WO2024112022A1 - Dual tank having displacement-absorbing structure - Google Patents

Dual tank having displacement-absorbing structure Download PDF

Info

Publication number
WO2024112022A1
WO2024112022A1 PCT/KR2023/018624 KR2023018624W WO2024112022A1 WO 2024112022 A1 WO2024112022 A1 WO 2024112022A1 KR 2023018624 W KR2023018624 W KR 2023018624W WO 2024112022 A1 WO2024112022 A1 WO 2024112022A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
passage portion
elastic
passage
extension
Prior art date
Application number
PCT/KR2023/018624
Other languages
French (fr)
Korean (ko)
Inventor
하재진
이창환
박현준
Original Assignee
주식회사래티스테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사래티스테크놀로지 filed Critical 주식회사래티스테크놀로지
Publication of WO2024112022A1 publication Critical patent/WO2024112022A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/10Manholes; Inspection openings; Covers therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/54Gates or closures
    • B65D90/56Gates or closures operating by deformation of flexible walls

Definitions

  • the present invention relates to a double tank having a displacement absorption structure, and more specifically, to a double tank having a manhole structure that can absorb shrinkage displacement caused by the temperature difference between the inside and outside when low-temperature fluid flows into the tank.
  • a pressure tank is a container that accommodates fluid under pressure and is manufactured to withstand pressure for the purpose of storing, reacting, and separating liquid or gas. It is generally used to transport or store oxygen, nitrogen, argon, and natural gas with a critical temperature of -50°C or lower in liquid form. In particular, since liquefied gas is at a cryogenic temperature of -150°C or lower, cryogenic containers must be insulated to prevent an increase in liquid temperature due to heat immersion from the outside, that is, an increase in container pressure, and the material of the container must be a material that does not cause low-temperature embrittlement. must be used.
  • cryogenic containers have a double-walled structure with an inner tank and an outer tank.
  • the inner tank is a low-temperature tank in which low-temperature fluid is stored
  • the outer tank installed along the outer circumference of the low-temperature tank is a protection tank that protects the low-temperature tank. Opening and closing parts are installed on the outer circumference of the protection tank and the low-temperature tank to allow fluid injection. .
  • the conventional double tank structure will be described with reference to FIG. 1.
  • the conventional double tank is formed in a dual structure in which the inner tank 10 is accommodated in the outer tank 20 at a preset interval, and each of the inner tank 10 and the outer tank 20 has An inner tank through hole 15 and an outer tank through hole 25 are formed, and a passage portion 30 is formed around the inner tank through hole 15 to communicate with the inner space of the inner tank 10 and the external environment.
  • the outer surface of the passage portion 30 and the outer shell hole 25 are connected so that the space between the inner shell 10 and the outer shell 20 can be sealed.
  • the space between the inner tank 10 and the outer tank 20 forms an insulating layer by maintaining a vacuum.
  • the inner through hole 15 and the outer through hole 25 are closed by separate lids, but in case of fluid inflow, as shown in the dotted oval in FIG.
  • the lids are opened.
  • one end of the passage portion 30 is coupled to the outer surface of the inner tank 10 and the side of the passage portion 30 is coupled to seal the outer tank through hole 25 while penetrating the outer tank through hole 25, the inner tank 10 ) and the outer tank 20 are still kept in a sealed state.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2014-0131372 (“LNG tank”, November 12, 2014)
  • the present invention was created to solve the problems of the prior art as described above, and the purpose of the present invention is to use an elastic structure to prevent shrinkage displacement caused by a sharp temperature difference between the inside and outside during the process of introducing ultra-low temperature fluid into a double tank.
  • the purpose of the present invention is to use an elastic structure to prevent shrinkage displacement caused by a sharp temperature difference between the inside and outside during the process of introducing ultra-low temperature fluid into a double tank.
  • a double tank 100 having a displacement absorbing structure of the present invention to achieve the above-described object includes an inner tank 110 in which an internal space is formed; An outer tank (120) in which the inner tank (110) is accommodated in an internal space at a preset interval; A passage portion 130 extending from the inner tank 110 through the outer tank 120 to the external environment to communicate with the internal space of the inner tank 110 and the external environment; An inner connection portion 121 formed to surround a lower side of the passage portion 130 and fixedly coupled to the outer tub 120; An outer connection portion 122 formed to surround an upper side of the passage portion 130 and fixedly coupled to the passage portion 130; An elastic part 140 made of an elastic material and provided between the inner connection part 121 and the outer connection part 122; an insulating layer 150 formed by vacuuming the space between the inner tank 110 and the outer tank 120; may include.
  • the displacement generated along the extending direction of the passage portion 130 in the passage portion 130 as the inner tank 110 shrinks or expands due to temperature changes is caused by the elastic portion. It may be configured to be applied to (140).
  • the passage portion 130 and the outer connection portion 122 are fixedly coupled to each other, and the passage portion 130 and the inner connection portion 121 are slidably coupled to each other, so that the inner tank 100 Displacement generated in the passage portion 130 according to contraction or expansion of 110 may occur as a change in the gap between the inner connection portion 121 and the outer connection portion 122.
  • the double tank 100 has an outer tank 125 formed on the outer tank 120 at a portion where the passage portion 130 penetrates the outer tank 120, and the inner circumferential surface of the outer tank 125 and the The side surfaces of the passage portion 130 may be formed in close contact.
  • the inner connection portion 121 may surround the outer tank hole 125 and protrude from the outer surface of the outer tank 120 toward the external environment.
  • the elastic portion 140 has one end connected to the other end of the inner connection portion 121 and an inner extension portion 141 extending along the extension direction of the passage portion 130, and the other end of the outer connection portion 122.
  • the outer extension part 142 which is connected to one end and extends along the extension direction of the passage part 130, is connected between the inner extension part 141 and the outer extension part 142, and is formed in a curved elastic shape. It may include a deformation portion 145.
  • the elastic portion 140 has a convex shape including a point where the elastic deformable portion 145 protrudes beyond the inner extension portion 141 and the outer extension portion 142 in the radial direction of the passage portion 130. It can be formed in a curved shape.
  • the elastic portion 140 may be formed so that the inner circumferential surface of the elastic deformable portion 145 contacts and supports the side surface of the passage portion 130.
  • the elastic portion 140 may include the inner extension portion 141, the outer extension portion 142, and the elastic deformation portion 145 integrally formed.
  • the manhole with an elastic structure effectively absorbs the shrinkage displacement caused by the rapid temperature difference between the inside and the outside during the process of ultra-low temperature fluid flowing into the double tank, which ultimately has the great effect of preventing the occurrence of cracks in the tank and the connection part.
  • this crack generation suppression effect also has the effect of maintaining the vacuum between the walls of the double tank more stably.
  • the manhole structure itself for absorbing shrinkage displacement is not very complicated and can be easily realized, so there is an economic effect of saving resources such as time, cost, and manpower required for production.
  • it has the advantage of high compatibility as it can be easily applied by replacing and installing the manhole structure of the present invention in an existing double tank.
  • Figure 1 is a cross-sectional view of a conventional double tank.
  • Figure 2 is an external view and a cross-sectional view of the main part of the double tank of the present invention.
  • Figure 4 shows the temperature gradient of main parts of the present invention and the prior art.
  • Figure 5 shows displacement due to thermal deformation of main parts of the present invention and the prior art.
  • Figure 6 shows stress due to thermal deformation of main parts of the present invention and the prior art.
  • Figure 2 shows an external view (upper view of Figure 2) and a cross-sectional view (lower view of Figure 2) of the main part of the double tank of the present invention.
  • the double tank 100 of the present invention basically includes an inner tank 110, an outer tank 120, a passage portion 130, an elastic portion 140, and an insulating layer 150.
  • An inner connection part 121 and an outer connection part 122 are formed in the outer tub 120 to connect it to the elastic part 140. Each part will be described in more detail below.
