WO2024113211A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2024113211A1
WO2024113211A1 PCT/CN2022/135315 CN2022135315W WO2024113211A1 WO 2024113211 A1 WO2024113211 A1 WO 2024113211A1 CN 2022135315 W CN2022135315 W CN 2022135315W WO 2024113211 A1 WO2024113211 A1 WO 2024113211A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plane
display panel
plane electrode
resistance
Prior art date
Application number
PCT/CN2022/135315
Other languages
English (en)
French (fr)
Inventor
袁学斌
Original Assignee
京东方科技集团股份有限公司
重庆京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 重庆京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/135315 priority Critical patent/WO2024113211A1/zh
Publication of WO2024113211A1 publication Critical patent/WO2024113211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • the present invention relates to the field of display technology, and in particular to a display panel and a display device.
  • the voltage on the anode is generally provided through the in-plane mesh metal line, and the voltage on the cathode is transmitted through the external cathode ring, and then introduced into the in-plane cathode through the entire surface of the light-transmitting material. Since the outer cathode ring needs to transmit the input signals of all pixel areas, the total current passing through it is very high. Because the cathode ring is often placed on the periphery of the display panel (i.e., the non-display area), for medium and small-sized products, the outer width of the display panel needs to be as small as possible.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a display panel and a display device, which can improve the uniformity of display brightness without increasing the width of the non-display area of the display panel.
  • an embodiment of the present disclosure provides a display panel, wherein the display panel has a display area and a non-display area surrounding the display area, wherein the display panel includes a light-emitting device, the light-emitting device includes a first electrode, the first electrode includes an in-plane electrode located in the display area and an out-of-plane electrode located in the non-display area, and a voltage divider structure, wherein the voltage divider structure is connected between the in-plane electrode and the out-of-plane electrode, and the resistivity of the material of the voltage divider structure is greater than the resistivity of the materials of the out-of-plane electrode and the in-plane electrode.
  • the voltage-dividing structure is configured to make the voltage drops from the signal input terminal of the out-of-plane electrode to a plurality of signal output terminals corresponding to a plurality of different positions of the in-plane electrode in its circumferential direction the same.
  • the voltage-dividing structure includes a plurality of resistor components, wherein the plurality of resistor components are arranged at intervals along the extension direction of the out-of-plane electrode, and one ends of the plurality of resistor components are connected to the out-of-plane electrode, and the other ends of the plurality of resistor components are used as signal output ends and connected to the in-plane electrode at a plurality of different positions in its circumferential direction.
  • the resistance of each of the resistance components is a first resistance
  • the first resistances of the multiple resistance components are the same and are arranged at equal intervals
  • the resistance of the out-of-plane electrode on the path from the signal input end of the out-of-plane electrode to each of the signal output ends is a second resistance
  • the first resistance is greater than the second resistance
  • At least a portion of the resistance components have different resistances and are arranged at equal intervals; or, at least a portion of the resistance components have different resistances and are arranged at unequal intervals.
  • the out-of-plane electrode is a closed rectangular ring body or a rectangular ring body with an opening on one side; and the resistances of at least a part of the plurality of resistance components arranged corresponding to at least one side of the rectangular ring body are different.
  • At least a portion of the plurality of resistance components arranged corresponding to at least one side of the rectangular ring body have different orthographic projection areas on a plane parallel to the display area;
  • the resistive component has a strip-shaped orthographic projection on a plane parallel to the display area, and at least a portion of the plurality of resistive components arranged corresponding to at least one side of the rectangular ring body have the same length in their extension direction but different widths.
  • the orthographic projection shape of the resistance component on a plane parallel to the display area includes a bar shape, and the bar shape includes a straight line and/or a zigzag line.
  • the zigzag line includes a plurality of straight line segments connected in sequence
  • each two adjacent straight line segments is equal to 90°; one of each two adjacent straight line segments is perpendicular to the extension direction of the out-of-plane electrode, and the other is parallel to the extension direction of the out-of-plane electrode; or,
  • the included angle between each two adjacent straight line segments is less than or equal to 90°; and the included angle between each two adjacent straight line segments and the extension direction of the out-of-plane electrode is less than 90°.
  • the zigzag line includes a plurality of arc segments connected in sequence, and each two adjacent arc segments form an S-shaped arc segment.
  • the number of the resistance components is greater than or equal to 10; the equivalent resistance formed by connecting a plurality of the resistance components in parallel is greater than or equal to 2 ⁇ ; and the resistance of the resistance component is greater than or equal to 2000 ⁇ .
  • the out-of-plane electrode includes an external electrode, the external electrode is circumferentially extended along the contour of the in-plane electrode, and the voltage divider structure is connected between the external electrode and the in-plane electrode.
  • the out-of-plane electrode comprises a plurality of outer electrodes arranged in sequence and at intervals in a direction away from the in-plane electrode, each of the outer electrodes extending circumferentially along the contour of the in-plane electrode; the outer electrode closest to the in-plane electrode is connected to the in-plane electrode;
  • the voltage dividing structure is connected between each two adjacent external electrodes.
  • the multiple external electrodes include at least one first external electrode and at least one second external electrode, the first external electrode is a closed rectangular ring; the second external electrode is a rectangular ring with an opening on one side, and the openings corresponding to different second external electrodes have the same orientation.
  • the outer electrode farthest from the in-plane electrode is provided with a signal input part, one end of the signal input part is connected to one side of the rectangular ring body, and the other end is used as the signal input end.
  • the external electrode farthest from the in-plane electrode is the first external electrode
  • One end of the two signal input parts is respectively connected to two adjacent corners of the rectangular ring body, and the other ends of the two signal input parts are used as the signal input ends.
  • the external electrode farthest from the in-plane electrode is the second external electrode
  • One signal input part There is one signal input part, and one end of the signal input part is connected to one of the two ends of the rectangular ring body adjacent to the opening; or,
  • One end of the two signal input parts is respectively connected to two ends of the rectangular ring body adjacent to the opening, and the other ends of the two signal input parts are used as the signal input ends.
  • the light emitting device further includes:
  • a second electrode and an organic functional layer wherein the second electrode, the organic functional layer and the in-plane electrode are all located in the display area and are sequentially stacked on one side of the substrate in a direction away from the substrate; wherein the first electrode is one of the cathode and the anode, and the second electrode is the other of the cathode and the anode.
  • the resistor component and the two external electrodes connected thereto are arranged in the same layer, and a portion of the two external electrodes connected to the resistor component is overlapped on a side of the resistor component away from the substrate; or,
  • the resistance component and the two external electrodes connected thereto are arranged in different layers, and two ends of the resistance component are respectively overlapped on a side of the two external electrodes connected thereto which is away from the substrate.
  • the multiple resistor components are divided into two layers in a direction perpendicular to the plane where the substrate is located, wherein the resistor components in one layer and the two external electrodes connected thereto are arranged in the same layer, and a portion of the two external electrodes connected thereto are overlapped on a side of the resistor component away from the substrate; and the resistor components in another layer and the two external electrodes connected thereto are arranged in different layers, and both ends of the resistor components are respectively overlapped on a side of the two external electrodes connected thereto away from the substrate.
  • the display panel further comprises an encapsulation layer, the encapsulation layer covers the display area and the non-display area, and the in-plane electrode and the out-of-plane electrode are respectively located on two sides of the encapsulation layer away from and close to the substrate;
  • the packaging layer includes a plurality of via holes, and the in-plane electrode is connected to the external electrode closest to the in-plane electrode through the plurality of via holes.
  • the light emitting device further includes:
  • a second electrode and an organic functional layer wherein the second electrode, the organic functional layer and the in-plane electrode are all located in the display area and are sequentially stacked on one side of the substrate in a direction away from the substrate; wherein the first electrode is one of a cathode and an anode, and the second electrode is the other of the cathode and the anode;
  • the encapsulation layer covers the display area and the non-display area, and the in-plane electrode and the out-of-plane electrode are respectively located on two sides of the encapsulation layer away from and close to the substrate; the encapsulation layer includes a plurality of via holes, and the in-plane electrode is connected to the voltage-dividing structure through the plurality of via holes.
  • the resistor component and the external electrode are arranged in the same layer, and a portion of the external electrode is overlapped on a side of the resistor component away from the substrate;
  • the resistance component and the external electrode are arranged in different layers, and one end of the resistance component is overlapped on a side of the external electrode away from the substrate.
  • the plurality of resistor components are divided into two layers in a direction perpendicular to the plane where the substrate is located, wherein the resistor components in one layer are arranged in the same layer as the external electrode, and a portion of the external electrode is overlapped on a side of the resistor component away from the substrate; and the resistor components in another layer are arranged in a different layer from the external electrode, and one end of the resistor component is overlapped on a side of the external electrode away from the substrate.
  • the material of the resistance component includes ITO.
  • the present invention further provides a display device, which includes the above-mentioned display panel provided by the present invention.
  • FIG1 is a schematic diagram of the structure of a single cathode ring and an in-plane electrode in the prior art
  • FIG. 2 is a schematic diagram of a first structure of out-of-plane electrodes and in-plane electrodes of a display panel provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a second structure of out-of-plane electrodes and in-plane electrodes of a display panel provided by an embodiment of the present invention
  • FIG4A is a schematic diagram of a first structure of a resistor component used in an embodiment of the present invention.
  • FIG4B is a schematic diagram of a second structure of a resistor component used in an embodiment of the present invention.
  • FIG4C is a schematic diagram of a third structure of a resistor component used in an embodiment of the present invention.
  • FIG4D is a schematic diagram of a fourth structure of a resistor component used in an embodiment of the present invention.
  • FIG5 is a schematic structural diagram of a corner region of an in-plane electrode far away from a signal input end used in an embodiment of the present invention
  • 6A is a schematic diagram of a third structure of out-of-plane electrodes and in-plane electrodes of a display panel provided by an embodiment of the present invention.
  • 6B is a schematic diagram of a fourth structure of out-of-plane electrodes and in-plane electrodes of a display panel provided by an embodiment of the present invention.
  • 7B is a sixth structural schematic diagram of out-of-plane electrodes and in-plane electrodes of a display panel provided by an embodiment of the present invention.
  • 7C is a seventh structural schematic diagram of the out-of-plane electrodes and in-plane electrodes of the display panel provided by an embodiment of the present invention.
  • FIG. 7D is a schematic diagram of an eighth structure of out-of-plane electrodes and in-plane electrodes of a display panel provided by an embodiment of the present invention.
  • 7E is a ninth structural schematic diagram of out-of-plane electrodes and in-plane electrodes of a display panel provided by an embodiment of the present invention.
