WO2024113645A1 - 直流降压转换器及降压装置 - Google Patents

直流降压转换器及降压装置 Download PDF

Info

Publication number
WO2024113645A1
WO2024113645A1 PCT/CN2023/089196 CN2023089196W WO2024113645A1 WO 2024113645 A1 WO2024113645 A1 WO 2024113645A1 CN 2023089196 W CN2023089196 W CN 2023089196W WO 2024113645 A1 WO2024113645 A1 WO 2024113645A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch tube
inductor
module
channel module
voltage
Prior art date
Application number
PCT/CN2023/089196
Other languages
English (en)
French (fr)
Inventor
曾文良
林智声
路延
冼世荣
马许愿
Original Assignee
澳门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 澳门大学 filed Critical 澳门大学
Publication of WO2024113645A1 publication Critical patent/WO2024113645A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the field of power electronics technology, and in particular to a direct current step-down converter and a step-down device.
  • the DC voltage is usually stepped down due to practical needs, which can be achieved using a DC step-down converter.
  • the DC step-down converter used in the prior art is usually an inductive converter or a capacitive converter.
  • the inductive converter has a wider output power and better dynamic response; while the capacitive converter has a relatively large energy density. In actual use, one of them is usually selected according to the usage scenario.
  • the present disclosure provides a DC step-down converter, comprising: a voltage input module, a first inductor channel module, a second inductor channel module and a voltage output module;
  • the voltage input module is connected to the first inductance channel module and the second inductance channel module respectively, and the voltage output module is connected to the first inductance channel module and the second inductance channel module respectively;
  • the first inductor channel module and the second inductor channel module each include at least one switch tube, an inductor and a flying capacitor.
  • the first inductor channel module and the second inductor channel module are respectively used to switch the on and off states of the switch tube under the control of an external control signal, and to reduce the voltage from the voltage input module based on the inductor and the flying capacitor, and output the reduced voltage through the voltage output module.
  • the first inductor channel module includes: a first switch tube, a second switch tube, a third switch tube, The first flying capacitor and the first inductor;
  • the first end of the first switch tube is connected to the voltage input module, and the second end of the first switch tube is respectively connected to the first end of the first flying capacitor and the first end of the second switch tube; the second end of the second switch tube is connected to the voltage output module, the second end of the first flying capacitor is respectively connected to the first end of the first inductor and the first end of the third switch tube, and the second end of the first inductor is connected to the voltage output module; the second end of the third switch tube is grounded.
  • the first switch tube, the second switch tube and the third switch tube are all switch power tubes.
  • the second inductor channel module includes: a fourth switch tube, a fifth switch tube, a sixth switch tube, a second flying capacitor, and a second inductor;
  • the first end of the fourth switch tube is connected to the voltage input module, and the second end of the fourth switch tube is respectively connected to the first end of the second flying capacitor and the first end of the fifth switch tube; the second end of the fifth switch tube is connected to the voltage output module, the second end of the second flying capacitor is respectively connected to the first end of the second inductor and the first end of the sixth switch tube, and the second end of the second inductor is connected to the voltage output module; the second end of the sixth switch tube is grounded.
  • the fourth switch tube, the fifth switch tube and the sixth switch tube are all switch power tubes.
  • the voltage input module includes: a seventh switch tube, an eighth switch tube and an input capacitor;
  • the first end of the seventh switch tube is connected to the input voltage
  • the second end of the seventh switch tube is respectively connected to the first end of the fourth switch tube and the first end of the input capacitor
  • the second end of the input capacitor is respectively connected to the first end of the first switch tube and the first end of the eighth switch tube
  • the second end of the eighth switch tube is grounded.
  • the seventh switch tube and the eighth switch tube are both switch power tubes.
  • the voltage output module includes: a load unit;
  • the first end of the load unit is connected to the first inductor channel module and the second inductor channel module respectively, the second end of the load unit is grounded, and the third end of the load unit is used for outputting voltage.
  • the load unit includes: a load capacitor and a load resistor;
  • the first end of the load capacitor is connected to the first inductor channel module and the second inductor channel module respectively, and the second end of the load capacitor is grounded;
  • the first end of the load resistor is connected to the first inductor channel module and the second inductor channel module respectively, and the second end of the load resistor is grounded.
  • the present invention also provides a step-down device, the step-down device comprising any one of the above-mentioned DC step-down converters. and a control circuit, wherein the control circuit is connected to the control end of each switch tube in the DC step-down converter, and the control circuit is used to output an external control signal to each switch tube.
  • control circuit includes a central processing unit or a microprocessor.
  • the present disclosure also provides use of the DC step-down converter or the step-down device described in any of the above items in automobiles, 5G base stations, factory automation equipment, Internet of Things devices and portable products.
  • FIG1 is a schematic structural diagram of a DC buck converter provided in an embodiment of the present disclosure
  • FIG2 is a schematic structural diagram of a first inductor channel module in a DC buck converter provided in an embodiment of the present disclosure
  • FIG3 is a schematic structural diagram of a second inductor channel module in a DC buck converter provided in an embodiment of the present disclosure
  • FIG4 is a schematic diagram of the structure of a voltage input module in a DC buck converter provided in an embodiment of the present disclosure
  • FIG5 is a schematic diagram of the structure of a voltage output module in a DC buck converter provided in an embodiment of the present disclosure
  • FIG6 is another schematic diagram of the structure of a voltage output module in a DC buck converter provided in an embodiment of the present disclosure
  • FIG7 is a schematic diagram of the overall structure of a DC buck converter provided in an embodiment of the present disclosure.
  • FIG8 is an equivalent circuit diagram of a DC buck converter state change according to an embodiment of the present disclosure.
  • FIG9 is a diagram showing a relationship between current changes corresponding to periodic changes in a DC buck converter provided in an embodiment of the present disclosure
  • FIG. 10 is a schematic structural diagram of a pressure reduction device provided in an embodiment of the present disclosure.
  • Icons 10-DC buck converter; 20-control circuit; 100-voltage input module; 200-first inductor channel module; 300-second inductor channel module; 400-voltage output module; 410-load unit; M1-first switch tube; M2-second switch tube; M3-third switch tube; M4-fourth switch tube; M5-fifth switch tube; M6-sixth switch tube; M7-seventh switch tube; M8-eighth switch tube; Cf1-first flying capacitor; Cf2-second flying capacitor; L1-first inductor; L2-second inductor; Cin-input capacitor; Vin-external voltage connected to the voltage input circuit; C0-load Capacitor; R0-load resistance; V out - the voltage output by the voltage output circuit.
  • a DC voltage converter is usually required to step down high voltage to low voltage to power sub-components.
