WO2022108322A1 - Composite thermal insulation apparatus for fluid tank - Google Patents

Composite thermal insulation apparatus for fluid tank Download PDF

Info

Publication number
WO2022108322A1
WO2022108322A1 PCT/KR2021/016851 KR2021016851W WO2022108322A1 WO 2022108322 A1 WO2022108322 A1 WO 2022108322A1 KR 2021016851 W KR2021016851 W KR 2021016851W WO 2022108322 A1 WO2022108322 A1 WO 2022108322A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
thermal insulation
insulating material
vacuum jacket
insulating layer
Prior art date
Application number
PCT/KR2021/016851
Other languages
French (fr)
Korean (ko)
Inventor
장대준
박현준
김정욱
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2022108322A1 publication Critical patent/WO2022108322A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength

Definitions

  • the present invention relates to a composite insulation device for a fluid tank capable of insulating a tank containing a cryogenic fluid.
  • Tanks for storing cryogenic fluids such as liquefied natural gas and liquid hydrogen must be made of materials that can prevent damage and breakage caused by cryogenic fluids, as well as be able to respond to stress and shrinkage caused by heat, and heat from the outside. It should be constructed with an insulated structure to prevent intrusion.
  • the conventional tank is formed such that an insulating material layer made of an insulating material surrounds the outside of the tank in which the cryogenic fluid is accommodated, and an outer wall is formed on the outside of the insulating material layer, thereby fixing the position of the insulating material and maintaining airtightness from the outside. , to prevent damage from the outside.
  • the gas or moisture remaining inside the insulation layer may be cooled, which deteriorates the insulation performance of the insulation material constituting the insulation layer.
  • dry air can be filled, but in the case of liquefied hydrogen having a boiling temperature of -250 degrees below zero, oxygen and nitrogen of the dry air filled inside are liquefied and condensed near the surface of the liquid hydrogen tank, so that will degrade performance.
  • the heat insulating material layer since the heat insulating material layer is located on the outer surface of the tank, it may receive cold damage from the cryogenic fluid accommodated in the tank, which also deteriorates the performance of the heat insulating material.
  • the thermal conductivity of the insulation material itself causes continuous evaporation of the fluid stored in the tank, and causes the pressure inside the storage tank to rise, thereby shortening the storage period of the cryogenic fluid. do.
  • Korean Patent Publication No. 10-2017-0116584 (published on October 19, 2017), which describes an insulated tank for storing low-temperature liquefied gas.
  • An object of the present invention is to provide a composite insulation device for a fluid tank that can reduce the evaporation of stored fluid and relieve pressure increase in the tank by composing the insulation layer of the fluid tank in a dual structure in which two types of insulation materials are mixed.
  • the present invention is a tank body for storing a fluid; a heat insulating layer forming a double structure with first and second heat insulating materials of different heat insulating materials, and enclosing the outer skin of the tank body; and a vacuum jacket surrounding the heat insulating layer to maintain airtightness with the outside by maintaining the inside in a vacuum; It provides a composite insulation device for a fluid tank comprising a.
  • the heat insulation layer provides a composite insulation device for a fluid tank in which the first insulation material and the second insulation material are disposed to cross each other at regular intervals while in contact with both the outer shell and the vacuum jacket.
  • the heat insulating layer is composed of the first insulating material, and forms a vertical passage communicating between the outer skin and the vacuum jacket inside and a horizontal passage traversing the vertical passage, and the vertical passage and the horizontal passage are the second Provided is a composite thermal insulation device for a fluid tank filled with an insulating material.
  • the first heat insulating material forms a support structure that contacts both the outer shell and the vacuum jacket but has a space therein, and the second heat insulating material fills the inner space of the first heat insulating material. Insulation is provided.
  • the heat insulating layer but composed of the first insulating material, provides a composite thermal insulation device of the fluid tank filling the inside of the first insulating material with the second insulating material to a predetermined thickness.
  • the heat insulating layer is configured so that the first heat insulating material is in contact with both the outer shell and the vacuum jacket, a plurality of holes are formed therein, and the second heat insulating material is filled in the holes. .
  • the vacuum jacket includes a smooth part formed of a flat plate spaced apart from each other while surrounding the outer surface of the heat insulating layer, and a deformable joint connected between the smooth parts and formed of a stretchable material.
  • a composite insulation device for the fluid tank further comprising an external vacuum jacket surrounding the outside of the vacuum jacket.
  • the vacuum jacket and the external vacuum jacket provide a composite insulation device for a fluid tank having a vacuum space independent of each other with a spacer interposed therebetween.
  • the composite thermal insulation device of a fluid tank according to the present invention comprises a thermal insulation layer formed between the outer shell of the tank body and the vacuum jacket of different thermal insulation materials with high mechanical robustness and low thermal conductivity, thereby increasing thermal insulation performance and structural rigidity. can have an effect.
  • the insulation layer can be flexibly constructed according to the purpose of use and the environment by filling the insulation material with low thermal conductivity in various structures while forming the basic skeleton of the insulation material with high mechanical robustness.
  • FIG. 1 is a cross-sectional view of a composite thermal insulation device for a fluid tank according to an embodiment of the present invention.
  • Figure 2 is a first embodiment of the insulating layer in the composite thermal insulation device of a fluid tank according to an embodiment of the present invention.
  • Figure 3 is a second embodiment of the insulating layer in the composite thermal insulation device for a fluid tank according to an embodiment of the present invention.
  • FIG. 4 is a third embodiment of a heat insulating layer in the composite heat insulating device for a fluid tank according to an embodiment of the present invention.
  • FIG 5 is a fourth embodiment of the heat insulating layer in the composite heat insulating device for a fluid tank according to an embodiment of the present invention.
  • FIG. 6 is a fifth embodiment of the heat insulating layer in the composite thermal insulation device of a fluid tank according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a composite thermal insulation device for a fluid tank according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a composite thermal insulation device for a fluid tank according to an embodiment of the present invention.
  • Figure 2 is a first embodiment of the insulating layer in the composite thermal insulation device of a fluid tank according to an embodiment of the present invention.
  • Figure 3 is a second embodiment of the insulating layer in the composite thermal insulation device for a fluid tank according to an embodiment of the present invention.
  • 4 is a third embodiment of a heat insulating layer in the composite heat insulating device for a fluid tank according to an embodiment of the present invention.
  • 5 is a fourth embodiment of the heat insulating layer in the composite heat insulating device for a fluid tank according to an embodiment of the present invention.
  • FIG. 6 is a fifth embodiment of the heat insulating layer in the composite thermal insulation device of a fluid tank according to an embodiment of the present invention.
  • 7 is a perspective view of a composite thermal insulation device for a fluid tank according to an embodiment of the present invention.
  • 8 is a cross-sectional view of a composite thermal insulation device for a fluid tank according to an embodiment of the present invention.
  • 9 is a cross-sectional view of a composite thermal insulation device for a fluid tank according to another embodiment of the present invention.
  • the tank body 100 is formed to have a storage space for accommodating the fluid.
  • various types of fluid accommodated in the tank body 100 are possible, but the composite thermal insulation device of a fluid tank according to an embodiment of the present invention accommodates a cryogenic liquid and is a device capable of performing insulation with the outside. Since the purpose is to provide, the fluid accommodated therein may be cryogenic liquefied natural gas or liquefied hydrogen.
  • the heat insulating layer 200 is formed to isolate the tank body 100 from the outside through a heat insulating action.
  • the outer shell 110 of the tank body 100 is wrapped to thermally disconnect the tank body 100 from the outside.
  • the heat insulating layer 200 divides the heat insulator constituting the inside into the first heat insulator 210 and the second heat insulator 220 to form a double structure.
  • the heat insulating layer 200 is generally formed of a single material of heat insulating material, but does not include all of the elements such as mechanical robustness and low thermal conductivity required to configure the heat insulating layer 200 .
  • the heat insulating layer 200 may be composed of the first heat insulating material 210 and the second heat insulating material 220 of different heat insulating materials.
  • the first insulating material 210 may be formed of a porous polyurethane, which is a material that is basically used for thermal insulation, and has high mechanical robustness.
  • the second insulating material 220 may be formed of glass bubble, pearlite powder, etc., which are powder-type insulating materials, and has low thermal conductivity.
  • the first insulating material 210 and the second insulating material 220 both use a material having a basic thermal insulation performance, and the second insulating material 220 is formed of an insulating material having lower thermal conductivity than the first insulating material 210.
  • the relatively high thermal conductivity which is a disadvantage of the first insulator 210 , may be compensated by the second insulator 220 .
  • the first heat insulating material 210 has high mechanical robustness that can maintain the heat insulating layer 200
  • the first heat insulating material 210 and the second heat insulating material 220 can complement each other to increase the heat insulating performance of the heat insulating layer 200. have.
  • the heat insulation layer 200 withstands the pressure applied to the heat insulation layer 200 due to the pressure difference between the vacuum state of the heat insulation layer 200 and the external atmospheric pressure with the mechanical robustness of the first heat insulation material 210, and from the outside to the tank body 100.
  • the incoming heat can be blocked by the low thermal conductivity of the second insulating material 220 .
