WO2024114053A1 - 一种数据包传输的方法及装置 - Google Patents

一种数据包传输的方法及装置 Download PDF

Info

Publication number
WO2024114053A1
WO2024114053A1 PCT/CN2023/119889 CN2023119889W WO2024114053A1 WO 2024114053 A1 WO2024114053 A1 WO 2024114053A1 CN 2023119889 W CN2023119889 W CN 2023119889W WO 2024114053 A1 WO2024114053 A1 WO 2024114053A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
data packet
indication information
terminal
terminal devices
Prior art date
Application number
PCT/CN2023/119889
Other languages
English (en)
French (fr)
Inventor
张海森
李秉肇
陈磊
高翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024114053A1 publication Critical patent/WO2024114053A1/zh

Links

Definitions

  • the present application relates to the field of communication technology, and in particular to a method and device for transmitting a data packet.
  • the communication system includes one or more terminal devices, which are connected to the core network through an access network to realize communication between multiple communication devices.
  • NR new radio
  • a network device can send a data packet to a terminal device in a unicast manner.
  • the network device can independently schedule data packets for each terminal device, for example, determining a modulation coding method according to the channel conditions of each terminal device.
  • the wireless resources required to schedule the small data packet are small. If the small data packet cannot fill up the minimum granularity resources scheduled by the network device, the network device may fill up the minimum granularity resources by filling some bits. Sending unnecessary filling bits will result in resource waste and energy consumption.
  • the present application provides a method and apparatus for data packet transmission, wherein a network device can aggregate data packets of multiple terminal devices in the same terminal device group into one data packet for transmission, and then send the aggregated data packet to the terminal device, thereby reducing the signaling overhead and resource waste caused by the network device sending data packets to each of the multiple terminal devices separately, thereby improving air interface transmission efficiency and transmission reliability.
  • the present application provides a method for data packet transmission, the method comprising: determining a data packet for each of N terminal devices, the N terminal devices being N terminal devices in a first terminal device group, and N being an integer greater than 1; sending an aggregated data packet to a first terminal device, the aggregated data packet comprising identification information of the N terminal devices and a data packet for each of the N terminal devices, the first terminal device being one of the N terminal devices.
  • the data packets of N terminal devices into an aggregated data packet for sending, and send the aggregated data packet to N terminal devices.
  • the signaling overhead and resource waste caused by sending data packets to each of the multiple terminal devices separately can be reduced, thereby improving the air interface transmission efficiency; in addition, compared with sending data packets to each terminal device individually, the sending of larger aggregated data packets can improve the coding gain, thereby improving the air interface transmission reliability.
  • the method is performed by a first communication device, and the first communication device is a network device or a module in the network device.
  • the method may also be implemented by one or more communication modules.
  • the one or more communication modules may be arranged in one communication device or in different communication devices.
  • the data packet of each of the N terminal devices is a data packet of the radio link control RLC layer, and the aggregated data packet is a data packet of the media access control MAC layer; or the data packet of each of the N terminal devices is a data packet of the packet data convergence layer protocol PDCP layer, and the aggregated data packet is a data packet of the media access control MAC layer.
  • the size of a data packet of each of the N terminal devices does not exceed a first threshold; and/or N is less than or equal to a second threshold.
  • the fairness of the aggregated data packets between the terminal devices can be taken into account, and on the other hand, the delay and energy consumption of the terminal devices parsing the aggregated data packets caused by too many terminal devices being aggregated into one aggregated data packet can be reduced.
  • the network device resources cannot be reasonably utilized due to too few terminal devices being aggregated into one aggregated data packet.
  • the first threshold and/or the second threshold is preset by the protocol; or, the first threshold and/or the second threshold is configured by the network device.
  • the method before the network device sends an aggregate data packet to the first terminal device, the method also includes at least one of the following: sending first indication information to the first terminal device, the first indication information indicating enabling transmission of the aggregate data packet; and/or, sending second indication information to the first terminal device, the second indication information indicating at least one terminal device of the first terminal device group receives the aggregate data packet, or the second indication information indicates receiving the aggregate data packet.
  • the method before the network device sends the aggregated data packet to the first terminal device, the method further includes: sending first indication information to the first terminal device, where the first indication information indicates to disable transmission of the aggregated data packet.
  • the network device can flexibly enable or disable the transmission of aggregated data packets through the first indication information, thereby reducing the energy consumption caused by the terminal device always enabling this function.
  • the second indication information includes a bit map indicating that at least one terminal device of the first terminal device group receives an aggregated data packet; or, the second indication information includes an identifier of the at least one terminal device; or, the second indication information is a first wireless network temporary identifier RNTI, and the first RNTI corresponds to the at least one terminal device.
  • the network device can flexibly instruct the terminal devices to receive the aggregated data packet through the second indication information, thereby saving energy consumption caused by these terminal devices still receiving the aggregated data packet when the data packets of some terminal devices are not included in the aggregated data packet.
  • the method also includes: the network device sends M configuration information for the terminal device group to the first terminal device, each of the M configuration information includes at least one of the following: an identifier of the configuration information, a first wireless network temporary identifier RNTI, or wireless resource information used for transmitting data by the terminal device group, where M is a positive integer.
  • the method further includes: the network device sends third indication information to the first terminal device, the third indication information indicating activation of one or more of the M configuration information; and/or the third indication information indicating deactivation of one or more of the M configuration information.
  • the aggregate data packet includes N aggregate data units, the N aggregate data units correspond to the N terminal devices, each of the N aggregate data units includes an aggregate data packet header and an aggregate data field, the aggregate data packet header indicates identification information of a terminal device among the N terminal devices, and the aggregate data field indicates a data packet of a terminal device among the N terminal devices.
  • the network device sends the aggregate data packet to the first terminal device in a unicast or multicast manner.
  • At least one of the first indication information, the second indication information, or the third indication information can be carried in a first signaling, and the first signaling includes at least one of a radio resource control RRC message, a packet data convergence layer protocol protocol data unit PDCP PDU, a media access control control unit MAC CE, or downlink control information DCI.
  • the first signaling includes at least one of a radio resource control RRC message, a packet data convergence layer protocol protocol data unit PDCP PDU, a media access control control unit MAC CE, or downlink control information DCI.
  • the identifier of the first terminal device may be a cell radio network temporary identifier or a logical channel identifier.
  • the identifier of the terminal device is all or part of the logical channel identifier
  • the method further includes: the network device sends a correspondence between all or part of the logical channel identifier and the first terminal device.
  • the purpose of the network device flexibly indicating the identification of the terminal device can be achieved without increasing the complexity and additional overhead of the terminal device implementation.
  • the network device can indicate which terminal device's data.
  • a method for data transmission comprises: receiving an aggregated data packet from a network device, the aggregated data packet comprising identification information of N terminal devices, and a data packet of each terminal device in the N terminal devices, the N terminal devices being the first N terminal devices in a terminal device group; determining whether there is a data packet corresponding to a first terminal device based on identification information of the N terminal devices, the first terminal device being one of the N terminal devices, and N being an integer greater than 1.
  • the method is performed by a second communication device, and the second communication device is a first terminal device or a module in the first terminal device.
  • the method may also be implemented by one or more communication modules.
  • the one or more communication modules may be arranged in one communication device or in different communication devices.
  • the method described in the second aspect is a terminal-side method corresponding to the method described in the first aspect, and therefore can also achieve the beneficial effects that can be achieved by the first aspect.
  • the data packet of each of the N terminal devices is a data packet of the radio link control RLC layer, and the aggregated data packet is a data packet of the media access control MAC layer; or the data packet of each of the N terminal devices is a data packet of the packet data convergence layer protocol PDCP layer, and the aggregated data packet is a data packet of the media access control MAC layer.
  • the size of a data packet of each of the N terminal devices does not exceed a first threshold; and/or N is less than or equal to a second threshold.
  • the first threshold and/or the second threshold is preset by the protocol; or, the first threshold and/or the second threshold is configured by the network device.
  • the method before receiving the aggregated data packet from the network device, the method also includes at least one of the following: receiving first indication information from the network device, the first indication information indicating enabling transmission of the aggregated data packet; and/or, receiving second indication information from the network device, the second indication information indicating at least one terminal device of the first terminal device group receives the aggregated data packet; or, the second indication information indicating receiving the aggregated data packet.
  • the method further includes: receiving first indication information from a network device, where the first indication information indicates disabling transmission of the aggregated data packet.
  • the second indication information includes a bit map indicating that at least one terminal device of the first terminal device group receives an aggregated data packet; or, the second indication information includes an identifier of the at least one terminal device; or, the second indication information is a first wireless network temporary identifier RNTI, and the first RNTI corresponds to the at least one terminal device.
  • the second indication information includes an identifier of the at least one terminal device, and the method further includes: determining whether to receive a physical downlink channel corresponding to the aggregated data packet based on the second indication information.
  • whether to receive the physical downlink channel corresponding to the aggregate data packet is determined based on the second indication information, including: if the second indication information includes identification information of the first terminal device, determining to receive the physical downlink channel corresponding to the aggregate data packet; and/or, if the second indication information does not include identification information of the first terminal device, determining not to receive the physical downlink channel corresponding to the aggregate data packet.
  • whether to receive the physical downlink channel corresponding to the aggregate data packet is determined based on the second indication information, including: if the bit corresponding to the first terminal device in the bit map is set to a first value, determining to receive the physical downlink channel corresponding to the aggregate data packet; if the bit corresponding to the first terminal device in the bit map is set to a second value, determining not to receive the physical downlink channel corresponding to the aggregate data packet.
  • the method also includes: receiving M configuration information for a terminal device group from a network device, each of the M configuration information includes at least one of the following: a group radio network temporary identifier G-RNTI, and/or wireless resource information for transmitting data by the terminal device group, and M is a positive integer.
  • the method further includes: receiving third indication information, where the third indication information indicates activation of one or more of the M configuration information; or, the third indication information indicates deactivation of one or more of the M configuration information.
  • the aggregate data packet includes N aggregate data units, the N aggregate data units correspond to the N terminal devices, and each of the N aggregate data units includes an aggregate data packet header and an aggregate data field. Indicates identification information of one terminal device among the N terminal devices, and the aggregate data field indicates a data packet of one terminal device among the N terminal devices.
  • the aggregated data packet is received from the network device in a unicast or multicast manner.
  • the method also includes at least one of the following: if the identification information of the N terminal devices includes identification information of an unknown terminal device, the first terminal device discards the data packet corresponding to the identification information of the unknown terminal device; if the identification information of the N terminal devices includes third terminal identification information that does not match the identification information of the first terminal device, the first terminal device discards the data packet corresponding to the identification information of the third terminal device; or, if the identification information of the N terminal devices includes identification information of the first terminal device, the first terminal device obtains the data packet corresponding to the identification information of the first terminal device.
  • At least one of the first indication information, the second indication information, or the third indication information can be carried in a first signaling, and the first signaling includes at least one of a radio resource control RRC message, a packet data convergence layer protocol protocol data unit PDCP PDU, a media access control control unit MAC CE, or downlink control information DCI.
  • the first signaling includes at least one of a radio resource control RRC message, a packet data convergence layer protocol protocol data unit PDCP PDU, a media access control control unit MAC CE, or downlink control information DCI.
  • the identifier of the first terminal device may be a cell wireless network temporary identifier, or all or part of a logical channel identifier, wherein all or part of the logical channel identifier corresponds to the first terminal device.
  • the identifier of the first terminal device is all or part of the logical channel identifier
  • the method further includes: receiving a correspondence between all or part of the logical channel identifier and the first terminal device.
  • a communication device comprising a functional module for implementing the method in the aforementioned first aspect or any possible implementation manner of the first aspect.
  • a communication device comprising a functional module for implementing the method in the aforementioned second aspect or any possible implementation manner of the second aspect.
  • a communication device comprising a processor and an interface circuit, wherein the interface circuit is used to receive signals from other communication devices outside the communication device and transmit them to the processor or send signals from the processor to other communication devices outside the communication device, and the processor is used to implement the method in the aforementioned first aspect or any possible implementation of the first aspect through a logic circuit or execution code instructions.
  • the communication device also includes a memory.
  • the communication device also includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device comprising a processor and an interface circuit, wherein the interface circuit is used to receive a signal from another communication device outside the communication device and transmit it to the processor or send a signal from the processor to another communication device outside the communication device, and the processor is used to implement the method in the aforementioned second aspect or any possible implementation of the second aspect through a logic circuit or execution code instructions.
  • the communication device also includes a memory.
  • the communication device also includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip in a terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor comprising: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any possible implementation of the first aspect to the second aspect and the first aspect to the second aspect.
  • the processor may be one or more chips
  • the input circuit may be an input pin
  • the output circuit may be Output pins
  • processing circuits may be transistors, gate circuits, triggers, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to a transmitter and transmitted by the transmitter
  • the input circuit and the output circuit may be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation of the processor and various circuits.
  • a processing device comprising a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter to execute the method in any possible implementation of the first aspect to the second aspect and the first aspect to the second aspect.
  • the processor is one or more and the memory is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated with the processor on the same chip or can be separately set on different chips.
  • ROM read-only memory
  • the embodiments of the present application do not limit the type of memory and the setting method of the memory and the processor.
  • the relevant data interaction process can be a process of outputting indication information from the processor
  • receiving capability information can be a process of receiving input capability information from the processor.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and the receiver can be collectively referred to as a transceiver.
  • the processing device in the eighth aspect may be one or more chips.
  • the processor in the processing device may be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor implemented by reading software code stored in a memory, which may be integrated in the processor or located outside the processor and exist independently.
  • a computer-readable storage medium in which a computer program or instruction is stored.
  • the computer program or instruction is executed, the method in the above-mentioned first aspect or any possible implementation manner of the first aspect is implemented.
  • a computer-readable storage medium in which a computer program or instruction is stored.
  • the method in the above-mentioned second aspect or any possible implementation of the second aspect is implemented.
  • a computer program product comprising instructions, which, when executed, implements the method in the first aspect and any possible implementation manner of the first aspect.
  • a computer program product comprising instructions, which, when executed, implements the method in the second aspect or any possible implementation manner of the second aspect.
  • a computer program which includes codes or instructions. When the codes or instructions are executed, the method in the first aspect or any possible implementation of the first aspect is implemented.
  • a communication system including the aforementioned network device and terminal device.
  • FIG1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG2 is a schematic diagram of a system architecture of a method provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the transmission process of a data packet at each layer of a protocol stack provided in an embodiment of the present application;
  • FIG4 is a schematic diagram of a method for transmitting a data packet provided in an embodiment of the present application.
  • FIG5A is a schematic diagram of a process for processing an aggregated data packet provided by an embodiment of the present application.
  • FIG5B is a schematic diagram of another embodiment of the present application embodiment of the processing flow of the aggregated data packet
  • 6A to 6F are schematic diagrams of group MAC PDU formats of some aggregated data packets provided in embodiments of the present application.
  • FIGS. 7A-7B are schematic diagrams of MAC subheader formats in some groups of MAC PDUs provided in embodiments of the present application.
  • FIG8 is a schematic diagram of another method for transmitting a data packet provided in an embodiment of the present application. (embodying WUS indication)
  • FIG. 9 is a schematic diagram of a format of second indication information provided in an embodiment of the present application.
  • FIG10 is a schematic block diagram of a communication device provided in an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of another communication device provided in an embodiment of the present application.
  • FIG1 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • a communication system 10 includes one or more communication devices 30 (e.g., terminal devices) connected to one or more core network devices via one or more access network devices 20 to achieve communication between multiple communication devices.
  • the communication system may, for example, support a communication system of 2G, 3G, 4G, or 5G (sometimes also referred to as new radio, NR) access technology, a wireless fidelity (WiFi) system, a cellular system related to the third generation partnership project (3GPP), a communication system supporting the integration of multiple wireless technologies, or a future-oriented evolution system.
  • 2G, 3G, 4G, or 5G sometimes also referred to as new radio, NR
  • WiFi wireless fidelity
  • 3GPP third generation partnership project
  • 3GPP third generation partnership project
  • a terminal device is a device with wireless transceiver functions, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above devices (such as a communication module, a modem, or a chip system, etc.).
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), vehicle to everything (vehicle to everything, V2X), machine-to-machine/machine-type communication (machine-to-machine/machine-type communications, M2M/MTC), Internet of things (IoT), virtual reality (virtual reality, VR), augmented reality (augmented reality, AR), industrial control (industrial control), self-driving, remote medical, smart grid (smart grid), smart furniture, smart office, smart wearable, smart transportation, smart city (smart city), drones, robots and other scenarios.
  • the terminal device may sometimes be referred to as user equipment (UE), terminal, access station, UE station, remote station, wireless communication equipment, or user device, etc.
  • UE user equipment
  • the access network equipment is a device with wireless transceiver function, which is used to communicate with the terminal equipment.
  • the access network equipment includes but is not limited to the base station (BTS, Node B, eNodeB/eNB, or gNodeB/gNB) in the above-mentioned communication system, the base station of the subsequent evolution of 3GPP, the access node in the WiFi system, the wireless relay node, the wireless backhaul node, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, etc.
  • the base station can include one or more co-sited or non-co-sited transmission and reception points.
  • the network device may also be a wireless controller, a centralized unit (CU), a distributed unit (DU), a CU-control plane (CP), a CU-user plane (UP), or a radio unit (RU) in a cloud radio access network (CRAN) scenario.
  • the CU and DU may be provided separately, or may be included in the same network element, such as a baseband unit (BBU).
  • the RU may be included in a radio frequency device or a radio frequency unit, such as a remote radio unit (RRU) or an active antenna unit (AAU).
  • CU or CU-CP and CU-UP
  • DU or RU may also have different names, but those skilled in the art can understand their meanings.
  • CU may also be called O-CU (open CU)
  • DU may also be called O-DU
  • CU-CP may also be called O-CU-CP
  • CU-UP may also be called O-CU-UP
  • RU may also be called O-RU.
  • this application takes CU, CU-CP, CU-UP, DU and RU as examples for description.
  • Any unit of CU (or CU-CP, CU-UP), DU and RU in this application may be implemented by a software module, a hardware module, or a combination of a software module and a hardware module.
  • the network device can also be a server, a wearable device, or an in-vehicle device.
  • the network device in the V2X technology can be a road side unit (RSU).
  • RSU road side unit
  • the multiple network devices in the communication system can be base stations of the same type or different types.
  • the base station can communicate with the terminal device, or communicate with the terminal device through a relay station.
  • the terminal device can communicate with multiple base stations in different access technologies.
  • the core network equipment is used to implement functions such as mobility management, data processing, session management, policy and billing.
  • the names of the devices that implement core network functions in systems with different access technologies may be different, and this application does not limit this.
  • the core network equipment includes: access and mobility management function (AMF), session management function (SMF), or user plane function (UPF), etc.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the terminal device or network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as a browser, an address book, a word processing software, and an instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided in the embodiments of the present application.
  • the execution subject of the method provided in the embodiments of the present application can be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute a program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks or tapes, etc.), optical disks (e.g., compact discs (CDs), digital versatile discs (DVDs), etc.), smart cards and flash memory devices (e.g., erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • system and “network” in the embodiments of the present application can be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the previous and subsequent associated objects are in an “or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • “at least one of A, B and C” includes A, B, C, AB, AC, BC or ABC.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects.
  • first SN and the second SN are only used to distinguish different SNs, and do not indicate the difference in priority or importance of the two SNs.
  • Multicast and broadcast service is a service that is delivered to multiple terminals at the same time. It uses multicast or broadcast transmission to provide MBS services to a large number of users with the same needs with fewer resources, such as live broadcast services, public safety services, and batch software update services.