  • the inner tank 110, the outer tank 120, and the insulation layer 150 are the same as the inner tank, outer tank, and insulation layer of a conventional double tank. That is, the inner tank 110 has an internal space and stores fluid such as fuel in the internal space.
  • the outer tank 120 is formed to accommodate the inner tank 110 in an internal space at a predetermined distance. In this way, the wall surface is formed in a double structure by providing the inner tank 110 and the outer tank 120 in order to prevent external heat intrusion into the inner tank 110 as much as possible. That is, the space between the inner tank 110 and the outer tank 120 is evacuated, thereby forming the heat insulating layer 150.
  • the passage portion 130 extends from the inner tank 110 through the outer tank 120 to the external environment and serves to communicate the internal space of the inner tank 110 with the external environment.
  • one end of the passage portion 130 is formed to surround the inner tank hole formed in the inner tank 110 and is fixedly coupled to the inner tank 110.
  • an outer shell through hole 125 is formed on the outer shell 120 at a portion where the passage portion 130 penetrates the outer shell 120, and the inner circumferential surface of the outer shell hole 125 And the side surfaces of the passage portion 130 are brought into close contact.
  • the inner peripheral surface of the outer barrel hole 125 and the side surface of the passage portion 130 were fixedly coupled, thereby maintaining the sealing of the heat insulating layer 150. Meanwhile, as the inner tank 110 is filled with a very low temperature fluid, thermal deformation such as shrinkage of the inner tank 110 occurs. At this time, since one end of the passage portion 130 is fixedly coupled to the inner tub 110, the inner tub 110 contracts, causing displacement in the passage portion 130.
  • the connection structure between the inner shell 110 / the outer shell 120 / the passage portion 130 is improved and the elastic portion 140 is provided to form the elastic portion 140. Ensure that the displacement is applied concentrated.
  • the inner connection portion 121 is formed to surround the lower side of the passage portion 130 and is fixedly coupled to the outer tub 120, and surrounds the upper side of the passage portion 130. It is formed and has an outer connection part 122 that is fixedly coupled to the passage part 130.
  • the elastic part 140 is formed of an elastic material and is provided between the inner connection part 121 and the outer connection part 122.
  • the passage portion 130 and the outer connection portion 122 are fixedly coupled to each other, and the passage portion 130 and the inner connection portion 121 are slidably coupled to each other.
  • the displacement generated in the passage portion 130 as the inner tank 110 contracts or expands occurs as a change in the gap between the inner connection portion 121 and the outer connection portion 122.
  • the elastic part 140 which can actually change shape, is provided between them, this displacement is directly applied to the elastic part 140.
  • the elastic part 140 absorbs all of the displacement, no displacement occurs in other parts, and thus excessive stress concentration in other parts can be suppressed.
  • the passage portion 130 and the outer connection portion 122 are fixedly coupled to each other, and the passage portion 130 and the inner connection portion 121 are slidably coupled. More specifically, as shown, the inner connection portion 121 surrounds the outer tank hole 125 and protrudes from the outer surface of the outer tank 120 toward the external environment. This part can slide because a fine gap is formed. That there is. That is, the insulation layer 150 may not be properly sealed up to the vicinity of the inner connection portion 121. However, the outer connection part 122 is fixedly coupled to the passage part 130, and the gap is completely closed here. Accordingly, the insulation layer 150 can achieve complete sealing by fixing the passage portion 130 and the outer connection portion 122.
  • the elastic part 140 may be formed only of an elastic material, but it is preferable that the elastic part 140 be formed in a special shape as shown in order to absorb displacement more effectively.
  • the elastic portion 140 is an inner extension portion that has one end connected to the other end of the inner connection portion 121 and extends along the extension direction of the passage portion 130. (141), the other end is connected to one end of the outer connection portion 122, the outer extension portion 142 extending along the extension direction of the passage portion 130, the inner extension portion 141, and the outer extension portion ( 142) and may include an elastic deformation portion 145 formed in a curved shape.
  • the elastic deformation portion 145 includes a point where the elastic deformation portion 145 protrudes beyond the inner extension portion 141 and the outer extension portion 142 in the radial direction of the passage portion 130. It can be formed in a convex curved shape. That is, the radial outer shape of the elastic deformation portion 145 can be formed close to the donut outer shape. By doing this, it becomes possible to absorb displacement more smoothly not only materially but also in terms of shape.
  • the elastic deformation portion 145 is preferably formed so that the inner peripheral surface of the elastic deformation portion 145 is in contact with the side surface of the passage portion 130, as shown in the cross-sectional view of the lower view of FIG. 2.
  • the inner and outer ends of the elastic deformation portion 145 may be directly connected to the inner extension portion 141 and the outer extension portion 142, respectively.
  • undesirable side effects in the buckling direction may occur. There is a risk of deformation occurring.
  • FIG. 1 As shown in the cross-sectional view in the lower view of FIG.
  • the support portion acts as a kind of leg to maintain this buckling direction. Transformation can be effectively suppressed.
  • the inner extension part 141, the outer extension part 142, and the elastic deformation part 145 of the elastic part 140 are formed as one piece.
  • the elastic part 140 may be made of a material such as rubber, which is widely used as an elastic material, and the elastic part 140 can be easily made into an integrated form using a mold or the like.
  • the elastic portion 140 is provided between the inner shell connection portion and the outer shell connection portion of the passage portion 130. , the elastic portion 140 suppresses stress concentration by absorbing all displacement.
  • Figures 3 to 6 are the results of actually performing thermal deformation structural analysis to confirm the extent to which this effect actually occurs.
  • Figure 3 shows the main structure of the present invention and the prior art
  • Figure 4 shows the temperature gradient of the main parts of the present invention and the conventional art.
  • the outer tank part can be set to about 300K because it is in a room temperature environment
  • the inner tank part can be set to about 20K because it stores low-temperature fluid.
  • Figure 5 compares the displacements generated by thermal deformation of main parts of the present invention and the prior art.
  • significant shrinkage occurs in the inner tank as it decreases to low temperature.
  • the passage part since the passage part is connected to the outer tank by an elastic part, the passage part naturally moves toward the center of the inner tank as the inner tank shrinks (downward direction in the drawing).
  • the passage portion since the passage portion is fixedly coupled to the outer tank and there is no shape deformation in the outer tank, the passage portion is firmly held by the outer tank due to the rigidity of the structure, and eventually displacement occurs in the passage portion. I never do that.
  • Figure 6 compares the stress generated by thermal deformation of main parts of the present invention and the prior art.
  • the present invention when shrinkage of the inner tank occurs, displacement naturally occurs in the passage portion, and this displacement is absorbed by the elastic portion capable of shape deformation. Accordingly, as shown in the top view of FIG. 5, in the present invention, the stress is almost entirely formed close to 0, that is, it can be said that almost no stress concentration occurs in the structure.
  • the related art as described above, a state is formed in which the passage is tightly held and pulled on both sides, so a significant stress is generated from the passage. In particular, as can be seen in the lower view of FIG.
  • the occurrence of cracks in the tank and the connection can be prevented through a simple structure during the process of ultra-low temperature fluid flowing into the double tank, thereby providing an economical product that can save resources such as time, cost, and manpower required for production. It works.
  • it has the advantage of high compatibility as it can be easily applied by replacing and installing the manhole structure of the present invention in an existing double tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention relates to a dual tank having a displacement-absorbing structure. The purpose of the present invention is to provide a dual tank having a displacement-absorbing structure, the dual tank using an elastic structure to absorb the contraction displacement caused by a sudden and extreme difference in temperature between the interior and the exterior of the dual tank during the flow of a cryogenic fluid into same.

