. It also includes a fault simulation module that can simulate various possible faults to verify the control and protection functions of the hybrid energy storage converter.
  • the real-time digital simulator 102 is used to simulate the operating conditions of the simulation workstation 101 or abnormal conditions caused by various faults in real time, and complete calculation processing according to the operation control instructions, generate corresponding data, and send the data to the I/O interface device 103 via optical fiber.
  • the data includes grid-side voltage and current, DC-side voltage and current, grid-side switch status, and DC-side switch status.
  • the data includes grid-side voltage and current of the hybrid energy storage converter, DC-side voltage and current of the hybrid energy storage converter, grid-side switch status of the hybrid energy storage converter, and DC-side switch status of the hybrid energy storage converter.
  • the real-time digital simulator 102 is mainly used to simulate according to the operation control instructions sent by the host computer, and to process according to the control operation instructions generated by the simulation workstation 101, so as to simulate the operation conditions of the simulation workstation 101 or the abnormal conditions of various faults in real time, and to complete the operation processing according to the operation control instructions sent by the simulation workstation 101, generate the corresponding grid-side voltage and current, DC-side voltage and current, grid-side switch state and DC-side switch state, and send the data volume to the I/O interface device 103 through the optical fiber, so that the I/O interface device 103 sends the received data volume to the hybrid energy storage controller 104 to be tested.
  • the real-time digital simulator 102 is equivalent to the lower computer, and the simulation step size of the real-time digital simulator 102 is millisecond level, which is used for electromagnetic transient simulation calculation, can simulate the operation conditions of energy storage substations and energy storage converters and the abnormal conditions of various faults in real time, and has communication protocols such as 104 and 61850, completes the operation processing according to the operation control instructions of the host computer, generates the corresponding analog quantity and digital quantity, and interacts with the access device with I/O module through the optical fiber.
  • the simulation step size of the real-time digital simulator 102 is millisecond level, which is used for electromagnetic transient simulation calculation, can simulate the operation conditions of energy storage substations and energy storage converters and the abnormal conditions of various faults in real time, and has communication protocols such as 104 and 61850, completes the operation processing according to the operation control instructions of the host computer, generates the corresponding analog quantity and digital quantity, and interacts with the access device with I/O module through the optical fiber.
  • the I/O interface device 103 is used to implement data interaction between the real-time digital simulator 102 and the hybrid energy storage controller 104 to be tested, and to send the data generated by the real-time digital simulator 102 to the hybrid energy storage controller 104 to be tested.
  • the I/O interface device 103 is mainly used to transmit data to the hybrid energy storage controller 104 to be tested, so as to realize data interaction between the real-time digital simulator 102 and the hybrid energy storage controller 104 to be tested, and to send the data generated by the real-time digital simulator 102 to the hybrid energy storage controller 104 to be tested.
  • the I/O interface device is used to realize real-time interaction between the physical device to be tested and the simulator, and specifically includes an analog output board and a power amplifier: used to send the voltage and current of the grid-connected side and the DC side of the hybrid energy storage converter; a digital output board: used to send the switch status of the grid-side and the DC side of the hybrid energy storage converter.
  • the hybrid energy storage controller to be tested 104 is used to generate a switch tripping and closing instruction and a trigger pulse signal based on the received data volume, and transmit the switch tripping and closing instruction and the trigger pulse signal to the I/O interface device 103.
  • the signal is sent to the real-time digital simulator 102.
  • the hybrid energy storage controller 104 to be tested is mainly used to generate instructions and signals according to the amount of data received, and return the generated instructions and signals to the real-time digital simulator 102 through the I/O interface device 103, so that the real-time digital simulator 102 returns the instructions and signals generated by the hybrid energy storage controller 104 to be tested to the simulation workstation 101.
  • the hybrid energy storage controller 104 to be tested generates switch tripping and closing instructions and trigger pulse signals based on the amount of data received, and sends the generated switch tripping and closing instructions and trigger pulse signals to the real-time digital simulator 102 through the I/O interface device 103.
  • the switch tripping and closing instructions include grid-side switch tripping and closing instructions and DC-side switch tripping and closing instructions.
  • the switch tripping and closing instructions are grid-side switch tripping and closing instructions of the hybrid energy storage converter and DC-side switch tripping and closing instructions of the hybrid energy storage converter.
  • the I/O interface device 103 also includes a digital input board: used to receive the hybrid energy storage converter grid side, DC side switch tripping and closing instructions and trigger pulse signals sent by the hybrid energy storage controller 104 to be tested.
  • the hybrid energy storage controller to be tested includes a sampling unit, a switch quantity control unit and a driving circuit;
  • the sampling unit is used to collect the grid-side voltage and current and the DC-side voltage and current sent by the I/O interface device.
  • the switch quantity control unit is used to generate the grid-side switch tripping and closing instructions and the DC-side switch tripping and closing instructions based on the grid-side switch state and the DC-side switch state.
  • the driving circuit is used to generate the trigger pulse signal.
  • the hybrid energy storage controller 104 to be tested is used to receive grid-side and DC-side electrical quantities, grid-side and DC-side switch states, and tripping and closing instructions as interactive signals of the switch quantity control unit, implement the modulation algorithm through the control board, and output trigger pulse signals from the IGBT and MOSFET drive circuits, thereby completing the strategy execution of the hybrid energy storage controller to be tested.
  • the modulation strategy of the hybrid energy storage controller 104 to be tested adopts the SVM modulation method
  • Table 1 is a switch state setting relationship table provided by the embodiment of the present disclosure, and the four switch states shown in Table 1 below, when the output level switches between -1 and 0, the N switch state and the U switch state are adopted, and when the output level switches between 1 and 0, the P switch state and the L switch state are adopted.
  • This selection can make S1, S4, S5 and S6 basically not perform switching action, and only when the output voltage polarity changes, a switching action occurs, that is, these Si IGBT devices will work under power frequency conditions, achieving the effect of power frequency switching of Si IGBT devices, so that the switching loss is all concentrated on the SiC device, and the overall efficiency of the hybrid energy storage controller is maximized.
  • the real-time digital simulator 102 is used to send the switch tripping and closing instructions and the trigger pulse signal to the simulation workstation 101, so that the simulation workstation 101 performs simulation based on the switch tripping and closing instructions and the trigger pulse signal.
  • the real-time digital simulator 102 receives the switch tripping and closing instructions and the trigger pulse signal sent by the hybrid energy storage controller 104 to be tested and then sends them to the simulation workstation 101, so that the simulation workstation 101 performs simulation based on the switch tripping and closing instructions and the trigger pulse signal.
  • the hybrid energy storage converter simulation test system 100 provided in the present disclosure further includes a digital oscilloscope, and the real-time digital simulator 102 and the hybrid energy storage controller 104 to be tested are respectively connected to the digital oscilloscope.
  • the digital oscilloscope is used to collect the electrical quantities of multiple measuring points in the real-time digital simulator 102, as well as the real-time waveforms of the voltage and current of the sampling unit and the control signal of the switch quantity control unit in the hybrid energy storage controller 104 to be tested.
  • the multiple measuring points include the AC side outlet of the hybrid energy storage inverter, the AC side outlet of the conventional energy storage inverter, the bus side of the boost transformer, one side of the grid-connected switch and the load side of the load switch.
  • the digital oscilloscope is mainly used to record the electrical quantities of 5 measuring points, the voltage and current of the sampling unit of the hybrid energy storage controller to be measured, and the real-time waveform of the control signal of the switch quantity control unit.
  • the positions of each measuring point are shown in Figure 2.
  • Measuring point 1 is set at the AC side outlet of the hybrid energy storage converter
  • measuring point 2 is set at the AC side outlet of the conventional energy storage converter
  • measuring point 3 is set at the bus side of the boost transformer
  • measuring point 4 is set at the 10kV I bus side of the grid-connected switch
  • measuring point 5 is set at the load side of the load switch.
  • the hybrid energy storage converter simulation test system provided by the embodiment of the present disclosure is equipped with a host computer simulation workstation, a lower computer real-time digital simulator, an IO interface device, a hybrid energy storage controller to be tested, and a digital recorder to form a simulation test system, and a modular modeling approach is used to complete the real-time digital simulation modeling foundation.
  • the simulation workstation has built a primary system of energy storage power stations and thermal power and new energy stations, and provides a topology simulation model of hybrid energy storage converters, which can be used to simulate megawatt-level conventional energy storage converters.