  • MBS data comes from the data server, is sent to the access network device via the core network device, and then is sent by the access network device to at least one terminal device that receives the MBS data.
  • the access network device sends to the terminal device the data packet is transmitted through the MBS wireless bearer.
  • An MBS wireless bearer may include a point-to-multipoint (PTM) transmission mode and/or a point-to-point (PTP) transmission mode.
  • PTM transmission mode refers to a network device sending the same data to multiple terminal devices at the same time.
  • PTM transmission mode refers to a network device sending a certain data independently to different terminal devices.
  • FIG2 is a schematic diagram of the system architecture of the method provided in an embodiment of the present application.
  • data of a multicast broadcast service can be sent from 5G CN to UE1, UE2, UE3 and UE4.
  • the transmission path from 5G CN to 5G RAN can be a multicast broadcast session tunnel.
  • 5G CN sends data of multicast broadcast services to UE1 and UE2, and the multicast broadcast session tunnel of UE1 and UE2 is shared.
  • RAN can send the above multicast broadcast data to UE1 and UE2 in point-to-multipoint PTM mode, that is, send one copy of data, and both UEs can receive it.
  • RAN can also send the above multicast broadcast data to UE1 and UE2 respectively in PTP mode.
  • the multicast broadcast data sent by 5G CN can also be sent to UE through the protocol data unit (PDU) session corresponding to each UE, that is, in the form of unicast session tunnel.
  • PDU protocol data unit
  • 5G CN sends data of multicast broadcast services to UE3 and UE4, and different PDU sessions have different PDU session tunnels.
  • RAN can send service data to UE3 and UE4 respectively in unicast mode.
  • the multicast broadcast session from 5G CN to 5G radio access network can also be called a shared transmission PDU session or MBS session, including multicast session and broadcast session, and the transmission channel can be called a shared tunnel.
  • 5G radio access network Radio Access Network, RAN
  • Protocol stack architecture Network devices and terminal devices that communicate with each other (for example, 110 and any terminal device in FIG. 1, 5G RAN and any UE in FIG. 2) have a certain protocol layer structure.
  • the protocol layer structure may include protocol layers such as the radio resource control (RRC) layer, the packet data convergence protocol (PDCP) layer, the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the physical layer is located at the lowest layer (layer 1), the MAC layer, RLC, and PDCP belong to the second layer (layer 2), and the RRC belongs to the third layer (layer 3).
  • SDAP service data adaptation protocol
  • the wireless access network equipment may include a centralized unit (CU) and a distributed unit (DU), and multiple DUs may be centrally controlled by one CU.
  • the CU and DU may be divided according to the protocol layers of the wireless network, for example, the functions of the PDCP layer and above protocol layers are set in the CU, and the functions of the protocol layers below the PDCP, the RLC layer and the MAC layer, etc. are set in the DU, etc.
  • this division of the protocol layer is only an example, and it can also be divided in other protocol layers, such as dividing in the RLC layer, setting the functions of the RLC layer and the protocol layers above in the CU, and the functions of the protocol layers below the RLC layer in the DU; or dividing in a certain protocol layer, for example, setting some functions of the RLC layer and the functions of the protocol layers above the RLC layer in the CU, and setting the remaining functions of the RLC layer and the functions of the protocol layers below the RLC layer in the DU.
  • it can also be divided in other ways, such as dividing by latency, setting the functions whose processing time needs to meet the latency requirements in the DU, and the functions that do not need to meet the latency requirements in the CU.
  • Each radio bearer includes a PDCP entity and one or more RLC entities, and each RLC entity corresponds to a logical channel.
  • data packet aggregation can also be understood as data packet cascading or data packet splicing.
  • aggregation “cascading” or “splicing” are interchangeable
  • aggregated data packet “cascaded data packet” and “spliced data packet” are interchangeable, and there is no limitation on this.
  • some unicast services have relatively small data packets. When scheduling such smaller data packets, fewer resources are used and the transmission blocks are small. Sometimes, the minimum resource unit allocated by the network cannot be fully utilized, resulting in a waste of resources. In addition, due to the small size of the data packets, on the one hand, their corresponding encoding and decoding capabilities are poor, and they are easily affected by surrounding interference factors (for example, channel conditions, or interference from larger data packets), thereby affecting transmission reliability. On the other hand, smaller data packets make the proportion of control signaling larger, and the proportion of effective data transmission is relatively low, thus affecting transmission efficiency. In some scenarios, the proportion of relatively small data packets will be relatively large, usually exceeding 50%. At this time, if If network devices use the traditional unicast method to transmit these smaller data packets, as the proportion of smaller data packets increases, the transmission efficiency and reliability of data packets will be more seriously affected.
  • the present application provides a method and apparatus for data packet transmission, wherein a network device can put data packets of N terminal devices into an aggregated data packet for transmission, and send the aggregated data packet to the N terminal devices.
  • a network device can put data packets of N terminal devices into an aggregated data packet for transmission, and send the aggregated data packet to the N terminal devices.
  • the signaling overhead and resource waste caused by the network device sending data packets to each of the multiple terminal devices separately can be reduced, thereby improving the air interface transmission efficiency.
  • the coding gain is increased, thereby improving the air interface transmission reliability.
  • Fig. 4 is a schematic diagram of a communication method provided in an embodiment of the present application. The method shown in Fig. 4 can be executed by the network device and the terminal device shown in Fig. 1 to Fig. 3.
  • the network device determines a data packet of each of N terminal devices, where N is an integer greater than 1.
  • the data packet of each of the N terminal devices satisfies at least one of the following: the N terminal devices are terminal devices in the first terminal device group; the size of the data packet of each of the N terminal devices does not exceed the first threshold; or N is less than or equal to the second threshold.
  • the data packet of each terminal device is a data packet sent by the network device to the terminal device, that is, a downlink data packet.
  • the data packet may be a data packet from other network devices, forwarded to the terminal device via the network device; or, the data packet is generated by the network device itself and sent to the terminal device.
  • the other network devices may be core network devices or access network devices, and this application does not impose any restrictions on this.
  • the network device determines the data packet of each of the N terminal devices by performing a judgment of an aggregate transmission function; here, the judgment of the aggregate transmission function may include at least one of the following:
  • the first terminal device group can be grouped by the network device according to a certain rule.
  • the network device can group according to one or more of the terminal device location, UE capabilities, UE service conditions, and UE versions, but the specific grouping method is not limited in this application.
  • the first threshold is specified by the protocol or set by the network device; optionally, the second threshold is specified by the protocol or set by the network device. Further, if the first threshold and/or the second threshold is set by the network device, it can be set by the network device according to its own resource conditions or scheduling capabilities, etc., and this application does not limit this.
  • the first quality of service QoS indicator includes one or more of the following: delay, reliability or packet loss rate. It can be understood that if the first QoS indicator is delay, then judging whether a certain data packet to be sent can be aggregated can be based on whether the delay requirement of the data packet to be sent is greater than the delay threshold; if the delay of the data packet to be sent is greater than the delay threshold, the data packet to be sent can be aggregated, otherwise.
  • the first radio bearer is configured with an aggregation function; or, it may be a function of determining whether a terminal device corresponding to the data packet supports transmission of aggregated data packets.
  • the first terminal device may send its capability of supporting aggregate data packet transmission to the network device; further, the first terminal device may autonomously send its capability of supporting aggregate data packet transmission to the network device, or may send its capability of supporting aggregate data packet transmission to the network device based on the instruction or request of the network device.
  • the indication information for aggregating the data packets to be sent is indicated by a higher protocol layer (or upper layer) to a protocol layer including an aggregation transmission function; or, the indication information is carried in a packet header of the data packet to be sent.
  • the data packet of each of the above-mentioned N terminal devices satisfies at least one of the following: the N terminal devices are terminal devices in the first terminal device group; the size of the data packet does not exceed the first threshold; N is less than or equal to the second threshold; or whether a data packet to be sent meets the first quality of service QoS requirement or the N terminal devices support the transmission function of aggregated data packets; or there is indication information for aggregating the data packets for each terminal device.
  • the order of considering the above factors 1)-6) is not limited in this application.
  • the following example a and example b are used for explanation:
  • the network device makes a judgment according to 1) and 2), and for 1), the network device makes a judgment according to whether the terminal device group corresponding to the data packet and the terminal device corresponding to the data packet to be aggregated are the same terminal device group. It can be understood that the network device makes a judgment according to whether the terminal devices of the data packet to be sent are the same terminal device group and whether the size of the data packet to be sent to the terminal device exceeds the first threshold;
  • the network device has data packets sent to terminal device A, terminal device B and terminal device C respectively, and the sizes of the data packets sent to these three terminal devices are a, b and c respectively. If terminal device A and terminal device B are in the same terminal device group, but are not in the same terminal device group as terminal device C, the first threshold is X. At this time, the network device can determine that 1) is satisfied based on the fact that terminal device A and terminal device B are in the same terminal device group. The network device needs to further determine whether the specific data packets sent to terminal device A and terminal device C can be aggregated.
  • the network device can determine that data packet a and data packet b can be aggregated together; if data packet a is less than the first threshold, but data packet b is greater than the first threshold, the network device determines that data packet a and data packet b cannot be aggregated together.
  • Example b The network device makes a judgment according to 1) and 4), and for 1), the network device makes a judgment according to whether the terminal device group corresponding to the data packet and the terminal device corresponding to the data packet to be aggregated are the same terminal device group, and whether the data packet meets the first QoS requirement;
  • the network device has data packets sent to terminal device A and terminal device B respectively, and these two terminal devices correspond to the same terminal device group.
  • the sizes of the data packets sent to these three terminal devices are a and b respectively, and the first threshold is X.
  • the network device can determine that data packets a and b can be aggregated together; conversely, if one of data packets a and b is greater than the first threshold, the network device can determine that data packets a and b cannot be aggregated together.
  • the network device can determine that data packets a and b cannot be aggregated together.
  • the data packet of each of the N terminal devices is determined by the radio link control RLC layer or the packet data convergence layer protocol PDCP layer of the network device; accordingly, it can be understood that the above determination of the aggregate transmission function can be performed by the RLC layer or the PDCP layer, in other words, the aggregate transmission function is located in the RLC entity or the PDCP entity.
  • the data packet of each of the N terminal devices is a data packet of the radio link control RLC layer, or a data packet of the packet data convergence layer protocol PDCP layer.
  • the indication information for aggregating the data packets to be sent can be indicated by the PDCP layer to the RLC layer, or the indication information can be carried in the packet header of the PDCP data packet to be sent; if the aggregation transmission function is located in the PDCP entity, for the above 6), the indication information for aggregating the data packets to be sent can be indicated by the upper layer to the PDCP layer, or the indication information can be carried in the packet header of the upper layer data packet to be sent.
  • Figure 5A is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network device determines whether to perform aggregate transmission. For data packets that do not require aggregate transmission, the network device sends the PDCP PDU to the corresponding RLC entity for processing, and then transmits it through the corresponding logical channel using the terminal device-specific RNTI scheduling; for data packets that require aggregate transmission, the network device sends the PDCP PDU of UE2 to the corresponding RLC entity for processing, aggregates the UE2 PDCP PDU processed by the RLC entity and the PDCP PDU of the terminal device UE1 into an aggregate packet, and schedules it through a common RNTI.
  • the PDCP PDU of UE1 can be aggregated is determined in the same way as the PDCP PDU of UE2 to determine whether to perform aggregate transmission. The method is not described in detail here. Accordingly, when UE2 receives a data packet, it can deduplicate and sort the data packets received by group scheduling and the data packets received by terminal device-specific RNTI scheduling at the PDCP layer. For the aggregated data packets received by the UE, the UE can process and discard the data packets of other terminal devices at the MAC layer. Specifically, it can determine whether to retain its own data packet and submit it to the upper layer according to the identifier of the terminal device included in the aggregated data packet; or discard the data packet that does not belong to it. The relevant processing of data packet discarding will be described in detail below and will not be described here.
  • FIG5B is another schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network device determines whether to perform aggregate transmission. For a data packet that does not require aggregate transmission, the network device sends the RLC PDU to the corresponding entity for processing, and then transmits it through the corresponding logical channel using the terminal device-specific RNTI scheduling; for a data packet that requires aggregate transmission, the network device sends the RLC PDU of UE2 to the corresponding entity for processing, cascades the processed UE2 RLC PDU and the RLC PDU of the terminal device UE1 into an aggregate packet, and schedules it through a common RNTI.
  • RLC PDU of UE1 can be aggregated is determined by the same judgment method as that of the RLC PDU of UE2 to determine whether to perform aggregate transmission, which will not be repeated here. Accordingly, when UE2 receives a data packet, it can perform corresponding operations on the RLC layer for the data packet received by group scheduling and the data packet received by the terminal device-specific RNTI scheduling. For the aggregated data packets received by the UE, the UE may discard the data packets of other terminal devices at the MAC layer. The relevant processing of data packet discarding will be described in detail below and will not be repeated here.
  • the first terminal device group may share a MAC entity.
  • the method further includes that the shared MAC entity may indicate to at least one RLC entity in the first terminal device group: resources available for aggregating data packets and/or resources already used for aggregating data packets.
  • UE1 and UE2 may share a MAC entity, and the shared MAC entity may indicate to the RLC entity of UE1 and/or UE2: resources available for aggregated data packets, and/or resources already used for aggregated data packets.
  • the method further includes: sending configuration information of M terminal device groups to the first terminal device, each of the M configuration information including at least one of the following: a first wireless network temporary identifier RNTI, an index of the configuration information, or wireless resource information used for transmitting data by the terminal device group, where M is a positive integer.
  • the first RNTI is associated with the first service.
  • the first RNTI may be a group radio network temporary identifier (G-RNTI) or a multicast control channel RNTI (MCCH-RNTI).
  • G-RNTI group radio network temporary identifier
  • MCCH-RNTI multicast control channel RNTI
  • the first service includes a unicast service, or the first service is a service that meets the first QoS requirement.
  • the wireless resource information used for transmitting data by the terminal device group includes a common frequency resource (CFR) configuration for receiving information related to broadcast and multicast services.
  • CFR common frequency resource
  • the configuration information of the M terminal device groups may be carried in a radio resource control RRC message or a system message, or a MCCH message.
  • the network device obtains the correspondence between the terminal device and the terminal device group.
  • the correspondence can be one-to-one, one-to-many, many-to-one or many-to-many; it can be understood that a UE can belong to multiple terminal device groups, and the terminal device group sets to which different UEs belong can be the same or different, and the present application does not impose any restrictions on this.
  • Table 1 gives a correspondence between terminal devices and terminal device groups. It can be seen from Table 1 that UE1 belongs to terminal device group 1 and terminal device group 3; UE2 belongs to terminal device group 3, group 4 and group 5, UE3 belongs to group 1, group 2 and group 4, and UE4 belongs to group 3, group 4 and group 5.
  • the method further includes: sending third indication information to the first terminal device, wherein the third indication information indicates activation of one or more of the M configuration information; and/or, the third indication information indicates deactivation of one or more of the M configuration information.
  • the third indication information includes an index indicating activation of one or more of the M configuration information; and/or, includes an index indicating deactivation of one or more of the M configuration information, or the third indication information is a first parameter, and the first parameter corresponds to one of the M configuration information; the first parameter can be a first RNTI in a configuration information.
  • the third indication information may be carried in a radio resource control RRC message, or downlink control information (DCI), or a media access control (MAC) control element (CE), or other possible messages, which is not limited in this application.
  • RRC radio resource control
  • DCI downlink control information
  • CE media access control control element
  • the network device may send allocation identification information to the first terminal device, where the identification information is identification information of the first terminal device in the first terminal device group.
  • the length of the identification information may be 8 bits, 4 bits or other bit lengths, which is not limited in this application.
  • the network device sends an aggregated data packet to the first terminal device, wherein the aggregated data packet includes identification information of N terminal devices and data packets of each of the N terminal devices. Accordingly, the first terminal device receives the aggregated data packet from the network device.
  • the identification information of each terminal device among the N terminal devices is located before its corresponding data packet; optionally, the identification information of each terminal device among the N terminal devices and its corresponding data packet are cascaded in sequence.
  • the aggregate data packet includes P aggregate data units, the P aggregate data units correspond to the N terminal devices, each of the P aggregate data units includes an aggregate data packet header and an aggregate data field, the aggregate data packet header indicates identification information of one terminal device among the N terminal devices, and the aggregate data field indicates a data packet of one terminal device among the N terminal devices; wherein P is a positive integer greater than or equal to N.
  • the terminal device may correspond to one or more aggregate data units; when a terminal device corresponds to one aggregate data unit, the aggregate data unit includes an aggregate data packet header and an aggregate data field, the aggregate data packet header indicates the identification information of the terminal device, and the aggregate data field indicates multiple data packets to be sent by the terminal device; when a terminal device corresponds to multiple aggregate data units, each of the multiple aggregate data units includes an aggregate data packet header and an aggregate data field, each aggregate data packet header includes the identification information of the terminal device, and each aggregate data packet includes a data packet to be sent by the terminal device.
  • the method also includes: the network device sends downlink control information to the first terminal device, and the downlink control information is used to schedule the aggregated data packet; further, the downlink control information is carried in a new downlink control information DCI format, for example, the DCI format is newly designed; and/or the DCI format is encrypted by a dedicated wireless network temporary identifier RNTI.
  • the network device sends downlink control information to the first terminal device, and the downlink control information is used to schedule the aggregated data packet; further, the downlink control information is carried in a new downlink control information DCI format, for example, the DCI format is newly designed; and/or the DCI format is encrypted by a dedicated wireless network temporary identifier RNTI.
  • the data packet header corresponding to the aggregated data packet includes fifth indication information, and the fifth indication information is used to indicate that the data packet corresponding to the data packet header is an aggregated data packet.
  • the aggregated data packet is a data packet of the media access control MAC layer; further, the aggregated data packet can be a media access control protocol data unit MAC PDU.
  • the identification information of the terminal device indicated in the header of the aggregate data packet may be a temporary identification of a cell wireless network, or all or part of a logical channel identification, or a temporary identification configured by a network.
  • the identification information of the terminal device indicated in the header of the aggregate data packet may be a temporary identification of a cell wireless network, or all or part of a logical channel identification, or a temporary identification configured by a network.
  • there may be multiple formats of the aggregate data packet and this application illustrates the schematic diagrams of the formats of some aggregate data packets provided in conjunction with FIGS. 6A to 6F.
  • FIG6A shows a possible format of an aggregate data packet.
  • the data packet of the terminal device, the identification information of the second terminal device, and the data packet of the second terminal device are cascaded in sequence.
  • Figure 6B shows a possible format of an aggregate data packet.
  • the aggregate data packet includes N aggregate data units, and the N aggregate data units correspond to N terminal devices.
  • Each of the N aggregate data units includes an aggregate data packet header and an aggregate data field, wherein the aggregate data packet header indicates identification information of one terminal device among the N terminal devices, and the aggregate data field indicates a data packet of one terminal device among the above-mentioned N terminal devices.
  • Figure 6C shows a possible format of an aggregate data packet.
  • the aggregate data packet corresponds to N terminal devices.
  • the aggregate packet includes N aggregate data packet headers and N aggregate data fields.
  • the N aggregate data packet headers are located before the N aggregate data fields, wherein each of the N aggregate data packet headers includes identification information of a terminal device among the N terminal devices, and each of the N aggregate data fields includes data packets of one or more terminal devices among the above-mentioned N terminal devices.
  • the multiple aggregate data units corresponding to the same terminal device may be put together (cascaded in sequence) or not; further, if the aggregate data units corresponding to the same terminal device are put together, the multiple aggregate data units corresponding to the same terminal device may share one aggregate data packet header.
  • the same terminal device has multiple data packets to be put into one aggregate data packet for transmission, it is only necessary to carry the identifier of the terminal device in one aggregate data packet header, thereby saving the signaling overhead caused by carrying the identifier of the terminal device for each aggregate data packet in the aggregate data packet.
  • the aggregate data units corresponding to the same terminal device are not put together for transmission, the position of the aggregate data units corresponding to each terminal device in the aggregate data packet depends on the implementation of the base station, and this application does not impose any restrictions.
  • Figure 6D shows a possible format of an aggregate data packet.
  • the aggregate data packet includes P aggregate data units, and the P aggregate data units correspond to N terminal devices.
  • Each of the P aggregate data units includes an aggregate data packet header and an aggregate data field, wherein the aggregate data packet header indicates identification information of a terminal device among the N terminal devices, and the aggregate data field indicates a data packet in the above-mentioned terminal device.
  • the P aggregate units may have multiple aggregate data units corresponding to one terminal device, and multiple aggregate data units corresponding to the same terminal device are sent together.
  • Figure 6E shows a possible format of an aggregate data packet.
  • the aggregate data packet includes N aggregate data units, and the N aggregate data units correspond to N terminal devices.
  • Each of the P aggregate data units includes an aggregate data packet header and one or more aggregate data fields, wherein the aggregate data packet header indicates identification information of a terminal device among the N terminal devices, and each aggregate data field indicates a data packet of a terminal device. It can be understood that multiple data packets of a terminal device can share an aggregate data packet header.
  • Figure 6F shows a possible format of a data packet.
  • an aggregated data packet includes P aggregated data units, and the P aggregated data units correspond to N terminal devices.