  • the power supply plant of new energy vehicles is the on-board 12V or 24V lead-acid battery.
  • the power supply voltage usually required is 1V or 1.8V, 3V and other small voltages. If these subsystem modules are to be powered, the DC high voltage needs to be stepped down to obtain a low voltage.
  • the DC step-down converter used in the prior art is usually an inductive converter or a capacitive converter.
  • the inductive converter has a wider output power and better dynamic response; while the capacitive converter has a relatively large energy density. In actual use, one of them is usually selected according to the usage scenario.
  • a DC buck converter is provided in an embodiment of the present disclosure.
  • the structure and working principle of the DC buck converter provided in the embodiment of the present disclosure are explained below.
  • FIG1 is a schematic diagram of the structure of a DC buck converter provided in an embodiment of the present disclosure.
  • the DC buck converter includes: a voltage input module 100, a first inductor channel module 200, and a second inductor channel module 300 and a voltage output module 400 .
  • the voltage input module 100 is connected to the first inductor channel module 200 and the second inductor channel module 300 respectively
  • the voltage output module 400 is connected to the first inductor channel module 200 and the second inductor channel module 300 respectively
  • the first inductor channel module 200 and the second inductor channel module 300 both include at least one switch tube, an inductor and a flying capacitor
  • the first inductor channel module 200 and the second inductor channel module 300 are respectively used to switch the on and off states of the switch tube under the control of an external control signal, and reduce the voltage from the voltage input module 100 based on the inductor and the flying capacitor, and output the reduced voltage through the voltage output module 400.
  • the voltage input module 100 can receive an external input voltage, and the input voltage can be a relatively large DC voltage, which can be stepped down by the DC step-down converter, for example, a DC voltage provided by an external power supply.
  • the voltage output module 400 can output a stepped-down voltage, which can be a voltage obtained by stepping down the input voltage through the DC step-down converter, and can be output to an internal electronic system, such as an internal electronic system in a new energy vehicle.
  • the first inductor channel module 200 can provide two channels for the DC buck converter
  • the second inductor channel module 300 can also provide two channels for the DC buck converter.
  • the connectivity switching of each channel can be achieved through the switch tubes therein, and the inductors and flying capacitors in the first inductor channel module 200 and the second inductor channel module 300 can achieve voltage reduction processing for the input voltage.
  • a DC buck converter may include a voltage input module, a first inductor channel module, a second inductor channel module and a voltage output module, wherein the voltage input module is connected to the first inductor channel module and the second inductor channel module respectively, and the voltage input module is connected to the first inductor channel module and the second inductor channel module respectively, and each inductor channel module can switch the on-off state of a switch tube in the inductor channel module under the control of an external control signal, thereby realizing channel conversion; and, based on reducing the voltage from the voltage input module by using an inductor and a flying capacitor, and outputting the stepped-down voltage through the voltage output module, the voltage of the input DC power can be reduced, thereby realizing DC-DC step-down conversion, and, since each inductor channel module includes a flying capacitor and an inductor, it can also have a wider output power and better dynamic response while having the advantages of a higher energy density, thereby realizing voltage output.
  • FIG2 is a schematic diagram of the structure of a first inductor channel module in a DC buck converter provided in an embodiment of the present disclosure.
  • the first inductor channel module 200 optionally includes: a first switch tube M1, a second switch tube M2, a third switch tube M3, a first flying capacitor Cf1, and a first inductor L1;
  • the first end of the first switch tube M1 (the end close to the voltage input module 100) is connected to the voltage input module 100, and the second end of the first switch tube M1 (the end away from the voltage input module 100) is respectively connected to the first end of the first flying capacitor Cf1 (the end close to the first switch tube M1) and the first end of the second switch tube M2 (the end close to the first switch tube M1); the second end of the second switch tube M2 (the end away from the first switch tube M1) is connected to the voltage output module 400, the second end of the first flying capacitor Cf1 (the end away from the first switch tube M1) is respectively connected to the first end of the first inductor L1 (the end away from the second switch tube M2) and the first end of the third switch tube M3 (the end close to the second switch tube M2), the second end of the first inductor L1 (the end close to the second switch tube M2) is connected to the voltage output module 400; the second end of the third switch tube M3 (the end away from the second switch tube M2)
  • the first switch tube M1 , the second switch tube M2 , and the third switch tube M3 are all switch power tubes.
  • the first switch tube M1 can control the conduction state of the entire first inductor channel module 200
  • the second switch tube M2 can control the conduction state of one channel of the first inductor channel module 200
  • the third switch tube M3 can control whether the first inductor channel module 200 is grounded.
  • the switching tube can include two states, on and off, which is equivalent to the function of a switch.
  • On it is equivalent to a short circuit in the corresponding circuit and can be regarded as a wire;
  • the switching tube is off, it is equivalent to a break in the corresponding circuit and can be regarded as no connection.
  • the switch tube may also have a control end, which may be controlled by an external signal, and the on-off state of the switch tube may be changed by the external signal. For example, when the switch tube is in the on state, the on state may be changed to the off state by the corresponding external signal.
  • the DC buck converter may include four working states. In different working states, the on-off states of the switches may be different. In state 1, the first switch M1 is turned on, the second switch M2 and the third switch M3 are turned off, the first flying capacitor Cf1 is charged, and the first inductor L1 is magnetized.
  • the first switch tube M1 is turned off, the second switch tube M2 and the third switch tube M3 are turned on, the first flying capacitor Cf1 is discharged, and the first inductor L1 is demagnetized.
  • State 4 is the same as state 2.
  • the working state of the DC step-down sensor can be switched in the order of state 1 ⁇ state 2 ⁇ state 3 ⁇ state 4, and after state 4 ends, state 1 can be re-entered to enter the cycle.
  • FIG3 is a schematic diagram of the structure of the second inductor channel module in the DC buck converter provided in an embodiment of the present disclosure.
  • the second inductor channel module 300 includes: a fourth switch tube M4, a fifth switch tube M5, a sixth switch tube M6, a second flying capacitor Cf2, and a second inductor L2.
  • the first end of the fourth switch tube M4 (the end close to the voltage input module 100) is connected to the voltage input module 100
  • the second end of the fourth switch tube M4 (the end away from the voltage input module 100) is respectively connected to the first end of the second flying capacitor Cf2 (the end close to the fourth switch tube M4) and the first end of the fifth switch tube M5 (the end close to the fourth switch tube M4)