  • the system modeling and simulation of the converter and hybrid energy storage converter can realize the detection of the grid-connected performance of the hybrid multi-level converter based on SiC MOSFET and Si IGBT.
  • the present disclosure also provides a hybrid energy storage converter performance detection method based on dynamic simulation, which is applied to the hybrid energy storage converter simulation test system provided in the embodiment of the present disclosure.
  • the hybrid energy storage converter performance detection method includes:
  • the simulation workstation controls the closure of the grid-connected switches and the boost transformer switches in the energy storage substation and the external grid module, and the closure of the corresponding switches of the conventional energy storage converter in the hybrid energy storage converter test model, so as to conduct a grid-connected performance test of a megawatt-level conventional energy storage converter.
  • the grid-connected switches in the energy storage substation and the external grid module, the boost transformer switches in the energy storage substation and the external grid module, and the switch K1 corresponding to the conventional energy storage converter in the hybrid energy storage converter test model are closed for the grid-connected performance test of the megawatt-level conventional energy storage converter.
  • the simulation workstation controls the grid-connected switch and the boost transformer switch in the control energy storage substation and the external power grid module to close, and the switch corresponding to the hybrid energy storage converter in the hybrid energy storage converter test model to close, so as to perform a megawatt-level hybrid energy storage converter grid-connected performance test.
  • the grid-connected switches in the energy storage substation and the external grid module are closed, the step-up transformer switch is closed, and the switch K2 corresponding to the hybrid energy storage converter in the hybrid energy storage converter test model is closed, which is used for the grid-connected performance test of the megawatt-level hybrid energy storage converter.
  • the hybrid energy storage converter performance detection method provided by the present disclosure also includes:
  • the simulation workstation controls the closing of the boost transformer switch, the closing of the load switch in the control energy storage substation and the external power grid module, the closing of the switch corresponding to the conventional energy storage inverter, and the closing of the switch corresponding to the hybrid energy storage inverter, and sets the conventional energy storage inverter to operate in V/f mode and the hybrid energy storage inverter to be tested to operate in P/Q mode to form a power self-loop form of multiple types of energy storage inverters, so as to carry out island protection function tests of hybrid energy storage inverters and conventional energy storage inverters with multiple types of adjustable loads.
  • the boost transformer switch is closed, the load switch in the energy storage substation and the external grid module is closed, the switch K1 corresponding to the conventional energy storage inverter is closed, and the switch K2 corresponding to the hybrid energy storage inverter is closed.
  • the conventional energy storage inverter is set to operate in V/f mode, and the hybrid energy storage inverter to be tested is set to operate in P/Q mode, forming a power self-loop form of multiple types of energy storage inverters.
  • the island protection function test of the hybrid energy storage inverter and the conventional energy storage inverter with multiple types of adjustable loads can be carried out.
  • the simulation workstation controls the closure of the grid-connected switch, the closure of the boost transformer switch, the closure of the switch corresponding to the conventional energy storage converter, and the closure of the switch corresponding to the hybrid energy storage converter to perform interactive testing of grid connection of multiple types of energy storage converters.
  • close the grid-connected switch close the boost transformer switch, close the switch corresponding to the conventional energy storage converter, close the hybrid
  • the switch K2 corresponding to the energy storage converter is used for interactive testing of grid-connected multi-type energy storage converters, and can carry out circulating current testing of power electronic equipment and research on balance control strategies.
  • the hybrid energy storage converter performance detection method provided in the embodiment of the present disclosure can perform grid-connected performance test of megawatt-class energy storage converter, island protection function test of hybrid energy storage converter and conventional energy storage converter with multi-type adjustable load, and interaction impact test between energy storage converters by switching switches, with high integration and strong compatibility. It can meet the grid-connected performance detection requirements of various hybrid multi-level energy storage converters and their controllers on the market.
  • Figure 4 is a flow chart of a hybrid energy storage converter simulation test method provided by an embodiment of the present disclosure.
  • the hybrid energy storage converter simulation test method provided by an embodiment of the present disclosure is applied to the hybrid energy storage converter simulation test system provided by an embodiment of the present disclosure
  • the hybrid energy storage converter simulation test system includes a simulation workstation, a real-time digital simulator, an I/O interface device and a hybrid energy storage controller to be tested
  • the hybrid energy storage converter simulation test method includes:
  • the simulation workstation generates an operation control instruction in response to a user operation, and sends the operation control instruction to the real-time digital simulator;
  • the real-time digital simulator simulates the operating conditions of the simulation workstation or abnormal conditions of various faults in real time, completes operation processing according to the operation control instruction, generates corresponding data, and sends the data to the I/O interface device through an optical fiber; wherein the data includes grid-side voltage and current, DC-side voltage and current, grid-side switch state, and DC-side switch state;
  • the I/O interface device realizes data interaction between the real-time digital simulator and the hybrid energy storage controller to be tested, and sends the data volume generated by the real-time digital simulator to the hybrid energy storage controller to be tested;
  • the hybrid energy storage controller to be tested generates a switch tripping and closing instruction and a trigger pulse signal based on the received data volume, and sends the switch tripping and closing instruction and the trigger pulse signal to the real-time digital simulator through the I/O interface device; wherein the switch tripping and closing instruction includes a grid-side switch tripping and closing instruction and a DC-side switch tripping and closing instruction;
  • the real-time digital simulator sends the switch tripping and closing instructions and the trigger pulse signal to the simulation workstation, so that the simulation workstation performs simulation based on the switch tripping and closing instructions and the trigger pulse signal.
  • the simulation workstation includes an energy storage substation and an external power grid module, a hybrid energy storage converter test model, an energy storage battery pack model and a fault simulation module, and the hybrid energy storage converter simulation test method also includes:
  • the energy storage substation and external power grid module simulate the working status of the energy storage substation and the external equivalent power grid
  • the energy storage battery group model is connected in series and parallel to form a battery cluster which is connected to the DC side of the energy storage substation and the external power grid module;
  • the fault simulation module simulates a fault state to verify the control and protection function of the hybrid energy storage converter in the hybrid energy storage converter test model.
  • the energy storage substation and external grid module includes a primary system model of the 220kV side of the energy storage substation, an external grid model and a primary system model of the 10kV energy storage side;
  • the 220kV side primary system model also includes 220kV bus, 110kV bus, 10kV bus, circuit breaker, transformer and reactive power compensation equipment in the station;
  • the external power grid model also includes two 220kV transmission lines, a wind farm, a photovoltaic power station and a thermal power plant;
  • the 10kV energy storage side primary system model also includes a grid-connected switch, a step-up transformer switch, a load switch and a comprehensive load;
  • the hybrid energy storage converter test model includes at least one conventional energy storage converter and a hybrid energy storage converter model; wherein the simulation of the hybrid energy storage converter adopts a hybrid three-level ANPC topology.
  • the hybrid energy storage controller to be tested includes a sampling unit, a switch quantity control unit and a drive circuit
  • the hybrid energy storage converter simulation test method also includes:
  • the sampling unit collects the grid-side voltage and current and the DC-side voltage and current sent by the I/O interface device;
  • the switching quantity control unit generates the grid-side switch tripping and closing instructions and the DC-side switch tripping and closing instructions based on the grid-side switch state and the DC-side switch state;
  • the trigger pulse signal is generated by the driving circuit.
  • the hybrid energy storage converter simulation test system further comprises a digital oscilloscope
  • the real-time digital simulator and the hybrid energy storage controller to be tested are respectively connected to the digital oscilloscope
  • the hybrid energy storage converter simulation test method further comprises:
  • the digital recorder collects electrical quantities of multiple measuring points in the real-time digital simulator, as well as the real-time waveforms of the voltage and current of the sampling unit in the hybrid energy storage controller to be tested and the control signal of the switch quantity control unit; wherein the multiple measuring points include the AC side outlet of the hybrid energy storage inverter, the AC side outlet of the conventional energy storage inverter, the bus side of the boost transformer, one side of the grid-connected switch and the load side of the load switch.
  • FIG5 is a schematic diagram of the structure of an electronic device provided by an embodiment of the present disclosure.
  • the electronic device 500 includes a processor 510 , a memory 520 and a bus 530 .
  • the memory 520 stores machine-readable instructions executable by the processor 510.
  • the processor 510 communicates with the memory 520 through the bus 530.
