WO2024111984A1 - Steel material having low manganese content and method of manufacturing same - Google Patents

Steel material having low manganese content and method of manufacturing same Download PDF

Info

Publication number
WO2024111984A1
WO2024111984A1 PCT/KR2023/018346 KR2023018346W WO2024111984A1 WO 2024111984 A1 WO2024111984 A1 WO 2024111984A1 KR 2023018346 W KR2023018346 W KR 2023018346W WO 2024111984 A1 WO2024111984 A1 WO 2024111984A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
excluding
present
low manganese
Prior art date
Application number
PCT/KR2023/018346
Other languages
French (fr)
Korean (ko)
Inventor
유승호
신동엽
편진기
조남영
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2024111984A1 publication Critical patent/WO2024111984A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to general structural steels and their manufacturing methods that are widely used throughout the industry, and more specifically, to steels and their manufacturing methods used in industrial machinery, construction, and various parts materials.
  • General structural steel with a yield strength of 235 MPa and a tensile strength of 400 MPa is the most representative general purpose material and is widely used not only domestically but also overseas.
  • general structural steels are widely used in the industrial machinery and parts materials industry, which require structures that can be bolted without welding, simple shapes, and a normal level of dimensional accuracy.
  • Patent Document 1 Japanese Patent Publication No. 2005-301241
  • a general structural steel plate that satisfies the yield strength (YS) of 235 MPa or more and the tensile strength (TS) of 400 MPa or more, and can innovatively reduce the manufacturing cost by adding a very low manganese content, and a manufacturing method thereof. We would like to provide.
  • the object of the present invention is not limited to the above-described content.
  • anyone skilled in the art to which the present invention pertains will have no difficulty in understanding the additional problems of the present invention from the overall content of the present invention specification.
  • One aspect of the present invention is,
  • a low manganese steel that satisfies the following equations 1 and 2 and has a thickness of 40 mm or less.
  • the low manganese steel may include 70 to 90% ferrite and 10 to 30% pearlite in terms of area percent as a microstructure.
  • the low manganese steel may have a yield strength of 235 MPa or more and a tensile strength of 400 MPa or more.
  • the low manganese steel may have an elongation of 30% or more.
  • the average grain size of the ferrite may be 30 to 50 ⁇ m.
  • Another aspect of the present invention is,
  • It provides a method for manufacturing low manganese steel, including.
  • descaling can be performed to minimize the thickness of the surface scale layer by spraying high-pressure water of 100 bar or more on the surface of the steel sheet.
  • the manufacturing cost can be innovatively reduced by adding a very low manganese content (can be reduced by more than 50% compared to the existing product).
  • General structural thick plate steel and its manufacturing method can be provided.
  • Figure 1 shows a photograph taken with an optical microscope of the cross section of a steel material obtained from Inventive Example 7 of the present invention.
  • the present inventors have conducted extensive research and experiments in an attempt to reduce innovative manufacturing costs on general structural steel with a yield strength of 235 MPa or more and a tensile strength of 400 MPa or more that are widely used around the world.
  • Mn manganese
  • the manufacturing cost-saving general structural thick plate low manganese steel according to the present invention has, in weight percent, carbon (C): 0.15 to 0.25%, silicon (Si): 0.05 to 0.5%, manganese (Mn): 0.15% or less ( 0% excluded), Phosphorus (P): 0.03% or less (0% excluded), Sulfur (S): 0.01% or less (0% excluded), Aluminum (Al): 0.05% or less (0% excluded) , the balance contains Fe and other inevitable impurities.
  • Carbon (C) is the most effective element that can secure the strength of steel, and must be added in an appropriate amount to secure strength above a certain level without a separate cooling process after hot rolling. In order to sufficiently secure the above-mentioned effects, it is desirable to add C at 0.15% or more. However, if the C content exceeds 0.25%, not only may the toughness of the steel deteriorate excessively, but there is a problem that cracks may occur during reheating. Therefore, in the present invention, it is preferable to control the C content to 0.15 to 0.25%. Meanwhile, in terms of further improving the above-described effect, the lower limit of the C content may be 0.21%, 0.215%, or the upper limit of the C content may be 0.245%.
  • Si is effective in deoxidation during the steelmaking process, but is a major element that combines with oxygen at high temperatures to create scale on the surface of steel.
  • the Si content exceeds 0.3%, not only will the surface scale of the final product become excessively thick, but it may also cause defects such as indentation flaws, which is undesirable. Therefore, in the present invention, it is preferable to control the Si content to 0.05 to 0.5%. Meanwhile, in terms of further improving the above-mentioned effect, more preferably, the lower limit of the Si content may be 0.10%, or the upper limit of the Si content may be 0.30%.
  • Manganese (Mn) is a representative hardenability element that suppresses the formation of ferrite and improves the strength of steel by effectively increasing hardenability by lowering the Ar3 temperature. Mn preferentially combines with S in molten steel to suppress the formation of iron pyrite (FeS 2 ), which makes grain boundaries vulnerable during hot rolling.
  • FeS 2 iron pyrite
  • Mn content is controlled to 0.15% or less.
  • the upper limit of the Mn content may be 0.134%.
  • the present invention is a technology that intentionally does not add Mn, one of the five major elements of steel, or limits it as much as possible in order to reduce manufacturing costs.
  • the lower the Mn content the more desirable it is, so the lower limit is set separately. It is not limited.
  • the lower limit of the Mn content excludes 0% (i.e., exceeds 0%), and more preferably, the lower limit of the Mn content is 0.03%. You can.
  • Phosphorus (P) is an element that is inevitably contained in steel, and is an element that inhibits the toughness of steel. Therefore, in order to prevent deterioration of the toughness of steel, it is desirable to control the content of P as low as possible to 0.03% or less, but excluding 0% in consideration of the unavoidable content level. Meanwhile, to further improve the above-described effect, the upper limit of the P content may be 0.015%.
  • S Sulfur
  • the upper limit of the S content may be 0.005%.
  • Aluminum (Al) is a deoxidizing agent for steel and is an effective element in lowering the oxygen content in molten steel. If the Al content exceeds 0.05%, it is undesirable because the cleanliness of the steel is impaired. Therefore, in the present invention, it is preferable to control the Al content to 0.05% or less, and 0% is excluded in consideration of the increase in load and manufacturing cost during the steelmaking process. Meanwhile, in terms of further improving the above-mentioned effect, preferably, the upper limit of the Al content may be 0.03%, or the lower limit of the Al content may be 0.01%.
  • the value of [C]/[Mn] defined in relational equation 1 is 1.5 or less, the Mn content is relatively large, which may be advantageous in securing strength, but as a result, the manufacturing cost increases and price competitiveness is weakened. Accordingly, in the present invention, it was confirmed that by controlling the value of [C]/[Mn] to exceed 1.5, the desired level of strength can be secured and the manufacturing cost can be dramatically reduced. Meanwhile, in terms of improving the above-described effects, the value of [C]/[Mn] may preferably be 1.6 or more, and more preferably 1.61 or more.
  • the upper limit values of alloy elements of Cr, Mo, Cu, and Ni need to be managed so as to satisfy the following relational equation 2 in order to reduce manufacturing costs.
  • the value of [Cr] + [Mo] + [Cu] + [Ni] defined in equation 2 above is 0.05 or more, it can be determined that the corresponding element was intentionally added to the molten steel. In this case, a value much larger than the actual standard guarantee lower limit can be obtained, which may be advantageous in securing strength, but there is a problem in that the elongation is less than the target value or the manufacturing cost is increased as a result, resulting in poor price competitiveness. Meanwhile, in terms of improving the above-described effect, more preferably, the value of [Cr] + [Mo] + [Cu] + [Ni] can be set to 0.045 or less, and most preferably can be set to 0.042 or less. there is.
  • At least one of Cr, Mo, Cu and Ni is inevitably included, at least one of Cr, Mo, Cu and Ni is 0 It may be included in excess of %. Or, according to another aspect, Cr, Mo, Cu, and Ni may all exist in amounts exceeding 0% in the steel material.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • unintended impurities may inevitably be mixed due to raw materials or environmental variables, so this cannot be ruled out. Since these impurities are known to anyone skilled in the normal steel manufacturing process, all of them are not specifically mentioned in this specification.
  • the microstructure of the above-described low manganese steel is preferably composed of a dual phase structure of ferrite and pearlite.
  • YS yield strength
  • TS tensile strength
  • the low manganese steel may include ferrite: 70 to 90% and pearlite: 10 to 30% as a microstructure and area percent.
