WO2024113820A1 - 一种背光组件及成像显示系统 - Google Patents

一种背光组件及成像显示系统 Download PDF

Info

Publication number
WO2024113820A1
WO2024113820A1 PCT/CN2023/103416 CN2023103416W WO2024113820A1 WO 2024113820 A1 WO2024113820 A1 WO 2024113820A1 CN 2023103416 W CN2023103416 W CN 2023103416W WO 2024113820 A1 WO2024113820 A1 WO 2024113820A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
backlight assembly
lenses
surface light
array
Prior art date
Application number
PCT/CN2023/103416
Other languages
English (en)
French (fr)
Inventor
杨渤
李伟武
徐立国
杨晓川
毛磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024113820A1 publication Critical patent/WO2024113820A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white

Definitions

  • Head-up display (HUD) technology is a safety device used in automobiles.
  • the vehicle-mounted HUD projects important information during driving directly in front of the driver through a series of reflectors, so that the driver can receive virtual image information far away from the windshield without lowering his head, thereby improving the safety factor.
  • the light divergence angle of the collimated backlight screen that emits the image source is directly related to the brightness uniformity and stray light distribution at the eye ellipsoid. The closer the backlight of the emitting image source is to the Top-Hat flat top angle distribution, the less stray light the human eye receives and the higher the brightness uniformity. Therefore, realizing a Top-Hat flat top angle distribution image source is the key to improving the visual experience of virtual image display.
  • the embodiments of the present application provide a backlight assembly and an imaging display system, which realize the Top-Hat flat top angle distribution of the backlight emitting the image source, thereby improving the visual experience of the virtual image display system.
  • the embodiment of the present application first provides a backlight assembly that can be used to provide a light source that satisfies the Top-Hat flat top angle distribution.
  • the backlight assembly includes a lens array, an anti-peep film, and a surface light source array; wherein the lens array includes a plurality of lenses with a certain edge thickness, and the plurality of lenses are used to refract the light from the surface light source array; the anti-peep film is arranged around each of the plurality of lenses, and is used to absorb the light emitted from the periphery of each of the plurality of lenses; the surface light source array includes a plurality of surface light source units, and the surface light source array is arranged on the side of the convex surface of the lens array away from the plurality of lenses, and is used to emit light to the lens array.
  • the backlight assembly can provide a light source with a Top-Hat flat top angle distribution, reducing the stray light received by the human eye, making the brightness of the light source more uniform, and providing a better visual experience.
  • the privacy film is closely attached to the surrounding surfaces of each lens in the plurality of lenses to better absorb the light emitted from the surrounding surfaces of the lens and better reduce the crosstalk of light between different lenses.
  • the privacy film completely covers the surrounding surfaces of each lens among the multiple lenses to fully absorb the light emitted from the surrounding surfaces of the lens and better reduce the crosstalk of light between different lenses.
  • the duty cycle of the surface light source array is greater than or equal to 80%.
  • the surface light source with a high duty cycle can ensure that the image source has a Top-Hat flat top angle distribution and high side view uniformity.
  • each of the plurality of surface light source units includes a diffusion film and a point light source, wherein the point light source is used to emit light to the diffusion film, and the diffusion film is used to diffuse the light from the point light source to convert the point light source into a surface light source.
  • the point light source may be a non-white light source, such as blue light, red light, green light, etc.
  • the surface light source unit also includes a quantum dot film for converting the light from the point light source to obtain white light.
  • the surface light source unit further includes a base arranged below the point light source for supporting the point light source, and the bases (133) of the plurality of surface light source units are closely arranged to obtain a surface light source with a higher duty cycle.
  • the multiple lenses included in the lens array are spherical lenses or aspherical lenses.
  • the multiple lenses included in the lens array correspond one-to-one to the multiple surface light source units to obtain a better visual experience.
  • an embodiment of the present application provides an imaging display system, which may be a HUD, a vehicle-mounted desktop display, etc.
  • the imaging display system includes a reflector and the backlight assembly described in the first aspect above.
  • the second aspect of the embodiment of the present application can achieve the beneficial effects described in the first aspect, and will not be described again here to avoid repetition.
  • FIG1 is a schematic structural diagram of a backlight assembly provided in an embodiment of the present application.
  • FIG2 is another schematic diagram of the structure of a backlight assembly provided in an embodiment of the present application.
  • FIG3 is a schematic structural diagram of a surface light source unit provided in an embodiment of the present application.
  • FIG4 is another schematic diagram of the structure of the surface light source unit provided in an embodiment of the present application.
  • FIG5 is another schematic structural diagram of a surface light source unit provided in an embodiment of the present application.
  • FIG6 is another schematic diagram of the structure of the surface light source unit provided in an embodiment of the present application.
  • FIG7 is another schematic diagram of the structure of the surface light source unit provided in an embodiment of the present application.
  • FIG8 is another schematic diagram of the structure of a backlight assembly provided in an embodiment of the present application.
  • FIG9 is a two-dimensional schematic diagram of a far-field intensity distribution of a backlight assembly provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of intensity distribution of a backlight assembly in two orthogonal cross-sectional directions provided by an embodiment of the present application;
  • FIG11 is a side-view brightness distribution curve of a backlight assembly provided in an embodiment of the present application.
  • FIG12 is another two-dimensional schematic diagram of far-field intensity distribution of a backlight assembly provided in an embodiment of the present application.
  • FIG13 is another schematic diagram of intensity distribution of the backlight assembly provided by an embodiment of the present application in two orthogonal cross-sectional directions;
  • FIG. 14 is another side-view brightness distribution curve of the backlight assembly provided in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the structure of an imaging display system provided in an embodiment of the present application.
  • 1-backlight assembly structure 11-lens array; 12-peep film; 13-surface light source array; 131-diffusion film; 132-point light source; 133-base; 134-quantum dot film; 135-light guide plate; 21-reflector; 22-reflector; 23-windshield.
