WO2024113812A1 - 光器件、光线路终端及无源光纤网络系统 - Google Patents
光器件、光线路终端及无源光纤网络系统 Download PDFInfo
- Publication number
- WO2024113812A1 WO2024113812A1 PCT/CN2023/103297 CN2023103297W WO2024113812A1 WO 2024113812 A1 WO2024113812 A1 WO 2024113812A1 CN 2023103297 W CN2023103297 W CN 2023103297W WO 2024113812 A1 WO2024113812 A1 WO 2024113812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- light
- wavelength
- upstream
- downstream
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 684
- 238000011144 upstream manufacturing Methods 0.000 claims description 260
- 239000013307 optical fiber Substances 0.000 claims description 79
- 230000005540 biological transmission Effects 0.000 claims description 77
- 239000000835 fiber Substances 0.000 claims description 14
- 238000003780 insertion Methods 0.000 abstract description 17
- 230000037431 insertion Effects 0.000 abstract description 17
- 238000004891 communication Methods 0.000 abstract description 9
- 238000002955 isolation Methods 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 description 22
- 238000013461 design Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 17
- 238000004806 packaging method and process Methods 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 9
- 101001094647 Homo sapiens Serum paraoxonase/arylesterase 1 Proteins 0.000 description 5
- 102100035476 Serum paraoxonase/arylesterase 1 Human genes 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0003—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0075—Wavelength grouping or hierarchical aspects
Definitions
- the present application relates to the field of optical communication technology, and in particular to an optical device, an optical line terminal and a passive optical fiber network system.
- the embodiments of the present application provide an optical device, an optical line terminal and a passive optical fiber network system, which are used to realize an optical device with low insertion loss and high isolation.
- an optical device comprising a housing having an optical channel, a light combining structure and a light splitting structure arranged in the optical channel.
- the housing has an optical interface connected to the optical channel, a downstream first wavelength optical interface, a downstream second wavelength optical interface, an upstream first wavelength optical interface and an upstream second wavelength optical interface.
- the downstream first wavelength light is incident on the light combining structure from the downstream first wavelength optical interface
- the downstream second wavelength light is incident on the light combining structure from the downstream second wavelength optical interface
- both the downstream first wavelength light and the downstream second wavelength light are emitted from the optical interface.
- the upstream light incident on the optical interface is transmitted to the light splitting structure through the light combining structure, and the light splitting structure transmits the upstream first wavelength light in the upstream light to the upstream first wavelength optical interface and then emits it, and reflects the upstream second wavelength light in the upstream light to the upstream second wavelength optical interface and then emits it.
- the optical device provided in the embodiment of the present application combines the first downstream wavelength light and the second downstream wavelength light through a light combining structure, and transmits the light to the first interface.
- the first downstream wavelength light and the second downstream wavelength light are directly coupled and transmitted to the first interface without passing through the light splitting structure. Therefore, the setting of the light splitting structure does not need to consider the wavelength range of the downstream light.
- the upstream light is transmitted to the light combining structure in the optical channel through the first interface, transmitted to the light splitting structure via the light combining structure, and then the upstream light is split by the light splitting structure.
- the light splitting structure divides the upstream light into the first upstream wavelength light and the second upstream wavelength light.
- the light splitting structure transmits the first upstream wavelength light and reflects the second upstream wavelength light.
- the setting of the light splitting structure only needs to consider the wavelength range of the upstream light.
- the wavelength range of the reflected light and the wavelength range of the transmitted light of the light splitting structure are both the wavelength range of the upstream light. Therefore, the wavelength range of the transmitted light and the wavelength range of the reflected light of the splitter structure are both small.
- the splitter structure can avoid the situation where the wavelength range of the transmitted light or the wavelength range of the reflected light is large, and the effective wavelength interval between the reflected wavelength range and the transmitted wavelength range is small, making the splitter structure easy to design and implement.
- the splitter structure can improve the isolation of the upstream light splitting and reduce the transmission insertion loss of the upstream light, thereby realizing an optical device with low insertion loss and high isolation.
- the light splitting structure is located on the transmission path of the light combining structure, which will not cause an angle error in the reflection of the uplink light, thereby avoiding the insertion loss caused by the angle error.
- the optical splitter structure includes a first optical splitter and a first reflector; the first optical splitter is used to transmit the upstream first wavelength light, and is used to reflect the upstream second wavelength light, and transmit the upstream second wavelength light to the first reflector; the first reflector is used to reflect the upstream second wavelength light.
- the upstream light is split into the upstream first wavelength light and the upstream second wavelength light by the first optical splitter, and then the upstream second wavelength light is reflected to the upstream second wavelength optical interface by the first reflector.
- the incident angle range of the uplink light on the first beam splitter is 5° to 25°. This is conducive to splitting the uplink light, reducing the insertion loss caused by the first beam splitter, and avoiding the packaging size of the optical device being too large.
- the angle between the plane where the first beam splitter is located and the plane where the first reflector is located is 40° to 50°. In this way, the uplink second wavelength light reflected by the first reflector can be better transmitted to the second optical receiving component, reducing the packaging size of the optical device.
- the light combining structure includes a second light splitter and a third light splitter; the second light splitter is used to reflect the first wavelength of the downstream light, and transmit the first wavelength of the downstream light to the third light splitter; the second light splitter is also used to transmit at least one of the first wavelength of the upstream light and the second wavelength of the upstream light; the third light splitter is used to reflect the second wavelength of the downstream light, and to transmit at least one of the first wavelength of the downstream light, the first wavelength of the upstream light, and the second wavelength of the upstream light.
- the first wavelength of the downstream light and the second wavelength of the downstream light can be combined by the second light splitter and the third light splitter, and transmitted to the optical interface.
- the incident angle range of the downstream light on the second beam splitter is 40° to 50°, and the downstream light includes downstream first wavelength light and downstream second wavelength light. In this way, the package size of the optical device can be reduced, so that the downstream first wavelength light can be better transmitted to the optical interface.
- the incident angle range of the downstream light on the third beam splitter is 40° to 50°, and the downstream light includes the downstream first wavelength light and the downstream second wavelength light. In this way, the package size of the optical device can be reduced, so that the downstream second wavelength light can be better transmitted to the optical interface.
- the optical device further includes a second reflector, which is used to reflect the downlink first wavelength light onto the light combining structure, thereby reducing the package size of the optical device.
- the optical device further includes a third reflector, which is used to reflect the uplink first wavelength light transmitted by the light splitting structure. In this way, the package size of the optical device can be reduced.
- the incident angle range of the uplink light on the third reflector is 40° to 50°. In this way, the package size of the optical device can be reduced.
- the wavelength of the first downstream wavelength light is 1340nm-1344nm
- the wavelength of the second downstream wavelength light is 1575nm-1580nm
- the wavelength of the first upstream wavelength light and the wavelength of the second upstream wavelength light are 1284nm-1288nm and 1260nm-1280nm, respectively.
- the wavelength of the first wavelength of the downstream light is 1340nm-1344nm
- the wavelength of the second wavelength of the downstream light is 1480nm-1500nm
- one of the third wavelength of the first wavelength of the upstream light and the second wavelength of the upstream light is 1284nm-1288nm and the other is 1290nm-1330nm.
- the optical device further includes a collimating component, which is disposed at the optical interface, so that the uplink light emitted from the optical fiber can be converged and efficiently transmitted into the optical channel, and the downlink light can be converged and efficiently transmitted into the optical fiber.
- a collimating component which is disposed at the optical interface, so that the uplink light emitted from the optical fiber can be converged and efficiently transmitted into the optical channel, and the downlink light can be converged and efficiently transmitted into the optical fiber.
- the optical device further includes a first optical receiving component and a second optical receiving component; the first optical receiving component is coupled to the upstream first wavelength optical interface, and the second optical receiving component is coupled to the upstream second wavelength optical interface; the first optical receiving component is used to receive the upstream first wavelength light transmitted from the optical splitting structure; the second optical receiving component is used to receive the upstream second wavelength light reflected from the optical splitting structure. In this way, the upstream first wavelength light is received by the first optical receiving component, and the upstream second wavelength light is received by the second optical receiving component.
- the optical device further includes a first optical emission component and a second optical emission component; the first optical emission component is coupled to a downstream first wavelength optical interface, and the second optical emission component is coupled to a downstream second wavelength optical interface; the first optical emission component is used to transmit the downstream first wavelength light to the optical combination structure; the second optical emission component is used to transmit the downstream second wavelength light to the optical combination structure.
- the downstream first wavelength light is emitted by the first optical emission component
- the downstream second wavelength light is emitted by the second optical emission component.
- the package of any one of the first optical receiving component, the second optical receiving component, the first optical transmitting component or the second optical transmitting component includes a coaxial package, a butterfly package or a chip-on-board package.
- the packaging form of the optical device 10 is not limited and has a wide range of applications.
- the optical device further includes an optical fiber ferrule, which is disposed in the optical interface and is used to connect optical fibers. In this way, uplink light and downlink light are transmitted through the optical fiber.
- an optical line terminal comprising the optical device according to the first aspect and a printed circuit board; the optical device is electrically connected to the printed circuit board.
- the optical line terminal provided in the second aspect of the embodiment of the present application includes the optical device of the first aspect, and its beneficial effects are the same as those of the optical device, which will not be repeated here.
- a third aspect of the embodiment of the present application provides a passive optical fiber network system, comprising an optical line terminal according to the second aspect, an optical network
- the optical network unit connects the optical line terminal and the optical network terminal.
- the passive optical fiber network system provided in the third aspect of the embodiment of the present application includes the optical line terminal of the second aspect, and its beneficial effects are the same as those of the optical line terminal, which will not be repeated here.
- FIG1 is a schematic diagram of the structure of a passive optical fiber network system provided in an embodiment of the present application.
- FIG2A is a schematic diagram of the structure of another passive optical fiber network system provided in an embodiment of the present application.
- FIG2B is a schematic diagram of the structure of another passive optical fiber network system provided in an embodiment of the present application.
- FIG3 is a wavelength distribution diagram of GPON, 10G PON and 50G PON provided in an embodiment of the present application;
- FIG4 is a schematic diagram of the structure of an optical device provided in an embodiment of the present application.
- FIG5A is a schematic diagram of the structure of another optical device provided in an embodiment of the present application.
- FIG5B is a schematic diagram of the structure of another optical device provided in an embodiment of the present application.
- FIG6 is a schematic diagram of the structure of another optical device provided in an embodiment of the present application.
- FIG7 is a schematic diagram of the structure of another optical device provided in an embodiment of the present application.
- FIG8A is a schematic diagram of the structure of another optical device provided in an embodiment of the present application.
- FIG8B is a schematic diagram of the structure of another optical device provided in an embodiment of the present application.
- FIG9A is a schematic diagram of the structure of another optical device provided in an embodiment of the present application.
- FIG9B is a schematic diagram of the structure of another optical device provided in an embodiment of the present application.
- FIG9C is a schematic diagram of the structure of another optical device provided in an embodiment of the present application.
- FIG10 is a schematic diagram of the structure of another optical device provided in an embodiment of the present application.
- FIG11A is a schematic diagram of the structure of another optical device provided in an embodiment of the present application.
- FIG. 11B is a schematic diagram of the structure of another optical device provided in an embodiment of the present application.
- 1-passive optical fiber network 2-optical line terminal; 3-optical distribution network; 4-optical network unit; 51-first-stage optical splitter; 52-second-stage optical splitter; 10-optical device; 11-filter; 12-filter; 13-filter; 14-reflector; 21-filter; 22-filter; 23-filter; 24-reflector; 110-fiber ferrule; 120-transmitter; 121-first optical transmission assembly; 122-second optical transmission assembly; 130-receiver; 131- First optical receiving component; 132-second optical receiving component; 100-housing; 200-light combining structure; 300-light splitting structure; 101-optical interface; 102-downlink first wavelength optical interface; 103-downlink second wavelength optical interface; 104-uplink first wavelength optical interface; 105-uplink second wavelength optical interface; 210-first spectrometer; 220-second spectrometer; 230-third spectrometer; 310-first reflector; 320-second reflector; 330-third reflector.
- directional terms such as “up”, “down”, “left” and “right” may be defined including but not limited to the orientation relative to the schematic placement of the components in the drawings. It should be understood that these directional terms may be relative concepts, which are used for relative description and clarification, and may change accordingly according to changes in the orientation of the components in the drawings.
- connection should be understood in a broad sense.
- connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
- coupled can be a direct electrical connection or an indirect electrical connection through an intermediate medium.
- contact can be a direct contact or an indirect contact through an intermediate medium.
- a and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B may be singular or plural.
- the character “/” generally indicates that the associated objects are in an "or” relationship.
- Optical fiber communication system has become the mainstream communication system.
- the access network access network
- the access method of AN is fiber access (FTTx), which is also called optical access network (OAN).
- the fiber access methods of optical access network include fiber to the cabinet (FTTCab), fiber to the curb (FTTC), fiber to the building (FTTB) and fiber to the home (FTTH).
- PON1 includes an optical line terminal (OLT) 2, an optical distribution network (ODN) 3, and an optical network unit (ONU) 4.
- OLT2 is set in a central control station
- ODN3 is set on the user side.
- OND3 is used to connect OLT2 and ONU4.
- optical devices in OLT2 and ONU4 are used to perform photoelectric conversion and transmission of network signals.
- PON1 further includes an optical network terminal (ONT) (not shown in the figure).
- ONT and ONU4 are arranged at different positions on the user side and implement similar functions.
- GPON gigabit capable passive optical networks
- 10G PON 10 gigabit capable passive optical networks
- 50G PON 50 gigabit capable passive optical networks
- a downlink optical signal is data sent from a central control station to a communication device (ONU, ONT, etc.) on the user side
- a communication device ONU, ONT, etc.
- an uplink optical signal is data sent from a communication device on the user side to the central control station.
- ODN3 includes multi-level splitters.
- a two-stage optical splitter is taken as an example.
- the input end a1 of the first-stage optical splitter 51 is connected to the OLT2 via an optical fiber
- the output end b1 of the first-stage optical splitter 51 is connected to the input end a2 of the second-stage optical splitter 52 via an optical fiber
- the output end c1 of the first-stage optical splitter 51 is connected to the ONU41 via an optical fiber
- the output end d1 of the first-stage optical splitter 51 is connected to the ONU42 via an optical fiber.
- ONU41 is a 50G PON ONU
- ONU42 is a 10G PON ONU.
- the input end a2 of the second-stage optical splitter 52 is connected to the output end b1 of the first-stage optical splitter 51 through an optical fiber, the output end c2 of the first-stage optical splitter 51 is connected to ONU43 through an optical fiber, and the output end d2 of the first-stage optical splitter 51 is connected to ONU44 through an optical fiber.
- ONU43 is a 10G PON ONU
- ONU44 is a 50G PON ONU.
- the output end of the second-stage optical splitter 52 may also be connected to a third-stage optical splitter (not shown in FIG. 2A ).
- This embodiment of the present application does not limit this, and it can be reasonably configured according to actual needs.
- the function of the optical splitter (the first-stage optical splitter 51 and the second-stage optical splitter 52) is to split the transmitted optical signal in equal proportions without distinguishing the wavelength of the optical signal.
- ONU4 connected to OLT2 may be a 10G PON ONU or a 50G PON ONU. This embodiment of the present application does not limit this, and can be reasonably set according to actual needs.
- OLT2 transmits the downstream optical signal to ODN3.
- the input end a1 of the first-stage optical splitter 51 in ODN3 receives the downstream optical signal, and transmits the downstream optical signal to the input end a2 of the second-stage optical splitter 52, ONU41 and ONU42 through the output end b1 of the first-stage optical splitter 51.
- the input end a2 of the second-stage optical splitter 52 receives the downstream optical signal, and transmits the downstream optical signal to ONU43 and ONU44 through the output end c2 of the second-stage optical splitter 52.
- the downstream optical signal received by ONU41 is a 50G PON downstream optical signal
- the downstream optical signal received by ONU42 is a 10G PON downstream optical signal
- the downstream optical signal received by ONU43 is a 10G PON downstream optical signal
- the downstream optical signal received by ONU44 is a 50G PON downstream optical signal.
- ONU4 receives the downstream optical signal and processes the received downstream optical signal to obtain data therein.
- ONU4 can also generate an upstream optical signal to be sent to OLT2.
- ONU43 generates a 10G PON upstream optical signal and transmits the upstream optical signal to the output end c2 of the second optical splitter 52, the input end a2 of the second optical splitter 52, and the first optical splitter 53 in sequence.
- the output end b1 of the optical device 51 and the input end a1 of the first-stage optical splitter 51 are transmitted to OLT 2.
