WO2024113969A1 - 一种声学超构材料的超声动态观测方法及装置 - Google Patents

一种声学超构材料的超声动态观测方法及装置 Download PDF

Info

Publication number
WO2024113969A1
WO2024113969A1 PCT/CN2023/113554 CN2023113554W WO2024113969A1 WO 2024113969 A1 WO2024113969 A1 WO 2024113969A1 CN 2023113554 W CN2023113554 W CN 2023113554W WO 2024113969 A1 WO2024113969 A1 WO 2024113969A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
acoustic metamaterial
acoustic
image information
dynamic observation
Prior art date
Application number
PCT/CN2023/113554
Other languages
English (en)
French (fr)
Inventor
郑音飞
杨雨茗
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2024113969A1 publication Critical patent/WO2024113969A1/zh

Links

Definitions

  • the present invention relates to the field of ultrasonic dynamic observation of acoustic metamaterials, and in particular to a method and device for ultrasonic dynamic observation of acoustic metamaterials.
  • Acoustic metamaterials are artificial structural materials. Through artificial design of the material structure, the material as a whole behaves as a material with strange acoustic properties, such as negative refraction, acoustic invisibility, extraordinary transmission, subwavelength imaging, etc. Acoustic metamaterials will produce monopole resonance and dipole resonance at specific frequencies. Monopole resonance will have a negative equivalent elastic modulus parameter; dipole resonance will have a negative equivalent mass density parameter. However, these equivalent acoustic parameters are dynamic parameters and cannot be measured statically.
  • the purpose of the present invention is to provide a method and device for ultrasonic dynamic observation of acoustic metamaterials, so as to realize dynamic observation of the resonance of acoustic metamaterials by ultrasonic waves.
  • the present invention provides the following solutions:
  • a method for ultrasonic dynamic observation of an acoustic metamaterial comprises:
  • the frequency value of the ultrasonic wave corresponding to the image information when the resonance phenomenon exists is recorded.
  • a method for ultrasonic dynamic observation of an acoustic metamaterial further includes:
  • the target frequency value is the frequency value of the ultrasonic wave corresponding to the image information when a resonance phenomenon exists
  • a negative equivalent elastic modulus parameter and a negative equivalent mass density parameter of the acoustic metamaterial are calculated.
  • an ultrasonic dynamic observation device for acoustic metamaterials comprises: an ultrasonic transducer sensors, microscopes, and processors;
  • the ultrasonic transducer is used to output ultrasonic waves; the output port of the ultrasonic transducer is on the same horizontal plane as the acoustic metamaterial, and the acoustic metamaterial is arranged on the microscope;
  • the microscope is used to collect image information of the acoustic metamaterial when the ultrasonic wave acts on the acoustic metamaterial;
  • the processor is configured to:
  • the frequency value of the ultrasonic wave corresponding to the image information when the resonance phenomenon exists is recorded.
  • the processor is further configured to:
  • the target frequency value is the frequency value of the ultrasonic wave corresponding to the image information when a resonance phenomenon exists
  • a negative equivalent elastic modulus parameter and a negative equivalent mass density parameter of the acoustic metamaterial are calculated.
  • the microscope comprises: an eyepiece and a stage
  • the eyepiece is used to collect image information of the acoustic metamaterial when the ultrasonic wave acts on the acoustic metamaterial; the stage is used to place the acoustic metamaterial.
  • an ultrasonic dynamic observation device for acoustic metamaterials further includes: a signal generator and a power amplifier;
  • the signal generator is used to generate a sinusoidal signal