  • the corresponding device may include one or more units, such as functional units, to perform the one or more method steps described (for example, one unit performs one or more steps, or multiple units, each of which performs one or more of the multiple steps), even if such one or more are not explicitly described or illustrated in the drawings.
  • the corresponding method may include a step to perform the functionality of the one or more units (e.g., a step to perform the functionality of the one or more units, or multiple steps, each of which performs the functionality of one or more of the multiple units), even if such one or more steps are not explicitly described or illustrated in the drawings.
  • the features of the various exemplary embodiments and/or aspects described herein may be combined with each other.
  • “at least one” refers to one or more, and “more than one” refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B may be singular or plural. The character “/” generally indicates that the associated objects before and after are in an "or” relationship. "At least one of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple.
  • Head-up display (HUD) technology is a safety device used in automobiles.
  • the vehicle-mounted HUD projects important information during driving directly in front of the driver through a series of reflectors, so that the driver can receive virtual image information far away from the windshield without lowering his head, thereby improving the safety factor.
  • the light divergence angle of the collimated backlight screen that emits the image source is directly related to the brightness uniformity and stray light distribution at the eye ellipsoid. The closer the backlight of the emitting image source is to the Top-Hat flat top angle distribution, the less stray light the human eye receives and the higher the brightness uniformity. Therefore, realizing a Top-Hat flat top angle distribution image source is the key to improving the visual experience of virtual image display.
  • the existing vehicle-mounted HUD backlight control technology is difficult to achieve Top-Hat image source collimation and difficult to ensure the brightness uniformity of the side view, resulting in the human eye being able to clearly feel the brightness drop when moving left and right within the eye box range, seriously affecting the consumer's user experience.
  • the embodiment of the present application provides a backlight assembly and an imaging display system, which realizes the Top-Hat flat top angle distribution of the backlight that emits the image source, and improves the visual experience of the virtual image display system.
  • FIG. 1 is a schematic diagram of the structure of a backlight assembly provided in an embodiment of the present application.
  • the backlight assembly provided in an embodiment of the present application includes a lens array 11, an anti-peep film 12, and a surface light source array 13 which are stacked in sequence.
  • the lens array 11 includes a plurality of lenses with a certain edge thickness
  • the anti-peep film 12 is arranged around each lens
  • the surface light source array 13 includes a plurality of surface light source units
  • the surface light source array 13 is arranged on the side of the lens array 11 away from the convex surface of the lens.
  • Figure 2 is another structural schematic diagram of the backlight assembly provided in the embodiment of the present application.
  • Figure 2 is a side view of the backlight assembly provided in the embodiment of the present application.
  • the surface light source array 13 is used to emit light to the lens array 11, and the lens array 11 is used to refract the light from the surface light source array 13.
  • the lens array 11 is used to refract the light from the surface light source array 13.
  • the material of the anti-peep film 12 is an absorbing material, which is used to absorb the light emitted from the four sides of the lens to prevent large-angle light from entering adjacent lenses and causing crosstalk.
  • the backlight assembly shown in FIG. 1 and FIG. 2 can provide a light source with a Top-Hat flat top angle distribution, reduce stray light received by the human eye, make the brightness of the light source more uniform, and provide a better visual experience.
  • the edge thickness d and radius R of the lenses in the lens array 11 satisfy the mathematical relationship: Where n' is the lens refractive index, and n is the ambient refractive index.
  • the edge thickness d can be first determined according to the actual scenario, and then the radius R can be determined according to the edge thickness d and the mathematical relationship, or the radius R can be first determined according to the actual scenario, and then the edge thickness d can be determined according to the radius R and the mathematical relationship.
  • the radius R can be determined first
  • the edge thickness d can be determined first.
  • edge thickness d and the radius R do not necessarily need to strictly satisfy the mathematical relationship: A slight deviation is allowed in engineering practice. When the above mathematical relationship is not strictly equal (slightly greater than or slightly less than), a certain defocus effect will be produced, but the impact on the overall effect of the light source and imaging is small.
  • the lenses in the lens array 11 may be spherical lenses or aspherical lenses.
  • their fourth-order parameters may be -10 to 10
  • their sixth-order parameters may be -10 to 10.
  • the lens array 11 may be made of a high refractive index material such as UV curing glue or photoresist to make the lens array thinner and lighter, thereby making the backlight assembly thinner and lighter.
  • a high refractive index material such as UV curing glue or photoresist
  • the privacy film 12 may be closely attached to the surfaces around the lens to better absorb the light emitted from the surfaces around the lens and better reduce the crosstalk between different lenses.
  • the privacy film 12 can completely cover the surface of the lens on all sides, that is, the privacy film 12 is aligned with the edges of the lens on all sides to fully absorb the light emitted from the surfaces of the lens on all sides and better reduce the crosstalk between different lenses.
  • the thickness of the privacy film can be set according to the actual usage scenario.
  • the thickness of the privacy film can be set to 10um to 100um.
  • the duty cycle of the surface light source array 13 may be greater than or equal to 80%.
  • the surface light source with a high duty cycle can ensure that the image source has a Top-Hat flat top angle distribution and high side view uniformity.
  • the surface light source array may be a white light source to provide a better imaging effect.
  • the size of the surface light source unit may be designed to be in the order of millimeters, and the size of the surface light source and the size of the lens may be designed to be in the same order of magnitude to obtain better uniformity and Top-Hat effect.
  • FIG. 3 is a schematic diagram of the structure of a surface light source unit provided in an embodiment of the present application.
  • the surface light source unit includes a diffusion film 131 and a point light source 132.
  • the point light source 132 is used to emit light to the diffusion film.
  • the point light source 132 can be a liquid crystal display (LED, Liquid Crystal Display).
  • the diffusion film 131 is used to diffuse the light from the point light source.
  • the shape of the diffusion film 131 can be any possible shape such as a rectangle, a circle, an ellipse, a trapezoid, etc., and the embodiment of the present application does not limit this. It should be understood that the embodiment of the present application does not limit the specific implementation of the point light source 132 and the diffusion film 131. Any implementation that can achieve the above-mentioned technical effects is within the protection scope of the present application.