Description

변위흡수구조를 가지는 이중탱크Double tank with displacement absorption structure
본 발명은 변위흡수구조를 가지는 이중탱크에 관한 것으로, 보다 상세하게는 저온유체가 탱크 내로 유입될 때 내외부의 온도차에 의하여 발생하는 수축변위를 흡수할 수 있는 맨홀구조를 가지는 이중탱크에 관한 것이다.The present invention relates to a double tank having a displacement absorption structure, and more specifically, to a double tank having a manhole structure that can absorb shrinkage displacement caused by the temperature difference between the inside and outside when low-temperature fluid flows into the tank.
압력탱크는 압력을 가진 유체를 수용하는 용기로서, 액체 또는 기체를 저장, 반응, 분리 등의 목적으로 압력에 견딜 수 있도록 제작된다. 일반적으로 임계온도가 -50℃ 이하인 산소, 질소, 아르곤 및 천연가스 등을 액체 상태로 운반 또는 저장할 때 이용된다. 특히 액화가스는 -150℃ 이하의 초저온 상태이므로 초저온 용기는 외부에서의 열침에 의한 액온의 상승 즉, 용기 압력의 상승을 방지하기 위해 단열이 실시되어야 하고, 용기의 재료는 저온 취성을 일으키지 않는 소재를 사용해야 한다.A pressure tank is a container that accommodates fluid under pressure and is manufactured to withstand pressure for the purpose of storing, reacting, and separating liquid or gas. It is generally used to transport or store oxygen, nitrogen, argon, and natural gas with a critical temperature of -50°C or lower in liquid form. In particular, since liquefied gas is at a cryogenic temperature of -150℃ or lower, cryogenic containers must be insulated to prevent an increase in liquid temperature due to heat immersion from the outside, that is, an increase in container pressure, and the material of the container must be a material that does not cause low-temperature embrittlement. must be used.
일반 용기와는 달리 초저온 용기는 내조와 외조를 갖는 이중 벽 구조로 형성된다. 내조는 저온의 유체가 저장되는 저온탱크이고, 저온탱크의 외주면을 따라 설치되는 외조는 저온탱크를 보호하는 보호탱크로, 보호탱크와 저온탱크의 외주면에는 유체를 주입할 수 있도록 개폐부가 설치되어 있다.Unlike regular containers, cryogenic containers have a double-walled structure with an inner tank and an outer tank. The inner tank is a low-temperature tank in which low-temperature fluid is stored, and the outer tank installed along the outer circumference of the low-temperature tank is a protection tank that protects the low-temperature tank. Opening and closing parts are installed on the outer circumference of the protection tank and the low-temperature tank to allow fluid injection. .
도 1을 참조하여 종래의 이중 압력탱크 구조에 대해 설명하도록 한다. 도 1에에 도시된 바와 같이 종래의 이중탱크는, 내조(10)가 외조(20)에 기설정된 간격만큼 이격되어 수용되는 형태로서 이중구조로 형성되되, 내조(10) 및 외조(20) 각각에는 내조통공(15) 및 외조통공(25)이 형성되며, 내조통공(15) 둘레에는 내조(10) 내부공간 및 외부환경을 연통시키는 통로부(30)가 형성된다. 이 때 통로부(30)의 외면 및 외조통공(25)이 연결됨으로써 내조(10) 및 외조(20) 사이의 공간이 밀폐될 수 있게 된다. 내조(10) 및 외조(20) 사이의 공간은 진공을 유지함으로써 단열층을 형성한다.The conventional double pressure tank structure will be described with reference to FIG. 1. As shown in FIG. 1, the conventional double tank is formed in a dual structure in which the inner tank 10 is accommodated in the outer tank 20 at a preset interval, and each of the inner tank 10 and the outer tank 20 has An inner tank through hole 15 and an outer tank through hole 25 are formed, and a passage portion 30 is formed around the inner tank through hole 15 to communicate with the inner space of the inner tank 10 and the external environment. At this time, the outer surface of the passage portion 30 and the outer shell hole 25 are connected so that the space between the inner shell 10 and the outer shell 20 can be sealed. The space between the inner tank 10 and the outer tank 20 forms an insulating layer by maintaining a vacuum.
평상시에는 도 1 전체적인 도면에 도시된 바와 같이 상기 내조통공(15) 및 상기 외조통공(25)은 별도의 뚜껑에 의해 폐쇄되어 있으나, 유체 유입 등과 같은 경우 도 1 점선타원 내 도면에 도시된 바와 같이 뚜껑들이 개방된다. 이 때 통로부(30)의 일단은 내조(10) 외면에 결합되고 또한 통로부(30)의 측면이 외조통공(25)을 관통하면서 밀폐하도록 결합되어 있기 때문에, 뚜껑들이 모두 개방되어도 내조(10) 및 외조(20) 사이의 공간은 여전히 밀폐상태를 유지하고 있다.Normally, as shown in the overall drawing of FIG. 1, the inner through hole 15 and the outer through hole 25 are closed by separate lids, but in case of fluid inflow, as shown in the dotted oval in FIG. The lids are opened. At this time, since one end of the passage portion 30 is coupled to the outer surface of the inner tank 10 and the side of the passage portion 30 is coupled to seal the outer tank through hole 25 while penetrating the outer tank through hole 25, the inner tank 10 ) and the outer tank 20 are still kept in a sealed state.
한편 내조(10) 내부공간으로 유체가 유입될 때에는, 유체가 -150℃의 초저온 상태로 유입되기 때문에 내조(10)의 내부 온도가 급격히 낮아짐에 따라 내조(10)의 수축이 발생한다. 내조(10)가 수축되면 통로부(30)가 내조(10) 중심방향으로 끌어당겨지게 되는데, 상술한 바와 같이 통로부(30)의 측면이 외조통공(25)과 결합되어 있기 때문에, 내조(10) 수축 시 이 통로부(30) 및 외조통공(25) 간의 결합부위에 응력이 집중되게 된다. 이는 당연히 크랙 발생을 유발하며, 이렇게 되면 내조(10) 및 외조(20) 사이의 공간의 진공 및 단열이 안정적으로 유지되지 못하게 되는 큰 문제가 생긴다.Meanwhile, when fluid flows into the inner space of the inner tank 10, the fluid flows in at a very low temperature of -150°C, so the internal temperature of the inner tank 10 rapidly decreases, causing shrinkage of the inner tank 10. When the inner tank 10 is contracted, the passage portion 30 is pulled toward the center of the inner tub 10. As described above, since the side of the passage portion 30 is coupled to the outer tub hole 25, the inner tub ( 10) When shrinking, stress is concentrated at the joint between the passage portion 30 and the outer hole 25. This naturally causes cracks to occur, which causes a major problem in that the vacuum and insulation of the space between the inner tank 10 and the outer tank 20 cannot be maintained stably.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
(특허문헌 1) 대한민국 공개특허공보 제10-2014-0131372호 ("LNG 탱크", 2014.11.12.)(Patent Document 1) Republic of Korea Patent Publication No. 10-2014-0131372 (“LNG tank”, November 12, 2014)
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 탄성구조를 이용하여 이중탱크에 초저온의 유체가 유입되는 과정에서 내외부의 급격한 온도차에 의한 수축변위를 흡수하도록 하는, 변위흡수구조를 가지는 이중탱크를 제공함에 있다.Therefore, the present invention was created to solve the problems of the prior art as described above, and the purpose of the present invention is to use an elastic structure to prevent shrinkage displacement caused by a sharp temperature difference between the inside and outside during the process of introducing ultra-low temperature fluid into a double tank. To provide a double tank having a displacement absorption structure to absorb.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 변위흡수구조를 가지는 이중탱크(100)는, 내부공간이 형성되는 내조(110); 내부공간에 상기 내조(110)가 기설정된 간격만큼 이격되어 수용되는 외조(120); 상기 내조(110)로부터 상기 외조(120)를 관통하여 외부환경까지 연장되어 상기 내조(110)의 내부공간 및 외부환경을 연통시키는 통로부(130); 상기 통로부(130) 측면하측을 둘러싸도록 형성되며 상기 외조(120)와 고정결합되는 내측연결부(121); 상기 통로부(130) 측면상측을 둘러싸도록 형성되며 상기 통로부(130)와 고정결합되는 외측연결부(122); 탄성재질로 형성되어 상기 내측연결부(121) 및 상기 외측연결부(122) 사이에 구비되는 탄성부(140); 상기 내조(110) 및 상기 외조(120) 사이의 공간이 진공화됨으로써 형성되는 단열층(150); 을 포함할 수 있다.A double tank 100 having a displacement absorbing structure of the present invention to achieve the above-described object includes an inner tank 110 in which an internal space is formed; An outer tank (120) in which the inner tank (110) is accommodated in an internal space at a preset interval; A passage portion 130 extending from the inner tank 110 through the outer tank 120 to the external environment to communicate with the internal space of the inner tank 110 and the external environment; An inner connection portion 121 formed to surround a lower side of the passage portion 130 and fixedly coupled to the outer tub 120; An outer connection portion 122 formed to surround an upper side of the passage portion 130 and fixedly coupled to the passage portion 130; An elastic part 140 made of an elastic material and provided between the inner connection part 121 and the outer connection part 122; an insulating layer 150 formed by vacuuming the space between the inner tank 110 and the outer tank 120; may include.
이 때 상기 이중탱크(100)는, 온도변화에 따른 상기 내조(110)의 수축 또는 팽창에 따라 상기 통로부(130)에서 상기 통로부(130)의 연장방향을 따라 발생되는 변위가 상기 탄성부(140)에 인가되도록 형성될 수 있다.At this time, in the double tank 100, the displacement generated along the extending direction of the passage portion 130 in the passage portion 130 as the inner tank 110 shrinks or expands due to temperature changes is caused by the elastic portion. It may be configured to be applied to (140).