- OLT 2 can also receive 50G PON upstream optical signals from ONU 41, 10G PON upstream optical signals from ONU 42, and 50G PON upstream optical signals from ONU 44.
- the downstream optical signal transmitted by OLT2 is the 10G PON downstream optical signal and the 50G PON downstream optical signal
- the upstream optical signal received by OLT2 is the 10G PON upstream optical signal and the 50G PON upstream optical signal.
- FIG. 2B a network topology structure in which 50G/G PON Combo OLTs coexist is shown.
- the description of the network topology structure where 50G/G PON Combo OLT coexists can refer to the above description of 50G/10G PON Combo OLT.
- the downstream optical signals transmitted by OLT2 are GPON downstream optical signals and 50G PON downstream optical signals
- the upstream optical signals received by OLT2 are GPON upstream optical signals and 50G PON upstream optical signals.
- the optical fiber can be, for example, a single-core bidirectional optical fiber that can transmit upstream optical signals and downstream optical signals.
- the optical fiber can be, for example, a single-core bidirectional optical fiber that can transmit upstream optical signals and downstream optical signals.
- the wavelengths of the two upstream optical signals and the wavelengths of the two downstream optical signals transmitted in PON1 are different.
- Figure 3 illustrates the upstream wavelength (up wavelength, UW) and downstream wavelength (down wavelength, DW) of GPON, 10G PON and 50G PON.
- the upstream wavelength (UW1) of 10G PON ranges from 1260nm to 1280nm
- the downstream wavelength (DW3) of 10G PON ranges from 1575nm to 1580nm
- the upstream wavelength (UW2) of GPON ranges from 1290nm to 1330nm (may be changed to 1292nm to 1330nm in the future), and the downstream wavelength (DW2) of GPON ranges from 1480nm to 1500nm.
- the upstream wavelength (UW3) of 50G PON is limited to 1280nm to 1290nm (currently mainly considering 1284nm to 1288nm), and the downstream wavelength (DW1) of 50G PON ranges from 1340nm to 1344nm.
- an optical module which includes an optical device and a printed circuit board (PCB). Among them, the optical device is electrically connected to the printed circuit board.
- the above-mentioned optical module can be arranged in the OLT2 provided in the implementation of this application. Alternatively, the above-mentioned optical module can also be arranged in any communication device that needs to receive multiple different wavelengths. The embodiments of this application do not limit this, and it can be reasonably set according to actual needs.
- the 10G PON Combo OLT and GPON Combo OLT deployed on a large scale today have achieved compatibility between 10G PON and GPON.
- An optical device 10 is shown, which is applied to the OLT 2 shown above and can achieve the coexistence of 10G/G PON Combo OLT.
- the optical device 10 includes a filter 11, a filter 12, a filter 13 and a reflector 14.
- the optical device 10 further includes an optical fiber ferrule 110, a transmitting end 120, and a receiving end 130.
- the optical fiber ferrule 110 is coupled with an optical fiber.
- the transmitting end 120 is used to transmit the downstream optical signal of 10G PON and GPON.
- the receiving end 130 is used to receive the upstream optical signal of 10G PON and GPON.
- the uplink optical signals of 10G PON and GPON are transmitted to the filter 11 of the optical device 10 through the optical fiber.
- the filter 11 reflects the uplink optical signal of 10G PON to the reflector 14 and transmits the uplink optical signal of GPON.
- the uplink optical signal of 10G PON is then reflected to the receiving end 130 by the reflector 14.
- the uplink optical signal of GPON is reflected to the receiving end 130 by the filter 12.
- the downstream optical signals of 10G PON and GPON are incident on the filter 13 through the transmitting end 120.
- the filter 13 transmits the downstream optical signal of 10G PON and reflects the downstream optical signal of GPON. Then, the downstream optical signal of 10G PON and the downstream optical signal of GPON are transmitted to the optical fiber ferrule 110 through the filter 12 and the filter 11 in turn.
- the optical signal reflected by the filter 11 is the upstream optical signal of 10G PON, and the optical signal transmitted is the upstream optical signal of GPON, the downstream optical signal of 10G PON, and the downstream optical signal of GPON. Therefore, the reflection wavelength of the filter 11 is UW1, and the transmission wavelength is [UW2, DW3, DW2], that is, the reflection wavelength range of the filter 11 is 1260nm ⁇ 1280nm, and the transmission wavelength range is 1290nm ⁇ 1500nm.
- the downlink optical signal emitted from the transmitting end 120 is transmitted to the optical fiber ferrule 110 through the filter 13, the filter 12 and the filter 11.
- the uplink optical signal emitted from the optical fiber ferrule 110 is separated by the filter 11, and then transmitted to the receiving end 130 through the filter 12 and the reflector 14, thereby realizing the reception and transmission of optical signals of different wavelengths.
- the above-mentioned optical device 10 is used to realize the coexistence of 50G/10G PON Combo OLT, and the filter 11 reflects the uplink optical signal of 50G PON and transmits the uplink optical signal of 10G PON.
- the reflection wavelength of filter 11 is UW1
- the transmission wavelength is [UW3, DW1, DW3]
- the reflection wavelength range of filter 11 is 1260nm ⁇ 1280nm
- the transmission wavelength range is 1284nm ⁇ 1580nm.
- the effective wavelength interval between the reflection wavelength range and the transmission wavelength range differs by only 4nm (i.e., 1280nm to 1284nm), and the transmission wavelength range differs by hundreds of nm, which makes it difficult to design and manufacture the filter 11 in theory.
- the filter 11 Even if it is manufactured, the filter 11 has a large transmission insertion loss and extremely low reflection isolation due to the small effective wavelength interval between the reflection wavelength range and the transmission wavelength range of the filter 11, which causes a great loss in the optical power of the optical device 10 and seriously degrades the system link budget.
- the above-mentioned optical device 10 is used to realize the coexistence of 50G/G PON Combo OLT, and the filter 11 reflects the upstream optical signal of 50G PON and transmits the upstream optical signal of GPON.
- the reflection wavelength of the filter 11 is UW3, and the transmission wavelength is [UW2, DW1, DW2], that is, the reflection wavelength range of the filter 11 is 1284nm ⁇ 1288nm, and the transmission wavelength range is 1290nm ⁇ 1500nm.
- the effective wavelength interval between the reflection wavelength range and the transmission wavelength range of the filter 11 differs by only 2nm (i.e., 1288nm ⁇ 1290nm), and the transmission range wavelength differs by hundreds of nm, which makes the filter 11 equally difficult to manufacture, and has extremely large transmission insertion loss and extremely low reflection isolation, causing great loss to the optical power of the optical device 10, seriously degrading the system link budget.
- the embodiment of the present application also illustrates an optical device 10, as shown in Figure 5A, including a filter 21, a filter 22, a filter 23 and a reflector 24.
- the optical device 10 further includes an optical fiber ferrule 110, a transmitting end 120 and a receiving end 130.
- the description of the optical fiber ferrule 110, the transmitting end 120 and the receiving end 130 is the same as that of the optical device 10, and the details can be referred to above, and will not be repeated here.
- the optical device 10 demultiplexes a plurality of uplink lights and a plurality of downlink lights through a filter, and then demultiplexes the plurality of uplink lights through a filter 22, that is, a multiple-in-one solution.
- the above-mentioned optical device 10 is used to achieve 50G/10G PON Combo OLT coexistence.
- the upstream optical signals of 50G PON and 10G PON are transmitted to the filter 21 of the optical device 10 through the optical fiber ferrule 110.
- the filter 21 reflects both the upstream optical signals of 50G PON and 10G PON, and reflects the upstream optical signals of 50G PON and 10G PON to the filter 22.
- the filter 22 transmits the upstream optical signal of 50G PON to the receiving end 130, and reflects the upstream optical signal of 10G PON to the reflector 24.
- the reflector 24 reflects the upstream optical signal of 10G PON to the receiving end 130.
- the downstream optical signals of 50G PON and 10G PON are incident on the filter 23 through the transmitting end 120.
- the filter 23 transmits the downstream optical signals of 50G PON and reflects the downstream optical signals of 10G PON.
- the downstream optical signals of 50G PON and 10G PON are transmitted to the optical fiber ferrule 110 through the filter 21.
- the optical signals reflected by the filter 21 are the upstream optical signals of 50G PON and the upstream optical signals of 10G PON, and the optical signals transmitted are the downstream optical signals of 50G PON and the downstream optical signals of 10G PON.
- the reflection wavelength of the filter 21 is [UW1, UW3]
- the transmission wavelength is [DW1, DW3], that is, the reflection wavelength range of the filter 21 is 1260nm ⁇ 1288nm, and the transmission wavelength range is 1340nm ⁇ 1580nm.
- the optical signal reflected by the filter 22 is the uplink optical signal of the 10G PON, and the optical signal transmitted is the uplink optical signal of the 50G PON.
- the reflection wavelength of the filter 22 is UW1
- the transmission wavelength is UW3. That is, the reflection wavelength range of the filter 22 is 1260nm to 1280nm, and the transmission wavelength is 1284nm to 1288nm.
- the effective wavelength interval between the reflection wavelength range and the transmission wavelength range of the filter 21 is relatively large, that is, the difference is 1288nm to 1340nm, so the design and manufacturing difficulty of the filter 21 is low and it is easy to design and manufacture.
- the effective wavelength interval between the reflection wavelength range and the transmission wavelength range of the filter 22 is only 4nm (i.e., 1280nm to 1284nm), due to the small transmission wavelength range of the filter 22, the design and manufacturing difficulty of the filter 22 is reduced, and it is easy to design and manufacture.
- the above optical device 10 is used to realize the coexistence of 50G/GPON Combo OLT, then the optical signal reflected by the filter 21 is the upstream optical signal of 50G PON and the upstream optical signal of GPON, and the optical signal transmitted is the downstream optical signal of 50G PON and the downstream optical signal of GPON.
- the optical signal reflected by the filter 22 is the upstream optical signal of GPON, and the optical signal transmitted is the upstream optical signal of 50G PON.
- the reflection wavelength of the filter 21 is [UW3, UW2], and the transmission wavelength is [DW1, DW2], that is, the reflection wavelength range of the filter 21 is 1284nm-1330nm, and the transmission wavelength range is 1340nm-1500nm.
- the reflection wavelength of the filter 22 is UW2, and the transmission wavelength is UW3. That is, the reflection wavelength range of the filter 22 is 1290nm-1330nm, and the transmission wavelength is 1284nm-1288nm.
- the effective wavelength interval between the reflection wavelength range and the transmission wavelength range of the filter 21 is large, and the design and manufacturing difficulty is relatively low.
- the effective wavelength interval between the reflection wavelength range and the transmission wavelength range of the filter 22 is extremely small, due to the The small transmission wavelength range reduces the difficulty of designing and manufacturing the filter 22, making it easy to design and manufacture.
- the optical device 10 is a tube-shell structure.
- the optical device 10 includes a housing having an optical channel.
- a filter 21, a filter 22, a filter 23 and a reflector 24 are arranged on the optical channel in the housing, and the setting positions and setting angles of the filters and reflectors need to meet specific conditions.
- a certain angle error will be caused, and the light incident on the filter 22 needs to be reflected by the filter 21, resulting in the filter 22 being extremely sensitive to the angle of light, and a slight deviation in the incident angle will cause a great insertion loss.
- the uplink optical signal will cause a certain angle error when it is reflected by the filter 21, and then the incident angle error will be doubled when it is incident on the filter 22, resulting in an excessively large angle error of the incident light of the filter 22, causing serious insertion loss and affecting the performance of the optical device 10.
- the optical device 10 includes: a shell 100 having an optical channel and a light combining structure 200 and a light splitting structure 300 arranged in the optical channel.
- the housing 100 further comprises an optical interface 101 communicating with the optical channel, a downstream first wavelength optical interface 102 , a downstream second wavelength optical interface 103 , an upstream first wavelength optical interface 104 , and an upstream second wavelength optical interface 105 .
- the uplink light and the downlink light are transmitted through the optical interface 101.
- the downlink first wavelength optical interface 102 and the downlink second wavelength optical interface 103 transmit the downlink light
- the uplink first wavelength optical interface 104 and the uplink second wavelength optical interface 105 transmit the uplink light.
- the uplink light is an uplink light signal of 50G PON and an uplink light signal of 10G PON
- the downlink light is a downlink light signal of 50G PON and a downlink light signal of 10G PON.
- the uplink light is the uplink light signal of 50G PON and the uplink light signal of GPON
- the downlink light is the downlink light signal of 50G PON and the downlink light signal of GPON.
- the uplink light includes uplink light of a first wavelength and uplink light of a second wavelength
- the downlink light includes downlink light of a first wavelength and downlink light of a second wavelength
- the upstream first wavelength optical interface 104 transmits upstream first wavelength light
- the upstream second wavelength optical interface 105 transmits upstream second wavelength light
- the downstream first wavelength optical interface 102 transmits downstream first wavelength light
- the downstream second wavelength optical interface 103 transmits downstream second wavelength light.
- the downstream first wavelength light incident from the downstream first wavelength optical interface 102 and the downstream second wavelength light incident from the downstream second wavelength optical interface 103 are emitted from the optical interface 101 after passing through the optical combining structure 200 .
- the uplink light incident from the optical interface 101 is transmitted through the optical combining structure 200 and then incident on the optical splitting structure 300.
- the optical splitting structure 300 transmits the uplink first wavelength light and reflects the uplink second wavelength light.
- the uplink first wavelength light is emitted from the uplink first wavelength optical interface 104, and the uplink second wavelength light is emitted from the uplink second wavelength optical interface 105.
- the optical device 10 further includes a fiber optic ferrule 110 , wherein the fiber optic ferrule 110 is coupled to the optical interface 101 .
- the optical fiber ferrule 110 is used to connect optical fibers. Both uplink light and downlink light can be transmitted through optical fibers.
- the optical device 10 also includes a transmitting optical sub assembly (TOSA) and a receiving optical sub assembly (ROSA).
- TOSA transmitting optical sub assembly
- ROSA receiving optical sub assembly
- the optical transmitting assembly is used to transmit downlink light, that is, the optical transmitting assembly is used to transmit downlink light of a first wavelength and downlink light of a second wavelength.
- the optical receiving component is used to receive the uplink light, that is, the optical receiving component is used to receive the uplink first wavelength light and the uplink second wavelength light.
- the optical emission component includes an electro-optical conversion chip and a monitoring photodiode (MD).
- the electro-optical conversion chip and the monitoring photodiode are packaged together to form the optical emission component.
- the electro-optical conversion chip can be, for example, a chip composed of a laser diode (LD) or a chip composed of a semiconductor light emitting diode.
- LD laser diode
- semiconductor light emitting diode a chip composed of a semiconductor light emitting diode.
- the electro-optical conversion chip receives the electrical signal carrying the transmission information transmitted by the PCB, converts the electrical signal into an optical signal, and then outputs the optical signal through the optical device 10 .
- the light receiving component includes a photoelectric conversion chip and an amplifier.
- the photoelectric conversion chip and the amplifier are packaged together to form the light receiving component.
- the photoelectric conversion chip may be, for example, a chip composed of a photodiode (PD), a PIN diode (PIN diode), or a A chip composed of a semiconductor device or a chip composed of an avalanche photon diode (APD).
- PD photodiode
- PIN diode PIN diode
- APD avalanche photon diode
- the photoelectric conversion chip converts the received optical signal into an electrical signal, and then transmits the electrical signal to the amplifier.
- the amplifier amplifies the electrical signal and transmits the amplified electrical signal to the PCB.
- the optical device 10 further includes a first optical transmitting assembly 121 and a second optical transmitting assembly 122 .
- the first optical transmitting assembly 121 is coupled to the downstream first wavelength optical interface 102
- the second optical transmitting assembly 122 is coupled to the downstream second wavelength optical interface 103 .
- the first optical transmitting component 121 transmits the downstream first wavelength light, and transmits the downstream first wavelength light to the optical combining structure 200, and then the optical combining structure 200 transmits the downstream first wavelength light to the optical fiber ferrule 110 of the optical interface 101.
- the second optical transmitting component 122 transmits the downstream second wavelength light, and transmits the downstream second wavelength light to the optical combining structure 200, and then the optical combining structure 200 transmits the downstream second wavelength light to the optical fiber ferrule 110 of the optical interface 101.
- the optical device 10 further includes a first optical receiving component 131 and a second optical receiving component 132 .
- the first optical receiving component 131 is coupled to the upstream first wavelength optical interface 104
- the second optical receiving component 132 is coupled to the upstream second wavelength optical interface 105 .
- the first optical receiving component 131 receives the upstream first wavelength light
- the second optical receiving component 132 receives the upstream second wavelength light. That is, the first optical receiving component 131 receives the upstream first wavelength light transmitted from the optical splitting structure 300, and the second optical receiving component 132 receives the upstream second wavelength light reflected from the optical splitting structure 300.