  • the input end of the power amplifier is connected to the signal generator, and the power amplifier is used to amplify the sinusoidal signal
  • the output end of the power amplifier is connected to the input end of the ultrasonic transducer
  • the ultrasonic transducer is used to output ultrasonic waves according to the amplified sinusoidal signal.
  • an ultrasonic dynamic observation device for acoustic metamaterials further includes: a liquid crystal display; the liquid crystal display is connected to the microscope, and the liquid crystal display is used to display image information of the acoustic metamaterial collected by the eyepiece.
  • an ultrasonic dynamic observation device for acoustic metamaterials further includes: a water tank filled with water;
  • the ultrasonic transducer, the acoustic metamaterial and the microscope are arranged in the water tank
  • the ultrasonic transducer and the acoustic metamaterial are covered with water in the water tank.
  • the acoustic metamaterial comprises: a material substrate and microspheres;
  • microspheres are disposed within the material substrate.
  • the frequency range of the ultrasonic wave is 0-10 MHz.
  • the present invention discloses the following technical effects:
  • the present invention provides an ultrasonic dynamic observation method and device for acoustic metamaterials, the method comprising: obtaining image information of the acoustic metamaterial when ultrasonic waves act on the acoustic metamaterial; and recording the frequency value of the ultrasonic waves corresponding to the image information when resonance occurs.
  • the present invention achieves dynamic observation of the resonance of the acoustic metamaterial by ultrasonic waves by obtaining the ultrasonic frequency when the acoustic metamaterial resonates.
  • FIG1 is a schematic diagram of an ultrasonic dynamic observation device for an acoustic metamaterial provided in Example 1 of the present invention
  • FIG2 is a schematic diagram of the structure of an acoustic metamaterial provided in Example 1 of the present invention.
  • FIG3 is image information of the acoustic metamaterial provided in Example 1 of the present invention when it resonates;
  • FIG4 is a schematic flow chart of a method for ultrasonic dynamic observation of an acoustic metamaterial provided in Embodiment 2 of the present invention.
  • Signal generator 1, power amplifier—2, ultrasonic transducer—3, acoustic metamaterial—4, microscope—5, water tank—6, liquid crystal display—7, microsphere—8, material substrate—9.
  • the purpose of the present invention is to provide a method and device for ultrasonic dynamic observation of acoustic metamaterials, so as to realize dynamic observation of the resonance of acoustic metamaterials by ultrasonic waves.
  • Fig. 1 is a schematic diagram of a device for ultrasonic dynamic observation of an acoustic metamaterial provided by the present invention.
  • the first embodiment of the present invention provides an ultrasonic dynamic observation device for an acoustic metamaterial, comprising: an ultrasonic transducer 3, a microscope 5 and a processor.
  • the ultrasonic transducer 3 is used to output ultrasonic waves; the output port of the ultrasonic transducer 3 is on the same horizontal plane as the acoustic metamaterial 4 ; and the acoustic metamaterial 4 is disposed on the microscope 5 .
  • the microscope 5 is used to collect image information of the acoustic metamaterial 4 when ultrasound acts on the acoustic metamaterial 4 .
  • the processor is configured to:
  • the image information of the acoustic metamaterial 4 is obtained when ultrasonic waves act on the acoustic metamaterial 4.
  • the acoustic metamaterial 4 includes: a material substrate 9 and microspheres 8 .
  • the microspheres 8 are disposed in the material substrate 9 .
  • the resonance is a single-stage resonance, a dipole resonance, or a single-stage resonance and a dipole resonance coexisting.