  • FIG4 is another schematic diagram of the structure of the surface light source unit provided in the embodiment of the present application.
  • the surface light source unit further includes a base 133, and the base 133 is arranged below the point light source 132, and is used to support the point light source 132.
  • the shape of the base 133 can be any possible shape such as a rectangle, a circle, an ellipse, a trapezoid, etc., and the embodiment of the present application does not limit this.
  • the diffusion film 131 and the base 133 may be set to have the same period.
  • the point light source 132 may be diffused into a surface light source by the diffusion film 131 .
  • the bases 133 may be closely arranged, and in this case, a surface light source with a higher duty cycle may be obtained.
  • the period of the base 133 (the length or width of the base 133 ) may be designed to be in the millimeter level, that is, the length or width of the base 133 may be designed to be 1 mm-10 mm.
  • FIG5 is another schematic diagram of the structure of the surface light source unit provided in the embodiment of the present application.
  • the surface light source unit further includes a quantum dot film 134, and the quantum dot film 134 is used to convert the light from the point light source to obtain white light.
  • the point light source 132 can be light of any color, and can be blue light, green light, red light, etc.
  • the quantum dot film 134 may be disposed on a side of the diffusion film 131 away from the point light source. In another possible implementation, as shown in Fig. 6 , the quantum dot film 134 may also be disposed on a side of the diffusion film 131 close to the point light source.
  • a reflective sheet may be added below the point light source to reflect the light emitted by the point light source to improve light utilization.
  • an enhancement layer may be added on the side of the diffusion film close to the point light source or on the side of the diffusion film far from the point light source. Bright film to enhance the brightness of surface light source.
  • FIG. 7 is a schematic diagram of the structure of a surface light source unit provided in an embodiment of the present application.
  • the surface light source unit includes a point light source 132 and a light guide plate 135, wherein the light guide plate 135 is an acrylic plate with a special grid design on the surface, and the surface of the light guide plate can destroy the interference phenomenon of light and convert the point light source into a surface light source through reflection.
  • the structure of the surface light source array 13 provided in the above embodiment is merely exemplary, and other structures capable of generating a surface light source are also possible, which is not limited in the embodiment of the present application.
  • the arrangement period of the lenses in the lens array and the surface light source units in the surface light source array can be different.
  • the lenses included in the lens array 11 and the surface light source units included in the surface light source array 13 correspond one to one to obtain a better visual experience.
  • Figure 9 is a two-dimensional schematic diagram of the far-field intensity distribution of the backlight assembly provided in the embodiment of the present application.
  • the distribution of the central light intensity is square, indicating that a Top-Hat distribution with a steep rise and fall is achieved in both the x-direction and the y-direction.
  • Figure 10 is a schematic diagram of the intensity distribution of the backlight assembly provided in the embodiment of the present application in two orthogonal sectional directions.
  • the brightness distribution is taken in the two sectional directions orthogonal to the two-dimensional intensity distribution diagram, and two edges are steeply rising and falling, and the Top-Hat intensity distribution curve with a flat top distribution in the middle is obtained, which meets the requirements of the virtual image display system for the image source backlight, and can effectively eliminate the stray light within the eye box range of the virtual image system such as the vehicle-mounted HUD, and improve the display effect.
  • the divergence angles in the orthogonal directions are ⁇ 15° and ⁇ 30°, respectively, which are in line with the theoretical calculation of the divergence angle.
  • Figure 11 is a side-view brightness distribution curve of the backlight assembly provided in the embodiment of the present application.
  • the backlight assembly provided in the embodiment of the present application has good side-view uniformity.
  • the brightness distribution of the entire system is very uniform.
  • the uniformity of the brightness in the textured part of the lens decreases, but the overall brightness uniformity is still within a tolerable range (80% and above).
  • the uniformity of the brightness distribution is above 90%; when the side viewing angle is greater than 11°, the brightness uniformity decreases significantly, dropping to 80% at around 13° and to 70% at 15°.
  • the side viewing range of the backlight assembly provided in the embodiment of the present application can reach about ⁇ 14°, which meets the actual needs of the virtual image display system.
  • FIG. 12 is another two-dimensional schematic diagram of the far-field intensity distribution of the backlight assembly provided in the embodiment of the present application.
  • FIG. 13 is another intensity distribution schematic diagram of the backlight assembly provided in the embodiment of the present application in two orthogonal section directions. As shown in FIG.
  • FIG. 14 is another side-view brightness distribution curve of the backlight assembly provided in the embodiment of the present application.
  • the backlight assembly provided in the embodiment of the present application when an aspherical mirror is used, the backlight assembly provided in the embodiment of the present application also has better side-view brightness uniformity. In the side-view range of 0° to 12°, the brightness uniformity is maintained at more than 90%; in the range of 12° to 15°, the brightness uniformity is maintained at about 80%. Therefore, the backlight assembly provided in the embodiment of the present application can not only obtain a better Top-Hat light intensity distribution and further eliminate stray light, but also meet the side viewing range of ⁇ 15° and above.
  • the embodiment of the present application also provides an imaging display system.
  • the imaging display system can be a vehicle-mounted HUD.
  • Figure 15 is a structural schematic diagram of the imaging display system provided by the embodiment of the present application.
  • the imaging display system includes a backlight assembly 1 and a reflector 21 and a reflector 22. The light emitted by the backlight system is reflected by the reflector 21 and the reflector 22 and reaches the windshield 23 of the vehicle, thereby forming a virtual image.
  • the imaging display system may include one or more reflectors, and the direction of the light path may also be changed accordingly.
  • the backlight assembly provided in the embodiment of the present application can also be used for In other possible imaging display systems such as vehicle-mounted desktop display, the embodiments themselves do not limit the specific structure and application scenarios of the imaging display system.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