  • the second end of the fifth switch tube M5 (the end away from the fourth switch tube M4) is connected to the voltage output module 400
  • the second end of the second flying capacitor Cf2 (the end away from the fourth switch tube M4) is respectively connected to the first end of the second inductor L2 (the end away from the fifth switch tube M5) and the first end of the sixth switch tube M6 (the end close to the fifth switch tube M5)
  • the second end of the second inductor L2 (the end close to the fifth switch tube M5) is connected to the voltage output module 400
  • the second end of the sixth switch tube M6 (the end away from the fifth
  • the fourth switch tube M4 , the fifth switch tube M5 , and the sixth switch tube M6 are all switch power tubes.
  • the fourth switch tube M4 can control the conduction state of the entire second inductor channel module 300
  • the fifth switch tube M5 can control the conduction state of one channel of the second inductor channel module 300
  • the sixth switch tube M6 can control whether the second inductor channel module 300 is grounded.
  • state 2/state 4 the fourth switch tube M4 is turned off, the fifth switch tube M5 and the sixth switch tube M6 are turned on, the second flying capacitor Cf2 is discharged, and the second inductor L2 is demagnetized.
  • a DC step-down converter provided in the embodiment of the present disclosure can achieve voltage reduction processing through a first inductor channel module and a second inductor channel module, and can change the charge and discharge states of the inductor and the flying capacitor by changing the conduction form of the on-off switching circuit between different switch tubes, thereby achieving DC voltage step-down conversion.
  • the inductor and the flying capacitor can have a wider output power and better dynamic response while having the advantage of higher energy density to achieve voltage output.
  • FIG4 is a schematic diagram of the structure of a voltage input module in a DC buck converter provided in an embodiment of the present disclosure.
  • the voltage input module 100 includes a seventh switch tube M7 , an eighth switch tube M8 , and an input capacitor Cin.
  • the first end of the seventh switch tube M7 (the end away from the second inductor channel module 300) is connected to the input voltage (i.e., Vin)
  • the second end of the seventh switch tube M7 (the end close to the second inductor channel module 300) is respectively connected to the first end of the fourth switch tube M4 (the end close to the voltage input module 100) and the first end of the input capacitor Cin (the end away from the second inductor channel module 300)
  • the second end of the input capacitor Cin (the end close to the second inductor channel module 300) is respectively connected to the first end of the first switch tube M1 (the end close to the voltage input module 100) and the first end of the eighth switch tube M8 (the end away from the second inductor channel module 300)
  • the second end of the eighth switch tube M8 (the end close to the second inductor channel module 300) is grounded.
  • the seventh switch tube M7 and the eighth switch tube M8 are both switch power tubes.
  • the seventh switch tube M7 can control the conduction state of the entire voltage input module 100
  • the eighth switch tube M8 can control whether the voltage input module 100 is grounded.
  • FIG5 is a schematic structural diagram of a voltage output module in a DC buck converter provided in an embodiment of the present disclosure.
  • the voltage output module 400 includes: a load unit 410 .
  • the first end of the load unit 410 (the end close to the first inductor channel module 200) is respectively connected to the first inductor channel module 200 and the second inductor channel module 300, the second end of the load unit 410 (the end close to the ground) is grounded, and the third end of the load unit 410 (the end close to the voltage output by the voltage output circuit) is used for outputting voltage (i.e., V out ).
  • the load unit 410 may include various types of load elements, such as resistors, capacitors, etc., which are not limited here.
  • circuit structure connection relationship that may be included in the load unit in the voltage output module provided in the embodiment of the present disclosure.
  • FIG6 is another schematic diagram of the structure of the voltage output module in the DC buck converter provided in an embodiment of the present disclosure.
  • the load unit 410 includes: a load capacitor C0 and a load resistor R0.
  • the first end of the load capacitor C0 (the end close to the first inductor channel module 200) is respectively connected to the first inductor channel module 200 and the second inductor channel module 300, and the second end of the load capacitor C0 (the end away from the first inductor channel module 200) is grounded;
  • the first end of the load resistor R0 (the end close to the first inductor channel module 200) is respectively connected to the first inductor channel module 200 and the second inductor channel module 300, and the second end of the load resistor R0 (the end away from the first inductor channel module 200) is grounded.
  • the load capacitor C0 and the load resistor R0 can be used as an output load to output the stepped-down voltage to other external devices through the third terminal (the terminal close to the voltage output by the voltage output circuit) of the load unit 410 .
  • FIG7 is a schematic diagram of the overall structure of a DC buck converter provided in an embodiment of the present disclosure. Please refer to FIG7 , which shows the overall structure of the DC buck converter.
  • the first end of the first switch tube M1 (the end close to the voltage input module 100) is connected to the second end of the input capacitor Cin in the voltage input module 100 (the end close to the second inductor channel module 300), and the second end of the first switch tube M1 (the end far away from the voltage input module 100) is connected to the first end of the first flying capacitor Cf1.
  • the first inductor L1 is connected to the first end of the load capacitor C0 (one end close to the first switch tube M1) and the first end of the load resistor R0 (one end close to the first inductor channel module 200) in the voltage output module 400.
  • the second end of the first flying capacitor Cf1 (one end away from the first switch tube M1) is respectively connected to the first end of the first inductor L1 (one end away from the second switch tube M2) and the first end of the third switch tube M3 (one end close to the second switch tube M2).
  • the second end of the first inductor L1 (one end close to the second switch tube M2) is connected to the first end of the load capacitor C0 (one end close to the first inductor channel module 200) and the first end of the load resistor R0 (one end close to the first inductor channel module 200) in the voltage output module 400.
  • the second end of the third switch tube M3 (one end away from the second switch tube M2) is grounded.
  • the first end of the fourth switch tube M4 (the end close to the voltage input module 100) is connected to the first end of the input capacitor Cin in the voltage input module 100 (the end away from the second inductor channel module 300), and the second end of the fourth switch tube M4 (the end away from the voltage input module 100) is respectively connected to the first end of the second flying capacitor Cf2 (the end close to the fourth switch tube M4) and the first end of the fifth switch tube M5 (the end close to the fourth switch tube M4); the second end of the fifth switch tube M5 (the end away from the fourth switch tube M4) is connected to the first end of the load capacitor C0 in the voltage output module 400 (the end close to the first inductor channel module 200) and the first end of the load resistor R0 (the end close to the first inductor channel module 200).
  • the second end of the second flying capacitor Cf2 (the end away from the fourth switch tube M4) is respectively connected to the first end of the second inductor L2 (the end away from the fifth switch tube M5) and the first end of the sixth switch tube M6 (the end close to the fifth switch tube M5), the second end of the second inductor L2 (the end close to the fifth switch tube M5) is connected to the first end of the load capacitor C0 in the voltage output module 400 (the end close to the first inductor channel module 200) and the first end of the load resistor R0 (the end close to the first inductor channel module 200); the second end of the sixth switch tube M6 (the end away from the fifth switch tube M5) is grounded.