  • Each of the P aggregated data units includes an aggregated data packet header and an aggregated data field, wherein the aggregated data packet header indicates identification information of a terminal device among the N terminal devices, and the aggregated data field indicates a data packet in the above-mentioned terminal device.
  • the P aggregated units may have multiple aggregated data units corresponding to one terminal device, and multiple aggregated data units corresponding to the same terminal device are not sent together.
  • Figure 6F provides a format of an aggregated data packet, in which the position of the aggregated data unit corresponding to each terminal device is random, and the specific position depends on the scheduling of the network device, which is not limited in this application.
  • the identification information of the terminal device indicated in the header of the aggregation data packet is a logical channel identification, which are described below in combination with ways 1 to 3:
  • the terminal device identification information can be indicated by the extended logical channel identifier eLCH ID
  • a reserved LCID value (e.g., 35 or 36) may be used to indicate that the eLCID contains UE identification information.
  • the terminal device may determine whether there is a data packet sent to it based on the identification of the terminal device in advance (using a part of the eLCID as an identification) and the information contained in the eLCH ID field carried in the aggregated data packet header; optionally, the identification of the terminal device obtained in advance may be configured by the network device for the terminal device.
  • the length occupied by the eLCH ID may be 1 byte or 2 bytes.
  • the length of the terminal device identification information may be less than or equal to the length of the eLCID; further, if the terminal device identification information The length of the information can be smaller than the length of the eLCID, and the protocol specifies that the LSB is read to the MSB, for example, from right to left.
  • a reserved LCID value (for example, 35 or 36) can be used to indicate that UE identification information is included after the LCID, or to indicate that the UE identification information is included in the aggregate data packet header.
  • the terminal device can determine whether there is a data packet sent to itself based on the reserved LCID value and the UE identification information carried in the aggregate data packet header; optionally, the UE identification information can be configured by the network device for the terminal device.
  • Method 2 It can be placed in a data packet and cascaded with all data packets to indicate which UE the subsequent MAC SDUs correspond to.
  • the information contained in this data packet can be: UE1, UE2, UE2, UE1, UE3, which respectively represent that the subsequent cascaded data packets correspond to UE1, 2, 2, 1, 3.
  • this data packet can be a MAC layer data packet, such as MAC CE.
  • Mode 3 The protocol stipulates that different terminal devices use different LCIDs for data radio bearers of data packets that need to be aggregated. For example, different LCIDs used by different UEs are implemented through eLCID or LCID.
  • eLCID ensures that different UEs are configured with different LCIDs.
  • the UE only needs to find its own eLCID in the data packet header to consider it as its own data.
  • the UE information is implicitly reflected through eLCID.
  • the difference from method 1 is that the LCID actually used in method 1 is a short LCID, and the LCID actually used in method 3 is a long LCID.
  • the network device can configure UE1 to use LCID 1-16 and UE2 to use CID 17-32.
  • the network device sends the aggregated data packet to the first terminal device in a unicast or multicast manner.
  • the first terminal device receives the aggregated data packet from the network device in a unicast or multicast manner.
  • the method also includes at least one of the following: if the identification information of the N terminal devices includes identification information of an unknown terminal device, the first terminal device discards the data packet corresponding to the identification information of the unknown terminal device; if the identification information of the N terminal devices includes third terminal identification information that does not match the identification information of the first terminal device, the first terminal device discards the data packet corresponding to the identification information of the third terminal device; or if the identification information of the N terminal devices includes identification information of the first terminal device, the first terminal device obtains the data packet corresponding to the identification information of the first terminal device.
  • Fig. 8 is a schematic diagram of a communication method provided by an embodiment of the present application. The method shown in Fig. 8 can be executed by the network device and the terminal device shown in Fig. 1 to Fig. 3.
  • the network device may receive capability information from the first terminal device, where the capability information indicates whether the terminal device supports a transmission function of aggregated data packets; accordingly, the first terminal device sends the capability information to the network device.
  • the capability information is carried in an RRC message.
  • the network device may also send indication information to the first terminal device, the indication information being used to indicate or request or query whether the first terminal device supports the transmission function of the aggregated data packet. Further, the indication information is carried in an RRC message or a broadcast message.
  • the network device sends first indication information to the first terminal device, and correspondingly, the first terminal device receives the first indication information from the network device.
  • the first indication information indicates enabling or disabling transmission of the aggregated data packet.
  • the first indication information is carried in a radio resource control RRC message, a packet data convergence layer protocol protocol data unit PDCP PDU, downlink control information DCI, or a system message or MAC CE.
  • the first indication information indicates enabling transmission of the aggregated data packet or disabling transmission of the aggregated data packet, or indicates enabling or disabling transmission of the aggregated data packet through dynamic signaling.
  • the network device can indicate three data packet transmission modes through the first indication information: enabling transmission of aggregated data packets, disabling transmission of aggregated data packets, or enabling or disabling transmission of aggregated data packets through dynamic signaling. According to the received first indication information, the transmission mode of the data packet when communicating with the network device is determined.
  • the first terminal device determines, based on the first indication information, whether to enable the transmission of aggregated data packets between itself and the network device; if the network device indicates through the first indication information that the transmission of aggregated transmission packets is disabled, the first terminal device determines, based on the first indication information, whether to disable the transmission of aggregated data packets between the remaining network devices; if the network device indicates through the first indication information that dynamic signaling is used to enable or disable the transmission of aggregated data packets, the first terminal device determines, based on the first indication information, whether it needs to further obtain information through dynamic signaling from the network device as to whether to enable or disable the transmission of aggregated data packets.
  • the dynamic signaling includes information indicating enabling or disabling transmission of aggregated data packets; further, the information indicating enabling or disabling transmission of aggregated data packets may be indicated by 1 bit.
  • the information is indicated by 1 bit, and when the value of the bit is set to "1", the information indicates enabling transmission of aggregated data packets; if the value of the bit is set to "0", the information indicates disabling transmission of aggregated data packets; otherwise.
  • the first indication information is carried in an RRC message, and the dynamic signaling may be one of PDCP PDU, MAC CE, or DCI.
  • the network device sends M sets of configuration information for the terminal device group to the first terminal device, each set of configuration information in the M sets of configuration information includes at least one of the following: a first wireless network temporary identifier RNTI, or wireless resource information for transmitting data by the terminal device group, where M is a positive integer.
  • the network device sends a third indication information to the first terminal device, where the third indication information indicates activation of one or more sets of the M sets of configuration information; and/or, the third indication information indicates deactivation of one or more sets of the M sets of configuration information.
  • the network device determines a data packet of each of N terminal devices, where N is an integer greater than 1.
  • the data packet of each of the N terminal devices satisfies at least one of the following conditions: the N terminal devices are terminal devices in the first terminal device group; the size of the data packet of each of the N terminal devices does not exceed a first threshold; or N is less than or equal to a second threshold.
  • the N terminal devices are terminal devices in the first terminal device group; the size of the data packet of each of the N terminal devices does not exceed a first threshold; or N is less than or equal to a second threshold.
  • the network device sends second indication information to the first terminal device, the second indication information instructing at least one terminal device of the first terminal device to receive an aggregated data packet; or, the second indication information instructs receiving an aggregated data packet.
  • the second indication information includes a bit map indicating that at least one terminal device of the first terminal device group receives an aggregated data packet; or, the second indication information includes an identifier of the at least one terminal device; or, the second indication information is a first wireless network temporary identifier RNTI, and the first RNTI corresponds to the at least one terminal device.
  • the second indication information is carried in downlink control information DCI.
  • the first terminal device determines whether to receive the physical downlink channel corresponding to the aggregated data packet according to the second indication information.
  • the first terminal device determines to receive the physical downlink channel corresponding to the aggregated data packet; or, if the second indication information does not indicate the identification information of the first terminal device, determines not to receive the physical downlink channel corresponding to the aggregated data packet; or,
  • the second indication information includes a bit map indicating that the terminal device of at least one terminal device receives an aggregated data packet, and the first terminal device determines whether to receive the physical downlink channel corresponding to the aggregated data packet based on the second indication information, including: if the bit corresponding to the first terminal device in the bit map is set to a first value, it is determined to receive the physical downlink channel corresponding to the aggregated data packet; if the bit corresponding to the first terminal device in the bit map is set to a second value, it is determined not to receive the physical downlink channel corresponding to the aggregated data packet; wherein the first value may be 1, and the second value may be 0; or, the first value may be 0, and the second value may be 1.
  • Figure 9 shows a method for carrying the second indication information. As shown in Figure 9, if a bit is set to a preset value, such as a value of 1, it indicates that one or more terminal devices corresponding to the bit receive the physical downlink channel corresponding to the aggregated data packet, and vice versa.
  • a preset value such as a value of 1
  • the position of the bit corresponding to the terminal device in the second indication information may be configured by the network device through high-level signaling, wherein the high-level signaling includes an RRC message, a DCI or a MAC CE, and this application does not limit this.
  • the position of the bit corresponding to the terminal device in the second indication information is indicated by a starting position and an ending position; or by a starting position and the number of occupied bits.
  • the second indication information may be carried in a G-RNTI-scrambled DCI, a wake-up signal WUS (Wake-up signal), or a physical downlink shared channel scheduled by a G-RNTI-scrambled DCI.
  • Step S806 is further described below in combination with #Case A and #Case B.
  • #Case A Determine the physical downlink channel corresponding to the aggregated data packet received
  • the method further includes S807, the network device sends a physical downlink channel to the terminal device, and correspondingly, the terminal device receives the physical downlink channel from the network device.
  • the physical downlink channel carries scheduling information of the aggregated data packet, and optionally, the physical downlink channel can be a physical downlink control channel.
  • the network device sends an aggregated data packet to the first terminal device, where the aggregated data packet includes identification information of N terminal devices and a data packet of each of the N terminal devices.
  • the first terminal device receives the aggregated data packet from the network device.
  • the identification information of each of the N terminal devices is located before its corresponding data packet; optionally, the identification information of each of the N terminal devices is cascaded with its corresponding data packet in sequence.
  • the aggregate data packet includes N aggregate data units, the N aggregate data units correspond to the N terminal devices, each of the N aggregate data units includes an aggregate data packet header and an aggregate data field, the aggregate data packet header indicates identification information of one terminal device among the N terminal devices, and the aggregate data field indicates a data packet of one terminal device among the N terminal devices.
  • the aggregate data packet includes P aggregate data units, the P aggregate data units correspond to the N terminal devices, each of the P aggregate data units includes an aggregate data packet header and an aggregate data field, the aggregate data packet header indicates identification information of one terminal device among the N terminal devices, and the aggregate data field indicates a data packet of one terminal device among the N terminal devices; wherein P is a positive integer greater than or equal to N.
  • #Case B Determine not to receive the physical downlink channel corresponding to the aggregated data packet
  • the second indication information is sent to the terminal device through the network device, so that the UE monitors the physical downlink channel and receives the corresponding aggregated data packet only when there is data related to itself, which can achieve a greater degree of energy saving.
  • the network device and the terminal device include hardware structures and/or software modules corresponding to the execution of each function. It should be easily appreciated by those skilled in the art that, in combination with the units and method steps of each example described in the embodiments disclosed in this application, the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application scenario and design constraints of the technical solution.
  • Figures 10 and 11 are schematic diagrams of the structures of possible communication devices provided by the embodiments of the present application. These communication devices can be used to implement the functions of the terminal device or network device in the above method embodiments, and thus can also achieve the beneficial effects possessed by the above method embodiments.
  • the communication device can be the terminal device 30 shown in Figure 1, or the wireless access network device 20 shown in Figure 1, or a module (such as a chip) applied to the terminal device or network device.
  • the communication device 1000 includes a processing unit 1010 and a transceiver unit 1020.
  • the communication device 1000 is used to implement the method in the method embodiment shown in Fig. 4 or Fig. 8 above.
  • the transceiver unit 1020 is used to receive the aggregate data from the network device.
  • the aggregated data packet includes identification information of N terminal devices and a data packet of each of the N terminal devices, the N terminal devices are N terminal devices in a first terminal device group, the first terminal device is one of the N terminal devices, and N is an integer greater than 1;
  • the processing unit 1010 is used to determine whether there is a data packet corresponding to the first terminal device based on the identification information of the N terminal devices.
  • the data packet of each of the N terminal devices is a data packet of the Radio Link Control RLC layer, and the aggregated data packet is a data packet of the Media Access Control MAC layer; or the data packet of each of the N terminal devices is a data packet of the Packet Data Convergence Protocol PDCP layer, and the aggregated data packet is a data packet of the Media Access Control MAC layer.
  • the size of the data packet of each terminal device does not exceed the first threshold; and/or, N is less than or equal to the second threshold.
  • the transceiver unit is also used to receive first indication information from a network device, the first indication information indicating enabling transmission of aggregated data packets; and/or, to receive second indication information from a network device, the second indication information indicating at least one terminal device in the first terminal device group receiving aggregated data packets; or, the second indication information indicating receiving aggregated data packets.
  • the transceiver unit is further configured to receive first indication information from a network device, where the first indication information indicates disabling transmission of the aggregated data packet.
  • the second indication information includes a bit map indicating that at least one terminal device in the first terminal device group receives an aggregated data packet; or, the second indication information includes an identifier of the at least one terminal device; or, the second indication information is a first wireless network temporary identifier RNTI, and the first RNTI corresponds to the at least one terminal device.
  • the processing unit is further configured to determine whether to receive the physical downlink channel corresponding to the aggregated data packet according to the second indication information. If the second indication information includes the identification information of the first terminal device, the processing unit determines to receive the physical downlink channel corresponding to the aggregated data packet; or, if the second indication information does not include the identification information of the first terminal device, the processing unit determines not to receive the physical downlink channel corresponding to the aggregated data packet;
  • the processing unit determines to receive the physical downlink channel corresponding to the aggregate data packet; if the bit corresponding to the first terminal device in the bit map is set to a second value, the processing unit determines not to receive the physical downlink channel corresponding to the aggregate data packet.
  • the transceiver unit also includes receiving M configuration information for the terminal device group from the network device, each of the M configuration information includes at least one of the following: an identifier of the configuration information, a group wireless network temporary identifier G-RNTI, and/or wireless resource information used for transmitting data by the terminal device group, and M is a positive integer.
  • the transceiver unit also includes receiving third indication information, where the third indication information indicates activation of one or more of the M configuration information; or, the third indication information indicates deactivation of one or more of the M configuration information.
  • the transceiver unit is specifically used to receive aggregated data packets from network devices in a unicast or multicast manner.
  • the processing unit is specifically used to perform at least one of the following: if the identification information of the N terminal devices includes the identification information of an unknown terminal device, discarding the data packet corresponding to the identification information of the unknown terminal device; if the identification information of the N terminal devices includes the identification information of a third terminal device that does not match the identification information of the first terminal device, discarding the data packet corresponding to the identification information of the third terminal device; or, if the identification information of the N terminal devices includes the identification information of the first terminal device, obtaining the data packet corresponding to the identification information of the first terminal device.
  • the transceiver unit also includes receiving the correspondence between all or part of the logical channel identifier and the first terminal device.
  • the processing unit 1010 is used to determine a data packet of each terminal device in N terminal devices, where the N terminal devices are N terminal devices in the first terminal device group, and N is greater than 1.
  • the transceiver unit 1020 is used to send an aggregate data packet to a first terminal device, wherein the aggregate data packet includes identification information of the N terminal devices and a data packet of each of the N terminal devices, and the first terminal device is one of the N terminal devices.
  • the transceiver unit is also used to send a first indication message to the first terminal device, wherein the first indication message indicates enabling the transmission of an aggregated data packet; and/or, to send a second indication message to the first terminal device, wherein the second indication message indicates that at least one terminal device in the first terminal device group receives an aggregated data packet, or the second indication message indicates receiving an aggregated data packet.
  • the transceiver unit is further used to send first indication information to the first terminal device, where the first indication information indicates to disable transmission of the aggregated data packet.
  • the transceiver unit is also used to send configuration information of M terminal device groups to the first terminal device, and each configuration information of the M terminal device groups includes at least one of the following: an identifier of the configuration information, a first wireless network temporary identifier RNTI, or wireless resource information used for the terminal device group to transmit data, and M is a positive integer.
  • the transceiver unit is further used to send a third indication message to the first terminal device, wherein the third indication message indicates activation of one or more of the M configuration information; and/or, the third indication message indicates deactivation of one or more of the M sets of configuration information.
  • the transceiver unit is also used to send the aggregated data packet to the first terminal device via unicast or multicast.
  • the transceiver unit is further used to send the correspondence between all or part of the logical channel identifier and the first terminal device to the first terminal device.
  • the transceiver unit 1020 is used to receive second indication information from the network device, and the second indication information indicates that at least one terminal device of the first terminal device receives an aggregate data packet; or, the second indication information indicates receiving an aggregate data packet; the processing unit 1010 is used to determine whether to receive a physical downlink channel corresponding to the aggregate data packet based on the second indication information.
  • the transceiver unit is further used to send capability information of the first terminal device to the network device, where the capability information indicates whether the terminal device supports a transmission function of aggregated data packets; accordingly, the first terminal device sends the capability information to the network device.
  • the transceiver unit is also used to receive indication information from the network device, the indication information is used to indicate or request or query whether the first terminal device supports the transmission function of the aggregated data packet.
  • the transceiver unit is also used to receive first indication information from the network device, the first indication information indicates enabling or disabling the transmission of the aggregated data packet.
  • the transceiver unit is also used to receive M sets of configuration information for the terminal device group from the network device, each set of the M sets of configuration information includes at least one of the following: a first wireless network temporary identifier RNTI, or wireless resource information for the terminal device group to transmit data, and M is a positive integer.
  • the transceiver unit is further configured to receive third indication information from the network device, the third indication information indicating activation of one or more of the M sets of configuration information; and/or the third indication information indicating deactivation of one or more of the M sets of configuration information.
  • the processing unit 1010 is used to determine an aggregate data packet, which includes identification information of N terminal devices and a data packet of each of the N terminal devices; the transceiver unit 1020 is used to send second indication information to the first terminal device, the second indication information indicates that at least one terminal device of the first terminal device receives the aggregate data packet; or, the second indication information indicates reception of the aggregate data packet.
  • processing unit 1010 and the transceiver unit 1020 can be directly obtained by referring to the relevant descriptions in the method embodiments shown in FIG. 4 and FIG. 8 , and will not be repeated here.
  • the communication device 1100 includes a processor 1110 and an interface circuit 1120.
  • the processor 1110 and the interface circuit 1120 are connected to each other. Mutually coupled.
  • the interface circuit 1120 may be a transceiver or an input/output interface.
  • the communication device 1100 may further include a memory 1130 for storing instructions executed by the processor 1110 or storing input data required by the processor 1110 to execute instructions or storing data generated after the processor 1110 executes instructions.
  • the processor 1110 is used to execute the function of the above-mentioned processing unit 1110
  • the interface circuit 1120 is used to execute the function of the above-mentioned transceiver unit 1120 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as a radio frequency module or an antenna), and the information is sent by the network device to the terminal device; or the terminal device chip sends information to other modules in the terminal device (such as a radio frequency module or an antenna), and the information is sent by the terminal device to the network device.
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the function of the network device in the above method embodiment.
  • the network device chip receives information from other modules in the network device (such as a radio frequency module or an antenna), and the information is sent by the terminal device to the network device; or the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna), and the information is sent by the network device to the terminal device.
  • the processor in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), registers, hard disks, mobile hard disks, CD-ROMs, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to a processor so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium can also be present in a network device or a terminal device as discrete components.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server that integrates one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state drive (SSD).
  • SSD solid state drive