  • the machine-readable instructions are executed by the processor 510, the steps of the hybrid energy storage inverter performance detection method in the above method embodiment can be executed.
  • the specific implementation method can be found in the method embodiment, which will not be repeated here.
  • the embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the hybrid energy storage converter performance in the above method embodiment can be executed.
  • the specific implementation of the steps of the energy detection method can be found in the method embodiment, which will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are merely schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some communication interfaces, and the indirect coupling or communication connection of devices or units can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a non-volatile computer-readable storage medium that can be executed by a processor.
  • the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.
  • the present invention provides a hybrid energy storage converter simulation test system and performance detection method.
  • the system includes a simulation workstation, a real-time digital simulator, an I/O interface device and a hybrid energy storage controller to be tested.
  • the simulation workstation runs a control indicator.
  • the command is sent to the real-time digital simulator; the real-time digital simulator simulates the operating conditions of the simulation workstation or abnormal conditions of various faults in real time; the I/O interface device realizes data interaction between the real-time digital simulator and the hybrid energy storage controller to be tested; the hybrid energy storage controller to be tested generates switch tripping and closing commands and trigger pulse signals; the real-time digital simulator sends the switch tripping and closing commands and trigger pulse signals to the simulation workstation, so that the simulation workstation performs simulation based on the switch tripping and closing commands and trigger pulse signals.
  • a semi-physical closed-loop simulation system and detection method with strong adaptability and good compatibility is provided for the grid-connected performance of the hybrid energy storage converter.
  • hybrid energy storage converter simulation test system and performance detection method disclosed in the present invention are reproducible and can be used in a variety of industrial applications.
  • the hybrid energy storage converter simulation test system and performance detection method disclosed in the present invention can be used in the field of simulation test technology.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种混合储能变流器仿真测试系统和性能检测方法,系统包括仿真工作站(101)、实时数字仿真器(102)、I/O接口装置(103)和待测混合储能控制器(104),仿真工作站(101)将运行控制指令发送给实时数字仿真器(102);实时数字仿真器(102)实时模拟仿真工作站(101)的运行工况或发生各类故障的异常工况;I/O接口装置(103)实现实时数字仿真器(102)与待测混合储能控制器(104)之间的数据交互;待测混合储能控制器(104)生成开关跳合闸指令以及触发脉冲信号;实时数字仿真器(102)将开关跳合闸指令以及触发脉冲信号发送给仿真工作站(101),以使仿真工作站(101)基于开关跳合闸指令以及触发脉冲信号进行仿真。这样,为混合储能变流器(104)的并网性能提供一个适应性强、兼容性好的半实物闭环仿真系统和检测方法。

Description

一种混合储能变流器仿真测试系统和性能检测方法
相关申请的交叉引用
本公开要求于2022年11月29日提交中国国家知识产权局的申请号为202211515596.X、名称为“一种混合储能变流器仿真测试系统和性能检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及仿真测试技术领域,尤其是涉及一种混合储能变流器仿真测试系统和性能检测方法。
背景技术
随着电力系统中大规模以风能、太阳能为代表的新能源接入电网和大量电力电子装备的应用,电源结构、电网形态、负荷特性、运行方式等都要发生深刻变化,增加系统调峰、调频难度,储能电站被视为提高系统频率稳定性的一种电网侧技术解决方案,在削峰填谷、快速调频方面具有独特优势,可为电力系统提供功率响应与惯量支撑。
储能变流器(PCS)是电力储能系统的核心部件,储能变流器的拓扑结构及控制策略对并网性能有很大影响,传统基于两电平变流器的方案已难以适配含有大规模储能的高比例新能源电力系统,大容量、混合式已成为储能系统配置的两大发展趋势与技术方向。
在大容量储能变流器拓扑方面,基于多电平(三电平及以上)变流器的分布式配置方案是实现中压大容量交流-直流电能变换的优选解决方案,近年来常用的硅基功率器件IGBT性能已很难进一步提升,以碳化硅MOSFET和硅器件混合应用的异质功率器件混合型多电平变换器,有利于节约成本、减小损耗、提高功率密度和整体效率,但是相关研究还处于起步阶段。
同时,大容量混合储能技术在国内尚缺乏建设和运行经验,尤其是缺乏技术验证手段。目前,对于电力电子器件的模型验证主要以比较成熟的PLECS、MATLAB/Simulink等软件进行仿真建模,能够从器件级分析元件电气特性、变换器拓扑、调制策略等,然而检测混合储能单元集成的大容量储能变流器仿真模型和动模试验平台尚无可参考,对于异质功率器件集成后控制策略是否适用于大电网缺乏行之有效的手段与方法。
发明内容