  • 7F is a schematic diagram of a tenth structure of out-of-plane electrodes and in-plane electrodes of a display panel provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an eleventh structure of out-of-plane electrodes and in-plane electrodes of a display panel provided by an embodiment of the present invention.
  • FIG9A is a first partial cross-sectional view of a display panel provided by an embodiment of the present invention.
  • FIG9B is a second partial cross-sectional view of a display panel provided by an embodiment of the present invention.
  • FIG9C is a third partial cross-sectional view of the display panel provided by the embodiment of the present invention.
  • FIG10 is a graph showing the equivalent resistance and the uniformity of the in-plane display brightness when a plurality of resistance components are connected in parallel;
  • FIG. 11A is a display brightness distribution diagram of a display panel using the cathode ring shown in FIG. 1 in the prior art
  • FIG. 11B is a display brightness distribution diagram of a display panel using two external electrodes and a voltage division structure according to an embodiment of the present invention.
  • the existing display panel has the problem of poor uniformity of display brightness.
  • the inventor has found that the reason for this problem is that, taking the light-emitting device in the display panel as a top-emitting OLED device as an example, as shown in FIG1 , the display area of the display panel is provided with a whole-surface cathode 11, and a cathode ring 12 (non-closed) is provided in the non-display area of the display panel, and the cathode ring 12 surrounds the whole-surface cathode 11 and is electrically connected thereto.
  • the cathode ring 12 has two signal input terminals C1.
  • the cathode ring 12 Since the resistance of the cathode ring 11 from the signal input terminal C1 to different positions on the path away from the signal input terminal (for example, from C1 to C2) is different, the cathode ring 12 has different voltage drops (IR Drop) on the path of transmitting the input signal to the whole-surface cathode 11. The farther the position is from the signal input terminal C1, the greater the resistance and the greater the voltage drop. This leads to differences in current in different pixel areas, that is, differences in display brightness, and thus the display panel has the problem of poor uniformity of display brightness.
  • an embodiment of the present invention provides a display panel.
  • the display panel has a display area and a non-display area surrounding the display area, wherein the display panel includes a light-emitting device, and the light-emitting device includes, for example, a substrate, a first electrode, a second electrode, and an organic functional layer, and the second electrode, the organic functional layer, and the first electrode are sequentially stacked on one side of the substrate in a direction away from the substrate.
  • the light-emitting device is, for example, an OLED device, and the OLED device can be a top-emitting OLED device or a bottom-emitting OLED device.
  • the first electrode is a cathode, and the second electrode is an anode.
  • the first electrode is an anode, and the second electrode is a cathode.
  • the organic functional layer includes, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer stacked in sequence in a direction away from the substrate, wherein the hole injection layer, the hole transport layer, the light-emitting layer, the electron transport layer, and the electron injection layer are electrically connected in sequence, the hole injection layer is electrically connected to the anode, and the electron injection layer is electrically connected to the cathode.
  • the organic functional layer may also adopt other structures, and the embodiments of the present invention have no particular restrictions on this.
  • the organic functional layer includes, for example, an electron injection layer, an electron transport layer, a light-emitting layer, a hole transport layer, and a hole injection layer stacked in sequence in a direction away from the substrate, wherein the electron injection layer is electrically connected to the cathode, and the hole injection layer is electrically connected to the anode.
  • the organic functional layer may also adopt other structures, and the embodiments of the present invention have no particular limitation on this.
  • the first electrode includes an in-plane electrode 21 located in the display area, an out-plane electrode located in the non-display area, and a voltage-dividing structure, wherein the voltage-dividing structure is connected between the in-plane electrode 21 and the out-plane electrode, wherein the in-plane electrode 21 is, for example, a whole-surface electrode covering the entire display area, and the whole-surface electrode is light-transmissive and is used to provide voltage to each pixel area.
  • the in-plane electrode is electrically connected to the electron injection layer.
  • the in-plane electrode is electrically connected to the hole injection layer.
  • the above-mentioned out-of-plane electrode includes an outer electrode 22, which is arranged to extend along the circumferential direction of the contour of the in-plane electrode 21.
  • the outer electrode 22 can surround the in-plane electrode 21 along the circumferential direction of the contour of the in-plane electrode 21, that is, to form a closed ring body, as shown in FIG2.
  • the contour shape of the closed ring body matches the contour shape of the in-plane electrode, and the interval between the closed ring body and the in-plane electrode 21 is equidistant.
  • the outer electrode 22 can also extend along the circumferential direction of the contour of the in-plane electrode, but does not completely surround the in-plane electrode, that is, to form a non-closed ring body with an opening, as shown in FIG3.
  • the contour shape of the non-closed ring body matches the contour shape of the in-plane electrode, and the interval between the non-closed ring body and the in-plane electrode 21 is equidistant.
  • the contour shape of the in-plane electrode 21 is a rectangle, and the contour shape of the above-mentioned closed ring body or non-closed ring body is a rectangle.
  • the contour shape of the in-plane electrode 21 can also be a square or any other shape, which can be set according to the contour shape of the in-plane electrode, and the embodiment of the present invention has no special restrictions on this.
  • the voltage-dividing structure is connected between the external electrode 22 and the in-plane electrode 21, and the resistivity of the material of the voltage-dividing structure is greater than the resistivity of the material of the external electrode and the in-plane electrode.
  • the voltage-dividing structure can be configured to make the voltage drop (IRDrop) from the signal input terminal C1 of the out-of-plane electrode to the multiple signal output terminals corresponding to the multiple different positions of the in-plane electrode 21 on its circumferential direction the same.
  • the voltage drop difference existing in the path of the out-of-plane electrode transmitting the input signal to the in-plane electrode 21 can be eliminated, and the current difference in different pixel areas, that is, the display brightness difference, can be eliminated, thereby improving the display brightness uniformity.
  • the out-of-plane electrode will not increase the width of the non-display area of the display panel as a whole, which is conducive to achieving a narrow frame.
  • the voltage-dividing structure includes a plurality of resistor components 23, the plurality of resistor components 23 are arranged at intervals along the extension direction of the out-of-plane electrode (i.e., the outer electrode 22), and one end of each of the plurality of resistor components 23 is connected to the out-of-plane electrode (i.e., the outer electrode 22), and the other end of each of the plurality of resistor components 23 is used as the above-mentioned signal output terminal and connected to the in-plane electrode 21 at a plurality of different positions in its circumferential direction.
  • the resistance on the path from the signal input terminal C1 to each signal output terminal can be increased, and at the same time, the resistance difference between the paths corresponding to each signal output terminal can be compensated, so that the voltage drop difference existing in the path of the out-of-plane electrode (i.e., the outer electrode 22) transmitting the input signal to the in-plane electrode 21 can be eliminated, so as to eliminate the current difference in different pixel areas, i.e., the display brightness difference, and thus improve the display brightness uniformity.
  • the material of the resistor component 23 includes ITO.
  • the resistor component 23 can also be made of any other conductive material, preferably a material with a larger resistance. The embodiment of the present invention has no particular limitation on this.
  • the external electrode 22 includes multiple metal layers of different thicknesses, for example, three metal layers, and Ti, Al, and Ti in the direction away from the substrate. Each metal layer preferably uses a material with a small square resistance. Of course, in practical applications, the external electrode 22 may also include one metal layer or two, four or more metal layers.
  • the resistance of the plurality of resistor components 23 is a first resistor R, and the first resistors R of the plurality of resistor components 23 are the same and are arranged at equal intervals.
  • the first resistor R is greater than the second resistor ri. Since the total resistance on the path from the signal input end of the out-of-plane electrode 21 to each signal output end (i.e., the connection end between each resistance component 23 and the in-plane electrode 21) is equal to the sum of the first resistance R and the second resistance ri, by making the first resistance R of the multiple resistance components 23 greater than the second resistance ri, preferably the first resistance R is much greater than the second resistance ri (R>>ri), the difference between different second resistances can be made very small relative to the first resistance R and can be ignored, so that the total resistance (R+ri) on the path corresponding to each signal output end can be approximately equal to the first resistance R, that is, compensation for the resistance difference between the paths corresponding to each signal output end is achieved, and then the voltage drop (IRDrop) from the signal input end of the out-of-plane electrode to the multiple signal output ends corresponding to multiple different positions of the in-plane electrode 21 on its circumference can
  • the orthographic projection shape of the resistor component 23 on a plane parallel to the display area includes a bar shape, and the bar shape includes a straight line and/or a zigzag line.
  • the bar-shaped resistor component 23 is, for example, a wire
  • the shape of the wire is, for example, a straight wire or a zigzag wire or a combination of the two. The longer the length of the wire in its extension direction, the greater the resistance; conversely, the smaller. Based on this, the shape of the wire and the length of the wire in its extension direction can be set according to the required resistance size of the resistor component 23.
  • the embodiment of the present invention is not limited to this. In practical applications, the above-mentioned resistor component can also be a resistor element with a certain resistance value.
  • the shape of the zigzag line can be various.
  • the zigzag line includes a plurality of straight line segments connected in sequence, and the angle between each two adjacent straight line segments is less than or equal to 90°.
  • the angle between each two adjacent straight line segments (231, 232) is equal to 90°, and one of each two adjacent straight line segments (i.e., straight line segment 231) is perpendicular to the extension direction of the out-of-plane electrode, and the other (i.e., straight line segment 232) is parallel to the extension direction of the out-of-plane electrode.
  • the angle between each two adjacent straight line segments (231, 232) is equal to 90°, and the angle between each two adjacent straight line segments (231, 232) and the extension direction of the out-of-plane electrode is less than 90°, for example, 45°.
  • the angle between each two adjacent straight line segments (231, 232) is less than 90°, for example, 30°, and the angle between each two adjacent straight line segments (231, 232) and the extension direction of the out-of-plane electrode is less than 90°, for example, 60°.
  • the zigzag line includes a plurality of arc segments 233 connected in sequence, and each two adjacent arc segments 233 constitute an S-shaped arc segment.
  • the embodiment of the present invention is not limited thereto. In practical applications, the zigzag line can also adopt any other shape as long as the desired resistance size of the resistor component can be obtained.
  • the second way to achieve compensation for the resistance difference between the paths corresponding to each signal output terminal is that at least a portion of the resistance components 23 have different resistances and are arranged at equal intervals; or, at least a portion of the resistance components 23 have different resistances and are arranged at non-equal intervals. That is to say, by setting at least a portion of the resistance components 23 with different resistances, the voltage drop difference between the local position with a large voltage drop and other positions is compensated.