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据包传输的方法及装置,在该方法中,网络设备确定N个终端设备中每一个终端设备的数据包,所述N个终端设备为第一终端设备组中的N个终端设备,所述N为大于1的整数;发送聚合数据包,所述聚合数据包包括所述N个终端设备的标识信息,以及所述N个终端设备中每一个终端设备的数据包。采用此方法,网络设备可以将同一终端设备组的多个终端设备的数据包放到一个聚合数据包中传输,这样可以提高编码增益,进而提升空口传输效率。

Description

一种数据包传输的方法及装置
本申请要求于2022年11月30日提交国家知识产权局、申请号为202211527018.8、申请名称为“一种数据包传输的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据包传输的方法及装置。
背景技术
目前,无线通信系统广泛部署,以提供各种类型的通信,例如语音业务,数据业务等。该通信系统中包括一个或多个终端设备,通过接入网连接到核心网,以实现多个通信设备之间的通信。在一些场景中,例如,新空口(new radio,NR)组播广播场景,对数据业务传输有了更高的需求。
现有技术中,网络设备可以通过单播方式向终端设备发送数据包。在执行单播通信时,网络设备可以针对每个终端设备独立调度数据包,例如根据每个终端设备的信道情况确定调制编码方式。当网络设备发送的数据包较小时,其调度该较小的数据包所需的无线资源少,如果该较小的数据包不能填满网络设备调度的最小粒度的资源,网络设备可能会通过填充一些比特来实现填满最小粒度的资源,发送不必要的填充比特会带来资源浪费和能量消耗。
因而,如何提升较小数据包的传输效率是一个值得关心的问题。
发明内容
本申请提供了一种数据包传输的方法及装置,网络设备可以将同一终端设备组的多个终端设备的数据包聚合到一个数据包中传输,然后将聚合的数据包发给终端设备,从而降低网络设备向多个终端设备中的每一个终端分别发送数据包所带来的信令开销和资源浪费,从而提升空口传输效率和传输可靠性。
第一方面,本申请提供了一种数据包传输的方法,该方法包括:确定N个终端设备中每一个终端设备的数据包,该N个终端设备为第一终端设备组中的N个终端设备,N为大于1的整数;向第一终端设备发送聚合数据包,该聚合数据包包括该N个终端设备的标识信息,以及该N个终端设备中每一个终端设备的数据包,该第一终端设备为该N个终端设备中的一个终端设备。
通过实施第一方面所描述的方法,可以实现将N个终端设备的数据包放到一个聚合数据包中进行发送,并将聚合后的数据包发送给N个终端设备,如此,可以降低向多个终端设备中的每一个终端分别发送数据包所带来的信令开销和资源浪费,从而提升空口传输效率;此外,相比单独向每个终端设备发送数据包,较大的聚合数据包的发送可以提高编码增益,从而提升空口传输可靠性。
在一种可能的实现方式中,该方法的执行主体为第一通信装置,该第一通信装置为网络设备或网络设备中的模块。
在一种可能的实现方式中,该方法也可以由一个或多个通信模块实现,该一个或多个通信模块可以设置于一个通信装置中,也可以设置于不同的通信装置中。
在一种可能的实现方式中,N个终端设备中每一个终端设备的数据包为无线链路控制RLC层的数据包,聚合数据包为媒体接入控制MAC层的数据包;或N个终端设备中每一个终端设备的数据包为分组数据汇聚层协议PDCP层的数据包,聚合数据包为媒体接入控制MAC层的数据包。
在一种可能的实现方式中,N个终端设备中每一个终端设备的数据包的大小不超过第一阈值;和/或,N小于或等于第二阈值。
如此,通过对聚合数据包中包括的每一个终端设备的数据包的大小、和/或可以聚合到一个聚合数据包中的终端设备个数,一方面可以兼顾对终端设备之间聚合数据包的公平性,另一方面,可以降低聚合到一个聚合数据包中的终端设备个数太多导致终端设备解析聚合数据包的时延和能耗,此外,也可以降低聚合到一个聚合数据包中的终端设备个数太少,不能合理利用网络设备资源。
在一种可能的实现方式中,第一阈值和/或第二阈值是协议预设;或者,第一阈值和/或第二阈值是网络设备配置的。
在一种可能的实现方式中,在网络设备向第一终端设备发送聚合数据包之前,该方法还包括如下至少一种:向第一终端设备发送第一指示信息,该第一指示信息指示使能聚合数据包的传输;和/或,向第一终端设备发送第二指示信息,该第二指示信息指示第一终端设备组的至少一个终端设备接收聚合数据包,或者,所述第二指示信息指示接收聚合数据包。
在一种可能的实现方式中,在网络设备向第一终端设备发送聚合数据包之前,该方法还包括:向第一终端设备发送第一指示信息,该第一指示信息指示去使能聚合数据包的传输。
如此,网络设备可以通过第一指示信息灵活使能或去使能聚合数据包的传输,从而降低终端设备一直使能该功能而带来的能量消耗。
在一种可能的实现方式中,该第二指示信息包括指示第一终端设备组的至少一个终端设备接收聚合数据包的比特位图;或者,该第二指示信息包括该至少一个终端设备的标识;或者,所述第二指示信息为第一无线网络临时标识RNTI,所述第一RNTI与所述至少一个终端设备对应。
如此,网络设备通过第二指示信息可以灵活指示接收聚合数据包的终端设备,从而节省在聚合数据包中不包括某些终端设备的数据包时,这些终端设备仍接收聚合数据包而带来的能量消耗。
在一种可能的实现方式中,该方法还包括:网络设备向第一终端设备发送M个用于终端设备组的配置信息,该M个配置信息中每一个配置信息包括如下至少一种:配置信息的标识、第一无线网络临时标识RNTI,或用于终端设备组传输数据的无线资源信息,其中,M为正整数。
在一种可能的实现方式中,该方法还包括:网络设备向第一终端设备发送第三指示信息,该第三指示信息指示激活该M个配置信息中一个或多个;和/或,该第三指示信息指示去激活该M个配置信息中一个或多个。
在一种可能的实现方式中,该聚合数据包包括N个聚合数据单元,该N个聚合数据单元对应该N个终端设备,该N个聚合数据单元中每一个聚合数据单元包括聚合数据包头和聚合数据域,该聚合数据包头指示该N个终端设备中一个终端设备的标识信息,该聚合数据域指示该N个终端设备中一个终端设备的数据包。在一种可能的实现方式中,网络设备通过单播或组播方式,向第一终端设备发送聚合数据包。
在一种可能的实现方式中,所述第一指示信息、所述第二指示信息、或所述第三指示信息中至少一种可承载于第一信令中,所述第一信令包括无线资源控制RRC消息、分组数据汇聚层协议协议数据单元PDCP PDU、媒体接入控制控制单元MAC CE、或下行控制信息DCI中至少一种。
在一种可能的实现方式中,第一终端设备的标识可以为小区无线网络临时标识、或为逻辑信道标识。
在一种可能的实现方式中,该终端设备的标识为逻辑信道标识的全部或部分,该方法还包括:网络设备发送逻辑信道标识的全部或部分与第一终端设备的对应关系。
如此,可以在不增加终端设备实现的复杂度和额外开销的前提下,实现网络设备灵活指示终端设备的标识的目的,换句话说,可以实现网络设备指示出哪个终端设备的数据。
第二方面,提供了一种数据传输的方法,在该方法包括:接收来自网络设备的聚合数据包,该聚合数据包包括N个终端设备的标识信息,以及该N个终端设备中每一个终端设备的数据包,该N个终端设备为第 一终端设备组中的N个终端设备;根据该N个终端设备的标识信息,确定是否存在与第一终端设备对应的数据包,该第一终端设备为该N个终端设备中的一个终端设备,N为大于1的整数。
在一种可能的实现方式中,该方法的执行主体为第二通信装置,该第二通信装置为第一终端设备或第一终端设备中的模块。
在一种可能的实现方式中,该方法也可以由一个或多个通信模块实现,该一个或多个通信模块可以设置于一个通信装置中,也可以设置于不同的通信装置中。
第二方面所描述的方法是与第一方面所描述的方法相对应的终端侧的方法,因此也能实现第一方面所能达到的有益效果。
在一种可能的实现方式中,N个终端设备中每一个终端设备的数据包为无线链路控制RLC层的数据包,聚合数据包为媒体接入控制MAC层的数据包;或N个终端设备中每一个终端设备的数据包为分组数据汇聚层协议PDCP层的数据包,聚合数据包为媒体接入控制MAC层的数据包。
在一种可能的实现方式中,N个终端设备中每一个终端设备的数据包的大小不超过第一阈值;和/或,N小于或等于第二阈值。
在一种可能的实现方式中,第一阈值和/或第二阈值是协议预设;或者,第一阈值和/或第二阈值是网络设备配置的。
在一种可能的实现方式中,接收来自网络设备的聚合数据包之前,该方法还包括如下至少一种:接收来自网络设备的第一指示信息,所述第一指示信息指示使能聚合数据包的传输;和/或,接收来自网络设备的第二指示信息,该第二指示信息指示第一终端设备组的至少一个终端设备接收聚合数据包;或者,该第二指示信息指示接收聚合数据包。
在一种可能的实现方式中,该方法还包括:接收来自网络设备的第一指示信息,所述第一指示信息指示去使能聚合数据包的传输。
在一种可能的实现方式中,该第二指示信息包括指示第一终端设备组的至少一个终端设备接收聚合数据包的比特位图;或者,该第二指示信息包括该至少一个终端设备的标识;或者,所述第二指示信息为第一无线网络临时标识RNTI,所述第一RNTI与所述至少一个终端设备对应。
在一种可能的实现方式中,该第二指示信息包括所述至少一个终端设备的标识,该方法还包括:根据第二指示信息,确定是否接收该聚合数据包对应的物理下行信道。
在一种可能的实现方式中,根据第二指示信息,确定是否接收该聚合数据包对应的物理下行信道,包括:如果该第二指示信息包括第一终端设备的标识信息,确定接收该聚合数据包对应的物理下行信道;和/或,如果该第二指示信息未包括该第一终端设备的标识信息,确定不接收该聚合数据包对应的物理下行信道。
在一种可能的实现方式中,根据第二指示信息,确定是否接收该聚合数据包对应的物理下行信道,包括:如果该比特位图中对应于该第一终端设备的比特位被设置为第一数值,确定接收该聚合数据包对应的物理下行信道,如果该比特位图中对应于该第一终端设备的比特位被设置为第二数值,确定不接收该聚合数据包对应的物理下行信道。
在一种可能的实现方式中,该方法还包括:接收来自网络设备的M个用于终端设备组的配置信息,所述M个配置信息中每一个配置信息包括如下至少一种:组无线网络临时标识G-RNTI,和/或,用于终端设备组传输数据的无线资源信息,M为正整数。
在一种可能的实现方式中,该方法还包括:接收第三指示信息,该第三指示信息指示激活所述M个配置信息中一个或多个;或者,该第三指示信息指示去激活该M个配置信息中一个或多个。
在一种可能的实现方式中,该聚合数据包包括N个聚合数据单元,该N个聚合数据单元对应该N个终端设备,该N个聚合数据单元中每一个聚合数据单元包括聚合数据包头和聚合数据域,该聚合数据包头 指示该N个终端设备中一个终端设备的标识信息,该聚合数据域指示该N个终端设备中一个终端设备的数据包。
在一种可能的实现方式中,通过单播或组播方式,接收来自网络设备的该聚合数据包。
在一种可能的实现方式中,该方法还包括如下至少一种:如果该N个终端设备的标识信息包括未知的终端设备的标识信息,第一终端设备丢弃与该未知的终端设备的标识信息对应的数据包;如果该N个终端设备的标识信息包括与第一终端设备的标识信息不匹配的第三终端标识信息,第一终端设备丢弃与第三终端设备的标识信息对应的数据包;或,如果该N个终端设备的标识信息包括第一终端设备的标识信息,第一终端设备获取该第一终端设备的标识信息对应的数据包。
在一种可能的实现方式中,所述第一指示信息、所述第二指示信息、或所述第三指示信息中至少一种可承载于第一信令中,所述第一信令包括无线资源控制RRC消息、分组数据汇聚层协议协议数据单元PDCP PDU、媒体接入控制控制单元MAC CE、或下行控制信息DCI中至少一种。
在一种可能的实现方式中,该第一终端设备的标识可以为小区无线网络临时标识、或为逻辑信道标识的全部或部分,其中,该逻辑信道标识的全部或部分与该第一终端设备对应。
在一种可能的实现方式中,该第一终端设备的标识为逻辑信道标识的全部或部分,该方法还包括:接收该逻辑信道标识的全部或部分与该第一终端设备的对应关系。
第三方面,提供了一种通信装置,包括用于实现前述第一方面或第一方面的任意可能的实现方式中的方法的功能模块。
第四方面,提供了一种通信装置,包括用于实现前述第二方面或第二方面的任意可能的实现方式中的方法的功能模块。
第五方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面或第一方面的任意可能的实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第六方面,提供了一种通信装置,包括处理器和接口电路,该接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面或第二方面的任意可能的实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为 输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现上述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现上述第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现第一方面以及第一方面中任一种可能实现方式中的方法。
第十二方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现第二方面或第二方面中任一种可能实现方式中的方法。
第十三方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现第一方面或第一方面的任意可能的实现方式中的方法。
第十四方面,提供了一种通信系统包括,包括前述的网络设备和终端设备。
附图说明
图1为本申请实施例的一种通信系统的示意图;
图2是本申请实施例提供的方法的系统架构的示意图;
图3是本申请实施例提供的数据包在协议栈的各层的传输过程示意图;
图4是本申请实施例提供的一种数据包传输的方法的示意图;
图5A是本申请实施例提供的一种体现聚合数据包处理流程的示意图;
图5B是本申请实施例提供的另一种体现聚合数据包处理流程的示意图;
图6A~6F是本申请实施例提供的一些聚合数据包的组MAC PDU格式的示意图;
图7A~7B是本申请实施例提供的一些组MAC PDU中MAC子头格式的示意图;
图8是本申请实施例提供的另一种数据包传输的方法的示意图;(体现WUS指示)
图9是本申请实施例提供的一种第二指示信息的格式的示意图;
图10是本申请实施例提供的一种通信装置的示意性框图;
图11是本申请实施例提供的另一种通信装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
图1为本申请实施例适用的一种通信系统示意图。如图1所示,通信系统10包括一个或多个通信装置30(例如,终端设备)经由一个或多个接入网设备20连接到一个或多个核心网设备,以实现多个通信设备之间的通信。所述通信系统例如可以支持2G,3G,4G,或5G(有时也称为new radio,NR)接入技术的通信系统,无线保真(wireless fidelity,WiFi)系统,第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统,支持多种无线技术融合的通信系统,或者是面向未来的演进系统。
(1)终端设备:终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等,为描述方便,本申请中将终端设备以UE为例进行说明。
(2)网络设备:例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于上述通信系统中的基站(BTS,Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的同一种接入技术的网络,也可以支持上述提及的不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),分布单元(distributed unit,DU),CU-控制面(control plane,CP),CU-用户面(user plane,UP),或者无线单元(radio unit,RU)等。CU和DU可以单独设置,或者也可以包括在同一个网元中,例如基带单元(baseband unit,BBU)中。RU可以包括在射频设备或者射频单元中,例如包括在射频拉远单元(remote radio unit,RRU)或有源天线处理单元(active antenna unit,AAU)中。
在不同系统中,CU(或CU-CP和CU-UP)、DU或RU也可以有不同的名称,但是本领域的技术人员可以理解其含义。例如,在ORAN系统中,CU也可以称为O-CU(开放式CU),DU也可以称为O-DU,CU-CP也可以称为O-CU-CP,CU-UP也可以称为O-CU-UP,RU也可以称为O-RU。为描述方便,本申请中以CU,CU-CP,CU-UP、DU和RU为例进行描述。本申请中的CU(或CU-CP、CU-UP)、DU和RU中的任一单元,可以是通过软件模块、硬件模块、或者软件模块与硬件模块结合来实现。
网络设备还可以是服务器,可穿戴设备,或车载设备等。例如,V2X技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以为基站为例进行说明。所述通信系统中的多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终 端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请并不对此进行限定。以5G系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、或用户面功能(user plane function,UPF)等。
(3)在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
(4)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一SN和第二SN,只是为了区分不同的SN,而并不是表示这两种SN的优先级或者重要程度等的不同。
(5)多播广播业务(multicast and broadcast service,MBS)是同时面向多个终端的业务,采用多播或者广播传输方式可以通过较少的资源为大量具有相同需求的用户同时提供MBS业务,例如直播业务、公共安全业务、批量软件更新业务等。
MBS的数据来自数据服务器,经由核心网设备发送到接入网设备,再由接入网设备发送给接收MBS数据的至少一个终端设备。在接入网设备向终端设备发送时,数据包通过MBS无线承载传输。一个MBS无线承载可以包括点到多点(point to multi-point,PTM)传输方式和/或点到点(point to point,PTP)传输方式。PTM传输方式是指网络设备同时向多个终端设备发送相同的数据,在采用PTM传输方式时,针对同一数据,网络设备(例如基站)发送的过程中有多个终端设备采用相同的方式对该数据进行接收。PTP传输方式是指针对某一数据,一个网络设备分别向不同的终端设备独立进行发送。