- the embodiment of the present application does not limit the packaging of the above-mentioned light emitting components (the first light emitting component 121 and the second light emitting component 122) and the light receiving components (the first light receiving component 131 and the second light receiving component 132), and can be reasonably configured according to actual needs.
- the optical transmitting component and the optical receiving component are both coaxial (transistor outline, TO) packages.
- the optical transmitting component and the optical receiving component may both be butterfly packages, for example, a box (BOX) with a square housing may be used for packaging.
- the optical transmitting component and the optical receiving component can both be chips on board (COB) packages.
- COB chips on board
- any one of the optical emitting component and the optical receiving component is a coaxial package, a butterfly package or a chip on board package. That is, the package of any one of the first optical receiving component 131, the second optical receiving component 132, the first optical emitting component 121 or the second optical emitting component 122 can be a coaxial package, a butterfly package or a chip on board package.
- the downlink first wavelength optical interface 102, the downlink second wavelength optical interface 103, the uplink first wavelength optical interface 104 and the uplink second wavelength optical interface 105 connected to the optical transmitting component and the optical receiving component on the housing 100 are all adaptively arranged according to the packaging form of the optical transmitting component and the optical receiving component. In this way, the packaging of the optical device 10 is not limited and has a wide range of applications.
- the light splitting structure 300 includes a first light splitter 210 and a first reflector 310.
- the light combining structure 200 includes a second light splitter 220 and a third light splitter 230.
- the first light splitter 210, the first reflector 310, the second light splitter 220 and the third light splitter 230 are all disposed in the light channel of the housing 100.
- the first beam splitter 210 is disposed at a position opposite to the upstream first wavelength optical interface 104 . In other words, the first beam splitter 210 is disposed opposite to the first optical receiving component 131 .
- the light passing through the first beam splitter 210 can be transmitted to the first light receiving element 131 .
- the second beam splitter 220 is disposed at a position opposite to the downstream first wavelength optical interface 102 .
- the second beam splitter 220 is disposed opposite to the first optical transmitting assembly 121 .
- the light emitted by the first light emitting component 121 can pass through the second beam splitter 220 and then be reflected or transmitted by the second beam splitter 220 .
- the third beam splitter 230 is disposed at a position opposite to the downstream second wavelength optical interface 103 .
- the third beam splitter 230 is disposed opposite to the second optical transmission assembly 122 .
- the light emitted by the second light emitting assembly 122 can pass through the third beam splitter 230 and then be reflected or transmitted by the third beam splitter 230 .
- the first reflector 310 is disposed at a position opposite to the upstream second wavelength optical interface 105 .
- the first reflector 310 is disposed opposite to the second optical receiving assembly 132 .
- the light passing through the first reflective sheet 310 can be transmitted to the second light receiving element 132 .
- the third beam splitter 230 is also disposed at a position opposite to the optical interface 101.
- the third beam splitter 230 It is also arranged opposite to the optical fiber ferrule 110 .
- the light passing through the third beam splitter 230 can be transmitted to the optical fiber ferrule 110 .
- the light emitted by the optical fiber ferrule 110 can be transmitted to the third beam splitter 230 .
- the first beam splitter 210, the second beam splitter 220 and the third beam splitter 230 are sequentially arranged. That is, the light incident through the fiber ferrule 110 can pass through the third beam splitter 230, the second beam splitter 220 and the first beam splitter 210 in sequence.
- the uplink light (uplink first wavelength light and uplink second wavelength light) is emitted from the optical fiber ferrule 110, enters the optical channel inside the housing 100, and sequentially transmits through the third beam splitter 230 and the second beam splitter 220 along the optical channel, and is transmitted to the first beam splitter 210.
- the uplink light only the setting angle of the reflection surface of the first beam splitter 210 affects the incident angle of the uplink second wavelength light, and no angle error caused by other optical elements is introduced on the optical path, so that insertion loss caused by the angle error can be avoided.
- the uplink light enters the housing 100 through the optical fiber ferrule 110 and enters the light combining structure 200 along the optical channel.
- the uplink light sequentially passes through the third beam splitter 230 and the second beam splitter 220 of the light combining structure and is transmitted to the first beam splitter 210 of the beam splitting structure 300.
- the uplink first wavelength light in the uplink light is transmitted through the first beam splitter 210 and is transmitted to the first light receiving component 131 .
- the uplink second wavelength light in the uplink light is reflected by the first beam splitter 210 to the first reflector 310 , and then reflected by the first reflector 310 to the second light receiving assembly 132 .
- the uplink light is incident on the first beam splitter 210 along the first direction x.
- the first beam splitter 210 has an inclination angle relative to the first direction x, and the inclination angle is 65° to 85°. It is explained here that, for the convenience of illustration, the inclination angles of the beam splitter and the first direction x mentioned in the embodiments of the present application are all acute angles formed by the beam splitter and the first direction x.
- the incident angle range of the upstream light on the first beam splitter 210 is 5° to 25°.
- the incident angle can be 5°, 7°, 8°, 11°, 13°, 15°, 18°, 22° or 25°.
- the smaller the incident angle of the upstream light on the first beam splitter 210 the easier it is to split the upstream light.
- the larger the incident angle of the upstream light on the first beam splitter 210 the smaller the package size of the optical device 10. At the same time, too large an incident angle will cause insertion loss.
- the incident angle range of the upstream light on the first beam splitter 210 is 8° to 13°, that is, the inclination angle of the first beam splitter 210 relative to the first direction x is 77° to 82°, which can not only effectively split the upstream light, but also avoid the excessive package size of the optical device 10, while reducing the insertion loss caused by the first beam splitter 210.
- the uplink first wavelength light is transmitted through the first beam splitter 210 and continues to be transmitted along the first direction x to the first light receiving component 131 .
- the uplink second wavelength light is reflected by the first beam splitter 210 and then incident on the first reflective plate 310 .
- the first reflector 310 has an inclination angle relative to the first direction x.
- the inclination angle of the first reflector 310 is not limited, as long as the uplink second wavelength light can be transmitted to the second light receiving assembly 132 after being reflected by the first reflector 310 .
- the angle of the first reflective plate 310 is related to the angle of the first beam splitter 210 .
- the angle between the plane where the first reflector 310 is located and the plane where the first beam splitter 210 is located is 40° to 50°.
- the angle between the plane where the first reflector 310 is located and the plane where the first beam splitter 210 is located is 45°, the uplink second wavelength light is incident on the second light receiving assembly 132 perpendicular to the first direction x.
- the downlink light is emitted by the optical emitting components (the first optical emitting component 121 and the second optical emitting component 122 ) to the optical combining structure 200 , and then transmitted to the optical fiber ferrule 110 at the optical interface 101 .
- the downlink first wavelength light in the downlink light is emitted by the first optical transmitting component 121 to the second beam splitter 220 , then reflected by the second beam splitter 220 , transmitted along the first direction x to the third beam splitter 230 , and transmitted through the third beam splitter 230 to be incident on the optical fiber ferrule 110 .
- the downlink second wavelength light in the downlink light is emitted by the second optical emitting assembly 122 to the third beam splitter 230 , then reflected by the third beam splitter 230 , and transmitted along the first direction x to the optical fiber ferrule 110 .
- the setting angle of the second beam splitter 220 there is no limitation on the setting angle of the second beam splitter 220 , and it is only necessary to ensure that the downlink first wavelength light emitted by the first optical transmitting assembly 121 can enter the optical fiber ferrule 110 after being reflected by the second beam splitter 220 .
- the setting angle of the third beam splitter 230 there is no limitation on the setting angle of the third beam splitter 230. It is only necessary to ensure that the second light emitting assembly 122 emits The downstream second wavelength light can enter the optical fiber ferrule 110 after being reflected by the third beam splitter 230 .
- the incident angle of the downstream light on the second beam splitter 220 is in the range of 40° to 50°. That is, the incident angle of the downstream first wavelength light on the second beam splitter 220 is in the range of 40° to 50°. It can also be said that the inclination angle of the second beam splitter 220 relative to the first direction x is in the range of 40° to 50°.
- the incident angle may be 40°, 43°, 45°, 47°, 48° or 50°.
- the incident angle of the downstream light on the third beam splitter 230 is in the range of 40° to 50°. That is, the incident angle of the downstream second wavelength light on the third beam splitter 230 is in the range of 40° to 50°. It can also be said that the inclination angle of the third beam splitter 230 relative to the first direction x is in the range of 40° to 50°.
- the incident angle may be 40°, 43°, 45°, 47°, 48° or 50°.
- the packaging of the optical device 10 is facilitated.
- the inclination angle of the third beam splitter 230 relative to the first direction x is 45°, and the downstream second wavelength light emitted by the second optical emitting assembly 122 is incident on the third beam splitter 230 in a direction perpendicular to the first direction x, packaging of the optical device 10 is facilitated.
- the first beam splitter 210 transmits the upstream light of the first wavelength and reflects the upstream light of the second wavelength.
- the second beam splitter 220 transmits the upstream light and reflects the downstream light of the second wavelength. In other words, the second beam splitter 220 can transmit the upstream light of the first wavelength and the upstream light of the second wavelength.
- the third beam splitter 230 transmits the uplink light and the downlink second wavelength light, and reflects the downlink first wavelength light. That is, the third beam splitter 230 can transmit at least one of the uplink first wavelength light, the uplink second wavelength light, and the downlink second wavelength light.
- the upstream light is the upstream optical signal of 50G PON and the upstream optical signal of 10G PON
- the downstream light is the downstream optical signal of 50G PON and the downstream second wavelength light is the downstream optical signal of 10G PON.
- the first downstream wavelength light is a downstream optical signal of 50G PON
- the second downstream wavelength light is a downstream optical signal of 10G PON.
- the wavelength of the downstream optical signal of 50G PON is 1340nm ⁇ 1344nm
- the wavelength of the downstream optical signal of 10G PON is 1575nm ⁇ 1580nm.
- the wavelength of the first wavelength of the downstream light is 1340nm ⁇ 1344nm
- the wavelength of the second wavelength of the downstream light is 1575nm ⁇ 1580nm.
- the downstream optical signal of the 10G PON is transmitted from the second optical transmitting assembly 122 to the third beam splitter 230 , and then reflected by the third beam splitter 230 to the optical fiber ferrule 110 .
- the downstream optical signal of 50G PON is transmitted from the first optical transmitting component 121 to the second beam splitter 220, then reflected from the second beam splitter 220 to the third beam splitter 230, and then transmitted from the third beam splitter to the optical fiber ferrule 110.
- the uplink optical signal of 50G PON and the uplink optical signal of 10G PON are incident on the optical fiber ferrule 110 , and then sequentially transmit through the third beam splitter 230 and the second beam splitter 220 , and are transmitted to the first beam splitter 210 .
- the reflection wavelength of the third beam splitter 230 is at least the second wavelength of the downstream light (the downstream optical signal of 10G PON), and the transmission wavelength is at least the upstream light (the upstream optical signal of 50G PON and the upstream optical signal of 10G PON) and the first wavelength of the downstream light (the downstream optical signal of 50G PON).
- the reflection wavelength range of the third beam splitter 230 is 1575nm to 1580nm, and the transmission wavelength range is 1260nm to 1344nm.
- the effective wavelength interval range of the reflection wavelength range and the transmission wavelength range of the third beam splitter 230 is relatively large, so the third beam splitter 230 is easy to design and manufacture, and easy to implement.
- the embodiment of the present application does not specifically limit the reflection wavelength range and the transmission wavelength range of the third beam splitter 230, as long as the wavelength range that the third beam splitter 230 can reflect is not less than the downstream first wavelength light, and the wavelength range that the third beam splitter 230 can transmit is not greater than the downstream second wavelength light.
- the reflection wavelength of the second beam splitter 220 is at least the first wavelength of the downstream light (the downstream optical signal of 50G PON), and the transmission wavelength is at least the upstream light (the upstream optical signal of 50G PON and the upstream optical signal of 10G PON).
- the reflection wavelength range of the second beam splitter 220 is 1340nm to 1344nm, and the transmission wavelength range is 1260nm to 1288nn.
- the effective wavelength interval range of the reflection wavelength range and the transmission wavelength range of the second beam splitter 220 is relatively large, so the second beam splitter 220 is easy to design and manufacture, and easy to implement.
- the embodiment of the present application does not specifically limit the reflection wavelength range and the transmission wavelength range of the second beam splitter 220.
- the wavelength range that the second beam splitter 220 can reflect is not less than the wavelength of the uplink light, and the wavelength range that the third beam splitter 230 can transmit is not greater than the wavelength of the downlink light.
- the uplink light passes through the third beam splitter 230 and the second beam splitter 220 and is transmitted to the first beam splitter 210 , and then the first beam splitter 210 reflects the uplink second wavelength light and transmits the uplink first wavelength light.
- the first beam splitter 210 reflects one of the upstream optical signal of the 50G PON and the upstream optical signal of the 10G PON, and transmits the other of the upstream optical signal of the 50G PON and the upstream optical signal of the 10G PON.
- the reflection wavelength of the first beam splitter 210 is at least the second wavelength of the upstream light, and the transmission wavelength is at least the first wavelength of the upstream light.
- the upstream first wavelength light is the upstream optical signal of 50G PON
- the upstream second wavelength light is the upstream optical signal of 10G PON. That is, as shown in FIG8A , the first beam splitter 210 reflects the upstream optical signal of 10G PON and transmits the upstream optical signal of 50G PON.
- the upstream optical signal of 50G PON After the upstream optical signal of 50G PON is emitted from the optical fiber ferrule 110, it passes through the third beam splitter 230, the second beam splitter 220 and the first beam splitter 210 in sequence and is transmitted to the first optical receiving component 131. Since the wavelength range of the upstream optical signal of 50G PON is relatively small, its reflection is likely to cause optical loss. Therefore, by making the first beam splitter 210 transmit the upstream optical signal of 50G PON, the upstream optical signal of 50G PON will not produce an angle change in the transmission path to the first optical receiving component 131, and will be transmitted along the optical channel, which can reduce the angle error caused by reflection and reduce optical loss.
- the reflection wavelength of the first beam splitter 210 is at least the upstream optical signal of 10G PON, and the transmission wavelength is at least the upstream optical signal of 50G PON.
- the reflection wavelength range of the first beam splitter 210 is 1260nm to 1280nm, and the transmission wavelength range is 1284nm to 1288nm.
- the reflection wavelength range of the first beam splitter 210 only includes the upstream optical signal of 10G PON, and the transmission wavelength range only includes the upstream optical signal of 50G PON. Therefore, the reflection wavelength range and the transmission wavelength range of the first beam splitter 210 are both small, which reduces the difficulty of manufacturing and designing the first beam splitter 210, making the first beam splitter 210 easy to design and manufacture, and easy to implement.
- the first reflector 310 reflects the upstream second wavelength light reflected by the first beam splitter 210. In other words, the first reflector 310 reflects the upstream optical signal of the 10G PON.
- the upstream first wavelength light is the upstream optical signal of 10G PON
- the upstream second wavelength light is the upstream optical signal of 50G PON. That is, the first beam splitter 210 reflects the upstream optical signal of 50G PON and transmits the upstream optical signal of 10G PON. At this time, the first reflector 310 reflects the upstream optical signal of 50G PON.
- the reflection wavelength of the first beam splitter 210 is at least the upstream optical signal of 50G PON, and the transmission wavelength is at least the upstream optical signal of 10G PON.
- the reflection wavelength range of the first beam splitter 210 is 1284nm to 1288nm, and the transmission wavelength range is 1260nm to 1280nm.
- the reflection wavelength range of the first beam splitter 210 only includes the upstream optical signal of 50G PON, and the transmission wavelength range only includes the upstream optical signal of 10G PON. Therefore, the reflection wavelength range and the transmission wavelength range of the first beam splitter 210 are both small, which reduces the difficulty of manufacturing and designing the first beam splitter 210, making the first beam splitter 210 easy to design and manufacture, and easy to implement.
- the embodiment of the present application does not specifically limit the reflection wavelength range and the transmission wavelength range of the first beam splitter 210. It is only necessary that the wavelength range that the first beam splitter 210 can reflect is not less than the first wavelength of the downstream upstream light, and the wavelength range that the first beam splitter 210 can transmit is not greater than the second wavelength of the upstream light.
- the upstream light is the upstream light signal of 50G PON and the upstream light signal of GPON
- the downstream light is the downstream light signal of 50G PON and the downstream second wavelength light is the downstream light signal of GPON.
- the first downstream wavelength light is a downstream optical signal of 50G PON
- the second downstream wavelength light is a downstream optical signal of GPON.