  • the first end of the seventh switch tube M7 (the end away from the second inductor channel module 300) is connected to the input voltage
  • the second end of the seventh switch tube M7 (the end close to the second inductor channel module 300) is respectively connected to the first end of the fourth switch tube M4 (the end close to the voltage input module 100) and the first end of the input capacitor Cin (the end away from the second inductor channel module 300)
  • the second end of the input capacitor Cin (the end close to the second inductor channel module 300) is respectively connected to the first end of the first switch tube M1 (the end close to the voltage input module 100) and the first end of the eighth switch tube M8 (the end away from the second inductor channel module 300)
  • the second end of the eighth switch tube M8 (the end close to the second inductor channel module 300) is grounded.
  • the second end of the load capacitor C0 (the end away from the first inductor channel module 200) is grounded, the second end of the load resistor R0 (the end away from the first inductor channel module 200) is grounded, and the first end of the load capacitor C0 (the end close to the first inductor channel module 200) and the first end of the load resistor R0 (the end close to the first inductor channel module 200) also output the stepped-down voltage to other external devices.
  • each inductor channel module can switch the on-off state of the switch tube in the inductor channel module under the control of an external control signal, thereby realizing channel conversion; and, based on reducing the voltage from the voltage input module by the inductor and the flying capacitor, and outputting the stepped-down voltage through the voltage output module, the voltage of the input DC power can be reduced, thereby realizing DC-DC step-down conversion, and, since each inductor channel module includes a flying capacitor and an inductor, it is also possible to achieve higher conversion efficiency and better dynamic response with a wider output power range while having the advantage of greater energy density to realize voltage output.
  • Figure 8 is an equivalent circuit diagram of the state change of the DC buck converter provided in an embodiment of the present disclosure. Please refer to Figure 8, wherein (a) in Figure 8 represents the equivalent circuit diagram of state one, (b) in Figure 8 represents the equivalent circuit diagram of state two, (c) in Figure 8 represents the equivalent circuit diagram of state three, and (d) in Figure 8 represents the equivalent circuit diagram of state four.
  • state 2 and state 4 are exactly the same, and the only difference is the timing.
  • the first switch tube M1, the fifth switch tube M5, the sixth switch tube M6 and the seventh switch tube M7 are turned on, the second switch tube M2, the third switch tube M3, the fourth switch tube M4 and the eighth switch tube M8 are turned off, the first flying capacitor Cf1 is charged, the first inductor L1 is charged, the second flying capacitor Cf2 is discharged, and the second inductor L2 is discharged.
  • the second switch tube M2, the third switch tube M3, the fifth switch tube M5 and the sixth switch tube M6 are turned on, the first switch tube M1, the fourth switch tube M4, the seventh switch tube M7 and the eighth switch tube M8 are turned off, the first flying capacitor Cf1 is discharged, the first inductor L1 is discharged, the second flying capacitor Cf2 is discharged, and the second inductor L2 is discharged.
  • the second switch tube M2, the third switch tube M3, the fourth switch tube M4 and the eighth switch tube M8 are turned on, the first switch tube M1, the fifth switch tube M5, the sixth switch tube M6 and the seventh switch tube M7 are turned off, the first flying capacitor Cf1 is discharged, the first inductor L1 is discharged, the second flying capacitor Cf2 is charged, and the second inductor L2 is charged.
  • Vin is the external voltage connected to the voltage input circuit
  • V Cin is the voltage of the input capacitor
  • V f1 is the voltage of the first flying capacitor
  • V out is the voltage output by the voltage output circuit
  • D is the on-duty ratio of the DC buck converter in state one and state three.
  • V f2 is the voltage of the second flying capacitor.
  • V Cin 1/2Vin Formula (4)
  • M D / [2 (1 + D)] (D ⁇ 0.5) Formula (5);
  • M is the conversion rate of voltage step-down. Based on the above-arranged formula, it can be obtained that the input capacitor Cin bears half of the input voltage, and the first flying capacitor Cf1 and the second flying capacitor Cf2 bear an output voltage, thereby reducing the switching voltage of each switch tube, reducing the switching loss, and ultimately bringing about an improvement in conversion efficiency.
  • FIG9 is a current change relationship diagram corresponding to periodic changes in a DC buck converter provided in an embodiment of the present disclosure. Referring to FIG9 , relevant mathematical calculations can be performed in combination with the equivalent circuit diagrams in FIG8 . The calculation process is as follows:
  • I in is the input current
  • I C1 is the current passing through the first flying capacitor Cf1.
  • FIG. 9 shows the on and off states of each switch tube in different states and the current changes through the first inductor L1 and the second inductor L2 .
  • the switch tube shown in FIG9 is 1 when it is turned on, and is 0 when it is turned off.
  • FIG10 is a schematic diagram of the structure of a step-down device provided in an embodiment of the present disclosure. Please refer to FIG10 .
  • the step-down device includes a DC step-down converter 10 and a control circuit 20.
  • the control circuit 20 is connected to the control end of each switch tube in the DC step-down converter 10.
  • the control circuit 20 is used to output an external control signal to each switch tube.
  • control circuit 20 can be a circuit in any controller, such as a CPU (Central Processing Unit) or an MCU (Microcontroller Unit).
  • the duty cycle can be adjusted by pulse width modulation to achieve control of the output voltage.
  • the step-down device may include a voltage input module, a first inductance channel module, a second inductance channel module and a voltage output module, wherein the voltage input module is connected to the first inductance channel module and the second inductance channel module respectively, and the voltage input module is connected to the first inductance channel module and the second inductance channel module respectively, and each inductance channel module can switch the on-off state of the switch tube in the inductance channel module under the control of an external control signal, thereby realizing the conversion of the channel; and, based on the inductance and the flying capacitor to reduce the voltage from the voltage input module, and outputting the stepped-down voltage through the voltage output module, the voltage of the input DC power can be reduced, thereby realizing the DC-DC step-down conversion, and, since each inductance channel module includes The flying capacitors and inductors can also achieve higher conversion efficiency and better dynamic response in a wider output power range while having the advantage of greater energy density to achieve voltage output.
  • the DC step-down converter and step-down device provided by the present disclosure can achieve higher conversion efficiency and better dynamic response in a wider output power range while having the advantage of greater energy density, and therefore have excellent practical performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本公开提供一种直流降压转换器及降压装置,属于电力电子技术领域。直流降压转换器包括:电压输入模块、第一电感通道模块、第二电感通道模块以及电压输出模块;电压输入模块分别与第一电感通道模块以及第二电感通道模块连接;第一电感通道模块以及第二电感通道模块中均包括至少一个开关管、电感以及飞电容,第一电感通道模块和第二电感通道模块分别用于在外部控制信号的控制下,切换开关管的通断状态,以及基于电感以及飞电容降低来自电压输入模块的电压,并通过电压输出模块输出降压后的电压。本公开可以在具有较宽的输出功率范围达到较高的转换效率以及更好的动态响应的同时,兼具能量密度较大的优势。