  • the resistance size of each resistance component can be set according to the resistance difference between the paths corresponding to each signal output terminal, and can be selectively set to be arranged at equal intervals or non-equal intervals.
  • the out-of-plane electrode (i.e., the outer electrode) is a closed rectangular ring body or a rectangular ring body with an opening on one side.
  • the out-of-plane electrode is suitable for the case where the outline shape of the display area is rectangular, that is, the ring shape of the out-of-plane electrode is, for example, adapted to the outline shape of the display area; the resistance of at least a portion of the multiple resistor components 23 arranged on at least one side of the corresponding rectangular ring body is different. Since the resistance at a position farther from the signal input end is greater, the voltage drop is also greater.
  • the out-of-plane electrode is not limited to a rectangular ring body, and it can be adjusted according to the outline shape of the display area, such as a square ring body, etc.
  • the multiple resistor components 23 arranged on at least one side of the corresponding rectangular ring body have different orthographic projection areas on the plane parallel to the display area.
  • the resistance of the multiple resistor components 23 arranged on the side of the corresponding rectangular ring body can be different.
  • the orthographic projection shape of the resistor component 23 on the plane parallel to the display area includes a strip, and the multiple resistor components 23 arranged on the side of the corresponding rectangular ring body have the same length in the extension direction thereof, but different widths, thereby achieving different orthographic projection areas of the multiple resistor components 23 arranged on the side of the corresponding rectangular ring body on the plane parallel to the display area.
  • the orthographic projection shape of the resistor component on the plane parallel to the display area can also adopt any other shape, and the embodiment of the present invention has no special restrictions on this. It should be noted that for the second method mentioned above, different resistor components can adopt the same shape but different sizes; or, different resistor components can also adopt different shapes. The embodiment of the present invention has no special restrictions on this.
  • the number of resistor components 23 and the setting of the resistance size can affect the improvement effect of the uniformity of the brightness displayed in the plane.
  • the resistance of the resistor component is greater than or equal to 2000 ⁇ .
  • the in-plane electrode 21 and the out-of-plane electrode are regarded as two ideal nodes A and B, a number of resistor components 23 are connected in parallel between the two ideal nodes A and B.
  • the resistance between the two ideal nodes A and B is proportional to the quotient obtained by dividing the resistance of a single resistor component 23 by the number of resistor components 23.
  • the equivalent resistance when multiple resistor components 23 are connected in parallel is equal to the quotient of the resistance of a single resistor component 23 divided by the number of resistor components. For example, if the resistance of a single resistor component 23 is 2000 ⁇ and the number of resistor components is 1000, the equivalent resistance is 2 ⁇ . The larger the equivalent resistance, the better the voltage uniformity near the ideal node B, and the better the in-plane display brightness uniformity.
  • the horizontal axis is the equivalent resistance when multiple resistor components are connected in parallel
  • the vertical axis is the in-plane display brightness uniformity. It can be seen from the curve shown in Figure 10 that the in-plane display brightness uniformity increases with the increase of the equivalent resistance.
  • the number of resistor components 23 cannot be too small, because the number of resistor components 23 will affect the uniformity of the voltage drop between the positions where the in-plane electrode 21 is connected to each resistor component 23.
  • the number of resistor components 23 is greater than or equal to 10. In practical applications, the number of resistor components 23 can be set according to parameters such as the size of the display panel, process requirements, and the size design of the equivalent resistor, and the embodiment of the present invention has no special restrictions on this.
  • the out-of-plane electrode (i.e., the outer electrode 22) is a closed rectangular ring body or one side of which has an opening.
  • the out-of-plane electrode is suitable for the case where the outline shape of the display area is a rectangle, that is, the ring shape of the out-of-plane electrode is, for example, adapted to the outline shape of the display area.
  • the outer electrode 22 is provided with a signal input portion 221, one end of which is connected to one side of the rectangular ring body, and the other end is used as the above-mentioned signal input terminal C1.
  • the rectangular ring body is closed, which is conducive to further improving the uniformity of the in-plane display brightness.
  • the above-mentioned signal input portion 221 is one, and one end of the signal input portion 221 is connected to the middle position of one of the sides of the rectangular ring body; or, as shown in Figure 6A, the signal input portion 221 is two, and one end of the two signal input portions 221 is respectively connected to two adjacent corners of the rectangular ring body, and the other ends of the two signal input portions 221 are used as the above-mentioned signal input terminals.
  • the two signal input portions simultaneously introduce the input signal into the rectangular ring body, which can improve the uniformity of the input signal.
  • one side of the rectangular ring body has an opening, and the opening can be oriented toward the side where the display panel is located, so as to avoid the introduction of the display cable into the surface.
  • the out-of-plane electrode includes an external electrode 22, and the above voltage-dividing structure is connected between the external electrode 22 and the in-plane electrode 21.
  • the embodiment of the present invention is not limited thereto.
  • the out-of-plane electrode may include a plurality of external electrodes arranged in sequence and spaced apart in a direction away from the in-plane electrode, and each external electrode is arranged to extend circumferentially along the contour of the in-plane electrode, wherein the external electrode closest to the in-plane electrode is connected to the in-plane electrode; and the above voltage-dividing structure is connected between each two adjacent external electrodes.
  • This voltage-dividing structure is the same as the voltage-dividing structure used in the above embodiment, and will not be described in detail here.
  • the out-of-plane electrode may include two external electrodes (22a, 22b) arranged in sequence along a direction away from the in-plane electrode 21, each external electrode is extended circumferentially along the contour of the in-plane electrode, wherein the external electrode 22a closest to the in-plane electrode 21 is connected to the in-plane electrode 21; the above-mentioned voltage divider structure (i.e., the resistor component 23) is connected between the two external electrodes (22a, 22b).
  • the above-mentioned voltage divider structure i.e., the resistor component 23
  • the out-of-plane electrode may include three external electrodes (22a, 22b, 22c) arranged in sequence and spaced apart in a direction away from the in-plane electrode 21, each external electrode being extended circumferentially along the contour of the in-plane electrode, wherein the external electrode 22a closest to the in-plane electrode 21 is connected to the in-plane electrode 21; the above-mentioned voltage-dividing structure (i.e., the resistance component 23) is connected between two adjacent external electrodes (22a, 22b) and between two adjacent external electrodes (22b, 22c).
  • the above-mentioned voltage-dividing structure i.e., the resistance component 23
  • the voltage-dividing structures can be designed more flexibly, thereby further improving the uniformity of display brightness.
  • the same voltage-dividing structures or different voltage-dividing structures can be used between two different adjacent external electrodes.
  • the structures of the resistor components in different voltage-dividing structures can be the same, but the number can be different.
  • the multiple external electrodes include at least one first external electrode and at least one second external electrode
  • the first external electrode is a closed rectangular ring body
  • both external electrodes (22a, 22b) are first external electrodes
  • the second external electrode is a rectangular ring body with an opening on one side, and the orientation of the openings corresponding to different second external electrodes is the same, for example, as shown in FIG. 7A and FIG. 7D, both external electrodes (22a, 22b) are second external electrodes.
  • any external electrode can selectively adopt a closed rectangular ring body or a rectangular ring body with an opening on one side.
  • one of the two external electrodes (22a, 22b) is the first external electrode
  • the other is the second external electrode.
  • the external electrode farthest from the in-plane electrode 21 (e.g., the external electrode 22b) is provided with a signal input portion 221, one end of which is connected to one side of the rectangular ring body, and the other end is used as a signal input terminal.
  • the external electrode farthest from the in-plane electrode 21 (e.g., the external electrode 22b) is the first external electrode, that is, a closed rectangular ring body.
  • FIG7C there is one signal input portion 221, and one end of the signal input portion 221 is connected to the middle position of one of the sides of the rectangular ring body; or, as shown in FIG7F , there are two signal input portions 221, and one end of the two signal input portions 221 is respectively connected to two adjacent corners of the rectangular ring body, and the other ends of the two signal input portions 221 are used as the above-mentioned signal input terminals.
  • the external electrode farthest from the in-plane electrode is the second external electrode, that is, a rectangular ring body with an opening on one side.
  • the second external electrode that is, a rectangular ring body with an opening on one side.
  • the resistor component 23 and the two external electrodes (22a, 22b) connected thereto are arranged in the same layer, and a part of the two external electrodes (22a, 22b) connected to the resistor component 23 is overlapped on the side of the voltage-dividing structure (22a, 22b) away from the substrate (not shown in the figure), so that the voltage-dividing structure can be connected to the two external electrodes (22a, 22b) respectively.
  • the two ends of each resistor component 23 and the orthographic projection of the two external electrodes on the plane parallel to the display area have overlapping areas, and the shape and size of the overlapping area can be set according to specific needs, as long as it can ensure that the two ends of each resistor component 23 are well electrically connected to the two external electrodes (22a, 22b), and the embodiment of the present invention has no special restrictions on this.
  • the resistor component 23 and the two external electrodes (22a, 22b) connected thereto are arranged in different layers, and the two ends of the resistor component 23 are respectively overlapped on the side of the two external electrodes (22a, 22b) connected thereto away from the substrate, which can also realize the connection of the resistor component 23 with the two external electrodes (22a, 22b) respectively.
  • the plurality of resistor components 23 are divided into two layers in a direction perpendicular to the plane where the substrate is located, wherein the resistor components 23 and the two external electrodes (22a, 22b) connected thereto in one layer are arranged in the same layer, and a part of the two external electrodes (22a, 22b) connected thereto are overlapped on the side of the resistor component 23 away from the substrate; the resistor components 23 and the two external electrodes (22a, 22b) connected thereto in another layer are arranged in different layers, and the two ends of the resistor component 23 are respectively overlapped on the side of the two external electrodes (22a, 22b) connected thereto away from the substrate.
  • the number of resistance components 23 can be increased under the same spatial conditions, thereby further improving the uniformity of the voltage drop between the positions where the in-plane electrodes 21 are connected to each resistance component 23.
  • the display panel further includes an encapsulation layer 24, which covers the display area and the non-display area, and the in-plane electrode 21 and the out-of-plane electrode are respectively located on the two sides of the encapsulation layer 24 away from and close to the substrate, that is, the in-plane electrode 21 is located on the side of the encapsulation layer 24 away from the substrate, and the out-of-plane electrode is located on the side of the encapsulation layer 24 close to the substrate; and the encapsulation layer 24 includes a plurality of vias 241, and the in-plane electrode 21 is connected to the external electrode 22a closest to the in-plane electrode through the plurality of vias 241.