- the wavelength of the downstream optical signal of 50G PON is 1340nm ⁇ 1344nm
- the wavelength of the downstream optical signal of GPON is 1480nm ⁇ 1500nm.
- the wavelength of the first wavelength of the downstream light is 1340nm ⁇ 1344nm
- the wavelength of the second wavelength of the downstream light is 1480nm ⁇ 1500nm.
- the GPON downstream optical signal is transmitted from the second optical transmitting assembly 122 to the third beam splitter 230 , and then reflected by the third beam splitter 230 to the optical fiber ferrule 110 .
- the downlink optical signal of the 50G PON is transmitted from the first optical transmitting component 121 to the second beam splitter 220, then reflected by the second beam splitter 220 to the third beam splitter 230, and then transmitted by the third beam splitter to the optical fiber ferrule 110.
- the upstream optical signal of 50G PON and the upstream optical signal of GPON are incident on the optical fiber ferrule 110, and then transmit through the third branch
- the light sheet 230 and the second light splitter 220 are transmitted to the first light splitter 210 .
- the reflection wavelength of the third beam splitter 230 is at least the second wavelength of the downstream light (downstream optical signal of GPON), and the transmission wavelength is at least the upstream light (upstream optical signal of 50G PON and upstream optical signal of GPON) and the first wavelength of the downstream light (downstream optical signal of 50G PON).
- the reflection wavelength range of the third beam splitter 230 is 1480nm ⁇ 1500nm, and the transmission wavelength range is 1284nm ⁇ 1344nm.
- the effective wavelength interval range of the reflection wavelength range and the transmission wavelength range of the third beam splitter 230 is relatively large, so the third beam splitter 230 is easy to design and manufacture, and easy to implement.
- the embodiment of the present application does not specifically limit the reflection wavelength range and the transmission wavelength range of the third beam splitter 230, as long as the wavelength range that the third beam splitter 230 can reflect is not less than the downstream first wavelength light, and the wavelength range that the third beam splitter 230 can transmit is not greater than the downstream second wavelength light.
- the reflection wavelength of the second beam splitter 220 is at least the first wavelength of the downstream light (the downstream optical signal of 50G PON), and the transmission wavelength is at least the upstream light (the upstream optical signal of 50G PON and the upstream optical signal of GPON).
- the reflection wavelength range of the second beam splitter 220 is 1340nm to 1344nm, and the transmission wavelength range is 1284nm to 1330nn.
- the effective wavelength interval range of the reflection wavelength range and the transmission wavelength range of the second beam splitter 220 is relatively large, so the second beam splitter 220 is easy to design and manufacture, and easy to implement.
- the embodiment of the present application does not specifically limit the reflection wavelength range and the transmission wavelength range of the second beam splitter 220. It is only necessary that the wavelength range that the second beam splitter 220 can reflect is not less than the wavelength of the uplink light, and the wavelength range that the third beam splitter 230 can transmit is not greater than the wavelength of the downlink light.
- the uplink light passes through the third beam splitter 230 and the second beam splitter 220 and is transmitted to the first beam splitter 210 , and then the first beam splitter reflects the uplink second wavelength light and transmits the uplink first wavelength light.
- the first splitter reflects one of the upstream optical signal of the 50G PON and the upstream optical signal of the GPON, and transmits the other of the upstream optical signal of the 50G PON and the upstream optical signal of the GPON.
- the reflection wavelength of the first beam splitter 210 is at least the second wavelength of the upstream light, and the transmission wavelength is at least the first wavelength of the upstream light.
- the upstream first wavelength light is the upstream optical signal of 50G PON
- the upstream second wavelength light is the upstream optical signal of GPON.
- the first beam splitter 210 reflects the upstream optical signal of GPON and transmits the upstream optical signal of 50G PON.
- the reflection wavelength of the first beam splitter 210 is at least the upstream optical signal of GPON, and the transmission wavelength is at least the upstream optical signal of 50G PON.
- the reflection wavelength range of the first beam splitter 210 is 1290nm to 1330nm, and the transmission wavelength range is 1284nm to 1288nm.
- the reflection wavelength range of the first beam splitter 210 only includes the upstream optical signal of GPON, and the transmission wavelength range only includes the upstream optical signal of 50G PON. Therefore, the reflection wavelength range and the transmission wavelength range of the first beam splitter 210 are both small, which reduces the difficulty of manufacturing and designing the first beam splitter 210, making the first beam splitter 210 easy to design and manufacture, and easy to implement.
- the first reflector 310 reflects the upstream second wavelength light reflected by the first beam splitter 210. In other words, the first reflector 310 reflects the upstream optical signal of the GPON.
- the upstream first wavelength light is the upstream optical signal of GPON
- the upstream second wavelength light is the upstream optical signal of 50G PON. That is, the first beam splitter 210 reflects the upstream optical signal of 50G PON and transmits the upstream optical signal of GPON. At this time, the first reflector 310 reflects the upstream optical signal of 5G PON.
- the reflection wavelength of the first beam splitter 210 is at least the upstream optical signal of 50G PON, and the transmission wavelength is at least the upstream optical signal of GPON.
- the reflection wavelength range of the first beam splitter 210 is 1284nm to 1288nm, and the transmission wavelength range is 1290nm to 1330nm.
- the reflection wavelength range of the first beam splitter 210 only includes the upstream optical signal of 50G PON, and the transmission wavelength range only includes the upstream optical signal of GPON. Therefore, the reflection wavelength range and the transmission wavelength range of the first beam splitter 210 are both small, which reduces the difficulty of manufacturing and designing the first beam splitter 210, making the first beam splitter 210 easy to design and manufacture, and easy to implement.
- the embodiment of the present application does not specifically limit the reflection wavelength range and the transmission wavelength range of the first beam splitter 210. It is only necessary that the wavelength range that the first beam splitter 210 can reflect is not less than the first wavelength of the downstream upstream light, and the wavelength range that the first beam splitter 210 can transmit is not greater than the second wavelength of the upstream light.
- the optical device 10 further includes a second reflective sheet 320 .
- the second reflector 320 is disposed opposite to the second beam splitter 220.
- the second reflector 320 is used to reflect the downlink first wavelength light to On the light combining structure 200. That is, the second reflective sheet 320 is used to reflect the downlink first wavelength light onto the second beam splitter 220 of the light combining structure 200.
- the downlink first wavelength light is emitted by the first optical transmitting component 121, transmitted along the first direction x to the second reflector 320, then reflected by the second reflector 320 to the second beam splitter 220, then reflected by the second beam splitter 220, continued to be transmitted along the first direction x to the third beam splitter 230, and transmitted through the third beam splitter 230 to be incident on the optical fiber ferrule 110.
- the setting angle of the second reflector 320 there is no limitation on the setting angle of the second reflector 320 , and it is only necessary to ensure that the downlink first wavelength light emitted by the first optical transmitting assembly 121 can enter the optical fiber ferrule 110 after being reflected by the second reflector 320 and the second beam splitter 220 .
- the incident angle of the downstream light on the second reflector 320 is in the range of 40° to 50°. That is, the incident angle of the downstream first wavelength light on the second reflector 320 is in the range of 40° to 50°. It can also be said that the inclination angle of the second reflector 320 relative to the first direction x is in the range of 40° to 50°.
- the incident angle may be 40°, 43°, 45°, 47°, 48° or 50°.
- the second reflector 320 can be arranged in parallel with the second beam splitter 220. This is conducive to coupling the downlink first wavelength light into the optical fiber ferrule 110 after being reflected by the second reflector 320 and the second beam splitter 220, and is also convenient for packaging the optical device 10 and integrating the outer dimensions of the optical device 10.
- the optical device 10 further includes a third reflective sheet 330 .
- the third reflector 330 is disposed opposite to the first beam splitter 210 and is used to reflect the uplink first wavelength light transmitted through the beam splitter structure 300 . In other words, the third reflector 330 is used to reflect the uplink first wavelength light transmitted from the first beam splitter 210 to the first light receiving assembly 131 .
- the uplink light enters the housing 100 from the optical fiber ferrule 110 and enters the light combining structure 200 along the optical channel.
- the uplink light sequentially passes through the third beam splitter 230 and the second beam splitter 220 and is transmitted to the first beam splitter 210.
- the upstream first wavelength light in the upstream light is transmitted through the first beam splitter 210 , transmitted to the third reflective sheet 330 , and then reflected by the third reflective sheet 330 to the first light receiving assembly 131 .
- the setting angle of the third reflector 330 there is no limitation on the setting angle of the third reflector 330 , and it is only necessary to ensure that the uplink first wavelength light can be coupled into the first light receiving component 131 after being reflected by the third reflector 330 .
- the incident angle of the uplink light on the third reflector 330 is in the range of 40° to 50°. That is, the incident angle of the uplink first wavelength light on the third reflector 330 is in the range of 40° to 50°. It can also be said that the inclination angle of the third reflector 330 relative to the first direction x is in the range of 40° to 50°.
- the incident angle may be 40°, 43°, 45°, 47°, 48° or 50°.
- the inclination angle of the third reflector 330 relative to the first direction x can be 45°. In this way, it is beneficial for the uplink first wavelength light to be coupled into the first light receiving assembly 131 after being reflected by the third reflector 330, and it is also convenient for packaging of the optical device 10, which is beneficial for the overall size of the integrated optical device 10.
- the optical device 10 further includes a second reflector 320 and a third reflector 330.
- the positions and configurations of the second reflector 320 and the third reflector 330 are the same as those described above, and the details can be found in the descriptions of the second reflector 320 and the third reflector 330.
- the second reflector 320 and the third reflector 330 can be set according to the actual packaging conditions of the optical device 10.
- the optical device 10 can include only the second reflector 320, only the third reflector 330, or both the second reflector 320 and the third reflector 330.
- Fig. 10 schematically shows the packaging form of the optical device 10 shown in Fig. 9C.
- the first beam splitter 210 , the second beam splitter 220 , the third beam splitter 230 , the first reflector 310 , the second reflector 320 and the third reflector 330 are all disposed in the optical channel of the housing 100 .
- the arrangement positions of the first beam splitter 210 , the first reflector 310 , the second beam splitter 220 and the third beam splitter 230 are the same as those of the optical device 10 shown in FIG. 6 , and are not described in detail herein.
- the second reflective plate 320 is disposed opposite to the second beam splitter 220 and is disposed on the light path of the first optical emitting assembly 121 to reflect the downlink optical signal (downlink first wavelength light) emitted by the first optical emitting assembly 121 .
- the third reflective plate 330 is disposed opposite to the first beam splitter 210 and on the light path of the first optical receiving component 131 , and is used to reflect the uplink optical signal (uplink first wavelength light) to the first optical receiving component 131 .
- an optical device 10 as shown in Figure 9C is used as an example.
- the uplink light is an uplink light signal of a 50G PON and an uplink light signal of a 10G PON.
- the downstream optical signal is a 50G PON downstream optical signal and the downstream second wavelength optical signal is a 10G PON downstream optical signal.
- the first downstream wavelength light is the downstream optical signal of 50G PON
- the second downstream wavelength light is the downstream optical signal of 10G PON.
- the wavelength of the downstream optical signal of 50G PON is 1340nm ⁇ 1344nm
- the wavelength of the downstream optical signal of 10G PON is 1575nm ⁇ 1580nm.
- the wavelength of the first downstream wavelength light is 1340nm ⁇ 1344nm
- the wavelength of the second downstream wavelength light is 1575nm ⁇ 1580nm.
- the downstream optical signal of 10G PON is emitted by the second optical transmitting component 122 to the third splitter 230, and then reflected by the third splitter 230 to the optical fiber ferrule 110.
- the downlink optical signal of 50G PON is emitted by the first optical transmitting component 121 to the second reflector 320, then reflected by the second reflector 320 to the second beam splitter 220, further reflected by the second beam splitter 220 to the third beam splitter 230, and finally transmitted to the optical fiber ferrule 110 through the third beam splitter.
- the upstream first wavelength light is the upstream optical signal of 50G PON
- the upstream second wavelength light is the upstream optical signal of 10G PON.
- the wavelength of the upstream optical signal of 50G PON is 1284nm ⁇ 1288nm
- the wavelength of the upstream optical signal of 10G PON is 1260nm ⁇ 1280nm.
- the wavelength of the upstream first wavelength light is 1284nm ⁇ 1288nm
- the wavelength of the upstream second wavelength light is 1260nm ⁇ 1280nm.
- the upstream optical signal of 50G PON and the upstream optical signal of 10G PON are incident from the optical fiber ferrule 110, and then sequentially transmit through the third beam splitter 230 and the second beam splitter 220 to be transmitted to the first beam splitter 210.
- the first beam splitter 210 transmits the upstream optical signal of 50G PON and reflects the upstream optical signal of 10G PON.
- the first reflector 310 reflects the 10G PON upstream optical signal reflected by the first beam splitter 210, and transmits the 10G PON upstream optical signal to the second optical receiving component 132.
- the third reflector 330 reflects the 50G PON upstream optical signal transmitted by the first beam splitter 210, and transmits the 50G PON upstream optical signal to the first optical receiving component 131.
- the first beam splitter 210 can also transmit the upstream optical signal of 10G PON and reflect the upstream optical signal of 50G PON.
- the first reflector 310 reflects the upstream optical signal of 50G PON to the second optical receiving component 132
- the third reflector 330 reflects the upstream optical signal of 10G PON to the first optical receiving component 131.
- the uplink light is an uplink light signal of 50G PON and an uplink light signal of 10G PON
- the downlink light is a downlink light signal of 50G PON and the downlink second wavelength light is a downlink light signal of 10G PON.
- the first wavelength of the downstream light is the downstream optical signal of 50G PON
- the second wavelength of the downstream light is the downstream optical signal of GPON.
- the wavelength of the downstream optical signal of 50G PON is 1340nm ⁇ 1344nm
- the wavelength of the downstream optical signal of GPON is 1480nm ⁇ 1500nm.
- the wavelength of the first wavelength of the downstream light is 1340nm ⁇ 1344nm
- the wavelength of the second wavelength of the downstream light is 1480nm ⁇ 1500nm.
- the downstream optical signal of GPON is transmitted from the second optical transmitting assembly 122 to the third beam splitter 230 , and then reflected by the third beam splitter 230 to the optical fiber ferrule 110 .
- the downlink optical signal of 50G PON is emitted by the first optical transmitting component 121 to the second reflector 320, then reflected by the second reflector 320 to the second beam splitter 220, further reflected by the second beam splitter 220 to the third beam splitter 230, and finally transmitted to the optical fiber ferrule 110 through the third beam splitter.
- the upstream first wavelength light is the upstream optical signal of 50G PON
- the upstream second wavelength light is the upstream optical signal of GPON.
- the wavelength of the upstream optical signal of 50G PON is 1284nm ⁇ 1288nm
- the wavelength of the upstream optical signal of GPON is 1290nm ⁇ 1330nm.
- the wavelength of the upstream first wavelength light is 1284nm ⁇ 1288nm
- the wavelength of the upstream second wavelength light is 1290nm ⁇ 1330nm.
- the upstream optical signal of 50G PON and the upstream optical signal of GPON are incident on the optical fiber ferrule 110, and then sequentially transmit through the third beam splitter 230 and the second beam splitter 220 to be transmitted to the first beam splitter 210.
- the first beam splitter 210 transmits the upstream optical signal of 50G PON and reflects the upstream optical signal of GPON.
- the first reflector 310 reflects the GPON upstream optical signal reflected by the first beam splitter 210, and transmits the GPON upstream optical signal to the second optical receiving assembly 132.
- the third reflector 330 reflects the 50G PON upstream optical signal transmitted by the first beam splitter 210, and transmits the 50G PON upstream optical signal to the first optical receiving assembly 131.
- the first beam splitter 210 can also transmit the upstream optical signal of GPON and reflect the upstream optical signal of 50G PON.
- the first reflector 310 reflects the upstream optical signal of 50G PON to the second optical receiving component 132
- the third reflector 330 reflects the upstream optical signal of GPON to the first optical receiving component 131.
- the optical device 10 further includes a collimating component (not shown).
- the collimating component is disposed at the optical interface 101 .
- the uplink light transmitted by the optical fiber ferrule 110 first passes through the collimating component and then is transmitted to the light combining structure 200. After passing through the light combining structure, the downlink light first passes through the collimating component and then is coupled into the optical fiber ferrule 110.
- the collimation component can be integrated into the optical fiber ferrule. That is, the collimation component is arranged at the light outlet of the optical fiber ferrule 110. Alternatively, the collimation component can also be arranged on the inner side of the optical interface 101, so that the uplink light transmitted by the optical fiber ferrule 110 is transmitted to the collimation component after passing through the optical fiber ferrule 110, and enters the light combining structure 200 after being collimated by the collimation component.
- the collimation assembly may include a collimating mirror or a collimator.
