WO2024114414A1 - 一种v2x事件的推送方法及装置 - Google Patents

一种v2x事件的推送方法及装置 Download PDF

Info

Publication number
WO2024114414A1
WO2024114414A1 PCT/CN2023/132334 CN2023132334W WO2024114414A1 WO 2024114414 A1 WO2024114414 A1 WO 2024114414A1 CN 2023132334 W CN2023132334 W CN 2023132334W WO 2024114414 A1 WO2024114414 A1 WO 2024114414A1
Authority
WO
WIPO (PCT)
Prior art keywords
event
push
electronic fence
type
vehicle
Prior art date
Application number
PCT/CN2023/132334
Other languages
English (en)
French (fr)
Inventor
王伟
田园
张尉
Original Assignee
中移(上海)信息通信科技有限公司
中移智行网络科技有限公司
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中移(上海)信息通信科技有限公司, 中移智行网络科技有限公司, 中国移动通信集团有限公司 filed Critical 中移(上海)信息通信科技有限公司
Publication of WO2024114414A1 publication Critical patent/WO2024114414A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/55Push-based network services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of intelligent transportation technology, and more particularly to a method and device for pushing a V2X event.
  • V2X wireless communication technology gathers information such as people, vehicles, roads, maps, and environments in the cloud through the network, forming a beyond-line-of-sight, multi-dimensional panoramic perception capability, providing the best decision-making and planning information for the global and local systems.
  • V2X event broadcasting the existing solution is usually: V2X event information will be sent to the road side unit (RSU) through the cellular vehicle-to-everything (C-V2X) cloud control platform based on the cellular network, and then broadcast by the RSU to nearby connected vehicles, and the vehicle side will prompt the V2X event information.
  • RSU road side unit
  • C-V2X vehicle-to-everything
  • the C-V2X cloud control platform selects RSUs according to V2X events, it can generally only search for RSUs within a certain range of the V2X event occurrence point, and cannot accurately locate the road section affected by the V2X event and the RSUs that can cover the road section.
  • RSUs on sections that are not affected by the V2X event will also receive messages sent by the cloud control platform.
  • V2X event information such as roadside information (Road Side Information (RSI) will be broadcast to nearby connected vehicles.
  • RSI Road Side Information
  • the RSI message cannot accurately fill the impact range of the V2X event; or the vehicle terminal does not have relevant information on the electronic map and cannot match the impact range of the RSI message, resulting in the vehicle terminal being unable to effectively filter the RSI message according to the vehicle's driving trajectory.
  • a large number of irrelevant RSI message prompts will affect the driving experience and even cause serious interference to autonomous driving.
  • the present application provides a method and device for pushing V2X events to solve the technical problem in the related art that V2X events cannot be accurately pushed to vehicles on the road section they affect, causing the vehicles to receive irrelevant information, affecting the driving experience, and even causing serious interference to autonomous driving.
  • an embodiment of the present application provides a method for pushing a V2X event, the method being applied on a C-V2X cloud control platform, the method comprising:
  • each electronic fence corresponds to a V2X event
  • the method further includes:
  • An electronic fence is constructed for each road section to be pushed in at least one road section to be pushed of the V2X event.
  • the electronic fence has a life cycle, and the life cycle of the electronic fence is The life cycle of the V2X events corresponding to the electronic fence is the same;
  • the life cycle includes at least one of the following:
  • the obtaining of the vehicle's location information includes:
  • the vehicle's location information is obtained through a vehicle terminal gateway deployed in the edge cloud platform; wherein the edge cloud platform is connected to the C-V2X cloud control platform and the vehicle terminal respectively, so as to establish a direct link between the C-V2X cloud control platform and the vehicle terminal.
  • the method before selecting the event push rule corresponding to the V2X event from among the preset event push rules, the method further includes:
  • the road network relationship includes the adjacency relationship information between each road section and other road sections in the target area.
  • the method further comprises:
  • the road network relationship is stored in a road network relationship database, wherein the road network relationship database is compatible with different types of databases and can store road network relationships under different types of geographic coordinate systems.
  • the preset event push rule includes at least one of the following:
  • the preset event push rule is: executing the first push mode and the second push mode;
  • the preset event push rule is: executing the first push mode
  • the preset event push rule is: executing the first push mode, the second push mode, and the third push mode;
  • the preset event push rule is: executing the second push mode and the fourth push mode;
  • the preset event push rule is: executing the second push mode
  • the preset event push rule is: Execute the first push mode and the third push mode;
  • the preset event push rule is: executing the third push mode and the fifth push mode;
  • the first push mode is: pushing the V2X event to an upstream section of the event occurrence point;
  • the second push mode is: the upstream section of the upstream diversion intersection of the event occurrence point pushes the V2X event;
  • the third push mode is: pushing the V2X event to a downstream section of the event occurrence point;
  • the fourth push mode is: pushing the V2X event to an upstream section of the merging intersection upstream of the event occurrence point;
  • the fifth push method is: pushing the V2X event to the upstream section of the downstream merging intersection of the event occurrence point.
  • the first type of events include: road congestion;
  • the second type of event includes at least one of the following: road construction, traffic accident, slippery road surface, icy road surface, visibility below a preset value, emergency braking, abnormal vehicle, obstacle, pedestrian crossing the street;
  • the third type of events includes at least one of the following: speed limit, no parking, sharp turn, watch out for pedestrians, watch out for merging, watch out for keeping distance, slow down, stop and give way, slow down and give way, no U-turn, no overtaking;
  • the fourth type of events include: tidal lanes
  • the fifth type of event includes at least one of the following: odd-even number restriction, one-way street, temporary control;
  • the sixth type of event includes at least one of the following: a wrong-way vehicle, a vehicle out of control;
  • the seventh type of events includes: special vehicles.
  • the electronic fence of each road section to be pushed includes:
  • the electric field of each road section to be pushed of the V2X event is constructed respectively. Sub-fence.
  • constructing the electronic fence of each road section to be pushed of the V2X event according to the reference point set after deduplication includes:
  • i is a positive integer
  • p[0] is the starting point of the reference point set
  • p[N] is the end point of the reference point set.
  • the present application implements a V2X event push device, which is applied to a C-V2X cloud control platform, and includes:
  • An acquisition module used to acquire the location information of the vehicle
  • a determination module configured to determine a road section where the vehicle is located according to the location information of the vehicle; determine an electronic fence corresponding to the road section; and determine a V2X event associated with the electronic fence according to the electronic fence;
  • a push module used for pushing the V2X event to the vehicle
  • each electronic fence corresponds to a V2X event
  • the acquisition module is further configured to acquire a V2X event before determining the electronic fence corresponding to the road section;
  • the determination module is further configured to select, from among preset event push rules, an event push rule corresponding to the V2X event before determining the electronic fence corresponding to the road section, and determine at least one road section to be pushed for the V2X event according to the event push rule;
  • the device also includes: a construction module, which is used to respectively construct an electronic fence for each road section to be pushed in at least one road section to be pushed of the V2X event before determining the electronic fence corresponding to the road section.
  • a construction module which is used to respectively construct an electronic fence for each road section to be pushed in at least one road section to be pushed of the V2X event before determining the electronic fence corresponding to the road section.
  • the electronic fence has a life cycle, and the life cycle of the electronic fence is the same as the life cycle of the V2X event corresponding to the electronic fence;
  • the life cycle includes at least one of the following:
  • the acquisition module is also used to obtain the vehicle's location information through a vehicle terminal gateway deployed in the edge cloud platform; wherein the edge cloud platform is connected to the C-V2X cloud control platform and the vehicle terminal respectively, so as to establish a direct link between the C-V2X cloud control platform and the vehicle terminal.
  • the determination module is further configured to determine the pre-set event push rule according to the occurrence point of the V2X event, the road network relationship and the type of the event before selecting the event push rule corresponding to the V2X event from the pre-set event push rules;
  • the road network relationship includes the adjacency relationship information between each road section and other road sections in the target area.
  • the device further comprises: a storage module for storing the road network relationship in a road network relationship database, wherein the road network relationship database is compatible with different types of databases and can store road network relationships under different types of geographic coordinate systems.
  • a storage module for storing the road network relationship in a road network relationship database, wherein the road network relationship database is compatible with different types of databases and can store road network relationships under different types of geographic coordinate systems.
  • the preset event push rule includes at least one of the following:
  • the preset event push rule is: executing the first push mode and the second push mode;
  • the preset event push rule is: executing the first push mode
  • the preset event push rule is: executing the first push mode, the second push mode, and the third push mode;
  • the preset event push rule is: executing the second push mode and the fourth push mode;
  • the preset event push rule is: executing the second push mode
  • the preset event push rule is: executing the first push mode and the third push mode;
  • the preset event push rule is: executing the third push mode and the fifth push mode;
  • the first push mode is: pushing the V2X event to an upstream section of the event occurrence point;
  • the second push mode is: the upstream section of the upstream diversion intersection of the event occurrence point pushes the V2X event;
  • the third push mode is: pushing the V2X event to a downstream section of the event occurrence point;
  • the fourth push mode is: pushing the V2X event to an upstream section of the merging intersection upstream of the event occurrence point;
  • the fifth push method is: pushing the V2X event to the upstream section of the downstream merging intersection of the event occurrence point.
  • the first type of events include: road congestion;
  • the second type of event includes at least one of the following: road construction, traffic accident, slippery road surface, icy road surface, visibility below a preset value, emergency braking, abnormal vehicle, obstacle, pedestrian crossing the street;
  • the third type of events includes at least one of the following: speed limit, no parking, sharp turn, watch out for pedestrians, watch out for merging, watch out for keeping distance, slow down, stop and yield, slow down and yield, no U-turn, no overtaking;
  • the fourth type of events include: tidal lanes
  • the fifth type of event includes at least one of the following: odd-even number restriction, one-way street, temporary control;
  • the seventh type of events includes: special vehicles.
  • the construction module is further used to respectively determine a reference point set on the center line of each road section to be pushed of the V2X event;
  • an electronic fence is constructed for each road section to be pushed of the V2X event.
  • the construction module is further used to determine the section width W of each of the sections to be pushed;
  • i is a positive integer
  • p[0] is the starting point of the reference point set
  • p[N] is the end point of the reference point set.
  • an embodiment of the present application provides an electronic device, comprising: a processor, a memory, and a program stored in the memory and executable on the processor, wherein when the program is executed by the processor, the steps of the V2X event push method as described in the first aspect are implemented.
  • an embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the method for pushing a V2X event as described in the first aspect are implemented.
  • the road section to be pushed for the event can be determined in advance based on the V2X event and event push rules, and an electronic fence of the road section to be pushed can be constructed.
  • an electronic fence of the road section to be pushed can be constructed.
  • the V2X event is pushed to the vehicle.
  • the C-V2X cloud control platform can accurately push V2X event information to the connected vehicle, try to filter out information that is not related to the vehicle's own driving path, reduce the interference of irrelevant information on autonomous driving, and improve the user's driving experience.
  • FIG1 is a system architecture diagram of a C-V2X cloud control platform in the prior art
  • FIG2 is a system architecture diagram of a C-V2X cloud control platform with an edge cloud platform provided in an embodiment of the present application
  • FIG3 is a flow chart of a method for pushing a V2X event provided in an embodiment of the present application
  • FIG4 is a flow chart of a method for pushing a V2X event provided in an embodiment of the present application.
  • FIG5 is a diagram of a V2X event occurrence point and its surrounding upstream and downstream sections provided in an embodiment of the present application. Schematic diagram of the system;
  • FIG6 is a flow chart of a method for constructing an electronic fence provided in an embodiment of the present application.