Description

直流降压转换器及降压装置
相关申请的交叉引用
本公开要求于2022年11月30日提交中国专利局的申请号为CN202211523401.6、名称为“直流降压转换器及降压装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电力电子技术领域,具体而言,涉及一种直流降压转换器及降压装置。
背景技术
在集成电路中,通常由于实际需求会对直流电压进行降压处理,具体可以使用直流降压转换器来实现。
现有技术中使用的直流降压转换器通常使用的是电感型转换器或者电容型转换器,其中,电感型转换器有较宽的输出功率以及更好的动态响应;而电容型转换器能量密度相对较大,在实际使用时通常会根据使用场景选择其中的一种使用。
然而,在部分场景中,例如:新能源汽车等,通常需要兼具上述两种转换器的优势,这就导致仅仅使用其中的一种转换器不能满足实际需求。
发明内容
本公开提供一种直流降压转换器,包括:电压输入模块、第一电感通道模块、第二电感通道模块以及电压输出模块;
所述电压输入模块分别与所述第一电感通道模块以及所述第二电感通道模块连接,所述电压输出模块分别与所述第一电感通道模块以及所述第二电感通道模块连接;
所述第一电感通道模块以及所述第二电感通道模块中均包括至少一个开关管、电感以及飞电容,所述第一电感通道模块和所述第二电感通道模块分别用于在外部控制信号的控制下,切换所述开关管的通断状态,以及基于所述电感以及所述飞电容降低来自所述电压输入模块的电压,并通过所述电压输出模块输出降压后的电压。
可选地,所述第一电感通道模块包括:第一开关管、第二开关管、第三开关管、 第一飞电容、第一电感;
所述第一开关管的第一端与所述电压输入模块连接,所述第一开关管的第二端分别与所述第一飞电容的第一端以及所述第二开关管的第一端连接;所述第二开关管的第二端与所述电压输出模块连接,所述第一飞电容的第二端分别与所述第一电感的第一端以及所述第三开关管的第一端连接,所述第一电感的第二端与所述电压输出模块连接;所述第三开关管的第二端接地。
可选地,所述第一开关管、所述第二开关管以及所述第三开关管均为开关功率管。
可选地,所述第二电感通道模块包括:第四开关管、第五开关管、第六开关管、第二飞电容、第二电感;
所述第四开关管的第一端与所述电压输入模块连接,所述第四开关管的第二端分别与所述第二飞电容的第一端以及所述第五开关管的第一端连接;所述第五开关管的第二端与所述电压输出模块连接,所述第二飞电容的第二端分别与所述第二电感的第一端以及所述第六开关管的第一端连接,所述第二电感的第二端与所述电压输出模块连接;所述第六开关管的第二端接地。
可选地,所述第四开关管、所述第五开关管以及所述第六开关管均为开关功率管。
可选地,所述电压输入模块包括:第七开关管、第八开关管以及输入电容;
所述第七开关管的第一端接入输入电压,所述第七开关管的第二端分别与所述第四开关管的第一端以及所述输入电容的第一端连接,所述输入电容的第二端分别与所述第一开关管的第一端以及所述第八开关管的第一端连接,所述第八开关管的第二端接地。
可选地,所述第七开关管以及所述第八开关管均为开关功率管。
可选地,所述电压输出模块包括:负载单元;
所述负载单元的第一端分别连接所述第一电感通道模块、第二电感通道模块,所述负载单元的第二端接地,所述负载单元的第三端用于输出电压。
可选地,所述负载单元包括:负载电容以及负载电阻;
所述负载电容的第一端分别连接所述第一电感通道模块、第二电感通道模块,所述负载电容的第二端接地;
所述负载电阻的第一端分别连接所述第一电感通道模块、第二电感通道模块,所述负载电阻的第二端接地。
本公还提供一种降压装置,所述降压装置包括上文任一项所述的直流降压转换器 以及控制电路,所述控制电路与所述直流降压转换器中各个开关管的控制端连接,所述控制电路用于向各开关管输出外部控制信号。
可选地,所述控制电路包括中央处理器或微处理器中的一种。
本公开还提供上文任一项所述的直流降压转换器或者所述降压装置在汽车、5G基站、工厂自动化设备、物联网设备和便携式产品中的用途。
附图说明
为了更清楚地说明本公开实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施方式,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施方式提供的直流降压转换器的结构示意图;
图2为本公开实施方式提供的直流降压转换器中第一电感通道模块的结构示意图;
图3为本公开实施方式提供的直流降压转换器中第二电感通道模块的结构示意图;
图4为本公开实施方式提供的直流降压转换器中电压输入模块的结构示意图;
图5为本公开实施方式提供的直流降压转换器中电压输出模块的结构示意图;
图6为本公开实施方式提供的直流降压转换器中电压输出模块的另一结构示意图;
图7为本公开实施方式提供的直流降压转换器的整体结构示意图;
图8为本公开实施方式提供的直流降压转换器状态变化的等效电路图;
图9为本公开实施方式提供的直流降压转换器中周期变化对应的电流变化关系图;
图10为本公开实施方式提供的降压装置的结构示意图。
图标:10-直流降压转换器;20-控制电路;100-电压输入模块;200-第一电感通道模块;300-第二电感通道模块;400-电压输出模块;410-负载单元;M1-第一开关管;M2-第二开关管;M3-第三开关管;M4-第四开关管;M5-第五开关管;M6-第六开关管;M7-第七开关管;M8-第八开关管;Cf1-第一飞电容;Cf2-第二飞电容;L1-第一电感;L2-第二电感;Cin-输入电容;Vin-电压输入电路所接入的外部电压;C0-负载 电容;R0-负载电阻;Vout-电压输出电路所输出的电压。
具体实施方式
为使本公开实施方式的目的、技术方案和优点更加清楚,下面将结合本公开实施方式中的附图,对本公开实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本公开一部分实施方式,而不是全部的实施方式。通常在此处附图中描述和示出的本公开实施方式的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施方式的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施方式。基于本公开中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
需要说明的是,在电力电子领域中,通常需要使用直流电压转换器将高电压降压为低电压实现子部件的供电,例如:新能源汽车,新能源汽车的供电工厂是车载的12V或者24V的铅酸电池,对于其中的子系统模块,通常需要使用的供电电压时1V或者1.8V、3V等小电压,若要对这些子系统模块进行供电,则需要将直流高电压进行降压处理,得到低电压。
现有技术中使用的直流降压转换器通常使用的是电感型转换器或者电容型转换器,其中,电感型转换器有较宽的输出功率以及更好的动态响应;而电容型转换器能量密度相对较大,在实际使用时通常会根据使用场景选择其中的一种使用。
然而在实际使用过程中,由于场景的实际需求或者对供电性能的实际需求等,通常需要采用兼备上述两种电压转换器的优势,仅仅采用其中的一种并不能满足实际的需求。
为了解决现有技术中存在的上述问题,本公开实施方式中提供了一种直流降压转换器,下面来解释本公开实施方式中提供的直流降压转换器的结构以及工作原理。
图1为本公开实施方式提供的直流降压转换器的结构示意图,请参照图1,直流降压转换器,包括:电压输入模块100、第一电感通道模块200、第二电感通道模块 300以及电压输出模块400。
其中,电压输入模块100分别与第一电感通道模块200以及第二电感通道模块300连接,电压输出模块400分别与第一电感通道模块200以及第二电感通道模块300连接;第一电感通道模块200以及第二电感通道模块300两者中均包括至少一个开关管、电感以及飞电容,第一电感通道模块200和第二电感通道模块300分别用于在外部控制信号的控制下,切换开关管的通断状态,以及基于电感以及飞电容降低来自电压输入模块100的电压,并通过电压输出模块400输出降压后的电压。
在一些实施方式中,电压输入模块100可以接收外部输入的电压,该输入电压可以是一个较大的直流电压,可以通过该直流降压转换器进行降压处理。例如:可以是外部供电电源提供的直流电压。
电压输出模块400可以输出降压后的电压,该输出电压可以是输入电压通过该直流降压转换器进行降压处理之后得到的电压,可以输出给内部用电子系统,例如:新能源汽车中的内部用电子系统。
在一些实施方式中,第一电感通道模块200可以为直流降压转换器提供两条通道,第二电感通道模块300也可以为直流降压转换器提供两条通道,通过其中的开关管可以实现各个通道的连通切换,第一电感通道模块200和第二电感通道模块300中的电感以及飞电容可以实现对输入电压的降压处理。