  • ferrite 70 to 90%
  • pearlite 10 to 30% as a microstructure and area percent.
  • the microstructures if ferrite is less than 70%, pearlite increases relatively according to the lever rule, which is advantageous in increasing strength, but may cause problems with ductility or deterioration.
  • ferrite exceeds 90% of the microstructure, ductility is good, but yield strength and tensile strength may not reach the target lower limit.
  • the average grain size of the ferrite may be 30 to 50 ⁇ m. If the average grain size of the ferrite is less than 30 ⁇ m, it is advantageous to increase strength, but ductility may deteriorate. On the other hand, if the average grain size of the ferrite exceeds 50 ⁇ m, ductility is excellent, but the yield strength may not reach the target lower limit.
  • the above-mentioned low manganese steel is limited to thick plates (hot rolled steel plates) with a thickness of 40 mm or less.
  • Heavy plate steel for general structures is used in industrial sites in a wide variety of thicknesses, from 6 mm to extremely thick materials exceeding 100 mm.
  • the slab is hot-rolled at an appropriate temperature. Due to the nature of inexpensive general structural steel, it is air-cooled after hot rolling without separate water cooling, so the physical properties such as strength of the product are determined only by the composition and rolling amount. becomes dependent on In other words, when slabs of the same composition are hot rolled at the same temperature, the thinner the thickness, the relatively greater amount of strain accumulated inside the material, increasing the strength, and vice versa, the strength decreases.
  • the thickness of the low manganese steel is limited to 40 mm or less. Meanwhile, there is no separate limitation on the minimum thickness, but as an example considering the fact that it is used as a general structural thick plate, the lower limit of the thickness may be 6 mm.
  • the low manganese steel has a yield strength (YS) of 235 MPa or more (preferably 235 MPa or more and 300 MPa or less), and/or a tensile strength (TS) of 400 MPa or more (preferably is 400 MPa or more and 500 MPa or less), and/or the elongation (El) is 30% or more (preferably 30% or more and 40% or less, more preferably 30% or more and 35% or less).
  • Yield strength (YS) of 235 MPa or more preferably 235 MPa or more and 300 MPa or less
  • TS tensile strength
  • El elongation
  • it can be used as a general structural steel in various industrial fields, so it is not particularly limited, but can be used particularly suitably as a floor plate.
  • the manufacturing method of low manganese steel according to the present invention does not necessarily mean that it must be manufactured by the following manufacturing method.
  • a steel slab meeting the above-mentioned composition is reheated at 1050-1180°C.
  • the explanation for the composition of the steel described above applies equally to the reason for adding each component and the reason for limiting the content.
  • the reheating temperature of the steel slab is performed at 1050 to 1180°C.
  • the lower limit of the reheating temperature may be 1100°C
  • the upper limit of the reheating temperature may be 1150°C.
  • the reheated steel slab is subjected to rough rolling at 950 to 1050°C.
  • the rough rolling temperature is less than 950°C, the rolling load increases and the pressure is relatively weak, so that the strain is not sufficiently transmitted to the center of the slab in the thickness direction, and there is a risk that defects such as voids may not be removed.
  • the rough rolling temperature exceeds 1050°C, recrystallization occurs simultaneously with rolling and then grains grow, and there is a risk that the initial austenite grains become excessively coarse. More preferably, in terms of improving the above-mentioned effect, the lower limit of the rough rolling temperature may be 970°C, or the upper limit of the rough rolling temperature may be 1030°C.
  • the rough-rolled slab is hot-rolled at a temperature range of 800 to 950° C. to manufacture a hot-rolled steel sheet with a thickness of 40 mm or less.
  • the finishing temperature of the hot rolling is less than 800°C, there is a risk that the microstructure may become non-homogeneous due to dual-phase reverse rolling, and the rolling shape is deteriorated, leading to a problem of poor sheetability.
  • the rolling temperature is too low, the energy value accumulated inside the material increases, which has the effect of refining the particles, but the productivity is relatively low, making it unsuitable for mass production.
  • the finishing temperature of the hot rolling exceeds 950°C, there is an advantage in that rolling productivity increases and plateability improves, but the driving force is large enough to allow ferrite grains to grow while the sheet is cooled to room temperature after the end of rolling, resulting in yield strength. And there is a risk that the tensile strength may become inferior. More preferably, in terms of improving the above-mentioned effect, the lower limit of the finishing temperature of the hot rolling may be 820°C, or the upper limit of the finishing temperature of the hot rolling may be 941°C.
  • de-scaling is performed to minimize the surface scale layer thickness by spraying high-pressure water on the surface of the steel sheet during the above-described hot rolling.
  • This is a process applied during hot rolling of thick steel plates.
  • high-pressure water is sprayed directly on the surface of the steel plate, it is different from accelerated cooling, which intentionally cools the center of the material, and is manufactured as-rolled. There is no problem in applying it to general structural steel. Since the greater the pressure of the sprayed water, the better the scale removal effect, the pressure of the high-pressure water applied to descaling in the present invention is not particularly limited. However, if the lower limit of the pressure of the sprayed water is at least 100 bar or more, there will be no problem in removing scale generated within the rolling temperature range described above.
  • air cooling may be performed on the obtained hot rolled steel sheet, and at this time, the average cooling rate may be 1 to 55°C/s.
  • the hot rolled steel sheet of the present invention manufactured as described above may be a thick steel sheet having a thickness of 40 mm or less. This is because, in the case of thick steel plates exceeding 40 mm in thickness, it may be difficult to secure a yield strength of 235 MPa or more through ordinary hot rolling alone.
  • the amount of reduction accumulated to the final thickness is sufficiently large without being greatly affected by the thickness of the slab used during hot rolling, so austenite can be effectively refined in a high temperature region. , As a result, it is possible to secure the target room temperature yield strength and tensile strength. Therefore, in the present invention, taking this into consideration, it is more preferable to set the thickness of the low-cost general structural thick steel plate to a range of 40 mm or less.
  • FIG. 1 a microstructure photograph of the cross section of the steel material obtained from Inventive Example 7 taken with an optical microscope is shown in Figure 1.
  • Inventive Example 7 unlike the comparative examples described later, both yield strength and tensile strength were satisfied, and not only was the Mn content extremely low at less than 0.10%, but the total content of Cr, Mo, Cu, and Ni was also the lowest. , it was confirmed that manufacturing costs could be dramatically reduced.
  • invention examples 1 to 7 in terms of area%, it has a microstructure containing 70 to 90% ferrite and 10 to 30% pearlite, and the average grain size of ferrite satisfies the range of 30 to 50 ⁇ m. Confirmed. In addition, in the case of invention examples 1 to 7, it was confirmed that compared to the comparative examples, it was possible to secure the desired yield strength, tensile strength and elongation, and the manufacturing cost was very low in the range of 0.75 to 1, resulting in a cost reduction effect. .
  • Comparative Examples 1 to 9 where the alloy composition was outside the scope of the present invention, the desired properties could not be obtained. Specifically, in Comparative Examples 1 to 3, one or more characteristics of yield strength and tensile strength fell below the standard value. In addition, Comparative Examples 4 to 9 required excessive amounts of Cr and Mn to secure the desired yield strength and tensile strength, and the manufacturing cost was too high, ranging from 2.08 to 2.42.
  • Comparative Example 10 was a case where the finishing temperature of hot rolling was excessively high, and strength decreased due to coarse grain size.
  • Comparative Example 11 the thickness of the final product was too thick, the strain energy accumulated inside the material was too low, and the particle refinement effect was insufficient, resulting in insufficient strength.
  • Comparative Examples 12 and 13 did not meet the carbon content and/or manganese content specified in the present invention and did not satisfy relational expression 2, so it was confirmed that cost reduction was not possible due to insufficient elongation and high manufacturing cost. did.
  • Comparative Example 14 satisfies the relational equations 1 and 2 and the manufacturing conditions specified in the present invention, the carbon content suggested in the present invention is insufficient, and the yield strength and tensile strength fall below the standard values.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention relates to a steel material for general structures which is widely used throughout the industry and a method of manufacturing same, and more specifically, relates to a steel material used for industrial machines, construction, and various materials for parts, and a method of manufacturing same.

Description

저망간 강재 및 이의 제조방법Low manganese steel and its manufacturing method
본 발명은 산업 전반에 걸쳐 광범위하게 사용되는 일반구조용 강재 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 산업 기계, 건설 및 각종 부품 소재 등에 사용되는 강재 및 이의 제조방법에 관한 것이다.The present invention relates to general structural steels and their manufacturing methods that are widely used throughout the industry, and more specifically, to steels and their manufacturing methods used in industrial machinery, construction, and various parts materials.