有鉴于此,本公开的目的在于提供一种混合储能变流器仿真测试系统和性能检测方法,为混合储能变流器的并网性能提供一个适应性强、兼容性好的半实物闭环仿真系统和检测方法,验证混合储能变流器的电气性能及控制策略,以适用于大规模储能电站的安全稳定运行。
第一方面,本公开实施例提供了一种混合储能变流器仿真测试系统,所述混合储能变 流器仿真测试系统包括仿真工作站、实时数字仿真器、I/O接口装置和待测混合储能控制器,其中,所述仿真工作站与所述实时数字仿真器之间通信连接,所述实时数字仿真器与所述I/O接口装置之间通过光纤连接,所述I/O接口装置与所述待测混合储能控制器之间通信连接;
所述仿真工作站,用于响应于用户操作,生成运行控制指令,并将所述运行控制指令发送给所述实时数字仿真器;
所述实时数字仿真器,用于实时模拟所述仿真工作站的运行工况或发生各类故障的异常工况,并根据所述运行控制指令完成运算处理,生成对应的数据量,并通过光纤将所述数据量发送给所述I/O接口装置;其中,所述数据量包括网侧电压电流、直流侧电压电流、网侧开关状态和直流侧开关状态;
所述I/O接口装置,用于实现所述实时数字仿真器与所述待测混合储能控制器之间的数据交互,将所述实时数字仿真器生成的所述数据量发送给所述待测混合储能控制器;
所述待测混合储能控制器,用于基于接收到的所述数据量生成开关跳合闸指令以及触发脉冲信号,并通过所述I/O接口装置将所述开关跳合闸指令以及所述触发脉冲信号发送给所述实时数字仿真器;其中,所述开关跳合闸指令包括网侧开关跳合闸指令和直流侧开关跳合闸指令;
所述实时数字仿真器,用于将所述开关跳合闸指令以及所述触发脉冲信号发送给所述仿真工作站,以使所述仿真工作站基于所述开关跳合闸指令以及所述触发脉冲信号进行仿真。
进一步的,所述仿真工作站包括储能变电站及外部电网模块、混合储能变流器测试模型、储能电池组模型和故障模拟模块;
所述储能变电站及外部电网模块,用于模拟储能变电站及外部等值电网的工作状态;
所述混合储能变流器测试模型,用于对混合储能变流器的仿真;
所述储能电池组模型,用于通过串并联方式组成电池簇接入所述储能变电站及外部电网模块中的直流侧;
所述故障模拟模块,用于模拟故障状态,以验证所述混合储能变流器测试模型中的混合储能变流器的控制保护功能。
进一步的,所述储能变电站及外部电网模块包括储能变电站220kV侧一次系统模型、外部电网模型和10kV储能侧一次系统模型;
所述220kV侧一次系统模型还包括220kV母线、110kV母线、10kV母线、断路器、变压器及站内无功补偿设备;
所述外部电网模型还包括2条220kV送出线路、风电场、光伏电站及火力发电厂;
所述10kV储能侧一次系统模型还包括并网开关、升压变开关、负荷开关及综合负荷;
所述混合储能变流器测试模型中包括至少一台常规储能变流器以及混合储能变流器模型;其中,所述混合储能变流器的仿真采用混合型三电平ANPC拓扑。
进一步的,所述待测混合储能控制器包括采样单元、开关量控制单元和驱动电路;
所述采样单元,用于采集所述I/O接口装置发送的所述网侧电压电流和所述直流侧电压电流;
所述开关量控制单元,用于基于所述网侧开关状态和所述直流侧开关状态生成所述网侧开关跳合闸指令和所述直流侧开关跳合闸指令;
所述驱动电路,用于生成所述触发脉冲信号。
进一步的,所述混合储能变流器仿真测试系统还包括数字录波仪,所述实时数字仿真器以及所述待测混合储能控制器分别与所述数字录波仪连接;
所述数字录波仪,用于采集所述实时数字仿真器中多个测点的电气量,以及所述待测混合储能控制器中的所述采样单元的电压电流和所述开关量控制单元的控制信号的实时波形;其中,所述多个测点包括所述混合储能变流器的交流侧出口处、所述常规储能变流器的交流侧出口处、所述升压变开关的母线侧,所述并网开关的一侧以及所述负荷开关的负荷侧。
第二方面,本公开实施例还提供了一种混合储能变流器仿真测试方法,所述混合储能变流器仿真测试方法应用于混合储能变流器仿真测试系统,所述混合储能变流器仿真测试系统包括仿真工作站、实时数字仿真器、I/O接口装置和待测混合储能控制器,所述混合储能变流器仿真测试方法包括:
由仿真工作站响应于用户操作,生成运行控制指令,并将所述运行控制指令发送给所述实时数字仿真器;
由所述实时数字仿真器实时模拟所述仿真工作站的运行工况或发生各类故障的异常工况,并根据所述运行控制指令完成运算处理,生成对应的数据量,并通过光纤将所述数据量发送给所述I/O接口装置;其中,所述数据量包括网侧电压电流、直流侧电压电流、网侧开关状态和直流侧开关状态;
由所述I/O接口装置实现所述实时数字仿真器与所述待测混合储能控制器之间的数据交互,将所述实时数字仿真器生成的所述数据量发送给所述待测混合储能控制器;
由所述待测混合储能控制器基于接收到的所述数据量生成开关跳合闸指令以及触发脉冲信号,并通过所述I/O接口装置将所述开关跳合闸指令以及所述触发脉冲信号发送给所述实时数字仿真器;其中,所述开关跳合闸指令包括网侧开关跳合闸指令和直流侧开关跳合闸指令;
由所述实时数字仿真器将所述开关跳合闸指令以及所述触发脉冲信号发送给所述仿真工作站,以使所述仿真工作站基于所述开关跳合闸指令以及所述触发脉冲信号进行仿真。
第三方面,本公开实施例还提供了一种基于动模仿真的混合储能变流器性能检测方法,所述混合储能变流器性能检测方法应用于混合储能变流器仿真测试系统,所述混合储能变流器性能检测方法包括:
仿真工作站控制储能变电站及外部电网模块中的并网开关闭合、升压变开关闭合,混合储能变流器测试模型中常规储能变流器对应的开关闭合,以进行兆瓦级常规储能变流器并网性能测试;
所述仿真工作站控制所述控制储能变电站及外部电网模块中的所述并网开关闭合、所述升压变开关闭合,所述混合储能变流器测试模型中混合储能变流器对应的开关闭合,以进行兆瓦级混合储能变流器并网性能测试。
进一步的,所述混合储能变流器性能检测方法还包括:
所述仿真工作站控制所述升压变开关闭合、所述控制储能变电站及外部电网模块中的负载开关闭合、所述常规储能变流器对应的开关闭合、所述混合储能变流器对应的开关闭合,并设置所述常规储能变流器以V/f运行方式,待测混合储能变流器以P/Q运行方式,以形成多类型储能变流器功率自环形式,以开展混合储能变流器与常规储能变流器带多类型可调负载的孤岛保护功能测试;
所述仿真工作站控制所述并网开关闭合、所述升压变开关闭合、所述常规储能变流器对应的开关闭合、所述混合储能变流器对应的开关闭合,以进行多类型储能变流器并网的交互测试。
第四方面,本公开实施例还提供一种电子设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行如上述的混合储能变流器仿真测试方法及基于动模仿真的混合储能变流器性能检测方法的步骤。
第五方面,本公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行如上述的混合储能变流器仿真测试方法及基于动模仿真的混合储能变流器性能检测方法的步骤。
本公开实施例提供一种混合储能变流器仿真测试系统和性能检测方法,通过配备上位机仿真工作站、下位机实时数字仿真器、IO接口装置、待测混合储能控制器和数字录波仪构成仿真测试系统,采用模块化建模思路完成实时数字仿真建模基础。并且仿真工作站中搭建了储能电站及火电、新能源场站一次系统,提供了混合储能变流器拓扑仿真模型,可对兆瓦级常规储能变流器、混合储能变流器进行系统建模仿真,可以实现对以SiC MOSFET 和Si IGBT混合型多电平换流器并网性能的检测。通过切换开关可进行兆瓦级储能变流器并网性能测试、混合储能变流器与常规储能变流器带多类型可调负载的孤岛保护功能测试、储能变流器间的交互影响测试,集成度高,兼容性强。可满足市场上各种混合型多电平储能变流器及其控制器的并网性能检测需求。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例所提供一种混合储能变流器仿真测试系统的结构示意图;
图2为本公开实施例所提供的一种储能变电站及外部电网模块的结构示意图;
图3为本公开实施例所提供的一种混合储能变流器测试模型的结构示意图;
图4为本公开实施例所提供的一种混合储能变流器仿真测试方法的流程图;
图5为本公开实施例所提供的一种电子设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的每个其他实施例,都属于本公开保护的范围。
首先,对本公开可适用的应用场景进行介绍。本公开可应用于仿真测试技术领域。
随着电力系统中大规模以风能、太阳能为代表的新能源接入电网和大量电力电子装备的应用,电源结构、电网形态、负荷特性、运行方式等都要发生深刻变化,增加系统调峰、调频难度,储能电站被视为提高系统频率稳定性的一种电网侧技术解决方案,在削峰填谷、快速调频方面具有独特优势,可为电力系统提供功率响应与惯量支撑。
储能变流器(PCS)是电力储能系统的核心部件,储能变流器的拓扑结构及控制策略对并网性能有很大影响,传统基于两电平变流器的方案已难以适配含有大规模储能的高比例新能源电力系统,大容量、混合式已成为储能系统配置的两大发展趋势与技术方向。