또한 상기 이중탱크(100)는, 상기 통로부(130) 및 상기 외측연결부(122)가 서로 고정결합되되, 상기 통로부(130) 및 상기 내측연결부(121)가 미끄러짐 가능하게 결합됨으로써, 상기 내조(110)의 수축 또는 팽창에 따라 상기 통로부(130)에서 발생되는 변위는 상기 내측연결부(121) 및 상기 외측연결부(122) 사이의 간격변화로서 발생될 수 있다.In addition, in the double tank 100, the passage portion 130 and the outer connection portion 122 are fixedly coupled to each other, and the passage portion 130 and the inner connection portion 121 are slidably coupled to each other, so that the inner tank 100 Displacement generated in the passage portion 130 according to contraction or expansion of 110 may occur as a change in the gap between the inner connection portion 121 and the outer connection portion 122.
또한 상기 이중탱크(100)는, 상기 외조(120) 상에서 상기 통로부(130)가 상기 외조(120)를 관통하는 부분에 외조통공(125)이 형성되되, 상기 외조통공(125) 내주면 및 상기 통로부(130)의 측면이 밀착형성될 수 있다.In addition, the double tank 100 has an outer tank 125 formed on the outer tank 120 at a portion where the passage portion 130 penetrates the outer tank 120, and the inner circumferential surface of the outer tank 125 and the The side surfaces of the passage portion 130 may be formed in close contact.
또한 상기 이중탱크(100)는, 상기 내측연결부(121)가 상기 외조통공(125)을 둘러싸면서 상기 외조(120) 외면으로부터 외부환경 측으로 돌출형성될 수 있다.Additionally, in the double tank 100, the inner connection portion 121 may surround the outer tank hole 125 and protrude from the outer surface of the outer tank 120 toward the external environment.
또한 상기 탄성부(140)는, 일단이 상기 내측연결부(121)의 타단과 연결되며 상기 통로부(130) 연장방향을 따라 연장되는 내측연장부(141), 타단이 상기 외측연결부(122)의 일단과 연결되며 상기 통로부(130)의 연장방향을 따라 연장되는 외측연장부(142), 상기 내측연장부(141) 및 상기 외측연장부(142) 사이에 연결형성되며 곡면형태로 형성되는 탄성변형부(145)를 포함할 수 있다.In addition, the elastic portion 140 has one end connected to the other end of the inner connection portion 121 and an inner extension portion 141 extending along the extension direction of the passage portion 130, and the other end of the outer connection portion 122. The outer extension part 142, which is connected to one end and extends along the extension direction of the passage part 130, is connected between the inner extension part 141 and the outer extension part 142, and is formed in a curved elastic shape. It may include a deformation portion 145.
또한 상기 탄성부(140)는, 상기 탄성변형부(145)가 상기 통로부(130)의 반경방향으로 상기 내측연장부(141) 및 상기 외측연장부(142)보다 돌출된 지점을 포함하는 볼록한 곡면형태로 형성될 수 있다.In addition, the elastic portion 140 has a convex shape including a point where the elastic deformable portion 145 protrudes beyond the inner extension portion 141 and the outer extension portion 142 in the radial direction of the passage portion 130. It can be formed in a curved shape.
또한 상기 탄성부(140)는, 상기 탄성변형부(145) 내주면이 상기 통로부(130) 측면에 접촉지지되도록 형성될 수 있다.Additionally, the elastic portion 140 may be formed so that the inner circumferential surface of the elastic deformable portion 145 contacts and supports the side surface of the passage portion 130.
또한 상기 탄성부(140)는, 상기 내측연장부(141), 상기 외측연장부(142) 및 상기 탄성변형부(145)가 일체형으로 형성될 수 있다.Additionally, the elastic portion 140 may include the inner extension portion 141, the outer extension portion 142, and the elastic deformation portion 145 integrally formed.
본 발명에 의하면, 이중탱크에 초저온의 유체가 유입되는 과정에서 내외부의 급격한 온도차에 의한 수축변위를 탄성구조를 가지는 맨홀이 효과적으로 흡수함으로써, 궁극적으로는 탱크와 연결부에서의 크랙 발생을 방지하는 큰 효과가 있다. 물론 이러한 크랙 발생 억제효과로 인하여 이중탱크 벽간 진공을 보다 안정적으로 유지할 수 있는 효과 또한 있다.According to the present invention, the manhole with an elastic structure effectively absorbs the shrinkage displacement caused by the rapid temperature difference between the inside and the outside during the process of ultra-low temperature fluid flowing into the double tank, which ultimately has the great effect of preventing the occurrence of cracks in the tank and the connection part. There is. Of course, this crack generation suppression effect also has the effect of maintaining the vacuum between the walls of the double tank more stably.
또한 본 발명에 의하면, 수축변위흡수를 위한 맨홀구조 자체가 대단히 복잡하지 않고 용이하게 실현가능하여, 제작에 드는 시간, 비용, 인력 등의 자원을 절약할 수 있는 경제적 효과가 있다. 더불어 기존의 이중탱크에 본 발명의 맨홀구조를 교체설치하는 것으로 용이하게 적용이 가능하여 호환성이 높다는 장점도 있다.In addition, according to the present invention, the manhole structure itself for absorbing shrinkage displacement is not very complicated and can be easily realized, so there is an economic effect of saving resources such as time, cost, and manpower required for production. In addition, it has the advantage of high compatibility as it can be easily applied by replacing and installing the manhole structure of the present invention in an existing double tank.
도 1은 종래의 이중탱크의 단면도.Figure 1 is a cross-sectional view of a conventional double tank.
도 2는 본 발명의 이중탱크 주요부분의 외면도 및 단면도.Figure 2 is an external view and a cross-sectional view of the main part of the double tank of the present invention.
도 3은 본 발명 및 종래의 주요부분 구조.3 shows the main structure of the present invention and the prior art.
도 4는 본 발명 및 종래의 주요부분 온도구배.Figure 4 shows the temperature gradient of main parts of the present invention and the prior art.
도 5는 본 발명 및 종래의 주요부분 열변형에 의한 변위.Figure 5 shows displacement due to thermal deformation of main parts of the present invention and the prior art.
도 6은 본 발명 및 종래의 주요부분 열변형에 의한 응력.Figure 6 shows stress due to thermal deformation of main parts of the present invention and the prior art.
** 부호의 설명 **** Explanation of symbols **
100 : 이중탱크100: Double tank
110 : 내조 120 : 외조110: Internal care 120: External care
121 : 내측연결부 122 : 외측연결부121: inner connection part 122: outer connection part
125 : 외조통공125: Oejo Tonggong
130 : 통로부 140 : 탄성부130: Passage part 140: Elastic part
141 : 내측연장부 142 : 외측연장부141: inner extension 142: outer extension
145 : 탄성변형부 150 : 단열층145: elastic deformation part 150: insulation layer
이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 변위흡수구조를 가지는 이중탱크를 첨부된 도면을 참고하여 상세하게 설명한다.Hereinafter, a double tank having a displacement absorption structure according to the present invention having the above-described configuration will be described in detail with reference to the attached drawings.
도 2는 본 발명의 이중탱크 주요부분의 외면도(도 2 상측도면) 및 단면도(도 2 하측도면)를 도시한다. 도 2를 참조하면, 본 발명의 이중탱크(100)는, 기본적으로 내조(110), 외조(120), 통로부(130), 탄성부(140), 단열층(150)을 포함한다. 상기 외조(120)에는 내측연결부(121) 및 외측연결부(122)가 형성되어 상기 탄성부(140)와의 연결이 이루어진다. 이하 각부에 대하여 보다 상세히 설명한다.Figure 2 shows an external view (upper view of Figure 2) and a cross-sectional view (lower view of Figure 2) of the main part of the double tank of the present invention. Referring to Figure 2, the double tank 100 of the present invention basically includes an inner tank 110, an outer tank 120, a passage portion 130, an elastic portion 140, and an insulating layer 150. An inner connection part 121 and an outer connection part 122 are formed in the outer tub 120 to connect it to the elastic part 140. Each part will be described in more detail below.
상기 내조(110), 상기 외조(120), 상기 단열층(150)은 종래의 이중탱크의 내조, 외조, 단열층과 동일하다. 즉 상기 내조(110)는 내부공간이 형성되어, 내부공간에 연료 등과 같은 유체를 저장한다. 상기 외조(120)는 내부공간에 상기 내조(110)가 기설정된 간격만큼 이격되어 수용되게 형성된다. 이와 같이 상기 내조(110) 및 상기 외조(120)를 구비하여 벽면을 이중구조로 형성하는 것은, 상기 내조(110)로의 외열침입을 최대한 방지하기 위해서이다. 즉 상기 내조(110) 및 상기 외조(120) 사이의 공간이 진공화됨으로써 상기 단열층(150)이 형성되게 된다.The inner tank 110, the outer tank 120, and the insulation layer 150 are the same as the inner tank, outer tank, and insulation layer of a conventional double tank. That is, the inner tank 110 has an internal space and stores fluid such as fuel in the internal space. The outer tank 120 is formed to accommodate the inner tank 110 in an internal space at a predetermined distance. In this way, the wall surface is formed in a double structure by providing the inner tank 110 and the outer tank 120 in order to prevent external heat intrusion into the inner tank 110 as much as possible. That is, the space between the inner tank 110 and the outer tank 120 is evacuated, thereby forming the heat insulating layer 150.