항복강도 235MPa 및 인장강도 400MPa급 일반구조용 강재는, 가장 대표적인 범용재로서 국내는 물론 해외에서까지 널리 사용되고 있다. 특히, 일반구조용 강재는, 기본적으로 용접을 실시하지 않고 볼트로 체결이 가능한 구조물 및 형상이 복잡하지 않고 통상 수준의 치수 정확도를 요구하는 산업기계 및 부품 소재 산업 분야에서 매우 광범위하게 사용되고 있다.General structural steel with a yield strength of 235 MPa and a tensile strength of 400 MPa is the most representative general purpose material and is widely used not only domestically but also overseas. In particular, general structural steels are widely used in the industrial machinery and parts materials industry, which require structures that can be bolted without welding, simple shapes, and a normal level of dimensional accuracy.
이러한 일반구조용 강재는, 통상 국가별 해당 규격을 제정하여 이를 만족하는 제품을 각 철강사별로 제조하여 시중에 판매하고 있다. 가장 대표적인 일반구조용 강재의 규격으로는 일본의 JIS, 미국의 ASTM, 대한민국의 KS를 들 수 있다. 통상 강재 제조사는 이러한 규격 내 성분 및 재질과 같은 품질 보증 범위 보다 다소 엄격하게 제품을 생산 및 관리한다. 다만, 해당 규격에 명기 또는 보증하지 않는 항목의 경우 생산 및 판매에 제약을 받지는 않는다. 예를 들어, JIS 규격의 일반구조용 강재인 SS (Steel Structure)의 경우에는, 용접성 관련 보증 항목이 없어 규격 내 C 및 Mn과 같은 합금원소의 첨가 함량 제한이 없다. 반면, 용접구조용 일반강재인 SM(Steel for Marine)의 경우에는, 합금 원소뿐만 아니라, 탄소 당량(Ceq.)과 용접균열 감수성 지수(Pcm.) 값의 상한 값을 명시하여, SS재와의 기능적 차별성을 분명히 하고 있다.For these general structural steels, standards are established for each country, and products that meet these standards are manufactured and sold on the market by each steel company. The most representative standards for general structural steel include Japan's JIS, America's ASTM, and Korea's KS. Typically, steel manufacturers produce and manage their products somewhat more strictly than the quality assurance range, such as ingredients and materials, within these standards. However, there are no restrictions on production and sales of items that are not specified or guaranteed in the relevant standards. For example, in the case of SS (Steel Structure), a general structural steel according to the JIS standard, there are no guarantee items related to weldability, so there are no restrictions on the addition content of alloying elements such as C and Mn within the standard. On the other hand, in the case of SM (Steel for Marine), a general steel for welded structures, not only the alloy elements but also the upper limits of carbon equivalent (Ceq.) and weld crack susceptibility index (Pcm.) are specified to ensure functional differentiation from SS materials. is making it clear.
(특허문헌 1) 일본 공개특허 제2005-301241호(Patent Document 1) Japanese Patent Publication No. 2005-301241
(특허문헌 2) 일본 공개특허 제2008-067400호(Patent Document 2) Japanese Patent Publication No. 2008-067400
본 발명의 일 측면에 따르면, 항복강도(YS) 235MPa 이상 및 인장강도(TS) 400MPa 이상을 충족하면서도, 망간 함량을 매우 낮게 첨가하여 제조 원가를 혁신적으로 낮출 수 있는 일반구조용 후판 강재 및 이의 제조방법을 제공하고자 한다.According to one aspect of the present invention, a general structural steel plate that satisfies the yield strength (YS) of 235 MPa or more and the tensile strength (TS) of 400 MPa or more, and can innovatively reduce the manufacturing cost by adding a very low manganese content, and a manufacturing method thereof. We would like to provide.
본 발명의 과제는 전술한 내용에 한정하지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 본 발명 명세서 전반에 걸친 내용으로부터 본 발명의 추가적인 과제를 이해하는 데 어려움이 없을 것이다.The object of the present invention is not limited to the above-described content. Anyone skilled in the art to which the present invention pertains will have no difficulty in understanding the additional problems of the present invention from the overall content of the present invention specification.
본 발명의 일 측면은, One aspect of the present invention is,
중량%로, 탄소(C): 0.15~0.25%, 실리콘(Si): 0.05~0.5%, 망간(Mn): 0.15% 이하(0%는 제외), 인(P): 0.03% 이하(0%는 제외), 황(S): 0.01% 이하(0%는 제외), 알루미늄(Al): 0.05% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고,In weight percent, carbon (C): 0.15-0.25%, silicon (Si): 0.05-0.5%, manganese (Mn): 0.15% or less (excluding 0%), phosphorus (P): 0.03% or less (0%) (excluding), sulfur (S): 0.01% or less (excluding 0%), aluminum (Al): 0.05% or less (excluding 0%), including the balance Fe and other inevitable impurities,
페라이트와 펄라이트의 이상(dual phase) 조직으로 구성되고,It is composed of a dual phase structure of ferrite and pearlite,
하기 관계식 1 및 2를 만족하며, 두께가 40㎜ 이하인, 저망간 강재를 제공한다.Provided is a low manganese steel that satisfies the following equations 1 and 2 and has a thickness of 40 mm or less.
[관계식 1][Relationship 1]
[C]/[Mn] > 1.5[C]/[Mn] > 1.5
(상기 관계식 1에 있어서, [C] 및 [Mn]는 각각 괄호 안의 원소에 대한 중량% 함량을 나타낸다.)(In Equation 1 above, [C] and [Mn] each represent the weight percent content of the elements in parentheses.)
[관계식 2][Relational Expression 2]
[Cr] + [Mo] + [Cu] + [Ni] < 0.05[Cr] + [Mo] + [Cu] + [Ni] < 0.05
(상기 관계식 2에 있어서, [Cr], [Mo], [Cu] 및 [Ni]은 각각 괄호 안의 원소에 대한 중량% 함량을 나타낸다.)(In Equation 2 above, [Cr], [Mo], [Cu], and [Ni] each represent the weight percent content of the elements in parentheses.)
상기 저망간 강재는 미세조직으로서, 면적%로, 페라이트: 70~90%, 및 펄라이트: 10~30%를 포함할 수 있다.The low manganese steel may include 70 to 90% ferrite and 10 to 30% pearlite in terms of area percent as a microstructure.
상기 저망간 강재는 항복강도가 235MPa 이상이고, 인장강도가 400MPa 이상일 수 있다. The low manganese steel may have a yield strength of 235 MPa or more and a tensile strength of 400 MPa or more.
상기 저망간 강재는 연신율이 30% 이상일 수 있다. The low manganese steel may have an elongation of 30% or more.
상기 페라이트의 평균 결정립 크기는 30~50㎛일 수 있다. The average grain size of the ferrite may be 30 to 50 μm.
본 발명의 다른 측면은, Another aspect of the present invention is,
중량%로, 탄소(C): 0.15~0.25%, 실리콘(Si): 0.05~0.5%, 망간(Mn): 0.15% 이하(0%는 제외), 인(P): 0.03% 이하(0%는 제외), 황(S): 0.01% 이하(0%는 제외), 알루미늄(Al): 0.05% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식 1 및 2를 만족하는 강 슬라브를 1050~1180℃에서 재가열하는 단계; In weight percent, carbon (C): 0.15-0.25%, silicon (Si): 0.05-0.5%, manganese (Mn): 0.15% or less (excluding 0%), phosphorus (P): 0.03% or less (0%) (excluding 0%), sulfur (S): 0.01% or less (excluding 0%), aluminum (Al): 0.05% or less (excluding 0%), including the balance Fe and other inevitable impurities, and the following equations 1 and 2 Reheating the satisfactory steel slab at 1050-1180°C;
상기 재가열된 강 슬라브를 950~1050℃에서 조압연하는 단계; 및Rough rolling the reheated steel slab at 950 to 1050°C; and
상기 조압연된 슬라브를 800~950℃에서 열간 압연함으로써 두께가 40㎜ 이하인 열연 강판을 얻는단계;Obtaining a hot-rolled steel sheet with a thickness of 40 mm or less by hot-rolling the rough-rolled slab at 800 to 950 ° C.;
를 포함하는, 저망간 강재의 제조방법을 제공한다.It provides a method for manufacturing low manganese steel, including.