本公开实施方式提供的一种直流降压转换器,可以包括电压输入模块、第一电感通道模块、第二电感通道模块以及电压输出模块,其中,电压输入模块分别与第一电感通道模块以及第二电感通道模块连接,电压输入模块分别与第一电感通道模块以及第二电感通道模块连接,各电感通道模块可以在外部控制信号的控制下,切换该电感通道模块中的开关管的通断状态,从而实现通道的变换;并且,基于电感以及飞电容降低来自电压输入模块的电压,并通过电压输出模块输出降压后的电压,可以将输入的直流电的电压降低,从而可以实现将直流-直流的降压转换,并且,由于各电感通道模块中均包括飞电容以及电感,也可以在具有较宽的输出功率以及更好的动态响应的同时,兼具能量密度较大的优势,实现电压的输出。
下面来解释本公开实施方式中提供的第一电感通道模块的结构以及其相关的连接关系。
图2为本公开实施方式提供的直流降压转换器中第一电感通道模块的结构示意图,请参照图2,可选地,第一电感通道模块200包括:第一开关管M1、第二开关管 M2、第三开关管M3、第一飞电容Cf1、第一电感L1;
第一开关管M1的第一端(靠近电压输入模块100的一端)与电压输入模块100连接,第一开关管M1的第二端(远离电压输入模块100的一端)分别与第一飞电容Cf1的第一端(靠近第一开关管M1的一端)以及第二开关管M2的第一端(靠近第一开关管M1的一端)连接;第二开关管M2的第二端(远离第一开关管M1的一端)与电压输出模块400连接,第一飞电容Cf1的第二端(远离第一开关管M1的一端)分别与第一电感L1的第一端(远离第二开关管M2的一端)以及第三开关管M3的第一端(靠近第二开关管M2的一端)连接,第一电感L1的第二端(靠近第二开关管M2的一端)与电压输出模块400连接;第三开关管M3的第二端(远离第二开关管M2的一端)接地。
可选地,第一开关管M1、第二开关管M2以及第三开关管M3均为开关功率管。
其中,第一开关管M1可以控制整个第一电感通道模块200的导通状态,第二开关管M2可以控制第一电感通道模块200的其中一条通道的导通状态,第三开关管M3可以控制第一电感通道模块200是否接地。
需要说明的是,开关管可以包括导通和关断两个状态,相当于开关的作用,当开关管导通时,相当于对应的电路短路,可以当作导线;当开关管断开时,相当于对应的电路断路,可以当作没有连接。
在一些实施方式中,开关管还可以具有一个控制端,可以受到外部信号的控制,通过外部信号可以改变开关管的通断状态,例如:当开关管处于导通状态时,可以通过对应的外部信号将导通状态变更为断开状态。
该直流降压转换器可以包括四个工作状态,在不同的工作状态下,各个开关管的通断状态可以存在区别,其中,在状态一时,第一开关管M1导通,第二开关管M2和第三开关管M3断开,第一飞电容Cf1充电、第一电感L1磁化。
在状态二时,第一开关管M1断开,第二开关管M2和第三开关管M3导通,第一飞电容Cf1放电、第一电感L1退磁。
在状态三时,第一开关管M1断开,第二开关管M2和第三开关管M3导通,第一飞电容Cf1充电、第一电感L1磁化。
状态四与状态二相同,直流降压传感器的工作状态可以按照状态一→状态二→状态三→状态四的顺序进行切换,并且在状态四结束之后,可以重新进入状态一进入循环。
下面来解释本公开实施方式中提供的第二电感通道模块的结构以及其相关的连接关系。
图3为本公开实施方式提供的直流降压转换器中第二电感通道模块的结构示意图,请参照图3,第二电感通道模块300包括:第四开关管M4、第五开关管M5、第六开关管M6、第二飞电容Cf2、第二电感L2。
其中,第四开关管M4的第一端(靠近电压输入模块100的一端)与电压输入模块100连接,第四开关管M4的第二端(远离电压输入模块100的一端)分别与第二飞电容Cf2的第一端(靠近第四开关管M4的一端)以及第五开关管M5的第一端(靠近第四开关管M4的一端)连接;第五开关管M5的第二端(远离第四开关管M4的一端)与电压输出模块400连接,第二飞电容Cf2的第二端(远离第四开关管M4的一端)分别与第二电感L2的第一端(远离第五开关管M5的一端)以及第六开关管M6的第一端(靠近第五开关管M5的一端)连接,第二电感L2的第二端(靠近第五开关管M5的一端)与电压输出模块400连接;第六开关管M6的第二端(远离第五开关管M5的一端)接地。
在一些实施方式中,,第四开关管M4、第五开关管M5以及第六开关管M6均为开关功率管。
其中,第四开关管M4可以控制整个第二电感通道模块300的导通状态,第五开关管M5可以控制第二电感通道模块300的其中一条通道的导通状态,第六开关管M6可以控制第二电感通道模块300是否接地。
在状态一时,第四开关管M4断开,第五开关管M5和第六开关管M6导通,第二飞电容Cf2放电,第二电感L2退磁。
在状态二/状态四时,第四开关管M4断开,第五开关管M5和第六开关管M6导通,第二飞电容Cf2放电,第二电感L2退磁。
在状态三时,第四开关管M4导通,第五开关管M5和第六开关管M6断开,第二飞电容Cf2充电,第二电感L2磁化。
本公开实施方式提供的一种直流降压转换器,可以通过第一电感通道模块和第二电感通道模块实现电压的降低处理,可以通过不同的开关管之间的通断切换电路的导通形式,进而改变电感和飞电容的充放电状态,从而实现直流电压的降压转换,而通过电感和飞电容可以在具有较宽的输出功率以及更好的动态响应的同时,兼具能量密度较大的优势,实现电压的输出。
下面来解释本公开实施方式中提供的直流降压转换器中电压输入模块的结构以及连接关系。
图4为本公开实施方式提供的直流降压转换器中电压输入模块的结构示意图,请参照图4,电压输入模块100包括:第七开关管M7、第八开关管M8以及输入电容Cin。
其中,第七开关管M7的第一端(远离第二电感通道模块300的一端)接入输入电压(即Vin),第七开关管M7的第二端(靠近第二电感通道模块300的一端)分别与第四开关管M4的第一端(靠近电压输入模块100的一端)以及输入电容Cin的第一端(远离第二电感通道模块300的一端)连接,输入电容Cin的第二端(靠近第二电感通道模块300的一端)分别与第一开关管M1的第一端(靠近电压输入模块100的一端)以及第八开关管M8的第一端(远离第二电感通道模块300的一端)连接,第八开关管M8的第二端(靠近第二电感通道模块300的一端)接地。
可选地,第七开关管M7以及第八开关管M8均为开关功率管。
其中,第七开关管M7可以控制整个电压输入模块100的导通状态,第八开关管M8可以控制电压输入模块100是否接地。
在状态一时,第七开关管M7导通,第八开关管M8断开。
在状态二/状态四时,第七开关管M7断开,第八开关管M8断开。
在状态三时,第七开关管M7断开,第八开关管M8导通。
下面来解释本公开实施方式中提供的直流降压转换器中电压输出模块的结构关系以及连接情况。
图5为本公开实施方式提供的直流降压转换器中电压输出模块的结构示意图,请参照图5,电压输出模块400包括:负载单元410。
可选地,负载单元410的第一端(靠近第一电感通道模块200的一端)分别连接第一电感通道模块200、第二电感通道模块300,负载单元410的第二端(靠近地的一端)接地,负载单元410的第三端(靠近电压输出电路所输出的电压的一端)用于输出电压(即Vout)。
其中,负载单元410中可以包括多种类型的负载元件,例如:电阻、电容等,在此不作限制。
下面来解释本公开实施方式中提供的电压输出模块中负载单元可以包括的电路结构连接关系。
图6为本公开实施方式提供的直流降压转换器中电压输出模块的另一结构示意图,请参照图6,负载单元410包括:负载电容C0以及负载电阻R0。
其中,负载电容C0的第一端(靠近第一电感通道模块200的一端)分别连接第一电感通道模块200、第二电感通道模块300,负载电容C0的第二端(远离第一电感通道模块200的一端)接地;负载电阻R0的第一端(靠近第一电感通道模块200的一端)分别连接第一电感通道模块200、第二电感通道模块300,负载电阻R0的第二端(远离第一电感通道模块200的一端)接地。
负载电容C0和负载电阻R0可以作为输出负载,通过负载单元410的第三端(靠近电压输出电路所输出的电压的一端)将降压后的电压输出至其他的外部设备。
下面来解释本公开实施方式中提供的直流降压转换器的整体结构关系。
图7为本公开实施方式提供的直流降压转换器的整体结构示意图,请参照图7,图7中为上述直流降压转换器的整体结构。
其中,第一开关管M1的第一端(靠近电压输入模块100的一端)与电压输入模块100中输入电容Cin的第二端(靠近第二电感通道模块300的一端)连接,第一开关管M1的第二端(远离电压输入模块100的一端)分别与第一飞电容Cf1的第一端