图2是本申请实施例提供的方法的系统架构的示意图,如图2所示,多播广播业务的数据可以从5G CN发送至UE1、UE2、UE3和UE4。其中,5G CN到5G RAN的传输路径可以是多播广播会话隧道。例如, 5G CN向UE1和UE2发送多播广播业务的数据,UE1和UE2的多播广播会话隧道是共享的。在空口上,RAN可以通过点到多点PTM方式向UE1、和UE2发送上述多播广播数据,即发送一份数据,两个UE均可接收。RAN也可以通过PTP方式分别向UE1和UE2发送上述多播广播数据。5G CN发送的多播广播数据也可以通过UE各自对应的协议数据单元(protocol data unit,PDU)会话发送给UE,即通过单播会话隧道的形式。例如,5G CN向UE3和UE4发送多播广播业务的数据,不同的PDU会话具有不同的PDU会话隧道。在空口上,RAN可以以单播的方式分别向UE3和UE4发送业务数据。在图2所示的架构中,5G CN到5G无线接入网(Radio Access Network,RAN)的多播广播会话也可以称为共享传送PDU会话或MBS会话(session),包括多播会话和广播会话,传输通道可以称为共享隧道。
(6)协议栈架构:相互通信的网络设备和终端设备(例如,图1中的110和任一个终端设备、图2中的5G RAN和任一个UE)具有一定的协议层结构。例如,如图3所示的协议层架构。该协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physics,PHY)层等协议层。其中,物理层位于最低层(层一),MAC层、RLC以及PDCP属于第二层(层二),RRC属于第三层(层三)。在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
这些协议层的功能可以由一个节点实现,或者可以由多个节点实现;例如,在一种演进结构中,无线接入网设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。CU和DU可以根据无线网络的协议层划分,例如,PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,RLC层和MAC层等的功能设置在DU等。
应该理解的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
(7)协议栈各层对数据包的处理:在网络设备和终端设备进行数据传输时,数据需要依次经过网络设备和终端设备上的各个层并在各个层进行相应的处理。以MBS业务的数据传输为例,如图3所示,数据首先到网络设备的SDAP层,经过PDCP层的处理以后传输到RLC层和MAC层,在MAC层经过处理之后,通过物理层发送出去,通过空口传输给终端设备。终端设备接收数据时,依次经过物理层、MAC层、RLC层、PDCP层和SDAP层对数据包依次进行对应的处理。可以将网络设备和终端设备各层对数据包的处理结合起来称为无线承载,对于每个无线承载中的每个数据,都需要经过各个层的处理。每个层都有相应的功能实体来执行相应的功能,例如,PDCP层对应PDCP实体,RLC层对应RLC实体,MAC层对应MAC实体等。其中,每个无线承载包含一个PDCP实体以及一个或者多个RLC实体,每个RLC实体对应一个逻辑信道。
需要说明的是,在本申请实施例中,数据包聚合,也可以理解为数据包级联或数据包拼接,换句话说,“聚合”、“级联”或“拼接”三者相互替换,“聚合的数据包”、“级联的数据包”和“拼接的数据包”三者可以相互替换,对此不做限制。
在一些单播应用场景中,有的单播业务的数据包较小,调度该较小的数据包时使用的资源少,传输块小,有时不能完全利用网络分配的最小资源单元,从而造成资源浪费。另外,由于数据包较小,一方面其对应的编译码能力差,容易受到周边干扰因素(例如,信道条件、或来自较大数据包的干扰)的影响,从而影响传输可靠性;另一方面,较小的数据包使得控制信令所占比例会比较大,有效数据传输比例会比较低,从而影响传输效率。在某些场景中,比较小的数据包占的比例会比较大,通常可能会超过50%,此时,如 果网络设备使用传统的单播方式来传输这些较小的数据包,随着比较小的数据包所占比例增加,数据包的传输效率和可靠性所受的影响会愈加严重。
因而,如何提升数据包较小的数据传输的效率和可靠性是一个值得关心的问题。
本申请提供一种数据包传输的方法和装置,网络设备可以对N个终端设备的数据包放到一个聚合数据包中进行发送,并将聚合后的数据包发送给N个终端设备,如此,可以降低网络设备向多个终端设备中的每一个终端分别发送数据包所带来的信令开销和资源浪费,从而提升空口传输效率;此外,通过增加确定编码方式前的数据包大小,提高编码增益,从而提升空口传输可靠性。
实施例一
图4是本申请实施例提供的一种通信方法的示意图。图4所示的方法可以由图1至图3中所示的网络设备和终端设备执行。
S401,网络设备确定N个终端设备中每一个终端设备的数据包,N为大于1的整数。
可选地,该N个终端设备中每一个终端设备的数据包满足至少一项:该N个终端设备为第一终端设备组中的终端设备;该N个终端设备中每一个终端设备的数据包的大小不超过第一阈值;或该N小于或等于第二阈值。应理解,每一个终端设备的数据包为网络设备发给该终端设备的数据包,即下行数据包。可选地,该数据包可以是来自其他网络设备的数据包,经由该网络设备转发给终端设备;或者,该数据包是该网络设备自己生成并发给终端设备的。这里,其他网络设备可以是核心网设备也可以是接入网设备,本申请对此不做限制。
可选地,网络设备通过执行聚合传输功能的判断,确定N个终端设备中每一个终端设备的数据包;这里,聚合传输功能的判断可以包括如下至少一项:
1)判断某一待发送数据包对应的终端设备与另一个待聚合数据包对应的终端设备是否为同一终端设备组;
2)某一待发送数据包的大小是否超过第一阈值;
3)待聚合数据包的个数是否超过第二阈值;
4)某一待发送数据包是否满足第一服务质量QoS(Quality of Service)要求;
5)判断某一待发送数据包对应的终端设备的能力信息,例如,终端设备是否支持聚合数据包的传输功能;或;
6)判断是否有对于待发送数据包进行聚合的指示信息。
可选地,第一终端设备组可以是网络设备根据某一规则进行分组的,例如,网络设备可以根据终端设备的位置,UE能力,UE的业务情况,UE版本中一种或多种来进行分组,但具体的分组方式,本申请对此不做限定。
可选地,第一阈值为协议规定或网络设备设置;可选地,第二阈值为协议规定或网络设备设置的。进一步地,若第一阈值和/或第二阈值是网络设备设置,可以是网络设备根据自身资源情况或调度能力等来设置,本申请对此不做限制。
可选地,第一服务质量QoS指标包括如下一种或多种:时延、可靠性或丢包率。可以理解,如果第一QoS指标为时延,则判断某一待发送数据包能否聚合可以是根据该待发送数据包的时延要求是否大于时延阈值;如果该待发送数据包的时延大于时延阈值,则该待发送数据包可以被聚合,反之。
可选地第一无线承载被配置了聚合功能;或者,可以是判断该数据包对应的终端设备是否支持聚合数据包传输的功能。
可选地,第一终端设备可以向网络设备发送其支持聚合数据包传输的能力;进一步地,第一终端设备可以自主向网络设备发送其支持聚合数据包传输的能力、或者可以是根据网络设备的指示或请求,向网络设备发送其支持聚合数据包传输的能力。
可选地,对于待发送数据包进行聚合的指示信息是由较高协议层(或称上层)指示给包括聚合传输功能的协议层;或者,该指示信息承载在待发送数据包的包头中。
可选地,上述N个终端设备中每一个终端设备的数据包满足以下至少一项:该N个终端设备为第一终端设备组中的终端设备;数据包的大小不超过第一阈值;该N小于或等于第二阈值;或某一待发送数据包是否满足第一服务质量QoS要求或该N个终端设备支持聚合数据包的传输功能;或有针对每一个终端设备的数据包进行聚合的指示信息。
当网络设备根据如上至少一项进行判断时,对于如上1)-6)因素的考虑先后在本申请不做限制。为便于说明聚合传输功能判断,如下以示例a和示例b进行说明:
示例a,网络设备根据1)和2)来进行判断,且对于1)网络设备根据数据包对应的终端设备组与待聚合数据包对应的终端设备是否是同一终端设备组进行判断,可以理解,网络设备根据待发送的数据包的终端设备是否是同一终端设备组和待发送给终端设备的数据包的大小是否超过第一阈值来判断;
具体地,网络设备有数据包分别发给终端设备A、终端设备B和终端设备C,发送给这三个终端设备的数据包大小依次为a、b和c,如果终端设备A和终端设备B是同一终端设备组,但与终端设备C不是一个终端设备组,第一阈值为X。此时,网络设备根据终端设备A和终端设备B是同一终端设备组可判断满足1),网络设备需进一步判断发给终端设备A和终端设备的具体数据包是否可以聚合,如果数据包a小于第一阈值,且数据包b小于第一阈值,则网络设备可确定数据包a和数据包b可以聚合在一起;如果数据包a小于第一阈值,但数据包b大于第一阈值,则网络设备确定数据包a和数据包b不能聚合在一起。
示例b,网络设备根据1)和4)来进行判断,且对于1)网络设备根据数据包对应的终端设备组与待聚合数据包对应的终端设备是否是同一终端设备组、以及数据包是否满足第一QoS要求来进行判断;
具体地,网络设备有数据包分别发给终端设备A、终端设备B,且这两个终端设备对应于同一终端设备组,发送给这三个终端设备的数据包大小依次为a、b,且第一阈值为X。此时,一种情况下,如果数据包a和b都满足第一QoS要求:则进一步判断数据包a、b和第一阈值的关系,如果数据包a和b的大小都小于第一阈值,则网络设备可确定数据包a和b可以聚合在一起;反之,如果数据包a和b中有一个大于第一阈值,则网络设备可确定数据包a和b不可以聚合在一起。在另一种情况下,如果数据包a和b中有一个在聚合发送模式下不能满足第一QoS要求,此时,网络设备可确定数据包a和b不可以聚合在一起。
可选地,由网络设备的无线链路控制RLC层或分组数据汇聚层协议PDCP层确定N个终端设备中每一个终端设备的数据包;相应地,可以理解,如上聚合传输功能的判断可以由RLC层或PDCP层来执行,换句话说,聚合传输功能位于RLC实体或PDCP实体中。可选地,N个终端设备中每个终端设备的数据包为无线链路控制RLC层的数据包、或为分组数据汇聚层协议PDCP层的数据包。
进一步地,如果聚合传输功能位于RLC实体,对于上述6),待发送数据包进行聚合的指示信息可以由PDCP层指示给RLC层,或者,该指示信息承载在待发送的PDCP数据包的包头中;如果聚合传输功能位于PDCP实体,对于上述6),待发送数据包进行聚合的指示信息可以由上层指示给PDCP层,或者,该指示信息承载在待发送的上层数据包的包头中。
为便于说明聚合传输功能的执行,如下结合图5A和图5B两种协议架构示意图来说明。
图5A为本申请实施例提供的一种网络架构示意图,如图5A所示,对于终端设备UE2的一个PDCP PDU,网络设备判断是否进行聚合传输,对于不需要聚合传输的数据包,网络设备将该PDCP PDU发给对应的RLC实体处理,然后通过对应的逻辑信道,使用终端设备专用的RNTI调度进行传输;对于需要聚合传输的数据包,网络设备将该UE2的PDCP PDU发给对应的RLC实体处理,将该RLC实体处理的UE2PDCP PDU和终端设备UE1的PDCP PDU聚合到一个聚合包内,并通过公共RNTI进行调度。需要说明的是,对于UE1的PDCP PDU能否被聚合,是采用与UE2的PDCP PDU判断是否进行聚合传输相同的判断 方法,在此不再赘述。相应地,当UE2接收到数据包后,可以将用组调度接收的数据包和通过终端设备专用的RNTI调度收到的数据包在PDCP层进行去重、排序等操作。对于UE收到的聚合数据包,UE可在MAC层处理将其他终端设备的数据包丢弃,具体地,可以根据聚合数据包中包括的终端设备的标识,确定是保留自己的数据包并递交上层;或者丢弃不属于自己的数据包,针对数据包丢弃的相关处理,会在下文具体介绍,这里不再赘述。
图5B为本申请实施例提供的另一种网络架构示意图,如图5B所示,对于终端设备UE2的一个RLC PDU,网络设备判断是否进行聚合传输,对于不需要聚合传输的数据包,网络设备将该RLC PDU发给对应的实体处理,然后通过对应的逻辑信道,使用终端设备专用的RNTI调度进行传输;对于需要聚合传输的数据包,网络设备将该UE2的RLC PDU发给对应的实体处理,将处理后的UE2RLC PDU和终端设备UE1的RLC PDU级联到一个聚合包内,并通过公共RNTI进行调度。需要说明的是,对于UE1的RLC PDU能否被聚合,是采用与UE2的RLC PDU判断是否进行聚合传输相同的判断方法,在此不再赘述。相应地,当UE2接收到数据包后,可以将用组调度接收的数据包和通过终端设备专用的RNTI调度收到的数据包在RLC层进行相应操作。对于UE收到的聚合数据包,UE可在MAC层处理将其他终端设备的数据包丢弃,针对数据包丢弃的相关处理,会在下文具体介绍,这里不再赘述。
可选地,第一终端设备组可以共用MAC实体。进一步地,上述方法还包括,共用MAC实体可以向第一终端设备组中的至少一个RLC实体指示:可用于聚合数据包的资源,和/或,已被用于聚合数据包的资源。
举个例子,UE1和UE2可以共用MAC实体,该共用MAC实体可以向UE1和/或UE2的RLC实体指示:可用于聚合数据包的资源,和/或已被用于聚合数据包的资源。
可选地,步骤S401之前,该方法还包括:向第一终端设备发送M个终端设备组的配置信息,所述M个配置信息中每一个配置信息包括如下至少一种:第一无线网络临时标识RNTI,配置信息的索引、或用于终端设备组传输数据的无线资源信息,所述M为正整数。
进一步地,第一RNTI与第一业务相关联。具体地,第一RNTI可以为组无线网络临时标识(group radio network temporary identifier,G-RNTI)、或组播控制信道RNTI(multicast control channel RNTI,MCCH-RNTI)。可选地,第一业务包括单播业务,或者第一业务是满足第一QoS要求的业务。
进一步地,用于终端设备组传输数据的无线资源信息包括用于接收广播组播业务相关信息的公共频率资源(common frequency resource,CFR)配置。
进一步地,所述M个终端设备组的配置信息可以承载于无线资源控制RRC消息或者系统消息,或者MCCH消息中。
可选地,网络设备获取终端设备和终端设备组之间的对应关系,进一步地,该对应关系可以是一对一、一对多、多对一或多对多;可以理解,一个UE可以属于多个终端设备组,不同UE属于的终端设备组集合可以相同、也可以不同,本申请对此不做限制。
表1给出了一种终端设备和终端设备组之间的对应关系,由表1可知,UE1属于终端设备组1和终端设备组3;UE2属于终端设备组3、组4和组5,UE3属于组1、组2和组4,UE4属于组3、组4和组5。
表1终端设备和终端设备组的对应关系
可选地,该方法还包括:向第一终端设备发送第三指示信息,所述第三指示信息指示激活所述M个配置信息中一个或多个;和/或,所述第三指示信息指示去激活所述M个配置信息中一个或多个。
进一步地,第三指示信息包括指示激活所述M个配置信息中一个或多个的索引;和/或,包括去激活所述M个配置信息中一个或多个的索引、或者第三指示信息为第一参数,该第一参数与M个配置信息中的一个配置信息对应;该第一参数可以是一个配置信息中的第一RNTI。
进一步地,第三指示信息可承载于无线资源控制RRC消息、或下行控制信息(Downlink Control Information,DCI)、或者媒体接入控制(media access control,MAC)控制元素(control element,CE)、或其他可能的消息,本申请对此不做限定。
可选地,网络设备可以向第一终端设备发送分配标识信息,此标识信息是第一终端设备在第一终端设备组内的标识信息。进一步地,该标识信息的长度可以是8比特、4比特或其他bit长度,本申请不做限制。
S402,网络设备向第一终端设备发送聚合数据包,其中,聚合数据包包括N个终端设备的标识信息,以及这N个终端设备中每一个终端设备的数据包。相应地,第一终端设备接收来自网络设备的聚合数据包。
可选地,N个终端设备中每一个终端设备的标识信息位于其对应的数据包之前;可选地,N个终端设备中每一个终端设备的标识信息与其对应的数据包依次级联。
可选地,所述聚合数据包包括P个聚合数据单元,所述P个聚合数据单元对应所述N个终端设备,所述P个聚合数据单元中每一个聚合数据单元包括聚合数据包头和聚合数据域,所述聚合数据包头指示所述N个终端设备中一个终端设备的标识信息,所述聚合数据域指示所述N个终端设备中一个终端设备的数据包;其中,P为大于等于N的正整数。
如果N个终端设备中的一个终端设备有多个数据包待发送,则该终端设备可以对应一个或多个聚合数据单元;在一个终端设备对应一个聚合数据单元时,则该聚合数据单元中包括聚合数据包头和聚合数据域,该聚合数据包头指示该终端设备的标识信息,该聚合数据域指示该终端设备的多个待发送数据包;在一个终端设备对应多个聚合数据单元时,则该多个聚合数据单元中每个聚合数据单元包括一个聚合数据包包头和一个聚合数据域,每个聚合数据包头中包括该终端设备的标识信息,每个聚合数据包包括该终端设备的一个待发送数据包。
可选的,所述方法还包括:网络设备向第一终端设备发送下行控制信息,该下行控制信息用于调度该聚合数据包;进一步的,该下行控制信息承载于一个新的下行控制信息DCI格式中,例如,该DCI格式是新设计的;和/或该DCI格式是通过一个专门的无线网络临时标识RNTI加扰的。
可选的,所述聚合数据包对应的数据包包头中包括第五指示信息,该第五指示信息用于指示与该数据包包头对应的数据包为聚合数据包。
可选地,聚合数据包为媒体接入控制MAC层的数据包;进一步地,聚合数据包可以为媒体接入控制协议数据单元MAC PDU。
可选地,聚合数据包头中指示的终端设备的标识信息可以为小区无线网络临时标识、或逻辑信道标识的全部或部分、或者是网络配置的临时标识。进一步地,聚合数据包的格式可以有多种,本申请结合图6A~图6F提供的一些聚合数据包的格式的示意图来进行说明。
图6A给出了一种可能的聚合数据包的格式,如图6A所示,此聚合数据包包括第一终端设备的标识信息、第一终端设备的数据包、第k终端设备的标识信息、第k终端设备的数据包、第N终端设备的标识信息和第N终端设备的数据包;且在此聚合数据包内如上内容依次级联;需要说明的是,如果聚合数据包对应的终端个数为2,即N=2,则此聚合数据包包括第一终端设备的标识信息、第一终端设备的数据包、第二终端设备的标识信息、第二终端设备的数据包,且在此聚合数据包内第一终端设备的标识信息、第一 终端设备的数据包、第二终端设备的标识信息、第二终端设备的数据包依次级联。
图6B给出了一种可能的聚合数据包的格式,如图6B所示,聚合数据包包括N个聚合数据单元,该N个聚合数据单元对应N个终端设备,该N个聚合数据单元中每一个聚合数据单元包括聚合数据包头和聚合数据域,其中,聚合数据包头指示N个终端设备中一个终端设备的标识信息,聚合数据域指示上述N个终端设备中一个终端设备的数据包。
图6C给出了一种可能的聚合数据包的格式,如图6C所示,聚合数据包对应N个终端设备,该聚合包包括N个聚合数据包头和N个聚合数据域,N个聚合数据包头位于N个聚合数据域之前,其中,N个聚合数据包头中每一个聚合数据包头包括N个终端设备中一个终端设备的标识信息,N个聚合数据域中每一个聚合数据域包括上述N个终端设备中一个或多个终端设备的数据包。
可选地,如果同一个终端设备有多个数据包要放到一个聚合数据包中发送,同一终端设备对应的多个聚合数据单元可以放在一起(依次级联),也可以不放在一起;进一步地,如果同一终端设备对应的聚合数据单元放在一起,则对应于同一终端设备的多个聚合数据单元可以共用一个聚合数据包头,换句话说,如果同一终端设备有多个数据包要放在一个聚合数据包中发送,只需在一个聚合数据包头中携带该终端设备的标识,从而节省了在聚合数据包中针对每个聚合数据包都携带终端设备的标识而带来的信令开销。进一步地,如果同一终端设备对应的聚合数据单元不放到一起发送,则各终端设备对应的聚合数据单元在聚合数据包中的位置取决于基站的实现,本申请不做限制。