  • FIG7 is a structural block diagram of a V2X event push device provided in an embodiment of the present application.
  • FIG8 is a structural block diagram of an electronic device provided in an embodiment of the present application.
  • C-V2X technology includes vehicle wireless communication technology based on long-term evolution (Long Term Evolution Vehicle-to-Everything, LTE-V2X) and vehicle wireless communication technology based on fifth-generation mobile communication technology (5th Generation Mobile Communication Technology Vehicle-to-Everything, 5G-V2X).
  • Cloud control technology is the core link of intelligent connected vehicles and the key basic technology for realizing integrated perception, collaborative decision-making and control.
  • the C-V2X architecture in the related technology is shown in Figure 1.
  • the RSU uses a broadcast mechanism to send V2X event information to nearby connected vehicles through PC5 (direct communication interface) at a certain frequency.
  • the V2X event information broadcast by the RSU is likely not the V2X event information that the vehicle will encounter on its driving path. Therefore, how to effectively filter V2X event information has become an urgent problem to be solved in the existing C-V2X vehicle-road collaboration solution.
  • This application also improves the existing system architecture so that in some vehicle-road collaborative environments where the conditions for large-scale installation of RSU equipment are not available, a system architecture of a C-V2X cloud control platform with an edge cloud platform is provided in a vehicle-road collaborative environment where RSU equipment is not installed, as shown in Figure 2.
  • the functions of the C-V2X cloud control platform are:
  • V2X event access responsible for receiving the roadside fusion perception platform of the traffic management platform and edge cloud platform V2X event information from the platform and/or third-party platforms;
  • Vehicle information access responsible for receiving connected vehicle information from the vehicle terminal gateway of the edge cloud platform, and displaying information such as vehicle location in real time, such as through a digital large screen;
  • Road network relations Establish the relation structure of road network elements such as roads, sections, lanes and intersections;
  • Electronic fence Dynamically manage the electronic fence set based on the road network relationship and the life cycle of V2X events, combined with the V2X event push rule model;
  • Real-time location calculation responsible for collecting the location information of connected vehicles in real time and binding the relationship between vehicle location and road section;
  • Information distribution responsible for real-time analysis of the relationship between the road section where the connected vehicle is located and the electronic fence collection associated with the V2X event, and sending the V2X event information to the vehicle terminal gateway of the edge cloud platform.
  • the edge cloud platform includes an OBU gateway responsible for receiving Basic Safety Message (BSM) messages reported by on-board electronic tags (OBU) devices, and a roadside perception device gateway responsible for receiving V2X events identified by roadside cameras, radars and other equipment; the functions of the edge cloud platform are as follows: On-board terminal gateway: responsible for receiving vehicle information reported by on-board terminal devices through base stations, and forwarding V2X event information issued by the C-V2X cloud control platform; Roadside fusion perception platform: responsible for intelligent analysis, identification, and multi-dimensional fusion perception of V2X event information uploaded by roadside devices.
  • BSM Basic Safety Message
  • OBU on-board electronic tags
  • roadside perception device gateway responsible for receiving V2X events identified by roadside cameras, radars and other equipment
  • On-board terminal gateway responsible for receiving vehicle information reported by on-board terminal devices through base stations, and forwarding V2X event information issued by the C-V2X cloud control platform
  • Roadside fusion perception platform responsible for intelligent analysis, identification, and multi-dimensional fusion perception of
  • the V2X event information sent by the third-party platform may be accident information sent by the Baidu platform
  • the V2X event information sent by the traffic management platform may be traffic congestion information
  • the V2X event information sent by the roadside fusion perception platform may be road construction conditions, speed limits, weather conditions, etc.
  • the vehicle information sent by the vehicle terminal gateway may be: the latitude and longitude of the vehicle, the fuel consumption of the vehicle, the mileage, the heading angle of the vehicle, etc.
  • roadside sensing equipment can be used to collect roadside information.
  • the roadside sensing equipment can be: monocular camera, lidar, millimeter-wave radar, weather radar, etc.
  • the system architecture shown in Figure 2 of the present application by establishing direct links from the vehicle-mounted terminal to the edge cloud platform, and from the edge cloud platform to the C-V2X cloud control platform, the C-V2X cloud control platform can push V2X event information to the vehicle, saving network transmission nodes and improving the real-time nature of message transmission.
  • the V2X event push solution based on the architecture shown in Figure 2 can be applied to scenarios where there are no conditions for large-scale installation of RSU equipment, which expands the scope of application of the solution and is beneficial to a certain extent.
  • the popularization of autonomous driving can be used to collect roadside information.
  • FIG3 shows a method for pushing a V2X event according to an embodiment of the present application.
  • the method is applied to a C-V2X cloud control platform. As shown in FIG3 , the method includes:
  • step S301, obtaining the vehicle's location information includes: obtaining the vehicle's location information through a vehicle terminal gateway deployed in an edge cloud platform (the system architecture shown in Figure 2); wherein the edge cloud platform is connected to the C-V2X cloud control platform and the vehicle terminal respectively, to establish a direct link between the C-V2X cloud control platform and the vehicle terminal.
  • edge cloud platform deployed in an edge cloud platform (the system architecture shown in Figure 2); wherein the edge cloud platform is connected to the C-V2X cloud control platform and the vehicle terminal respectively, to establish a direct link between the C-V2X cloud control platform and the vehicle terminal.
  • the above S301-S305 are applied to the C-V2X cloud control platform.
  • the C-V2X cloud control platform can determine the road section where the vehicle is located based on the location information of the vehicle. It is understandable that the C-V2X cloud control platform stores a variety of map data, so it can accurately determine the road section where the vehicle is located, and determine the electronic fence related to the road section, the V2X event associated with the electronic fence, and push the V2X to the vehicle. It is understandable that the correspondence between the road section information and the electronic fence, and the electronic fence and the V2X event has been pre-calculated and stored in the database of the C-V2X cloud control platform.
  • the electronic fence corresponding to the road section can be determined, and the V2X event associated with the electronic fence can be determined.
  • the V2X event is a V2X event related to the vehicle's driving path and will affect the vehicle's driving, and it will be pushed to the vehicle to avoid interference with the vehicle by irrelevant V2X events.
  • each electronic fence corresponds to a V2X event.
  • the electronic fences may overlap, but the marking of the electronic fence determined by the V2X event and the life cycle of the electronic fence determined by the life cycle of the V2X event are different (detailed explanation will be given later).
  • the method before determining the electronic fence corresponding to the road section, as shown in FIG4 , the method further includes:
  • S403 Determine at least one road section to be pushed for the V2X event according to the event push rule
  • S404 construct an electronic fence for each road section to be pushed in at least one road section to be pushed of the V2X event.
  • the scheme shown in FIG4 is the preparatory work, that is, how to establish the correspondence between the V2X event and the event push rule, and the event push rule and the road section to be pushed.
  • the event push rule is pre-set, and the event push rule table can be stored. After obtaining the V2X event, the event push rule corresponding to the V2X event can be found in the event push rule table, and then at least one road section to be pushed for the V2X event is determined according to the event push rule, and the electronic fence of each road section to be pushed in the at least one road section to be pushed for the V2X event is respectively constructed.
  • the pre-set event push rules can be determined according to the occurrence point of the V2X event, the road network relationship and the type of V2X event.
  • the road network relationship includes the adjacency relationship information between each road section and other road sections in the target area.
  • the road network relationship can be designed to support the distribution of V2X events in combination with the application scenarios of V2X events.
  • the road network relationship can support one-way road section events (road congestion, etc.) and two-way road section events (tidal lanes, etc.).
  • the road network relationship can be stored in a road network relationship database, wherein the road network relationship database is compatible with different types of databases and can store road network relationships under different types of geographic coordinate systems, so as to effectively solve the adaptation problem of different spatial databases when map data is stored in the database.
  • V2X event information may come from a traffic management platform, an edge cloud platform's roadside fusion perception platform, and/or a third-party platform.
  • the time attribute of V2X event input is uncertain. Some are long-term valid, some carry time attributes, and some have no time attributes. In other words, V2X events have a life cycle. For example, the life cycle of a V2X event such as speed limit is long-term valid, while the life cycle of a V2X event such as construction is valid for a period of time. The life cycle of a V2X event such as odd-even number restriction is valid within a specified date and periodic time period.
  • the life cycle can be divided into the following categories: long-term validity, continuous time period validity, periodic time period validity without a specified date, periodic time period validity with a specified date, and random time period validity.
  • the electronic fence corresponding to the V2X event also has a life cycle, and the life cycle of the electronic fence is the same as the life cycle of the V2X event corresponding to the electronic fence. That is, at the end of the life cycle of the V2X event, the corresponding electronic fence becomes invalid. And for long-term validity and time-bound validity, the electronic fence is invalid.
  • the C-V2X cloud control platform will dynamically create, update and delete the electronic fence set of the road section affected by the V2X event according to the life cycle of the V2X event; for V2X events without time attributes, the electronic fence set of the road section affected by the V2X event can be dynamically created, updated and deleted according to the start and end identifiers of the V2X event.
  • Table 1 shows the life cycle of a V2X event electronic fence, which is an exemplary description.
  • the marks attached to the electronic fence can be modified and edited according to the actual situation.
  • the V2X event is a speed limit event
  • the speed limit value when the speed limit value changes (for example, from 80km/h to 70km/h), the speed limit value can be edited and the electronic fence can be updated;
  • updating the electronic fence means updating the scope of the electronic fence as the construction area changes, or updating the life cycle of the electronic fence as the construction period changes;
  • the V2X event is a tidal lane or restricted traffic, there is no case of updating the electronic fence, only the case of creating or deleting the corresponding electronic fence according to the periodic time period of the tidal lane.
  • the duration of the obstacle can be determined according to the flag bit. For example, a certain section of road can be photographed by a camera. If an obstacle continues to exist, the flag is 1. If the obstacle is cleared, the flag changes from 1 to 0. The duration of the obstacle can be determined, and the duration is the electric field corresponding to the V2X event of the obstacle. The life cycle of a sub-fence.
  • the pre-set event push rule includes at least one of the following: when the type of the V2X event is the first type, the pre-set event push rule is: execute the first push mode and the second push mode; when the type of the V2X event is the second type, the pre-set event push rule is: execute the first push mode; when the type of the V2X event is the third type, the pre-set event push rule is: execute the first push mode, the second push mode, and the third push mode; when the type of the V2X event is the fourth type, the pre-set event push rule is: execute the second push mode and the fourth push mode; when the type of the V2X event is the fifth type, the pre-set event push rule is: execute the second push mode; when the type of the V2X event is the sixth type, the pre-set event push rule is: execute the first push mode and the third push mode; when the type of the V2X event is the seventh type, the pre-set event push rule is: execute the third push mode and the fifth push mode;
  • the first push method is: pushing V2X events to the upstream section of the event occurrence point;
  • the second push method is: pushing V2X events to the upstream section of the diversion intersection upstream of the event occurrence point;
  • the third push method is: pushing V2X events to the downstream section of the event occurrence point;
  • the fourth push method is: pushing V2X events to the upstream section of the merging intersection upstream of the event occurrence point;
  • the fifth push method is: pushing V2X events to the upstream section of the merging intersection downstream of the event occurrence point.
  • the first type of events includes: road congestion;
  • the second type of events includes at least one of the following: road construction, traffic accidents, slippery road surface, icy road surface, visibility below preset value, emergency braking, abnormal vehicles, obstacles, pedestrians crossing the street;