  • FIG. 3 is image information of the acoustic metamaterial 4 of the present invention when it resonates.
  • the monopole resonance is manifested in that the microsphere 8 expands or contracts; the dipole resonance is manifested in that the microsphere 8 moves around; the monopole resonance and the dipole resonance coexist in that the microsphere 8 both expands or contracts and moves around.
  • the processor is also used to measure the transmission coefficient and reflection coefficient of the acoustic metamaterial 4 at a target frequency value; the target frequency value is the frequency value of the ultrasonic wave corresponding to the image information when a resonance phenomenon exists.
  • the negative and positive values of the acoustic metamaterial 4 are calculated. Effective elastic modulus parameter and negative equivalent mass density parameter.
  • the microscope 5 includes an eyepiece and a stage.
  • the eyepiece is used to collect image information of the acoustic metamaterial 4 when ultrasound acts on the acoustic metamaterial 4; the stage is used to place the acoustic metamaterial 4.
  • an ultrasonic dynamic observation device for acoustic metamaterials provided in the first embodiment of the present invention further includes: a signal generator 1 and a power amplifier 2 .
  • the signal generator 1 is used to generate a sinusoidal signal
  • the input end of the power amplifier 2 is connected to the signal generator 1, and the power amplifier 2 is used to amplify the sinusoidal signal
  • the output end of the power amplifier 2 is connected to the input end of the ultrasonic transducer 3
  • the ultrasonic transducer 3 is used to output ultrasonic waves according to the amplified sinusoidal signal.
  • the frequency value of the ultrasonic wave is consistent with the frequency value of the sinusoidal signal.
  • the device further includes a liquid crystal display 7; the liquid crystal display 7 is connected to the microscope 5, and the liquid crystal display 7 is used to display the image information of the acoustic metamaterial 4 collected by the eyepiece.
  • the device further comprises: a water tank 6 filled with water.
  • the ultrasonic transducer 3, the acoustic metamaterial 4 and the microscope 5 are arranged in the water tank 6, and the water in the water tank 6 flows over the ultrasonic transducer 3 and the acoustic metamaterial 4.
  • the water is used to increase the propagation speed of the ultrasonic wave.
  • the frequency range of the ultrasonic wave is 0-10 MHz.
  • the ultrasonic transducer 3 is a water-immersed ultrasonic transducer; the eyepiece is a water-immersed eyepiece; the microscope 5 is an optical microscope; and the water is degassed distilled water.
  • FIG4 is a schematic flow chart of an ultrasonic dynamic observation method for an acoustic metamaterial according to the present invention.
  • the second embodiment of the present invention provides an ultrasonic dynamic observation method of an acoustic metamaterial, comprising:
  • Step 100 Obtaining the acoustic metamaterial 4 when ultrasonic waves act on the acoustic metamaterial 4 image information.
  • Step 200 Record the frequency value of the ultrasonic wave corresponding to the image information when the resonance phenomenon exists.
  • the target frequency value is the frequency value of the ultrasonic wave corresponding to the image information when a resonance phenomenon exists.
  • a negative equivalent elastic modulus parameter and a negative equivalent mass density parameter of the acoustic metamaterial 4 are calculated.
  • each embodiment is described in a progressive manner, and each embodiment focuses on the differences from other embodiments.
  • the same or similar parts between the embodiments can be referred to each other.
  • the description is relatively simple, and the relevant parts can be referred to the method part.