图6D给出了一种可能的聚合数据包的格式,如图6D所示,聚合数据包包括P个聚合数据单元,该P个聚合数据单元对应N个终端设备,该P个聚合数据单元中每一个聚合数据单元包括聚合数据包头和聚合数据域,其中,聚合数据包头指示N个终端设备中一个终端设备的标识信息,聚合数据域指示上述一个终端设备中一个数据包,可以理解,该P个聚合单元可能有多个聚合数据单元对应一个终端设备,且对应于同一终端设备的多个聚合数据单元被放在一起发送。
图6E给出了一种可能的聚合数据包的格式,如图6E所示,聚合数据包包括N个聚合数据单元,该N个聚合数据单元对应N个终端设备,该P个聚合数据单元中每一个聚合数据单元包括聚合数据包头和一个或多个聚合数据域,其中,聚合数据包头指示N个终端设备中一个终端设备的标识信息,每个聚合数据域指示一个终端设备的一个数据包,可以理解,一个终端设备的多个数据包可以共享一个聚合数据包头。
图6F给出了一种可能的数据包的格式,如图6F所示,聚合数据包包括P个聚合数据单元,该P个聚合数据单元对应N个终端设备,该P个聚合数据单元中每一个聚合数据单元包括聚合数据包头和聚合数据域,其中,聚合数据包头指示N个终端设备中一个终端设备的标识信息,聚合数据域指示上述一个终端设备中一个数据包,可以理解,该P个聚合单元可能有多个聚合数据单元对应一个终端设备,且对应于同一终端设备的多个聚合数据单元没有放在一起发送,换句话说,图6F提供了一种聚合数据包的格式,在该格式中每个终端设备对应聚合数据单元的位置随机,具体位置取决于网络设备调度,本申请不做限制。
进一步地,聚合数据包头中指示的终端设备的标识信息为逻辑信道标识的方式有多种,如下结合方式1~方式3进行说明:
方式1:终端设备的标识信息可以通过扩展逻辑信道标识eLCH ID来指示
通过方式1指示终端设备的标识信息的方法有很多种,如下结合图7A~图7B进行说明:
如图7A所示,在此方式中,可以是使用一个预留的LCID取值(例如,35或36)来指示eLCID中包含UE标识信息,相应地,终端设备可以根据预先终端设备的标识(用一部分eLCID作为标识),以及聚合数据包头中携带的eLCH ID域中包含的信息来确定是否有发给自己的数据包;可选地,预先获取的终端设备的标识可以是网络设备为终端设备配置。可选地,eLCH ID占用长度可为1字节或2字节。
可选地,终端设备的标识信息的长度可以小于或等于eLCID的长度;进一步地,如果终端设备的标识 信息的长度可以小于eLCID的长度,协议定好的LSB读到MSB,比如从右往左读取。
如图7B所示,在此方式中,可以是使用一个预留的LCID取值(例如,35或36)指示LCID之后包含UE标识信息,或者指示此聚合数据包头中包括UE标识信息,相应地,终端设备可以根据预留的LCID取值,以及聚合数据包头中携带的UE标识信息来确定是否有发给自己的数据包;可选地,UE标识信息可以是网络设备为终端设备配置。
方式2:可以放置在一个数据包中与所有的数据包进行级联用于指示出后续的MAC SDU分别对应哪个UE的。比如次此数据包中包含的信息可以是:UE1,UE2,UE2,UE1,UE3,分别代表后续级联的数据包分别对应UE1,2,2,1,3。此方式相比较于是方式1中复用eLCID的优势是不限制聚合的数据包使用的逻辑信道号不能使用2字节的eCLID。可选地,此数据包可以是MAC层数据包,例如MAC CE。
方式3:协议规定不同的终端设备对于需要聚合的数据包的数据无线承载使用的LCID均不同,例如通过eLCID或LCID来实现不同UE使用的LCID不同。
比如使用eLCID保证不同的UE配置的LCID都不同。UE只需要在数据包头中找到自己的eLCID就认为是自己的数据。隐式的通过eLCID体现UE信息,与方式1的区别是方式1实际用的LCID是短的LCID,方式3实际用的LCID是长的。举个例子,如果一个终端设备组中只有UE1和UE2,网络设备可以配置UE1使用的LCID为1-16,UE2使用的CID为17-32。
可选地,网络设备通过单播或组播方式,向第一终端设备发送聚合数据包。相应地,第一终端设备通过单播或组播方式,接收来自网络设备的聚合数据包。
可选地,该方法还包括如下至少一种:如果该N个终端设备的标识信息包括未知的终端设备的标识信息,第一终端设备丢弃与该未知的终端设备的标识信息对应的数据包;如果该N个终端设备的标识信息包括与第一终端设备的标识信息不匹配的第三终端标识信息,第一终端设备丢弃与该第三终端设备的标识信息对应的数据包;或如果该N个终端设备的标识信息包括第一终端设备的标识信息,第一终端设备获取该第一终端设备的标识信息对应的数据包。
实施例二
图8是本申请实施例提供的一种通信方法的示意图。图8所示的方法可以由图1至图3中所示的网络设备和终端设备执行。
S800,可选地,在S801步骤之前,网络设备可以接收来自第一终端设备的能力信息,该能力信息指示终端设备是否支持聚合数据包的传输功能;相应地,第一终端设备向网络设备发送能力信息。
进一步地,所述能力信息承载在RRC消息中。
可选地,在S800之前,网络设备还可以向第一终端设备发送指示信息,该指示信息用于指示或请求或查询第一终端设备是否支持聚合数据包的传输功能。进一步地,该指示信息承载在RRC消息或广播消息中。
S801,作为可选的步骤,网络设备向第一终端设备发送第一指示信息,相应地,第一终端设备接收来自网络设备的第一指示信息。
一种可能的实现方式中,该第一指示信息指示使能或去使能聚合数据包的传输。
可选地,第一指示信息承载于无线资源控制RRC消息,分组数据汇聚层协议协议数据单元PDCP PDU、下行控制信息DCI、或系统消息或MAC CE中。
另一种可能的实现方式中,该第一指示信息指示使能聚合数据包的传输、去使能聚合数据包的传输,或者,指示通过动态信令指示使能或去使能聚合数据包的传输。
可以理解,网络设备可以通过第一指示信息指示三种数据包的传输方式:使能聚合数据包的传输、去使能聚合数据包的传输、或通过动态信令指示使能或去使能聚合数据包的传输。相应地,第一终端设备可 以根据收到的第一指示信息,确定其与网络设备之间通信时数据包的传输方式。
示例地,如果网络设备通过第一指示信息指示使能聚合数据包的传输,则第一终端设备根据第一指示信息确定其与网络设备之间使能聚合数据包的传输;如果网络设备通过第一指示信息指示去使能聚合传输包的传输,则第一终端设备根据第一指示信息确定其余网络设备之间去使能聚合数据包的传输;如果网络设备通过第一指示信息指示通过动态信令指示使能或去使能聚合数据包的传输,则第一终端设备根据第一指示信息确定其需要进一步通过来自网络设备的动态信令获知使能还是去使能聚合数据包的传输。
可选地,动态信令中包括指示使能或去使能聚合数据包的传输的信息;进一步地,该指示使能或去使能聚合数据包的传输的信息可以是通过1比特来进行指示。例如,该信息通过1比特来进行指示,当该比特的取值被设置为“1”时,该信息指示使能聚合数据包的传输,如果该比特的取值被设置为“0”时,该信息指示去使能聚合数据包的传输;反之。再进一步地,
可选地,第一指示信息承载于RRC消息,动态信令可以为PDCP PDU、MAC CE、或DCI中一种。
S802,作为可选的步骤,网络设备向第一终端设备发送M套用于终端设备组的配置信息,该M套配置信息中每一套配置信息包括如下至少一种:第一无线网络临时标识RNTI,或用于终端设备组传输数据的无线资源信息,所述M为正整数。
S803,作为可选的步骤,网络设备向第一终端设备发送第三指示信息,该第三指示信息指示激活该M套配置信息中一套或多套;和/或,该第三指示信息指示去激活该M套配置信息中一套或多套。
关于M套配置信息、以及第三指示信息的相关描述,可以参加上文,这里不再赘述。
S804,网络设备确定N个终端设备中每一个终端设备的数据包,N为大于1的整数。
可选地,该N个终端设备中每一个终端设备的数据包满足至少一项:该N个终端设备为第一终端设备组中的终端设备;该N个终端设备中每一个终端设备的数据包的大小不超过第一阈值;或该N小于或等于第二阈值。关于S804的相关描述,可以参加上文S401中记载,这里不再赘述。
S805,网络设备向第一终端设备发送第二指示信息,第二指示信息指示第一终端设备的至少一个终端设备接收聚合数据包;或者,所述第二指示信息指示接收聚合数据包。
可选地,第二指示信息包括指示第一终端设备组的至少一个终端设备接收聚合数据包的比特位图;或者,第二指示信息包括所述至少一个终端设备的标识;或者,所述第二指示信息为第一无线网络临时标识RNTI,所述第一RNTI与所述至少一个终端设备对应。
可选地,第二指示信息承载于下行控制信息DCI中。
S806,第一终端设备根据该第二指示信息,确定是否接收所述聚合数据包对应的物理下行信道。
可选地,如果该第二指示信息指示第一终端设备的标识信息,第一终端设备确定接收聚合数据包对应的物理下行信道;或,如果该第二指示信息未指示第一终端设备的标识信息,确定不接收聚合数据包对应的物理下行信道;或者,
可选地,该第二指示信息包括指示至少一个终端设备的终端设备接收聚合数据包的比特位图,第一终端设备根据该第二指示信息,确定是否接收该聚合数据包对应的物理下行信道,包括:如果该比特位图中对应于第一终端设备的比特位被设置为第一数值,确定接收该聚合数据包对应的物理下行信道,如果该比特位图中对应于该第一终端设备的比特位被设置为第二数值,确定不接收该聚合数据包对应的物理下行信道;其中,第一数值可以为1,第二数值可以为0;或者,第一数值可以为0,第二数值可以为1。图9示出了一种第二指示信息的承载方式,如图9所示,若某比特位被设置为预设值,例如取值为1,则表示该比特位对应的一个或多个终端设备接收该聚合数据包对应的物理下行信道,反之。
可选地,终端设备对应的比特位在第二指示信息中的位置可以是网络设备通过高层信令配置的,其中,高层信令包括RRC消息、DCI或MAC CE,本申请对此不做限制。可选地,该终端设备对应的比特位在第二指示信息中的位置是通过起始位置和终止位置来指示;或者是通过起始位置和占用比特数来指示。
可选地,第二指示信息可承载在G-RNTI加扰的DCI、唤醒信号WUS(Wake-up signal)或G-RNTI加扰的DCI调度的物理下行共享信道中。
如下结合#Case A和#Case B对步骤S806做进一步描述。
#Case A:确定接收所述聚合数据包对应的物理下行信道
在此Case下,该方法还包括S807,网络设备向终端设备发送物理下行信道,相应地,终端设备接收来自网络设备的物理下行信道。可选地,所述物理下行信道上承载聚合数据包的调度信息,可选地,所述物理下行信道可为物理下行控制信道。
S808,网络设备向第一终端设备发送聚合数据包,其中,聚合数据包包括N个终端设备的标识信息,以及这N个终端设备中每一个终端设备的数据包。
相应地,第一终端设备接收来自网络设备的聚合数据包。可选地,N个终端设备中每一个终端设备的标识信息位于其对应的数据包之前;可选地,N个终端设备中每一个终端设备的标识信息与其对应的数据包依次级联。
可选地,所述聚合数据包包括N个聚合数据单元,所述N个聚合数据单元对应所述N个终端设备,所述N个聚合数据单元中每一个聚合数据单元包括聚合数据包头和聚合数据域,所述聚合数据包头指示所述N个终端设备中一个终端设备的标识信息,所述聚合数据域指示所述N个终端设备中一个终端设备的数据包。
可选地,所述聚合数据包包括P个聚合数据单元,所述P个聚合数据单元对应所述N个终端设备,所述P个聚合数据单元中每一个聚合数据单元包括聚合数据包头和聚合数据域,所述聚合数据包头指示所述N个终端设备中一个终端设备的标识信息,所述聚合数据域指示所述N个终端设备中一个终端设备的数据包;其中,P为大于等于N的正整数。
关于S808中聚合数据包的相关描述,可以参加上文S402中记载,这里不再赘述。
#Case B:确定不接收所述聚合数据包对应的物理下行信道
通过实施例二,通过网络设备向终端设备发送第二指示信息,使得UE只在有自己相关的数据时才监听物理下行信道,接收对应的聚合数据包,可以实现较大程度的节能。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图10和图11为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备30,也可以是如图1所示的无线接入网设备20,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图10所示,通信装置1000包括处理单元1010和收发单元1020。通信装置1000用于实现上述图4或图8中所示的方法实施例中的方法。
当通信装置1000用于实现图4所示的方法实施例时:收发单元1020用于接收来自网络设备的聚合数 据包,所述聚合数据包包括N个终端设备的标识信息,以及所述N个终端设备中每一个终端设备的数据包,所述N个终端设备为第一终端设备组中的N个终端设备,所述第一终端设备为所述N个终端设备中的一个终端设备,所述N为大于1的整数;处理单元1010用于根据所述N个终端设备的标识信息,确定是否存在与所述第一终端设备对应的数据包。
所述N个终端设备中每一个终端设备的数据包为无线链路控制RLC层的数据包,所述聚合数据包为媒体接入控制MAC层的数据包;或者,所述N个终端设备中每一个终端设备的数据包为分组数据汇聚层协议PDCP层的数据包,所述聚合数据包为媒体接入控制MAC层的数据包。所述每一个终端设备的数据包的大小不超过第一阈值;和/或,所述N小于或等于第二阈值。
所述收发单元还用于接收来自网络设备的第一指示信息,所述第一指示信息指示使能聚合数据包的传输;和/或,用于接收来自网络设备的第二指示信息,所述第二指示信息指示所述第一终端设备组中的至少一个终端设备接收聚合数据包;或者,所述第二指示信息指示接收聚合数据包。
所述收发单元还用于接收来自网络设备的第一指示信息,所述第一指示信息指示去使能聚合数据包的传输。
所述第二指示信息包括指示第一终端设备组中的至少一个终端设备接收聚合数据包的比特位图;或者,所述第二指示信息包括所述至少一个终端设备的标识;或者,所述第二指示信息为第一无线网络临时标识RNTI,所述第一RNTI与所述至少一个终端设备对应。
所述处理单元还用于根据所述第二指示信息,确定是否接收所述聚合数据包对应的物理下行信道。如果所述第二指示信息包括所述第一终端设备的标识信息,所述处理单元确定接收所述聚合数据包对应的物理下行信道;或,如果所述第二指示信息未包括所述第一终端设备的标识信息,所述处理单元确定不接收所述聚合数据包对应的物理下行信道;
或者,
如果所述比特位图中对应于所述第一终端设备的比特位被设置为第一数值,所述处理单元确定接收所述聚合数据包对应的物理下行信道,如果所述比特位图中对应于所述第一终端设备的比特位被设置为第二数值,所述处理单元确定不接收所述聚合数据包对应的物理下行信道。
所述收发单元还包括接收来自网络设备的M个用于终端设备组的配置信息,所述M个配置信息中每一个配置信息包括如下至少一种:配置信息的标识、组无线网络临时标识G-RNTI,和/或,用于终端设备组传输数据的无线资源信息,所述M为正整数。
所述收发单元还包括接收第三指示信息,所述第三指示信息指示激活所述M个配置信息中一个或多个;或者,所述第三指示信息指示去激活所述M个配置信息中一个或多个。
所述收发单元具体用于通过单播或组播方式,接收来自网络设备的聚合数据包。
所述处理单元具体用于执行如下至少一种:如果所述N个终端设备的标识信息包括未知的终端设备的标识信息,丢弃与所述未知的终端设备的标识信息对应的数据包;如果所述N个终端设备的标识信息包括与所述第一终端设备的标识信息不匹配的第三终端标识信息,丢弃与所述第三终端设备的标识信息对应的数据包;或,如果所述N个终端设备的标识信息包括所述第一终端设备的标识信息,获取所述第一终端设备的标识信息对应的数据包。
所述收发单元还包括接收所述逻辑信道标识的全部或部分与所述第一终端设备的对应关系。
当通信装置1000用于实现图4所示的方法实施例中方法时:处理单元1010用于确定N个终端设备中每一个终端设备的数据包,所述N个终端设备为第一终端设备组中的N个终端设备,所述N为大于1的 整数;收发单元1020用于向第一终端设备发送聚合数据包,所述聚合数据包包括所述N个终端设备的标识信息,以及所述N个终端设备中每一个终端设备的数据包,所述第一终端设备为所述N个终端设备中的一个终端设备。
所述收发单元还用于向第一终端设备发送第一指示信息,所述第一指示信息指示使能聚合数据包的传输;和/或,向第一终端设备发送第二指示信息,所述第二指示信息指示所述第一终端设备组中的至少一个终端设备接收聚合数据包,或者,所述第二指示信息指示接收聚合数据包。
所述收发单元还用于向第一终端设备发送第一指示信息,所述第一指示信息指示去使能聚合数据包的传输。
所述收发单元还用于向第一终端设备发送M个终端设备组的配置信息,所述M个终端设备组的配置信息中每一个配置信息包括如下至少一种:配置信息的标识、第一无线网络临时标识RNTI,或用于终端设备组传输数据的无线资源信息,所述M为正整数。
所述收发单元还用于向第一终端设备发送第三指示信息,所述第三指示信息指示激活所述M个配置信息中一个或多个;和/或,所述第三指示信息指示去激活所述M套配置信息中一个或多个。
所述收发单元还用于通过单播或组播方式,向第一终端设备发送聚合数据包。
所述收发单元还用于向第一终端设备发送所述逻辑信道标识全部或部分与所述第一终端设备的对应关系。
当通信装置1000用于实现图8所示的方法实施例中方法时:收发单元1020用于接收来自网络设备的第二指示信息,第二指示信息指示第一终端设备的至少一个终端设备接收聚合数据包;或者,所述第二指示信息指示接收聚合数据包;处理单元1010用于根据该第二指示信息,确定是否接收所述聚合数据包对应的物理下行信道。
所述收发单元还用于向网络设备发送第一终端设备的能力信息,该能力信息指示终端设备是否支持聚合数据包的传输功能;相应地,第一终端设备向网络设备发送能力信息。
所述收发单元还用于接收来自网络设备的指示信息,该指示信息用于指示或请求或查询第一终端设备是否支持聚合数据包的传输功能。所述收发单元还用于接收来自网络设备的第一指示信息,该第一指示信息指示使能或去使能聚合数据包的传输。
所述收发单元还用于接收来自网络设备的M套用于终端设备组的配置信息,该M套配置信息中每一套配置信息包括如下至少一种:第一无线网络临时标识RNTI,或用于终端设备组传输数据的无线资源信息,所述M为正整数。
所述收发单元还用于接收来自网络设备的第三指示信息,该第三指示信息指示激活该M套配置信息中一套或多套;和/或,该第三指示信息指示去激活该M套配置信息中一套或多套。
当通信装置1000用于实现图8所示的方法实施例时:处理单元1010用于确定聚合数据包,所述聚合数据包包括N个终端设备的标识信息,以及这N个终端设备中每一个终端设备的数据包;收发单元1020用于向第一终端设备发送第二指示信息,第二指示信息指示第一终端设备的至少一个终端设备接收聚合数据包;或者,所述第二指示信息指示接收聚合数据包。
有关上述处理单元1010和收发单元1020更详细的描述可以直接参考图4和图8所示的方法实施例中相关描述直接得到,这里不加赘述。
如图11所示,通信装置1100包括处理器1110和接口电路1120。处理器1110和接口电路1120之间相 互耦合。可以理解的是,接口电路1120可以为收发器或输入输出接口。可选的,通信装置1100还可以包括存储器1130,用于存储处理器1110执行的指令或存储处理器1110运行指令所需要的输入数据或存储处理器1110运行指令后产生的数据。
当通信装置1100用于实现图4和图8所示的方法时,处理器1110用于执行上述处理单元1110的功能,接口电路1120用于执行上述收发单元1120的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (32)