  • the third type of events includes at least one of the following: speed limit, no parking, sharp turns, pay attention to pedestrians, pay attention to merging, pay attention to keeping distance between vehicles, slow driving, stop and give way, slow down and give way, no U-turn, no overtaking;
  • the fourth type of events includes: tidal lanes;
  • the fifth type of events includes at least one of the following: odd-even number restrictions, one-way streets, temporary controls;
  • the sixth type of events includes at least one of the following: vehicles driving in the wrong direction, vehicles out of control;
  • the seventh type of events includes: special vehicles.
  • C-V2X cloud control platform can define the push distance of various V2X events in the upstream and downstream of the road network relationship according to the impact range of specific V2X events.
  • Some event push rules are shown in Table 2:
  • the push distance is defined as d
  • the rules executed are r6 and r8. This corresponds to when the V2X event type is the first type, the event push rules are determined as: executing the first push mode and the second push mode. r6 is the first push mode, and r8 is the second push mode. Similarly, r5 in the above table is the third push mode, r10 is the fourth push mode, and r4 is the fifth push mode.
  • upstream of the downstream diversion intersection is sections 1, 3, and 7;
  • upstream of the downstream confluence is sections 1, 3, and 7;
  • downstream of the incident point is the direction from the incident point to the end of section 5;
  • upstream of the incident point is the direction from the incident point to the starting point of section 5;
  • upstream of the upstream diversion intersection is sections 6, 9, 11, and 13;
  • upstream of the upstream confluence is sections 6, 9, 11, and 13.
  • event push rule table shown in Table 2 is a schematic description of some events and some push rules.
  • rules r1, r2, r3, and r7 can be determined according to the actual event occurrence and the road network relationship, and more rules can be expanded according to actual needs.
  • constructing an electronic fence for each of at least one road section to be pushed of a V2X event includes the following steps, as shown in FIG6 :
  • S603 construct an electronic fence for each road section to be pushed for the V2X event based on the reference point set after deduplication.
  • the first point p[0] of the road segment is the starting point of the reference point set, and p[index] is the end point of the reference point set; the value of index is calculated by the following method:
  • Cumulative distance sum sum + distance (p[i], p[i+1]);
  • the reference point set of the center line of the affected road section is calculated from the end point to the starting point.
  • the method for constructing an electronic fence includes the following steps:
  • the reference point set is p[0] to p[i];
  • Cumulative distance sum sum + distance (p[i], p[i-1]);
  • index is calculated by the following method:
  • Cumulative distance sum sum + distance (p[i], p[i+1]);
  • index is calculated by the following method:
  • Cumulative distance sum sum + distance (p[i], p[i-1]);
  • the reference point set of the center line of the road section affected by the event in the 10 rules is obtained through the above calculation, that is, S601 is executed. Then, the reference point sets in the same direction in the reference point set can be deduplicated, and the electronic fence corresponding to each reference point set can be calculated.
  • the electronic fence of each road section to be pushed of the V2X event is constructed separately, including: determining the road section width W of each road section to be pushed; on the line segment p[i], p[i+1], determine the vertical line of any reference point p[i] in the reference point set; on the vertical line, determine 2 vertices with a distance of W/2 from p[i]; traverse p[i] and connect all vertices into a polygon; determine the polygon as the electronic fence E of the road section to be pushed; wherein, 0 ⁇ i ⁇ N-1, i is a positive integer, p[0] is the starting point of the reference point set, and p[N] is the end point of the reference point set.
  • the correspondence between the electronic fence and the road section, the V2X event, the road section's position, the V2X event prompt, etc. can be stored in a relational database and saved on the C-V2X cloud control platform to prepare for the pre-order. Afterwards, the solution for pushing the V2X event shown in Figure 1 can be executed.
  • the C-V2X cloud control platform accesses the V2X event, it can dynamically manage the electronic fence collection according to the road network relationship and the life cycle of the event, combined with the event push rules, and accurately send the V2X event information to the networked vehicle by analyzing the electronic fence relationship bound to the vehicle location information and the V2X event in real time.
  • the C-V2X cloud control platform can accurately push the event information to the networked vehicle, thereby improving the driving experience and ensuring driving safety.
  • the present application can calculate and send V2X events in real time. Specifically, the position of the vehicle can be monitored in real time, and the vehicle's latitude, longitude and navigation can be used to calculate the vehicle's position. The vehicle is matched to the road section it is traveling on based on information such as the angle of travel, and then the electronic fence associated with the V2X event on the road section ID is queried. If the vehicle is in this electronic fence, the event of the electronic fence is sent to the vehicle terminal through the C-V2X cloud control platform to realize the presentation of the V2X event on the vehicle side. At the same time, the vehicle side sends the received V2X event and vehicle information back to the V2X cloud control platform.
  • the platform can display the V2X event information received by the networked vehicle in real time, forming a closed business loop. Since the embodiment of the present application only calculates the position relationship between the electronic fence and the vehicle on the road section where the networked vehicle is located, it effectively reduces the time consumption of calculating the electronic fence of the associated event according to the road section where the vehicle is located, and improves the real-time performance of the system.
  • the embodiment of the present application makes the C-V2X vehicle-road collaboration more concise and clear in architecture.
  • the access of vehicle terminals and fusion perception events can be completed on the edge cloud platform (system architecture shown in Figure 2); after the C-V2X cloud control platform accesses the event, it dynamically manages the electronic fence of the event according to the road network relationship and event life cycle, combined with the event push rules; when creating an electronic fence, the C-V2X cloud control platform effectively reduces the time spent on calculating the electronic fence of the event associated with the road section where the vehicle is located by binding the relationship between the electronic fence and the road section, thereby improving the real-time performance of the system and the accuracy of the V2X event information sent down.
  • the embodiment of the present application can dynamically and real-time generate an electronic fence according to the road network relationship of the event occurrence point according to the rules, and can be widely used in the fields of traffic event release, regional emergency avoidance, smart port road abnormality warning, etc.
  • the embodiment of the present application provides a solution for the C-V2X vehicle-road cooperative environment without the deployment of RSU equipment, which reduces the implementation cost of vehicle network side equipment, reduces the interference of wireless channels, improves the accuracy, intelligence and real-time performance of V2X event delivery, and has wide practicality and scalability. And by establishing a direct link from the networked vehicle to the cloud control platform, it effectively reduces the nodes of information transmission and reduces the transmission delay.
  • the embodiments of the present application can be applied in the field of intelligent networking, and can be used to track vehicle trajectories.
  • road traffic events can be sent to vehicles accurately, intelligently, and in real time through the Uu port, thereby improving road traffic efficiency and driving safety, and allowing car owners to have a more intelligent, convenient, and safe driving experience.
  • FIG. 7 shows a structural block diagram of a device for pushing a V2X event according to an embodiment of the present application.
  • the device is applied on a C-V2X cloud control platform.
  • the device 70 includes:
  • the acquisition module 701 is used to acquire the location information of the vehicle
  • the determination module 702 is used to determine the road section where the vehicle is located based on the vehicle's location information; An electronic fence corresponding to the road section; based on the electronic fence, determining a V2X event associated with the electronic fence;
  • each electronic fence corresponds to a V2X event
  • the acquisition module 701 is further used to acquire a V2X event before determining the electronic fence corresponding to the road section;
  • the determination module 702 is further configured to select, before determining the electronic fence corresponding to the road section, an event push rule corresponding to the V2X event from the pre-set event push rules, and determine at least one road section to be pushed for the V2X event according to the event push rule;
  • the device 70 also includes: a construction module 704, which is used to construct an electronic fence for each road section to be pushed in at least one road section to be pushed of the V2X event before determining the electronic fence corresponding to the road section.
  • a construction module 704 which is used to construct an electronic fence for each road section to be pushed in at least one road section to be pushed of the V2X event before determining the electronic fence corresponding to the road section.
  • the electronic fence has a life cycle, and the life cycle of the electronic fence is the same as the life cycle of the V2X event corresponding to the electronic fence;
  • the life cycle includes at least one of the following:
  • the acquisition module is also used to obtain the vehicle's location information through the vehicle terminal gateway deployed in the edge cloud platform; wherein the edge cloud platform is connected to the C-V2X cloud control platform and the vehicle terminal respectively, to establish a direct link between the C-V2X cloud control platform and the vehicle terminal.
  • the determination module 702 is further configured to determine the preset event push rule according to the occurrence point of the V2X event, the road network relationship, and the type of the event before determining the event push rule corresponding to the V2X event in the preset event push rule;
  • the road network relationship includes the adjacency relationship information between each road section and other road sections in the target area.
  • the device 70 also includes: a storage module, which is used to store the road network relationship in a road network relationship database, wherein the road network relationship database is compatible with different types of databases and can store road network relationships under different types of geographic coordinate systems.
  • the preset event push rule includes at least one of the following: when the type of the V2X event is the first type, the preset event push rule is: executing the first push mode and the second push mode;
  • the preset event push rule is: executing the first push mode
  • the preset event push rule is: executing the first push mode, the second push mode, and the third push mode;
  • the preset event push rule is: executing the second push mode and the fourth push mode;
  • the preset event push rule is: executing the second push mode
  • the preset event push rule is: executing the first push mode and the third push mode;
  • the preset event push rule is: executing the third push mode and the fifth push mode;
  • the first push method is: push the V2X event to the upstream section of the event occurrence point;
  • the second push method is: the upstream section of the upstream diversion intersection of the event occurrence point pushes the V2X event;
  • the third push method is: push the V2X event to the downstream section of the event occurrence point;
  • the fourth push mode is: pushing the V2X event to the upstream section of the merging intersection upstream of the event occurrence point;
  • the fifth push method is to push the V2X event to the upstream section of the downstream merging intersection where the event occurred.
  • the first type of events include: road congestion;
  • the second type of events includes at least one of the following: road construction, traffic accidents, slippery roads, icy roads, visibility below a preset value, emergency braking, abnormal vehicles, obstacles, pedestrians crossing the street;
  • the third type of events includes at least one of the following: speed limit, no stopping, sharp turn, watch out for pedestrians, watch out for merging, keep a safe distance, drive slowly, stop and give way, slow down and give way, no U-turn, no overtaking;
  • the fourth type of events include: tidal lanes
  • the fifth type of events includes at least one of the following: odd-even number restriction, one-way street, temporary control;
  • the sixth type of incident includes at least one of the following: a vehicle driving in the wrong direction, a vehicle out of control;
  • the seventh type of events includes: special vehicles.
  • the construction module 704 is further configured to respectively determine the V2X event.
  • the reference point set on the center line of each road section to be pushed, and the reference point set is deduplicated;
  • an electronic fence is constructed for each road section where the V2X event is to be pushed.
  • the construction module is further used to determine the road section width W of each road section to be pushed;
  • i is a positive integer
  • p[0] is the starting point of the reference point set
  • p[N] is the end point of the reference point set.
  • FIG8 shows an electronic device 80, which is characterized in that it includes: a processor 801, a memory 802, and a program stored in the memory 802 and executable on the processor 801.
  • the program is executed by the processor 801, the steps of a method for pushing a V2X event as described in the above embodiment are implemented.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
  • the technical solution of the present application can be embodied in the form of a software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)