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开一种声学超构材料的超声动态观测方法及装置,涉及声学超构材料超声动态观测领域,该方法包括:获取超声波作用于声学超构材料时所述声学超构材料的图像信息;记录存在共振现象时的所述图像信息对应的所述超声波的频率值。本发明通过获取声学超构材料产生共振时的超声波频率,实现超声波对声学超构材料的共振的动态观测。

Description

一种声学超构材料的超声动态观测方法及装置
本申请要求于2022年11月29日提交中国专利局、申请号为202211509229.9、发明名称为“一种声学超构材料的超声动态观测方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及声学超构材料超声动态观测领域,特别是涉及一种声学超构材料的超声动态观测方法及装置。
背景技术
声学超构材料是一种人工结构材料,通过人工设计材料的结构使其整体上表现为具备奇异声学性质的材料,如负折射、声隐身、超常透射、亚波长成像等。声学超构材料在特定频率处会产生单极共振和偶极共振,单极共振会出现负等效弹性模量参数;偶极共振会出现负等效质量密度参数。但是,这些等效声学参数均为动态参数,静态无法测量。
现有技术中均是观测低频声波对声学超构材料的共振,并不存在超声波对声学超构材料的共振的动态观测。
发明内容
本发明的目的是提供一种声学超构材料的超声动态观测方法及装置,实现超声波对声学超构材料的共振的动态观测。
为实现上述目的,本发明提供了如下方案:
第一方面,一种声学超构材料的超声动态观测方法,包括:
获取超声波作用于声学超构材料时所述声学超构材料的图像信息;
记录存在共振现象时的所述图像信息对应的所述超声波的频率值。
可选地,一种声学超构材料的超声动态观测方法,还包括:
测定目标频率值处的所述声学超构材料的透射系数和反射系数;所述目标频率值为存在共振现象时的所述图像信息对应的所述超声波的频率值;
根据所述透射系数和所述反射系数,计算所述声学超构材料的负等效弹性模量参数和负等效质量密度参数。
第二方面,一种声学超构材料的超声动态观测装置,包括:超声波换 能器、显微镜和处理器;
所述超声波换能器用于输出超声波;所述超声波换能器的输出端口与所述声学超构材料在同一水平面上,且所述声学超构材料设置在所述显微镜上;
所述显微镜用于当所述超声波作用于所述声学超构材料时,采集所述声学超构材料的图像信息;
所述处理器,用于:
获取超声波作用于声学超构材料时所述声学超构材料的图像信息;
记录存在共振现象时的所述图像信息对应的所述超声波的频率值。
可选地,所述处理器,还用于:
测定目标频率值处的所述声学超构材料的透射系数和反射系数;所述目标频率值为存在共振现象时的所述图像信息对应的所述超声波的频率值;
根据所述透射系数和所述反射系数,计算所述声学超构材料的负等效弹性模量参数和负等效质量密度参数。
可选地,所述显微镜包括:目镜和载物台;
所述目镜用于当所述超声波作用于所述声学超构材料时,采集所述声学超构材料的图像信息;所述载物台用于放置所述声学超构材料。
可选地,一种声学超构材料的超声动态观测装置,还包括:信号发生器和功率放大器;
所述信号发生器用于产生正弦信号,所述功率放大器的输入端与所述信号发生器连接,所述功率放大器用于对所述正弦信号进行放大处理;所述功率放大器的输出端与所述超声波换能器的输入端连接;所述超声波换能器用于根据放大后的正弦信号输出超声波。
可选地,一种声学超构材料的超声动态观测装置,还包括:液晶显示器;所述液晶显示器与所述显微镜连接,所述液晶显示器用于显示所述目镜采集的所述声学超构材料的图像信息。
可选地,一种声学超构材料的超声动态观测装置,还包括:装有水的水槽;
所述超声波换能器、所述声学超构材料和所述显微镜设置在所述水槽 内,且所述水槽中的水漫过所述超声波换能器和所述声学超构材料。
可选地,所述声学超构材料包括:材料基底和微球;
所述微球设置在所述材料基底内。