  • the heat insulating layer 200 forms a double structure with the first heat insulating material 210 and the second heat insulating material 220 .
  • the double structure of the first insulating material 210 and the second insulating material 220 may be formed in two or more stages, may form a layer, may form a specific structure.
  • the first insulating material 210 and the second insulating material 220 may be bonded to each other by bonding with a chemical substance, or may be bonded to each other using a physical fixing bolt or the like.
  • Embodiments of the dual structure of the first insulating material 210 and the second insulating material 220 will be described in detail below.
  • the vacuum jacket 300 maintains the internal space in which the heat insulating layer 200 is provided at constant vacuum pressure, thereby absorbing the gas or moisture remaining between the heat insulating layers 200 and discharging it to the outside, thereby increasing the heat insulating performance of the heat insulating layer 200. .
  • the outer shell 110 or the heat insulating layer 200 of the tank body 100 responds to the internal space that is deformed according to the contraction or expansion of the outer space. It is desirable to allow the surface to be deformed.
  • the heat insulating layer 200 includes the first insulating material 210 and the second insulating material 220 with the outer shell 110 and The vacuum jacket 300 is disposed to cross each other at regular intervals while in contact with each other.
  • the heat insulating layer 200 is formed by arranging the first heat insulating material 210 and the second heat insulating material 220 to cross each other at regular intervals.
  • the first insulating material 210 and the second insulating material 220 are configured to be in contact with both the outer shell 110 and the vacuum jacket 300 of the tank body 100, respectively, and are alternately positioned while having a constant thickness.
  • the heat insulating layer 200 is filled between the tank body 100 and the vacuum jacket 300, and the first heat insulating material 210 and the second heat insulating material 220 are both in contact with the tank body 100 and the vacuum jacket 300, respectively. while forming a parallel structure to each other.
  • Performance can be adjusted while adjusting the specific gravity of the first insulating material 210 and the second insulating material 220 according to the purpose and environment of use. For example, it can be configured to increase the specific gravity of the second heat insulating material 220 to increase the heat insulating performance of the heat insulating layer 200 .
  • the heat insulating layer 200 is composed of the first heat insulating material 210, but has the outer shell 110 and the vacuum jacket inside ( 300) to form a vertical passage 221 communicating between and a horizontal passage 222 crossing the vertical passage 221, and the vertical passage 221 and the horizontal passage 222 are the second insulating material 220 is filled with
  • the heat insulating layer 200 forms a frame in which the first heat insulating material 210 has a porous structure.
  • the first insulating material 210 fills the outer shell 110 and the vacuum jacket 300 of the tank body 100, and forms a space having a certain structure therein.
  • the second insulating material 220 is filled in the space formed in the first insulating material 210 .
  • the internal structure of the first insulating material 210 includes a vertical passage 221 that communicates between the outer shell 110 and the vacuum jacket 300 and a horizontal passage 222 that crosses the vertical passage 221 .
  • the vertical passage 221 and the horizontal passage 222 form a passage inside the first insulating material 210 and are orthogonal to each other.
  • the second insulating material 220 filled in the vertical passage 221 is in contact with both the outer shell 110 and the vacuum jacket 300, and the second insulating material 220 filled in the horizontal passage 222 is the outer shell 110 and The inside of the first insulating material 210 is filled in parallel with the vacuum jacket 300 .
  • the first heat insulating material 210 includes both the outer shell 110 and the vacuum jacket 300 .
  • a support structure having a space therein is formed, and the second insulating material 220 fills the inner space of the first insulating material 210 .
  • the heat insulating layer 200 forms a columnar support structure in which the first heat insulating material 210 is in contact with both the outer shell 110 and the vacuum jacket 300 of the tank body 100 but has a certain space therein, and the second heat insulating material 220 fills the inner space of the first insulating material 210 .
  • the first insulating material 210 is in contact with the outer skin 110 and the vacuum jacket 300, and the inside of the first insulating material 210 in the middle is filled with the second insulating material 220 will be.
  • the heat insulation layer 200 forms a columnar structure supporting the heat insulation layer 200 with the first insulation material 210 having mechanical robustness, and by filling the second insulation material 220 therein, the thermal conductivity can also be maintained low.
  • the heat insulating layer 200 is composed of the first heat insulating material 210 , and the first heat insulating material 210 is disposed inside the first heat insulating material 210 .
  • the second insulating material 220 is filled with a predetermined thickness.
  • the heat insulating layer 200 has a box-type structure in which the first heat insulating material 210 contacts both the outer shell 110 of the tank body 100 and the vacuum jacket 300 and fills the inside with the second heat insulating material 220 .
  • the heat insulating layer 200 may be configured as an independent box unit.
  • the heat insulating layer 200 may be configured in the form of collecting individual boxes.
  • the inside of the first insulating material 210 forming the unit box is filled with the second insulating material 220 to a predetermined volume.
  • the heat insulating layer 200 is formed by collecting unit boxes of independent shapes, construction is simple, and the mechanical robustness of the first insulating material 210 and the properties of the low thermal conductivity of the second insulating material 220 can be simultaneously applied.
  • the heat insulating layer 200 includes the first heat insulating material 210 and the outer shell 110 and the vacuum jacket 300 . However, a plurality of holes 211 are formed therein, and the second insulating material 220 is filled in the holes 211 .
  • the heat insulating layer 200 basically forms a basic structure with the first heat insulating material 210 .
  • the first heat insulating material 210 forms the skeleton of the heat insulating layer 200 while in contact with both the outer shell 110 and the vacuum jacket 300 .
  • the hole 211 is formed to elongate the inside of the first insulation material 210 , and the hole 211 is filled with the second insulation material 220 .
  • the heat insulating layer 200 forms a plurality of holes 211 in the first heat insulating material 210, a large amount of the second heat insulating material 220 can be applied, thereby improving the heat insulating performance.
  • the embodiments of the heat insulating layer 200 described above basically form the first heat insulating material 210 having relatively high mechanical robustness as the basic skeleton of the heat insulating layer 200, and a relatively low level inside the first heat insulating material 210.
  • a structure in which the second insulating material 220 having thermal conductivity is filled is formed.
  • the heat insulating layer 200 can support the external atmospheric pressure and have low thermal conductivity, the heat insulating performance of the heat insulating layer 200 can be maintained high.
  • the first heat insulating material 210 can prevent the destruction of the vacuum jacket 300 due to the pressure difference between atmospheric pressure and the vacuum of the heat insulating layer 200, and the second heat insulating material 220 having relatively low thermal conductivity. ), it is possible to reduce the heat inflow to the fluid stored in the tank body (100).
  • the vacuum jacket 300 surrounds the outer surface of the heat insulating layer 200 and is formed between a plurality of smooth portions 310 made of flat plates spaced apart from each other, and the smooth portions 310 , and has a flexible structure. It comprises a deformable joint 320 .
  • the plurality of smooth parts 310 should contract or expand.
  • the adjacent deformable joint parts 320 contract or expand, the inside of the vacuum jacket 300 is deformed. can react in response.
  • the deformable joint 320 made of the elastic polymer may be interposed between the smooth parts 310 and coupled to connect them to seal the vacuum jacket 300 . Accordingly, when the inside of the vacuum jacket 300 is contracted, the deformable joint 320 is compressed so that the spacing between the adjacent plurality of smooth parts 310 is narrowed, thereby responding to the internal deformation of the vacuum jacket 300 .
  • the composite thermal insulation device for a fluid tank according to an embodiment of the present invention further includes a vacuum pump 510 capable of controlling the vacuum pressure inside the vacuum jacket 300 .
  • a plurality of vacuum pumps 510 may be provided to maintain a vacuum inside the vacuum jacket 300 , and the vacuum jacket 300 connects the inside and the vacuum pump 610 to operate the vacuum pump 510 . It may further include an exhaust pipe 520 and a control valve 530 that opens and closes the exhaust pipe 520 .
  • a predetermined space is provided inside the vacuum jacket 300 . It is preferable to further include an internal exhaust portion (not shown) to be formed.
  • the composite thermal insulation device for a fluid tank according to another embodiment of the present invention further includes an external vacuum jacket 400 provided to surround the outer surface of the vacuum jacket 300 , and the vacuum jacket 300 ) and the external vacuum jacket 400 are interposed between the vacuum jacket 300 and the external vacuum jacket 400 to separate the vacuum jacket 300 and the external vacuum jacket 400 by a certain distance, and a spacer 410 provided to withstand the vacuum pressure of the spaced space. is done
  • the vacuum jacket 300 and the external vacuum jacket 400 are connected to each exhaust pipe to have an independent vacuum space.
  • a vacuum pump 510 for controlling the vacuum pressure inside the vacuum jacket 300 , and an external vacuum for controlling the vacuum pressure inside the outer vacuum jacket 400 . It is preferable to separately form the pump 610 , the external exhaust pipe 620 , and the external control valve 630 .
  • the external vacuum jacket 400 maintains a vacuum state for a certain period of time, thereby maintaining stability during the transportation period of the cargo.
  • the thermal insulation layer formed between the outer skin of the tank body and the vacuum jacket is made of different thermal insulation materials with high mechanical robustness and low thermal conductivity to improve thermal insulation performance. Structural rigidity can be increased while increasing.
  • the insulation layer can be flexibly constructed according to the purpose of use and the environment by filling the insulation with low thermal conductivity in various structures while forming the basic skeleton of the insulation material with high mechanical robustness.