一种背光组件和成像显示系统。背光组件包括透镜阵列(11)、防窥膜(12)和面光源阵列(13),透镜阵列(11)包括多个具有一定边缘厚度的透镜,用于对来自面光源阵列(13)的光线进行折射;防窥膜(12)设置在每个透镜的四周,用于吸收经透镜的四周发出的光线;面光源阵列(13)包括多个面光源单元,面光源阵列(13)设置在透镜阵列(11)远离透镜的凸面的一侧,用于向透镜阵列(11)发射光线。以及采用背光组件的成像显示系统。

Description

一种背光组件及成像显示系统 技术领域
本申请涉及显示领域,尤其涉及一种背光组件和一种成像显示系统。
背景技术
抬头显示(HUD,head up display)技术是应用在汽车中的一种安全设备。车载HUD通过一系列的反射镜将行车过程中的重要信息投影到驾驶员的正前方,使驾驶员无需低头即可接收到挡风玻璃远处的虚像信息,提高安全系数。对于车载HUD等虚像显示系统,发射图像源的准直背光屏的光发散角度与眼椭球处的亮度均匀性、杂散光分布直接相关。发射图像源的背光越接近Top-Hat平顶角分布,人眼接收到的杂散光越少,亮度均匀性也越高。因此,实现Top-Hat平顶角分布像源,是提高虚像显示视觉体验的关键。
但是现有的车载HUD背光调控技术,难以实现Top-Hat的像源准直,且难以保证侧视的亮度均匀性,导致人眼在眼盒范围内左右移动时能明显感觉到亮度的下降,严重影响消费者的使用体验。因此,如何解决虚像显示系统中发射图像源Top-Hat平顶角分布的问题,实现无杂散光、侧视均匀性高的HUD背光系统成为亟待解决的问题。
发明内容
本申请实施例提供了一种背光组件和成像显示系统,实现了发射图像源的背光的Top-Hat平顶角分布,提高了虚像显示系统的视觉体验。
基于此,本申请实施例提供以下技术方案:
第一方面,本申请实施例首先提供一种背光组件,可用于提供满足Top-Hat平顶角分布的光源。该背光组件包括透镜阵列、防窥膜和面光源阵列;其中,透镜阵列包括多个具有一定边缘厚度的透镜,该多个透镜用于对来自面光源阵列的光线进行折射;防窥膜设置在多个透镜中每个透镜的四周,用于吸收经多个透镜中每个透镜的四周发出的光线;面光源阵列包括多个面光源单元,面光源阵列设置在透镜阵列远离多个透镜的凸面的一侧,用于向透镜阵列发射光线。
该背光组件能够提供Top-Hat平顶角分布的光源,减少人眼接收到的杂散光,使得光源的亮度更加均匀,提供更好的视觉体验。
在一种可能的实现方式中,防窥膜与多个透镜中每个透镜的四周的表面紧密贴合,以更好的吸收从透镜的四周表面出射的光线,更好的减弱光线在不同透镜之间的串扰。
在一种可能的实现方式中,防窥膜完全覆盖多个透镜中每个透镜的四周的表面,以全面吸收从透镜的四周表面出射的光线,更好的减弱光线在不同透镜之间的串扰。
在一种可能的实现方式中,面光源阵列的占空比大于等于80%,高占空比的面光源可保证像源为Top-Hat平顶角分布,以及高的侧视均匀性。
在一种可能的实现方式中,多个面光源单元中每个面光源单元包括扩散膜和点光源,其中,点光源用于向扩散膜发射光线,扩散膜用于对来自点光源的光线进行扩散,以将点光源转化为面光源。
在一种可能的实现方式中,点光源可采用非白光的光源,例如,蓝光、红光、绿光等,此时,面光源单元还包括量子点膜,用于对来自点光源的光线进行转彩,以得到白色的光线。
在一种可能的实现方式中,面光源单元还包括设置在点光源下方的底座,用于承载所述点光源,多个面光源单元的底座(133)紧密排列,以得到占空比更高的面光源。
在一种可能的实现方式中,透镜阵列包括的多个透镜为球面镜或非球面镜。
在一种可能的实现方式中,透镜阵列包括的多个透镜和多个面光源单元一一对应,以得到更好的视觉体验。
第二方面,本申请实施例提供一种成像显示系统,该成像显示系统可以为HUD、车载桌面显示等,该成像显示系统包括反射镜和上述第一方面所描述的背光组件。
本申请实施例第二方面能够实现如第一方面所述的有益效果,为避免重复,此处不再进行赘述。
附图说明
图1为本申请实施例提供的背光组件的一个结构示意图;
图2为本申请实施例提供的背光组件的另一个结构示意图;
图3为本申请实施例提供的面光源单元的一个结构示意图;
图4为本申请实施例提供的面光源单元的另一个结构示意图;
图5为本申请实施例提供的面光源单元的另一个结构示意图;
图6为本申请实施例提供的面光源单元的另一个结构示意图;
图7为本申请实施例提供的面光源单元的的另一个结构示意图;
图8为本申请实施例提供的背光组件的另一个结构示意图;
图9为本申请实施例提供的背光组件的一个远场强度分布二维示意图;
图10为本申请实施例提供的背光组件在两个正交截线方向的一个强度分布示意图;
图11为本申请实施例提供的背光组件的一个侧视亮度分布曲线;
图12为本申请实施例提供的背光组件的另一个远场强度分布二维示意图;
图13为本申请实施例提供的背光组件在两个正交截线方向的另一个强度分布示意图;
图14为本申请实施例提供的背光组件的另一个侧视亮度分布曲线;
图15为本申请实施例提供的成像显示系统的一个结构示意图。
附图标记:
1-背光组件结构;11-透镜阵列;12-防窥膜;13-面光源阵列;131-扩散膜;132-点光源;133-底座;134-量子点膜;135-导光板;21-反射镜;22-反射镜;23-挡风玻璃。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。以下描述中,示出本发明实施例的具体方面或可使用本发明实施例的具体方面的附图。应理解,本发明实施例可在其它方面中使用,并可包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本发明的范围由所附权利要求书界定。例如,应理解,结合所描述方法的揭示内容可以同样适用于用于执行所述方法的对应设备或系统,且反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多个),即使附图中未明确描述或说明这种一个或多 个单元。另一方面,例如,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能性(例如,一个步骤执行一个或多个单元的功能性,或多个步骤,其中每个执行多个单元中一个或多个单元的功能性),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本文中所描述的各示例性实施例和/或方面的特征可以相互组合。
本发明实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本发明的实施方式部分使用的术语仅用于对本发明的具体实施例进行解释,而非旨在限定本发明。
抬头显示(HUD,head up display)技术是应用在汽车中的一种安全设备。车载HUD通过一系列的反射镜将行车过程中的重要信息投影到驾驶员的正前方,使驾驶员无需低头即可接收到挡风玻璃远处的虚像信息,提高安全系数。对于车载HUD等虚像显示系统,发射图像源的准直背光屏的光发散角度与眼椭球处的亮度均匀性、杂散光分布直接相关。发射图像源的背光越接近Top-Hat平顶角分布,人眼接收到的杂散光越少,亮度均匀性也越高。因此,实现Top-Hat平顶角分布像源,是提高虚像显示视觉体验的关键。
但是现有的车载HUD背光调控技术,难以实现Top-Hat的像源准直,且难以保证侧视的亮度均匀性,导致人眼在眼盒范围内左右移动时能明显感觉到亮度的下降,严重影响消费者的使用体验。基于此,本申请实施例提供了一种背光组件和成像显示系统,实现了发射图像源的背光的Top-Hat平顶角分布,提高了虚像显示系统的视觉体验。
具体请参阅图1,图1为本申请实施例提供的背光组件的一个结构示意图。如图1所示,本申请实施例提供的背光组件包括依次叠置设置的透镜阵列11,防窥膜12和面光源阵列13。其中,透镜阵列11包括多个具有一定边缘厚度的透镜,防窥膜12设置在每个透镜的四周,面光源阵列13包括多个面光源单元,面光源阵列13设置在透镜阵列11远离透镜的凸面的一侧。
请参阅图2,图2为本申请实施例提供的背光组件的另一个结构示意图,具体的,图2为本申请实施例提供的背光组件的侧视图。如图2所示,面光源阵列13用于向透镜阵列11发射光线,透镜阵列11用于对来自面光源阵列13的光线进行折射。对于入射到透镜阵列11的光线,由于透镜阵列11中的透镜存在一定的边缘厚度,部分光线经透镜的四周射出,部分光线经过透镜阵列11的折射后从透镜的凸面射出。防窥膜12的材质为吸收材料,用于吸收从透镜的四周射出的光线,避免大角度的光射入相邻的透镜中引起串扰。
如图1和图2所示的背光组件能够提供Top-Hat平顶角分布的光源,减少人眼接收到的杂散光,使得光源的亮度更加均匀,提供更好的视觉体验。
首先,对与透镜阵列11相关的一些设计进行说明。
透镜阵列11中的透镜的边缘厚度d和半径R之间满足数学关系式:其中n’为透镜折射率,n为环境折射率。对于透镜阵列的设计,可以根据实际场景首先确定边缘厚度d,再根据边缘厚度d和数学关系式确定半径R,或者可以根据实际场景首先确定半径R,再根据半径R和数学关系式确定边缘厚度d。示例性的,当实际使用场景对背光组件的面积的要求较高时,可以优先确定半径R,当实际使用场景对背光组件的厚度的要求较高时,可以优先确定边缘厚度d。
应当理解,边缘厚度d和半径R之间不一定需要严格的满足数学关系式:工程实践中允许稍有偏差,在上述数学关系式不是严格的等于关系时(略大于或者略小于),会产生一定的离焦效果,但对光源和成像的整体效果的影响较小。
在一种可能的实现方式中,透镜阵列11中的透镜可以为球面镜或非球面镜。对于非球面透镜,其四阶参数可以取-10至10,其六阶参数可以取-10至10。
在一种可能的实现方式中,透镜阵列11可以采用紫外固化胶或光刻胶等高折射率材料以使得透镜阵列更加轻薄,进而使得背光组件更加轻薄。
接下来,对与防窥膜12相关的一些设计进行说明。
在一种可能的实现方式中,防窥膜12可以与透镜的四周的表面紧密贴合,以更好的吸收从透镜的四周表面出射的光线,更好的减弱光线在不同透镜之间的串扰。