[관계식 1][Relational Expression 1]
[C]/[Mn] > 1.5[C]/[Mn] > 1.5
(상기 관계식 1에 있어서, [C] 및 [Mn]는 각각 괄호 안의 원소에 대한 중량% 함량을 나타낸다.)(In Equation 1 above, [C] and [Mn] each represent the weight percent content of the elements in parentheses.)
[관계식 2][Relational Expression 2]
[Cr] + [Mo] + [Cu] + [Ni] < 0.05[Cr] + [Mo] + [Cu] + [Ni] < 0.05
(상기 관계식 2에 있어서, [Cr], [Mo], [Cu] 및 [Ni]은 각각 괄호 안의 원소에 대한 중량% 함량을 나타낸다.)(In Equation 2 above, [Cr], [Mo], [Cu], and [Ni] each represent the weight percent content of the elements in parentheses.)
상기 열간 압연 중에, 강판 표면에 100 bar 이상의 고압수를 분사함으로써 표면 스케일층 두께가 최소가 되도록 디스케일링을 실시할 수 있다.During the hot rolling, descaling can be performed to minimize the thickness of the surface scale layer by spraying high-pressure water of 100 bar or more on the surface of the steel sheet.
본 발명의 일 측면에 따르면, 항복강도(YS) 235MPa 이상 및 인장강도(TS) 400MPa 이상을 충족하면서도, 망간 함량을 매우 낮게 첨가하여 제조 원가를 혁신적으로 낮출 수 있는(기존 대비 50% 이상 절감 가능한) 일반구조용 후판 강재 및 이의 제조방법을 제공할 수 있다.According to one aspect of the present invention, while meeting the yield strength (YS) of 235 MPa or more and the tensile strength (TS) of 400 MPa or more, the manufacturing cost can be innovatively reduced by adding a very low manganese content (can be reduced by more than 50% compared to the existing product). ) General structural thick plate steel and its manufacturing method can be provided.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않고, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.The various and beneficial advantages and effects of the present invention are not limited to the above-described content, and may be more easily understood through description of specific embodiments of the present invention.
도 1은 본 발명의 발명예 7로부터 얻어지는 강재의 단면을 광학 현미경으로 촬영한 사진을 나타낸 것이다.Figure 1 shows a photograph taken with an optical microscope of the cross section of a steel material obtained from Inventive Example 7 of the present invention.
이하, 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있고, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Additionally, the embodiments of the present invention are provided to more completely explain the present invention to those with average knowledge in the relevant technical field.
한편, 본 명세서에서 사용되는 용어는 특정 실시예를 설명하기 위한 것이고, 본 발명을 한정하는 것을 의도하지 않는다. 예를 들어, 본 명세서에서 사용되는 단수 형태들은 관련 정의가 이와 명백히 반대되는 의미를 나타내지 않는 한 복수 형태들도 포함한다. 또한, 명세서에서 사용되는 "포함하는"의 의미는 구성을 구체화하고, 다른 구성의 존재나 부가를 제외하는 것이 아니다.Meanwhile, the terms used in this specification are for describing specific embodiments and are not intended to limit the present invention. For example, as used herein, singular forms include plural forms unless the relevant definition clearly indicates the contrary. Additionally, the meaning of “including” used in the specification is to specify a configuration and not to exclude the presence or addition of another configuration.
본 발명자들은 전 세계에서 범용으로 사용되고 있는 항복강도 235MPa 이상 및 인장강도 400MPa 이상의 일반구조용 강에 혁신적인 제조 원가의 절감을 시도하고자 예의 연구 및 실험을 거듭하였다. 그 결과, 철강의 5대 원소 중 하나인 망간(Mn)을 의도적으로 첨가하지 않거나, 극력 제한함과 동시에, C, Si의 첨가량을 조절함으로써 JIS, ASTM 등 국제 규격 내 보증 항목을 충족할 수 있음을 확인하고, 본 발명을 완성하였다.The present inventors have conducted extensive research and experiments in an attempt to reduce innovative manufacturing costs on general structural steel with a yield strength of 235 MPa or more and a tensile strength of 400 MPa or more that are widely used around the world. As a result, by not intentionally adding manganese (Mn), one of the five major elements of steel, or limiting it as much as possible, while controlling the amount of C and Si added, it is possible to meet the guarantee items within international standards such as JIS and ASTM. was confirmed, and the present invention was completed.
이러한 본 발명에 따른 제조 원가 절감형 일반구조용 후판 저망간 강재는, 중량%로, 탄소(C): 0.15~0.25%, 실리콘(Si): 0.05~0.5%, 망간(Mn): 0.15% 이하(0%는 제외), 인(P): 0.03% 이하(0%는 제외), 황(S): 0.01% 이하(0%는 제외), 알루미늄(Al): 0.05% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함한다. The manufacturing cost-saving general structural thick plate low manganese steel according to the present invention has, in weight percent, carbon (C): 0.15 to 0.25%, silicon (Si): 0.05 to 0.5%, manganese (Mn): 0.15% or less ( 0% excluded), Phosphorus (P): 0.03% or less (0% excluded), Sulfur (S): 0.01% or less (0% excluded), Aluminum (Al): 0.05% or less (0% excluded) , the balance contains Fe and other inevitable impurities.
이하에서는 본 발명에 따른 저망간 강재의 성분 첨가 이유와 함량 한정 이유에 대하여 구체적으로 설명한다. 이 때, 본 명세서에서 각 원소의 함량을 나타낼 때에는 특별히 달리 정하지 않는 한, 중량%를 나타낸다.Hereinafter, the reason for adding components and limiting the content of the low manganese steel according to the present invention will be explained in detail. At this time, when indicating the content of each element in this specification, unless otherwise specified, it indicates weight%.
탄소(C): 0.15~0.25%Carbon (C): 0.15-0.25%
탄소(C)는 강의 강도를 확보할 수 있는 가장 유효한 원소로서 열간압연 후 별도의 냉각 과정을 거치지 않고서도 일정 수준 이상의 강도 확보를 위해서는 적정량을 첨가해야만 한다. 전술한 효과를 충분히 확보하기 위해서는 C를 0.15% 이상으로 첨가하는 것이 바람직하다. 다만, 만일 C의 함량이 0.25%를 초과하면, 강의 인성이 지나치게 나빠질 수 있을 뿐만 아니라, 재가열 시 크랙이 발생할 수 있는 문제가 있다. 따라서, 본 발명에서는 상기 C의 함량을 0.15~0.25%로 제어하는 것이 바람직하다. 한편, 전술한 효과를 보다 개선하는 측면에서, 상기 C 함량의 하한은 0.21%이거나, 0.215%일 수 있고, 혹은 상기 C 함량의 상한은 0.245%일 수 있다.Carbon (C) is the most effective element that can secure the strength of steel, and must be added in an appropriate amount to secure strength above a certain level without a separate cooling process after hot rolling. In order to sufficiently secure the above-mentioned effects, it is desirable to add C at 0.15% or more. However, if the C content exceeds 0.25%, not only may the toughness of the steel deteriorate excessively, but there is a problem that cracks may occur during reheating. Therefore, in the present invention, it is preferable to control the C content to 0.15 to 0.25%. Meanwhile, in terms of further improving the above-described effect, the lower limit of the C content may be 0.21%, 0.215%, or the upper limit of the C content may be 0.245%.
실리콘(Si): 0.05~0.5%Silicon (Si): 0.05~0.5%
실리콘(Si)은 제강 공정 중 탈산에 유효하나 고온에서 산소와 결합하여 강의 표면에 스케일을 생성시키게 되는 주요 원소이다. 탈산 효과와 함께, 가열 및 열간압연 동안에 생성되는 스케일을 제어를 위해서는 Si를 0.05% 이상 첨가하는 것이 바람직하다. 다만, Si의 함량이 0.3%를 초과하면, 최종 제품의 표면 스케일이 지나치게 두꺼워질 뿐만 아니라, 압입흠과 같은 결함을 유발할 수 있어 바람직하지 못하다. 따라서, 본 발명에서는 상기 Si 함량을 0.05~0.5%로 제어하는 것이 바람직하다. 한편, 전술한 효과를 보다 개선하는 측면에서 보다 바람직하게는, 상기 Si 함량의 하한은 0.10%일 수 있고, 혹은 상기 Si 함량의 상한은 0.30%일 수 있다.Silicon (Si) is effective in deoxidation during the steelmaking process, but is a major element that combines with oxygen at high temperatures to create scale on the surface of steel. In addition to the deoxidation effect, it is preferable to add 0.05% or more of Si to control scale generated during heating and hot rolling. However, if the Si content exceeds 0.3%, not only will the surface scale of the final product become excessively thick, but it may also cause defects such as indentation flaws, which is undesirable. Therefore, in the present invention, it is preferable to control the Si content to 0.05 to 0.5%. Meanwhile, in terms of further improving the above-mentioned effect, more preferably, the lower limit of the Si content may be 0.10%, or the upper limit of the Si content may be 0.30%.