Abstract

The present invention provides a composite thermal insulation apparatus for a fluid tank, the apparatus comprising: a tank body for storing a fluid; a thermal insulation layer forming a double structure composed of a first thermal insulation material and second thermal insulation material that are different thermal insulation materials, and surrounding the outer skin of the tank body; and a vacuum jacket surrounding the thermal insulation layer to keep the inside in a vacuum state and airtight with respect to the outside. According to the composite thermal insulation apparatus for the fluid tank of the present invention, the thermal insulation layer formed between the outer skin of the tank body and the vacuum jacket is made of different thermal insulation materials having, respectively, high mechanical robustness and low thermal conductivity, thus having the effect of increasing structural rigidity while increasing thermal insulation performance. In addition, by forming the basic framework with the thermal insulation material having high mechanical robustness and filling the inside with various structures of the thermal insulation material having low thermal conductivity, the thermal insulation layer can be flexibly constructed according to the purpose and environment of use.

Description

유체탱크의 복합단열장치Composite insulation of fluid tank
본 발명은 초저온의 유체가 수용된 탱크를 단열할 수 있는 유체탱크의 복합단열장치에 관한 것이다.The present invention relates to a composite insulation device for a fluid tank capable of insulating a tank containing a cryogenic fluid.
액화천연가스, 액화수소 등의 초저온 유체를 저장하는 탱크는 초저온 유체에 의한 손상 및 파손을 방지할 수 있는 재료로 형성되어야 할 뿐만 아니라, 열에 의한 응력 및 수축에 대응할 수 있어야 하고, 외부로부터의 열의 침입을 방지할 수 있는 단열구조로 이루어져야 한다.Tanks for storing cryogenic fluids such as liquefied natural gas and liquid hydrogen must be made of materials that can prevent damage and breakage caused by cryogenic fluids, as well as be able to respond to stress and shrinkage caused by heat, and heat from the outside. It should be constructed with an insulated structure to prevent intrusion.
이를 위해 종래의 탱크는 초저온 유체가 수용되는 탱크의 외부를 단열재질로 이루어지는 단열재층이 감싸도록 형성되고, 단열재층의 외부에는 외벽 등이 형성되어, 단열재의 위치 고정 및 외부로부터의 기밀을 유지함과 함께, 외부로부터 손상되는 것을 방지하도록 하였다.To this end, the conventional tank is formed such that an insulating material layer made of an insulating material surrounds the outside of the tank in which the cryogenic fluid is accommodated, and an outer wall is formed on the outside of the insulating material layer, thereby fixing the position of the insulating material and maintaining airtightness from the outside. , to prevent damage from the outside.
이때 단열재층 내부에는 잔존하는 기체 또는 수분이 냉각될 수 있으며, 이는 단열재층을 이루는 단열재의 단열 성능을 저하시키게 된다. 이를 위해 방지하기 위해 건조한 공기를 충전할 수 있으나, 액화되어 영하 250도의 비등온도를 갖는 액화수소의 경우, 내부에 충전된 건조한 공기의 산소 및 질소가 액화수소 탱크 표면 부근에서 액화 및 응결되어 단열재의 성능을 저하시키게 된다.At this time, the gas or moisture remaining inside the insulation layer may be cooled, which deteriorates the insulation performance of the insulation material constituting the insulation layer. To prevent this, dry air can be filled, but in the case of liquefied hydrogen having a boiling temperature of -250 degrees below zero, oxygen and nitrogen of the dry air filled inside are liquefied and condensed near the surface of the liquid hydrogen tank, so that will degrade performance.
또한, 단열재층은 탱크의 외부면에 위치되므로, 탱크 내부에 수용된 초저온 유체로부터 냉해를 입을 수 있으며, 이 또한 단열재의 성능을 저하시키게 된다.In addition, since the heat insulating material layer is located on the outer surface of the tank, it may receive cold damage from the cryogenic fluid accommodated in the tank, which also deteriorates the performance of the heat insulating material.
또한, 단열재층에 사용하는 단열재를 단일 재료로 사용하는 경우, 단열재 자체의 열전도도로 인해 탱크에 저장한 유체의 지속적인 증발을 유발하고, 저장탱크 내부의 압력 상승을 야기하여 극저온 유체의 저장 기간을 단축시키게 된다. In addition, when the insulation used for the insulation layer is used as a single material, the thermal conductivity of the insulation material itself causes continuous evaporation of the fluid stored in the tank, and causes the pressure inside the storage tank to rise, thereby shortening the storage period of the cryogenic fluid. do.
관련 선행문헌으로는 공개특허공보 제10-2017-0116584호(공개 2017.10.19.)가 있으며, 상기 문헌에는 저온의 액화가스를 저장하는 단열탱크가 기재되어 있다.As a related prior document, there is Korean Patent Publication No. 10-2017-0116584 (published on October 19, 2017), which describes an insulated tank for storing low-temperature liquefied gas.
본 발명의 목적은, 유체탱크의 단열재층을 두 가지 단열재를 혼합한 이중 구조로 조성하여, 저장된 유체의 증발을 감소시키고, 탱크 내부의 압력 상승을 완화할 수 있는 유체탱크의 복합단열장치를 제공하는 것이다.An object of the present invention is to provide a composite insulation device for a fluid tank that can reduce the evaporation of stored fluid and relieve pressure increase in the tank by composing the insulation layer of the fluid tank in a dual structure in which two types of insulation materials are mixed. will do
상기와 같은 과제를 해결하기 위하여, 본 발명은 유체를 저장하는 탱크본체; 서로 다른 단열재질의 제1단열재 및 제2단열재로 이중구조를 형성하고, 상기 탱크본체의 외피를 감싸는 단열층; 및 내부를 진공으로 유지하여 외부와의 기밀을 유지하도록 상기 단열층을 감싸는 진공자켓; 을 포함하는 유체탱크의 복합단열장치를 제공한다.In order to solve the above problems, the present invention is a tank body for storing a fluid; a heat insulating layer forming a double structure with first and second heat insulating materials of different heat insulating materials, and enclosing the outer skin of the tank body; and a vacuum jacket surrounding the heat insulating layer to maintain airtightness with the outside by maintaining the inside in a vacuum; It provides a composite insulation device for a fluid tank comprising a.
또한, 상기 단열층은, 상기 제1단열재와 상기 제2단열재를 상기 외피와 상기 진공자켓을 모두 접하면서 일정한 간격으로 서로 교차하여 배치하는 유체탱크의 복합단열장치를 제공한다.In addition, the heat insulation layer provides a composite insulation device for a fluid tank in which the first insulation material and the second insulation material are disposed to cross each other at regular intervals while in contact with both the outer shell and the vacuum jacket.
또한, 상기 단열층은, 상기 제1단열재로 구성하되 내부에 상기 외피와 상기 진공자켓 사이를 연통하는 수직통로와 상기 수직통로를 가로지르는 수평통로를 형성하고, 상기 수직통로와 수평통로는 상기 제2단열재로 채워지는 유체탱크의 복합단열장치를 제공한다.In addition, the heat insulating layer is composed of the first insulating material, and forms a vertical passage communicating between the outer skin and the vacuum jacket inside and a horizontal passage traversing the vertical passage, and the vertical passage and the horizontal passage are the second Provided is a composite thermal insulation device for a fluid tank filled with an insulating material.
또한, 상기 단열층은, 상기 제1단열재는 상기 외피와 상기 진공자켓을 모두 접하되 내부에 공간을 가지는 지지구조를 형성하고, 상기 제2단열재는 상기 제1단열재의 내부 공간을 채우는 유체탱크의 복합단열장치를 제공한다.In addition, in the heat insulating layer, the first heat insulating material forms a support structure that contacts both the outer shell and the vacuum jacket but has a space therein, and the second heat insulating material fills the inner space of the first heat insulating material. Insulation is provided.
또한, 상기 단열층은, 상기 제1단열재로 구성하되, 상기 제1단열재 내부에 상기 제2단열재를 소정의 두께로 채우는 유체탱크의 복합단열장치를 제공한다.In addition, the heat insulating layer, but composed of the first insulating material, provides a composite thermal insulation device of the fluid tank filling the inside of the first insulating material with the second insulating material to a predetermined thickness.
또한, 상기 단열층은, 상기 제1단열재를 상기 외피와 상기 진공자켓을 모두 접하도록 구성하되 내부에 다수의 구멍을 형성하고, 상기 구멍에 상기 제2단열재를 채우는 유체탱크의 복합단열장치를 제공한다.In addition, the heat insulating layer is configured so that the first heat insulating material is in contact with both the outer shell and the vacuum jacket, a plurality of holes are formed therein, and the second heat insulating material is filled in the holes. .
또한, 상기 진공자켓은, 상기 단열층의 외면을 감싸며 서로 이격된 평판으로 이루어지는 평활부와, 상기 평활부 사이를 연결하되, 신축 가능한 재질로 형성하는 변형성이음부를 포함하는 유체탱크의 복합단열장치를 제공한다.In addition, the vacuum jacket includes a smooth part formed of a flat plate spaced apart from each other while surrounding the outer surface of the heat insulating layer, and a deformable joint connected between the smooth parts and formed of a stretchable material. A composite insulation device for a fluid tank. to provide.
또한, 상기 진공자켓의 외부를 감싸는 외부진공자켓을 더 포함하는 유체탱크의 복합단열장치를 제공한다.In addition, there is provided a composite insulation device for the fluid tank further comprising an external vacuum jacket surrounding the outside of the vacuum jacket.
또한, 상기 진공자켓과 상기 외부진공자켓은, 사이에 스페이서를 개재하여 서로 독립된 진공공간을 가지는 유체탱크의 복합단열장치를 제공한다.In addition, the vacuum jacket and the external vacuum jacket provide a composite insulation device for a fluid tank having a vacuum space independent of each other with a spacer interposed therebetween.
본 발명에 따른 유체탱크의 복합단열장치는 탱크본체의 외피와 진공자켓 사이에 구성하는 단열층을 기계적 강건성이 높은 단열재와 열전도도가 낮은 단열재로 서로 다른 단열재질로 구성하여 단열성능을 높이면서도 구조적 강성도 높일 수 있는 효과가 있다.The composite thermal insulation device of a fluid tank according to the present invention comprises a thermal insulation layer formed between the outer shell of the tank body and the vacuum jacket of different thermal insulation materials with high mechanical robustness and low thermal conductivity, thereby increasing thermal insulation performance and structural rigidity. can have an effect.
또한, 기계적 강건성이 높은 단열재를 기본 골격을 형성하면서 내부에 열전도도가 낮은 단열재를 다양한 구조로 채워넣음으로써 사용목적 및 환경에 따라 유연하게 단열층을 시공할 수 있는 효과가 있다.In addition, there is an effect that the insulation layer can be flexibly constructed according to the purpose of use and the environment by filling the insulation material with low thermal conductivity in various structures while forming the basic skeleton of the insulation material with high mechanical robustness.