상기 통로부(130)는, 상기 내조(110)로부터 상기 외조(120)를 관통하여 외부환경까지 연장되어 상기 내조(110)의 내부공간 및 외부환경을 연통시키는 역할을 한다. 도 2 상에는 도시되지 않았으나 도 1에서와 마찬가지로 상기 통로부(130)의 일단은 상기 내조(110)에 형성된 내조통공을 둘러싸도록 형성되어 상기 내조(110)에 고정결합되게 된다. 또한 도 2 하측도면에 점선으로 표시된 바와 같이 상기 외조(120) 상에서 상기 통로부(130)가 상기 외조(120)를 관통하는 부분에 외조통공(125)이 형성되며, 상기 외조통공(125) 내주면 및 상기 통로부(130)의 측면이 밀착형성되게 된다.The passage portion 130 extends from the inner tank 110 through the outer tank 120 to the external environment and serves to communicate the internal space of the inner tank 110 with the external environment. Although not shown in FIG. 2, as in FIG. 1, one end of the passage portion 130 is formed to surround the inner tank hole formed in the inner tank 110 and is fixedly coupled to the inner tank 110. In addition, as indicated by a dotted line in the lower drawing of FIG. 2, an outer shell through hole 125 is formed on the outer shell 120 at a portion where the passage portion 130 penetrates the outer shell 120, and the inner circumferential surface of the outer shell hole 125 And the side surfaces of the passage portion 130 are brought into close contact.
종래에는 도 1에 도시된 바와 같이 상기 외조통공(125) 내주면 및 상기 통로부(130)의 측면이 고정결합되었으며, 이로써 상기 단열층(150)의 밀폐가 유지되었다. 한편 상기 내조(110)에 매우 낮은 온도의 저온유체가 유입되어 채워짐으로써 상기 내조(110)가 수축되는 등과 같은 열변형이 일어난다. 이 때 상기 통로부(130)의 일단이 상기 내조(110)에 고정결합되어 있기 때문에, 상기 내조(110)가 수축됨으로써 상기 통로부(130)에 변위가 발생하게 된다. 그런데 상술한 바와 같이 종래에는 상기 통로부(130) 측면이 상기 외조통공(125) 내주면과 고정결합되어 있기 때문에, 상기 통로부(130)의 내조결합부위 / 외조결합부위 사이에 인장력이 집중되며, 특히 상기 통로부(130)의 외조결합부위에 응력이 첨예하게 집중되게 된다. 이는 당연히 해당 부분의 파손원인이 되며, 이 부분이 파손되면 상기 단열층(150)의 밀폐가 유지되지 못하게 되어 상기 저온탱크(110)에 저장된 유체의 저장불안정성이 크게 높아지는 등 여러 가지 문제가 발생하였다.Conventionally, as shown in FIG. 1, the inner peripheral surface of the outer barrel hole 125 and the side surface of the passage portion 130 were fixedly coupled, thereby maintaining the sealing of the heat insulating layer 150. Meanwhile, as the inner tank 110 is filled with a very low temperature fluid, thermal deformation such as shrinkage of the inner tank 110 occurs. At this time, since one end of the passage portion 130 is fixedly coupled to the inner tub 110, the inner tub 110 contracts, causing displacement in the passage portion 130. However, as described above, in the related art, since the side of the passage portion 130 is fixedly coupled to the inner peripheral surface of the outer shell hole 125, the tensile force is concentrated between the inner shell coupling portion and the outer shell coupling portion of the passage portion 130, In particular, stress is sharply concentrated at the outer shell coupling portion of the passage portion 130. This naturally causes damage to the part, and when this part is damaged, the sealing of the insulation layer 150 cannot be maintained, causing various problems such as greatly increasing the storage instability of the fluid stored in the low-temperature tank 110.
본 발명에서는 바로 이러한 문제를 해소하기 위하여, 상기 내조(110) / 상기 외조(120) / 상기 통로부(130) 간의 연결구조를 개선하고 상기 탄성부(140)를 구비하여 상기 탄성부(140)에 변위가 집중인가되도록 한다. 보다 구체적으로 설명하자면, 먼저 본 발명에서는, 상기 통로부(130) 측면하측을 둘러싸도록 형성되며 상기 외조(120)와 고정결합되는 내측연결부(121) 및 상기 통로부(130) 측면상측을 둘러싸도록 형성되며 상기 통로부(130)와 고정결합되는 외측연결부(122)를 구비한다. 이 때 상기 탄성부(140)는, 탄성재질로 형성되어 상기 내측연결부(121) 및 상기 외측연결부(122) 사이에 구비된다.In the present invention, in order to solve this problem, the connection structure between the inner shell 110 / the outer shell 120 / the passage portion 130 is improved and the elastic portion 140 is provided to form the elastic portion 140. Ensure that the displacement is applied concentrated. To explain in more detail, first, in the present invention, the inner connection portion 121 is formed to surround the lower side of the passage portion 130 and is fixedly coupled to the outer tub 120, and surrounds the upper side of the passage portion 130. It is formed and has an outer connection part 122 that is fixedly coupled to the passage part 130. At this time, the elastic part 140 is formed of an elastic material and is provided between the inner connection part 121 and the outer connection part 122.
온도변화에 따라 상기 내조(110)의 수축 또는 팽창이 일어나면, 앞서 설명한 바와 같이 상기 통로부(130)에서 상기 통로부(130)의 연장방향을 따라 변위가 발생된다. 이 때 본 발명의 연결구조에 의하면, 형상변형이 가능한 상기 탄성부(140)의 구비로 인하여 이렇게 발생되는 변위가 상기 탄성부(140)에 집중되어 인가되게 된다. 보다 구체적으로 설명하자면, 본 발명에서는, 상기 통로부(130) 및 상기 외측연결부(122)가 서로 고정결합되되, 상기 통로부(130) 및 상기 내측연결부(121)가 미끄러짐 가능하게 결합되어 있다.When the inner tank 110 contracts or expands due to temperature changes, displacement occurs in the passage portion 130 along the direction in which the passage portion 130 extends, as described above. At this time, according to the connection structure of the present invention, the displacement generated in this way is concentrated and applied to the elastic part 140 due to the provision of the elastic part 140 capable of shape deformation. To be more specific, in the present invention, the passage portion 130 and the outer connection portion 122 are fixedly coupled to each other, and the passage portion 130 and the inner connection portion 121 are slidably coupled to each other.
이에 따라 상기 내조(110)의 수축 또는 팽창에 따라 상기 통로부(130)에서 발생되는 변위는 상기 내측연결부(121) 및 상기 외측연결부(122) 사이의 간격변화로서 발생된다. 그런데 이들 사이에는 실제로 형상변형이 가능한 상기 탄성부(140)가 구비되어 있기 때문에, 상기 탄성부(140)에 이 변위가 그대로 인가된다. 이처럼 상기 탄성부(140)가 변위를 모두 담당하여 흡수함에 따라 다른 부품에는 변위가 발생하지 않고, 이에 따라 다른 부품에 과도한 응력집중 발생 자체가 억제될 수 있게 된다.Accordingly, the displacement generated in the passage portion 130 as the inner tank 110 contracts or expands occurs as a change in the gap between the inner connection portion 121 and the outer connection portion 122. However, since the elastic part 140, which can actually change shape, is provided between them, this displacement is directly applied to the elastic part 140. As the elastic part 140 absorbs all of the displacement, no displacement occurs in other parts, and thus excessive stress concentration in other parts can be suppressed.
한편, 상술한 바와 같이 상기 통로부(130) 및 상기 외측연결부(122)가 서로 고정결합되되, 상기 통로부(130) 및 상기 내측연결부(121)가 미끄러짐 가능하게 결합된다. 보다 구체적으로, 상기 내측연결부(121)는 도시된 바와 같이 상기 외조통공(125)을 둘러싸면서 상기 외조(120) 외면으로부터 외부환경 측으로 돌출형성되는데, 이 부분이 미끄러짐 가능하다는 것은 미세한 틈새가 형성되어 있다는 것이다. 즉 상기 내측연결부(121) 부근까지는 상기 단열층(150)의 밀폐가 제대로 이루어지지 못한 상태가 될 수 있다. 그러나 상기 외측연결부(122)는 상기 통로부(130)와 고정결합되며, 여기에서 틈새는 완전하게 폐쇄된다. 따라서 상기 단열층(150)은 결과적으로 상기 통로부(130) 및 상기 외측연결부(122)의 고정결합에 의해 완전한 밀폐를 실현할 수 있게 되는 것이다.Meanwhile, as described above, the passage portion 130 and the outer connection portion 122 are fixedly coupled to each other, and the passage portion 130 and the inner connection portion 121 are slidably coupled. More specifically, as shown, the inner connection portion 121 surrounds the outer tank hole 125 and protrudes from the outer surface of the outer tank 120 toward the external environment. This part can slide because a fine gap is formed. That there is. That is, the insulation layer 150 may not be properly sealed up to the vicinity of the inner connection portion 121. However, the outer connection part 122 is fixedly coupled to the passage part 130, and the gap is completely closed here. Accordingly, the insulation layer 150 can achieve complete sealing by fixing the passage portion 130 and the outer connection portion 122.
상기 탄성부(140)는 물론 탄성을 가지는 재질로만 형성되어도 되지만, 상기 탄성부(140)가 변위를 보다 효과적으로 흡수할 수 있도록 하기 위하여 도시된 바와 같이 특수한 형상으로 형성되는 것이 바람직하다. 구체적으로는, 상기 탄성부(140)는, 도 2 하측도면에 도시된 바와 같이, 일단이 상기 내측연결부(121)의 타단과 연결되며 상기 통로부(130) 연장방향을 따라 연장되는 내측연장부(141), 타단이 상기 외측연결부(122)의 일단과 연결되며 상기 통로부(130)의 연장방향을 따라 연장되는 외측연장부(142), 상기 내측연장부(141) 및 상기 외측연장부(142) 사이에 연결형성되며 곡면형태로 형성되는 탄성변형부(145)를 포함할 수 있다.Of course, the elastic part 140 may be formed only of an elastic material, but it is preferable that the elastic part 140 be formed in a special shape as shown in order to absorb displacement more effectively. Specifically, as shown in the lower view of FIG. 2, the elastic portion 140 is an inner extension portion that has one end connected to the other end of the inner connection portion 121 and extends along the extension direction of the passage portion 130. (141), the other end is connected to one end of the outer connection portion 122, the outer extension portion 142 extending along the extension direction of the passage portion 130, the inner extension portion 141, and the outer extension portion ( 142) and may include an elastic deformation portion 145 formed in a curved shape.