망간(Mn): 0.15% 이하(0%는 제외)Manganese (Mn): 0.15% or less (excluding 0%)
망간(Mn)은 대표적인 경화능 원소로서 페라이트 생성을 억제하고, Ar3 온도를 낮춤으로써 소입성을 효과적으로 상승시켜 강의 강도를 향상시키는 원소이다. Mn은 용강 중 S와 우선 결합하여 열간압연 중 입계를 취약하게 만드는 황철석(Iron pyrite, FeS2)의 생성을 억제한다. 그러나, 망간(Mn)은 일반구조용 강재의 제조원가의 상당한 비중을 차지하고 있으므로, 필요 이상 첨가 시 제품의 가격경쟁력을 저하시키게 된다. 따라서, 본 발명에서는 인장강도 400MPa 이상을 확보 가능하면서도 제조원가를 획기적으로 절감하기 위해, 상기 Mn의 함량을 0.15% 이하로 제어한다. 다만, 전술한 효과를 보다 개선하는 측면에서 바람직하게는, 상기 Mn 함량의 상한은 0.134%일 수 있다. 한편, 본 발명은 혁신적인 제조 원가의 절감을 위하여, 철강의 5대 원소 중 하나인 Mn을 의도적으로 첨가하지 않거나, 극력 제한하는 기술로서, 본 발명에서는 Mn 함량이 적을수록 바람직하므로, 그 하한을 별도로 한정하지 않는다. 다만, Mn을 의도적으로 첨가하지 않더라도 필수적으로 존재할 수 밖에 없는 점을 감안하여, Mn 함량의 하한은 0%를 제외(즉, 0% 초과)하고, 보다 바람직하게 상기 Mn 함량의 하한은 0.03%일 수 있다.Manganese (Mn) is a representative hardenability element that suppresses the formation of ferrite and improves the strength of steel by effectively increasing hardenability by lowering the Ar3 temperature. Mn preferentially combines with S in molten steel to suppress the formation of iron pyrite (FeS 2 ), which makes grain boundaries vulnerable during hot rolling. However, since manganese (Mn) accounts for a significant portion of the manufacturing cost of general structural steel, adding more than necessary reduces the price competitiveness of the product. Therefore, in the present invention, in order to secure a tensile strength of 400 MPa or more and dramatically reduce manufacturing costs, the Mn content is controlled to 0.15% or less. However, in terms of further improving the above-mentioned effect, preferably, the upper limit of the Mn content may be 0.134%. Meanwhile, the present invention is a technology that intentionally does not add Mn, one of the five major elements of steel, or limits it as much as possible in order to reduce manufacturing costs. In the present invention, the lower the Mn content, the more desirable it is, so the lower limit is set separately. It is not limited. However, considering the fact that Mn is inevitably present even if it is not intentionally added, the lower limit of the Mn content excludes 0% (i.e., exceeds 0%), and more preferably, the lower limit of the Mn content is 0.03%. You can.
인(P): 0.03% 이하(0%는 제외)Phosphorus (P): 0.03% or less (excluding 0%)
인(P)은 강 중 불가피하게 함유되는 원소이면서, 강의 인성을 저해하는 원소이다. 따라서, 강의 인성 저해를 방지하기 위해 상기 P의 함량을 가능한 한 낮추어서 0.03% 이하로 제어하는 것이 바람직하며, 다만 불가피하게 함유되는 수준을 고려하여 0%는 제외한다. 한편, 전술한 효과를 보다 개선하는 바람직하게는, 상기 P 함량의 상한은 0.015%일 수 있다.Phosphorus (P) is an element that is inevitably contained in steel, and is an element that inhibits the toughness of steel. Therefore, in order to prevent deterioration of the toughness of steel, it is desirable to control the content of P as low as possible to 0.03% or less, but excluding 0% in consideration of the unavoidable content level. Meanwhile, to further improve the above-described effect, the upper limit of the P content may be 0.015%.
황(S): 0.01% 이하(0%는 제외)Sulfur (S): 0.01% or less (excluding 0%)
황(S)은 강 중 MnS 개재물을 형성하여 강의 인성을 저해하는 원소이다. 따라서, 상기 S의 함량을 가능한 한 낮추어서 0.01% 이하로 제어하는 것이 바람직하며, 다만 불가피하게 함유되는 수준을 고려하여 0%는 제외한다. 한편, 전술한 효과를 보다 개선하는 측면에서 바람직하게는, 상기 S 함량의 상한은 0.005%일 수 있다.Sulfur (S) is an element that inhibits the toughness of steel by forming MnS inclusions in steel. Therefore, it is desirable to control the S content as low as possible to 0.01% or less, but considering the unavoidable content level, 0% is excluded. Meanwhile, in terms of further improving the above-mentioned effect, preferably, the upper limit of the S content may be 0.005%.
알루미늄(Al): 0.05% 이하(0%는 제외)Aluminum (Al): 0.05% or less (excluding 0%)
알루미늄(Al)은 강의 탈산제로서 용강 중에 산소 함량을 낮추는데 효과적인 원소이다. 이러한 Al의 함량이 0.05%를 초과하면, 강의 청정성이 저해되는 문제가 있으므로 바람직하지 못하다. 따라서, 본 발명에서는 상기 Al의 함량을 0.05% 이하로 제어하는 것이 바람직하며, 제강 공정 시 부하 및 제조비용의 상승 등을 고려하여 0%는 제외한다. 한편, 전술한 효과를 보다 개선하는 측면에서 바람직하게는, 상기 Al 함량의 상한은 0.03%일 수 있고, 혹은 상기 Al 함량의 하한은 0.01%일 수 있다.Aluminum (Al) is a deoxidizing agent for steel and is an effective element in lowering the oxygen content in molten steel. If the Al content exceeds 0.05%, it is undesirable because the cleanliness of the steel is impaired. Therefore, in the present invention, it is preferable to control the Al content to 0.05% or less, and 0% is excluded in consideration of the increase in load and manufacturing cost during the steelmaking process. Meanwhile, in terms of further improving the above-mentioned effect, preferably, the upper limit of the Al content may be 0.03%, or the lower limit of the Al content may be 0.01%.
한편, 본 발명의 일 측면에 따른 저망간 강재는, 제조원가를 절감하면서도 규격 보증 가능한 강도 확보를 위하여, 하기 관계식 1을 충족하도록 C와 Mn의 함량을 제어할 것이 요구된다. Meanwhile, in the low manganese steel according to one aspect of the present invention, it is required to control the contents of C and Mn to satisfy the following relational equation 1 in order to secure strength that can guarantee specifications while reducing manufacturing costs.
[관계식 1][Relationship 1]
[C]/[Mn] > 1.5[C]/[Mn] > 1.5
(상기 관계식 1에 있어서, [C] 및 [Mn]는 각각 괄호 안의 원소에 대한 중량% 함량을 나타낸다.)(In Equation 1 above, [C] and [Mn] each represent the weight percent content of the elements in parentheses.)
상기 관계식 1에서 정의되는 [C]/[Mn]의 값이 1.5 이하이면, 상대적으로 Mn 함량이 커져서 강도 확보에는 유리할 수 있으나, 결과적으로 제조 원가가 높아지게 되어 가격 경쟁력이 약화되는 문제가 있다. 이에, 본 발명에서는 상기 [C]/[Mn]의 값을 1.5 초과로 제어함으로써 목적하는 수준의 강도 확보와 동시에, 제조 원가를 획기적으로 저감할 수 있음을 확인하였다. 한편, 전술한 효과를 개선하는 측면에서 바람직하게는, 상기 [C]/[Mn]의 값을 1.6 이상으로 할 수 있고, 보다 바람직하게는 1.61 이상으로 할 수 있다.If the value of [C]/[Mn] defined in relational equation 1 is 1.5 or less, the Mn content is relatively large, which may be advantageous in securing strength, but as a result, the manufacturing cost increases and price competitiveness is weakened. Accordingly, in the present invention, it was confirmed that by controlling the value of [C]/[Mn] to exceed 1.5, the desired level of strength can be secured and the manufacturing cost can be dramatically reduced. Meanwhile, in terms of improving the above-described effects, the value of [C]/[Mn] may preferably be 1.6 or more, and more preferably 1.61 or more.