도 1은 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치의 단면도이다. 1 is a cross-sectional view of a composite thermal insulation device for a fluid tank according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치에서 단열층에 대한 제1실시예이다. Figure 2 is a first embodiment of the insulating layer in the composite thermal insulation device of a fluid tank according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치에서 단열층에 대한 제2실시예이다. Figure 3 is a second embodiment of the insulating layer in the composite thermal insulation device for a fluid tank according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치에서 단열층에 대한 제3실시예이다. 4 is a third embodiment of a heat insulating layer in the composite heat insulating device for a fluid tank according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치에서 단열층에 대한 제4실시예이다. 5 is a fourth embodiment of the heat insulating layer in the composite heat insulating device for a fluid tank according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치에서 단열층에 대한 제5실시예이다. 6 is a fifth embodiment of the heat insulating layer in the composite thermal insulation device of a fluid tank according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치의 사시도이다. 7 is a perspective view of a composite thermal insulation device for a fluid tank according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치의 단면도이다. 8 is a cross-sectional view of a composite thermal insulation device for a fluid tank according to an embodiment of the present invention.
도 9는 본 발명의 다른 실시예에 따른 유체탱크의 복합단열장치의 단면도이다.9 is a cross-sectional view of a composite thermal insulation device for a fluid tank according to another embodiment of the present invention.
본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부되는 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정하여 해석해서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공하는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장하여 표현할 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의해야 한다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략한다.In order to fully understand the present invention, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described in detail below. This example is provided to more completely explain the present invention to those of ordinary skill in the art. Accordingly, the shape of elements in the drawings may be exaggerated to emphasize a clearer description. It should be noted that in each drawing, the same member is shown with the same reference numerals in some cases. In addition, detailed descriptions of well-known functions and configurations that are determined to unnecessarily obscure the gist of the present invention will be omitted.
이하에서 본 발명의 실시예들을 첨부된 도면을 참고로 설명한다. Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치의 단면도이다. 도 2는 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치에서 단열층에 대한 제1실시예이다. 도 3은 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치에서 단열층에 대한 제2실시예이다. 도 4는 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치에서 단열층에 대한 제3실시예이다. 도 5는 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치에서 단열층에 대한 제4실시예이다. 도 6은 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치에서 단열층에 대한 제5실시예이다. 도 7은 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치의 사시도이다. 도 8은 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치의 단면도이다. 도 9는 본 발명의 다른 실시예에 따른 유체탱크의 복합단열장치의 단면도이다. 1 is a cross-sectional view of a composite thermal insulation device for a fluid tank according to an embodiment of the present invention. Figure 2 is a first embodiment of the insulating layer in the composite thermal insulation device of a fluid tank according to an embodiment of the present invention. Figure 3 is a second embodiment of the insulating layer in the composite thermal insulation device for a fluid tank according to an embodiment of the present invention. 4 is a third embodiment of a heat insulating layer in the composite heat insulating device for a fluid tank according to an embodiment of the present invention. 5 is a fourth embodiment of the heat insulating layer in the composite heat insulating device for a fluid tank according to an embodiment of the present invention. 6 is a fifth embodiment of the heat insulating layer in the composite thermal insulation device of a fluid tank according to an embodiment of the present invention. 7 is a perspective view of a composite thermal insulation device for a fluid tank according to an embodiment of the present invention. 8 is a cross-sectional view of a composite thermal insulation device for a fluid tank according to an embodiment of the present invention. 9 is a cross-sectional view of a composite thermal insulation device for a fluid tank according to another embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치는, 유체를 저장하는 탱크본체(100); 서로 다른 단열재질의 제1단열재(210) 및 제2단열재(220)로 이중구조를 형성하고, 상기 탱크본체(100)의 외피(110)를 감싸는 단열층(200); 및 내부를 진공으로 유지하여 외부와의 기밀을 유지하도록 상기 단열층(200)을 감싸는 진공자켓(300); 을 포함하여 이루어진다.Referring to Figure 1, the composite thermal insulation device of a fluid tank according to an embodiment of the present invention, the tank body 100 for storing the fluid; a heat insulating layer 200 forming a double structure with a first insulating material 210 and a second insulating material 220 of different insulating materials, and enclosing the outer shell 110 of the tank body 100; and a vacuum jacket 300 surrounding the heat insulating layer 200 to maintain airtightness with the outside by maintaining the inside in a vacuum; is made including
탱크본체(100)는 유체를 수용하는 저장공간을 가지고 형성한다. 이때 탱크본체(100) 내부에 수용되는 유체는 다양한 종류가 가능하나, 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치는 초저온의 액체를 수용하고, 외부와의 단열을 수행할 수 있는 장치를 제공함이 목적이므로, 내부에 수용되는 유체는 초저온의 액화천연가스 또는 액화수소 등일 수 있다.The tank body 100 is formed to have a storage space for accommodating the fluid. At this time, various types of fluid accommodated in the tank body 100 are possible, but the composite thermal insulation device of a fluid tank according to an embodiment of the present invention accommodates a cryogenic liquid and is a device capable of performing insulation with the outside. Since the purpose is to provide, the fluid accommodated therein may be cryogenic liquefied natural gas or liquefied hydrogen.
단열층(200)은 단열 작용을 통해 탱크본체(100)를 외부와 단절시키도록 형성한다. 탱크본체(100)의 외피(110)를 감싸서 탱크본체(100)와 외부를 열적으로 단절시킨다. The heat insulating layer 200 is formed to isolate the tank body 100 from the outside through a heat insulating action. The outer shell 110 of the tank body 100 is wrapped to thermally disconnect the tank body 100 from the outside.
단열층(200)은 내부를 구성하는 단열재를 제1단열재(210)와 제2단열재(220)로 나누고 이를 이중구조로 형성한다. 단열층(200)는 단일재질의 단열재로 형성하는 것이 일반적이지만, 단열층(200)을 구성하기 위해 요구되는 기계적 강건성, 낮은 열전도도 등의 요소들을 모두 포함하고 있지는 않다.The heat insulating layer 200 divides the heat insulator constituting the inside into the first heat insulator 210 and the second heat insulator 220 to form a double structure. The heat insulating layer 200 is generally formed of a single material of heat insulating material, but does not include all of the elements such as mechanical robustness and low thermal conductivity required to configure the heat insulating layer 200 .
따라서 단열층(200)은 서로 다른 단열재질의 제1단열재(210)와 제2단열재(220)로 구성할 수 있다. 제1단열재(210)는 기본적으로 사용하는 단열이 가능한 재질인 다공성 재질의 폴리우레탄 등으로 형성할 수 있으며, 기계적으로 높은 강건성을 가진다. 제2단열재(220)는 파우더형 단열재인 글래스 버블, 펄라이트 파우더 등으로 형성할 수 있으며, 낮은 열전도도를 가진다.Accordingly, the heat insulating layer 200 may be composed of the first heat insulating material 210 and the second heat insulating material 220 of different heat insulating materials. The first insulating material 210 may be formed of a porous polyurethane, which is a material that is basically used for thermal insulation, and has high mechanical robustness. The second insulating material 220 may be formed of glass bubble, pearlite powder, etc., which are powder-type insulating materials, and has low thermal conductivity.
제1단열재(210)와 제2단열재(220)는 모두 기본적으로 단열 성능을 가지고 있는 재질을 사용하며, 제2단열재(220)가 제1단열재(210)보다 낮은 열전도도를 가지는 단열재로 형성하여 제1단열재(210)의 단점인 상대적으로 높은 열전도도를 제2단열재(220)가 보완할 수 있도록 할 수 있다. 또한 제1단열재(210)는 단열층(200)을 유지할 수 있는 높은 기계적 강건성을 가지기 때문에 결국 제1단열재(210)와 제2단열재(220)는 서로 보완하여 단열층(200)의 단열성능을 높일 수 있다.The first insulating material 210 and the second insulating material 220 both use a material having a basic thermal insulation performance, and the second insulating material 220 is formed of an insulating material having lower thermal conductivity than the first insulating material 210. The relatively high thermal conductivity, which is a disadvantage of the first insulator 210 , may be compensated by the second insulator 220 . In addition, since the first heat insulating material 210 has high mechanical robustness that can maintain the heat insulating layer 200, the first heat insulating material 210 and the second heat insulating material 220 can complement each other to increase the heat insulating performance of the heat insulating layer 200. have.
즉, 단열층(200)은 단열층(200)의 진공상태와 외부 대기압의 압력차로 인해 단열층(200)에 가해지는 압력은 제1단열재(210)의 기계적 강건함으로 버티고, 외부에서 탱크본체(100)로 유입하는 열은 제2단열재(220)의 낮은 열전도도로 막을 수 있는 것이다.That is, the heat insulation layer 200 withstands the pressure applied to the heat insulation layer 200 due to the pressure difference between the vacuum state of the heat insulation layer 200 and the external atmospheric pressure with the mechanical robustness of the first heat insulation material 210, and from the outside to the tank body 100. The incoming heat can be blocked by the low thermal conductivity of the second insulating material 220 .