在一种可能的实现方式中,防窥膜12可以完全覆盖透镜的四周的表面,即,防窥膜12与透镜的四周边缘对齐,以全面吸收从透镜的四周表面出射的光线,更好的减弱光线在不同透镜之间的串扰。
在一种可能的实现方式中,可以根据实际的使用场景对防窥膜的厚度进行设置,例如,防窥膜的厚度可以设置为10um至100um。
接下来,对面光源阵列13相关的一些设计进行说明。
在一种可能的实现方式中,面光源阵列13的占空比可以大于或者等于80%,高占空比的面光源可保证像源为Top-Hat平顶角分布,以及高的侧视均匀性。
在一种可能的实现方式中,面光源阵列可以为白光光源,以提供更好的成像效果。
在一种可能的实现方式中,可以将面光源单元的尺寸设计为毫米量级,并且可将面光源的尺寸和透镜的尺寸设计为同一个量级,以得到更好的均匀度和Top-Hat效果。
在一种可能的实现方式中,提供一种关于面光源单元的具体设计。请参阅图3,图3为本申请实施例提供的面光源单元的一个结构示意图,如图3所示,面光源单元包括扩散膜131和点光源132。点光源132用于向扩散膜发射光线,示例性的,点光源132可以采用液晶显示器(LED,Liquid Crystal Display)。扩散膜131用于对来自点光源的光线进行扩散,扩散膜131的形状可以是矩形、圆形、椭圆形、梯形等任何可能的形状,本申请实施例对此不进行限定。应当理解,本申请实施例对点光源132和扩散膜131的具体实现方式不做限定,凡是能够实现上述技术效果的实现方式均在本申请的保护范围内。
请参阅图4,图4为本申请实施例提供的面光源单元的另一个结构示意图,如图4所示,在一种可能的实现方式中,面光源单元还包括底座133,底座133设置于点光源132的下方,用于承载点光源132。底座133的形状可以是矩形、圆形、椭圆形、梯形等任何可能的形状,本申请实施例对此不进行限定。
在一种可能的实现方式中,可以将扩散膜131和底座133设置为相同的周期,此时,点光源132即可被扩散膜131扩散为面光源。
在一种可能的实现方式中,可将底座133紧密排列,此时,可得到占空比更高的面光源。
在一种可能的实现方式中,可以将底座133的周期(底座133的长度或宽度)设计为毫米级别,即,可以将底座133的长或宽设计为1mm-10mm。
请参阅图5,图5为本申请实施例提供的面光源单元的另一个结构示意图,如图5所示,在一种可能的实现方式中,面光源单元还包括量子点膜134,量子点膜134用于对来自点光源的光线进行转彩,以得到白色的光线。此时,点光源132可以为任意颜色的光,示例性的,可以为蓝光、绿光、红光等。
在一种可能的实现方式中,如图5所示,量子点膜134可以设置在扩散膜131远离点光源的一侧。在另一种可能的实现方式中,如图6所示,量子点膜134也可以设置在扩散膜131靠近点光源的一侧。
在一种可能的实现方式中,还可以在点光源的下方增加反射片,对点光源发出的光线进行反射,以提高光的利用率。
在一种可能的实现方式中,还可以在扩散膜靠近点光源的一侧或者扩散膜远离点光源的一侧增加增 亮膜,以提升面光源的亮度。
在一种可能的实现方式中,提供一种关于面光源单元的另一种具体设计。请参阅图7,图7为本申请实施例提供的面光源单元的一个结构示意图,如图7所示,面光源单元包括点光源132和导光板135,其中,导光板135是表面有特殊网格设计的亚克力板,导光板表面可以破坏光的干涉现象,通过反射作用将点光源转化为面光源。
应当理解,上述实施例中提供的面光源阵列13的结构仅仅是示例性的,其他能够生成面光源的结构也是可能的,本申请实施例对此不进行限定。
在一种可能的实现方式中,透镜阵列中透镜与面光源阵列中面光源单元的排列周期可以是不同的。在一种可能的实现方式中,如图8所示,透镜阵列11包括的透镜和面光源阵列13包含的面光源单元一一对应,以得到更好的视觉体验。
接下来以两个实验说明本申请实施例提供的背光组件的有益效果。实验一和实验二中所采用背光组件的整体结构相同,透镜、防窥膜和面光源的尺寸等参数也相同,不同之处在于实验一中采用球面透镜,而实验二中采用非球面透镜。
首先,对实验一的结果进行说明。请参阅图9,图9为本申请实施例所提供的背光组件的一个远场强度分布二维示意图。如图9所示,中心光强的分布为方形,表明在x方向和y方向上均实现了陡升陡降的Top-Hat分布。请参阅图10,图10为本申请实施例所提供的背光组件在两个正交截线方向的一个强度分布示意图。如图10所示,在强度分布二维图正交的两个截线方向上取亮度分布,得到了两个边缘陡升陡降,中间为平顶分布的Top-Hat强度分布曲线,符合虚像显示系统对于像源背光的需求,可以有效消除车载HUD等虚像系统中眼盒范围内的杂散光,提升显示效果。并且在正交方向上的发散角度分别为±15°和±30°,符合发散角度的理论计算。请参阅图11,图11为本申请实施例所提供的背光组件的一个侧视亮度分布曲线。请如图11所示,本申请实施例所提供的背光组件具备好的侧视均匀性。侧视0°,即在系统的垂直方向观察时,整个系统的亮度分布非常均匀。侧视13°时,在透镜的纹路部分亮度的均匀性有所下降,但整体的亮度均匀性还在可容忍的范围内(80%及以上)。在侧视0°到11°范围内,亮度分布均匀性均在90%以上;当侧视角度大于11°时,亮度均匀性下降明显,在13°左右下降至80%,在15°下降至70%。根据侧视均匀性大于等于75%的需求,本申请实施例所提供的背光组件的侧视范围可达到±14°左右,符合虚像显示系统的实际需求。