经研究发现,在大容量储能变流器拓扑方面,基于多电平(三电平及以上)变流器的分布式配置方案是实现中压大容量交流-直流电能变换的优选解决方案,近年来常用的硅基功率器件IGBT性能已很难进一步提升,以碳化硅MOSFET和硅器件混合应用的异质功率器件混合型多电平变换器,有利于节约成本、减小损耗、提高功率密度和整体效率,但是相关研究还处于起步阶段。
同时,大容量混合储能技术在国内尚缺乏建设和运行经验,尤其是缺乏技术验证手段。目前,对于电力电子器件的模型验证主要以比较成熟的PLECS、MATLAB/Simulink等软件进行仿真建模,能够从器件级分析元件电气特性、变换器拓扑、调制策略等,然而检测混合储能单元集成的大容量储能变流器仿真模型和动模试验平台尚无可参考,对于异质功率器件集成后控制策略是否适用于大电网缺乏行之有效的手段与方法。
基于此,本公开实施例提供了一种混合储能变流器仿真测试系统和性能检测方法,为混合储能变流器的并网性能提供一个适应性强、兼容性好的半实物闭环仿真系统和检测方法,验证混合储能变流器的电气性能及控制策略,以适用于大规模储能电站的安全稳定运行。
请参阅图1,图1为本公开实施例所提供一种混合储能变流器仿真测试系统的结构示意图。如图1所示,混合储能变流器仿真测试系统100包括仿真工作站101、实时数字仿真器102、I/O接口装置103和待测混合储能控制器104,其中,所述仿真工作站101与所述实时数字仿真器102之间通信连接,所述实时数字仿真器102与所述I/O接口装置103之间通过光纤连接,所述I/O接口装置103与所述待测混合储能控制器104之间通信连接。
所述仿真工作站101,用于响应于用户操作,生成运行控制指令,并将所述运行控制指令发送给所述实时数字仿真器102。
需要说明的是,运行控制指令指的是仿真工作站基于用户操作生成的指令。例如,运行控制指令可以是控制开关闭合指令等,对此本公开不做具体限定。
这里,仿真工作站101主要负责进行模型仿真,仿真工作站101响应于用户操作,生成运行控制指令,并将生成的运行控制指令发送给实时数字仿真器102。具体的,仿真工作站101为上位机,仿真工作站101是整个动模仿真系统的控制主机,搭载电力系统实时仿真软件,用于搭建储能变电站及其外部电网仿真模块、混合储能变流器模型,储能电池组模型和故障模拟模块,模型校验通过后形成编译代码自动加载到实时仿真器中,通过人机交互运行界面,能够实时访问并控制仿真进程。
具体的,所述仿真工作站101包括储能变电站及外部电网模块、混合储能变流器测试模型、储能电池组模型和故障模拟模块。
所述储能变电站及外部电网模块,用于模拟储能变电站及外部等值电网的工作状态。
所述混合储能变流器测试模型,用于对混合储能变流器的仿真。
请参阅图2,图2为本公开实施例所提供的一种储能变电站及外部电网模块的结构示意图。请参阅图2,储能变电站及外部电网模块包括储能变电站220kV侧一次系统模型、外部电网模型和10kV储能侧一次系统模型;所述220kV侧一次系统模型还包括220kV母线、110kV母线、10kV母线、断路器、变压器及站内无功补偿设备;所述外部电网模型还包括2条220kV送出线路、风电场、光伏电站及火力发电厂;所述10kV储能侧一次系统模型还包括并网开关、升压变开关、负荷开关及综合负荷。
进一步的,所述混合储能变流器测试模型包括至少一台常规储能变流器以及混合储能变流器模型。
其中,所述混合储能变流器的仿真采用混合型三电平ANPC拓扑。
这里,混合储能变流器测试模型中包括至少一台常规储能变流器以及混合储能变流器模型,混合储能控制器用于连接多台常规储能变流器,实现多台储能变流器的同步运行。请参阅图3,图3为本公开实施例所提供的一种混合储能变流器测试模型的结构示意图。如图3所示,图3仅给出混合储能变流器测试模型中包括一台常规储能变流器的示例,实际中,混合储能变流器测试模型中可以包括多台常规储能变流器。本公开实施例所提供的混合储能变流器中的仿真采用混合型三电平ANPC拓扑,各相中S2、S3开关为SiC MOSFET,S1、S4、S5、S6为Si IGBT,其SiC占比为1/3,通过控制器的调制策略,可以使得电路中仅有SiC MOS高频开关,能够提升变换效率,而Si IGBT工作于工频开关,用于均低频工作,减小开关损耗,降低成本。开关K1与常规储能变流器相连,开关K2与混合储能变流器相连,T1为变压器。
所述储能电池组模型,用于通过串并联方式组成电池簇接入所述储能变电站及外部电网模块中的直流侧。
这里,储能电池组模型主要负责模拟储能电池组,为储能变电站及外部电网模块提供电源,储能电池组模型通过串并联方式组成电池簇接入储能变电站及外部电网模块中的直流侧。具体的,储能电池组模型为磷酸铁锂电池组,通过串并联方式组成电池簇接入储能变流器直流侧,电池荷电状态SOC(State of Charge)采用二阶RC等效电路模型以及状态估计方法求解。
所述故障模拟模块,用于模拟故障状态,以验证所述混合储能变流器测试模型中的混合储能变流器的控制保护功能。
这里,故障模拟模块主要负责进行故障状态的模拟,以验证混合储能变流器测试模型中的混合储能变流器的控制保护功能。具体的,故障模拟模在仿真软件中,配置多个短路模型并设置故障点、触发时间、故障类型,配置无源电抗器模拟电网电压跌落,验证混合 储能变流器的控制保护功能。
这样,根据本公开提供的混合储能变流器仿真测试系统,混合储能变流器采用混合型三电平拓扑,分别使用SiC MOSFET开关及Si IGBT开关,可以对SiC MOSFET和Si IGBT混合型多电平换流器并网性能进行检测,并且还包括故障模拟模块,可以仿真出可能发生的各种故障,进而来验证混合储能变流器的控制保护功能。
所述实时数字仿真器102,用于实时模拟所述仿真工作站101的运行工况或发生各类故障的异常工况,并根据所述运行控制指令完成运算处理,生成对应的数据量,并通过光纤将所述数据量发送给所述I/O接口装置103。
其中,数据量包括网侧电压电流、直流侧电压电流、网侧开关状态和直流侧开关状态。具体的,数据量为混合储能变流器网侧电压电流、混合储能变流器直流侧电压电流、混合储能变流器网侧开关状态和混合储能变流器直流侧开关状态。
这里,实时数字仿真器102主要用于根据上位机发送的运行控制指令进行仿真,根据仿真工作站101生成的控制运行指令进行处理,以实时模拟仿真工作站101的运行工况或发生各类故障的异常工况,并根据仿真工作站101发送的运行控制指令完成运算处理,生成对应的网侧电压电流、直流侧电压电流、网侧开关状态和直流侧开关状态,并通过光纤将所述数据量发送给I/O接口装置103,以使I/O接口装置103将接收到的数据量发送给待测混合储能控制器104。具体的,实时数字仿真器102相当于下位机,实时数字仿真器102的仿真步长为毫秒级,用于电磁暂态仿真计算,能够实时模拟储能变电站、储能变流器的运行工况以及发生各类故障的异常工况,具备104、61850等通讯规约,根据上位机的运行控制指令完成运算处理,生成对应的模拟量、数字量,通过光纤与带有I/O模块的接入设备交互。
所述I/O接口装置103,用于实现所述实时数字仿真器102与所述待测混合储能控制器104之间的数据交互,将所述实时数字仿真器102生成的所述数据量发送给所述待测混合储能控制器104。
这里,I/O接口装置103主要用于向待测混合储能控制器104传输给数据,以实现实时数字仿真器102与待测混合储能控制器104之间的数据交互,将实时数字仿真器102生成的数据量发送给待测混合储能控制器104。具体的,I/O接口装置用于实现待测物理设备与仿真器的实时交互,具体包括模拟量输出板卡及功率放大器:用于发送混合储能变流器并网侧、直流侧的电压、电流;数字量输出板卡:用于发送混合储能变流器网侧、直流侧开关状态。
所述待测混合储能控制器104,用于基于接收到的所述数据量生成开关跳合闸指令以及触发脉冲信号,并通过所述I/O接口装置103将所述开关跳合闸指令以及所述触发脉冲信 号发送给所述实时数字仿真器102。
这里,待测混合储能控制器104主要用于根据接收到数据量进行指令和信号的生成,并将生成的指令和信号通过I/O接口装置103返回给实时数字仿真器102,以使实时数字仿真器102将待测混合储能控制器104生成的指令和信号再返回给仿真工作站101。待测混合储能控制器104基于接收到的数据量生成开关跳合闸指令以及触发脉冲信号,并通过I/O接口装置103将生成的开关跳合闸指令以及触发脉冲信号发送给实时数字仿真器102。其中,开关跳合闸指令包括网侧开关跳合闸指令和直流侧开关跳合闸指令。具体的,开关跳合闸指令为混合储能变流器网侧开关跳合闸指令和混合储能变流器直流侧开关跳合闸指令。
这里,I/O接口装置103中还包括一个数字量输入板卡:用于接收待测混合储能控制器104发送的混合储能变流器网侧、直流侧开关跳合闸指令、触发脉冲信号。
进一步的,所述待测混合储能控制器包括采样单元、开关量控制单元和驱动电路;
所述采样单元,用于采集所述I/O接口装置发送的所述网侧电压电流和所述直流侧电压电流。
所述开关量控制单元,用于基于所述网侧开关状态和所述直流侧开关状态生成所述网侧开关跳合闸指令和所述直流侧开关跳合闸指令。
所述驱动电路,用于生成所述触发脉冲信号。
具体的,待测混合储能控制器104用于接收网侧及直流侧电气量,网侧及直流侧开关状态、跳合闸指令作为开关量控制单元交互信号,通过控制板实现调制算法,从IGBT、MOSFET驱动电路输出触发脉冲信号,从而完成待测混合储能控制器的策略执行。