이러한 단열층(200)은 제1단열재(210)와 제2단열재(220)로 이중구조를 형성한다. 제1단열재(210)와 제2단열재(220)의 이중구조는 둘 이상의 단으로 형성할 수도 있고, 층을 형성할 수도 있으며, 특정한 구조를 형성할 수도 있다. 이때 제1단열재(210)와 제2단열재(220)는 화학물질에 의해 접착되어 서로 결합되거나, 물리적인 고정볼트 등으로 서로 결합될 수 있다. 제1단열재(210)와 제2단열재(220)의 이중구조에 대한 실시예들은 아래에서 자세히 설명한다.The heat insulating layer 200 forms a double structure with the first heat insulating material 210 and the second heat insulating material 220 . The double structure of the first insulating material 210 and the second insulating material 220 may be formed in two or more stages, may form a layer, may form a specific structure. In this case, the first insulating material 210 and the second insulating material 220 may be bonded to each other by bonding with a chemical substance, or may be bonded to each other using a physical fixing bolt or the like. Embodiments of the dual structure of the first insulating material 210 and the second insulating material 220 will be described in detail below.
진공자켓(300)은 단열층(200)이 구비되는 내부공간을 상시 진공압으로 유지함으로써, 단열층(200) 사이에 잔존하는 기체 또는 수분을 흡수하여 외부로 배출시켜 단열층(200)의 단열성능을 높인다.The vacuum jacket 300 maintains the internal space in which the heat insulating layer 200 is provided at constant vacuum pressure, thereby absorbing the gas or moisture remaining between the heat insulating layers 200 and discharging it to the outside, thereby increasing the heat insulating performance of the heat insulating layer 200. .
특히, 진공자켓(300)은 적어도 일부가 수축 또는 팽창 가능한 유연한 구조로 형성함으로써, 탱크본체(100)의 외피(110) 또는 단열층(200)의 수축 또는 팽창에 따라 변형되는 내부 공간에 대응하여 외표면이 변형되도록 하는 것이 바람직하다.In particular, by forming at least a part of the vacuum jacket 300 in a flexible structure that can be contracted or expanded, the outer shell 110 or the heat insulating layer 200 of the tank body 100 responds to the internal space that is deformed according to the contraction or expansion of the outer space. It is desirable to allow the surface to be deformed.
도 2를 참조하면, 단열층(200)의 이중구조에 대한 제1실시예로써, 상기 단열층(200)은, 상기 제1단열재(210)와 상기 제2단열재(220)를 상기 외피(110)와 상기 진공자켓(300)을 모두 접하면서 일정한 간격으로 서로 교차하여 배치한다.Referring to FIG. 2 , as a first embodiment of the dual structure of the heat insulating layer 200 , the heat insulating layer 200 includes the first insulating material 210 and the second insulating material 220 with the outer shell 110 and The vacuum jacket 300 is disposed to cross each other at regular intervals while in contact with each other.
단열층(200)은 제1단열재(210)와 제2단열재(220)를 일정한 간격을 두고 서로 교차하여 배치하여 구성한다. 제1단열재(210)와 제2단열재(220)는 각각 탱크본체(100)의 외피(110)와 진공자켓(300)에 모두 접하도록 구성하면서 각각 일정한 두께를 가지면서 번갈아가면서 위치하는 것이다.The heat insulating layer 200 is formed by arranging the first heat insulating material 210 and the second heat insulating material 220 to cross each other at regular intervals. The first insulating material 210 and the second insulating material 220 are configured to be in contact with both the outer shell 110 and the vacuum jacket 300 of the tank body 100, respectively, and are alternately positioned while having a constant thickness.
단열층(200)은 탱크본체(100)와 진공자켓(300) 사이에 채워지되, 제1단열재(210)와 제2단열재(220)를 탱크본체(100)와 진공자켓(300) 각각에 모두 접하면서 서로 병렬식 구조를 가지도록 형성하는 것이다.The heat insulating layer 200 is filled between the tank body 100 and the vacuum jacket 300, and the first heat insulating material 210 and the second heat insulating material 220 are both in contact with the tank body 100 and the vacuum jacket 300, respectively. while forming a parallel structure to each other.
사용목적 및 환경에 따라 제1단열재(210)와 제2단열재(220)의 비중을 조절하면서 성능을 조절할 수 있다. 예를 들어 제2단열재(220)의 비중을 높여 단열층(200)의 단열성능을 높이도록 구성할 수 있는 것이다. Performance can be adjusted while adjusting the specific gravity of the first insulating material 210 and the second insulating material 220 according to the purpose and environment of use. For example, it can be configured to increase the specific gravity of the second heat insulating material 220 to increase the heat insulating performance of the heat insulating layer 200 .
도 3을 참조하면, 단열층(200)의 이중구조에 대한 제2실시예로써, 상기 단열층(200)은, 상기 제1단열재(210)로 구성하되 내부에 상기 외피(110)와 상기 진공자켓(300) 사이를 연통하는 수직통로(221)와 상기 수직통로(221)를 가로지르는 수평통로(222)를 형성하고, 상기 수직통로(221)와 수평통로(222)는 상기 제2단열재(220)로 채워진다.Referring to FIG. 3, as a second embodiment of the double structure of the heat insulating layer 200, the heat insulating layer 200 is composed of the first heat insulating material 210, but has the outer shell 110 and the vacuum jacket inside ( 300) to form a vertical passage 221 communicating between and a horizontal passage 222 crossing the vertical passage 221, and the vertical passage 221 and the horizontal passage 222 are the second insulating material 220 is filled with
단열층(200)은 제1단열재(210)가 다공성 구조를 가진 골조를 형성한다. 제1단열재(210)는 탱크본체(100)의 외피(110)와 진공자켓(300)을 채우되, 내부에 일정한 구조를 가진 공간을 형성한다. 제2단열재(220)는 제1단열재(210)에 형성하 공간에 채워진다.The heat insulating layer 200 forms a frame in which the first heat insulating material 210 has a porous structure. The first insulating material 210 fills the outer shell 110 and the vacuum jacket 300 of the tank body 100, and forms a space having a certain structure therein. The second insulating material 220 is filled in the space formed in the first insulating material 210 .
구체적으로 제1단열재(210) 내부의 구조는 외피(110)와 진공자켓(300) 사이를 연통하는 수직통로(221)와 이 수직통로(221)를 가로지르는 수평통로(222)로 이루어진다. 수직통로(221)와 수평통로(222)는 제1단열재(210) 내부에 통로를 형성하며 서로 직교한다.Specifically, the internal structure of the first insulating material 210 includes a vertical passage 221 that communicates between the outer shell 110 and the vacuum jacket 300 and a horizontal passage 222 that crosses the vertical passage 221 . The vertical passage 221 and the horizontal passage 222 form a passage inside the first insulating material 210 and are orthogonal to each other.
수직통로(221)에 채워지는 제2단열재(220)는 외피(110)와 진공자켓(300)을 모두 접촉하며, 수평통로(222)에 채워지는 제2단열재(220)는 외피(110)와 진공자켓(300)과 평행하게 제1단열재(210) 내부를 채운다.The second insulating material 220 filled in the vertical passage 221 is in contact with both the outer shell 110 and the vacuum jacket 300, and the second insulating material 220 filled in the horizontal passage 222 is the outer shell 110 and The inside of the first insulating material 210 is filled in parallel with the vacuum jacket 300 .
이 경우 제1단열재(210)의 기계적 강건성을 유지하면서도 수직통로(221)와 수평통로(222)에 형성한 내부의 통로에 제2단열재(220)를 적용함으로써 열전도도를 낮게 유지할 수 있는 것이다.In this case, it is possible to keep the thermal conductivity low by applying the second insulating material 220 to the internal passages formed in the vertical passage 221 and the horizontal passage 222 while maintaining the mechanical robustness of the first insulation material 210 .
도 4를 참조하면, 단열층(200)의 이중구조에 대한 제3실시예로써, 상기 단열층(200)은, 상기 제1단열재(210)는 상기 외피(110)와 상기 진공자켓(300)을 모두 접하되 내부에 공간을 가지는 지지구조를 형성하고, 상기 제2단열재(220)는 상기 제1단열재(210)의 내부 공간을 채운다.Referring to FIG. 4 , as a third embodiment of the double structure of the heat insulating layer 200 , the heat insulating layer 200 , the first heat insulating material 210 includes both the outer shell 110 and the vacuum jacket 300 . A support structure having a space therein is formed, and the second insulating material 220 fills the inner space of the first insulating material 210 .
단열층(200)은 제1단열재(210)가 탱크본체(100)의 외피(110)와 진공자켓(300)에 모두 접하되 내부에 일정한 공간을 가지는 기둥식의 지지구조를 형성하고, 제2단열재(220)가 제1단열재(210) 내부 공간을 채운다.The heat insulating layer 200 forms a columnar support structure in which the first heat insulating material 210 is in contact with both the outer shell 110 and the vacuum jacket 300 of the tank body 100 but has a certain space therein, and the second heat insulating material 220 fills the inner space of the first insulating material 210 .
따라서 일종의 3단구조를 형성하는 것으로, 외피(110)와 진공자켓(300)에 제1단열재(210)가 접하고, 그 중간인 제1단열재(210) 내부는 제2단열재(220)를 채워넣는 것이다.Therefore, to form a kind of three-stage structure, the first insulating material 210 is in contact with the outer skin 110 and the vacuum jacket 300, and the inside of the first insulating material 210 in the middle is filled with the second insulating material 220 will be.
단열층(200)은 기계적 강건성을 가지는 제1단열재(210)를 단열층(200)을 지지하는 기둥식 구조를 형성하면서, 내부에 제2단열재(220)를 채움으로써 열전도도도 낮게 유지할 수 있는 것이다.The heat insulation layer 200 forms a columnar structure supporting the heat insulation layer 200 with the first insulation material 210 having mechanical robustness, and by filling the second insulation material 220 therein, the thermal conductivity can also be maintained low.
도 5를 참조하면, 단열층(200)의 이중구조에 대한 제4실시예로써, 상기 단열층(200)은, 상기 제1단열재(210)로 구성하되, 상기 제1단열재(210) 내부에 상기 제2단열재(220)를 소정의 두께로 채운다.Referring to FIG. 5 , as a fourth embodiment of the dual structure of the heat insulating layer 200 , the heat insulating layer 200 is composed of the first heat insulating material 210 , and the first heat insulating material 210 is disposed inside the first heat insulating material 210 . The second insulating material 220 is filled with a predetermined thickness.
단열층(200)은 제1단열재(210)가 탱크본체(100)의 외피(110)와 진공자켓(300)에 모두 접하는 박스식 구조를 가지면서 내부를 제2단열재(220)로 채운다.The heat insulating layer 200 has a box-type structure in which the first heat insulating material 210 contacts both the outer shell 110 of the tank body 100 and the vacuum jacket 300 and fills the inside with the second heat insulating material 220 .
단열층(200)은 독립된 형태의 박스 단위로 구성할 수 있다. 단열층(200)은 개별 박스들을 모은 형태로 구성할 수 있다. 단위 박스를 형성하는 제1단열재(210)의 내부에는 소정의 부피로 제2단열재(220)를 채워 넣는다. The heat insulating layer 200 may be configured as an independent box unit. The heat insulating layer 200 may be configured in the form of collecting individual boxes. The inside of the first insulating material 210 forming the unit box is filled with the second insulating material 220 to a predetermined volume.