또한, 본 발명의 일 측면에 따른 저망간 강재는, 극한의 제조 원가 절감을 위하여, 하기 관계식 2를 충족하도록, Cr, Mo, Cu 및 Ni의 합금 원소 상한 값이 관리가 필요하다. In addition, in the low manganese steel according to one aspect of the present invention, the upper limit values of alloy elements of Cr, Mo, Cu, and Ni need to be managed so as to satisfy the following relational equation 2 in order to reduce manufacturing costs.
[관계식 2][Relational Expression 2]
[Cr] + [Mo] + [Cu] + [Ni] < 0.05[Cr] + [Mo] + [Cu] + [Ni] < 0.05
(상기 관계식 2에 있어서, [Cr], [Mo], [Cu] 및 [Ni]은 각각 괄호 안의 원소에 대한 중량% 함량을 나타낸다.)(In Equation 2 above, [Cr], [Mo], [Cu], and [Ni] each represent the weight percent content of the elements in parentheses.)
만일 상기 관계식 2에서 정의되는 [Cr] + [Mo] + [Cu] + [Ni]의 값이 0.05 이상이면, 의도적으로 해당 원소를 용강 내 첨가한 것으로 판단할 수 있다. 이 경우, 실제 규격 보증 하한 값보다 훨씬 큰 값을 얻게 되어 강도 확보에서는 유리할 수 있으나, 연신율이 목표치에 미달하거나, 결과적으로 제조 원가가 높아지게 되어 가격 경쟁력이 열위한 문제가 있다. 한편, 전술한 효과를 개선하는 측면에서 보다 바람직하게는, 상기 [Cr] + [Mo] + [Cu] + [Ni]의 값을 0.045 이하로 할 수 있고, 가장 바람직하게는 0.042 이하로 할 수 있다.If the value of [Cr] + [Mo] + [Cu] + [Ni] defined in equation 2 above is 0.05 or more, it can be determined that the corresponding element was intentionally added to the molten steel. In this case, a value much larger than the actual standard guarantee lower limit can be obtained, which may be advantageous in securing strength, but there is a problem in that the elongation is less than the target value or the manufacturing cost is increased as a result, resulting in poor price competitiveness. Meanwhile, in terms of improving the above-described effect, more preferably, the value of [Cr] + [Mo] + [Cu] + [Ni] can be set to 0.045 or less, and most preferably can be set to 0.042 or less. there is.
한편, 특별히 한정하는 것은 아니나, 본 발명의 일 측면에 따르면, 상기 Cr, Mo, Cu 및 Ni 중 적어도 하나는 불가피하게 포함되는 점을 감안하여, 상기 Cr, Mo, Cu 및 Ni 중 적어도 하나는 0% 초과로 포함될 수 있다. 혹은, 또 다른 일 측면에 따르면, 상기 Cr, Mo, Cu 및 Ni은 강재 중에, 모두 0% 초과로 존재할 수 있다.Meanwhile, although not particularly limited, according to one aspect of the present invention, considering that at least one of Cr, Mo, Cu and Ni is inevitably included, at least one of Cr, Mo, Cu and Ni is 0 It may be included in excess of %. Or, according to another aspect, Cr, Mo, Cu, and Ni may all exist in amounts exceeding 0% in the steel material.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조 과정에서는 원료나 주위 환경 변수로 인해 의도하지 않은 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 철강 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에, 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is iron (Fe). However, in the normal manufacturing process, unintended impurities may inevitably be mixed due to raw materials or environmental variables, so this cannot be ruled out. Since these impurities are known to anyone skilled in the normal steel manufacturing process, all of them are not specifically mentioned in this specification.
한편, 본 발명의 일 측면에 따르면, 전술한 저망간 강재의 미세조직은, 페라이트와 펄라이트의 이상(dual phase) 조직으로 구성되는 것이 바람직하다. 전술한 미세조직을 충족함으로써, C-Mn계의 as-rolled 제조된 항복강도(YS) 235MPa 이상 및 인장강도(TS) 400MPa 이상 급의 강재를 얻을 수 있다.Meanwhile, according to one aspect of the present invention, the microstructure of the above-described low manganese steel is preferably composed of a dual phase structure of ferrite and pearlite. By meeting the above-mentioned microstructure, it is possible to obtain C-Mn-based as-rolled steel with a yield strength (YS) of 235 MPa or more and a tensile strength (TS) of 400 MPa or more.
한편, 특별히 한정하는 것은 아니나, 본 발명의 일 측면에 따르면, 상기 저망간 강재는 미세조직으로서, 면적%로, 페라이트: 70~90%, 및 펄라이트: 10~30%를 포함할 수 있다. 상기 미세조직 중에, 페라이트가 70% 미만이면 지레 규칙(Lever rule)에 따라 펄라이트가 상대적으로 많아져서 강도 증가에는 유리하나 연성이나 나빠지는 문제가 생길 수 있다. 반면, 상기 미세조직 중에, 페라이트가 90%를 초과하면 연성은 좋으나 항복강도 및 인장강도가 목표로 하는 하한 값에 미치지 못하는 문제가 생길 수 있다. 또한, 상기 미세조직 중에, 펄라이트가 10% 미만이면 전술한 지레 규칙에 따라 페라이트 분율이 지나치게 많아져서 연성에는 유리하나 목표하는 강도 확보가 어려워지는 문제가 생길 수 있다. 반면, 상기 미세조직 중에, 펄라이트가 30%를 초과하면 강도는 증가하나 연성이 현저히 떨어지게 되어 굽힘(Bending) 등 가공성이 악화되는 문제가 생길 수 있다.Meanwhile, although not particularly limited, according to one aspect of the present invention, the low manganese steel may include ferrite: 70 to 90% and pearlite: 10 to 30% as a microstructure and area percent. Among the microstructures, if ferrite is less than 70%, pearlite increases relatively according to the lever rule, which is advantageous in increasing strength, but may cause problems with ductility or deterioration. On the other hand, if ferrite exceeds 90% of the microstructure, ductility is good, but yield strength and tensile strength may not reach the target lower limit. In addition, in the microstructure, if pearlite is less than 10%, the ferrite fraction becomes too large according to the lever rule described above, which may be advantageous for ductility, but may cause a problem in which securing the target strength is difficult. On the other hand, if pearlite exceeds 30% of the microstructure, strength increases, but ductility significantly decreases, which may cause problems such as bending and deterioration of processability.
한편, 특별히 한정하는 것은 아니나, 본 발명의 일 측면에 따르면, 상기 페라이트의 평균 결정립 크기는 30~50㎛일 수 있다. 상기 페라이트의 평균 결정립 크기가 30㎛ 미만이면, 강도 증가에는 유리하나 연성이 나빠지는 문제가 생길 수 있다. 반면, 상기 페라이트의 평균 결정립 크기가 50㎛를 초과하면, 연성은 우수하나 항복강도가 목표로 하는 하한 값에 미치지 못하는 문제가 생길 수 있다.Meanwhile, although not particularly limited, according to one aspect of the present invention, the average grain size of the ferrite may be 30 to 50 μm. If the average grain size of the ferrite is less than 30㎛, it is advantageous to increase strength, but ductility may deteriorate. On the other hand, if the average grain size of the ferrite exceeds 50㎛, ductility is excellent, but the yield strength may not reach the target lower limit.
한편, 저원가형 일반구조용 강재로서, 전술한 저망간 강재는 두께가 40㎜ 이하인 후판(열연강판)으로 제한한다. 일반구조용 후판 강재는 6㎜부터 100㎜를 초과하는 두께의 극후물재까지 매우 다양한 두께군이 산업 현장에서 사용되고 있다. 이 때, 제조사가 최종 제품의 두께를 맞추기 위해서는 슬라브를 적정 온도 하에서 열간압연하게 되는데, 저렴한 일반구조용 강재의 특성상 열간압연 후 별도의 수냉 처리 없이 공냉함으로써 제품의 강도와 같은 물성은 오로지 성분과 압연량에 의존하게 된다. 즉, 동일한 성분의 슬라브를 동일한 온도에서 열간 압연할 경우, 두께가 얇을수록 상대적으로 소재 내부에 축적되는 변형량이 커지게 되어 강도가 증가하고, 그 반대의 경우는 강도가 떨어지게 된다.Meanwhile, as a low-cost general structural steel, the above-mentioned low manganese steel is limited to thick plates (hot rolled steel plates) with a thickness of 40 mm or less. Heavy plate steel for general structures is used in industrial sites in a wide variety of thicknesses, from 6 mm to extremely thick materials exceeding 100 mm. At this time, in order for the manufacturer to match the thickness of the final product, the slab is hot-rolled at an appropriate temperature. Due to the nature of inexpensive general structural steel, it is air-cooled after hot rolling without separate water cooling, so the physical properties such as strength of the product are determined only by the composition and rolling amount. becomes dependent on In other words, when slabs of the same composition are hot rolled at the same temperature, the thinner the thickness, the relatively greater amount of strain accumulated inside the material, increasing the strength, and vice versa, the strength decreases.