可选地,所述超声波的频率范围为0-10MHz。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供了一种声学超构材料的超声动态观测方法及装置,该方法包括:获取超声波作用于声学超构材料时所述声学超构材料的图像信息;记录存在共振现象时的所述图像信息对应的所述超声波的频率值。本发明通过获取声学超构材料产生共振时的超声波频率,实现超声波对声学超构材料的共振的动态观测。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的一种声学超构材料的超声动态观测装置示意图;
图2为本发明实施例一提供的声学超构材料的结构示意图;
图3为本发明实施例一提供的声学超构材料产生共振时的图像信息;
图4为本发明实施例二提供的一种声学超构材料的超声动态观测方法流程示意图。
符号说明:
信号发生器—1,功率放大器—2,超声波换能器—3,声学超构材料—4,显微镜—5,水槽—6,液晶显示器—7,微球—8,材料基底—9。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种声学超构材料的超声动态观测方法及装置,实现超声波对声学超构材料的共振的动态观测。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例一
图1为本发明提供的一种声学超构材料超声动态观测的装置示意图。如图1所示,本发明实施例一提供一种声学超构材料的超声动态观测装置,包括:超声波换能器3、显微镜5和处理器。
所述超声波换能器3用于输出超声波;所述超声波换能器3的输出端口与所述声学超构材料4在同一水平面上;且所述声学超构材料4设置在所述显微镜5上。
所述显微镜5用于当超声波作用于声学超构材料4时,采集所述声学超构材料4的图像信息。
所述处理器,用于:
获取超声波作用于声学超构材料4时所述声学超构材料4的图像信息。
记录存在共振现象时的所述图像信息对应的所述超声波的频率值。其中,如图2所示,所述声学超构材料4包括:材料基底9和微球8。
所述微球8设置在所述材料基底9内。
所述共振为单级共振、偶极共振或单级共振与偶极共振同时存在。
图3为本发明声学超构材料4产生共振时的图像信息。
如图3所示,所述单极共振的表现形式为:微球8发生膨胀或收缩;所述偶极共振的表现形式为:所述微球8向四周移动;所述单极共振与所述偶极共振同时存在的表现形式为:所述微球8既出现膨胀或收缩,又向四周移动。
进一步地,所述处理器还用于测定目标频率值处的所述声学超构材料4的透射系数和反射系数;所述目标频率值为存在共振现象时的所述图像信息对应的所述超声波的频率值。
根据所述透射系数和所述反射系数,计算所述声学超构材料4的负等 效弹性模量参数和负等效质量密度参数。
具体地,所述显微镜5包括:目镜和载物台。
所述目镜用于当超声波作用于声学超构材料4时,采集所述声学超构材料4的图像信息;所述载物台用于放置所述声学超构材料4。
具体地,本发明实施例一提供的一种声学超构材料的超声动态观测装置还包括:信号发生器1和功率放大器2。
所述信号发生器1用于产生正弦信号,所述功率放大器2的输入端与所述信号发生器1连接,所述功率放大器2用于对所述正弦信号进行放大处理;所述功率放大器2的输出端与所述超声波换能器3的输入端连接;所述超声波换能器3用于根据放大后的正弦信号输出超声波。所述超声波的频率值与所述正弦信号的频率值一致。
具体地,该装置还包括;液晶显示器7;所述液晶显示器7与所述显微镜5连接,所述液晶显示器7用于显示所述目镜采集的所述声学超构材料4的图像信息。
具体地,该装置还包括:装有水的水槽6。
所述超声波换能器3、所述声学超构材料4和所述显微镜5设置在所述水槽6内;且所述水槽6中的水漫过所述超声波换能器3和所述声学超构材料4。所述水用于提高所述超声波的传播速度。
由于所述材料基体9与所述微球8之间的声速差异大(10倍以上),在超声波作用下会在特定频率处产生单极共振,出现负等效弹性模量参数;而大密度的微球堆叠会产生偶极共振,出现负等效质量密度参数。
具体地,所述超声波的频率范围为0-10MHz。
所述超声波换能器3为水浸式超声波换能器;所述目镜为水浸目镜;所述显微镜5为光学显微镜;所述水为脱气蒸馏水。
图4为本发明一种声学超构材料的超声动态观测方法流程示意图。
如图4所示,本发明实施例二提供一种声学超构材料的超声动态观测方法,包括:
步骤100:获取超声波作用于声学超构材料4时所述声学超构材料4 的图像信息。
步骤200:记录存在共振现象时的所述图像信息对应的所述超声波的频率值。