상기 탄성변형부(145)는 특히, 상기 탄성변형부(145)가 상기 통로부(130)의 반경방향으로 상기 내측연장부(141) 및 상기 외측연장부(142)보다 돌출된 지점을 포함하는 볼록한 곡면형태로 형성될 수 있다. 즉 상기 탄성변형부(145)의 반경방향 외측형상은 도넛외측형상에 가깝게 형성되면 되는 것이다. 이와 같이 됨으로써, 재질적으로 뿐만 아니라 형상적으로도 변위를 보다 원활하게 흡수할 수 있게 된다.In particular, the elastic deformation portion 145 includes a point where the elastic deformation portion 145 protrudes beyond the inner extension portion 141 and the outer extension portion 142 in the radial direction of the passage portion 130. It can be formed in a convex curved shape. That is, the radial outer shape of the elastic deformation portion 145 can be formed close to the donut outer shape. By doing this, it becomes possible to absorb displacement more smoothly not only materially but also in terms of shape.
더불어 상기 탄성변형부(145)는, 도 2 하측도면의 단면도에 도시된 바와 같이, 상기 탄성변형부(145) 내주면이 상기 통로부(130) 측면에 접촉지지되도록 형성되는 것이 바람직하다. 물론 상기 탄성변형부(145)의 내측/외측의 끝단이 각각 상기 내측연장부(141) / 상기 외측연장부(142)에 직접 연결되어도 되지만, 이와 같이 될 경우 좌굴(buckling)방향으로의 원치않은 변형이 발생할 우려가 있다. 그러나 도 2 하측도면의 단면도에 도시된 바와 같이 상기 탄성변형부(145) 내주면에 상기 통로부(130) 측면에 접촉지지되는 형상으로 형성되면, 지지부가 일종의 다리(leg) 역할을 함으로써 이러한 좌굴방향으로의 변형을 효과적으로 억제할 수 있다.In addition, the elastic deformation portion 145 is preferably formed so that the inner peripheral surface of the elastic deformation portion 145 is in contact with the side surface of the passage portion 130, as shown in the cross-sectional view of the lower view of FIG. 2. Of course, the inner and outer ends of the elastic deformation portion 145 may be directly connected to the inner extension portion 141 and the outer extension portion 142, respectively. However, in this case, undesirable side effects in the buckling direction may occur. There is a risk of deformation occurring. However, as shown in the cross-sectional view in the lower view of FIG. 2, when the inner circumferential surface of the elastic deformable portion 145 is formed in a shape that is in contact with the side of the passage portion 130 and supported, the support portion acts as a kind of leg to maintain this buckling direction. Transformation can be effectively suppressed.
부가적으로, 물론 상기 탄성부(140)는, 상기 내측연장부(141), 상기 외측연장부(142) 및 상기 탄성변형부(145)가 일체형으로 형성되는 것이 바람직하다. 상기 탄성부(140)는 일반적으로 탄성재질로서 널리 사용되는 고무 등과 같은 재질로 만들어질 수 있는데, 거푸집 등을 이용하여 상기 탄성부(140)를 일체형으로 쉽게 만들 수 있다.Additionally, of course, it is preferable that the inner extension part 141, the outer extension part 142, and the elastic deformation part 145 of the elastic part 140 are formed as one piece. The elastic part 140 may be made of a material such as rubber, which is widely used as an elastic material, and the elastic part 140 can be easily made into an integrated form using a mold or the like.
이처럼 본 발명에 의하면, 상기 내조(110)가 수축하거나 팽창하는 등의 열변형이 발생하더라도, 상기 통로부(130)의 내조연결부위/외조연결부위 간에 상기 탄성부(140)가 개재구비됨에 따라, 상기 탄성부(140)가 변위를 모두 흡수함으로써 응력집중을 억제한다.According to the present invention, even if thermal deformation such as contraction or expansion of the inner shell 110 occurs, the elastic portion 140 is provided between the inner shell connection portion and the outer shell connection portion of the passage portion 130. , the elastic portion 140 suppresses stress concentration by absorbing all displacement.
도 3 내지 도 6은 실제로 이러한 효과가 어느 정도 나타나는지를 확인하기 위해 열변형 구조해석을 실제로 실행한 결과이다. 도 3은 본 발명 및 종래의 주요부분 구조를 도시한 것이며, 도 4는 본 발명 및 종래의 주요부분 온도구배를 도시한 것이다. 일반적으로 저온유체를 저장하는 이중탱크의 경우, 외조 부분은 실온환경이므로 약 300K 정도, 내조 부분은 저온유체를 저장하고 있으므로 20K 정도로 세팅할 수 있다.Figures 3 to 6 are the results of actually performing thermal deformation structural analysis to confirm the extent to which this effect actually occurs. Figure 3 shows the main structure of the present invention and the prior art, and Figure 4 shows the temperature gradient of the main parts of the present invention and the conventional art. In general, in the case of a double tank storing low-temperature fluid, the outer tank part can be set to about 300K because it is in a room temperature environment, and the inner tank part can be set to about 20K because it stores low-temperature fluid.
도 5는 본 발명 및 종래의 주요부분 열변형에 의하여 발생된 변위를 비교한 것이다. 앞서 설명한 바와 같이, 내조는 저온으로 내려가면서 상당한 수축이 발생한다. 이 때 본 발명의 경우(상측도면) 통로부가 탄성부에 의해 외조와 연결되어 있기 때문에, 내조의 수축에 따라 통로부도 자연스럽게 내조중심방향으로 이동하게 된다(도면 상에서는 하강방향). 그러나 종래의 경우(하측도면), 통로부가 외조와 고정결합되어 있음과 동시에 외조에서는 형상변형이 없기 때문에, 구조물의 강성에 의하여 통로부는 외조에 단단히 붙들려있는 셈이 되므로, 결국 통로부에서 변위가 발생하지 않는다.Figure 5 compares the displacements generated by thermal deformation of main parts of the present invention and the prior art. As explained previously, significant shrinkage occurs in the inner tank as it decreases to low temperature. At this time, in the case of the present invention (top view), since the passage part is connected to the outer tank by an elastic part, the passage part naturally moves toward the center of the inner tank as the inner tank shrinks (downward direction in the drawing). However, in the conventional case (lower drawing), since the passage portion is fixedly coupled to the outer tank and there is no shape deformation in the outer tank, the passage portion is firmly held by the outer tank due to the rigidity of the structure, and eventually displacement occurs in the passage portion. I never do that.
도 6은 본 발명 및 종래의 주요부분 열변형에 의하여 발생된 응력을 비교한 것이다. 상술한 바와 같이 본 발명에서는 내조의 수축이 발생하면 자연스럽게 통로부에서 변위가 발생하고, 이 변위는 형상변형이 가능한 탄성부로 흡수된다. 이에 따라 도 5 상측도면에 도시된 바와 같이, 본 발명에서는 거의 전체적으로 응력이 0에 가깝게 형성되며, 즉 구조물에 응력집중이 거의 발생하지 않는다고 할 수 있다. 반면 종래의 경우, 상술한 바와 같이 통로부 입장에서는 양쪽에서 단단히 붙들고 잡아당기는 상태가 형성되기 때문에, 통로부터 상당한 응력이 발생한다. 특히 도 5 하측도면에서 확인되는 바와 같이 통로부 및 외조연결부 간의 연결부위 중 외측끝단 부분에서는 200MPa이 넘는 응력이 발생하게 된다. 일반적으로 이러한 통로부 재질로 널리 사용되는 스테인레스 스틸 304의 허용응력이 205MPa인 점을 고려할 때, 종래의 경우 본 발명과 같은 탄성부가 구비되지 않음으로써 매우 큰 파손위험성이 있음을 확인할 수 있다.Figure 6 compares the stress generated by thermal deformation of main parts of the present invention and the prior art. As described above, in the present invention, when shrinkage of the inner tank occurs, displacement naturally occurs in the passage portion, and this displacement is absorbed by the elastic portion capable of shape deformation. Accordingly, as shown in the top view of FIG. 5, in the present invention, the stress is almost entirely formed close to 0, that is, it can be said that almost no stress concentration occurs in the structure. On the other hand, in the case of the related art, as described above, a state is formed in which the passage is tightly held and pulled on both sides, so a significant stress is generated from the passage. In particular, as can be seen in the lower view of FIG. 5, a stress exceeding 200 MPa occurs at the outer end of the connection area between the passage part and the outer shell connection part. Considering that the allowable stress of stainless steel 304, which is generally widely used as a material for such passage parts, is 205 MPa, it can be seen that in the conventional case, there is a very high risk of damage because the elastic part as in the present invention is not provided.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.The present invention is not limited to the above-described embodiments, and its scope of application is diverse, and anyone skilled in the art can understand it without departing from the gist of the invention as claimed in the claims. Of course, various modifications are possible.
본 발명에 의하면, 이중탱크에 초저온의 유체가 유입되는 과정에서 간단한 구조를 통해 탱크와 연결부에서의 크랙 발생을 방지할 수 있어, 제작에 드는 시간, 비용, 인력 등의 자원을 절약할 수 있는 경제적 효과가 있다. 더불어 기존의 이중탱크에 본 발명의 맨홀구조를 교체설치하는 것으로 용이하게 적용이 가능하여 호환성이 높다는 장점도 있다.According to the present invention, the occurrence of cracks in the tank and the connection can be prevented through a simple structure during the process of ultra-low temperature fluid flowing into the double tank, thereby providing an economical product that can save resources such as time, cost, and manpower required for production. It works. In addition, it has the advantage of high compatibility as it can be easily applied by replacing and installing the manhole structure of the present invention in an existing double tank.