  1. 一种数据包传输的方法,其特征在于,包括:
    确定N个终端设备中每一个终端设备的数据包,所述N个终端设备为第一终端设备组中的N个终端设备,所述N为大于1的整数;
    向第一终端设备发送聚合数据包,所述聚合数据包包括所述N个终端设备的标识信息,以及所述N个终端设备中每一个终端设备的数据包,所述第一终端设备为所述N个终端设备中的一个终端设备。
  2. 根据权利要求1所述的方法,其特征在于,所述每一个终端设备的数据包为无线链路控制RLC层的数据包,所述聚合数据包为媒体接入控制MAC层的数据包;
    或者,所述每一个终端设备的数据包为分组数据汇聚层协议PDCP层的数据包,所述聚合数据包为媒体接入控制MAC层的数据包。
  3. 根据权利要求1或2所述的方法,其特征在于,所述每一个终端设备的数据包的大小不超过第一阈值;和/或,所述N小于或等于第二阈值。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述向第一终端设备发送聚合数据包之前,所述方法还包括如下至少一种:
    向所述第一终端设备发送第一指示信息,所述第一指示信息指示使能聚合数据包的传输;和/或,向所述第一终端设备发送第二指示信息,所述第二指示信息指示所述第一终端设备组中的至少一个终端设备接收聚合数据包,或者,所述第二指示信息指示接收聚合数据包;
    或,
    向所述第一终端设备发送第一指示信息,所述第一指示信息指示去使能聚合数据包的传输。
  5. 根据权利要求4所述的方法,其特征在于,所述第二指示信息指示所述第一终端设备组中的至少一个终端设备接收聚合数据包,包括:
    所述第二指示信息包括指示第一终端设备组中的至少一个终端设备接收聚合数据包的比特位图;或者,所述第二指示信息包括所述至少一个终端设备的标识;或者,所述第二指示信息为第一无线网络临时标识RNTI,所述第一RNTI与所述至少一个终端设备对应。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:向第一终端设备发送M个终端设备组的配置信息,所述M个终端设备组的配置信息中每一个配置信息包括如下至少一种:配置信息的标识、第一无线网络临时标识RNTI,或用于终端设备组传输数据的无线资源信息,所述M为正整数。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:向第一终端设备发送第三指示信息,所述第三指示信息指示激活所述M个配置信息中一个或多个;和/或,所述第三指示信息指示去激活所述M套配置信息中一个或多个。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述聚合数据包包括所述N个终端设备的标识信息,以及所述N个终端设备中每一个终端设备的数据包,包括:
    所述聚合数据包包括N个聚合数据单元,所述N个聚合数据单元对应所述N个终端设备,所述N个聚合数据单元中每一个聚合数据单元包括聚合数据包头和聚合数据域,所述聚合数据包头指示所述N个终 端设备中一个终端设备的标识信息,所述聚合数据域指示所述N个终端设备中一个终端设备的数据包。
  9. 根据权利1-8任一项所述的方法,其特征在于,所述向第一终端设备发送聚合数据包,包括:
    通过单播或组播方式,向第一终端设备发送聚合数据包。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,
    所述第一指示信息、所述第二指示信息、或所述第三指示信息中至少一种承载于第一信令中,所述第一信令包括无线资源控制RRC消息、分组数据汇聚层协议协议数据单元PDCP PDU、媒体接入控制控制单元MAC CE、或下行控制信息DCI中至少一种。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一终端设备的标识为小区无线网络临时标识、或为逻辑信道标识的全部或部分。
  12. 根据权利要求11所述的方法,其特征在于,所述第一终端设备的标识为逻辑信道标识的全部或部分,所述方法还包括:
    向第一终端设备发送所述逻辑信道标识全部或部分与所述第一终端设备的对应关系。
  13. 一种数据传输的方法,其特征在于,包括:
    接收来自网络设备的聚合数据包,所述聚合数据包包括N个终端设备的标识信息,以及所述N个终端设备中每一个终端设备的数据包,所述N个终端设备为第一终端设备组中的N个终端设备;
    根据所述N个终端设备的标识信息,确定是否存在与第一终端设备对应的数据包,所述第一终端设备为所述N个终端设备中的一个终端设备,所述N为大于1的整数。
  14. 根据权利要求13所述的方法,其特征在于,所述N个终端设备中每一个终端设备的数据包为无线链路控制RLC层的数据包,所述聚合数据包为媒体接入控制MAC层的数据包;或者,
    所述N个终端设备中每一个终端设备的数据包为分组数据汇聚层协议PDCP层的数据包,所述聚合数据包为媒体接入控制MAC层的数据包。
  15. 根据权利要求13或14所述的方法,其特征在于,所述每一个终端设备的数据包的大小不超过第一阈值;和/或,所述N小于或等于第二阈值。
  16. 根据权利要求13-15中任一项所述的方法,其特征在于,接收来自网络设备的聚合数据包之前,所述方法还包括如下至少一种:
    接收来自所述网络设备的第一指示信息,所述第一指示信息指示使能聚合数据包的传输;和/或,接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述第一终端设备组中的至少一个终端设备接收聚合数据包;或者,所述第二指示信息指示接收聚合数据包;
    或,
    接收来自所述网络设备的第一指示信息,所述第一指示信息指示去使能聚合数据包的传输。
  17. 根据权利要求16所述的方法,其特征在于,所述第二指示信息指示所述第一终端设备组中的至少一个终端设备接收聚合数据包,包括:
    所述第二指示信息包括指示第一终端设备组中的至少一个终端设备接收聚合数据包的比特位图;或 者,所述第二指示信息包括所述至少一个终端设备的标识;或者,所述第二指示信息为第一无线网络临时标识RNTI,所述第一RNTI与所述至少一个终端设备对应。
  18. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    根据所述第二指示信息,确定是否接收所述聚合数据包对应的物理下行信道。
  19. 根据权利要求18所述的方法,其特征在于,
    所述第二指示信息包括所述至少一个终端设备的标识,所述根据所述第二指示信息,确定是否接收所述聚合数据包对应的物理下行信道,包括:如果所述第二指示信息包括所述第一终端设备的标识信息,确定接收所述聚合数据包对应的物理下行信道;或,如果所述第二指示信息未包括所述第一终端设备的标识信息,确定不接收所述聚合数据包对应的物理下行信道;
    或者,
    所述第二指示信息包括指示第一终端设备组的至少一个终端设备接收聚合数据包的比特位图,所述根据所述第二指示信息,确定是否接收所述聚合数据包对应的物理下行信道,包括:如果所述比特位图中对应于所述第一终端设备的比特位被设置为第一数值,确定接收所述聚合数据包对应的物理下行信道,如果所述比特位图中对应于所述第一终端设备的比特位被设置为第二数值,确定不接收所述聚合数据包对应的物理下行信道。
  20. 根据权利要求13-19中任一项所述的方法,其特征在于,所述方法还包括:接收来自网络设备的M个用于终端设备组的配置信息,所述M个配置信息中每一个配置信息包括如下至少一种:配置信息的标识、组无线网络临时标识G-RNTI,和/或,用于终端设备组传输数据的无线资源信息,所述M为正整数。
  21. 根据权利要求13-20中任一项所述的方法,其特征在于,所述方法还包括:接收第三指示信息,所述第三指示信息指示激活所述M个配置信息中一个或多个;或者,所述第三指示信息指示去激活所述M个配置信息中一个或多个。
  22. 根据权利要求13-21中任一项所述的方法,其特征在于,所述聚合数据包包括N个终端设备的标识信息,以及所述N个终端设备中每一个终端设备的数据包,包括:
    所述聚合数据包包括N个聚合数据单元,所述N个聚合数据单元对应所述N个终端设备,所述N个聚合数据单元中每一个聚合数据单元包括聚合数据包头和聚合数据域,所述聚合数据包头指示所述N个终端设备中一个终端设备的标识信息,所述聚合数据域指示所述N个终端设备中一个终端设备的数据包。
  23. 根据权利13-22任一项所述的方法,其特征在于,所述接收来自网络设备的聚合数据包,包括:
    通过单播或组播方式,接收来自网络设备的聚合数据包。
  24. 根据权利要求13-23任一项所述的方法,其特征在于,所述方法还包括如下至少一种:
    如果所述N个终端设备的标识信息包括未知的终端设备的标识信息,所述第一终端设备丢弃与所述未知的终端设备的标识信息对应的数据包;
    如果所述N个终端设备的标识信息包括与所述第一终端设备的标识信息不匹配的第三终端标识信息,所述第一终端设备丢弃与所述第三终端设备的标识信息对应的数据包;或
    如果所述N个终端设备的标识信息包括所述第一终端设备的标识信息,所述第一终端设备获取所述第一终端设备的标识信息对应的数据包。
  25. 根据权利要求13-24所述的方法,其特征在于,所述第一指示信息、所述第二指示信息、或所述第三指示信息中至少一种承载于第一信令中,所述第一信令包括无线资源控制RRC消息、分组数据汇聚 层协议协议数据单元PDCP PDU、媒体接入控制控制单元MAC CE、或下行控制信息DCI中至少一种。
  26. 根据权利要求13-25所述的方法,其特征在于,所述第一终端设备的标识为小区无线网络临时标识、或为逻辑信道标识的全部或部分。
  27. 根据权利要求26所述的方法,其特征在于,所述第一终端设备的标识为逻辑信道标识的全部或部分,所述方法还包括:
    接收所述逻辑信道标识的全部或部分与所述第一终端设备的对应关系。
  28. 一种通信装置,其特征在于,包括用于执行如权利要求1-12或权利要求13-27中任一项所述的模块。
  29. 一种通信装置,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得所述通信装置执行如权利要求1-12或13-27中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-12或13-27中任一项所述的方法。
  31. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-12或13-27中任一项所述的方法。
  32. 一种电路,其特征在于,所述电路与存储器耦合,所述电路用于读取并执行所述存储器中存储的程序以执行如权利要求1-12或13-27中任一项所述的方法。
PCT/CN2023/119889 2022-11-30 2023-09-20 一种数据包传输的方法及装置 WO2024114053A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211527018.8A CN118118950A (zh) 2022-11-30 2022-11-30 一种数据包传输的方法及装置
CN202211527018.8 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024114053A1 true WO2024114053A1 (zh) 2024-06-06