这里,根据本公开提供的实施例,待测混合储能控制器104的调制策略采用SVM调制法,请参阅表1,表1为本公开实施例提供的开关状态设定关系表,如下表1所示的四种开关状态,当输出电平在-1与0之间切换时,采用N开关状态与U开关状态,当输出电平在1与0之间切换时,则采用P开关状态与L开关状态。这样选择可以使得S1、S4、S5以及S6基本不进行开关动作,只有在输出电压极性改变时才发生一次开关动作,即这些Si IGBT器件将工作在工频条件下,达到了Si IGBT器件工频开关的效果,使得开关损耗全部集中于SiC器件上,实现了混合储能控制器整体效率的最大化。
表1开关状态设定关系表
所述实时数字仿真器102,用于将所述开关跳合闸指令以及所述触发脉冲信号发送给所述仿真工作站101,以使所述仿真工作站101基于所述开关跳合闸指令以及所述触发脉冲信号进行仿真。
这里,实时数字仿真器102在接收到待测混合储能控制器104发送的开关跳合闸指令以及触发脉冲信号再发送给仿真工作站101,以使仿真工作站101基于开关跳合闸指令以及触发脉冲信号进行仿真。
作为一种可选的实施例,本公开提供的混合储能变流器仿真测试系统100还包括数字录波仪,所述实时数字仿真器102以及所述待测混合储能控制器104分别与所述数字录波仪连接。
所述数字录波仪,用于采集所述实时数字仿真器102中多个测点的电气量,以及所述待测混合储能控制器104中的所述采样单元的电压电流和所述开关量控制单元的控制信号的实时波形。
其中,所述多个测点包括所述混合储能变流器的交流侧出口处、所述常规储能变流器的交流侧出口处、所述升压变开关的母线侧,所述并网开关的一侧以及所述负荷开关的负荷侧。
具体的,数字录波仪主要用于记录5个测点的电气量、待测混合储能控制器采样单元的电压电流以及开关量控制单元的控制信号的实时波形。各测点位置如图2所示,测点1设置在混合储能变流器交流侧出口处,测点2设置在常规储能变流器交流侧出口处,测点3设置在升压变开关的母线侧,测点4设置在并网开关的10kV I母侧,测点5设置在负荷开关的负荷侧。
本公开实施例提供的混合储能变流器仿真测试系统,通过配备上位机仿真工作站、下位机实时数字仿真器、IO接口装置、待测混合储能控制器和数字录波仪构成仿真测试系统,采用模块化建模思路完成实时数字仿真建模基础。并且仿真工作站中搭建了储能电站及火电、新能源场站一次系统,提供了混合储能变流器拓扑仿真模型,可对兆瓦级常规储能变 流器、混合储能变流器进行系统建模仿真,可以实现对以SiC MOSFET和Si IGBT混合型多电平换流器并网性能的检测。
本公开还提供的一种基于动模仿真的混合储能变流器性能检测方法,应用于本公开实施例提供的混合储能变流器仿真测试系统,所述混合储能变流器性能检测方法包括:
仿真工作站控制储能变电站及外部电网模块中的并网开关闭合、升压变开关闭合,混合储能变流器测试模型中常规储能变流器对应的开关闭合,以进行兆瓦级常规储能变流器并网性能测试。
这里,闭合储能变电站及外部电网模块中的并网开关、闭合储能变电站及外部电网模块中的升压变开关、闭合混合储能变流器测试模型中常规储能变流器对应的开关K1,用于兆瓦级常规储能变流器并网性能测试。
所述仿真工作站控制所述控制储能变电站及外部电网模块中的所述并网开关闭合、所述升压变开关闭合,所述混合储能变流器测试模型中混合储能变流器对应的开关闭合,以进行兆瓦级混合储能变流器并网性能测试。
这里,闭合控制储能变电站及外部电网模块中的并网开关、闭合升压变开关、闭合混合储能变流器测试模型中混合储能变流器对应的开关K2闭合,用于兆瓦级混合储能变流器并网性能测试。
通过以上2种方式,可以开展对大容量常规储能变流器、混合型储能变流器的电压、频率适应性测试、动态功率测试、高低电压穿越测试及保护功能测试。
进一步的,本公开提供的混合储能变流器性能检测方法还包括:
所述仿真工作站控制所述升压变开关闭合、所述控制储能变电站及外部电网模块中的负载开关闭合、所述常规储能变流器对应的开关闭合、所述混合储能变流器对应的开关闭合,并设置所述常规储能变流器以V/f运行方式,待测混合储能变流器以P/Q运行方式,以形成多类型储能变流器功率自环形式,以开展混合储能变流器与常规储能变流器带多类型可调负载的孤岛保护功能测试。
这里,闭合升压变开关、闭合控制储能变电站及外部电网模块中的负载开关、闭合常规储能变流器对应的开关K1、闭合混合储能变流器对应的开关K2,设置常规储能变流器以V/f运行方式,待测混合储能变流器以P/Q运行方式,形成多类型储能变流器功率自环形式,可以开展混合储能变流器与常规储能变流器带多类型可调负载的孤岛保护功能测试。
所述仿真工作站控制所述并网开关闭合、所述升压变开关闭合、所述常规储能变流器对应的开关闭合、所述混合储能变流器对应的开关闭合,以进行多类型储能变流器并网的交互测试。
这里,闭合并网开关、闭合升压变开关、闭合常规储能变流器对应的开关、闭合混合 储能变流器对应的开关K2,用于多类型储能变流器并网的交互测试,可以开展电力电子设备环流测试、平衡控制策略研究。
本公开实施例所提供的混合储能变流器性能检测方法,通过切换开关可进行兆瓦级储能变流器并网性能测试、混合储能变流器与常规储能变流器带多类型可调负载的孤岛保护功能测试、储能变流器间的交互影响测试,集成度高,兼容性强。可满足市场上各种混合型多电平储能变流器及其控制器的并网性能检测需求。
请参阅图4,图4为本公开实施例所提供的一种混合储能变流器仿真测试方法的流程图。如图4所示,本公开实施例提供的混合储能变流器仿真测试方法应用于本公开实施例提供的混合储能变流器仿真测试系统,所述混合储能变流器仿真测试系统包括仿真工作站、实时数字仿真器、I/O接口装置和待测混合储能控制器,所述混合储能变流器仿真测试方法包括:
S401,由仿真工作站响应于用户操作,生成运行控制指令,并将所述运行控制指令发送给所述实时数字仿真器;
S402,由所述实时数字仿真器实时模拟所述仿真工作站的运行工况或发生各类故障的异常工况,并根据所述运行控制指令完成运算处理,生成对应的数据量,并通过光纤将所述数据量发送给所述I/O接口装置;其中,所述数据量包括网侧电压电流、直流侧电压电流、网侧开关状态和直流侧开关状态;
S403,由所述I/O接口装置实现所述实时数字仿真器与所述待测混合储能控制器之间的数据交互,将所述实时数字仿真器生成的所述数据量发送给所述待测混合储能控制器;
S404,由所述待测混合储能控制器基于接收到的所述数据量生成开关跳合闸指令以及触发脉冲信号,并通过所述I/O接口装置将所述开关跳合闸指令以及所述触发脉冲信号发送给所述实时数字仿真器;其中,所述开关跳合闸指令包括网侧开关跳合闸指令和直流侧开关跳合闸指令;
S405,由所述实时数字仿真器将所述开关跳合闸指令以及所述触发脉冲信号发送给所述仿真工作站,以使所述仿真工作站基于所述开关跳合闸指令以及所述触发脉冲信号进行仿真。
进一步的,所述仿真工作站包括储能变电站及外部电网模块、混合储能变流器测试模型、储能电池组模型和故障模拟模块,所述混合储能变流器仿真测试方法还包括:
由所述储能变电站及外部电网模块模拟储能变电站及外部等值电网的工作状态;
由所述混合储能变流器测试模型对混合储能变流器的仿真;
由所述储能电池组模型通过串并联方式组成电池簇接入所述储能变电站及外部电网模块中的直流侧;
由所述故障模拟模块模拟故障状态,以验证所述混合储能变流器测试模型中的混合储能变流器的控制保护功能。
进一步的,所述储能变电站及外部电网模块包括储能变电站220kV侧一次系统模型、外部电网模型和10kV储能侧一次系统模型;
所述220kV侧一次系统模型还包括220kV母线、110kV母线、10kV母线、断路器、变压器及站内无功补偿设备;
所述外部电网模型还包括2条220kV送出线路、风电场、光伏电站及火力发电厂;
所述10kV储能侧一次系统模型还包括并网开关、升压变开关、负荷开关及综合负荷;
所述混合储能变流器测试模型中包括至少一台常规储能变流器以及混合储能变流器模型;其中,所述混合储能变流器的仿真采用混合型三电平ANPC拓扑。
进一步的,所述待测混合储能控制器包括采样单元、开关量控制单元和驱动电路,所述混合储能变流器仿真测试方法还包括:
由所述采样单元采集所述I/O接口装置发送的所述网侧电压电流和所述直流侧电压电流;
由所述开关量控制单元基于所述网侧开关状态和所述直流侧开关状态生成所述网侧开关跳合闸指令和所述直流侧开关跳合闸指令;
由所述驱动电路生成所述触发脉冲信号。
进一步的,所述混合储能变流器仿真测试系统还包括数字录波仪,所述实时数字仿真器以及所述待测混合储能控制器分别与所述数字录波仪连接,所述混合储能变流器仿真测试方法还包括:
由所述数字录波仪采集所述实时数字仿真器中多个测点的电气量,以及所述待测混合储能控制器中的所述采样单元的电压电流和所述开关量控制单元的控制信号的实时波形;其中,所述多个测点包括所述混合储能变流器的交流侧出口处、所述常规储能变流器的交流侧出口处、所述升压变开关的母线侧,所述并网开关的一侧以及所述负荷开关的负荷侧。
请参阅图5,图5为本公开实施例所提供的一种电子设备的结构示意图。如图5中所示,所述电子设备500包括处理器510、存储器520和总线530。
所述存储器520存储有所述处理器510可执行的机器可读指令,当电子设备500运行时,所述处理器510与所述存储器520之间通过总线530通信,所述机器可读指令被所述处理器510执行时,可以执行如上述方法实施例中的混合储能变流器性能检测方法的步骤,具体实现方式可参见方法实施例,在此不再赘述。