- the optical device 10 provided in the embodiment of the present application combines the first downstream wavelength light and the second downstream wavelength light through the light combining structure 200, and transmits them to the optical interface 101.
- the first downstream wavelength light and the second downstream wavelength light do not pass through the light splitting structure 300, but are directly coupled and transmitted to the optical interface 101. Therefore, the setting of the light splitting structure 300 does not need to consider the wavelength range of the downstream light.
- the upstream light is transmitted to the light combining structure 200 in the optical channel through the optical interface 101, and is transmitted to the light splitting structure 300 through the light combining structure 200, and then the upstream light is split by the light splitting structure 300.
- the light splitting structure 300 divides the upstream light into the first upstream wavelength light and the second upstream wavelength light.
- the light splitting structure 300 transmits the first upstream wavelength light and reflects the second upstream wavelength light. Therefore, the setting of the light splitting structure 300 only needs to consider the wavelength range of the upstream light.
- the wavelength range of the reflected light and the wavelength range of the transmitted light of the light splitting structure 300 are both the wavelength range of the upstream light. Therefore, the wavelength range of the transmitted light and the wavelength range of the reflected light of the spectrometer structure 300 are both small.
- the spectrometer structure 300 can avoid the situation where the wavelength range of the transmitted light or the wavelength range of the reflected light is large, and the effective wavelength interval between the reflected wavelength range and the transmitted wavelength range is small, so that the spectrometer structure 300 is easy to design and implement.
- the spectrometer structure 300 can improve the isolation of the upstream light spectrometer and reduce the transmission insertion loss of the upstream light, thereby realizing a low insertion loss and high isolation optical device 10.
- the light splitting structure 300 is located on the transmission path of the light combining structure 200, which will not cause an angle error in the reflection of the uplink light, thereby avoiding the insertion loss caused by the angle error.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
本申请实施例提供一种光器件、光线路终端及无源光纤网络系统,涉及光通信技术领域,用于实现低插损且高隔离度的光器件。光器件包括:具有光通道的壳体、设置于光通道内的合光结构和分光结构。其中,壳体具有与光通道连通的光接口、下行第一波长光接口、下行第二波长光接口、上行第一波长光接口和上行第二波长光接口。下行第一波长光由下行第一波长光接口入射至合光结构,下行第二波长光由下行第二波长光接口入射至合光结构,且下行第一波长光和下行第二波长光均由光接口射出。光接口入射的上行光经过合光结构透射至分光结构,分光结构将上行光中的上行第一波长光透射至上行第一波长光接口,将上行光中的上行第二波长光反射至上行第二波长光接口。
Description
本申请要求于2022年11月28日提交国家知识产权局、申请号为202211501836.0、申请名称为“光器件、光线路终端及无源光纤网络系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及光通信技术领域,尤其涉及一种光器件、光线路终端及无源光纤网络系统。
近年来,无源光纤网络(passive optical network,PON)已经在全球范围内大规模部署,目前部分地区已经大规模部署吉比特无源光纤网络(gigabit-capable passive optical network,G PON),另有部分地区已经部署了10G PON。预计在之后的几年,将要大规模部署50G PON,这将会存在50G PON和10G PON共存以及50G PON和G PON共存的情况。
由于G PON、10G PON以及50G PON的上行光信号和下行光信号均不同。因此,对50G PON的研究则需要考虑到50G PON和10G PON的兼容以及50G PON和G PON的兼容。
发明内容
本申请实施例提供一种光器件、光线路终端及无源光纤网络系统,用于实现低插损且高隔离度的光器件。
为达到上述目的,本申请采用如下技术方案:
本申请实施例的第一方面,提供一种光器件,包括具有光通道的壳体、设置于光通道内的合光结构和分光结构。其中,壳体具有与光通道连通的光接口、下行第一波长光接口、下行第二波长光接口、上行第一波长光接口和上行第二波长光接口。下行第一波长光由下行第一波长光接口入射至合光结构,下行第二波长光由下行第二波长光接口入射至合光结构,且下行第一波长光和下行第二波长光均由光接口射出。光接口入射的上行光经过合光结构透射至分光结构,分光结构将上行光中的上行第一波长光透射至上行第一波长光接口后射出,将上行光中的上行第二波长光反射至上行第二波长光接口后射出。
本申请实施例提供的光器件,通过合光结构对下行第一波长光和下行第二波长光进行合光,并传输至第一接口。其中,下行第一波长光和下行第二波长光不经过分光结构,直接耦合并传输至第一接口。因此,分光结构的设置无需考虑下行光的波长范围。上行光通过第一接口传输至光通道内的合光结构,经由合光结构透射至分光结构,再由分光结构对上行光进行分光。分光结构将上行光分成上行第一波长光和上行第二波长光,分光结构透射上行第一波长光,反射上行第二波长光。因此,分光结构的设置只需考虑上行光的波长范围即可。本申请实施例中,分光结构反射光的波长范围和透射光的波长范围均为上行光的波长范围。因此,分光结构的透射光波长范围和反射光波长范围均较小,分光结构能够避免同时满足透射光波长范围或反射光波长范围较大,且反射波长范围和透射波长范围的有效波长间隔小的情况,使得分光结构容易设计和实现,同时使分光结构能够提高对上行光分光的隔离度,且降低上行光的透射插损,进而实现低插损且高隔离度的光器件。
另外,本申请实施例中,分光结构位于合光结构的透射路径上,不会对上行光的反射造成角度误差,进而避免了因角度误差带来的插损。
在一种可能的实现方式中,分光结构包括第一分光片和第一反射片;第一分光片用于透射上行第一波长光,以及,用于反射上行第二波长光,并将上行第二波长光传输至第一反射片;第一反射片用于反射上行第二波长光。这样一来,通过第一分光片将上行光分成上行第一波长光和上行第二波长光,然后载通过第一反射片将上行第二波长光反射至上行第二波长光接口。
在一种可能的实现方式中,上行光在第一分光片的入射角范围为5°~25°。这样一来,有利于对上行光实现分光,降低第一分光片带来的插损,同时避免光器件的封装尺寸过大。
在一种可能的实现方式中,第一分光片所在平面与第一反射片所在平面的夹角为40°~50°。这样一来,能够使经过第一反射片反射后的上行第二波长光更好的传输至第二光接收组件,减小光器件的封装尺寸。
在一种可能的实现方式中,合光结构包括第二分光片和第三分光片;第二分光片用于反射下行第一波长光,并将下行第一波长光传输至第三分光片;第二分光片还用于透射上行第一波长光和上行第二波长光中的至少一个;第三分光片用于反射下行第二波长光,以及用于透射下行第一波长光、上行第一波长光和上行第二波长光中的至少一个。这样一来,能够通过第二分光片和第三分光片将下行第一波长光和下行第二波长光合光,并传输至光接口。
在一种可能的实现方式中,下行光在第二分光片的入射角范围为40°~50°,下行光包括下行第一波长光和下行第二波长光。这样一来,能减小光器件的封装尺寸,使下行第一波长光能够更好的传输至光接口。
在一种可能的实现方式中,下行光在第三分光片的入射角范围为40°~50°,下行光包括下行第一波长光和下行第二波长光。这样一来,能减小光器件的封装尺寸,使下行第二波长光能够更好的传输至光接口。
在一种可能的实现方式中,光器件还包括第二反射片;第二反射片用于将下行第一波长光反射至合光结构上。这样一来,能减小光器件的封装尺寸。
在一种可能的实现方式中,光器件还包括第三反射片;第三反射片用于反射经分光结构透射的上行第一波长光。这样一来,能减小光器件的封装尺寸。
在一种可能的实现方式中,上行光在第三反射片的入射角范围为40°~50°。这样一来,能减小光器件的封装尺寸。
在一种可能的实现方式中,下行第一波长光的波长为1340nm~1344nm,下行第二波长光的波长为1575nm~1580nm,上行第一波长光的波长和上行第二波长光的波长中一个为1284nm~1288nm,另一个为1260nm~1280nm。这样一来,能够实现50G PON/10G PON兼容。
在一种可能的实现方式中,下行第一波长光的波长为1340nm~1344nm,下行第二波长光的波长为1480nm~1500nm,上行第一波长光的波长第三波长和上行第二波长光的波长中一个为1284nm~1288nm,另一个为1290nm~1330nm。这样一来,能够实现50G PON/GPON兼容。
在一种可能的实现方式中,光器件还包括准直组件;准直组件设置于光接口。这样一来,能够使自光纤出射的上行光汇聚并高效传输至光通道内,使下行光汇聚并高效传输至光纤内。
在一种可能的实现方式中,光器件还包括第一光接收组件和第二光接收组件;第一光接收组件耦合于上行第一波长光接口,第二光接收组件耦合于上行第二波长光接口;第一光接收组件用于接收来自分光结构透射的上行第一波长光;第二光接收组件用于接收来自分光结构反射的上行第二波长光。这样一来,通过第一光接收组件接收上行第一波长光,通过第二光接收组件接收上行第二波长光。
在一种可能的实现方式中,光器件还包括第一光发射组件和第二光发射组件;第一光发射组件耦合于下行第一波长光接口,第二光发射组件耦合于下行第二波长光接口;第一光发射组件用于将下行第一波长光传输至合光结构;第二光发射组件用于将下行第二波长光传输至合光结构。这样一来,通过第一光发射组件发射下行第一波长光,通过第二光发射组件发射下行第二波长光。
在一种可能的实现方式中,第一光接收组件、第二光接收组件、第一光发射组件或者第二光发射组件中任意一个的封装包括同轴封装、蝶形封装或者板上芯片封装。这样一来,对光器件10的封装形式不做限定,适用范围广。
在一种可能的实现方式中,光器件还包括光纤插芯;光纤插芯设置于光接口内;光纤插芯用于连接光纤。这样一来,通过光纤传输上行光和下行光。
本申请实施例的第二方面,提供一种光线路终端,包括第一方面的光器件以及印刷电路板;光器件与印刷电路板电连接。
本申请实施例第二方面提供的光线路终端,包括第一方面的光器件,其有益效果与光器件的有益效果相同,在此不再赘述。
本申请实施例的第三方面,提供一种无源光纤网络系统,包括第二方面的光线路终端、光网
络单元以及光网络终端;光网络单元连接光线路终端和光网络终端。
本申请实施例第三方面提供的无源光纤网络系统,包括第二方面的光线路终端,其有益效果与光线路终端的有益效果相同,在此不再赘述。
图1为本申请实施例提供的一种无源光纤网络系统的结构示意图;
图2A为本申请实施例提供的另一种无源光纤网络系统的结构示意图;
图2B为本申请实施例提供的又一种无源光纤网络系统的结构示意图;
图3为本申请实施例提供的GPON、10G PON和50G PON波长分布图;
图4为本申请实施例提供的一种光器件的结构示意图;
图5A为本申请实施例提供的另一种光器件的结构示意图;
图5B为本申请实施例提供的又一种光器件的结构示意图;
图6为本申请实施例提供的又一种光器件的结构示意图;
图7为本申请实施例提供的又一种光器件的结构示意图;
图8A为本申请实施例提供的又一种光器件的结构示意图;
图8B为本申请实施例提供的又一种光器件的结构示意图;
图9A为本申请实施例提供的又一种光器件的结构示意图;
图9B为本申请实施例提供的又一种光器件的结构示意图;
图9C为本申请实施例提供的又一种光器件的结构示意图;
图10为本申请实施例提供的又一种光器件的结构示意图;
图11A为本申请实施例提供的又一种光器件的结构示意图;
图11B为本申请实施例提供的又一种光器件的结构示意图。
附图标记
1-无源光纤网络;2-光线路终端;3-光分配网;4-光网络单元;51-第一级分光器;52-第二级分光器;10-光器件;11-滤波片;12-滤波片;13-滤波片;14-反射片;21-滤波片;22-滤波片;23-滤波片;24-反射片;110-光纤插芯;120-发射端;121-第一光发射组件;122-第二光发射组件;130-接收端;131-第一光接收组件;132-第二光接收组件;100-壳体;200-合光结构;300-分光结构;101-光接口;102-下行第一波长光接口;103-下行第二波长光接口;104-上行第一波长光接口;105-上行第二波长光接口;210-第一分光片;220-第二分光片;230-第三分光片;310-第一反射片;320-第二反射片;330-第三反射片。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“第二”、“第一”等仅用于描述方便,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第二”、“第一”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请实施例中,“上”、“下”、“左”、“右”等方位术语可以包括但不限于相对附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语可以是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件附图所放置的方位的变化而相应地发生变化。
在本申请实施例中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。此外,术语“相耦接”可以是直接的电性连接,也可以通过中间媒介间接的电性连接。术语“接触”可以是直接接触,也可以是通过中间媒介间接的接触。
本申请实施例中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
光纤通信系统已经成为目前的主流通信系统,在光纤通信系统中,接入网(access network,
AN)的接入方式为光纤接入(FTTx),该接入网也被称为光纤接入网(optical access network,OAN),光纤接入网的光纤接入方式包括光纤到交换箱(fiber to the cabinet,FTTCab)、光纤到路边(fiber to the curb,FTTC)、光纤到大楼(fiber to the building,FTTB)及光纤到户(fiber to the home,FTTH)等。
本申请实施例提供一种无源光纤网络(passive optical network,PON)系统,如图1所示,PON1包括光线路终端(optical line terminal,OLT)2、光分配网(optical distribution network,ODN)3以及光网络单元(optical network unit,ONU)4。其中,OLT2设置于中心控制站,ODN3设置于用户侧。OND3用于连接OLT2和ONU4。
OLT2和ONU4内的光器件用于将网络信号进行光电转换及传输。
在一些实施例中,PON1还包括光网络终端(optical network terminal,ONT)(图中未示出)。ONT与ONU4设置于用户侧的不同位置,实现的功能类似。
近年来,PON已经在全球范围内大规模部署,逐渐从具有千兆位功能的吉比特无源光纤网络(gigabit capable passive optical networks,GPON)向更高速率的网络升级换代,例如:10吉比特无源光纤网络(10gigabit capable passive optical networks,10G PON)、50吉比特无源光纤网络(50gigabit capable passive optical networks,50G PON)。