然后,对实验二的结果进行说明。请参阅图12,图12为本申请实施例所提供的背光组件的另一个远场强度分布二维示意图。如图12所示,采用非球面镜时,二维强度分布图上的矩形强度分布短边边缘更加锐利,没有类似于球面系统中的“光晕”存在。请参阅图13,图13为本申请实施例所提供的背光组件在两个正交截线方向的另一个强度分布示意图。如图13所示,在±30°的截面强度分布曲线中,Top-Hat曲线的陡升陡降部分(黑框部分)更加陡峭锐利,可进一步消除杂散光提升效果。请参阅图14,图14为本申请实施例所提供的背光组件的另一个侧视亮度分布曲线。请如图14所示,采用非球面镜时,本申请实施例所提供的背光组件也具备更好的侧视亮度均匀性,在侧视0°到12°范围内,亮度均匀性保持在90%以上;在12°到15°范围内,亮度均匀性保持在80%左右。因此,本申请实施例所提供的背光组件不仅可以得到效果更好的Top-Hat光强分布,进一步消除杂散光,还可以满足侧视的范围为±15°及以上。
本申请实施例还提供一种成像显示系统,示例性的,成像显示系统可以为车载HUD,请参阅图15,图15为本申请实施例所提供的成像显示系统的一个结构示意图。如图15所示,成像显示系统包括背光组件1和反射镜21和反射镜22。背光系统发出的光线经过反射镜21和反射镜22的反射到达车辆的挡风玻璃23上,进而形成一个虚像。
应当理解,上述关于成像显示系统的结构描述仅仅是示例性的,成像显示系统可以包含一个或者多个反射镜,光路的走向也可以相应的发生改变。除HUD之外,本申请实施例提供的背光组件还可以用于 车载桌面显示等其他可能的成像显示系统中,本身实施例对成像显示系统的具体结构和应用场景不进行限定。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种背光组件,其特征在于,所述背光组件包括透镜阵列(11)、防窥膜(12)和面光源阵列(13);
    所述透镜阵列(11)包括多个具有一定边缘厚度的透镜,所述多个透镜用于对来自所述面光源阵列的光线进行折射;
    所述防窥膜(12)设置在所述多个透镜中每个透镜的四周,用于吸收经所述多个透镜中每个透镜的四周发出的光线;
    所述面光源阵列(13)包括多个面光源单元,所述面光源阵列设置在所述透镜阵列(11)远离所述多个透镜的凸面的一侧,用于向所述透镜阵列(11)发射光线。
  2. 根据权利要求1所述的背光组件,其特征在于:所述防窥膜(12)与所述多个透镜中每个透镜的四周的表面紧密贴合。
  3. 根据权利要求1或2所述的背光组件,其特征在于:所述防窥膜(12)完全覆盖所述多个透镜中每个透镜的四周的表面。
  4. 根据权利要求1-3任一项所述的背光组件,其特征在于:所述面光源阵列(13)的占空比大于等于80%。
  5. 根据权利要求1-4任一项所述的背光组件,其特征在于:所述多个面光源单元中的每个面光源单元包括扩散膜(131)和点光源(132);
    所述点光源(132)用于向所述扩散膜(131)发射光线;
    所述扩散膜(131)用于对来自点光源(132)的光线进行扩散。
  6. 根据权利要求5所述的背光组件,其特征在于:所述多个面光源单元中的每个面光源单元还包括量子点膜(134),用于对来自所述点光源的光线进行转彩,以得到白色的光线。
  7. 根据权利要求5所述的背光组件,其特征在于:
    所述多个面光源单元中的每个面光源单元还包括底座(133),所述底座(133)设置在所述点光源(132)的下方,用于承载所述点光源(132);
    所述多个面光源单元的底座(133)紧密排列。
  8. 根据权利要求1-7任一项所述的背光组件,其特征在于:所述多个透镜为球面镜或非球面镜。
  9. 根据权利要求1-10任一项所述的背光组件,其特征在于:所述多个透镜和所述多个面光源单元一一对应。
  10. 一种成像显示系统,所述成像显示系统包括反射镜和如权利要求1-7任一项所述的背光组件。
PCT/CN2023/103416 2022-11-28 2023-06-28 一种背光组件及成像显示系统 WO2024113820A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211505717.2A CN118091943A (zh) 2022-11-28 2022-11-28 一种背光组件及成像显示系统
CN202211505717.2 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024113820A1 true WO2024113820A1 (zh) 2024-06-06