(靠近第一开关管M1的一端)以及第二开关管M2的第一端(靠近第一开关管M1的一端)连接;第二开关管M2的第二端(远离第一开关管M1的一端)与电压输出模块400中负载电容C0以及负载电阻R0的第一端(靠近第一电感通道模块200的一端)连接,第一飞电容Cf1的第二端(远离第一开关管M1的一端)分别与第一电感L1的第一端(远离第二开关管M2的一端)以及第三开关管M3的第一端(靠近第二开关管M2的一端)连接,第一电感L1的第二端(靠近第二开关管M2的一端)与电压输出模块400中负载电容C0的第一端(靠近第一电感通道模块200的一端)以及负载电阻R0的第一端(靠近第一电感通道模块200的一端)连接;第三开关管M3的第二端(远离第二开关管M2的一端)接地。第四开关管M4的第一端(靠近电压输入模块100的一端)与电压输入模块100中输入电容Cin的第一端(远离第二电感通道模块300的一端)连接,第四开关管M4的第二端(远离电压输入模块100的一端)分别与第二飞电容Cf2的第一端(靠近第四开关管M4的一端)以及第五开关管M5的第一端(靠近第四开关管M4的一端)连接;第五开关管M5的第二端(远离第四开关管M4的一端)与电压输出模块400中负载电容C0的第一端(靠近第一电感通道模块200的一端)以及负载电阻R0的第一端(靠近第一电感通道模块200 的一端)连接,第二飞电容Cf2的第二端(远离第四开关管M4的一端)分别与第二电感L2的第一端(远离第五开关管M5的一端)以及第六开关管M6的第一端(靠近第五开关管M5的一端)连接,第二电感L2的第二端(靠近第五开关管M5的一端)与电压输出模块400中负载电容C0的第一端(靠近第一电感通道模块200的一端)以及负载电阻R0的第一端(靠近第一电感通道模块200的一端)连接;第六开关管M6的第二端(远离第五开关管M5的一端)接地。第七开关管M7的第一端(远离第二电感通道模块300的一端)接入输入电压,第七开关管M7的第二端(靠近第二电感通道模块300的一端)分别与第四开关管M4的第一端(靠近电压输入模块100的一端)以及输入电容Cin的第一端(远离第二电感通道模块300的一端)连接,输入电容Cin的第二端(靠近第二电感通道模块300的一端)分别与第一开关管M1的第一端(靠近电压输入模块100的一端)以及第八开关管M8的第一端(远离第二电感通道模块300的一端)连接,第八开关管M8的第二端(靠近第二电感通道模块300的一端)接地。负载电容C0的第二端(远离第一电感通道模块200的一端)接地,负载电阻R0的第二端(远离第一电感通道模块200的一端)接地,负载电容C0的第一端(靠近第一电感通道模块200的一端)和负载电阻R0的第一端(靠近第一电感通道模块200的一端)还将降压后的电压输出至其他的外部设备。
本公开实施方式提供的一种直流降压转换器中,各电感通道模块可以在外部控制信号的控制下,切换该电感通道模块中的开关管的通断状态,从而实现通道的变换;并且,基于电感以及飞电容降低来自电压输入模块的电压,并通过电压输出模块输出降压后的电压,可以将输入的直流电的电压降低,从而可以实现将直流-直流的降压转换,并且,由于各电感通道模块中均包括飞电容以及电感,也可以在具有较宽的输出功率范围达到较高的转换效率以及更好的动态响应的同时,兼具能量密度较大的优势,实现电压的输出。
下面来解释基于上述直流降压转换器的整体电路结构中,在不同工作状态下的等效电路关系。
图8为本公开实施方式提供的直流降压转换器状态变化的等效电路图,请参照图8,其中,图8中的(a)表示状态一的等效电路图,图8中的(b)表示状态二的等效电路图,图8中的(c)表示状态三的等效电路图,图8中的(d)表示状态四的等效电路图。
其中,状态二和状态四完全相同,仅仅是不同时序上的区别。
对于状态一,第一开关管M1、第五开关管M5、第六开关管M6以及第七开关管M7导通,第二开关管M2、第三开关管M3第四开关管M4以及第八开关管M8断开,第一飞电容Cf1充电,第一电感L1充电,第二飞电容Cf2放电,第二电感L2放电。
对于状态二和状态四,第二开关管M2、第三开关管M3、第五开关管M5以及第六开关管M6导通,第一开关管M1、第四开关管M4、第七开关管M7以及第八开关管M8断开,第一飞电容Cf1放电,第一电感L1放电,第二飞电容Cf2放电,第二电感L2放电。
对于状态三,第二开关管M2、第三开关管M3、第四开关管M4以及第八开关管M8导通,第一开关管M1、第五开关管M5、第六开关管M6以及第七开关管M7断开,第一飞电容Cf1放电,第一电感L1放电,第二飞电容Cf2充电,第二电感L2充电。
对于状态一,基于伏秒平衡定理可以得到:
Vin-VCin-Vf1-Vout+(0-Vout)(1-D)=0   式(1);
其中,Vin为电压输入电路所接入的外部电压,VCin为输入电容的电压,Vf1为第一飞电容的电压,Vout为电压输出电路所输出的电压,D为状态一以及状态三下该直流降压转换器的导通占空比。
对于状态三,基于伏秒平衡定理可以得到:
VCin-Vf2-Vout+(0-Vout)(1-D)=0   式(2);
其中,Vf2为第二飞电容的电压。
对于状态二/状态四,基于伏秒平衡定理可以得到:
VCf1=VCf2=Vout   式(3);
结合上述三个公式,整理可以得到:
VCin=1/2Vin   式(4);
M=D/[2(1+D)](D<0.5)   式(5);
其中,M为电压降压的转换率,基于上述整理后的公式可以得到输入电容Cin承担了一半的输入电压,第一飞电容Cf1以及第二飞电容Cf2承担了一个输出电压,因此减少了各开关管的开关电压,减少了开关损耗,最终带来转换效率上的提升。
在相同转换率M的前提下,本发明的降压转换器的导通占空比D较大(传统的降压转换器中M=D),较大的导通占空比带来更好的系统稳定性以及效率上的提升。
下面来解释基于上述直流降压转换器的不同状态下的等效电路结构中,对应电路 中电流的变化情况。
图9为本公开实施方式提供的直流降压转换器中周期变化对应的电流变化关系图,请参照图9,可以结合图8中各个等效电路图进行相关数学计算,计算过程如下:
对于状态一,IL1=IL2=0.5Iout  式(6);其中,IL1为通过第一电感L1的电流,IL2为通过第二电感L2的电流,Iout为输出电流。
基于状态一以及状态二/状态四的电路关系,可以得到:
DIin+(1-D)(IL1+IC1)=1/2Iout   式(7);
DIin=(1-D)IC1   式(8);
其中,Iin为输入电流,IC1为通过第一飞电容Cf1的电流。
基于上述公式进行整理可以得到:
2(1+D)IL1=Iout   式(9);
基于该公式可以得到本直流降压转换器的平均电感电流较小,可以减少电感通路上的导通损耗,带来效率上的提升。
图9中所示为各个开关管在不同状态时的导通和关断状态以及通过第一电感L1和第二电感L2的电流变化情况。
其中,图9中所示的开关管导通时为1,关断时为0。
图10为本公开实施方式提供的降压装置的结构示意图,请参照图10,该降压装置包括直流降压转换器10以及控制电路20,控制电路20与直流降压转换器10中各个开关管的控制端连接,控制电路20用于向各开关管输出外部控制信号。
需要说明的是,控制电路20可以是任意一个控制器中的电路,例如:CPU(中央处理器,Central Processing Unit)或者MCU(微处理器,Microcontroller Unit),在实现控制的过程中,可以通过脉冲宽度调制的方式,调整占空比从而实现对输出电压的控制。
本公开实施方式提供的降压装置中,可以包括电压输入模块、第一电感通道模块、第二电感通道模块以及电压输出模块,其中,电压输入模块分别与第一电感通道模块以及第二电感通道模块连接,电压输入模块分别与第一电感通道模块以及第二电感通道模块连接,各电感通道模块可以在外部控制信号的控制下,切换该电感通道模块中的开关管的通断状态,从而实现通道的变换;并且,基于电感以及飞电容降低来自电压输入模块的电压,并通过电压输出模块输出降压后的电压,可以将输入的直流电的电压降低,从而可以实现将直流-直流的降压转换,并且,由于各电感通道模块中均包 括飞电容以及电感,也可以在具有较宽的输出功率范围达到较高的转换效率以及更好的动态响应的同时,兼具能量密度较大的优势,实现电压的输出。
上仅为本公开的实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
以上所述仅为本公开的优选实施方式而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开提供的直流降压转换器及降压装置,可以在具有较宽的输出功率范围达到较高的转换效率以及更好的动态响应的同时,兼具能量密度较大的优势,因此具有优异的实用性能。