  • the in-plane electrode 21 and the external electrode 22a closest to the in-plane electrode 21 can also be connected in any other manner, and the embodiments of the present invention have no particular restrictions on this.
  • the number and structure of the via holes 241 can be set according to specific needs.
  • the via holes 241 can be three strip-shaped long holes, and are respectively arranged in parallel to the other three sides of the in-plane electrode 21 except the side where the display panel wiring is located.
  • the embodiment of the present invention has no particular limitation on this.
  • the display panel further includes an encapsulation layer, which covers the display area and the non-display area, and the in-plane electrode and the out-of-plane electrode are respectively located on the two sides of the encapsulation layer away from and close to the substrate, that is, the in-plane electrode is located on the side of the encapsulation layer away from the substrate, and the out-of-plane electrode is located on the side of the encapsulation layer close to the substrate; and the encapsulation layer includes a plurality of vias, and the in-plane electrode is connected to one end of the resistor component 23 through the plurality of vias.
  • the structure of the encapsulation layer is the same as the structure of the encapsulation layer 24 shown in Figures 9A to 9C.
  • the other end of the resistor component 23 is arranged in the same layer as the external electrode 22, and a part of the external electrode 22 is superimposed on the side of the resistor component 23 away from the substrate, so that the connection between the resistor component 23 and the external electrode can be achieved.
  • the shape and size of the overlapping area can be set according to specific needs, as long as it can ensure that the two ends of each resistor component are well electrically connected to the in-plane electrode and the external electrode, and the embodiment of the present invention has no special restrictions on this.
  • the other end of the resistor component 23 is arranged in a different layer from the external electrode, and the other end of the resistor component 23 is overlapped on the side of the external electrode away from the substrate, which can also achieve the connection between the resistor component 23 and the external electrode.
  • the multiple resistor components 23 are divided into two layers in the direction perpendicular to the plane where the substrate is located, wherein the resistor components 23 in one layer are arranged in the same layer as the external electrode 22, and a part of the external electrode 22 is overlapped on the side of the resistor component 23 away from the substrate; the resistor components 23 in the other layer are arranged in a different layer from the external electrode, and one end of the resistor component 23 is overlapped on the side of the external electrode 22 away from the substrate.
  • the external electrode can be connected to the in-plane electrode, or the voltage-dividing structure can be directly connected to the in-plane electrode. In practical applications, one of these two structures can be selected according to specific needs.
  • FIG. 11A is a display brightness distribution diagram of a display panel using a cathode ring as shown in FIG. 1 in the prior art
  • FIG. 11B is a display brightness distribution diagram of a display panel using two external electrodes and a voltage-dividing structure in an embodiment of the present invention
  • the display panel provided in the embodiment of the present invention can effectively improve the display brightness uniformity.
  • the voltage-dividing structure is connected between the in-plane electrode and the out-plane electrode, and the resistivity of the material of the voltage-dividing structure is greater than the resistivity of the material of the out-plane electrode and the in-plane electrode.
  • the total resistance on the path from the signal input end of the out-plane electrode 21 to each signal output end (i.e., the connection end between each resistor component 23 and the in-plane electrode 21) can be made approximately equal to the equivalent resistance of the voltage-dividing structure, that is, the resistance difference between the paths corresponding to each signal output end is compensated, and then the voltage drop (IRDrop) from the signal input end of the out-plane electrode to the multiple signal output ends corresponding to multiple different positions of the in-plane electrode 21 on its circumference can be made to be approximately the same, thereby improving the uniformity of display brightness.
  • the above-mentioned out-of-plane electrode will not increase the width of the non-display area of the display panel as a whole, which is conducive to achieving a narrow frame.
  • an embodiment of the present invention further provides a display device, which includes the above-mentioned display panel provided by the embodiment of the present invention.