Family

ID=91160456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103416 WO2024113820A1 (zh) 2022-11-28 2023-06-28 一种背光组件及成像显示系统

Country Status (2)

Country Link
CN (1) CN118091943A (zh)
WO (1) WO2024113820A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063905A (ja) * 2007-09-07 2009-03-26 Toppan Printing Co Ltd 光学シートとそれを用いるバックライトユニットおよびディスプレイ
JP2009098566A (ja) * 2007-10-19 2009-05-07 Toppan Printing Co Ltd 光学シートおよびその製造方法
CN106019430A (zh) * 2016-07-19 2016-10-12 京东方科技集团股份有限公司 一种纳米防窥膜及显示装置
CN107346075A (zh) * 2017-07-31 2017-11-14 京东方科技集团股份有限公司 一种准直膜结构以及显示装置
CN108508509A (zh) * 2018-04-12 2018-09-07 京东方科技集团股份有限公司 一种防窥膜及其制作方法、背光模组、显示装置
CN209070271U (zh) * 2018-11-19 2019-07-05 重庆矢崎仪表有限公司 一种汽车高亮背光装置
CN110221378A (zh) * 2019-05-08 2019-09-10 南京第五十五所技术开发有限公司 一种阵列侧嵌入透镜式导光板背光耦合装置和显示装置
CN110596956A (zh) * 2019-10-09 2019-12-20 深圳市隆利科技股份有限公司 背光装置及显示设备
CN115220233A (zh) * 2022-07-28 2022-10-21 浙江炽云科技有限公司 一种hud的背光系统、设计方法、抬头显示系统及交通工具

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063905A (ja) * 2007-09-07 2009-03-26 Toppan Printing Co Ltd 光学シートとそれを用いるバックライトユニットおよびディスプレイ
JP2009098566A (ja) * 2007-10-19 2009-05-07 Toppan Printing Co Ltd 光学シートおよびその製造方法
CN106019430A (zh) * 2016-07-19 2016-10-12 京东方科技集团股份有限公司 一种纳米防窥膜及显示装置
CN107346075A (zh) * 2017-07-31 2017-11-14 京东方科技集团股份有限公司 一种准直膜结构以及显示装置
CN108508509A (zh) * 2018-04-12 2018-09-07 京东方科技集团股份有限公司 一种防窥膜及其制作方法、背光模组、显示装置
CN209070271U (zh) * 2018-11-19 2019-07-05 重庆矢崎仪表有限公司 一种汽车高亮背光装置
CN110221378A (zh) * 2019-05-08 2019-09-10 南京第五十五所技术开发有限公司 一种阵列侧嵌入透镜式导光板背光耦合装置和显示装置
CN110596956A (zh) * 2019-10-09 2019-12-20 深圳市隆利科技股份有限公司 背光装置及显示设备
CN115220233A (zh) * 2022-07-28 2022-10-21 浙江炽云科技有限公司 一种hud的背光系统、设计方法、抬头显示系统及交通工具

Also Published As

Publication number Publication date
CN118091943A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
JP4245014B2 (ja) バックライト装置、光源装置、レンズ、電子機器及び導光板
JP4996433B2 (ja) 面状照明装置
US20070110386A1 (en) Device having combined diffusing, collimating, and color mixing light control function
EP2788809B1 (en) Compact illumination module for head mounted display
JP2020500397A (ja) 指向性散乱機構を使用するモード選択可能なバックライト、方法、及びディスプレイ
CN108508509B (zh) 一种防窥膜及其制作方法、背光模组、显示装置
JP5157903B2 (ja) 照明装置、照明方法、及び表示装置
US20140133181A1 (en) Illumination device and display device
US8882324B2 (en) Lighting device, display device and liquid crystal display device
US20130120474A1 (en) Light source device, display device, and electronic apparatus
US8922735B2 (en) Backlight system and liquid crystal display device using the same
US8708542B2 (en) Backlight module and liquid crystal display device
JP2009164101A (ja) バックライト
JP2014202835A (ja) 照明装置及び画像表示装置
JP4779893B2 (ja) 面光源装置と透過型表示装置
JP4423933B2 (ja) 光学シートとそれを用いたバックライトユニットおよびディスプレイ
JPH0772809A (ja) 液晶ディスプレイ用マイクロレンズアレイシート、およびそれを用いた液晶ディスプレイ
EP1793263A1 (en) Light intensity and/or colour distribution correcting element for an illumination system whose function is correlated to the incident light distribution
JP2012226923A (ja) 面光源装置、透過型表示装置
JP7445579B2 (ja) バックライトモジュール
CN103017007B (zh) 光学贴膜及具有该光学贴膜的背光模块与液晶显示器
WO2024113820A1 (zh) 一种背光组件及成像显示系统
JP7308267B2 (ja) 指向性光源及び平面ディフューザを使用する静的マルチビューディスプレイ並びに方法
WO2017002725A1 (ja) 発光装置、面光源装置および表示装置
JP5170273B2 (ja) 面光源装置と透過型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23895984

Country of ref document: EP

Kind code of ref document: A1