단열층(200)을 독립된 형태의 단위 박스들을 모아서 형성하기 때문에 시공이 간편하며, 제1단열재(210)의 기계적 강건성과 제2단열재(220)의 낮은 열전도도의 성질을 동시에 적용할 수 있다. Since the heat insulating layer 200 is formed by collecting unit boxes of independent shapes, construction is simple, and the mechanical robustness of the first insulating material 210 and the properties of the low thermal conductivity of the second insulating material 220 can be simultaneously applied.
도 6을 참조하면, 단열층(200)의 이중구조에 대한 제5실시예로써, 상기 단열층(200)은, 상기 제1단열재(210)를 상기 외피(110)와 상기 진공자켓(300)을 모두 접하도록 구성하되 내부에 다수의 구멍(211)을 형성하고, 상기 구멍(211)에 상기 제2단열재(220)를 채운다.Referring to FIG. 6 , as a fifth embodiment of the dual structure of the heat insulating layer 200 , the heat insulating layer 200 includes the first heat insulating material 210 and the outer shell 110 and the vacuum jacket 300 . However, a plurality of holes 211 are formed therein, and the second insulating material 220 is filled in the holes 211 .
단열층(200)은 기본적으로 제1단열재(210)로 기본 구조를 형성한다. 제1단열재(210)가 외피(110)와 진공자켓(300)을 모두 접하면서 단열층(200)의 골격을 형성하는 것이다. The heat insulating layer 200 basically forms a basic structure with the first heat insulating material 210 . The first heat insulating material 210 forms the skeleton of the heat insulating layer 200 while in contact with both the outer shell 110 and the vacuum jacket 300 .
그리고 제1단열재(210)의 내부에는 다수의 구멍(211)을 형성한다. 구멍(211)은 제1단열재(210) 내부를 길게 관통하도록 형성하고, 구멍(211)에는 제2단열재(220)가 채워진다.And a plurality of holes 211 are formed inside the first insulating material 210 . The hole 211 is formed to elongate the inside of the first insulation material 210 , and the hole 211 is filled with the second insulation material 220 .
단열층(200)은 제1단열재(210)에 다수 개의 구멍(211)을 형성하기 때문에 많은 양의 제2단열재(220)를 적용할 수 있어 단열성능을 향상시킬 수 있다. Since the heat insulating layer 200 forms a plurality of holes 211 in the first heat insulating material 210, a large amount of the second heat insulating material 220 can be applied, thereby improving the heat insulating performance.
상기에 기술한 단열층(200)의 실시예들은 기본적으로 상대적으로 높은 기계적 강건성을 가지는 제1단열재(210)를 단열층(200)의 기본 골격으로 형성하고, 제1단열재(210) 내부에 상대적으로 낮은 열전도도를 가지는 제2단열재(220)를 채워넣는 구조를 형성한다.The embodiments of the heat insulating layer 200 described above basically form the first heat insulating material 210 having relatively high mechanical robustness as the basic skeleton of the heat insulating layer 200, and a relatively low level inside the first heat insulating material 210. A structure in which the second insulating material 220 having thermal conductivity is filled is formed.
단열층(200)은 외부의 대기압의 압력을 지탱할 수 있으면서도 낮은 열전도도를 가질 수 있기 때문에 단열층(200)의 단열성능을 높게 유지할 수 있다.Since the heat insulating layer 200 can support the external atmospheric pressure and have low thermal conductivity, the heat insulating performance of the heat insulating layer 200 can be maintained high.
단열층(200)에서 제1단열재(210)는 대기압과 단열층(200)의 진공에 의한 압력차로 인한 진공자켓(300)의 파괴를 방지할 수 있으면서, 상대적으로 낮은 열전도도를 가지는 제2단열재(220)로 탱크본체(100)에 저장되어 있는 유체로의 열유입을 저감시킬 수 있는 것이다.In the heat insulating layer 200, the first heat insulating material 210 can prevent the destruction of the vacuum jacket 300 due to the pressure difference between atmospheric pressure and the vacuum of the heat insulating layer 200, and the second heat insulating material 220 having relatively low thermal conductivity. ), it is possible to reduce the heat inflow to the fluid stored in the tank body (100).
도 7을 참조하면, 진공자켓(300)은 단열층(200)의 외면을 감싸며 서로 이격된 평판으로 이루어지는 복수의 평활부(310)와, 평활부(310) 사이에 형성되되, 유연한 구조로 형성되는 변형성이음부(320)를 포함하여 이루어진다.Referring to FIG. 7 , the vacuum jacket 300 surrounds the outer surface of the heat insulating layer 200 and is formed between a plurality of smooth portions 310 made of flat plates spaced apart from each other, and the smooth portions 310 , and has a flexible structure. It comprises a deformable joint 320 .
즉 진공자켓(300)의 내부공간이 수축 또는 팽창됨에 따라 복수의 평활부(310)가 수축 또는 팽창되어야 하는데, 인접한 변형성이음부(320)가 수축 또는 팽창됨으로써, 진공자켓(300) 내부의 변형에 대응하여 반응할 수 있다.That is, as the inner space of the vacuum jacket 300 contracts or expands, the plurality of smooth parts 310 should contract or expand. As the adjacent deformable joint parts 320 contract or expand, the inside of the vacuum jacket 300 is deformed. can react in response.
고분자탄성체로 이루어지는 변형성이음부(320)는 평활부(310) 사이에 개재되어 결합됨으로써 이들을 연결하여 진공자켓(300)을 밀봉할 수 있다. 이에 진공자켓(300) 내부가 수축되면, 인접하는 복수의 평활부(310)들 간 이격거리가 좁아지도록 변형성이음부(320)가 압축됨으로써, 진공자켓(300)의 내부 변형에 대응할 수 있다.The deformable joint 320 made of the elastic polymer may be interposed between the smooth parts 310 and coupled to connect them to seal the vacuum jacket 300 . Accordingly, when the inside of the vacuum jacket 300 is contracted, the deformable joint 320 is compressed so that the spacing between the adjacent plurality of smooth parts 310 is narrowed, thereby responding to the internal deformation of the vacuum jacket 300 .
도 8을 참조하면, 본 발명의 일 실시예에 따른 유체탱크의 복합단열장치는 진공자켓(300) 내부의 진공압을 제어할 수 있는 진공펌프(510)를 더 포함하여 이루어진다.Referring to FIG. 8 , the composite thermal insulation device for a fluid tank according to an embodiment of the present invention further includes a vacuum pump 510 capable of controlling the vacuum pressure inside the vacuum jacket 300 .
진공펌프(510)는 진공자켓(300) 내부에서의 진공을 유지하기 위해 복수로 구비될 수 있으며, 진공펌프(510)의 작동을 위해 진공자켓(300)은 내부와 진공펌프(610)를 연결하는 배기관(520)과, 배기관(520)의 개폐를 수행하는 제어밸브(530)를 더 포함할 수 있다.A plurality of vacuum pumps 510 may be provided to maintain a vacuum inside the vacuum jacket 300 , and the vacuum jacket 300 connects the inside and the vacuum pump 610 to operate the vacuum pump 510 . It may further include an exhaust pipe 520 and a control valve 530 that opens and closes the exhaust pipe 520 .
아울러, 상술된 진공펌프(510)를 이용하여 진공을 유지하기 위해 배기관(520)을 이용하여 진공펌프(510)와 진공자켓(300) 내부를 연결하기 위해, 진공자켓(300) 내부에는 일정 공간이 형성되는 내부배기부(미도시)를 더 포함하여 이루어지는 것이 바람직하다.In addition, in order to connect the vacuum pump 510 and the inside of the vacuum jacket 300 using the exhaust pipe 520 to maintain the vacuum using the vacuum pump 510 described above, a predetermined space is provided inside the vacuum jacket 300 . It is preferable to further include an internal exhaust portion (not shown) to be formed.
도 9를 참조하면, 본 발명의 다른 실시예에 따른 유체탱크의 복합단열장치는 진공자켓(300)의 외면을 감싸도록 구비되는 외부진공자켓(400)을 더 포함하여 이루어지며, 진공자켓(300)과 외부진공자켓(400)의 사이에 개재되어 진공자켓(300)과 외부진공자켓(400)을 일정거리 이격시키며, 이격된 공간의 진공압을 견디도록 구비되는 스페이서(410)를 더 포함하여 이루어진다.Referring to FIG. 9 , the composite thermal insulation device for a fluid tank according to another embodiment of the present invention further includes an external vacuum jacket 400 provided to surround the outer surface of the vacuum jacket 300 , and the vacuum jacket 300 ) and the external vacuum jacket 400 are interposed between the vacuum jacket 300 and the external vacuum jacket 400 to separate the vacuum jacket 300 and the external vacuum jacket 400 by a certain distance, and a spacer 410 provided to withstand the vacuum pressure of the spaced space. is done
이때, 진공자켓(300)과 외부진공자켓(400)은 각각의 배기관으로 연결되어 독립된 진공공간을 가지도록 형성되는 것이 바람직하다.At this time, it is preferable that the vacuum jacket 300 and the external vacuum jacket 400 are connected to each exhaust pipe to have an independent vacuum space.
이를 위해, 진공자켓(300) 내부의 진공압을 제어하기 위한 진공펌프(510), 배기관(520) 및 제어밸브(530)와, 외부진공자켓(400) 내부의 진공압을 제어하기 위한 외부진공펌프(610), 외부배기관(620) 및 외부제어밸브(630)를 별도로 형성하는 것이 바람직하다.To this end, a vacuum pump 510 , an exhaust pipe 520 , and a control valve 530 for controlling the vacuum pressure inside the vacuum jacket 300 , and an external vacuum for controlling the vacuum pressure inside the outer vacuum jacket 400 . It is preferable to separately form the pump 610 , the external exhaust pipe 620 , and the external control valve 630 .
외부진공자켓(400)은 진공자켓(300)의 진공이 유실될 시에, 일정기간 동안 진공 상태를 유지함으로써, 화물의 운송 기간 동안의 안정성을 유지할 수 있도록 할 수 있다.When the vacuum of the vacuum jacket 300 is lost, the external vacuum jacket 400 maintains a vacuum state for a certain period of time, thereby maintaining stability during the transportation period of the cargo.
이렇듯 본 발명의 실시예들에 따른 유체탱크의 복합단열장치는 탱크본체의 외피와 진공자켓 사이에 구성하는 단열층을 기계적 강건성이 높은 단열재와 열전도도가 낮은 단열재로 서로 다른 단열재질로 구성하여 단열성능을 높이면서도 구조적 강성도 높일 수 있다.As such, in the composite thermal insulation device of a fluid tank according to embodiments of the present invention, the thermal insulation layer formed between the outer skin of the tank body and the vacuum jacket is made of different thermal insulation materials with high mechanical robustness and low thermal conductivity to improve thermal insulation performance. Structural rigidity can be increased while increasing.
또한, 기계적 강건성이 높은 단열재를 기본 골격을 형성하면서 내부에 열전도도가 낮은 단열재를 다양한 구조로 채움으로써 사용목적 및 환경에 따라 유연하게 단열층을 시공할 수 있다.In addition, the insulation layer can be flexibly constructed according to the purpose of use and the environment by filling the insulation with low thermal conductivity in various structures while forming the basic skeleton of the insulation material with high mechanical robustness.
이상에서 설명된 본 발명의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해해야 한다.The embodiments of the present invention described above are merely exemplary, and those of ordinary skill in the art to which the present invention pertains will appreciate that various modifications and equivalent other embodiments are possible therefrom. Therefore, it will be well understood that the present invention is not limited to the form mentioned in the above detailed description. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims. It is also to be understood that the present invention covers all modifications, equivalents and substitutions falling within the spirit and scope of the invention as defined by the appended claims.