具体地,还包括:测定目标频率值处的所述声学超构材料4的透射系数和反射系数;所述目标频率值为存在共振现象时的所述图像信息对应的所述超声波的频率值。
根据所述透射系数和所述反射系数,计算所述声学超构材料4的负等效弹性模量参数和负等效质量密度参数。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种声学超构材料的超声动态观测方法,其特征在于,包括:
    获取超声波作用于声学超构材料时所述声学超构材料的图像信息;
    记录存在共振现象时的所述图像信息对应的所述超声波的频率值。
  2. 根据权利要求1所述的一种声学超构材料的超声动态观测方法,其特征在于,还包括:
    测定目标频率值处的所述声学超构材料的透射系数和反射系数;所述目标频率值为存在共振现象时的所述图像信息对应的所述超声波的频率值;
    根据所述透射系数和所述反射系数,计算所述声学超构材料的负等效弹性模量参数和负等效质量密度参数。
  3. 一种声学超构材料的超声动态观测装置,其特征在于,包括:超声波换能器、显微镜和处理器;
    所述超声波换能器用于输出超声波;所述超声波换能器的输出端口与所述声学超构材料在同一水平面上,且所述声学超构材料设置在所述显微镜上;
    所述显微镜用于当所述超声波作用于所述声学超构材料时,采集所述声学超构材料的图像信息;
    所述处理器,用于:
    获取超声波作用于声学超构材料时所述声学超构材料的图像信息;
    记录存在共振现象时的所述图像信息对应的所述超声波的频率值。
  4. 根据权利要求3所述的一种声学超构材料的超声动态观测装置,其特征在于,所述处理器,还用于:
    测定目标频率值处的所述声学超构材料的透射系数和反射系数;所述目标频率值为存在共振现象时的所述图像信息对应的所述超声波的频率值;
    根据所述透射系数和所述反射系数,计算所述声学超构材料的负等效弹性模量参数和负等效质量密度参数。
  5. 根据权利要求3所述的一种声学超构材料的超声动态观测装置,其特征在于,所述显微镜包括:目镜和载物台;
    所述目镜用于当所述超声波作用于所述声学超构材料时,采集所述声学超构材料的图像信息;所述载物台用于放置所述声学超构材料。
  6. 根据权利要求3所述的一种声学超构材料的超声动态观测装置,其特征在于,还包括:信号发生器和功率放大器;
    所述信号发生器用于产生正弦信号,所述功率放大器的输入端与所述信号发生器连接,所述功率放大器用于对所述正弦信号进行放大处理;所述功率放大器的输出端与所述超声波换能器的输入端连接;所述超声波换能器用于根据放大后的正弦信号输出超声波。
  7. 根据权利要求5所述的一种声学超构材料的超声动态观测装置,其特征在于,还包括:液晶显示器;所述液晶显示器与所述显微镜连接,所述液晶显示器用于显示所述目镜采集的所述声学超构材料的图像信息。
  8. 根据权利要求3所述的一种声学超构材料的超声动态观测装置,其特征在于,还包括:装有水的水槽;
    所述超声波换能器、所述声学超构材料和所述显微镜设置在所述水槽内,且所述水槽中的水漫过所述超声波换能器和所述声学超构材料。
  9. 根据权利要求3所述的一种声学超构材料的超声动态观测装置,其特征在于,所述声学超构材料包括:材料基底和微球;
    所述微球设置在所述材料基底内。
  10. 根据权利要求3所述的一种声学超构材料的超声动态观测装置,其特征在于,所述超声波的频率范围为0-10MHz。
PCT/CN2023/113554 2022-11-29 2023-08-17 一种声学超构材料的超声动态观测方法及装置 WO2024113969A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211509229.9A CN115901959A (zh) 2022-11-29 2022-11-29 一种声学超构材料的超声动态观测方法及装置
CN202211509229.9 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024113969A1 true WO2024113969A1 (zh) 2024-06-06