由于全球各地区的光线接入网络建设进度存在差异,部分地区目前正在进行GPON的部署,而对GPON的部署也将持续至2025年之后,另外有部分地区将在未来几年内持续大规模部署10G PON。同时,从2019年开始,对下一代光纤接入网络(50G PON)的标准指定已经提上日程,预计正式商用时间将在2025年左右。这就意味着未来几年将会存在GPON和50G PON共存,以及,10G PON和50G PON共存的情况。也就是说,在对50G PON的部署和研究需要考虑与GPON和10G PON的兼容,即50G/10G PON Combo OLT和50G/G PON Combo OLT。
在光纤通信系统中,下行光信号为中心控制站向用户侧的通信装置(ONU、ONT等)发送的数据。上行光信号为用户侧的通信装置向中心控制站发送的数据。
如图2A所示,示意一种50G/10G PON Combo OLT共存的网络拓扑结构。ODN3包括多级分光器(splitter)。
示例性的,如图2A所示,以两级分光器为例。第一级分光器51的输入端a1通过光纤连接至OLT2,第一级分光器51的输出端b1通过光纤连接至第二级分光器52的输入端a2,第一级分光器51的输出端c1通过光纤连接至ONU41,第一级分光器51的输出端d1通过光纤连接至ONU42。其中,ONU41为50G PON ONU,ONU42为10G PON ONU。
第二级分光器52的输入端a2通过光纤连接至第一级分光器51的输出端b1,第一级分光器51的输出端c2通过光纤连接至ONU43,第一级分光器51的输出端d2通过光纤连接至ONU44。其中,ONU43为10G PON ONU,ONU44为50G PON ONU。
或者,示例性的,第二级分光器52的输出端还可以连接第三级分光器(图2A中未示出)。本申请实施例对此不做限定,根据实际需要合理设置即可。
此处释明的是,分光器(第一级分光器51和第二级分光器52)作用在于对传输的光信号进行等比例分光,对光信号的波长不进行区分。
如图2A所示,与OLT2连接的ONU4可能为10G PON ONU,也可能为50G PON ONU。本申请实施例对此不做限定,根据实际需要合理设置即可。
在PON1工作时,OLT2将下行光信号传输至ODN3,ODN3中的第一级分光器51的输入端a1接收下行光信号,并将下行光信号通过第一级分光器51的输出端b1传输至第二级分光器52的输入端a2、ONU41和ONU42。第二级分光器52的输入端a2接收下行光信号,并将下行光信号通过第二级分光器52的输出端c2传输至ONU43和ONU44。其中,ONU41接收的下行光信号为50G PON下行光信号,ONU42接收的下行光信号为10G PON下行光信号,ONU43接收的下行光信号为10G PON下行光信号,ONU44接收的下行光信号为50G PON下行光信号。ONU4接收下行光信号,并对接收到的下行光信号进行处理以获取其中的数据。
ONU4也可以生成需要发送至OLT2的上行光信号。例如,ONU43生成10G PON上行光信号,并将上行光信号依次通过第二级分光器52的输出端c2、第二级分光器52的输入端a2、第一级分
光器51的输出端b1以及第一级分光器51的输入端a1传输至OLT2。OLT2还可以接收来自ONU41的50G PON上行光信号、来自ONU42的10G PON上行光信号以及来自ONU44的50G PON上行光信号。
因此,通过OLT2发射的下行光信号为10G PON下行光信号和50G PON下行光信号,通过OLT2接收的上行光信号为10G PON上行光信号和50G PON上行光信号。
如图2B所示,示意一种50G/G PON Combo OLT共存的网络拓扑结构。
对50G/G PON Combo OLT共存的网络拓扑结构的描述可以参考上述对50G/10G PON Combo OLT描述。通过OLT2发射的下行光信号为GPON下行光信号和50G PON下行光信号,通过OLT2接收的上行光信号为GPON上行光信号和50G PON上行光信号。
上述PON1中,OLT2、ODN3以及ONU4之间均通过光纤连接。光纤例如可以为单芯双向光纤,可以传输上行光信号和下行光信号。对于50G/G PON共存的Combo OLT或者50G/10G PON共存的Combo OLT来说,PON1中传输的两种上行光信号的波长以及两种下行光信号的波长均不同。图3示意出GPON、10G PON和50G PON的上行波长(up wavelength,UW)和下行波长(down wavelength,DW)。如图3所示,10G PON的上行波长(UW1)范围为1260nm~1280nm,10G PON的下行波长(DW3)范围为1575nm~1580nm。GPON的上行波长(UW2)范围为1290nm~1330nm(未来可能会改动至1292nm~1330nm),GPON的下行波长(DW2)范围为1480nm~1500nm。考虑到50G PON需要同时对GPON和10G PON兼容,同时去除光纤的高损耗波段和高色散波段,50G PON的上行波长(UW3)范围限定为1280nm~1290nm(目前主要考虑1284nm~1288nm),50G PON的下行波长(DW1)范围为1340nm~1344nm。
由此可知,为了实现50G/G PON共存或者50G/10G PON共存,那么就需要在OLT2中将两种上行光信号和两种下行光信号分开。基于此,示意一种光模块,该光模块包括光器件和印刷电路板(printed circuit board,PCB)。其中,光器件与印刷电路板电连接。上述光模块可以设置于本申请实施了提供的OLT2中。或者,上述的光模块还可以设置于任意一个需要接收多个不同波长的通信设备中。本申请的实施例对此不做限定,根据实际需要合理设置即可。
现如今大规模部署的10G PON Combo OLT和GPON Combo OLT已经实现了10G PON和GPON的兼容。示意一种光器件10,应用于上述示意的OLT2中,能够实现10G/G PON Combo OLT共存。如图4所示,光器件10包括滤波片11、滤波片12、滤波片13以及反射片14。
示例性的,该光器件10还包括光纤插芯110、发射端120以及接收端130。其中,光纤插芯110内耦合有光纤。发射端120用于发射10G PON和GPON的下行光信号。接收端130用于接收10G PON和GPON的上行光信号。
10G PON和GPON的上行光信号通过光纤传输至光器件10的滤波片11。滤波片11将10G PON的上行光信号反射至反射片14,将GPON的上行光信号透射。10G PON的上行光信号再经过反射片14反射至接收端130。GPON的上行光信号经滤波片12反射至接收端130。
10G PON和GPON的下行光信号经发射端120入射至滤波片13。滤波片13透射10G PON的下行光信号,反射GPON的下行光信号。然后,10G PON的下行光信号和GPON的下行光信号依次经过滤波片12和滤波片11透射至光纤插芯110。
滤波片11反射的光信号为10G PON的上行光信号,透射的光信号为GPON的上行光信号、10G PON的下行光信号以及GPON的下行光信号。因此,滤波片11的反射波长为UW1,透射波长为[UW2、DW3、DW2],即滤波片11的反射波长范围为1260nm~1280nm,透射波长范围为1290nm~1500nm。
这样一来,自发射端120发射的下行光信号,经过滤波片13、滤波片12以及滤波片11传输至光纤插芯110。自光纤插芯110发出的上行光信号,经过滤波片11分开,再经过滤波片12以及反射片14分别传输至接收端130,实现了对不同波长的光信号的接收和传输。
示例性的,利用上述光器件10实现50G/10G PON Combo OLT共存,则滤波片11反射50G PON的上行光信号,透射10G PON的上行光信号。
那么滤波片11的反射波长为UW1,透射波长为[UW3、DW1、DW3],即滤波片11的反射波长范围为1260nm~1280nm,透射波长范围为1284nm~1580nm。这样一来,滤波片11的反射波长
范围和透射波长范围的有效波长间隔仅相差4nm(即1280nm~1284nm),且透射波长范围相差数百nm,导致滤波片11在理论上难以设计和制造。即使制造出来,由于滤波片11的反射波长范围和透射波长范围的有效波长间隔过小导致滤波片11具有极大的透射插损和极低的反射隔离度,对光器件10的光功率造成极大的损失,严重降级系统链路预算。
或者,示例性的,利用上述光器件10实现50G/G PON Combo OLT共存,则滤波片11反射50G PON的上行光信号,透射GPON的上行光信号。
那么滤波片11的反射波长为UW3,透射波长为[UW2、DW1、DW2],即滤波片11的反射波长范围为1284nm~1288nm,透射波长范围为1290nm~1500nm。
同样的,滤波片11的反射波长范围和透射波长范围的有效波长间隔仅相差2nm(即1288nm~1290nm),透射范围波长相差数百nm,导致滤波片11制造起来同样难度大,且具有极大的透射插损和极低的反射隔离度,对光器件10的光功率造成极大的损失,严重降级系统链路预算。
基于此,为了解决滤波片设计和制造难度大的问题,本申请实施例还示意一种光器件10,如图5A所示,包括滤波片21、滤波片22、滤波片23以及反射片24。
该光器件10还包括光纤插芯110、发射端120以及接收端130。关于光纤插芯110、发射端120以及接收端130描述与上述光器件10相同,具体可参考上述内容,在此不再重复赘述。
其中,该光器件10通过滤波片将多个上行光和多个下行光进行分波,然后通过滤波片22对多个上行光进行分波,即多收合一方案。
示例性的,利用上述光器件10实现50G/10G PON Combo OLT共存。
如图5A所示,50G PON和10G PON的上行光信号通过光纤插芯110传输至光器件10的滤波片21。滤波片21将50G PON和10G PON的上行光信号均进行反射,并将50G PON和10G PON的上行光信号反射至滤波片22。滤波片22将50G PON的上行光信号透射至接收端130,将10G PON的上行光信号反射至反射片24。反射片24将10G PON的上行光信号反射至接收端130。
50G PON和10G PON的下行光信号经发射端120入射至滤波片23。滤波片23透射50G PON的下行光信号,反射10G PON的下行光信号。50G PON和10G PON的下行光信号经过滤波片21透射至光纤插芯110。
滤波片21反射的光信号为50G PON的上行光信号和10G PON的上行光信号,透射的光信号为50G PON的下行光信号和10G PON的下行光信号。也就是说,滤波片21的反射波长为[UW1、UW3],透射波长为[DW1、DW3],即滤波片21的反射波长范围为1260nm~1288nm,透射波长范围为1340nm~1580nm。
滤波片22反射的光信号为10G PON的上行光信号,透射的光信号为50G PON的上行光信号。也就是说,滤波片22的反射波长为UW1,透射波长为UW3。即滤波片22的反射波长范围为1260nm~1280nm,透射波长为1284nm~1288nm。
这样一来,滤波片21的反射波长范围和透射波长范围的有效波长间隔较大,即相差1288nm~1340nm,因此滤波片21的设计和制造难度低,容易设计和制造出来。滤波片22的反射波长范围和透射波长范围的有效波长间隔虽然仅有4nm(即1280nm~1284nm),但是由于滤波片22的透射波长范围小,降低了滤波片22的设计和制造难度,容易设计和制造出来。
或者,示例性的,利用上述光器件10实现50G/GPON Combo OLT共存,则滤波片21反射的光信号为50G PON的上行光信号和GPON的上行光信号,透射的光信号为50G PON的下行光信号和GPON的下行光信号。滤波片22反射的光信号为GPON的上行光信号,透射的光信号为50G PON的上行光信号。
也就是说,滤波片21的反射波长为[UW3、UW2],透射波长为[DW1、DW2],即滤波片21的反射波长范围为1284nm~1330nm,透射波长范围为1340nm~1500nm。滤波片22的反射波长为UW2,透射波长为UW3。即滤波片22的反射波长范围为1290nm~1330nm,透射波长为1284nm~1288nm。
同样的,滤波片21的反射波长范围和透射波长范围的有效波长间隔较大,设计和制造难度较低。滤波片22的反射波长范围和透射波长范围的有效波长间隔虽然极小,但是由于滤波片22的
透射波长范围小,降低了滤波片22的设计和制造难度,容易设计和制造出来。
如图5B所示,光器件10为管壳状结构。光器件10包括具有光通道的壳体。壳体内的光通道上设置有滤波片21、滤波片22、滤波片23以及反射片24,且该滤波片和反射片的设置位置和设置角度需要满足特定条件。然而,由于光器件10内所需光纤焊接装配以及滤波片的粘接等工艺会带来一定的角度误差,且入射至滤波片22的光需经过滤波片21反射,导致滤波片22对光的角度极其敏感,入射角度的微小偏差将会带来极大的插损。上行光信号经过滤波片21反射会带来一定的角度误差,再入射至滤波片22导致入射角误差翻倍,造成滤波片22的入射光角度误差过大,带来严重的插损,对光器件10的性能造成影响。
基于此,为了降低滤波片的角度误差带来的插损,本申请实施例还提供一种光器件,如图6所示,光器件10包括:具有光通道的壳体100以及设置在光通道内的合光结构200和分光结构300。
壳体100还具有与光通道连通的光接口101、下行第一波长光接口102、下行第二波长光接口103、上行第一波长光接口104以及上行第二波长光接口105。
其中,上行光和下行光通过光接口101进行传输。下行第一波长光接口102和下行第二波长光接口103传输下行光,上行第一波长光接口104和上行第二波长光接口105传输上行光。
示例性的,上行光为50G PON的上行光信号和10G PON的上行光信号,下行光为50G PON的下行光信号和10G PON的下行光信号。
或者,示例性的,上行光为50G PON的上行光信号和GPON的上行光信号,下行光为50G PON的下行光信号和GPON的下行光信号。
本申请实施例对此不做限定,根据实际需要合理设置即可。
其中,上行光包括上行第一波长光和上行第二波长光,下行光包括下行第一波长光和下行第二波长光。
例如,上行第一波长光接口104传输上行第一波长光,上行第二波长光接口105传输上行第二波长光。下行第一波长光接口102传输下行第一波长光,下行第二波长光接口103传输下行第二波长光。
其中,自下行第一波长光接口102入射的下行第一波长光,以及自下行第二波长光接口103入射的下行第二波长光,在经过合光结构200后,由光接口101射出。
自光接口101入射的上行光,经合光结构200透射后入射至分光结构300。分光结构300透射上行第一波长光,反射上行第二波长光。上行第一波长光从上行第一波长光接口104射出,上行第二波长光从上行第二波长光接口105射出。
在一些实施例中,如图6所示,光器件10还包括光纤插芯110。其中,光纤插芯110耦合于光接口101。
光纤插芯110用于连接光纤。上行光和下行光均可以通过光纤进行传输。
在一些实施例中,光器件10还包括光发射组件(transmitting optical sub assembly,TOSA)和光接收组件(receiving optical sub assembly,ROSA)。
其中,光发射组件用于发射下行光。也就是说,光发射组件用于发射下行第一波长光和下行第二波长光。
光接收组件用于接收上行光。也就是说,光接收组件用于接收上行第一波长光和上行第二波长光。
光发射组件包括电光转换芯片和监控光电二极管(MD)。电光转换芯片和监控光电二极管封装在一起构成光发射组件。
电光转换芯片例如可以是激光二极管(laser diode,LD)构成的芯片或者半导体发光二极管构成的芯片。
其中,电光转换芯片接收PCB传输的携带发送信息的电信号,将电信号转换成光信号,进而将光信号通过光器件10输出。
光接收组件包括光电转换芯片和放大器。光电转换芯片和放大器封装在一起构成光接收组件。
光电转换芯片例如可以是光电二极管(photo diode,PD)构成的芯片、PIN二极管(pin diode)
构成的芯片或者雪崩光电二极管(avalanche photon diode,APD)构成的芯片。
其中,光电转换芯片将接收到的光信号转换成电信号,然后将电信号传输至放大器,放大器对电信号进行放大,并将放大后的电信号传输至PCB。
示例性的,如图6所示,光器件10还包括第一光发射组件121和第二光发射组件122。其中,第一光发射组件121耦合于下行第一波长光接口102,第二光发射组件122耦合于下行第二波长光接口103。
第一光发射组件121发射下行第一波长光,并将下行第一波长光发射至合光结构200,再由合光结构200将下行第一波长光传输至光接口101的光纤插芯110。第二光发射组件122发射下行第二波长光,并将下行第二波长光发射至合光结构200,再由合光结构200将下行第二波长光传输至光接口101的光纤插芯110。
示例性的,如图6所示,光器件10还包括第一光接收组件131和第二光接收组件132。其中,第一光接收组件131耦合于上行第一波长光接口104,第二光接收组件132耦合于上行第二波长光接口105。
第一光接收组件131接收上行第一波长光,第二光接收组件132接收上行第二波长光。也就是说,第一光接收组件131接收来自分光结构300透射的上行第一波长光,第二光接收组件132接收来自分光结构300反射的上行第二波长光。
本申请实施例对上述光发射组件(第一光发射组件121和第二光发射组件122)和光接收组件(第一光接收组件131和第二光接收组件132)的封装不做限定,根据实际需要合理设置即可。
示例性的,如图6所示,光发射组件和光接收组件均为同轴(transistor outline,TO)封装。
或者,示例性的,光发射组件和光接收组件可以均为蝶形封装。例如,可以采用方形壳体的盒子(BOX)进行封装。
或者,示例性的,光发射组件和光接收组件可以均为板上芯片(chips on board,COB)封装。
或者,光发射组件和光接收组件中的任意一个为同轴封装、蝶形封装或者板上芯片封装。也就是说,第一光接收组件131、第二光接收组件132、第一光发射组件121或者第二光发射组件122中任意一个的封装可以为同轴封装、蝶形封装或者板上芯片封装。
可以理解的是,壳体100上与光发射组件和光接收组件连接的下行第一波长光接口102、下行第二波长光接口103、上行第一波长光接口104以及上行第二波长光接口105均根据光发射组件和光接收组件的封装形式进行适应性设置。这样一来,对光器件10的封装不做限定,适用范围广。
在一些实施例中,如图6所示,分光结构300包括第一分光片210和第一反射片310。合光结构200包括第二分光片220和第三分光片230。第一分光片210、第一反射片310、第二分光片220以及第三分光片230均设置于壳体100的光通道内。
如图6所示,第一分光片210设置于与上行第一波长光接口104相对的位置。也就是说,第一分光片210与第一光接收组件131相对设置。
这样一来,经由第一分光片210的光能够传输至第一光接收组件131。
如图6所示,第二分光片220设置于与下行第一波长光接口102相对的位置。也就是说,第二分光片220与第一光发射组件121相对设置。
这样一来,第一光发射组件121发出的光能够经由第二分光片220,进而通过第二分光片220反射或者透射。