Abstract

本申请公开了一种V2X事件的推送方法及装置,涉及智慧交通技术领域,该方法包括:根据所获取的车辆的位置信息,确定车辆所在的路段及与路段对应的电子围栏;确定与电子围栏相关联的V2X事件;将V2X事件推送至车辆;其中,在确定与路段对应的电子围栏之前,还包括:获取V2X事件;在预先设置的事件推送规则中,选取与V2X事件对应的事件推送规则;并确定V2X事件的至少一条待推送路段;分别构建V2X事件的至少一条待推送路段中,每条待推送路段的电子围栏。

Description

一种V2X事件的推送方法及装置
相关申请的交叉引用
本申请主张在2022年11月30日在中国提交的中国专利申请号No.202211523277.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请实施例涉及智慧交通技术领域,尤其涉及一种V2X事件的推送方法及装置。
背景技术
随着第五代移动通信技术(5th Generation Mobile Communication Technology,5G)、云计算、地理空间信息、人工智能、大数据的不断发展,交通行业和信息行业正在进行深度的融合。在我国各级政府部门强有力的领导下,我国已在多个城市建立了智能网联汽车测试场/示范区,助力车路协同和自动驾驶。车路协同是实现L4(自动系统在某些环境和特定条件下,能够完成驾驶任务并监控驾驶环境,L4阶段下,在自动驾驶可以运行的范围内,驾驶相关的所有任务和驾乘人没有关系,但似乎驾驶舱还是必不可少的,不能完全取消掉人为控制的操作部件。)及以上自动驾驶的必由之路。车用无线通信技术(vehicle to everything,V2X)通过网络将人、车、路、图、环境等信息在云端汇聚,形成超视距、多维的全景感知能力,为全局和局部系统提供最佳的决策规划信息。在V2X事件广播中,现有的方案通常是:V2X事件信息会通过基于蜂窝网络的车用无线通信技术(Cellular Vehicle-to-Everything,C-V2X)云控平台下发给路侧单元(Road Side Unit,RSU),然后由RSU广播给附近的网联车辆,车端会提示V2X事件信息。
现有方案中,C-V2X云控平台根据V2X事件筛选RSU时,一般只能搜索V2X事件发生点一定范围内的RSU,不能精准定位V2X事件影响的路段以及能够覆盖到该路段的RSU,导致不是V2X事件影响路段上的RSU也会收到云控平台下发的消息,在RSU收到V2X事件信息后,比如路侧信息(Road  Side Information,RSI),会广播给附近的网联车辆。此时的RSI消息不能精准填充V2X事件的影响范围;或者车载终端没有电子地图的相关信息,无法匹配RSI消息的影响范围,导致车载终端不能根据车的行驶轨迹有效地过滤RSI消息,大量无关的RSI消息提示,会影响驾驶体验,甚至会对自动驾驶产生严重的干扰。
因此,如何有效地过滤V2X信息,成为C-V2X车路协同领域亟待解决的技术问题。
发明内容
本申请提供了一种V2X事件的推送方法及装置,以解决相关技术中,V2X事件无法精准推送到其所影响的路段上的车辆,导致车辆收到无关信息,影响驾驶体验,甚至对自动驾驶产生严重干扰的技术问题。
本申请实施例从以下几个方面实现:
第一方面,本申请实施例提供一种V2X事件的推送方法,所述方法应用于C-V2X云控平台上,所述方法包括:
获取车辆的位置信息;
根据所述车辆的位置信息,确定所述车辆所在的路段;
确定与所述路段对应的电子围栏;
根据所述电子围栏,确定与所述电子围栏相关联的V2X事件;
将所述V2X事件推送至所述车辆;
其中,每一电子围栏均对应一个V2X事件;
其中,在确定与所述路段对应的电子围栏之前,所述方法还包括:
获取V2X事件;
在预先设置的事件推送规则中,选取与所述V2X事件对应的事件推送规则;
根据所述事件推送规则确定所述V2X事件的至少一条待推送路段;
分别构建所述V2X事件的至少一条待推送路段中,每条待推送路段的电子围栏。
优选地,所述电子围栏具备生命周期,所述电子围栏的生命周期与所述 电子围栏所对应的V2X事件的生命周期相同;
其中,所述生命周期包括以下至少一项:
长期有效、连续时间段有效、无指定日期周期性时间段有效、有指定日期周期性时间段有效、随机性时间段有效。
优选地,所述获取车辆的位置信息包括:
通过部署在边缘云平台中的车载终端网关获取车辆的位置信息;其中,所述边缘云平台与所述C-V2X云控平台和车载终端分别连接,用于搭建所述C-V2X云控平台和所述车载终端间的直达链路。
优选地,在预先设置的事件推送规则中,选取与所述V2X事件对应的事件推送规则之前,所述方法还包括:
根据V2X事件的发生点、路网关系和事件的类型确定预先设置的事件推送规则;
其中,所述路网关系包括目标区域中,每一路段与其它各个路段之间的邻接关系信息。
优选地,所述方法还包括:
将路网关系存入路网关系数据库中,其中,所述路网关系数据库能够兼容不同类型的数据库,且能够存储不同类型的地理坐标系下的路网关系。
优选地,所述预先设置的事件推送规则包括以下至少一项:
在所述V2X事件的类型为第一类型时,所述预先设置的事件推送规则为:执行第一推送方式和第二推送方式;
在所述V2X事件的类型为第二类型时,所述预先设置的事件推送规则为:执行第一推送方式;
在所述V2X事件的类型为第三类型时,所述预先设置的事件推送规则为:执行第一推送方式、第二推送方式、第三推送方式;
在所述V2X事件的类型为第四类型时,所述预先设置的事件推送规则为:执行第二推送方式和第四推送方式;
在所述V2X事件的类型为第五类型时,所述预先设置的事件推送规则为:执行第二推送方式;
在所述V2X事件的类型为第六类型时,所述预先设置的事件推送规则为: 执行第一推送方式和第三推送方式;
在所述V2X事件的类型为第七类型时,所述预先设置的事件推送规则为:执行第三推送方式和第五推送方式;
其中,
所述第一推送方式为:向所述事件发生点的上游路段推送所述V2X事件;
所述第二推送方式为:所述事件发生点上游分流路口的上游路段推送所述V2X事件;
所述第三推送方式为:向所述事件发生点的下游路段推送所述V2X事件;
所述第四推送方式为:向所述事件发生点上游合流路口的上游路段推送所述V2X事件;
所述第五推送方式为:向所述事件发生点下游合流路口的上游路段推送所述V2X事件。
优选地,所述第一类型的事件包括:道路拥堵;
所述第二类型的事件包括以下至少一项:道路施工、交通事故、路面湿滑、路面结冰、能见度低于预设值、紧急制动、异常车辆、障碍物、行人过街;
所述第三类型的事件包括以下至少一项:限速、禁止停车、急转弯、注意行人、注意合流、注意保持车距、慢行、停车让行、减速让行、禁止掉头、禁止超车;
所述第四类型的事件包括:潮汐车道;
所述第五类型的事件包括以下至少一项:单双号限行、单行线、临时管制;
所述第六类型的事件包括以下至少一项:逆行车辆、失控车辆;
所述第七类型的事件包括:特种车辆。
优选地,分别构建所述V2X事件的至少一条待推送路段中,每条待推送路段的电子围栏包括:
分别确定所述V2X事件的每条待推送路段的中心线上的参考点集;
对所述参考点集进行去重处理;
根据去重后的参考点集,分别构建所述V2X事件的每条待推送路段的电 子围栏。
优选地,根据去重后的参考点集,分别构建所述V2X事件的每条待推送路段的电子围栏包括:
确定每条所述待推送路段的路段宽度W;
在线段p[i],p[i+1]上,确定所述参考点集中的任意参考点p[i]的垂直线;
在所述垂直线上,确定与p[i]的距离为W/2的2个顶点;
遍历p[i],将所有的顶点连接成一个多边形;
将所述多边形确定为所述待推送路段的电子围栏E;
其中,所述0≤i≤N-1,i为正整数,p[0]为参考点集的起点,p[N]为参考点集的终点。
第二方面,本申请实施提供一种V2X事件的推送装置,所述装置应用于C-V2X云控平台上,所述装置包括:
获取模块,用于获取车辆的位置信息;
确定模块,用于根据所述车辆的位置信息,确定所述车辆所在的路段;确定与所述路段对应的电子围栏;根据所述电子围栏,确定与所述电子围栏相关联的V2X事件;
推送模块,用于将所述V2X事件推送至所述车辆;
其中,每一电子围栏均对应一个V2X事件;
所述获取模块,还用于在确定与所述路段对应的电子围栏之前,获取V2X事件;
所述确定模块,还用于在确定与所述路段对应的电子围栏之前,在预先设置的事件推送规则中,选取与所述V2X事件对应的事件推送规则,并根据所述事件推送规则确定所述V2X事件的至少一条待推送路段;
所述装置还包括:构建模块,用于在确定与所述路段对应的电子围栏之前,分别构建所述V2X事件的至少一条待推送路段中,每条待推送路段的电子围栏。
优选地,所述电子围栏具备生命周期,所述电子围栏的生命周期与所述电子围栏所对应的V2X事件的生命周期相同;
其中,所述生命周期包括以下至少一项:
长期有效、连续时间段有效、无指定日期周期性时间段有效、有指定日期周期性时间段有效、随机性时间段有效。
优选地,所述获取模块,还用于通过部署在边缘云平台中的车载终端网关获取车辆的位置信息;其中,所述边缘云平台与所述C-V2X云控平台和车载终端分别连接,用于搭建所述C-V2X云控平台和所述车载终端间的直达链路。
优选地,所述确定模块,还用于在预先设置的事件推送规则中,选取与所述V2X事件对应的事件推送规则之前,根据V2X事件的发生点、路网关系和事件的类型确定预先设置的事件推送规则;
其中,所述路网关系包括目标区域中,每一路段与其它各个路段之间的邻接关系信息。
优选地,所述装置还包括:储存模块,用于将路网关系存入路网关系数据库中,其中,所述路网关系数据库能够兼容不同类型的数据库,且能够存储不同类型的地理坐标系下的路网关系。
优选地,所述预先设置的事件推送规则包括以下至少一项:
在所述V2X事件的类型为第一类型时,所述预先设置的事件推送规则为:执行第一推送方式和第二推送方式;
在所述V2X事件的类型为第二类型时,所述预先设置的事件推送规则为:执行第一推送方式;
在所述V2X事件的类型为第三类型时,所述预先设置的事件推送规则为:执行第一推送方式、第二推送方式、第三推送方式;
在所述V2X事件的类型为第四类型时,所述预先设置的事件推送规则为:执行第二推送方式和第四推送方式;
在所述V2X事件的类型为第五类型时,所述预先设置的事件推送规则为:执行第二推送方式;
在所述V2X事件的类型为第六类型时,所述预先设置的事件推送规则为:执行第一推送方式和第三推送方式;
在所述V2X事件的类型为第七类型时,所述预先设置的事件推送规则为:执行第三推送方式和第五推送方式;
其中,
所述第一推送方式为:向所述事件发生点的上游路段推送所述V2X事件;
所述第二推送方式为:所述事件发生点上游分流路口的上游路段推送所述V2X事件;
所述第三推送方式为:向所述事件发生点的下游路段推送所述V2X事件;
所述第四推送方式为:向所述事件发生点上游合流路口的上游路段推送所述V2X事件;
所述第五推送方式为:向所述事件发生点下游合流路口的上游路段推送所述V2X事件。