  • the display device provided by the embodiment of the present invention can eliminate the current difference in different pixel areas, that is, the display brightness difference, by using the above-mentioned display panel provided by the embodiment of the present invention, thereby improving the uniformity of display brightness. At the same time, the width of the non-display area of the display panel will not be increased, which is conducive to achieving a narrow frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本发明提供一种显示面板和显示装置,该显示面板具有显示区和环绕于显示区周围的非显示区,其中,显示面板包括发光器件,发光器件包括第一电极,第一电极包括位于显示区的面内电极和位于非显示区的面外电极,以及分压结构,其中,分压结构连接于面内电极与面外电极之间,分压结构的材料的电阻率大于面外电极和面内电极的材料的电阻率。本发明提供的显示面板,可以在不增加显示面板的非显示区宽度的情况下,提高显示亮度均一性。

Description

显示面板和显示装置 技术领域
本发明涉及显示技术领域,具体地,涉及一种显示面板和显示装置。
背景技术
在电流型显示器件中,无论是OLED(Organic Light-Emitting Diode,有机发光二极管)还是Mini LED/Micro LED,均需要向发光器件的阴、阳极的两端加载电压才可以发光。受到中、小尺寸产品的尺寸限制,如需保证高像素密度及高亮度,就要求电压传输走线尽量不遮挡发光器件。以顶发光型OLED器件为例,阳极上的电压一般通过面内网状金属走线提供,阴极上的电压则通过外置的阴极环传输,然后经整面性的具有透光性的材料导入面内阴极。由于外围的阴极环需要传输所有像素(Pixel)区的输入信号,其通过的总电流非常高,又因阴极环常置于显示面板外围(即,非显示区),对于中、小尺寸产品来说,显示面板外围宽度需尽量小,这导致阴极环因其宽度较窄而具有较高的电阻,从而导致阴极环的电压降(IR drop)非常严重,当显示面板输出高亮画面时,通过阴极环输入进面内的阴极电压会因电压降而在不同像素区产生差异,从而造成显示亮度均一性降低。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种显示面板和显示装置,其可以在不增加显示面板的非显示区宽度的情况下,提高显示亮度均一性。
为实现上述目的,本公开实施例提供一种显示面板,所述显示面板具有 显示区和环绕于所述显示区周围的非显示区,其中,所述显示面板包括发光器件,所述发光器件包括第一电极,所述第一电极包括位于所述显示区的面内电极和位于所述非显示区的面外电极,以及分压结构,其中,所述分压结构连接于所述面内电极与所述面外电极之间,所述分压结构的材料的电阻率大于所述面外电极和所述面内电极的材料的电阻率。
可选的,所述分压结构被设置为使从所述面外电极的信号输入端到与所述面内电极在其周向上的多个不同位置对应的多个信号输出端的电压降相同。
可选的,所述分压结构包括多个电阻部件,多个所述电阻部件沿所述面外电极的延伸方向间隔设置,且多个所述电阻部件的一端均与所述面外电极连接,多个所述电阻部件的另一端用作信号输出端与所述面内电极在其周向上的多个不同位置连接。
可选的,每个所述电阻部件的电阻为第一电阻,多个所述电阻部件的所述第一电阻相同,且等间隔排布;所述面外电极的从所述面外电极的所述信号输入端到各个所述信号输出端的路径上的电阻为第二电阻,所述第一电阻大于所述第二电阻。
可选的,至少一部分所述电阻部件的电阻不同,且等间隔排布;或者,至少一部分所述电阻部件的电阻不同,且非等间隔排布。
可选的,所述面外电极为闭合的或者一侧具有开口的矩形环体;对应所述矩形环体的至少一个侧边排布的多个所述电阻部件中的至少一部分的电阻不同。
可选的,对应所述矩形环体的至少一个侧边排布的多个所述电阻部件中的至少一部分,在平行于所述显示区的平面上的正投影面积不同;
所述电阻部件在平行于所述显示区的平面上的正投影形状包括条形,且对应所述矩形环体的至少一个侧边排布的多个所述电阻部件中的至少一部分 在其延伸方向上的长度相同,而宽度不同。
可选的,所述电阻部件在平行于所述显示区的平面上的正投影形状包括条形,所述条形包括直线和/或曲折线。
可选的,所述曲折线包括依次连接的多个直线段;
各相邻的两个所述直线段之间的夹角等于90°;各相邻的两个所述直线段中的一者与所述面外电极的延伸方向相互垂直,另一者与所述面外电极的延伸方向相互平行;或者,
各相邻的两个所述直线段之间的夹角小于或等于90°;各相邻的两个所述直线段均与所述面外电极的延伸方向之间的夹角小于90°。
可选的,所述曲折线包括依次连接的多个弧线段,各相邻的两个所述弧线段构成S形弧线段。
可选的,所述电阻部件的数量大于等于10;多个所述电阻部件并联形成的等效电阻大于等于2Ω;所述电阻部件的电阻大于等于2000Ω。
可选的,所述面外电极包括一个外电极,所述外电极沿所述面内电极的轮廓周向延伸设置,所述分压结构连接于所述外电极与所述面内电极之间。
可选的,所述面外电极包括沿远离所述面内电极的方向依次间隔设置的多个外电极,每个所述外电极均沿所述面内电极的轮廓周向延伸设置;最靠近所述面内电极的所述外电极与所述面内电极连接;
各相邻的两个所述外电极之间均连接有所述分压结构。
可选的,多个所述外电极包括至少一个第一外电极和至少一个第二外电极,所述第一外电极为闭合的矩形环体;所述第二外电极为一侧具有开口的矩形环体,且不同的所述第二外电极对应的所述开口的朝向相同。
可选的,最远离所述面内电极的所述外电极设置有信号输入部,所述信号输入部的一端与所述矩形环体的一侧边连接,另一端用作所述信号输入端。
可选的,最远离所述面内电极的所述外电极为所述第一外电极;
所述信号输入部为一个,且所述信号输入部的一端与所述矩形环体的其中一个侧边的中间位置连接;或者,
所述信号输入部为两个,且两个所述信号输入部的一端分别与所述矩形环体的相邻两个边角连接,两个所述信号输入部的另一端均用作所述信号输入端。
可选的,最远离所述面内电极的所述外电极为所述第二外电极;
所述信号输入部为一个,且所述信号输入部的一端与所述矩形环体相邻于所述开口的两端中的一者连接;或者,
所述信号输入部为两个,且两个所述信号输入部的一端分别与所述矩形环体相邻于所述开口的两端连接,两个所述信号输入部的另一端均用作所述信号输入端。
可选的,所述发光器件还包括:
基底;
第二电极和有机功能层,所述第二电极、所述有机功能层和所述面内电极均位于所述显示区,且沿远离所述基底的方向,依次层叠设置于所述基底的一侧;其中,所述第一电极为阴极和阳极中的一者,所述第二电极为所述阴极和阳极中的另一者。
可选的,所述电阻部件和与之连接的两个所述外电极同层设置,且与所述电阻部件连接的两个所述外电极的一部分叠置于所述电阻部件远离所述基底的一侧;或者,
所述电阻部件和与之连接的两个所述外电极异层设置,且所述电阻部件的两端分别叠置于与之连接的两个所述外电极远离所述基底的一侧。
可选的,多个所述电阻部件在垂直于所述基底所在平面的方向上分为两层,其中一层中的所述电阻部件和与之连接的两个所述外电极同层设置,且与所述电阻部件连接的两个所述外电极的一部分叠置于所述电阻部件远离所 述基底的一侧;另一层中的所述电阻部件和与之连接的两个所述外电极异层设置,且所述电阻部件的两端分别叠置于与之连接的两个所述外电极远离所述基底的一侧。
可选的,所述显示面板还包括封装层,所述封装层覆盖所述显示区和所述非显示区,且所述面内电极和所述面外电极分别位于所述封装层远离和靠近所述基底的两侧;
所述封装层包括多个过孔,所述面内电极通过多个所述过孔与最靠近所述面内电极的所述外电极连接。
可选的,所述发光器件还包括:
基底;
第二电极和有机功能层,所述第二电极、所述有机功能层和所述面内电极均位于所述显示区,且沿远离所述基底的方向,依次层叠设置于所述基底的一侧;其中,所述第一电极为阴极和阳极中的一者,所述第二电极为所述阴极和阳极中的另一者;
封装层,所述封装层覆盖所述显示区和所述非显示区,且所述面内电极和所述面外电极分别位于所述封装层远离和靠近所述基底的两侧;所述封装层包括多个过孔,所述面内电极通过多个所述过孔与所述分压结构连接。
可选的,所述电阻部件与所述外电极同层设置,且所述外电极的一部分叠置于所述电阻部件远离所述基底的一侧;
或者,所述电阻部件与所述外电极异层设置,且所述电阻部件的一端叠置于所述外电极远离所述基底的一侧。
可选的,多个所述电阻部件在垂直于所述基底所在平面的方向上分为两层,其中一层中的所述电阻部件与所述外电极同层设置,且所述外电极的一部分叠置于所述电阻部件远离所述基底的一侧;另一层中的所述电阻部件与所述外电极异层设置,且所述电阻部件的一端叠置于所述外电极远离所述基 底的一侧。
可选的,所述电阻部件的材质包括ITO。
作为另一个技术方案,本发明还提供一种显示装置,其中,包括本发明提供的上述显示面板。
附图说明
图1为现有技术单个阴极环和面内电极的结构示意图;
图2为本发明实施例提供的显示面板的面外电极和面内电极的第一种结构示意图;
图3为本发明实施例提供的显示面板的面外电极和面内电极的第二种结构示意图;
图4A为本发明实施例采用的电阻部件的第一种结构示意图;
图4B为本发明实施例采用的电阻部件的第二种结构示意图;
图4C为本发明实施例采用的电阻部件的第三种结构示意图;
图4D为本发明实施例采用的电阻部件的第四种结构示意图;
图5为本发明实施例采用的面内电极远离信号输入端的一个边角区域的结构示意图;
图6A为本发明实施例提供的显示面板的面外电极和面内电极的第三种结构示意图;
图6B为本发明实施例提供的显示面板的面外电极和面内电极的第四种结构示意图;
图7A为本发明实施例提供的显示面板的面外电极和面内电极的第五种结构示意图;
图7B为本发明实施例提供的显示面板的面外电极和面内电极的第六种结构示意图;
图7C为本发明实施例提供的显示面板的面外电极和面内电极的第七种 结构示意图;
图7D为本发明实施例提供的显示面板的面外电极和面内电极的第八种结构示意图;
图7E为本发明实施例提供的显示面板的面外电极和面内电极的第九种结构示意图;
图7F为本发明实施例提供的显示面板的面外电极和面内电极的第十种结构示意图;
图8为本发明实施例提供的显示面板的面外电极和面内电极的第十一种结构示意图;
图9A为本发明实施例提供的显示面板的第一种局部剖面图;
图9B为本发明实施例提供的显示面板的第二种局部剖面图;
图9C为本发明实施例提供的显示面板的第三种局部剖面图;
图10为关于多个电阻部件并联时的等效电阻与面内显示亮度均一性的曲线图;
图11A为现有技术采用如图1所示的阴极环的显示面板的显示亮度分布图;
图11B为本发明实施例采用两个外电极和分压结构的显示面板的显示亮度分布图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅是本发明的部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
附图中各部件的形状和大小不反映真实比例,目的只是为了便于对本发明实施例的内容的理解。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的具体形状,但并不是旨在限制性的。
正如背景技术所述,现有的显示面板存在显示亮度均一性差的问题。经发明人研究发现,出现该问题的原因在于,以显示面板中的发光器件为顶发光型OLED器件为例,如图1所示,显示面板的显示区设置有整面性阴极11,且在显示面板的非显示区设置有一个阴极环12(非闭合),该阴极环12环绕在整面性阴极11的周围,且与之电导通。阴极环12具有两个信号输入端C1,由于阴极环11从该信号输入端C1到在远离信号输入端的路径(例如从C1到C2)上的不同位置的电阻大小有所不同,这使得阴极环12在向整面性阴极11输送输入信号的路径上存在电压降(IR Drop)不同,距离信号输入端C1越远的位置的电阻越大,电压降也越大,这就导致了不同像素区内的电流存在差异,即显示亮度差异,从而显示面板存在显示亮度均一性差的问题。