Claims (9)

  1. 유체를 저장하는 탱크본체;Tank body for storing the fluid;
    서로 다른 단열재질의 제1단열재 및 제2단열재로 이중구조를 형성하고, 상기 탱크본체의 외피를 감싸는 단열층; 및a heat insulating layer forming a double structure with first and second heat insulating materials of different heat insulating materials, and enclosing the outer skin of the tank body; and
    내부를 진공으로 유지하여 외부와의 기밀을 유지하도록 상기 단열층을 감싸는 진공자켓; 을a vacuum jacket surrounding the heat insulating layer to maintain airtightness with the outside by maintaining the inside in a vacuum; second
    포함하는 유체탱크의 복합단열장치.Composite insulation device of the fluid tank, including.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 단열층은,The insulating layer is
    상기 제1단열재와 상기 제2단열재를 상기 외피와 상기 진공자켓을 모두 접하면서 일정한 간격으로 서로 교차하여 배치하는 유체탱크의 복합단열장치.A composite insulation device for a fluid tank in which the first insulation material and the second insulation material are disposed to cross each other at regular intervals while in contact with the outer shell and the vacuum jacket.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 단열층은,The insulating layer is
    상기 제1단열재로 구성하되 내부에 상기 외피와 상기 진공자켓 사이를 연통하는 수직통로와 상기 수직통로를 가로지르는 수평통로를 형성하고, 상기 수직통로와 수평통로는 상기 제2단열재로 채워지는 유체탱크의 복합단열장치.A fluid tank composed of the first insulating material, and forming a vertical passage communicating between the outer skin and the vacuum jacket inside and a horizontal passage crossing the vertical passage, and the vertical passage and the horizontal passage are filled with the second insulation material of composite insulation.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 단열층은,The insulating layer is
    상기 제1단열재는 상기 외피와 상기 진공자켓을 모두 접하되 내부에 공간을 가지는 지지구조를 형성하고, 상기 제2단열재는 상기 제1단열재의 내부 공간을 채우는 유체탱크의 복합단열장치.The first insulating material is in contact with both the outer shell and the vacuum jacket, but forms a support structure having a space therein, and the second insulating material is a composite thermal insulation device for a fluid tank that fills the inner space of the first insulating material.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 단열층은,The insulating layer is
    상기 제1단열재로 구성하되, 상기 제1단열재 내부에 상기 제2단열재를 소정의 두께로 채우는 유체탱크의 복합단열장치.A composite insulation device for a fluid tank composed of the first insulation material and filling the inside of the first insulation material with the second insulation material to a predetermined thickness.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 단열층은,The insulating layer is
    상기 제1단열재를 상기 외피와 상기 진공자켓을 모두 접하도록 구성하되 내부에 다수의 구멍을 형성하고, 상기 구멍에 상기 제2단열재를 채우는 유체탱크의 복합단열장치.A composite thermal insulation device for a fluid tank in which the first insulating material is configured to be in contact with both the outer shell and the vacuum jacket, a plurality of holes are formed therein, and the second insulating material is filled in the holes.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 진공자켓은,The vacuum jacket is
    상기 단열층의 외면을 감싸며 서로 이격된 평판으로 이루어지는 평활부와,A smooth part surrounding the outer surface of the heat insulating layer and made of a flat plate spaced apart from each other;
    상기 평활부 사이를 연결하되, 신축 가능한 재질로 형성하는 변형성이음부를 포함하는 유체탱크의 복합단열장치.A composite insulation device for a fluid tank including a deformable joint that connects between the smooth parts and is formed of a stretchable material.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 진공자켓의 외부를 감싸는 외부진공자켓을 더 포함하는 유체탱크의 복합단열장치.A composite thermal insulation device for a fluid tank further comprising an external vacuum jacket surrounding the outside of the vacuum jacket.
  9. 제 8 항에 있어서,9. The method of claim 8,
    상기 진공자켓과 상기 외부진공자켓은,The vacuum jacket and the external vacuum jacket,
    사이에 스페이서를 개재하여 서로 독립된 진공공간을 가지는 유체탱크의 복합단열장치.A composite insulation device for a fluid tank having an independent vacuum space with a spacer interposed therebetween.
PCT/KR2021/016851 2020-11-20 2021-11-17 Composite thermal insulation apparatus for fluid tank WO2022108322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200156148A KR102426395B1 (en) 2020-11-20 2020-11-20 Insulation Apparatus For Fluid Tank
KR10-2020-0156148 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022108322A1 true WO2022108322A1 (en) 2022-05-27