따라서, 본 발명에서는 강재의 내부에 축적되는 총 변형량을 감안하여 목적하는 수준의 강도 확보가 가능하면서도 저원가형 일반구조용 강재로서, 저망간 강재의 두께를 40㎜ 이하로 제한한다. 한편, 최소 두께에 대해서는 별도로 한정을 하진 않으나, 일반구조용 후판으로 사용되는 점을 감안한 일례로서 두께의 하한은 6㎜일 수 있다.Therefore, in the present invention, it is possible to secure the desired level of strength in consideration of the total amount of deformation accumulated inside the steel, and as a low-cost general structural steel, the thickness of the low manganese steel is limited to 40 mm or less. Meanwhile, there is no separate limitation on the minimum thickness, but as an example considering the fact that it is used as a general structural thick plate, the lower limit of the thickness may be 6 mm.
또한, 본 발명의 일 측면에 따르면, 상기 저망간 강재는 항복 강도(YS)가 235MPa 이상(바람직하게는 235MPa 이상 300MPa 이하)를 충족하고, 및/또는 인장 강도(TS)가 400MPa 이상(바람직하게는 400MPa 이상 500 MPa 이하)를 충족하며, 및/또는 연신율(El)이 30% 이상(바람직하게는 30% 이상 40% 이하, 보다 바람직하게는 30% 이상 35% 이하)을 충족한다. 이를 충족함으로써, 다양한 산업 분야에서 일반구조용 강으로서 사용 가능하므로 특별히 한정하는 것은 아니나, 깔판(Floor plate) 용도로서 특히 적합하게 사용할 수 있다. In addition, according to one aspect of the present invention, the low manganese steel has a yield strength (YS) of 235 MPa or more (preferably 235 MPa or more and 300 MPa or less), and/or a tensile strength (TS) of 400 MPa or more (preferably is 400 MPa or more and 500 MPa or less), and/or the elongation (El) is 30% or more (preferably 30% or more and 40% or less, more preferably 30% or more and 35% or less). By meeting this requirement, it can be used as a general structural steel in various industrial fields, so it is not particularly limited, but can be used particularly suitably as a floor plate.
이하, 본 발명에 따른 저망간 강재의 제조방법에 대하여 상세히 설명한다. 다만, 본 발명에 따른 저망간 강재의 제조방법이 반드시 이하의 제조방법에 의해 제조되어야 함을 의미하는 것은 아니다.Hereinafter, the method for manufacturing low manganese steel according to the present invention will be described in detail. However, the manufacturing method of low manganese steel according to the present invention does not necessarily mean that it must be manufactured by the following manufacturing method.
슬라브의 재가열 단계Reheating stages of slabs
먼저, 전술한 조성을 충족하는 강 슬라브를 1050~1180℃에서 재가열한다. 이 때, 강 슬라브의 조성에 있어서, 각 성분의 첨가 이유 및 함량 한정 이유에 대해서는 전술한 강재의 조성에 대한 설명을 동일하게 적용한다. First, a steel slab meeting the above-mentioned composition is reheated at 1050-1180°C. At this time, in the composition of the steel slab, the explanation for the composition of the steel described above applies equally to the reason for adding each component and the reason for limiting the content.
한편, 상기 강 슬라브의 재가열 온도가 1050℃ 미만이면 주조 조직을 역변태 시켜 완전한 오스테나이트화 할 수 없게 된다. 반면, 상기 강 슬라브의 재가열 온도가 1180℃ 초과하면 오스테나이트 결정립이 지나치게 조대화되어 불균일한 조직이 형성될 우려가 있다. 뿐만 아니라, 가열로 내에서 스케일이 지나치게 성장함에 따라 열간 압연 전 완전히 제거되지 않을 우려가 있다. 따라서, 본 발명에서는 상기 강 슬라브의 재가열 온도는 1050~1180℃에서 수행되는 것이 바람직하다. 전술한 효과를 보다 개선하는 측면에서 보다 바람직하게는, 상기 재가열 온도의 하한은 1100℃일 수 있고, 상기 재가열 온도의 상한은 1150℃일 수 있다.On the other hand, if the reheating temperature of the steel slab is less than 1050°C, the casting structure undergoes reverse transformation and complete austenitization cannot be achieved. On the other hand, if the reheating temperature of the steel slab exceeds 1180°C, there is a risk that the austenite grains will become excessively coarse and an uneven structure may be formed. In addition, as scale grows excessively in the heating furnace, there is a risk that it may not be completely removed before hot rolling. Therefore, in the present invention, it is preferable that the reheating temperature of the steel slab is performed at 1050 to 1180°C. In terms of further improving the above-mentioned effect, more preferably, the lower limit of the reheating temperature may be 1100°C, and the upper limit of the reheating temperature may be 1150°C.
조압연 단계Rough rolling stage
이어서, 상기 재가열된 강 슬라브를 950~1050℃에서 조압연을 실시한다. 상기 조압연 온도가 950℃ 미만이면, 압연 하중이 증가하여 상대적으로 약압하 됨으로써 슬라브 두께 방향 중심까지 변형이 충분히 전달되지 못하여 공극과 같은 결함이 제거되지 않을 우려가 있다. 반면, 상기 조압연 온도가 1050℃를 초과하면, 압연과 동시에 재결정이 일어난 후 입자가 성장하게 되어, 초기 오스테나이트 입자가 지나치게 조대해질 우려가 있다. 전술한 효과를 개선하는 측면에서 보다 바람직하게는, 상기 조압연 온도의 하한은 970℃일 수 있고, 혹은 상기 조압연 온도의 상한은 1030℃일 수 있다.Subsequently, the reheated steel slab is subjected to rough rolling at 950 to 1050°C. If the rough rolling temperature is less than 950°C, the rolling load increases and the pressure is relatively weak, so that the strain is not sufficiently transmitted to the center of the slab in the thickness direction, and there is a risk that defects such as voids may not be removed. On the other hand, if the rough rolling temperature exceeds 1050°C, recrystallization occurs simultaneously with rolling and then grains grow, and there is a risk that the initial austenite grains become excessively coarse. More preferably, in terms of improving the above-mentioned effect, the lower limit of the rough rolling temperature may be 970°C, or the upper limit of the rough rolling temperature may be 1030°C.
열간 압연 단계hot rolling stage
이어서, 상기 조압연된 슬라브를 800~950℃의 온도범위에서 열간 압연함으로써 두께가 40㎜ 이하인 열연강판을 제조한다. 상기 열간압연의 마무리 온도가 800℃ 미만이면, 통상적으로 이상(dual phase)역 압연이 되어 미세조직이 불균질하게 될 우려가 있을 뿐만 아니라, 압연 형상이 열위해져 통판성이 나빠지는 문제가 있다. 강도 입장에서는 압연 온도가 지나치게 낮으면 소재 내부에 축적되는 에너지 값이 커져 입자 미세화 효과는 있으나 상대적으로 생산성이 떨어져 대량 생산에 적합하지 않다. 반면, 상기 열간압연의 마무리 온도가 950℃를 초과하게 되면 압연 생산성이 높아지고 통판성도 좋아지는 이점은 있으나, 압연 종료 후 상온까지 판재가 냉각되는 동안 페라이트 결정립이 성장할 수 있을 정도로 구동력이 커서 결과적으로 항복 강도 및 인장 강도가 열위해질 우려가 있다. 전술한 효과를 개선하는 측면에서 보다 바람직하게는, 상기 열간 압연의 마무리 온도의 하한은 820℃일 수 있고, 혹은 상기 열간 압연의 마무리 온도의 상한은 941℃일 수 있다.Next, the rough-rolled slab is hot-rolled at a temperature range of 800 to 950° C. to manufacture a hot-rolled steel sheet with a thickness of 40 mm or less. If the finishing temperature of the hot rolling is less than 800°C, there is a risk that the microstructure may become non-homogeneous due to dual-phase reverse rolling, and the rolling shape is deteriorated, leading to a problem of poor sheetability. From a strength standpoint, if the rolling temperature is too low, the energy value accumulated inside the material increases, which has the effect of refining the particles, but the productivity is relatively low, making it unsuitable for mass production. On the other hand, when the finishing temperature of the hot rolling exceeds 950°C, there is an advantage in that rolling productivity increases and plateability improves, but the driving force is large enough to allow ferrite grains to grow while the sheet is cooled to room temperature after the end of rolling, resulting in yield strength. And there is a risk that the tensile strength may become inferior. More preferably, in terms of improving the above-mentioned effect, the lower limit of the finishing temperature of the hot rolling may be 820°C, or the upper limit of the finishing temperature of the hot rolling may be 941°C.