优选地,所述第一类型的事件包括:道路拥堵;
所述第二类型的事件包括以下至少一项:道路施工、交通事故、路面湿滑、路面结冰、能见度低于预设值、紧急制动、异常车辆、障碍物、行人过街;
所述第三类型的事件包括以下至少一项:限速、禁止停车、急转弯、注意行人、注意合流、注意保持车距、慢行、停车让行、减速让行、禁止掉头、禁止超车;
所述第四类型的事件包括:潮汐车道;
所述第五类型的事件包括以下至少一项:单双号限行、单行线、临时管制;
所述第六类型的事件包括以下至少一项:逆行车辆、失控车辆;
所述第七类型的事件包括:特种车辆。
优选地,所述构建模块,还用于分别确定所述V2X事件的每条待推送路段的中心线上的参考点集;
对所述参考点集进行去重处理;
根据去重后的参考点集,分别构建所述V2X事件的每条待推送路段的电子围栏。
优选地,所述构建模块,还用于确定每条所述待推送路段的路段宽度W;
在线段p[i],p[i+1]上,确定所述参考点集中的任意参考点p[i]的垂直线;
在所述垂直线上,确定与p[i]的距离为W/2的2个顶点;
遍历p[i],将所有的顶点连接成一个多边形;
将所述多边形确定为所述待推送路段的电子围栏E;
其中,所述0≤i≤N-1,i为正整数,p[0]为参考点集的起点,p[N]为参考点集的终点。
第三方面,本申请实施例提供一种电子设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面所述的V2X事件的推送方法的步骤。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的V2X事件的推送方法的步骤。
本申请实施例中,可预先根据V2X事件、事件推送规则确定该事件的待推送路段,并构建待推送路段的电子围栏,在确定某车辆进入该电子围栏时,将该V2X事件推送至该车辆,由此,能够精准的定位交通事件所影响的路段及其覆盖的电子围栏集合,解决了交通事件的影响范围定位不够精准的难题,C-V2X云控平台能够精准地将V2X事件信息推送到网联车辆,尽量过滤掉与车辆自身行驶路径无关的信息,降低无关信息对自动驾驶的干扰,提高用户的驾驶体验。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为现有技术中的C-V2X云控平台的系统架构图;
图2为本申请实施例提供的一种构建了边缘云平台的C-V2X云控平台的系统架构图;
图3为本申请实施例提供的一种V2X事件的推送方法的流程图;
图4为本申请实施例提供的一种V2X事件的推送方法的流程图;
图5为本申请实施例提供的一种V2X事件发生点及其周边上下游路段关 系的示意图;
图6为本申请实施例提供的一种构建电子围栏的方法的流程图;
图7为本申请实施例提供的一种V2X事件的推送装置的结构框图;
图8为本申请实施例提供的一种电子设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
现对本申请方案的应用场景进行简要介绍,本申请属于智慧交通技术领域,实现了“4/5G+智慧交通”行业中的一种基于C-V2X云控技术的“车-云”动态交通信息传输方法,C-V2X技术包括基于长期演进的车用无线通信技术(Long Term Evolution Vehicle-to-Everything,LTE-V2X)和基于第五代移动通信技术的车用无线通信技术(5th Generation Mobile Communication Technology Vehicle-to-Everything,5G-V2X),云控技术则是智能网联汽车的核心环节,是实现融合感知、协同决策与控制的关键基础技术,通过两者有效结合,云控平台赋能,能够为车辆提供超视距、低时延且增强型安全感知能力,有效提升智能网联汽车的安全性与行驶能效,推进C-V2X产业化落地。
相关技术中的C-V2X架构如图1所示,基于图1所示的系统架构,对于V2X事件信息,RSU采用广播机制以一定的频率通过PC5(直连通信接口)将V2X事件信息发送给附近的网联车辆。而RSU广播的这些V2X事件信息很可能不是车辆行驶路径上会遇到的V2X事件信息,因此,如何有效的过滤V2X事件信息,成为现有C-V2X车路协同方案急需解决的问题。
本申请还对现有的系统架构进行了改进,以在有些车路协同环境不具备大规模架设RSU设备的条件,在没有架设RSU设备的车路协同环境下,提供一种构建了边缘云平台的C-V2X云控平台的系统架构,如图2所示。
C-V2X云控平台的功能为:
V2X事件接入:负责接收交通管理平台、边缘云平台的路侧融合感知平 台和/或第三方平台的V2X事件信息;
车辆信息接入:负责从边缘云平台的车载终端网关接收网联车辆信息,并实时展示车辆位置等信息,如通过数字大屏等进行展示;
路网关系:建立道路、路段、车道和路口等路网要素关系结构;
电子围栏:根据路网关系和V2X事件的生命周期,结合V2X事件推送规则模型,动态管理电子围栏集合;
实时位置计算:负责实时搜集网联车辆的位置信息,绑定车辆位置与路段关系;
信息下发:负责实时分析网联车辆所在路段与V2X事件所关联的电子围栏集合关系,将V2X事件信息下发到边缘云平台的车载终端网关。
边缘云平台包括用于负责接收车辆车载电子标签(On Board Unit,OBU)设备上报的基础安全消息BSM(Basic Safety Message,BSM)报文的OBU网关以及负责接收路侧摄像头、雷达等设备识别的V2X事件的路侧感知设备网关;边缘云平台的功能为:车载终端网关:负责接收车载终端设备通过基站上报的车辆信息,并转发C-V2X云控平台下发的V2X事件信息;路侧融合感知平台:负责智能分析、识别、多维度融合感知路侧设备上传的V2X事件信息。
在一种优选的示例中,第三方平台发送的V2X事件信息可以是百度平台发送的事故信息,交通管理平台发送的V2X事件信息可以是交通拥堵情况信息,路侧融合感知平台发送的V2X事件信息可以是道路施工情况、限速、天气情况等。车载终端网关发送的车辆信息可以是:车辆所在的经纬度、车辆的油耗、行驶里程、车辆的航向角等。
需要说明的是,若不具备大规模架设RSU设备的条件,则可采用路侧感知设备来采集路侧信息,路侧感知设备可以为:单目摄像头、激光雷达、毫米波雷达、气象雷达等。且本申请图2所示的系统架构,通过建立车载终端到边缘云平台,边缘云平台到C-V2X云控平台的直达链路,C-V2X云控平台能够将V2X事件信息推送到车辆,节省了网络传输的节点,提高了消息传递的实时性。且基于图2所示架构的V2X事件推送方案可应用于不具备大规模架设RSU设备的条件的场景中,扩大了方案的适用范围,在一定程度上有利 于自动驾驶的普及。
图3示出了根据本申请实施例的一种V2X事件的推送方法,方法应用于C-V2X云控平台上,如图3所示,该方法包括:
S301、获取车辆的位置信息;
S302、根据车辆的位置信息,确定车辆所在的路段;
S303、确定与路段对应的电子围栏;
S304、根据电子围栏,确定与电子围栏相关联的V2X事件;
S305、将V2X事件推送至车辆。
在一种可能的实现方式中,步骤S301、获取车辆的位置信息包括:通过部署在边缘云平台(如图2所示的系统架构)中的车载终端网关获取车辆的位置信息;其中,边缘云平台与C-V2X云控平台和车载终端分别连接,用于搭建C-V2X云控平台和车载终端间的直达链路。
需说明的是,上述S301-S305应用于C-V2X云控平台上,C-V2X云控平台在获取到车辆的位置信息后,可根据车辆的位置信息,确定出车辆所在的路段,可理解的是,C-V2X云控平台中存储有多种地图数据,因此,可准确确定出车辆所在的路段,并确定出与路段相关的电子围栏、与电子围栏相关联的V2X事件,并将V2X推送至该车辆。可理解的是,路段信息与电子围栏、电子围栏与V2X事件的对应关系已预先计算好并存储于C-V2X云控平台的数据库中。在确定好车辆所在的路段后,才可确定出与路段对应的电子围栏,并确定与电子围栏相关联的V2X事件,该V2X事件即为与该车辆行驶路径相关的、会对该车辆的行驶产生影响的V2X事件,并将其推送至车辆,以避免无关V2X事件对车辆的干扰。且每一电子围栏均对应一个V2X事件。电子围栏可能会重合,但根据V2X事件所确定的电子围栏的标记及根据V2X事件的生命周期所确定的电子围栏的生命周期是不同的(后续会进行具体说明)。
在一种可能的实现方式中,在确定与路段对应的电子围栏之前,如图4所示,方法还包括:
S401、获取V2X事件;
S402、在预先设置的事件推送规则中,选取与V2X事件对应的事件推送 规则;
S403、根据事件推送规则确定V2X事件的至少一条待推送路段;
S404、分别构建V2X事件的至少一条待推送路段中,每条待推送路段的电子围栏。
图4所示方案是前序准备工作,即如何建立起V2X事件与事件推送规则、事件推送规则与待推送路段的对应关系。本申请实施例所示方案中,预先设置了事件推送规则,并可存储事件推送规则表,在获取V2X事件后,可在事件推送规则表中,查找与该V2X事件对应的事件推送规则,进而根据事件推送规则确定该V2X事件的至少一条待推送路段,分别构建V2X事件的至少一条待推送路段中,每条待推送路段的电子围栏。
在一种可能的实现方式中,可根据V2X事件的发生点、路网关系和V2X事件的类型确定预先设置的事件推送规则。其中,路网关系包括目标区域中,每一路段与其它各个路段之间的邻接关系信息。可结合V2X事件的应用场景,设计路网关系来支撑V2X事件的下发。路网关系能够支撑单向路段事件(道路拥堵等)和双向路段事件(潮汐车道等)。并且,可将路网关系存入路网关系数据库中,其中,路网关系数据库能够兼容不同类型的数据库,且能够存储不同类型的地理坐标系下的路网关系,以有效解决地图数据入库时,不同空间数据库的适配问题。
在一种可能的实现方式中,V2X事件信息可来自于交通管理平台、边缘云平台的路侧融合感知平台和/或第三方平台。V2X事件输入的时间属性是不确定的。有的是长期有效,有的是携带时间属性,有的则没有时间属性。也就是说,V2X事件是具备生命周期的,如限速这一V2X事件的生命周期是长期有效,而施工这一V2X事件的生命周期则是一段时间内有效。单双号限行这一V2X事件的生命周期则是有指定日期周期性时间段内有效。
因此,可将生命周期分为以下几类:长期有效、连续时间段有效、无指定日期周期性时间段有效、有指定日期周期性时间段有效、随机性时间段有效。与之对应的,与V2X事件相对应的电子围栏也具备生命周期,电子围栏的生命周期与电子围栏所对应的V2X事件的生命周期相同。即在V2X事件的生命周期结束时,其所对应的电子围栏失效。且对于长期有效和有时间属 性的V2X事件,C-V2X云控平台会根据V2X事件的生命周期动态创建、更新和删除V2X事件影响路段的电子围栏集合;对于没有时间属性的V2X事件,可以根据V2X事件开始和结束标识动态创建、更新和删除V2X事件影响路段的电子围栏集合。
表1示出了V2X事件电子围栏的生命周期,表1是一种示例性说明。