有鉴于此,本发明实施例提供了一种显示面板。该显示面板具有显示区 和环绕于该显示区周围的非显示区,其中,显示面板包括发光器件,该发光器件例如包括基底、第一电极、第二电极和有机功能层,且第二电极、有机功能层和第一电极沿远离基底的方向,依次层叠设置于基底的一侧。该发光器件例如为OLED器件,该OLED器件可以是顶发光型OLED器件,也可以是底发光型OLED器件。对于顶发光型OLED器件,上述第一电极为阴极,第二电极为阳极。对于底发光型OLED器件,上述第一电极为阳极,第二电极为阴极。
可选地,对于顶发光型OLED器件,上述有机功能层例如包括沿远离基底的方向依次叠置的空穴注入层、空穴传输层、发光层、电子传输层和电子注入层,其中,空穴注入层、空穴传输层、发光层、电子传输层和电子注入层依次电性连接,空穴注入层与阳极电性连接,电子注入层与阴极电性连接。当然,在实际应用中,上述有机功能层还可以采用其他结构,本发明实施例对此没有特别的限制。
可选的,对于底发光型OLED器件,上述有机功能层例如包括沿远离基底的方向依次叠置的电子注入层、电子传输层、发光层、空穴传输层和空穴注入层,其中,电子注入层与阴极电性连接,空穴注入层与阳极电性连接。当然,在实际应用中,上述有机功能层还可以采用其他结构,本发明实施例对此没有特别的限制。
具体地,请参阅图2,上述第一电极包括位于显示区的面内电极21和位于非显示区的面外电极,以及分压结构,上述分压结构连接于面内电极21与面外电极之间,其中,该面内电极21例如为覆盖整个显示区的整面性电极,该整面性电极具有透光性,用于为各个像素区提供电压。在上述第一电极为阴极时,该面内电极与电子注入层电性连接。在上述第一电极为阳极时,该面内电极与空穴注入层电性连接。
在本实施例中,上述面外电极包括一个外电极22,该外电极22沿面内 电极21的轮廓周向延伸设置,具体地,该外电极22可以沿面内电极21的轮廓周向环绕在面内电极21的周围,即形成一闭合环体,如图2所示,可选的,该闭合环体的轮廓形状与面内电极的轮廓形状相匹配,且闭合环体与面内电极21之间的间隔等距设置。或者,外电极22还可以沿面内电极的轮廓周向延伸,但并未完全包围面内电极,即形成一具有开口的非闭合环体,如图3所示,可选的,该非闭合环体的轮廓形状与面内电极的轮廓形状相匹配,且非闭合环体与面内电极21之间的间隔等距设置。例如,面内电极21的轮廓形状为矩形,上述闭合环体或非闭合环体的轮廓形状为矩形。在实际应用中,面内电极21的轮廓形状还可以方形或者其他任意形状,可以根据面内电极的轮廓形状而设定,本发明实施例对此没有特别的限制。
上述分压结构连接于外电极22与面内电极21之间,分压结构的材料的电阻率大于面外电极和面内电极的材料的电阻率。通过使分压结构的材料的电阻率大于面外电极和面内电极的材料的电阻率,可以使从面外电极21的信号输入端到各个信号输出端(即,各电阻部件23与面内电极21之间的连接端)的路径上的总电阻约等于分压结构的等效电阻,即,实现补偿各信号输出端对应的路径之间的电阻差异,进而可以使从面外电极的信号输入端到与面内电极21在其周向上的多个不同位置对应的多个信号输出端的电压降(IR Drop)大致相同,从而可以提高显示亮度均一性。
进一步可选的,上述分压结构可以被设置为使从面外电极的信号输入端C1到与面内电极21在其周向上的多个不同位置对应的多个信号输出端的电压降(IRDrop)相同。由此,可以消除面外电极在向面内电极21输送输入信号的路径上存在的电压降差异,可以消除不同像素区内的电流差异,即显示亮度差异,进而可以提高显示亮度均一性。同时,上述面外电极在整体上不会增加显示面板的非显示区宽度,从而有利于实现窄边框。
实现上述功能的分压结构可以有多种,例如,该分压结构包括多个电阻 部件23,多个电阻部件23沿面外电极(即,外电极22)的延伸方向间隔设置,且多个电阻部件23的一端均与面外电极(即,外电极22)连接,多个电阻部件23的另一端用作上述信号输出端与面内电极21在其周向上的多个不同位置连接。借助电阻部件23,可以增大从信号输入端C1到各信号输出端的路径上的电阻,同时可以起到补偿各信号输出端对应的路径之间的电阻差异的作用,从而可以消除面外电极(即,外电极22)在向面内电极21输送输入信号的路径上存在的电压降差异,以消除不同像素区内的电流差异,即显示亮度差异,进而可以提高显示亮度均一性。
在一些可选的实施例中,电阻部件23的材质包括ITO。当然,在实际应用中,电阻部件23还可以采用其他任意导电材料,优选采用电阻较大的材质。本发明实施例对此没有特别的限制。
在一些可选的实施例中,外电极22包括多层不同厚度的金属层,例如为三层金属层,且沿远离基底的方向依次为Ti、Al、Ti。各金属层优选采用方阻较小的材质。当然,在实际应用中,外电极22也可以包括一层金属层或者两层、四层以上金属层。
多个上述电阻部件23实现补偿各信号输出端对应的路径之间的电阻差异的方式可以有多种,例如,第一种方式为,多个电阻部件23的电阻为第一电阻R,且多个电阻部件23的第一电阻R相同,且等间隔排布。面外电极(即,外电极22)的从面外电极21的信号输入端C1到面外电极22与各电阻部件23的连接端的路径上的电阻为第二电阻ri,i=1,2,...,N,N为电阻部件23的数量。并且,第一电阻R大于第二电阻ri。由于从面外电极21的信号输入端到各个信号输出端(即,各电阻部件23与面内电极21之间的连接端)的路径上的总电阻等于第一电阻R与第二电阻ri之和,通过使多个电阻部件23的第一电阻R大于第二电阻ri,优选为第一电阻R远远大于第二电阻ri(R>>ri),可以使不同的第二电阻之间的差值相对于第一电阻R很小,可 以忽略不计,从而可以使各个信号输出端对应的路径上的总电阻(R+ri)约等于第一电阻R,即,实现补偿各信号输出端对应的路径之间的电阻差异,进而可以使从面外电极的信号输入端到与面内电极21在其周向上的多个不同位置对应的多个信号输出端的电压降(IRDrop)大致相同,从而可以提高显示亮度均一性。
在一些可选的实施例中,电阻部件23在平行于显示区的平面上的正投影形状包括条形,该条形包括直线和/或曲折线。具体来说,条形的电阻部件23例如为导线,该导线的形状例如为直线导线或者曲折线导线或者二者的组合。该导线在其延伸方向上的长度越长,电阻越大;反之,则越小。基于此,可以根据所需的电阻部件23的电阻大小来设定导线的形状及在其延伸方向上的长度,例如,如果需要电阻部件23的电阻较小或者导线宽度和厚度足够,则可以选择直线导线或者直线导线与曲折线导线的组合。如果需要电阻部件23的电阻较大或者导线宽度和厚度较小,则可以选择曲折线导线,以获得足够长度的导线。当然,本发明实施例并不局限于此,在实际应用中,上述电阻部件还可以为具有一定阻值的电阻元件。
上述曲折线的形状可以有多种,例如,该曲折线包括依次连接的多个直线段,各相邻的两个直线段之间的夹角小于等于90°。进一步可选的,如图4A所示,各相邻的两个直线段(231,232)之间的夹角等于90°,并且各相邻的两个直线段中的一者(即,直线段231)与面外电极的延伸方向相互垂直,另一者(即,直线段232)与面外电极的延伸方向相互平行。进一步可选的,如图4B所示,各相邻的两个直线段(231,232)之间的夹角等于90°,并且各相邻的两个直线段(231,232)均与面外电极的延伸方向之间的夹角小于90°,例如为45°。进一步可选的,如图4C所示,各相邻的两个直线段(231,232)之间的夹角小于90°,例如为30°并且各相邻的两个直线段(231,232)均与面外电极的延伸方向之间的夹角均小于90°,例如为60°。进一步可选的,如 图4D所示,曲折线包括依次连接的多个弧线段233,各相邻的两个弧线段233构成S形弧线段。当然,本发明实施例并不局限于此,在实际应用中,上述曲折线还可以采用其他任意形状,只要能够获得所需的电阻部件的电阻大小即可。
实现补偿各信号输出端对应的路径之间的电阻差异的第二种方式为,至少一部分电阻部件23的电阻不同,且等间隔排布;或者,至少一部分电阻部件23的电阻不同,且非等间隔排布。也就是说,通过设置至少一部分电阻不同的电阻部件23,来补偿电压降较大的局部位置与其他位置之间的电压降差异,例如,如图5所示,为矩形的面内电极21远离信号输入端的一个边角区域(即,右上角)对应的多个电阻部件23的结构,该边角区域处对应的外电极22的电压降较严重,且越靠近边角越严重,对此,可以通过增加靠近边角处的一部分电阻部件23的电阻大小来补偿该边角区域与其他位置之间的电压降差异。在实际应用中,可以根据各信号输出端对应的路径之间的电阻差异来设定各个电阻部件的电阻大小,并选择性地设定为等间隔排布或非等间隔排布。
在一些可选的实施例中,面外电极(即,外电极)为闭合的或者一侧具有开口的矩形环体,该面外电极适用于显示区的轮廓形状为矩形的情况,即面外电极的环形形状例如与显示区的轮廓形状相适配;对应矩形环体的至少一个侧边排布的多个电阻部件23中的至少一部分的电阻不同。由于距离信号输入端越远的位置的电阻越大,电压降也越大,通过使对应矩形环体的至少一个侧边排布的多个电阻部件23中的至少一部分的电阻不同,可以补偿对应矩形环体的侧边所在方向上的电阻差异,从而可以消除矩形环体的侧边存在的电压降差异。需要说明的是,面外电极并不局限于为矩形环体,其可以根据显示区的轮廓形状而调整,例如为方形环体等等。
实现对应矩形环体的至少一侧边排布的多个电阻部件23的电阻不同的 方式可以有多种,例如,对应矩形环体的侧边排布的多个电阻部件23,在平行于显示区的平面上的正投影面积不同。该正投影面积越大,则电阻越大;反之,正投影面积越小,则电阻越小。基于此,通过使对应矩形环体的侧边排布的多个电阻部件23在平行于显示区的平面上的正投影面积不同,可以实现对应矩形环体的侧边排布的多个电阻部件23的电阻不同。进一步可选的,如图5所示,电阻部件23在平行于显示区的平面上的正投影形状包括条形,且对应矩形环体的侧边排布的多个电阻部件23在其延伸方向上的长度相同,而宽度不同,由此可以实现对应矩形环体的侧边排布的多个电阻部件23在平行于显示区的平面上的正投影面积不同。在此基础上,通过使对应矩形环体的侧边排布的多个电阻部件23在其延伸方向上的长度相同,可以适用于面外电极与面内电极之间的间隔为等间隔的情况,便于各个电阻部件23的两端分别与面外电极与面内电极21连接。当然,在实际应用中,电阻部件在平行于显示区的平面上的正投影形状还可以采用其他任意形状,本发明实施例对此没有特别的限制。需要说明的是,针对上述第二种方式,不同电阻部件可以采用相同的形状,而尺寸不同;或者,不同电阻部件也可以采用不同的形状。本发明实施例对此没有特别的限制。
无论是上述第一种方式还是第二种方式,电阻部件23的数量、电阻大小的设定均可以对面内显示亮度均一性的改善效果产生影响,具体地,当面外电极的方阻恒定,且在电阻部件23的数量相同的条件下,单个电阻部件23的电阻越大,面内电极21在其周向上的多个不同位置对应的多个信号输出端的电压均一性越好,面内显示亮度均一性就越好。可选的,电阻部件的电阻大于等于2000Ω。当面外电极的方阻恒定,且在电阻部件的电阻相同的条件下,电阻部件23的数量越少,面内电极212在靠近与各电阻部件23连接的位置处的电压均一性越好,面内亮度显示均一性就越好。这是因为:假设将面内电极21和面外电极视为两个理想节点A和B,两个理想节点A和 B之间并联若干电阻部件23。两个理想节点A和B之间的电阻与单个电阻部件23的电阻除以电阻部件23的数量得到的商成正比,电阻部件的数量越少,商越大,与之成正比的两个理想节点A和B之间的电阻就越大,从而靠近理想节点B的电压均一性越好,面内显示均一性就越好。进一步说,多个电阻部件23并联时的等效电阻等于单个电阻部件23的电阻除以电阻部件的数量的商,例如,如果单个电阻部件23的电阻为2000Ω,电阻部件的数量为1000个,则等效电阻为2Ω,该等效电阻越大,靠近理想节点B的电压均一性越好,面内显示亮度均一性就越好。请参阅图10,横坐标为多个电阻部件并联时的等效电阻,纵坐标为面内显示亮度均一性,由图10所示的曲线可知,面内显示亮度均一性随着等效电阻的增大而提高。