本公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时可以执行如上述方法实施例中的混合储能变流器性 能检测方法的步骤,具体实现方式可参见方法实施例,在此不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上所述实施例,仅为本公开的具体实施方式,用以说明本公开的技术方案,而非对其限制,本公开的保护范围并不局限于此,尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本公开实施例技术方案的精神和范围,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
工业实用性
本公开提供了一种混合储能变流器仿真测试系统和性能检测方法,所述系统包括仿真工作站、实时数字仿真器、I/O接口装置和待测混合储能控制器,仿真工作站将运行控制指 令发送给实时数字仿真器;实时数字仿真器实时模拟所述仿真工作站的运行工况或发生各类故障的异常工况;I/O接口装置实现实时数字仿真器与待测混合储能控制器之间的数据交互;待测混合储能控制器生成开关跳合闸指令以及触发脉冲信号;实时数字仿真器将开关跳合闸指令以及触发脉冲信号发送给仿真工作站,以使仿真工作站基于开关跳合闸指令以及触发脉冲信号进行仿真。这样,为混合储能变流器的并网性能提供一个适应性强、兼容性好的半实物闭环仿真系统和检测方法。
此外,可以理解的是,本公开的混合储能变流器仿真测试系统和性能检测方法是可以重现的,并且可以用在多种工业应用中。例如,本公开的混合储能变流器仿真测试系统和性能检测方法可以用于仿真测试技术领域。

Claims (10)

  1. 一种混合储能变流器仿真测试系统,其特征在于,所述混合储能变流器仿真测试系统包括仿真工作站、实时数字仿真器、I/O接口装置和待测混合储能控制器,其中,所述仿真工作站与所述实时数字仿真器之间通信连接,所述实时数字仿真器与所述I/O接口装置之间通过光纤连接,所述I/O接口装置与所述待测混合储能控制器之间通信连接;
    所述仿真工作站,用于响应于用户操作,生成运行控制指令,并将所述运行控制指令发送给所述实时数字仿真器;
    所述实时数字仿真器,用于实时模拟所述仿真工作站的运行工况或发生各类故障的异常工况,并根据所述运行控制指令完成运算处理,生成对应的数据量,并通过光纤将所述数据量发送给所述I/O接口装置;其中,所述数据量包括网侧电压电流、直流侧电压电流、网侧开关状态和直流侧开关状态;
    所述I/O接口装置,用于实现所述实时数字仿真器与所述待测混合储能控制器之间的数据交互,将所述实时数字仿真器生成的所述数据量发送给所述待测混合储能控制器;
    所述待测混合储能控制器,用于基于接收到的所述数据量生成开关跳合闸指令以及触发脉冲信号,并通过所述I/O接口装置将所述开关跳合闸指令以及所述触发脉冲信号发送给所述实时数字仿真器;其中,所述开关跳合闸指令包括网侧开关跳合闸指令和直流侧开关跳合闸指令;
    所述实时数字仿真器,用于将所述开关跳合闸指令以及所述触发脉冲信号发送给所述仿真工作站,以使所述仿真工作站基于所述开关跳合闸指令以及所述触发脉冲信号进行仿真。
  2. 根据权利要求1所述的混合储能变流器仿真测试系统,其特征在于,所述仿真工作站包括储能变电站及外部电网模块、混合储能变流器测试模型、储能电池组模型和故障模拟模块;
    所述储能变电站及外部电网模块,用于模拟储能变电站及外部等值电网的工作状态;
    所述混合储能变流器测试模型,用于对混合储能变流器的仿真;
    所述储能电池组模型,用于通过串并联方式组成电池簇接入所述储能变电站及外部电网模块中的直流侧;
    所述故障模拟模块,用于模拟故障状态,以验证所述混合储能变流器测试模型中的混合储能变流器的控制保护功能。
  3. 根据权利要求2所述的混合储能变流器仿真测试系统,其特征在于,所述储能变电站及外部电网模块包括储能变电站220kV侧一次系统模型、外部电网模型和10kV储能侧 一次系统模型;
    所述220kV侧一次系统模型还包括220kV母线、110kV母线、10kV母线、断路器、变压器及站内无功补偿设备;
    所述外部电网模型还包括2条220kV送出线路、风电场、光伏电站及火力发电厂;
    所述10kV储能侧一次系统模型还包括并网开关、升压变开关、负荷开关及综合负荷;
    所述混合储能变流器测试模型中包括至少一台常规储能变流器以及混合储能变流器模型;其中,所述混合储能变流器的仿真采用混合型三电平ANPC拓扑。
  4. 根据权利要求3所述的混合储能变流器仿真测试系统,其特征在于,所述待测混合储能控制器包括采样单元、开关量控制单元和驱动电路;
    所述采样单元,用于采集所述I/O接口装置发送的所述网侧电压电流和所述直流侧电压电流;
    所述开关量控制单元,用于基于所述网侧开关状态和所述直流侧开关状态生成所述网侧开关跳合闸指令和所述直流侧开关跳合闸指令;
    所述驱动电路,用于生成所述触发脉冲信号。
  5. 根据权利要求4所述的混合储能变流器仿真测试系统,其特征在于,所述混合储能变流器仿真测试系统还包括数字录波仪,所述实时数字仿真器以及所述待测混合储能控制器分别与所述数字录波仪连接;
    所述数字录波仪,用于采集所述实时数字仿真器中多个测点的电气量,以及所述待测混合储能控制器中的所述采样单元的电压电流和所述开关量控制单元的控制信号的实时波形;其中,所述多个测点包括所述混合储能变流器的交流侧出口处、所述常规储能变流器的交流侧出口处、所述升压变开关的母线侧,所述并网开关的一侧以及所述负荷开关的负荷侧。
  6. 一种混合储能变流器仿真测试方法,其特征在于,所述混合储能变流器仿真测试方法应用于如权利要求1-5的任一项所述的混合储能变流器仿真测试系统,所述混合储能变流器仿真测试系统包括仿真工作站、实时数字仿真器、I/O接口装置和待测混合储能控制器,所述混合储能变流器仿真测试方法包括:
    由仿真工作站响应于用户操作,生成运行控制指令,并将所述运行控制指令发送给所述实时数字仿真器;
    由所述实时数字仿真器实时模拟所述仿真工作站的运行工况或发生各类故障的异常工况,并根据所述运行控制指令完成运算处理,生成对应的数据量,并通过光纤将所述数据量发送给所述I/O接口装置;其中,所述数据量包括网侧电压电流、直流侧电压电流、网侧开关状态和直流侧开关状态;
    由所述I/O接口装置实现所述实时数字仿真器与所述待测混合储能控制器之间的数据交互,将所述实时数字仿真器生成的所述数据量发送给所述待测混合储能控制器;
    由所述待测混合储能控制器基于接收到的所述数据量生成开关跳合闸指令以及触发脉冲信号,并通过所述I/O接口装置将所述开关跳合闸指令以及所述触发脉冲信号发送给所述实时数字仿真器;其中,所述开关跳合闸指令包括网侧开关跳合闸指令和直流侧开关跳合闸指令;
    由所述实时数字仿真器将所述开关跳合闸指令以及所述触发脉冲信号发送给所述仿真工作站,以使所述仿真工作站基于所述开关跳合闸指令以及所述触发脉冲信号进行仿真。
  7. 一种基于动模仿真的混合储能变流器性能检测方法,其特征在于,所述混合储能变流器性能检测方法应用于如权利要求1-5的任一项所述的混合储能变流器仿真测试系统,所述混合储能变流器性能检测方法包括:
    仿真工作站控制储能变电站及外部电网模块中的并网开关闭合、升压变开关闭合,混合储能变流器测试模型中常规储能变流器对应的开关闭合,以进行兆瓦级常规储能变流器并网性能测试;
    所述仿真工作站控制所述控制储能变电站及外部电网模块中的所述并网开关闭合、所述升压变开关闭合,所述混合储能变流器测试模型中混合储能变流器对应的开关闭合,以进行兆瓦级混合储能变流器并网性能测试。
  8. 根据权利要求7所述的混合储能变流器性能检测方法,其特征在于,所述混合储能变流器性能检测方法还包括:
    所述仿真工作站控制所述升压变开关闭合、所述控制储能变电站及外部电网模块中的负载开关闭合、所述常规储能变流器对应的开关闭合、所述混合储能变流器对应的开关闭合,并设置所述常规储能变流器以V/f运行方式,待测混合储能变流器以P/Q运行方式,以形成多类型储能变流器功率自环形式,以开展混合储能变流器与常规储能变流器带多类型可调负载的孤岛保护功能测试;
    所述仿真工作站控制所述并网开关闭合、所述升压变开关闭合、所述常规储能变流器对应的开关闭合、所述混合储能变流器对应的开关闭合,以进行多类型储能变流器并网的交互测试。
  9. 一种电子设备,其特征在于,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过所述总线进行通信,所述机器可读指令被所述处理器运行时执行如权利要求6所述的混合储能变流器仿真测试方法的步骤及7至8任一所述的基于动模仿真的混合储能变流器性能检测方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行如权利要求6所述的混合储能变流器仿真测试方法的步骤及7至8任一所述的基于动模仿真的混合储能变流器性能检测方法的步骤。