表1
在表1中,电子围栏所附带的标记是可根据实际情况进行修改编辑的。若V2X事件为限速事件,在限速值改变时(例如:由80km/h变为70km/h时),则可编辑限速值,并更新电子围栏;若V2X事件为施工事件,则在通常情况下,更新电子围栏指随着施工面积的改变而更新电子围栏的范围,或随着工期的改变而更新电子围栏的生命周期;在V2X事件为潮汐车道或限行时,则不存在更新电子围栏的情况,只存在根据潮汐车道的周期性时段,新建或删除其所对应的电子围栏的情况。在V2X事件为监测到障碍物时,可根据标志位来确定障碍物的持续时间,例如:可通过摄像头对某一路段进行拍摄,若持续有障碍物存在,则标志为1,若障碍物被清空,则标志由1转为0,由此可确定障碍物的持续时间,该持续时间即为障碍物这一V2X事件所对应的电 子围栏的生命周期。
在一种可能的实现方式中,预先设置的事件推送规则包括以下至少一项:在V2X事件的类型为第一类型时,预先设置的事件推送规则为:执行第一推送方式和第二推送方式;在V2X事件的类型为第二类型时,预先设置的事件推送规则为:执行第一推送方式;在V2X事件的类型为第三类型时,预先设置的事件推送规则为:执行第一推送方式、第二推送方式、第三推送方式;在V2X事件的类型为第四类型时,预先设置的事件推送规则为:执行第二推送方式和第四推送方式;在V2X事件的类型为第五类型时,预先设置的事件推送规则为:执行第二推送方式;在V2X事件的类型为第六类型时,预先设置的事件推送规则为:执行第一推送方式和第三推送方式;在V2X事件的类型为第七类型时,预先设置的事件推送规则为:执行第三推送方式和第五推送方式;
其中,第一推送方式为:向事件发生点的上游路段推送V2X事件;第二推送方式为:事件发生点上游分流路口的上游路段推送V2X事件;第三推送方式为:向事件发生点的下游路段推送V2X事件;第四推送方式为:向事件发生点上游合流路口的上游路段推送V2X事件;第五推送方式为:向事件发生点下游合流路口的上游路段推送V2X事件。
第一类型的事件包括:道路拥堵;第二类型的事件包括以下至少一项:道路施工、交通事故、路面湿滑、路面结冰、能见度低于预设值、紧急制动、异常车辆、障碍物、行人过街;第三类型的事件包括以下至少一项:限速、禁止停车、急转弯、注意行人、注意合流、注意保持车距、慢行、停车让行、减速让行、禁止掉头、禁止超车;第四类型的事件包括:潮汐车道;第五类型的事件包括以下至少一项:单双号限行、单行线、临时管制;第六类型的事件包括以下至少一项:逆行车辆、失控车辆;第七类型的事件包括:特种车辆。
需要说明的是,C-V2X云控平台可根据具体V2X事件的影响范围,定义各类V2X事件在路网关系上下游的推送距离,部分事件推送规则如表2所示:

表2
其中,定义的推送距离为d,在事件类型为道路拥堵时,所执行的规则为r6和r8。这与在V2X事件的类型为第一类型时,确定事件推送规则为:执行第一推送方式和第二推送方式是相对应的,r6即为第一推送方式,r8为第二推送方式。同理,上表中的r5为第三推送方式,r10为第四推送方式,r4为第5推送方式。
其中,上下游路段关系可参考图5。图5中的黑点表示V2X事件的发生点(不限事件类型)。由图5所示路段关系,并根据事件推送的10条规则,通过检索路网关系数据库,计算路网关系,可得到每条规则下V2X事件影响的路段:
r1,下游分流路口的下游是路段2,4,6,8;
r2,下游分流路口的上游是路段1,3,7;
r3,下游合流路口的下游是路段2,4,6,8;
r4,下游合流路口的上游是路段1,3,7;
r5,事件发生点下游是事件发生点到路段5终点方向;
r6,事件发生点上游是事件发生点到路段5起点方向;
r7,上游分流路口的下游是路段10,12,14;
r8,上游分流路口的上游是路段6,9,11,13;
r9,上游合流路口的下游是路段10,12,14;
r10,上游合流路口的上游是路段6,9,11,13。
且需要说明的是,表2所示的事件推送规则表是针对于部分事件、部分推送规则的示意性说明。表2所示的事件推送规则表中,r1、r2、r3、r7这几条规则可根据实际的事件发生情况,并参照路网关系而确定,且可根据实际需要扩展更多条规则。
在一种可能的实现方式中,分别构建V2X事件的至少一条待推送路段中,每条待推送路段的电子围栏包括如下步骤,如图6所示:
S601、分别确定V2X事件的每条待推送路段的中心线上的参考点集;
S602、对参考点集进行去重处理;
S603、根据去重后的参考点集,分别构建V2X事件的每条待推送路段的电子围栏。
下面以图5所示的路段为基础,对如何确定V2X事件的每条待推送路段的中心线上的参考点集从以下三个方面进行说明。
对于r1,r3,r7,r9四种情况,影响的路段中心线参考点集均从起点到终点方向计算,以路段2为例,假设配置的推送距离为d,路段2的长度为l,路段的中心线点集为p[0]到p[N],则构建电子围栏的方法包括以下几步:
计算事件影响范围在路段2的参考点集;
如果d>l,则参考点集为p[0]到p[N];
如果d<l,以路段的第一个点p[0]为参考点集的起点,p[index]为参考点集的终点;index的值通过下列方法计算得出:
从i=0开始,i<N+1,依次计算p[i]到p[i+1]的距离:distance(p[i],p[i+1]);
累计距离sum=sum+distance(p[i],p[i+1]);
当sum>d,index=i,则参考点集为p[0]到p[index]。
对于r2,r4,r8,r10四种情况,影响的路段中心线参考点集均从终点到起点方向计算,以路段1为例,假设配置的推送距离d,路段1的长度为l,路段的中心线点集为p[i],则构建电子围栏的方法包括以下几步:
计算事件影响范围在路段1的中心线的参考点集;
如果d>l,则参考点集为p[0]到p[i];
如果d<l,取路段的最后一个点p[N]为参考点集的起点,p[index]为参考点集的终点;index的值通过下列方法计算得出:
从i=N开始,i>0,依次计算p[i]到p[i-1]的距离:distance(p[i],p[i-1]);
累计距离sum=sum+distance(p[i],p[i-1]);
当sum>d,index=i,则参考点集为p[N]到p[index]。
对于r5,r6这两种情况,需计算事件发生点对应路段中心线上参考点集,假设配置的推送距离d,路段的长度为l,路段的中心线点集为p[0]到p[N],事件发生点的经度为lng,纬度为lat;计算事件发生点距离路段中心线点集p上最近的一个点为p[point];
对于r5,如果d>distance(p[point],p[N]),参考点集为p[point]到p[N];
如果d<distance(p[point],p[N]),取起点为p[point],终点为p[index];
index的值通过下列方法计算得出:
从i=point开始,i<N,依次计算p[i]到p[i+1]的距离distance(p[i],p[i+1]);
累计距离sum=sum+distance(p[i],p[i+1]);
当sum>d,index=i,参考点集为p[point]到p[index]。
对于r6,如果d>distance(p[point],p[0]),参考点集为p[point]到p[0];
如果d<distance(p[point],p[N]),取起点为p[point],终点为p[index]为参考点集;
index的值通过下列方法计算得出:
从i=point开始,i>0,依次计算p[i]到p[i-1]的距离distance(p[i],p[i-1]);
累计距离sum=sum+distance(p[i],p[i-1]);
当sum>d,index=i,参考点集为p[point]到p[index]。
由此,通过上述计算得到了10条规则中事件影响路段中心线的参考点集集合,即S601执行完毕。后可对参考点集集合中相同方向的的参考点集进行去重,并计算每个参考点集对应的电子围栏。其中,根据去重后的参考点集,分别构建V2X事件的每条待推送路段的电子围栏包括:确定每条待推送路段的路段宽度W;在线段p[i],p[i+1]上,确定参考点集中的任意参考点p[i]的垂直线;在垂直线上,确定与p[i]的距离为W/2的2个顶点;遍历p[i],将所有的顶点连接成一个多边形;将多边形确定为待推送路段的电子围栏E;其中,0≤i≤N-1,i为正整数,p[0]为参考点集的起点,p[N]为参考点集的终点。
在一种可能的实现方式中,可将电子围栏与路段、V2X事件的对应关系,路段的方位、V2X事件提示语等存入关系数据库,并保存在C-V2X云控平台上,以做好前序准备。之后,可执行图1所示的推送V2X事件的方案。
由此,在C-V2X云控平台接入V2X事件后,可根据路网关系和事件的生命周期,结合事件推送规则动态管理电子围栏集合,通过实时分析车辆位置信息和V2X事件绑定的电子围栏关系,由C-V2X云控平台将V2X事件信息精准下发到网联车辆。通过在C-V2X云控平台管理事件的电子围栏,解决了车载终端无法有效过滤V2X事件信息的问题,C-V2X云控平台能够精准地将事件信息推送到网联车辆,从而提高驾驶体验,保障驾驶安全。
现对本申请实施例的技术效果进行进一步说明。本申请可实时计算,并下发V2X事件。具体地,可实时监控车辆的位置,并根据车辆的经纬度及航 向角等信息将车辆匹配到行驶的路段上,然后查询该路段id上的V2X事件相关联的电子围栏,如果车辆在此电子围栏中,则将该电子围栏的事件通过C-V2X云控平台下发给车载终端,实现V2X事件在车端的呈现,同时车端将收到的V2X事件及车辆信息回传给V2X云控平台,平台能够实时展示网联车辆收到的V2X事件信息,形成业务闭环。由于本申请实施例只计算网联车辆所在路段上的电子围栏与车的位置关系,有效减少了根据车辆位置所在路段计算关联事件电子围栏的耗时,提升了系统的实时性。
本申请实施例使得C-V2X车路协同在架构上更加简洁、清晰。在边缘云平台(图2所示系统架构)可完成车载终端和融合感知事件的接入;C-V2X云控平台接入事件后,根据路网关系和事件生命周期,结合事件推送规则,动态管理事件的电子围栏;创建电子围栏时,C-V2X云控平台通过绑定电子围栏与路段的关系,有效减少了计算车辆位置所在路段关联事件电子围栏的耗时,提升了系统的实时性,同时提高了V2X事件信息下发的精准性。
本申请实施例能够根据事件发生点的路网关系,按规则动态实时的生成电子围栏,可广泛应用于交通事件发布、区域应急避险、智慧港口道路异常预警等领域。
本申请实施例提供了C-V2X车路协同环境在不具备部署RSU设备条件下的一种解决方案,降低了车辆网路侧设备的实施成本,减少了无线信道的干扰,提高了V2X事件下发的精准性、智能性和实时性,具有广泛的实用性和可推广性。且通过建立网联车辆到云控平台的直达链路,有效的减少信息传输的节点,降低了传输时延。
本申请实施例可应用在智能网联领域,可用于跟踪车辆轨迹,并结合平台接入的交通事件,通过Uu口向车辆精准、智能、实时的发送道路交通事件,提升道路通行效率与行车安全,让车主拥有更加智能、便捷、安全的驾乘体验。
图7示出了根据本申请实施例所示的一种V2X事件的推送装置的结构框图,装置应用于C-V2X云控平台上,如图7所示,装置70包括:
获取模块701,用于获取车辆的位置信息;
确定模块702,用于根据车辆的位置信息,确定车辆所在的路段;确定 与路段对应的电子围栏;根据电子围栏,确定与电子围栏相关联的V2X事件;
推送模块703,用于将V2X事件推送至车辆;
其中,每一电子围栏均对应一个V2X事件;
获取模块701,还用于在确定与路段对应的电子围栏之前,获取V2X事件;
确定模块702,还用于在确定与路段对应的电子围栏之前,在预先设置的事件推送规则中,选取与V2X事件对应的事件推送规则,并根据事件推送规则确定V2X事件的至少一条待推送路段;
装置70还包括:构建模块704,用于在确定与路段对应的电子围栏之前,分别构建V2X事件的至少一条待推送路段中,每条待推送路段的电子围栏。
在一种可能的实现方式中,电子围栏具备生命周期,电子围栏的生命周期与电子围栏所对应的V2X事件的生命周期相同;
其中,生命周期包括以下至少一项:
长期有效、连续时间段有效、无指定日期周期性时间段有效、有指定日期周期性时间段有效、随机性时间段有效。
在一种可能的实现方式中,获取模块,还用于通过部署在边缘云平台中的车载终端网关获取车辆的位置信息;其中,边缘云平台与C-V2X云控平台和车载终端分别连接,用于搭建C-V2X云控平台和车载终端间的直达链路。
在一种可能的实现方式中,确定模块702,还用于在预先设置的事件推送规则中,确定与V2X事件对应的事件推送规则之前,根据V2X事件的发生点、路网关系和事件的类型确定预先设置的事件推送规则;
其中,路网关系包括目标区域中,每一路段与其它各个路段之间的邻接关系信息。
在一种可能的实现方式中,装置70还包括:储存模块,用于将路网关系存入路网关系数据库中,其中,路网关系数据库能够兼容不同类型的数据库,且能够存储不同类型的地理坐标系下的路网关系。
在一种可能的实现方式中,所述预先设置的事件推送规则包括以下至少一项:在V2X事件的类型为第一类型时,所述预先设置的事件推送规则为:执行第一推送方式和第二推送方式;
在V2X事件的类型为第二类型时,所述预先设置的事件推送规则为:执行第一推送方式;
在V2X事件的类型为第三类型时,所述预先设置的事件推送规则为:执行第一推送方式、第二推送方式、第三推送方式;
在V2X事件的类型为第四类型时,所述预先设置的事件推送规则为:执行第二推送方式和第四推送方式;
在V2X事件的类型为第五类型时,所述预先设置的事件推送规则为:执行第二推送方式;
在V2X事件的类型为第六类型时,所述预先设置的事件推送规则为:执行第一推送方式和第三推送方式;
在V2X事件的类型为第七类型时,所述预先设置的事件推送规则为:执行第三推送方式和第五推送方式;
其中,
第一推送方式为:向事件发生点的上游路段推送V2X事件;
第二推送方式为:事件发生点上游分流路口的上游路段推送V2X事件;
第三推送方式为:向事件发生点的下游路段推送V2X事件;
第四推送方式为:向事件发生点上游合流路口的上游路段推送V2X事件;
第五推送方式为:向事件发生点下游合流路口的上游路段推送V2X事件。
优选地,第一类型的事件包括:道路拥堵;
第二类型的事件包括以下至少一项:道路施工、交通事故、路面湿滑、路面结冰、能见度低于预设值、紧急制动、异常车辆、障碍物、行人过街;
第三类型的事件包括以下至少一项:限速、禁止停车、急转弯、注意行人、注意合流、注意保持车距、慢行、停车让行、减速让行、禁止掉头、禁止超车;
第四类型的事件包括:潮汐车道;
第五类型的事件包括以下至少一项:单双号限行、单行线、临时管制;
第六类型的事件包括以下至少一项:逆行车辆、失控车辆;
第七类型的事件包括:特种车辆。
在一种可能的实现方式中,构建模块704,还用于分别确定V2X事件的 每条待推送路段的中心线上的参考点集,并对参考点集进行去重处理;
根据去重后的参考点集,分别构建V2X事件的每条待推送路段的电子围栏。
优选地,构建模块,还用于确定每条待推送路段的路段宽度W;
在线段p[i],p[i+1]上,确定参考点集中的任意参考点p[i]的垂直线;
在垂直线上,确定与p[i]的距离为W/2的2个顶点;
遍历p[i],将所有的顶点连接成一个多边形;
将多边形确定为待推送路段的电子围栏E;
其中,0≤i≤N-1,i为正整数,p[0]为参考点集的起点,p[N]为参考点集的终点。
由此,通过建立路网关系,分析事件的生命周期,结合事件推送规则模型,能够精准的定位交通事件影响的路段及其覆盖的电子围栏集合,解决了交通事件影响范围定位不够精准的难题,且通过计算网联车辆所在路段与事件电子围栏集合的位置关系,为车路协同提供了更加实时、准确、智能、高效的推送服务。为C-V2X云控平台提供实时精准的事件推送服务。
图8示出了一种电子设备80,其特征在于,包括:处理器801、存储器802及存储在存储器802上并可在处理器801上运行的程序,程序被处理器801执行时实现如上文实施例中所述的一种V2X事件的推送方法的步骤。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现上文实施例所述的一种V2X事件的推送方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方 法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (12)