但是,电阻部件23的数量也不能太少,这是因为电阻部件23的数量会影响面内电极21在与各电阻部件23连接的位置之间的电压降均一性,电阻部件23的数量越多,面内电极21在与各电阻部件23连接的位置之间的电压降均一性提高得越明显,否则会因受到面内电极21的电阻影响,而导致面内电极21在与各电阻部件23连接的位置之间的电压均一性提升效果减弱。可选的,电阻部件23的数量大于等于10。在实际应用中,电阻部件23的数量可以根据显示面板的尺寸、工艺要求和等效电阻的大小设计等参数进行设定,本发明实施例对此没有特别的限制。
在一些可选的实施例中,面外电极(即,外电极22)为闭合的或者一侧具有开口的矩形环体,该面外电极适用于显示区的轮廓形状为矩形的情况,即面外电极的环形形状例如与显示区的轮廓形状相适配。如图2和图3所示,该外电极22设置有信号输入部221,该信号输入部221的一端与矩形环体的一侧边连接,另一端用作上述信号输入端C1。进一步可选的,如图2所示,矩形环体是闭合的,这有利于进一步提高面内显示亮度均一性。在这种情况下,上述信号输入部221为一个,且信号输入部221的一端与矩形环体的其 中一个侧边的中间位置连接;或者,如图6A所示,信号输入部221为两个,且两个信号输入部221的一端分别与矩形环体的相邻两个边角连接,两个信号输入部221的另一端均用作上述信号输入端。两个信号输入部同时将输入信号引入矩形环体,可以提高输入信号的均一性。
或者,如图3所示,矩形环体一侧具有开口,该开口可以朝向显示面板的排线所在一侧,以避让排线引入面内。在这种情况下,上述信号输入部221为一个,且信号输入部221的一端与矩形环体相邻于开口的两端中的一者连接;或者如图6B所示,信号输入部221为两个,且两个信号输入部221的一端分别与矩形环体相邻于开口的两端连接,两个信号输入部221的另一端均用作信号输入端。
需要说明的是,在上述实施例中,面外电极包括一个外电极22,上述分压结构连接于外电极22与面内电极21之间,但是,本发明实施例并不局限于此,在另一个可选的实施例中,面外电极可以包括沿远离面内电极的方向依次间隔设置的多个外电极,每个外电极均沿面内电极的轮廓周向延伸设置,其中,最靠近面内电极的外电极与面内电极连接;各相邻的两个外电极之间均连接有上述分压结构。该分压结构与上述实施例采用的分压结构相同,在此不再赘述。
例如,如图7A所示,面外电极可以包括沿远离面内电极21的方向依次间隔设置的两个外电极(22a,22b),每个外电极均沿面内电极的轮廓周向延伸设置,其中,最靠近面内电极21的外电极22a与面内电极21连接;两个外电极(22a,22b)之间连接有上述分压结构(即,电阻部件23)。
又如,如图8所示,面外电极可以包括沿远离面内电极21的方向依次间隔设置的三个外电极(22a,22b,22c),每个外电极均沿面内电极的轮廓周向延伸设置,其中,最靠近面内电极21的外电极22a与面内电极21连接;相邻的两个外电极(22a,22b)之间,以及相邻的两个外电极(22b,22c) 之间均连接有上述分压结构(即,电阻部件23)。
通过设置多个外电极以及各相邻的两个外电极之间的分压结构,可以更灵活地设计分压结构,从而可以进一步提高显示亮度均一性。在实际应用中,分压结构有多个的情况下,不同的相邻的两个外电极之间可以采用相同的分压结构,也可以采用不同的分压结构。例如,不同的分压结构中的电阻部件的结构可以相同,而数量可以不同。
对于多个外电极的情况,在一些可选的实施例中,多个外电极包括至少一个第一外电极和至少一个第二外电极,第一外电极为闭合的矩形环体,例如,如图7C和图7F所示,两个外电极(22a,22b)均为第一外电极;第二外电极为一侧具有开口的矩形环体,且不同的第二外电极对应的开口的朝向相同,例如,如图7A和图7D所示,两个外电极(22a,22b)均为第二外电极。也就是说,任意一个外电极均可以选择性地采用闭合的矩形环体或者一侧具有开口的矩形环体。例如,如图7B和图7E所示,两个外电极(22a,22b)中的一者为第一外电极,另一者为第二外电极。
对于多个外电极的情况,在一些可选的实施例中,最远离面内电极21的外电极(例如外电极22b)设置有信号输入部221,该信号输入部221的一端与矩形环体的一侧边连接,另一端用作信号输入端。进一步可选的,最远离面内电极21的外电极(例如外电极22b)为第一外电极,即为闭合的矩形环体,在这种情况下,如图7C所示,上述信号输入部221为一个,且信号输入部221的一端与矩形环体的其中一个侧边的中间位置连接;或者,如图7F所示,信号输入部221为两个,且两个信号输入部221的一端分别与矩形环体的相邻两个边角连接,两个信号输入部221的另一端均用作上述信号输入端。
在另一些可选的实施例中,最远离面内电极的外电极(例如外电极22b)为第二外电极,即为一侧具有开口的矩形环体,在这种情况下,如图7B所 示,上述信号输入部221为一个,且信号输入部221的一端与矩形环体相邻于开口的两端中的一者连接;或者,如图7D所示,信号输入部221为两个,且两个信号输入部221的一端分别与矩形环体相邻于开口的两端连接,两个信号输入部221的另一端均用作信号输入端。
需要说明的是,在实际应用中,无论外电极的数量是一个还是多个,均还可以采用其他信号输入结构和输入方式将输入信号引入面外电极,本发明实施例对此没有特别的限制。
对于多个外电极的情况,在一些可选的实施例中,如图9A所示,以外电极为两个为例,电阻部件23和与之连接的两个外电极(22a,22b)同层设置,且与电阻部件23连接的两个外电极(22a,22b)的一部分叠置于分压结构(22a,22b)远离基底(图中未示出)的一侧,从而可以实现分压结构分别与两个外电极(22a,22b)的连接。具体地,各个电阻部件23的两端与两个外电极在平行于显示区的平面上的正投影存在重叠区域,该重叠区域的形状和尺寸可以根据具体需要而设定,只要能够保证各个电阻部件23的两端与两个外电极(22a,22b)良好的电性连接即可,本发明实施例对此没有特别的限制。在另一些可选的实施例中,如图9B所示,电阻部件23和与之连接的两个外电极(22a,22b)异层设置,且电阻部件23的两端分别叠置于与之连接的两个外电极(22a,22b)远离基底的一侧,这同样可以实现电阻部件23分别与两个外电极(22a,22b)的连接。在另一些可选的实施例中,如图9C所示,多个电阻部件23在垂直于基底所在平面的方向上分为两层,其中一层中的电阻部件23和与之连接的两个外电极(22a,22b)同层设置,且与电阻部件23连接的两个外电极(22a,22b)的一部分叠置于电阻部件23远离所述基底的一侧;另一层中的电阻部件23和与之连接的两个外电极(22a,22b)异层设置,且电阻部件23的两端分别叠置于与之连接的两个外电极(22a,22b)远离基底的一侧。通过采用两层电阻部件,可以在相同空间条 件下,增加电阻部件23的数量,从而可以进一步提高面内电极21在与各电阻部件23连接的位置之间的电压降均一性。
对于多个外电极的情况,在一些可选的实施例中,如图9A至图9C所示,显示面板还包括封装层24,该封装层24覆盖显示区和非显示区,且面内电极21和面外电极分别位于封装层24远离和靠近基底的两侧,即,面内电极21位于封装层24远离基底的一侧,面外电极位于封装层24靠近基底的一侧;并且,封装层24包括多个过孔241,面内电极21通过多个过孔241与最靠近面内电极的外电极22a连接。当然,在实际应用中,面内电极21与最靠近面内电极21的外电极22a还可以采用其他任意方式,本发明实施例对此没有特别的限制。
需要说明的是,上述过孔241的数量和结构可以根据具体需要而设定,例如,以面内电极21的轮廓形状为矩形为例,过孔241可以为三个条形长孔,且分别对应面内电极21的除显示面板排线所在侧边之外的另外三个侧边平行设置。本发明实施例对此没有特别的限制。
对于单个外电极的情况,在一些可选的实施例中,显示面板还包括封装层,该封装层覆盖显示区和非显示区,且面内电极和面外电极分别位于封装层远离和靠近基底的两侧,即,面内电极位于封装层远离基底的一侧,面外电极位于封装层靠近基底的一侧;并且,封装层包括多个过孔,面内电极通过多个过孔与电阻部件23的一端连接。例如,该封装层的结构与图9A至图9C示出的封装层24的结构相同。进一步可选的,电阻部件23的另一端与外电极22同层设置,且外电极22的一部分叠置于电阻部件23远离基底的一侧,从而可以实现电阻部件23与外电极的连接。具体地,各个电阻部件23的两端与面内电极和外电极在平行于显示区的平面上的正投影存在重叠区域,该重叠区域的形状和尺寸可以根据具体需要而设定,只要能够保证各个电阻部件的两端与面内电极和外电极良好的电性连接即可,本发明实施例对此没有 特别的限制。在另一些可选的实施例中,电阻部件23的另一端与外电极异层设置,且电阻部件23的另一端叠置于外电极远离基底的一侧,这同样可以实现电阻部件23与外电极的连接。在另一些可选的实施例中,多个电阻部件23在垂直于基底所在平面的方向上分为两层,其中一层中的所电阻部件23与外电极22同层设置,且外电极22的一部分叠置于所电阻部件23远离基底的一侧;另一层中的电阻部件23与外电极异层设置,且电阻部件23的一端叠置于外电极22远离基底的一侧。也就是说,可以通过外电极与面内电极连接,或者也可以直接将分压结构与面内电极连接,在实际应用中,可以根据具体需要选择这两种结构之一。
需要说明的是,在实际应用中,为了进一步降低经过面外电极的电压降,可以通过增加面外电极的整体厚度来实现,和/或,在显示面板的非显示区宽度满足要求的前提下,通过增加面外电极的宽度来实现。
图11A为现有技术采用如图1所示的阴极环的显示面板的显示亮度分布图;图11B为本发明实施例采用两个外电极和分压结构的显示面板的显示亮度分布图;对比图11A和图11B可知,现有技术中的显示面板的显示区的9个不同位置的亮度值存在较大的差异,且亮度分布均一性(Brightness uniformity)为80.6%。与之相比,本发明实施例采用两个外电极和分压结构的显示面板的显示区的9个不同位置的亮度值差异相对于现有技术明显减小,且亮度分布均一性(Brightness uniformity)达到95.1%。因此,本发明实施例提供的显示面板可以有效提高显示亮度均一性。
综上所述,本发明实施例提供的显示面板,分压结构连接于面内电极与面外电极之间,且分压结构的材料的电阻率大于面外电极和面内电极的材料的电阻率。通过使分压结构的材料的电阻率大于面外电极和面内电极的材料的电阻率,可以使从面外电极21的信号输入端到各个信号输出端(即,各电阻部件23与面内电极21之间的连接端)的路径上的总电阻约等于分压结构 的等效电阻,即,实现补偿各信号输出端对应的路径之间的电阻差异,进而可以使从面外电极的信号输入端到与面内电极21在其周向上的多个不同位置对应的多个信号输出端的电压降(IRDrop)大致相同,从而可以提高显示亮度均一性。同时,上述面外电极在整体上不会增加显示面板的非显示区宽度,从而有利于实现窄边框。
作为另一个技术方案,本发明实施例还提供一种显示装置,其中,包括本发明实施例提供的上述显示面板。
本发明实施例提供的显示装置,其通过采用本发明实施例提供的上述显示面板,可以消除不同像素区内的电流差异,即显示亮度差异,进而可以提高显示亮度均一性。同时,不会增加显示面板的非显示区宽度,从而有利于实现窄边框。
可以解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (26)

  1. 一种显示面板,所述显示面板具有显示区和环绕于所述显示区周围的非显示区,其中,所述显示面板包括发光器件,所述发光器件包括第一电极,所述第一电极包括位于所述显示区的面内电极和位于所述非显示区的面外电极,以及分压结构,其中,所述分压结构连接于所述面内电极与所述面外电极之间,
    所述分压结构的材料的电阻率大于所述面外电极和所述面内电极的材料的电阻率。
  2. 根据权利要求1所述的显示面板,其中,所述分压结构被设置为使从所述面外电极的信号输入端到与所述面内电极在其周向上的多个不同位置对应的多个信号输出端的电压降相同。
  3. 根据权利要求1或2所述的显示面板,其中,所述分压结构包括多个电阻部件,多个所述电阻部件沿所述面外电极的延伸方向间隔设置,且多个所述电阻部件的一端均与所述面外电极连接,多个所述电阻部件的另一端用作信号输出端与所述面内电极在其周向上的多个不同位置连接。
  4. 根据权利要求3所述的显示面板,其中,每个所述电阻部件的电阻为第一电阻,多个所述电阻部件的所述第一电阻相同,且等间隔排布;所述面外电极的从所述面外电极的所述信号输入端到各个所述信号输出端的路径上的电阻为第二电阻,所述第一电阻大于所述第二电阻。