Claims (12)

  1. 一种直流降压转换器,其特征在于,包括:电压输入模块、第一电感通道模块、第二电感通道模块以及电压输出模块;
    所述电压输入模块分别与所述第一电感通道模块以及所述第二电感通道模块连接,所述电压输出模块分别与所述第一电感通道模块以及所述第二电感通道模块连接;
    所述第一电感通道模块以及所述第二电感通道模块中均包括至少一个开关管、电感以及飞电容,所述第一电感通道模块和所述第二电感通道模块分别用于在外部控制信号的控制下,切换所述开关管的通断状态,以及基于所述电感以及所述飞电容降低来自所述电压输入模块的电压,并通过所述电压输出模块输出降压后的电压。
  2. 如权利要求1所述的直流降压转换器,其特征在于,所述第一电感通道模块包括:第一开关管、第二开关管、第三开关管、第一飞电容、第一电感;
    所述第一开关管的第一端与所述电压输入模块连接,所述第一开关管的第二端分别与所述第一飞电容的第一端以及所述第二开关管的第一端连接;所述第二开关管的第二端与所述电压输出模块连接,所述第一飞电容的第二端分别与所述第一电感的第一端以及所述第三开关管的第一端连接,所述第一电感的第二端与所述电压输出模块连接;所述第三开关管的第二端接地。
  3. 如权利要求2所述的直流降压转换器,其特征在于,所述第一开关管、所述第二开关管以及所述第三开关管均为开关功率管。
  4. 如权利要求2所述的直流降压转换器,其特征在于,所述第二电感通道模块包括:第四开关管、第五开关管、第六开关管、第二飞电容、第二电感;
    所述第四开关管的第一端与所述电压输入模块连接,所述第四开关管的第二端分别与所述第二飞电容的第一端以及所述第五开关管的第一端连接;所述第五开关管的第二端与所述电压输出模块连接,所述第二飞电容的第二端分别与所述第二电感的第一端以及所述第六开关管的第一端连接,所述第二电感的第二端与所述电压输出模块连接;所述第六开关管的第二端接地。
  5. 如权利要求4所述的直流降压转换器,其特征在于,所述第四开关管、所述第五开关管以及所述第六开关管均为开关功率管。
  6. 如权利要求4所述的直流降压转换器,其特征在于,所述电压输入模块包括:第七开关管、第八开关管以及输入电容;
    所述第七开关管的第一端接入输入电压,所述第七开关管的第二端分别与所述第四开关管的第一端以及所述输入电容的第一端连接,所述输入电容的第二端分别与所述第一开关管的第一端以及所述第八开关管的第一端连接,所述第八开关管的第二端接地。
  7. 如权利要求6所述的直流降压转换器,其特征在于,所述第七开关管以及所述第八开关管均为开关功率管。
  8. 如权利要求1所述的直流降压转换器,其特征在于,所述电压输出模块包括:负载单元;
    所述负载单元的第一端分别连接所述第一电感通道模块、第二电感通道模块,所述负载单元的第二端接地,所述负载单元的第三端用于输出电压。
  9. 如权利要求8所述的直流降压转换器,其特征在于,所述负载单元包括:负载电容以及负载电阻;
    所述负载电容的第一端分别连接所述第一电感通道模块、第二电感通道模块,所述负载电容的第二端接地;
    所述负载电阻的第一端分别连接所述第一电感通道模块、第二电感通道模块,所述负载电阻的第二端接地。
  10. 一种降压装置,其特征在于,所述降压装置包括如权利要求1-9任一项所述的直流降压转换器以及控制电路,所述控制电路与所述直流降压转换器中各个开关管的控制端连接,所述控制电路用于向各开关管输出外部控制信号。
  11. 根据权利要求10所述的降压装置,其特征在于,所述控制电路包括中央处理器或微处理器中的一种。
  12. 权利要求1-9任一项所述的直流降压转换器或者权利要求10所述的降压装置在汽车、5G基站、工厂自动化设备、物联网设备和便携式产品中的用途。
PCT/CN2023/089196 2022-11-30 2023-04-19 直流降压转换器及降压装置 WO2024113645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211523401.6 2022-11-30
CN202211523401.6A CN116488463A (zh) 2022-11-30 2022-11-30 直流降压转换器及降压装置

Publications (1)

Publication Number Publication Date
WO2024113645A1 true WO2024113645A1 (zh) 2024-06-06

Family

ID=87212592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089196 WO2024113645A1 (zh) 2022-11-30 2023-04-19 直流降压转换器及降压装置

Country Status (2)

Country Link
CN (1) CN116488463A (zh)
WO (1) WO2024113645A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130043854A1 (en) * 2011-08-17 2013-02-21 Mks Instruments, Inc. Adjustable resonant buck converter
CN114598147A (zh) * 2022-03-03 2022-06-07 珠海澳大科技研究院 降压直流-直流转换器、控制方法及电子设备
CN114744871A (zh) * 2022-02-25 2022-07-12 陕西理工大学 Buck变换器基于扩张状态观测器的微分平坦系统设计方法
CN115313871A (zh) * 2022-08-19 2022-11-08 浙江工业大学 一种并联直流降压变换器系统均流控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130043854A1 (en) * 2011-08-17 2013-02-21 Mks Instruments, Inc. Adjustable resonant buck converter
CN114744871A (zh) * 2022-02-25 2022-07-12 陕西理工大学 Buck变换器基于扩张状态观测器的微分平坦系统设计方法
CN114598147A (zh) * 2022-03-03 2022-06-07 珠海澳大科技研究院 降压直流-直流转换器、控制方法及电子设备
CN115313871A (zh) * 2022-08-19 2022-11-08 浙江工业大学 一种并联直流降压变换器系统均流控制方法

Also Published As

Publication number Publication date
CN116488463A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
US11626800B2 (en) Hybrid DC-DC power converter with small voltage conversion ratio
Bascopé et al. Generation of a family of non-isolated DC-DC PWM converters using new three-state switching cells
US6411535B1 (en) Power factor correction circuit with integral bridge function
Alghaythi et al. Design of a high step-up DC-DC power converter with voltage multiplier cells and reduced losses on semiconductors for photovoltaic systems
Naresh et al. Non-isolated high gain quadratic boost converter based on inductor’s asymmetric input voltage
EP3255771B1 (en) Bidirectional dc-dc convertor
Luo Switched-capacitorized DC/DC converters
Shang et al. A ZVS integrated single-input-dual-output DC/DC converter for high step-up applications
US11205969B2 (en) Inverter device configured to operate in a CCM and sequentially operate in buck and boost phases
JP2522128B2 (ja) 電源装置
WO2024113645A1 (zh) 直流降压转换器及降压装置
CN102497102A (zh) 宽输出范围的同步降压-升压型dc-dc转换电路
US20230155478A1 (en) Switched capacitor voltage converter
Veerachary et al. Peak-current mode control of hybrid switched capacitor converter
Anushka et al. Switched-inductor semi-quadratic buck converter
CN115473424A (zh) Led驱动电源、电源电路及供电方法
Lai et al. Passive ripple mirror circuit and its application in pulse-width modulated DC-DC converters
Patidar Tapped-inductor quasi-Z-source based PWM DC-DC converter
CN219627566U (zh) 0~6kV可调精密DC-DC转换器
Chang et al. A Simple Greinacher-Doubler-Based Switched-Coupled-Inductor Boost DC-AC Inverter
CN215647250U (zh) 无线耳机及其电路、无线耳机组件
CN220043238U (zh) 0~1kV可调精密DC-DC转换器
CN219760868U (zh) 0~15kv可调精密dc-dc转换器
CN110323935B (zh) 一种单电感升压与升降压双输出直流变换器
US20230037874A1 (en) Inverting Buck-Boost Converter