如图6所示,第三分光片230设置于与下行第二波长光接口103相对的位置。也就是说,第三分光片230与第二光发射组件122相对设置。
这样一来,第二光发射组件122发出的光能够经由第三分光片230,进而通过第三分光片230反射或者透射。
如图6所示,第一反射片310设置于与上行第二波长光接口105相对的位置。也就是说,第一反射片310与第二光接收组件132相对设置。
这样一来,经由第一反射片310的光能够传输至第二光接收组件132。
如图6所示,第三分光片230还设置于与光接口101相对的位置。也就是说,第三分光片230
还与光纤插芯110相对设置。
这样一来,经由第三分光片230的光能够传输至光纤插芯110。或者说是,由光纤插芯110发出的光能够传输至第三分光片230。
示例性的,如图6所示,沿第一方向x,第一分光片210、第二分光片220以及第三分光片230依次间隔设置。也就是说,经由光纤插芯110入射的光能够依次经过第三分光片230、第二分光片220以及第一分光片210。
本申请实施例提供的光器件10,上行光(上行第一波长光和上行第二波长光)从光纤插芯110射出,进入壳体100内部的光通道,沿着光通道,依次透射过第三分光片230和第二分光片220,传输至第一分光片210。在上行光的传输过程中,仅有第一分光片210反射面的设置角度对上行第二波长光的入射角度带来影响,在光路径上没有引入其他光学元件带来的角度误差,能够避免因角度误差带来的插损。
如图7所示,上行光经由光纤插芯110入射至壳体100内部,沿着光通道入射至合光结构200。上行光依次透射过合光结构的第三分光片230和第二分光片220,传输至分光结构300的第一分光片210。
上行光中的上行第一波长光透射过第一分光片210,传输至第一光接收组件131。
上行光中的上行第二波长光经由第一分光片210反射至第一反射片310,再由第一反射片310反射至第二光接收组件132。
如图7所示,上行光沿第一方向x入射至第一分光片210。其中,第一分光片210相对于第一方向x具有倾斜角,倾斜角的角度为65°~85°。此处释明的是,为了方便示意,本申请实施例中提及分光片与第一方向x的倾斜角均为分光片与第一方向x组成的锐角。
这样一来,上行光在第一分光片210的入射角范围为5°~25°。例如,该入射角可以为5°、7°、8°、11°、13°、15°、18°、22°或者25°。上行光在第一分光片210的入射角越小越容易对上行光进行分光,上行光在第一分光片210的入射角越大,光器件10的封装尺寸越小。同时,入射角过大会带来插损。因此,上行光在第一分光片210的入射角范围为8°~13°,即第一分光片210相对于第一方向x的倾斜角角度为77°~82°,既能够对上行光进行有效分光,还能避免光器件10的封装尺寸过大,同时降低第一分光片210带来的插损。
接下来,上行第一波长光经第一分光片210透射,继续沿第一方向x传输至第一光接收组件131。
上行第二波长光经第一分光片210反射,然后入射至第一反射片310。
如图7所示,第一反射片310相对于第一方向x具有倾斜角。本申请实施例中对第一反射片310的倾斜角不做限定,只需满足上行第二波长光经过第一反射片310反射能传输至第二光接收组件132即可。
也就是说,第一反射片310的角度与第一分光片210的角度有关。
示例性的,第一反射片310所在平面与第一分光片210所在平面的夹角为40°~50°。其中,当第一反射片310所在平面与第一分光片210所在平面的夹角45°时,上行第二波长光垂直于第一方向x入射至第二光接收组件132。
这样一来,便于光器件10与第二光接收组件132的封装。
如图7所示,下行光由光发射组件(第一光发射组件121和第二光发射组件122)发射至合光结构200,然后传输至光接口101处的光纤插芯110中。
示例性的,下行光中的下行第一波长光由第一光发射组件121发射至第二分光片220,然后由第二分光片220反射,沿第一方向x传输至第三分光片230,并透射过第三分光片230入射至光纤插芯110。
下行光中的下行第二波长光由第二光发射组件122发射至第三分光片230,然后由第三分光片230反射,沿第一方向x传输至光纤插芯110。
本申请实施例中对第二分光片220的设置角度不做限定,只需保证第一光发射组件121发射的下行第一波长光,经过第二分光片220反射能够进入光纤插芯110即可。
本申请实施例中对第三分光片230的设置角度不做限定,只需保证第二光发射组件122发射
的下行第二波长光,经过第三分光片230反射能够进入光纤插芯110即可。
示例性的,下行光在第二分光片220的入射角的范围为40°~50°。也就是说,下行第一波长光在第二分光片220的入射角的范围为40°~50°。也可以说是,第二分光片220相对于第一方向x的倾斜角范围为40°~50°。例如,入射角可以为40°、43°、45°、47°、48°或者50°。
示例性的,下行光在第三分光片230的入射角的范围为40°~50°。也就是说,下行第二波长光在第三分光片230的入射角的范围为40°~50°。也可以说是,第三分光片230相对于第一方向x的倾斜角范围为40°~50°。例如,入射角可以为40°、43°、45°、47°、48°或者50°。
例如,当第二分光片220的相对于第一方向x的倾斜角为45°时,且使第一光发射组件121发射的下行第一波长光以垂直于第一方向x的方向入射至第二分光片220时,便于光器件10的封装。
或者,当第三分光片230的相对于第一方向x的倾斜角为45°时,且使第二光发射组件122发射的下行第二波长光以垂直于第一方向x的方向入射至第三分光片230时,便于光器件10的封装。
根据上述描述,第一分光片210透射上行第一波长光,反射上行第二波长光。
第二分光片220透射上行光,反射下行第二波长光。也就是说,第二分光片220可以透射上行第一波长光,也可以透射上行第二波长光。
第三分光片230透射上行光和下行第二波长光,反射下行第一波长光。也就是说,第三分光片230可以透射上行第一波长光、上行第二波长光以及下行第二波长光中的至少一个。
在一些实施例中,为了实现50G PON/10G PON兼容。上行光为50G PON的上行光信号和10G PON的上行光信号,下行光为50G PON的下行光信号和下行第二波长光为10G PON的下行光信号。
示例性的,下行第一波长光为50G PON的下行光信号,下行第二波长光为10G PON的下行光信号。
其中,50G PON的下行光信号的波长为1340nm~1344nm,10G PON的下行光信号的波长为1575nm~1580nm。也就是说,下行第一波长光的波长为1340nm~1344nm,下行第二波长光的波长为1575nm~1580nm。
如图8A所示,10G PON的下行光信号由第二光发射组件122发射至第三分光片230,然后由第三分光片230反射至光纤插芯110。
50G PON的下行光信号由第一光发射组件121发射至第二分光片220,然后由第二分光片220反射至第三分光片230,再由第三分光片透射至光纤插芯110。
50G PON的上行光信号和10G PON的上行光信号由光纤插芯110入射,然后依次透射过第三分光片230和第二分光片220,传输至第一分光片210。
这样一来,第三分光片230的反射波长至少为下行第二波长光(10G PON的下行光信号),透射波长至少为上行光(50G PON的上行光信号和10G PON的上行光信号)和下行第一波长光(50G PON的下行光信号)。例如,第三分光片230的反射波长范围为1575nm~1580nm,透射波长范围为1260nm~1344nm。
第三分光片230的反射波长范围和透射波长范围的有效波长间隔范围较大,因此第三分光片230易于设计和制作,易于实现。
本申请实施例对第三分光片230的反射波长范围和透射波长范围不做具体限定,只需满足第三分光片230能够反射的波长范围不小于下行第一波长光,第三分光片230能够透射的波长范围不大于下行第二波长光即可。
第二分光片220的反射波长至少为下行第一波长光(50G PON的下行光信号),透射波长至少为上行光(50G PON的上行光信号和10G PON的上行光信号)。例如,第二分光片220的反射波长范围为1340nm~1344nm,透射波长范围为1260nm~1288nn。
第二分光片220的反射波长范围和透射波长范围的有效波长间隔范围较大,因此第二分光片220易于设计和制作,易于实现。
本申请实施例对第二分光片220的反射波长范围和透射波长范围不做具体限定,只需满足第
二分光片220能够反射的波长范围不小于上行光的波长,第三分光片230能够透射的波长范围不大于下行光的波长即可。
继续参见图8A,上行光经过第三分光片230和第二分光片220透射至第一分光片210,然后第一分光片210反射上行第二波长光,透射上行第一波长光。
也就是说,第一分光片210反射50G PON的上行光信号和10G PON的上行光信号中的一个,透射50G PON的上行光信号和10G PON的上行光信号中的另一个。
其中,第一分光片210的反射波长至少为上行第二波长光,透射波长至少为上行第一波长光。
示例性的,上行第一波长光为50G PON的上行光信号,上行第二波长光为10G PON的上行光信号。也就是说,如图8A所示,第一分光片210反射10G PON的上行光信号,透射50G PON的上行光信号。
50G PON的上行光信号自光纤插芯110出射后,依次经过第三分光片230、第二分光片220以及第一分光片210透射至第一光接收组件131。由于50G PON的上行光信号的波长范围较小,使其反射容易造成光损耗。因此,使第一分光片210透射50G PON的上行光信号,能够使50G PON的上行光信号在传输至第一光接收组件131的传输路径不会产生角度上的变化,一直沿光通道传输,能够减小反射带来的角度误差,降低光损耗。
这样,第一分光片210的反射波长至少为10G PON的上行光信号,透射波长至少为50G PON的上行光信号。例如,第一分光片210的反射波长范围为1260nm~1280nm,透射波长范围为1284nm~1288nm。
第一分光片210的反射波长范围仅包括10G PON的上行光信号,透射波长范围仅包括50G PON的上行光信号。因此,第一分光片210的反射波长范围和透射波长范围均较小,降低了第一分光片210的制作和设计难度,使得第一分光片210易于设计和制作,易于实现。
继续参见图8A,第一反射片310反射经第一分光片210反射的上行第二波长光。也就是说,第一反射片310反射10G PON的上行光信号。
或者,示例性的,上行第一波长光为10G PON的上行光信号,上行第二波长光为50G PON的上行光信号。也就是说,第一分光片210反射50G PON的上行光信号,透射10G PON的上行光信号。这时,第一反射片310反射50G PON的上行光信号。
这样,第一分光片210的反射波长至少为50G PON的上行光信号,透射波长至少为10G PON的上行光信号。例如,第一分光片210的反射波长范围为1284nm~1288nm,透射波长范围为1260nm~1280nm。
第一分光片210的反射波长范围仅包括50G PON的上行光信号,透射波长范围仅包括10G PON的上行光信号。因此,第一分光片210的反射波长范围和透射波长范围均较小,降低了第一分光片210的制作和设计难度,使得第一分光片210易于设计和制作,易于实现。
本申请实施例对第一分光片210的反射波长范围和透射波长范围不做具体限定,只需满足第一分光片210能够反射的波长范围不小于下上行第一波长光,第一分光片210能够透射的波长范围不大于上行第二波长光即可。
在另一些实施例中,为了实现50G PON/GPON兼容。上行光为50G PON的上行光信号和GPON的上行光信号,下行光为50G PON的下行光信号和下行第二波长光为GPON的下行光信号。
示例性的,下行第一波长光为50G PON的下行光信号,下行第二波长光为GPON的下行光信号。
其中,50G PON的下行光信号的波长为1340nm~1344nm,GPON的下行光信号的波长为1480nm~1500nm。也就是说,下行第一波长光的波长为1340nm~1344nm,下行第二波长光的波长为1480nm~1500nm。
如图8B所示,GPON的下行光信号由第二光发射组件122发射至第三分光片230,然后由第三分光片230反射至光纤插芯110。
50G PON的下行光信号由第一光发射组件121发射至第二分光片220,然后由第二分光片220反射至第三分光片230,再由第三分光片透射至光纤插芯110。
50G PON的上行光信号和GPON的上行光信号由光纤插芯110入射,然后依次透射过第三分
光片230和第二分光片220,传输至第一分光片210。
这样一来,第三分光片230的反射波长至少为下行第二波长光(GPON的下行光信号),透射波长至少为上行光(50G PON的上行光信号和GPON的上行光信号)和下行第一波长光(50G PON的下行光信号)。例如,第三分光片230的反射波长范围为1480nm~1500nm,透射波长范围为1284nm~1344nm。
第三分光片230的反射波长范围和透射波长范围的有效波长间隔范围较大,因此第三分光片230易于设计和制作,易于实现。
本申请实施例对第三分光片230的反射波长范围和透射波长范围不做具体限定,只需满足第三分光片230能够反射的波长范围不小于下行第一波长光,第三分光片230能够透射的波长范围不大于下行第二波长光即可。
第二分光片220的反射波长至少为下行第一波长光(50G PON的下行光信号),透射波长至少为上行光(50G PON的上行光信号和GPON的上行光信号)。例如,第二分光片220的反射波长范围为1340nm~1344nm,透射波长范围为1284nm~1330nn。
第二分光片220的反射波长范围和透射波长范围的有效波长间隔范围较大,因此第二分光片220易于设计和制作,易于实现。
本申请实施例对第二分光片220的反射波长范围和透射波长范围不做具体限定,只需满足第二分光片220能够反射的波长范围不小于上行光的波长,第三分光片230能够透射的波长范围不大于下行光的波长即可。
继续参见图8B,上行光经过第三分光片230和第二分光片220透射至第一分光片210,然后第一分光片反射上行第二波长光,透射上行第一波长光。
也就是说,第一分光片反射50G PON的上行光信号和GPON的上行光信号中的一个,透射50G PON的上行光信号和GPON的上行光信号中的另一个。
其中,第一分光片210的反射波长至少为上行第二波长光,透射波长至少为上行第一波长光。
示例性的,上行第一波长光为50G PON的上行光信号,上行第二波长光为GPON的上行光信号。也就是说,第一分光片210反射GPON的上行光信号,透射50G PON的上行光信号。
这样,第一分光片210的反射波长至少为GPON的上行光信号,透射波长至少为50G PON的上行光信号。例如,第一分光片210的反射波长范围为1290nm~1330nm,透射波长范围为1284nm~1288nm。
第一分光片210的反射波长范围仅包括GPON的上行光信号,透射波长范围仅包括50G PON的上行光信号。因此,第一分光片210的反射波长范围和透射波长范围均较小,降低了第一分光片210的制作和设计难度,使得第一分光片210易于设计和制作,易于实现。
继续参见图8B,第一反射片310反射经第一分光片210反射的上行第二波长光。也就是说,第一反射片310反射GPON的上行光信号。
或者,示例性的,上行第一波长光为GPON的上行光信号,上行第二波长光为50G PON的上行光信号。也就是说,第一分光片210反射50G PON的上行光信号,透射GPON的上行光信号。这时,第一反射片310反射5G PON的上行光信号。
这样,第一分光片210的反射波长至少为50G PON的上行光信号,透射波长至少为GPON的上行光信号。例如,第一分光片210的反射波长范围为1284nm~1288nm,透射波长范围为1290nm~1330nm。
第一分光片210的反射波长范围仅包括50G PON的上行光信号,透射波长范围仅包括GPON的上行光信号。因此,第一分光片210的反射波长范围和透射波长范围均较小,降低了第一分光片210的制作和设计难度,使得第一分光片210易于设计和制作,易于实现。
本申请实施例对第一分光片210的反射波长范围和透射波长范围不做具体限定,只需满足第一分光片210能够反射的波长范围不小于下上行第一波长光,第一分光片210能够透射的波长范围不大于上行第二波长光即可。
在一些实施例中,如图9A所示,光器件10还包括第二反射片320。
第二反射片320与第二分光片220相对设置。第二反射片320用于将下行第一波长光反射至
合光结构200上。也就是说,第二反射片320用于将下行第一波长光反射至合光结构200的第二分光片220上。
示例性的,下行第一波长光由第一光发射组件121发射,沿第一方向x传输至第二反射片320,然后由第二反射片320反射至第二分光片220,接着经过第二分光片220的反射,继续沿第一方向x传输至第三分光片230,并透射过第三分光片230入射至光纤插芯110。
本申请实施例中对第二反射片320的设置角度不做限定,只需保证第一光发射组件121发射的下行第一波长光,经过第二反射片320和第二分光片220的反射能够进入光纤插芯110即可。
示例性的,下行光在第二反射片320的入射角范围为40°~50°。也就是说,下行第一波长光在第二反射片320的入射角的范围为40°~50°。也可以说是,第二反射片320相对于第一方向x的倾斜角范围为40°~50°。例如,入射角可以为40°、43°、45°、47°、48°或者50°。
第二反射片320可以与第二分光片220平行设置。这样一来,有利于下行第一波长光经过第二反射片320和第二分光片220反射后耦合进入光纤插芯110,同时还便于光器件10的封装,集成光器件10的外形尺寸。
在一些实施例中,如图9B所示,光器件10还包括第三反射片330。
第三反射片330与第一分光片210相对设置。第三反射片330用于反射经分光结构300透射的上行第一波长光。也就是说,第三反射片330用于将从第一分光片210透射的上行第一波长光反射至第一光接收组件131。
示例性的,上行光由光纤插芯110入射至壳体100内部,沿着光通道入射至合光结构200。上行光依次透射过第三分光片230和第二分光片220,传输至第一分光片210。
上行光中的上行第一波长光透射过第一分光片210,传输至第三反射片330,然后由第三反射片330反射至第一光接收组件131。
本申请实施例中对第三反射片330的设置角度不做限定,只需保证上行第一波长光由第三反射片330反射后能够耦合进入第一光接收组件131即可。
示例性的,上行光在第三反射片330的入射角范围为40°~50°。也就是说,上行第一波长光在第三反射片330的入射角的范围为40°~50°。也可以说是,第三反射片330相对于第一方向x的倾斜角范围为40°~50°。例如,入射角可以为40°、43°、45°、47°、48°或者50°。
例如,第三反射片330相对于第一方向x的倾斜角可以为45°。这样一来,有利于上行第一波长光经过第三反射片330反射后耦合进入第一光接收组件131,同时还便于光器件10的封装,有利于集成光器件10的外形尺寸。
在另一些实施例中,如图9C所示,光器件10还包括第二反射片320和第三反射片330。关于第二反射片320和第三反射片330的位置和设置方式与上述描述相同,具体可以参见上述关于第二反射片320和第三反射片330的描述。