  5. 根据权利要求3所述的显示面板,其中,至少一部分所述电阻部件的电阻不同,且等间隔排布;或者,至少一部分所述电阻部件的电阻不同,且非等间隔排布。
  6. 根据权利要求5所述的显示面板,其中,所述面外电极为闭合的或者一侧具有开口的矩形环体;对应所述矩形环体的至少一个侧边排布的多个所述电阻部件中的至少一部分的电阻不同。
  7. 根据权利要求6所述的显示面板,其中,对应所述矩形环体的至少一个侧边排布的多个所述电阻部件中的至少一部分,在平行于所述显示区的平面上的正投影面积不同;
    所述电阻部件在平行于所述显示区的平面上的正投影形状包括条形,且对应所述矩形环体的至少一个侧边排布的多个所述电阻部件中的至少一部分在其延伸方向上的长度相同,而宽度不同。
  8. 根据权利要求3所述的显示面板,其中,所述电阻部件在平行于所述显示区的平面上的正投影形状包括条形,所述条形包括直线和/或曲折线。
  9. 根据权利要求8所述的显示面板,其中,所述曲折线包括依次连接的多个直线段;
    各相邻的两个所述直线段之间的夹角等于90°;各相邻的两个所述直线段中的一者与所述面外电极的延伸方向相互垂直,另一者与所述面外电极的延伸方向相互平行;或者,
    各相邻的两个所述直线段之间的夹角小于或等于90°;各相邻的两个所述直线段均与所述面外电极的延伸方向之间的夹角小于90°。
  10. 根据权利要求8所述的显示面板,其中,所述曲折线包括依次连接的多个弧线段,各相邻的两个所述弧线段构成S形弧线段。
  11. 根据权利要求3所述的显示面板,其中,所述电阻部件的数量大于 等于10;多个所述电阻部件并联形成的等效电阻大于等于2Ω;所述电阻部件的电阻大于等于2000Ω。
  12. 根据权利要求3所述的显示面板,其中,所述面外电极包括一个外电极,所述外电极沿所述面内电极的轮廓周向延伸设置,所述分压结构连接于所述外电极与所述面内电极之间。
  13. 根据权利要求3所述的显示面板,其中,所述面外电极包括沿远离所述面内电极的方向依次间隔设置的多个外电极,每个所述外电极均沿所述面内电极的轮廓周向延伸设置;最靠近所述面内电极的所述外电极与所述面内电极连接;
    各相邻的两个所述外电极之间均连接有所述分压结构。
  14. 根据权利要求13所述的显示面板,其中,多个所述外电极包括至少一个第一外电极和至少一个第二外电极,所述第一外电极为闭合的矩形环体;所述第二外电极为一侧具有开口的矩形环体,且不同的所述第二外电极对应的所述开口的朝向相同。
  15. 根据权利要求14所述的显示面板,其中,最远离所述面内电极的所述外电极设置有信号输入部,所述信号输入部的一端与所述矩形环体的一侧边连接,另一端用作所述信号输入端。
  16. 根据权利要求15所述的显示面板,其中,最远离所述面内电极的所述外电极为所述第一外电极;
    所述信号输入部为一个,且所述信号输入部的一端与所述矩形环体的其中一个侧边的中间位置连接;或者,
    所述信号输入部为两个,且两个所述信号输入部的一端分别与所述矩形 环体的相邻两个边角连接,两个所述信号输入部的另一端均用作所述信号输入端。
  17. 根据权利要求15所述的显示面板,其中,最远离所述面内电极的所述外电极为所述第二外电极;
    所述信号输入部为一个,且所述信号输入部的一端与所述矩形环体相邻于所述开口的两端中的一者连接;或者,
    所述信号输入部为两个,且两个所述信号输入部的一端分别与所述矩形环体相邻于所述开口的两端连接,两个所述信号输入部的另一端均用作所述信号输入端。
  18. 根据权利要求13所述的显示面板,其中,所述发光器件还包括:
    基底;
    第二电极和有机功能层,所述第二电极、所述有机功能层和所述面内电极均位于所述显示区,且沿远离所述基底的方向,依次层叠设置于所述基底的一侧;其中,所述第一电极为阴极和阳极中的一者,所述第二电极为所述阴极和阳极中的另一者。
  19. 根据权利要求18所述的显示面板,其中,所述电阻部件和与之连接的两个所述外电极同层设置,且与所述电阻部件连接的两个所述外电极的一部分叠置于所述电阻部件远离所述基底的一侧;或者,
    所述电阻部件和与之连接的两个所述外电极异层设置,且所述电阻部件的两端分别叠置于与之连接的两个所述外电极远离所述基底的一侧。
  20. 根据权利要求18所述的显示面板,其中,多个所述电阻部件在垂直于所述基底所在平面的方向上分为两层,其中一层中的所述电阻部件和与之连接的两个所述外电极同层设置,且与所述电阻部件连接的两个所述外电 极的一部分叠置于所述电阻部件远离所述基底的一侧;另一层中的所述电阻部件和与之连接的两个所述外电极异层设置,且所述电阻部件的两端分别叠置于与之连接的两个所述外电极远离所述基底的一侧。
  21. 根据权利要求18所述的显示面板,其中,所述显示面板还包括封装层,所述封装层覆盖所述显示区和所述非显示区,且所述面内电极和所述面外电极分别位于所述封装层远离和靠近所述基底的两侧;
    所述封装层包括多个过孔,所述面内电极通过多个所述过孔与最靠近所述面内电极的所述外电极连接。
  22. 根据权利要求12所述的显示面板,其中,所述发光器件还包括:
    基底;
    第二电极和有机功能层,所述第二电极、所述有机功能层和所述面内电极均位于所述显示区,且沿远离所述基底的方向,依次层叠设置于所述基底的一侧;其中,所述第一电极为阴极和阳极中的一者,所述第二电极为所述阴极和阳极中的另一者;
    封装层,所述封装层覆盖所述显示区和所述非显示区,且所述面内电极和所述面外电极分别位于所述封装层远离和靠近所述基底的两侧;所述封装层包括多个过孔,所述面内电极通过多个所述过孔与所述分压结构连接。
  23. 根据权利要求22所述的显示面板,其中,所述电阻部件与所述外电极同层设置,且所述外电极的一部分叠置于所述电阻部件远离所述基底的一侧;
    或者,所述电阻部件与所述外电极异层设置,且所述电阻部件的一端叠置于所述外电极远离所述基底的一侧。
  24. 根据权利要求22所述的显示面板,其中,多个所述电阻部件在垂 直于所述基底所在平面的方向上分为两层,其中一层中的所述电阻部件与所述外电极同层设置,且所述外电极的一部分叠置于所述电阻部件远离所述基底的一侧;另一层中的所述电阻部件与所述外电极异层设置,且所述电阻部件的一端叠置于所述外电极远离所述基底的一侧。
  25. 根据权利要求3所述的显示面板,其中,所述电阻部件的材质包括ITO。
  26. 一种显示装置,其中,包括权利要求1-25中任意一项所述的显示面板。
PCT/CN2022/135315 2022-11-30 2022-11-30 显示面板和显示装置 WO2024113211A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135315 WO2024113211A1 (zh) 2022-11-30 2022-11-30 显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135315 WO2024113211A1 (zh) 2022-11-30 2022-11-30 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2024113211A1 true WO2024113211A1 (zh) 2024-06-06

Family

ID=91322561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135315 WO2024113211A1 (zh) 2022-11-30 2022-11-30 显示面板和显示装置

Country Status (1)

Country Link
WO (1) WO2024113211A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611142A (zh) * 2017-09-11 2018-01-19 上海天马有机发光显示技术有限公司 显示面板及显示装置
CN110323258A (zh) * 2019-05-09 2019-10-11 京东方科技集团股份有限公司 显示基板及显示装置
CN110970478A (zh) * 2019-11-26 2020-04-07 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示装置
WO2021097690A1 (zh) * 2019-11-20 2021-05-27 京东方科技集团股份有限公司 显示基板及其制作方法和显示装置
CN213583795U (zh) * 2021-05-31 2021-06-29 苏州华星光电技术有限公司 显示面板与显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611142A (zh) * 2017-09-11 2018-01-19 上海天马有机发光显示技术有限公司 显示面板及显示装置
CN110323258A (zh) * 2019-05-09 2019-10-11 京东方科技集团股份有限公司 显示基板及显示装置
WO2021097690A1 (zh) * 2019-11-20 2021-05-27 京东方科技集团股份有限公司 显示基板及其制作方法和显示装置
CN110970478A (zh) * 2019-11-26 2020-04-07 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN213583795U (zh) * 2021-05-31 2021-06-29 苏州华星光电技术有限公司 显示面板与显示装置

Similar Documents

Publication Publication Date Title
US11678553B2 (en) Touch display panel
KR102654291B1 (ko) 유기 발광 표시 장치
JP4561490B2 (ja) エレクトロルミネッセンス素子
US10825839B2 (en) Touch display device
US11329123B2 (en) Display device
CN101009308B (zh) 发光装置及电子机器
JP5254896B2 (ja) ディスプレイパネル及びその製造方法
US20200067018A1 (en) Display device
KR102288845B1 (ko) 터치 센서를 포함하는 표시 장치
KR101559240B1 (ko) 유기 일렉트로 루미네센스 표시 장치
US20160109997A1 (en) Touch substrate and manufacturing method thereof, touch display panel
US11038139B2 (en) Organic electroluminescent devices, displays and mobile communication devices
US12008183B2 (en) Electronic device
WO2019085630A1 (zh) 有机电致发光器件、显示器及移动通信设备
WO2024113211A1 (zh) 显示面板和显示装置
WO2020113701A1 (zh) 一种 oled 显示面板
WO2024022069A1 (zh) 一种显示面板、显示装置
TW202004278A (zh) 陣列基板
WO2024098559A1 (zh) 显示面板及显示装置
US10355058B2 (en) Display device
US11520435B2 (en) Touch structure and display apparatus
CN110600528A (zh) 显示面板和显示装置
WO2020047712A1 (zh) 触控显示面板及触控显示设备
JP2015176766A (ja) 表示装置および表示装置の製造方法
TWI461104B (zh) 有機電致發光元件