Family

ID=86485219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113554 WO2024113969A1 (zh) 2022-11-29 2023-08-17 一种声学超构材料的超声动态观测方法及装置

Country Status (2)

Country Link
CN (1) CN115901959A (zh)
WO (1) WO2024113969A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115901959A (zh) * 2022-11-29 2023-04-04 浙江大学 一种声学超构材料的超声动态观测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1847824A (zh) * 2006-02-27 2006-10-18 西安交通大学 基于超高速摄影技术的超声场中微泡行为分析系统和方法
KR20110080289A (ko) * 2010-01-05 2011-07-13 한국원자력연구원 레이저초음파를 이용한 비접촉식 탄성 측정 장치
CN110404085A (zh) * 2019-08-30 2019-11-05 浙江大学 一种穿颅声学软质超声凝胶材料及其制备方法和应用
US20200124723A1 (en) * 2018-10-22 2020-04-23 The Governing Council Of The University Of Toronto Systems and methods for determining cell contractility
CN114965696A (zh) * 2022-05-27 2022-08-30 浙江大学 一种软质超声凝胶材料等效声学参数测定方法及系统
CN115901959A (zh) * 2022-11-29 2023-04-04 浙江大学 一种声学超构材料的超声动态观测方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1847824A (zh) * 2006-02-27 2006-10-18 西安交通大学 基于超高速摄影技术的超声场中微泡行为分析系统和方法
KR20110080289A (ko) * 2010-01-05 2011-07-13 한국원자력연구원 레이저초음파를 이용한 비접촉식 탄성 측정 장치
US20200124723A1 (en) * 2018-10-22 2020-04-23 The Governing Council Of The University Of Toronto Systems and methods for determining cell contractility
CN110404085A (zh) * 2019-08-30 2019-11-05 浙江大学 一种穿颅声学软质超声凝胶材料及其制备方法和应用
CN114965696A (zh) * 2022-05-27 2022-08-30 浙江大学 一种软质超声凝胶材料等效声学参数测定方法及系统
CN115901959A (zh) * 2022-11-29 2023-04-04 浙江大学 一种声学超构材料的超声动态观测方法及装置

Also Published As

Publication number Publication date
CN115901959A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2024113969A1 (zh) 一种声学超构材料的超声动态观测方法及装置
Hayashi Imaging defects in a plate with complex geometries
Chapuis et al. Excitation and focusing of Lamb waves in a multilayered anisotropic plate
Holland et al. High contrast air-coupled acoustic imaging with zero group velocity lamb modes
Baddour et al. The fluid and elastic nature of nucleated cells: Implications from the cellular backscatter response
Syed Akbar Ali et al. Characterization of deep sub-wavelength sized horizontal cracks using holey-structured metamaterials
Li et al. Calibration of focused ultrasonic transducers and absolute measurements of fluid nonlinearity with diffraction and attenuation corrections
CN206020343U (zh) 超声波探头锣型晶片及使用超声波探头锣型晶片的探头
Zhang et al. A self-reciprocity calibration method for broadband focused transducers
JP2012107918A (ja) クラック検知装置及びクラック検知方法
JPH0330105B2 (zh)
Rendón et al. Using Schlieren imaging to estimate the geometry of a shock wave radiated by a trumpet bell
RU2110792C1 (ru) Пьезоэлектрический преобразователь акустической эмиссии
Chati et al. Acoustic scattering by a metallic tube with a concentric solid polymer cylinder coupled by a thin water layer. influence of the thickness of the water layer on the two scholte–stoneley waves
Zhang et al. Modelling and simulation of high-frequency (100 MHz) ultrasonic linear arrays based on single crystal LiNbO3
Maio et al. Laser Doppler velocimetry and PZT sensing for the study of guided waves in a stepped aluminum plate
Bauer et al. Is the Kramers-Kronig relationship between ultrasonic attenuation and dispersion maintained in the presence of apparent losses due to phase cancellation?
Mitri et al. Simultaneous sum-frequency and vibro-acoustography imaging for nondestructive evaluation and testing applications
Zhou et al. Enhancement of ultrasonic transmission using a patch patterned with single-sided periodic gratings
Farin et al. Selective remote excitation of complex structures using time reversal in audible frequency range
Kwon et al. Design and experimental demonstration of broadband acoustic pressure enhancing passive metafluids
Tan et al. Backscattering enhancements by partially exposed spheres due to reflected subsonic Rayleigh waves at air–water interfaces
JPH04301761A (ja) 超音波物性測定装置
Vatankhah et al. Characterization of high intensity progressive ultrasound beams in air at 300 kHz
CN109374739B (zh) 一种基于环形面阵的超声显微镜及方法