此处释明的是,第二反射片320和第三反射片330可以根据光器件10封装的实际情况进行设置。光器件10可以仅包括第二反射片320,也可以仅包括第三反射片330,也可以既包括第二反射片320,还包括第三反射片330。
图10示意出图9C所示的光器件10的封装形式。如图10所示,第一分光片210、第二分光片220、第三分光片230、第一反射片310、第二反射片320以及第三反射片330均设置于壳体100的光通道内。
其中,第一分光片210、第一反射片310、第二分光片220以及第三分光片230的设置位置与图6所示的光器件10的设置位置相同,在此不再赘述。
第二反射片320与第二分光片220相对设置,且设置于第一光发射组件121的出光光路上,用于反射第一光发射组件121射出的下行光信号(下行第一波长光)。
第三反射片330与第一分光片210相对设置,且设置于第一光接收组件131的入光光路上,用于将上行光信号(上行第一波长光)反射至第一光接收组件131。
为了实现50G PON/10G PON兼容以及50G PON/GPON兼容,以图9C示意的光器件10进行示意性。
示例性的,如图11A所示,以上行光为50G PON的上行光信号和10G PON的上行光信号,
下行光为50G PON的下行光信号和下行第二波长光为10G PON的下行光信号为例。
下行第一波长光为50G PON的下行光信号,下行第二波长光为10G PON的下行光信号。其中,50G PON的下行光信号的波长为1340nm~1344nm,10G PON的下行光信号的波长为1575nm~1580nm。也就是说,下行第一波长光的波长为1340nm~1344nm,下行第二波长光的波长为1575nm~1580nm。
关于下行光信号,如图11A所示,10G PON的下行光信号由第二光发射组件122发射至第三分光片230,然后由第三分光片230反射至光纤插芯110。
50G PON的下行光信号由第一光发射组件121发射至第二反射片320,然后由第二反射片320反射至第二分光片220,再由第二分光片220反射至第三分光片230,最后经第三分光片透射至光纤插芯110。
关于上行光信号,示例性的,上行第一波长光为50G PON的上行光信号,上行第二波长光为10G PON的上行光信号。其中,50G PON的上行光信号的波长为1284nm~1288nm,10G PON的上行光信号的波长为1260nm~1280nm。也就是说,上行第一波长光的波长为1284nm~1288nm,上行第二波长光的波长为1260nm~1280nm。
如图11A所示,50G PON的上行光信号和10G PON的上行光信号由光纤插芯110入射,然后依次透射过第三分光片230和第二分光片220,传输至第一分光片210。第一分光片210透射50G PON的上行光信号,反射10G PON的上行光信号。
继续参考图11A,第一反射片310反射经第一分光片210反射的10G PON的上行光信号,并将10G PON的上行光信号传输至第二光接收组件132。第三反射片330反射经第一分光片210透射的50G PON的上行光信号,并将50G PON的上行光信号传输至第一光接收组件131。
此处释明的是,第一分光片210还可以透射10G PON的上行光信号,反射50G PON的上行光信号。这样一来,第一反射片310将50G PON的上行光信号反射至第二光接收组件132,第三反射片330将10G PON的上行光信号反射至第一光接收组件131。
示例性的,如图11B所示,以上行光为50G PON的上行光信号和10G PON的上行光信号,下行光为50G PON的下行光信号和下行第二波长光为10G PON的下行光信号为例。
下行第一波长光为50G PON的下行光信号,下行第二波长光为GPON的下行光信号。其中,50G PON的下行光信号的波长为1340nm~1344nm,GPON的下行光信号的波长为1480nm~1500nm。也就是说,下行第一波长光的波长为1340nm~1344nm,下行第二波长光的波长为1480nm~1500nm。
关于下行光信号,如图11B所示,GPON的下行光信号由第二光发射组件122发射至第三分光片230,然后由第三分光片230反射至光纤插芯110。
50G PON的下行光信号由第一光发射组件121发射至第二反射片320,然后由第二反射片320反射至第二分光片220,再由第二分光片220反射至第三分光片230,最后经第三分光片透射至光纤插芯110。
关于上行光信号,示例性的,上行第一波长光为50G PON的上行光信号,上行第二波长光为GPON的上行光信号。其中,50G PON的上行光信号的波长为1284nm~1288nm,GPON的上行光信号的波长为1290nm~1330nm。也就是说,上行第一波长光的波长为1284nm~1288nm,上行第二波长光的波长为1290nm~1330nm。
如图11B所示,50G PON的上行光信号和GPON的上行光信号由光纤插芯110入射,然后依次透射过第三分光片230和第二分光片220,传输至第一分光片210。第一分光片210透射50G PON的上行光信号,反射GPON的上行光信号。
继续参考图11B,第一反射片310反射经第一分光片210反射的GPON的上行光信号,并将GPON的上行光信号传输至第二光接收组件132。第三反射片330反射经第一分光片210透射的50G PON的上行光信号,并将50G PON的上行光信号传输至第一光接收组件131。
此处释明的是,第一分光片210还可以透射GPON的上行光信号,反射50G PON的上行光信号。这样一来,第一反射片310将50G PON的上行光信号反射至第二光接收组件132,第三反射片330将GPON的上行光信号反射至第一光接收组件131。
在一些实施例中,光器件10还包括准直组件(图中未示出)。
其中,准直组件设置于光接口101。
这样一来,光纤插芯110传输的上行光先通过准直组件然后传输至合光结构200。下行光经过合光结构后,先经过准直组件然后耦合进入光纤插芯110。
示例性的,准直组件可以集成于光纤插芯中。也就是说,准直组件设置于光纤插芯110的出光口。或者,准直组件还可以设置于光接口101的内侧,以使光纤插芯110传输的上行光经过光纤插芯110后传输至准直组件,并经准直组件准之后进入合光结构200。
示例性的,准直组件可以包括准直镜或者准直器。
本申请实施例提供的光器件10,通过合光结构200对下行第一波长光和下行第二波长光进行合光,并传输至光接口101。其中,下行第一波长光和下行第二波长光不经过分光结构300,直接耦合并传输至光接口101。因此,分光结构300的设置无需考虑下行光的波长范围。上行光通过光接口101传输至光通道内的合光结构200,经合光结构200透射至分光结构300,再由分光结构300对上行光进行分光。分光结构300将上行光分成上行第一波长光和上行第二波长光,分光结构300透射上行第一波长光,反射上行第二波长光。因此,分光结构300的设置只需考虑上行光的波长范围即可。本申请实施例中,分光结构300反射光的波长范围和透射光的波长范围均为上行光的波长范围。因此,分光结构300的透射光波长范围和反射光波长范围均较小,分光结构300能够避免同时满足透射光波长范围或反射光波长范围较大,且反射波长范围和透射波长范围的有效波长间隔小的情况,使得分光结构300容易设计和实现,同时使分光结构300能够提高对上行光分光的隔离度,且降低上行光的透射插损,进而实现低插损且高隔离度的光器件10。
另外,本申请实施例中,分光结构300位于合光结构200的透射路径上,不会对上行光的反射造成角度误差,进而避免了因角度误差带来的插损。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (17)
- 一种光器件,其特征在于,包括:内部具有光通道的壳体,所述壳体还具有与所述光通道连通的光接口、下行第一波长光接口、下行第二波长光接口、上行第一波长光接口和上行第二波长光接口;合光结构,设置在所述光通道内,自所述下行第一波长光接口入射的下行第一波长光,和自所述下行第二波长光接口入射的下行第二波长光,经所述合光结构后,由所述光接口射出;分光结构,设置在所述光通道内,自所述光接口入射的上行光,经所述合光结构透射后入射至所述分光结构,经所述分光结构透射的上行第一波长光从所述上行第一波长光接口射出,经所述分光结构反射的上行第二波长光从所述上行第二波长光接口射出。
- 根据权利要求1所述的光器件,其特征在于,所述分光结构包括第一分光片和第一反射片;所述第一分光片用于透射所述上行第一波长光,以及,用于反射所述上行第二波长光,并将所述上行第二波长光传输至所述第一反射片;所述第一反射片用于反射所述上行第二波长光。
- 根据权利要求2所述的光器件,其特征在于,所述上行光在所述第一分光片的入射角范围为5°~25°。
- 根据权利要求2或3所述的光器件,其特征在于,所述第一分光片所在平面与所述第一反射片所在平面的夹角为40°~50°。
- 根据权利要求1-4任一项所述的光器件,其特征在于,所述合光结构包括第二分光片和第三分光片;所述第二分光片用于反射所述下行第一波长光,并将所述下行第一波长光传输至所述第三分光片;所述第二分光片还用于透射所述上行第一波长光和所述上行第二波长光中的至少一个;所述第三分光片用于反射所述下行第二波长光,以及用于透射所述下行第一波长光、所述上行第一波长光和所述上行第二波长光中的至少一个。
- 根据权利要求5所述的光器件,其特征在于,下行光在所述第二分光片的入射角范围为40°~50°;和/或,所述下行光在所述第三分光片的入射角范围为40°~50°;其中,所述下行光包括所述下行第一波长光和所述下行第二波长光。
- 根据权利要求1-6任一项所述的光器件,其特征在于,所述光器件还包括第二反射片;所述第二反射片用于将所述下行第一波长光反射至所述合光结构上。
- 根据权利要求1-7任一项所述的光器件,其特征在于,所述光器件还包括第三反射片;所述第三反射片用于反射经所述分光结构透射的所述上行第一波长光。
- 根据权利要求8所述的光器件,其特征在于,所述上行光在所述第三反射片的入射角范围为40°~50°。
- 根据权利要求1-9任一项所述的光器件,其特征在于,所述下行第一波长光的波长为1340nm~1344nm,所述下行第二波长光的波长为1575nm~1580nm,所述上行第一波长光的波长和所述上行第二波长光的波长中一个为1284nm~1288nm,另一个为1260nm~1280nm;或,所述下行第一波长光的波长为1340nm~1344nm,所述下行第二波长光的波长为1480nm~1500nm,所述上行第一波长光的波长第三波长和所述上行第二波长光的波长中一个为1284nm~1288nm,另一个为1290nm~1330nm。
- 根据权利要求1-10任一项所述的光器件,其特征在于,所述光器件还包括准直组件;所述准直组件设置于所述光接口。
- 根据权利要求1-11任一项所述的光器件,其特征在于,所述光器件还包括第一光接收组件和第二光接收组件;所述第一光接收组件耦合于所述上行第一波长光接口,所述第二光接收组件耦合于所述上行第二波长光接口;所述第一光接收组件用于接收来自所述分光结构透射的所述上行第一波长光;所述第二光接收组件用于接收来自所述分光结构反射的所述上行第二波长光。
- 根据权利要求1-12任一项所述的光器件,其特征在于,所述光器件还包括第一光发射组件和第二光发射组件;所述第一光发射组件耦合于所述下行第一波长光接口,所述第二光发射组件耦合于所述下行第二波长光接口;所述第一光发射组件用于将所述下行第一波长光传输至所述合光结构;所述第二光发射组件用于将所述下行第二波长光传输至所述合光结构。
- 根据权利要求12或13所述的光器件,其特征在于,所述第一光接收组件、所述第二光接收组件、所述第一光发射组件或者所述第二光发射组件中任意一个的封装包括同轴封装、蝶形封装或者板上芯片封装。
- 根据权利要求1-14任一项所述的光器件,其特征在于,所述光器件还包括光纤插芯;所述光纤插芯设置于所述光接口内;所述光纤插芯用于连接光纤。
- 一种光线路终端,其特征在于,包括如权利要求1-15任一项所述的光器件以及印刷电路板;所述光器件与所述印刷电路板电连接。
- 一种无源光纤网络系统,其特征在于,包括如权利要求16所述的光线路终端、光网络单元以及光网络终端;所述光网络单元连接所述光线路终端和所述光网络终端。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211501836.0 | 2022-11-28 | ||
CN202211501836.0A CN118102148A (zh) | 2022-11-28 | 2022-11-28 | 光器件、光线路终端及无源光纤网络系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024113812A1 true WO2024113812A1 (zh) | 2024-06-06 |
Family
ID=91157910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/103297 WO2024113812A1 (zh) | 2022-11-28 | 2023-06-28 | 光器件、光线路终端及无源光纤网络系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118102148A (zh) |
WO (1) | WO2024113812A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006042252A (ja) * | 2004-07-30 | 2006-02-09 | Kddi Corp | 光伝送システム及び光ネットワーク |
CN103765265A (zh) * | 2011-09-27 | 2014-04-30 | 日本电信电话株式会社 | 光合路分路器、双向光传播器以及光发送接收系统 |
CN212647059U (zh) * | 2020-08-27 | 2021-03-02 | 中兴光电子技术有限公司 | 光组件及其光通信模块 |
WO2022042721A1 (zh) * | 2020-08-28 | 2022-03-03 | 中兴通讯股份有限公司 | 光收发器装置和光网络系统 |
CN115128746A (zh) * | 2022-05-26 | 2022-09-30 | 武汉永鼎光通科技有限公司 | 一种小型化三发三收光组件及其封装模块 |
-
2022
- 2022-11-28 CN CN202211501836.0A patent/CN118102148A/zh active Pending
-
2023
- 2023-06-28 WO PCT/CN2023/103297 patent/WO2024113812A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006042252A (ja) * | 2004-07-30 | 2006-02-09 | Kddi Corp | 光伝送システム及び光ネットワーク |
CN103765265A (zh) * | 2011-09-27 | 2014-04-30 | 日本电信电话株式会社 | 光合路分路器、双向光传播器以及光发送接收系统 |
CN212647059U (zh) * | 2020-08-27 | 2021-03-02 | 中兴光电子技术有限公司 | 光组件及其光通信模块 |
WO2022042721A1 (zh) * | 2020-08-28 | 2022-03-03 | 中兴通讯股份有限公司 | 光收发器装置和光网络系统 |
CN115128746A (zh) * | 2022-05-26 | 2022-09-30 | 武汉永鼎光通科技有限公司 | 一种小型化三发三收光组件及其封装模块 |
Also Published As
Publication number | Publication date |
---|---|
CN118102148A (zh) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11916600B2 (en) | Receiver optical sub-assembly, combo bi-directional optical sub- assembly, combo optical module, OLT, and PON system | |
WO2021004387A1 (zh) | 一种tosa、bosa、光模块以及光网络设备 | |
US8655183B2 (en) | Optical transceiver that maintains a bend diameter of an internal optical fiber and method of assembling same | |
US8805191B2 (en) | Optical transceiver including optical fiber coupling assembly to increase usable channel wavelengths | |
CN107360481B (zh) | 光组件和光线路终端 | |
US20210149129A1 (en) | Receiver Optical Subassembly, Combo Transceiver Subassembly, Combo Optical Module, Communications Apparatus, and PON System | |
WO2019173998A1 (zh) | 光接收、组合收发组件、组合光模块、olt及pon系统 | |
US7127133B2 (en) | Monolithically integrated optic triplexer and method for making same | |
CN113596634A (zh) | 一种Combo PON OLT单片集成芯片及其光组件 | |
WO2024113812A1 (zh) | 光器件、光线路终端及无源光纤网络系统 | |
CN116346238A (zh) | 一种50g无源光纤网络接收端组件 | |
CN219644037U (zh) | 光器件、光线路终端及无源光纤网络系统 | |
KR20120056480A (ko) | 양방향 광송수신 모듈 및 그의 티오-캔 패키지 | |
US20230370754A1 (en) | Integrated optical transceiver apparatus and optical line terminal | |
WO2024051288A1 (zh) | 双向光组件以及光模块 | |
CN215575811U (zh) | 一种光接收器和光模块 | |
WO2022007585A1 (zh) | 一种pic芯片、光模块和光网络设备 | |
CN116088100A (zh) | 一种50gpon波分复用无源光器件 | |
CN118050861A (zh) | 一种光组件及其工作方法 | |
CN115857110A (zh) | 一种50gpon小角度波分复用无源光器件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23895976 Country of ref document: EP Kind code of ref document: A1 |