  1. 一种V2X事件的推送方法,所述方法应用于C-V2X云控平台上,所述方法包括:
    获取车辆的位置信息;
    根据所述车辆的位置信息,确定所述车辆所在的路段;
    确定与所述路段对应的电子围栏;
    根据所述电子围栏,确定与所述电子围栏相关联的V2X事件;
    将所述V2X事件推送至所述车辆;
    其中,每一电子围栏均对应一个V2X事件;
    其中,在确定与所述路段对应的电子围栏之前,所述方法还包括:
    获取V2X事件;
    在预先设置的事件推送规则中,选取与所述V2X事件对应的事件推送规则;
    根据所述事件推送规则确定所述V2X事件的至少一条待推送路段;
    分别构建所述V2X事件的至少一条待推送路段中,每条待推送路段的电子围栏。
  2. 根据权利要求1所述的方法,其中,所述电子围栏具备生命周期,所述电子围栏的生命周期与所述电子围栏所对应的V2X事件的生命周期相同;
    其中,所述生命周期包括以下至少一项:
    长期有效、连续时间段有效、无指定日期周期性时间段有效、有指定日期周期性时间段有效、随机性时间段有效。
  3. 根据权利要求1所述的方法,其中,所述获取车辆的位置信息包括:
    通过部署在边缘云平台中的车载终端网关获取车辆的位置信息;其中,所述边缘云平台与所述C-V2X云控平台和车载终端分别连接,用于搭建所述C-V2X云控平台和所述车载终端间的直达链路。
  4. 根据权利要求1所述的方法,其中,在预先设置的事件推送规则中,选取与所述V2X事件对应的事件推送规则之前,所述方法还包括:
    根据V2X事件的发生点、路网关系和事件的类型,确定预先设置的事件 推送规则;
    其中,所述路网关系包括目标区域中,每一路段与其它各个路段之间的邻接关系信息。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    将路网关系存入路网关系数据库中,其中,所述路网关系数据库能够兼容不同类型的数据库,且能够存储不同类型的地理坐标系下的路网关系。
  6. 根据权利要求4所述的方法,其中,所述预先设置的事件推送规则包括以下至少一项:
    在所述V2X事件的类型为第一类型时,所述预先设置的事件推送规则为:执行第一推送方式和第二推送方式;
    在所述V2X事件的类型为第二类型时,所述预先设置的事件推送规则为:执行第一推送方式;
    在所述V2X事件的类型为第三类型时,所述预先设置的事件推送规则为:执行第一推送方式、第二推送方式、第三推送方式;
    在所述V2X事件的类型为第四类型时,所述预先设置的事件推送规则为:执行第二推送方式和第四推送方式;
    在所述V2X事件的类型为第五类型时,所述预先设置的事件推送规则为:执行第二推送方式;
    在所述V2X事件的类型为第六类型时,所述预先设置的事件推送规则为:执行第一推送方式和第三推送方式;
    在所述V2X事件的类型为第七类型时,所述预先设置的事件推送规则为:执行第三推送方式和第五推送方式;
    其中,
    所述第一推送方式为:向所述事件发生点的上游路段推送所述V2X事件;
    所述第二推送方式为:所述事件发生点上游分流路口的上游路段推送所述V2X事件;
    所述第三推送方式为:向所述事件发生点的下游路段推送所述V2X事件;
    所述第四推送方式为:向所述事件发生点上游合流路口的上游路段推送所述V2X事件;
    所述第五推送方式为:向所述事件发生点下游合流路口的上游路段推送所述V2X事件。
  7. 根据权利要求6所述的方法,其中,
    所述第一类型的事件包括:道路拥堵;
    所述第二类型的事件包括以下至少一项:道路施工、交通事故、路面湿滑、路面结冰、能见度低于预设值、紧急制动、异常车辆、障碍物、行人过街;
    所述第三类型的事件包括以下至少一项:限速、禁止停车、急转弯、注意行人、注意合流、注意保持车距、慢行、停车让行、减速让行、禁止掉头、禁止超车;
    所述第四类型的事件包括:潮汐车道;
    所述第五类型的事件包括以下至少一项:单双号限行、单行线、临时管制;
    所述第六类型的事件包括以下至少一项:逆行车辆、失控车辆;
    所述第七类型的事件包括:特种车辆。
  8. 根据权利要求1或6所述的方法,其中,分别构建所述V2X事件的至少一条待推送路段中,每条待推送路段的电子围栏包括:
    分别确定所述V2X事件的每条待推送路段的中心线上的参考点集;
    对所述参考点集进行去重处理;
    根据去重后的参考点集,分别构建所述V2X事件的每条待推送路段的电子围栏。
  9. 根据权利要求8所述的方法,其中,根据去重后的参考点集,分别构建所述V2X事件的每条待推送路段的电子围栏包括:
    确定每条所述待推送路段的路段宽度W;
    在线段p[i],p[i+1]上,确定所述参考点集中的任意参考点p[i]的垂直线;
    在所述垂直线上,确定与p[i]的距离为W/2的2个顶点;
    遍历p[i],将所有的顶点连接成一个多边形;
    将所述多边形确定为所述待推送路段的电子围栏E;
    其中,所述0≤i≤N-1,i为正整数,p[0]为参考点集的起点,p[N]为参考 点集的终点。
  10. 一种V2X事件的推送装置,所述装置应用于C-V2X云控平台上,所述装置包括:
    获取模块,用于获取车辆的位置信息;
    确定模块,用于根据所述车辆的位置信息,确定所述车辆所在的路段;确定与所述路段对应的电子围栏;根据所述电子围栏,确定与所述电子围栏相关联的V2X事件;
    推送模块,用于将所述V2X事件推送至所述车辆;
    其中,每一电子围栏均对应一个V2X事件;
    所述获取模块,还用于在确定与所述路段对应的电子围栏之前,获取V2X事件;
    所述确定模块,还用于在确定与所述路段对应的电子围栏之前,在预先设置的事件推送规则中,选取与所述V2X事件对应的事件推送规则,并根据所述事件推送规则确定所述V2X事件的至少一条待推送路段;
    所述装置还包括:构建模块,用于在确定与所述路段对应的电子围栏之前,分别构建所述V2X事件的至少一条待推送路段中,每条待推送路段的电子围栏。
  11. 一种电子设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至9中任一项所述的V2X事件的推送方法的步骤。
  12. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至9中任一项所述的V2X事件的推送方法的步骤。
PCT/CN2023/132334 2022-11-30 2023-11-17 一种v2x事件的推送方法及装置 WO2024114414A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211523277.3 2022-11-30
CN202211523277.3A CN116915844A (zh) 2022-11-30 2022-11-30 一种v2x事件的推送方法及装置

Publications (1)

Publication Number Publication Date
WO2024114414A1 true WO2024114414A1 (zh) 2024-06-06

Family

ID=88351691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132334 WO2024114414A1 (zh) 2022-11-30 2023-11-17 一种v2x事件的推送方法及装置

Country Status (2)

Country Link
CN (1) CN116915844A (zh)
WO (1) WO2024114414A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116915844A (zh) * 2022-11-30 2023-10-20 中移(上海)信息通信科技有限公司 一种v2x事件的推送方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105335413A (zh) * 2014-07-31 2016-02-17 国际商业机器公司 生成查询索引以及基于该查询索引进行查询的方法和装置
CN111311941A (zh) * 2018-12-11 2020-06-19 上海博泰悦臻电子设备制造有限公司 基于v2x技术的事件推送方法、系统、v2x终端及v2x服务器
US11184734B1 (en) * 2020-08-19 2021-11-23 T-Mobile Usa, Inc. Using geofencing areas to improve road safety use cases in a V2X communication environment
US20220046381A1 (en) * 2020-08-05 2022-02-10 Verizon Patent And Licensing Inc. Vehicle to everything dynamic geofence
CN114202903A (zh) * 2021-12-31 2022-03-18 北京中交兴路信息科技有限公司 基于dem数据的车辆预警方法、装置、设备及存储介质
CN114202951A (zh) * 2021-12-27 2022-03-18 北京中交兴路车联网科技有限公司 一种车辆通知方法和系统
CN116915844A (zh) * 2022-11-30 2023-10-20 中移(上海)信息通信科技有限公司 一种v2x事件的推送方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105335413A (zh) * 2014-07-31 2016-02-17 国际商业机器公司 生成查询索引以及基于该查询索引进行查询的方法和装置
CN111311941A (zh) * 2018-12-11 2020-06-19 上海博泰悦臻电子设备制造有限公司 基于v2x技术的事件推送方法、系统、v2x终端及v2x服务器
US20220046381A1 (en) * 2020-08-05 2022-02-10 Verizon Patent And Licensing Inc. Vehicle to everything dynamic geofence
US11184734B1 (en) * 2020-08-19 2021-11-23 T-Mobile Usa, Inc. Using geofencing areas to improve road safety use cases in a V2X communication environment
CN114202951A (zh) * 2021-12-27 2022-03-18 北京中交兴路车联网科技有限公司 一种车辆通知方法和系统
CN114202903A (zh) * 2021-12-31 2022-03-18 北京中交兴路信息科技有限公司 基于dem数据的车辆预警方法、装置、设备及存储介质
CN116915844A (zh) * 2022-11-30 2023-10-20 中移(上海)信息通信科技有限公司 一种v2x事件的推送方法及装置

Also Published As

Publication number Publication date
CN116915844A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
CN111524357B (zh) 用于车辆安全行驶所需的多数据融合的方法
US11810454B2 (en) Map data construction method vehicle terminal, and server
EP3357049B1 (en) Transmission of targeted roadway alerts
US7499949B2 (en) Method and system for obtaining recurring delay data using navigation systems
EP3708960A1 (en) Maplets for maintaining and updating a self-healing high definition map
US11096026B2 (en) Road network change detection and local propagation of detected change
WO2024114414A1 (zh) 一种v2x事件的推送方法及装置
WO2022193995A1 (zh) 一种地图更新方法、基于地图的驾驶决策方法及装置
US20200210720A1 (en) Non-transitory storage medium storing image transmission program, image transmission device, and image transmission method
CN112991743A (zh) 基于行驶路径的实时交通风险ai预测方法及其系统
US10665096B2 (en) Non-transitory storage medium storing image transmission program, image transmission device, and image transmission method
US20230204372A1 (en) Method, apparatus, and system for determining road work zone travel time reliability based on vehicle sensor data
CN105806355A (zh) 一种车辆绿色路径导航系统及方法
WO2022148166A1 (zh) 电子地图校正方法、导航信息设置方法、导航方法及装置
US20200292329A1 (en) Maplets for maintaining and updating a self-healing high definition map
CN113724499A (zh) 一种道路交通事件三维可视化分析方法及系统
JP2020091652A (ja) 情報提供システム、サーバ、及びコンピュータプログラム
US11280622B2 (en) Maplets for maintaining and updating a self-healing high definition map
US11255680B2 (en) Maplets for maintaining and updating a self-healing high definition map
WO2015107056A1 (de) Konzept zur positionsabhängigen bewertung einer steuerinformation, verfahren zum steuern eines bewegten objekts und informationssystem
KR102302486B1 (ko) 도시 도로의 운행 속도 처리 방법, 도시 도로의 운행 속도 처리 장치, 기기 및 비휘발성 컴퓨터 저장 매체
CN114792447A (zh) 使用v2x通信的各种收费应用程序的智能收费应用程序确定
CN103473821A (zh) 道路交通收费方法、装置及系统
CN111337043A (zh) 一种路径的规划方法、装置、存储介质和电子设备
CN205580474U (zh) 一种车辆绿色路径导航系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896566

Country of ref document: EP

Kind code of ref document: A1