PCT/CN2023/135134 2022-11-29 2023-11-29 一种混合储能变流器仿真测试系统和性能检测方法 WO2024114688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211515596.X 2022-11-29
CN202211515596.XA CN115792450A (zh) 2022-11-29 2022-11-29 一种混合储能变流器仿真测试系统和性能检测方法

Publications (1)

Publication Number Publication Date
WO2024114688A1 true WO2024114688A1 (zh) 2024-06-06

Family

ID=85443365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/135134 WO2024114688A1 (zh) 2022-11-29 2023-11-29 一种混合储能变流器仿真测试系统和性能检测方法

Country Status (2)

Country Link
CN (1) CN115792450A (zh)
WO (1) WO2024114688A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115792450A (zh) * 2022-11-29 2023-03-14 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种混合储能变流器仿真测试系统和性能检测方法
CN116470558B (zh) * 2023-05-18 2024-02-06 中国华能集团清洁能源技术研究院有限公司 储能系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040104442A (ko) * 2004-11-22 2004-12-10 대광전기공업(주) 전력계통 모의시험 시스템 및 그 방법
CN102419405A (zh) * 2011-11-16 2012-04-18 南方电网科学研究院有限责任公司 对兆瓦级储能站控制保护装置进行闭环试验的系统及方法
US20140129195A1 (en) * 2011-06-24 2014-05-08 State Grid Corporation Of China Real time dynamic physics simulation device of flexible dc transmission system
CN205721145U (zh) * 2016-03-07 2016-11-23 国网江西省电力科学研究院 一种双馈风力发电系统的动态实时仿真测试模型装置
WO2018000733A1 (zh) * 2016-06-30 2018-01-04 华北电力科学研究院有限责任公司 双馈风机次同步谐振硬件在环测试系统及方法
CN109375526A (zh) * 2018-11-09 2019-02-22 中国科学院电工研究所 一种数模混合仿真测试平台
CN111308913A (zh) * 2020-03-18 2020-06-19 国网湖南省电力有限公司 一种大容量电池储能电站半实物仿真建模方法
CN111965461A (zh) * 2020-08-24 2020-11-20 华能山东发电有限公司烟台发电厂 多功能模拟断路器
CN115034405A (zh) * 2022-05-01 2022-09-09 国网辽宁省电力有限公司电力科学研究院 基于rtds的新能源厂站t接线路保护检测平台及方法
CN115792450A (zh) * 2022-11-29 2023-03-14 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种混合储能变流器仿真测试系统和性能检测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040104442A (ko) * 2004-11-22 2004-12-10 대광전기공업(주) 전력계통 모의시험 시스템 및 그 방법
US20140129195A1 (en) * 2011-06-24 2014-05-08 State Grid Corporation Of China Real time dynamic physics simulation device of flexible dc transmission system
CN102419405A (zh) * 2011-11-16 2012-04-18 南方电网科学研究院有限责任公司 对兆瓦级储能站控制保护装置进行闭环试验的系统及方法
CN205721145U (zh) * 2016-03-07 2016-11-23 国网江西省电力科学研究院 一种双馈风力发电系统的动态实时仿真测试模型装置
WO2018000733A1 (zh) * 2016-06-30 2018-01-04 华北电力科学研究院有限责任公司 双馈风机次同步谐振硬件在环测试系统及方法
CN109375526A (zh) * 2018-11-09 2019-02-22 中国科学院电工研究所 一种数模混合仿真测试平台
CN111308913A (zh) * 2020-03-18 2020-06-19 国网湖南省电力有限公司 一种大容量电池储能电站半实物仿真建模方法
CN111965461A (zh) * 2020-08-24 2020-11-20 华能山东发电有限公司烟台发电厂 多功能模拟断路器
CN115034405A (zh) * 2022-05-01 2022-09-09 国网辽宁省电力有限公司电力科学研究院 基于rtds的新能源厂站t接线路保护检测平台及方法
CN115792450A (zh) * 2022-11-29 2023-03-14 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种混合储能变流器仿真测试系统和性能检测方法

Also Published As

Publication number Publication date
CN115792450A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2024114688A1 (zh) 一种混合储能变流器仿真测试系统和性能检测方法
WO2018014450A1 (zh) 基于rt-lab的真实微电网运行动态仿真测试平台
CN102621501B (zh) 一种大功率光伏逆变器额定功率下的温升和效率测试系统及方法
CN103605014A (zh) 一种用于大型储能变流器的测试平台
CN108318757A (zh) 基于半实物仿真的储能系统控制策略测试优化平台
CN103852663A (zh) 一种能量回馈型分布式光伏电源逆变器综合测试系统
CN107037733B (zh) 风电场储能硬件在环测试调整系统及方法
CN101064479A (zh) 基于叠加原理的大功率测试用可编程谐波电压源
CN102654565A (zh) 一种电池模拟方法及模拟器
CN104914734A (zh) 一种混合直流闭环试验系统及实现方法
CN111221266A (zh) 一种适用于微电网黑启动的仿真测试系统和测试方法
CN107947237A (zh) 一种多类型逆变器孤岛微网稳定性分析方法
CN204424920U (zh) 基于lcc与mmc并联的混合直流系统拓扑结构及其实时仿真设备
CN112783002A (zh) 一种直流配电网数模混合仿真方法和系统
CN204790351U (zh) 一种混合直流的闭环试验装置
CN115826562A (zh) 变流器硬件性能在环测试系统及其测试方法
CN115270504A (zh) 一种有源配电网功率闭环型动模仿真系统及其应用方法
CN114594320A (zh) 一种储能电站的并网性能测试平台及测试方法
Wang et al. Research on medium voltage battery energy storage system based on RT-LAB
CN103312183B (zh) 用于相控整流电路中电抗器性能测试的电源及其测试方法
CN105760636A (zh) 一种发电系统实时仿真系统及实时仿真方法
CN102419405A (zh) 对兆瓦级储能站控制保护装置进行闭环试验的系统及方法
Lu et al. Generalized State Space Average-value Model of MAB Based Power Electrical Transformer
Yang et al. Research on Simulation Modeling and experimental technology of large capacity distributed energy storage
CN111812503B (zh) 一种适用于柔性直流换流阀的测试方法及测试系统