Claims (9)

  1. 내부공간이 형성되는 내조(110);An inner bath (110) in which an internal space is formed;
    내부공간에 상기 내조(110)가 기설정된 간격만큼 이격되어 수용되는 외조(120);An outer tank (120) in which the inner tank (110) is accommodated in an internal space at a preset interval;
    상기 내조(110)로부터 상기 외조(120)를 관통하여 외부환경까지 연장되어 상기 내조(110)의 내부공간 및 외부환경을 연통시키는 통로부(130);A passage portion 130 extending from the inner tank 110 through the outer tank 120 to the external environment to communicate with the internal space of the inner tank 110 and the external environment;
    상기 통로부(130) 측면하측을 둘러싸도록 형성되며 상기 외조(120)와 고정결합되는 내측연결부(121);An inner connection portion 121 formed to surround a lower side of the passage portion 130 and fixedly coupled to the outer tub 120;
    상기 통로부(130) 측면상측을 둘러싸도록 형성되며 상기 통로부(130)와 고정결합되는 외측연결부(122);An outer connection portion 122 formed to surround an upper side of the passage portion 130 and fixedly coupled to the passage portion 130;
    탄성재질로 형성되어 상기 내측연결부(121) 및 상기 외측연결부(122) 사이에 구비되는 탄성부(140);An elastic part 140 made of an elastic material and provided between the inner connection part 121 and the outer connection part 122;
    상기 내조(110) 및 상기 외조(120) 사이의 공간이 진공화됨으로써 형성되는 단열층(150);an insulating layer 150 formed by vacuuming the space between the inner tank 110 and the outer tank 120;
    을 포함하는 것을 특징으로 하는 이중탱크.A double tank comprising:
  2. 제 1항에 있어서, 상기 이중탱크(100)는,The method of claim 1, wherein the double tank 100,
    온도변화에 따른 상기 내조(110)의 수축 또는 팽창에 따라 상기 통로부(130)에서 상기 통로부(130)의 연장방향을 따라 발생되는 변위가 상기 탄성부(140)에 인가되도록 형성되는 것을 특징으로 하는 이중탱크.Characterized in that the displacement generated in the passage portion 130 along the extending direction of the passage portion 130 is applied to the elastic portion 140 as the inner tank 110 contracts or expands due to temperature changes. Double tank.
  3. 제 2항에 있어서, 상기 이중탱크(100)는,The method of claim 2, wherein the double tank 100,
    상기 통로부(130) 및 상기 외측연결부(122)가 서로 고정결합되되, 상기 통로부(130) 및 상기 내측연결부(121)가 미끄러짐 가능하게 결합됨으로써,The passage portion 130 and the outer connection portion 122 are fixedly coupled to each other, and the passage portion 130 and the inner connection portion 121 are slidably coupled,
    상기 내조(110)의 수축 또는 팽창에 따라 상기 통로부(130)에서 발생되는 변위는 상기 내측연결부(121) 및 상기 외측연결부(122) 사이의 간격변화로서 발생되는 것을 특징으로 하는 이중탱크.A double tank, characterized in that the displacement generated in the passage part 130 according to the contraction or expansion of the inner tank 110 is generated as a change in the gap between the inner connection part 121 and the outer connection part 122.
  4. 제 3항에 있어서, 상기 이중탱크(100)는,The method of claim 3, wherein the double tank 100,
    상기 외조(120) 상에서 상기 통로부(130)가 상기 외조(120)를 관통하는 부분에 외조통공(125)이 형성되되,An outer shell hole 125 is formed on the outer shell 120 at a portion where the passage portion 130 penetrates the outer shell 120,
    상기 외조통공(125) 내주면 및 상기 통로부(130)의 측면이 밀착형성되는 것을 특징으로 하는 이중탱크.A double tank, characterized in that the inner circumferential surface of the outer barrel hole (125) and the side surface of the passage portion (130) are in close contact with each other.
  5. 제 4항에 있어서, 상기 이중탱크(100)는,The method of claim 4, wherein the double tank 100,
    상기 내측연결부(121)가 상기 외조통공(125)을 둘러싸면서 상기 외조(120) 외면으로부터 외부환경 측으로 돌출형성되는 것을 특징으로 하는 이중탱크.A double tank, characterized in that the inner connection portion 121 surrounds the outer tank hole 125 and protrudes from the outer surface of the outer tank 120 toward the external environment.
  6. 제 2항에 있어서, 상기 탄성부(140)는,The method of claim 2, wherein the elastic portion 140 is:
    일단이 상기 내측연결부(121)의 타단과 연결되며 상기 통로부(130) 연장방향을 따라 연장되는 내측연장부(141),An inner extension portion 141, one end of which is connected to the other end of the inner connection portion 121 and extending along the direction of extension of the passage portion 130,
    타단이 상기 외측연결부(122)의 일단과 연결되며 상기 통로부(130)의 연장방향을 따라 연장되는 외측연장부(142),An outer extension portion 142, the other end of which is connected to one end of the outer connection portion 122 and extending along the extension direction of the passage portion 130,
    상기 내측연장부(141) 및 상기 외측연장부(142) 사이에 연결형성되며 곡면형태로 형성되는 탄성변형부(145)An elastic deformation part 145 is connected between the inner extension part 141 and the outer extension part 142 and is formed in a curved shape.
    를 포함하는 것을 특징으로 하는 이중탱크.A double tank comprising:
  7. 제 6항에 있어서, 상기 탄성부(140)는,The method of claim 6, wherein the elastic portion 140 is:
    상기 탄성변형부(145)가 상기 통로부(130)의 반경방향으로 상기 내측연장부(141) 및 상기 외측연장부(142)보다 돌출된 지점을 포함하는 볼록한 곡면형태로 형성되는 것을 특징으로 하는 이중탱크.Characterized in that the elastic deformation portion 145 is formed in a convex curved shape including a point protruding from the inner extension portion 141 and the outer extension portion 142 in the radial direction of the passage portion 130. Double tank.
  8. 제 7항에 있어서, 상기 탄성부(140)는,The method of claim 7, wherein the elastic portion 140 is:
    상기 탄성변형부(145) 내주면이 상기 통로부(130) 측면에 접촉지지되도록 형성되는 것을 특징으로 하는 이중탱크.A double tank, characterized in that the inner peripheral surface of the elastic deformation part (145) is formed to contact and support the side surface of the passage part (130).
  9. 제 6항에 있어서, 상기 탄성부(140)는,The method of claim 6, wherein the elastic portion 140 is:
    상기 내측연장부(141), 상기 외측연장부(142) 및 상기 탄성변형부(145)가 일체형으로 형성되는 것을 특징으로 하는 이중탱크.A double tank, characterized in that the inner extension part 141, the outer extension part 142, and the elastic deformation part 145 are formed as one piece.
PCT/KR2023/018624 2022-11-25 2023-11-20 Dual tank having displacement-absorbing structure WO2024112022A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220160599A KR102638970B1 (en) 2022-11-25 2022-11-25 Double wall tank having displacement absorption structure
KR10-2022-0160599 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024112022A1 true WO2024112022A1 (en) 2024-05-30