Family

ID=81709352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016851 WO2022108322A1 (en) 2020-11-20 2021-11-17 Composite thermal insulation apparatus for fluid tank

Country Status (2)

Country Link
KR (1) KR102426395B1 (en)
WO (1) WO2022108322A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130126293A (en) * 2012-05-11 2013-11-20 대우조선해양 주식회사 Dual structure of storing container for liquefied natural gas
KR101580912B1 (en) * 2013-12-30 2015-12-29 삼성중공업 주식회사 Insulation panel structure of cargo for liquefied gas
KR101865673B1 (en) * 2018-02-08 2018-07-04 정태영 Non-foam polyurethane type insulation and structural components, and insulation cargo tank of low temperature using the same
KR20190109829A (en) * 2018-03-19 2019-09-27 대우조선해양 주식회사 Insulation box structure for liquefied natural gas storage tank with composite insulation and method of manufacturing the same
WO2020179956A1 (en) * 2019-03-07 2020-09-10 한국과학기술원 Vacuum heat-insulation device for low-temperature tank

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160035261A (en) * 2014-09-23 2016-03-31 대우조선해양 주식회사 Insulation System for Independent Type Liquified Natural Gas Storage Tank
FR3050008B1 (en) 2016-04-11 2018-04-27 Gaztransport Et Technigaz WATERPROOF TANK WITH CORRUGATED SEALING MEMBRANES

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130126293A (en) * 2012-05-11 2013-11-20 대우조선해양 주식회사 Dual structure of storing container for liquefied natural gas
KR101580912B1 (en) * 2013-12-30 2015-12-29 삼성중공업 주식회사 Insulation panel structure of cargo for liquefied gas
KR101865673B1 (en) * 2018-02-08 2018-07-04 정태영 Non-foam polyurethane type insulation and structural components, and insulation cargo tank of low temperature using the same
KR20190109829A (en) * 2018-03-19 2019-09-27 대우조선해양 주식회사 Insulation box structure for liquefied natural gas storage tank with composite insulation and method of manufacturing the same
WO2020179956A1 (en) * 2019-03-07 2020-09-10 한국과학기술원 Vacuum heat-insulation device for low-temperature tank

Also Published As

Publication number Publication date
KR20220069228A (en) 2022-05-27
KR102426395B9 (en) 2023-04-12
KR102426395B1 (en) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2017073858A1 (en) Liquefied gas storage tank and manufacturing method therefor
WO2011108850A2 (en) Grooved type of vacuum thermal insulation material and a production method for the same
WO2011016698A4 (en) Vacuum insulation member, refrigerator having vacuum insulation member, and method for fabricating vacuum insulation member
WO2020179956A1 (en) Vacuum heat-insulation device for low-temperature tank
EP2462393A2 (en) Vacuum insulation member, registrator having vacuum insulation member, and method for fabricating vacuum insulation member
WO2011016695A2 (en) Vacuum insulation member, registrator having vacuum insulation member, and method for fabricating vacuum insulation member
US9520612B2 (en) Fuel cell
WO2013089359A1 (en) Structure for mounting pump tower of lng storage tank and manufacturing method thereof
WO2022108322A1 (en) Composite thermal insulation apparatus for fluid tank
US3935957A (en) Insulation for double walled cryogenic storage tank
WO2020050534A1 (en) Hexagonal column-shaped battery cell, manufacturing method therefor, and battery module comprising same
TW201431169A (en) A fuel cell system hot box insulation
WO2019124628A1 (en) Device for fixing liquefied cargo storage tank and method therefor
JP7228715B2 (en) Battery pack with pressure management system including compensation device
WO2016003213A1 (en) Liquefied natural gas storage tank and insulating wall securing device for liquefied natural gas storage tank
WO2012036419A2 (en) The structure for insulation of storage tank and its construction method
JP7332712B2 (en) Battery module containing asymmetric cell electrical connections
JPH03181695A (en) Heat insulating device
WO2020214388A2 (en) Battery pack with thermal management system
WO2021196033A1 (en) Battery structure
ITTO990256A1 (en) CONTAINMENT AND THERMAL DISSIPATION STRUCTURE FOR EQUIPMENT IN AN AERONAUTICAL OR SPACE VEHICLE
WO2018231004A1 (en) Large cryogenic storage tank having insulation layer formed thereon
WO2015174615A1 (en) Cargo tank system
KR20230118604A (en) Energy Storage Prefabricated Warehouses and Energy Storage Systems
WO2017018699A1 (en) Cryogenic liquid storage tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21895090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21895090

Country of ref document: EP

Kind code of ref document: A1