Family

ID=91212751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119889 WO2024114053A1 (zh) 2022-11-30 2023-09-20 一种数据包传输的方法及装置

Country Status (2)

Country Link
CN (1) CN118118950A (zh)
WO (1) WO2024114053A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190313278A1 (en) * 2017-03-23 2019-10-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink data transmission method, terminal, network side device and system
CN112583542A (zh) * 2019-09-27 2021-03-30 华为技术有限公司 多用户上行数据聚合传输的方法和装置
WO2021056441A1 (zh) * 2019-09-27 2021-04-01 华为技术有限公司 多用户下行数据聚合传输的方法和装置
US20220377800A1 (en) * 2021-05-04 2022-11-24 FG Innovation Company Limited User equipment and method for small data transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190313278A1 (en) * 2017-03-23 2019-10-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink data transmission method, terminal, network side device and system
CN112583542A (zh) * 2019-09-27 2021-03-30 华为技术有限公司 多用户上行数据聚合传输的方法和装置
WO2021056441A1 (zh) * 2019-09-27 2021-04-01 华为技术有限公司 多用户下行数据聚合传输的方法和装置
US20220377800A1 (en) * 2021-05-04 2022-11-24 FG Innovation Company Limited User equipment and method for small data transmission

Also Published As

Publication number Publication date
CN118118950A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
US20200221538A1 (en) Data transmission method, terminal device, and network device
WO2020164443A1 (zh) 单播传输的方法和通信装置
EP3509371A1 (en) Method and device for transmitting message
WO2020221281A1 (zh) 用于获取无线承载配置的方法和装置
WO2020164410A1 (zh) 时延测量方法、网络设备和终端设备
WO2019232732A1 (zh) 一种寻呼消息传输方法和相关设备
WO2020001470A1 (zh) 通信方法、装置和存储介质
WO2020143690A1 (zh) 一种无线承载的配置方法、终端及通信装置
WO2019153234A1 (zh) 一种数据传输方法和装置
WO2021180098A1 (zh) 无线通信方法和通信装置
CN113573355B (zh) 通信方法和装置
US11259362B2 (en) Method for repeatedly transmitting data and device
WO2021062797A1 (zh) 配置方法和装置
WO2012136087A1 (zh) 一种资源调度的方法及系统及一种终端
WO2022205234A1 (zh) 一种通信方法及装置
WO2019213978A1 (zh) 一种信息传输方法和终端设备以及网络设备
WO2020088400A1 (zh) 资源调度方法、装置及设备
WO2020200043A1 (zh) 通信方法和通信装置
CN112752227B (zh) 一种通信方法及装置
WO2021174377A1 (zh) 切换方法和通信装置
WO2021062704A1 (zh) 获取侧行链路资源的方法和装置
WO2020199034A1 (zh) 用于中继通信的方法和装置
WO2024114053A1 (zh) 一种数据包传输的方法及装置
WO2023284376A1 (zh) 一种多播业务修改通知方法及通信装置
WO2021142767A1 (zh) 通信方法和通信装置