Family

ID=90056423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018624 WO2024112022A1 (en) 2022-11-25 2023-11-20 Dual tank having displacement-absorbing structure

Country Status (2)

Country Link
KR (1) KR102638970B1 (en)
WO (1) WO2024112022A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0155720B2 (en) * 1982-11-29 1989-11-27 Mitsubishi Heavy Ind Ltd
JP4809710B2 (en) * 2006-04-19 2011-11-09 大阪瓦斯株式会社 Low temperature liquefied gas storage facility
KR101264889B1 (en) * 2011-05-12 2013-05-15 대우조선해양 주식회사 Apparatus of storing container for liquefied natural gas
KR101607828B1 (en) * 2014-11-20 2016-03-31 삼성중공업 주식회사 Double-Walled Tank
KR101658283B1 (en) * 2014-08-04 2016-09-23 현대중공업 주식회사 Structure of Exhaust for Fuel Gas Supply System of Liquefied Natural Gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI125018B (en) 2012-02-29 2015-04-30 Wärtsilä Finland Oy LNG tank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0155720B2 (en) * 1982-11-29 1989-11-27 Mitsubishi Heavy Ind Ltd
JP4809710B2 (en) * 2006-04-19 2011-11-09 大阪瓦斯株式会社 Low temperature liquefied gas storage facility
KR101264889B1 (en) * 2011-05-12 2013-05-15 대우조선해양 주식회사 Apparatus of storing container for liquefied natural gas
KR101658283B1 (en) * 2014-08-04 2016-09-23 현대중공업 주식회사 Structure of Exhaust for Fuel Gas Supply System of Liquefied Natural Gas
KR101607828B1 (en) * 2014-11-20 2016-03-31 삼성중공업 주식회사 Double-Walled Tank

Also Published As

Publication number Publication date
KR102638970B1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
KR101058331B1 (en) Termination Structure of Superconducting Cable
WO2016003214A1 (en) Liquefied natural gas storage tank and insulating wall for liquefied natural gas storage tank
WO2016021948A1 (en) Corner structure of lng storage tank
WO2013089359A1 (en) Structure for mounting pump tower of lng storage tank and manufacturing method thereof
WO2024112022A1 (en) Dual tank having displacement-absorbing structure
WO2020179956A1 (en) Vacuum heat-insulation device for low-temperature tank
KR101190959B1 (en) Superconducting cable terminal structure
WO2013169076A1 (en) Liquefied natural gas storage tank having dual structure
WO2020256226A1 (en) Insulation device for low-temperature pipe
KR100346047B1 (en) Sealing container
JP3978021B2 (en) Seal structure of flange joints such as seal ring, composite material tank, and piping
CA1187261A (en) Liquid storage tank conduit connection
WO2020138836A1 (en) Insulating wall fixing device of liquefied natural gas storage tank
CN218000819U (en) High-pressure vacuum pipeline
KR20150044727A (en) Upper Structure Of Cargo Tank, And Insulation And Gas Tight Method Of The Same
WO2015174615A1 (en) Cargo tank system
CN210865767U (en) Dewar for superconducting power device
CN110056761B (en) Manhole device and vacuum insulation low-temperature storage tank with same
CN217320666U (en) Ship with cryogenic fuel tank
WO2023120976A1 (en) Method of manufacturing integrated sealing gasket for high pressure vessel
WO2024144119A1 (en) High-pressure storage vessel
EP3760910A1 (en) Double-shell tank and liquefied gas carrier
WO2022108322A1 (en) Composite thermal insulation apparatus for fluid tank
CN218954364U (en) Pipeline vacuum insulation protection device
WO2023182743A1 (en) Separation-type double-walled insulation tank for launcher