디스케일링 단계Descaling step
한편, 본 발명에서는 상술한 열간압연 중에 강판 표면에 고압수를 분사함으로써 표면 스케일층 두께가 최소가 되도록 디스케일링(de-scaling)을 실시한다. 이는 후강판의 열간압연 중에 적용하는 공정으로서, 고압수의 물을 강판 표면에 직접 분사하기는 하나, 소재의 중심부까지 의도적으로 냉각시키는 가속 냉각과는 차별되는 것으로서, 공냉(as-rolled) 제조되는 일반구조용 강재에 적용해도 별 무리가 없다. 분사하는 물의 압력이 클수록 스케일 제거 효과는 우수하므로, 본 발명에서 디스케일링에 적용되는 고압수의 압력은 특별히 한정하지 아니한다. 다만, 상기 분사하는 물의 압력의 하한은, 최소 100 bar 이상이면 상기 기술한 압연 온도 영역 내에서 생성되는 스케일 제거에는 무리가 없을 것이다.Meanwhile, in the present invention, de-scaling is performed to minimize the surface scale layer thickness by spraying high-pressure water on the surface of the steel sheet during the above-described hot rolling. This is a process applied during hot rolling of thick steel plates. Although high-pressure water is sprayed directly on the surface of the steel plate, it is different from accelerated cooling, which intentionally cools the center of the material, and is manufactured as-rolled. There is no problem in applying it to general structural steel. Since the greater the pressure of the sprayed water, the better the scale removal effect, the pressure of the high-pressure water applied to descaling in the present invention is not particularly limited. However, if the lower limit of the pressure of the sprayed water is at least 100 bar or more, there will be no problem in removing scale generated within the rolling temperature range described above.
냉각 단계cooling step
한편, 특별히 한정하는 것은 아니나, 상기 열간 압연 이후, 얻어진 열연 강판에 공냉을 수행할 수 있고, 이 때 평균 냉각 속도는 1~55℃/s일 수 있다.Meanwhile, although not particularly limited, after the hot rolling, air cooling may be performed on the obtained hot rolled steel sheet, and at this time, the average cooling rate may be 1 to 55°C/s.
상기와 같이 제조된 본 발명의 열연강판은 40mm 이하의 두께를 갖는 후강판일 수 있다. 왜냐하면 두께 40mm 초과의 후강판의 경우 통상의 열간 압연만으로는 항복강도 235 MPa이상의 강도 확보가 어려울 수 있다.The hot rolled steel sheet of the present invention manufactured as described above may be a thick steel sheet having a thickness of 40 mm or less. This is because, in the case of thick steel plates exceeding 40 mm in thickness, it may be difficult to secure a yield strength of 235 MPa or more through ordinary hot rolling alone.
한편, 일반적으로 40mm 미만의 두께를 갖는 강판의 경우는 열간 압연 시 사용되는 슬라브의 두께에 크게 영향을 받지 않고 최종 두께까지 누적되는 압하량이 충분히 크기 때문에, 고온 영역에서 효과적으로 오스테나이트를 미세화 시킬 수 있으며, 결과적으로 목표로 하는 상온 항복 강도 및 인장 강도의 확보가 가능하다. 따라서, 본 발명에서는 이를 고려하여, 저원가형 일반구조용 후강판의 두께를 40mm 이하의 범위로 함이 보다 바람직하다.Meanwhile, in the case of steel sheets with a thickness of less than 40 mm, the amount of reduction accumulated to the final thickness is sufficiently large without being greatly affected by the thickness of the slab used during hot rolling, so austenite can be effectively refined in a high temperature region. , As a result, it is possible to secure the target room temperature yield strength and tensile strength. Therefore, in the present invention, taking this into consideration, it is more preferable to set the thickness of the low-cost general structural thick steel plate to a range of 40 mm or less.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 예시를 통하여 본 발명을 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에서 유의할 필요가 있다. 본 발명의 권리범위는 특허 청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only for illustrating the present invention by way of example and are not intended to limit the scope of the present invention. This is because the scope of rights of the present invention is determined by matters stated in the patent claims and matters reasonably inferred therefrom.
(실시예)(Example)
하기 표 1의 합금조성을 갖는 강 슬라브를 준비한 후, 상기 강 슬라브에 대하여 하기 표 2의 조건으로 강 슬라브 가열-조압연-열간압연을 실시하였다. 이어서, 얻어진 열연강판을 5℃/s 이하로 냉각하여 최종 후강판을 제조하였다. 한편, 상기 열간압연 중에는, 200 bar의 고압수를 강판 표면에 분사하여 디스케일링을 실시하였다.After preparing a steel slab having the alloy composition shown in Table 1 below, steel slab heating, rough rolling, and hot rolling were performed on the steel slab under the conditions shown in Table 2 below. Subsequently, the obtained hot-rolled steel sheet was cooled to 5°C/s or less to produce a final thick steel sheet. Meanwhile, during the hot rolling, high-pressure water of 200 bar was sprayed on the surface of the steel sheet to descale it.
상기 후강판에 대하여 항복, 인장강도와 연신율을 측정하여 그 결과를 하기 표 3에 나타내었다. 이때, 상기 인장시험은 표점거리 50㎜의 판형 시편을 가공하여 상온에서 3회 시험한 값의 평균이다.Yield, tensile strength, and elongation were measured for the thick steel plate, and the results are shown in Table 3 below. At this time, the tensile test is the average of the values obtained by processing a plate-shaped specimen with a gage length of 50 mm and testing it three times at room temperature.
또한, 비용 절감의 효과를 확인하기 위하여, 각 비교예 및 발명예에서 사용되는 각 성분에 대한 합금원가를 원/톤 단위로 계산하였다. 이 때, 발명강 1을 사용하는 발명예 1~3에 대한 합금원가를 '1'로 정의하였을 때, 상기 발명강 1 대비 상대적인 합금원가를 계산하여 하기 표 3에 나타내었다.In addition, in order to confirm the effect of cost reduction, the alloy cost for each component used in each comparative example and invention example was calculated in won/ton units. At this time, when the alloy cost for Invention Examples 1 to 3 using Invention Steel 1 was defined as '1', the relative alloy cost compared to Invention Steel 1 was calculated and shown in Table 3 below.
구분division 합금조성 [중량%] (잔부 Fe 및 불순물)Alloy composition [weight%] (remaining Fe and impurities) 관계식1Relationship 1 관계식2Relation 2
CC SiSi MnMn PP SS AlAl CrCr NiNi CuCu MoMo
비교강 1Comparison lecture 1 0.1600.160 0.140.14 0.1120.112 0.0160.016 0.0050.005 0.030.03 -- -- -- -- 1.431.43 0.0000.000
비교강 2Comparison lecture 2 0.2140.214 0.180.18 0.2960.296 0.0140.014 0.0070.007 0.020.02 0.320.32 0.0080.008 0.0070.007 0.0040.004 0.700.70 0.3390.339
비교강 3Comparison lecture 3 0.1910.191 0.250.25 0.4800.480 0.0140.014 0.0030.003 0.030.03 0.030.03 0.030.03 0.020.02 0.0040.004 0.400.40 0.0840.084
비교강 4Comparison lecture 4 0.2620.262 1.321.32 0.1600.160 0.0120.012 0.0020.002 0.020.02 0.020.02 0.010.01 0.010.01 0.0030.003 1.641.64 0.0430.043
비교강 5Comparison lecture 5 0.4510.451 0.030.03 0.1290.129 0.0080.008 0.0010.001 0.030.03 0.010.01 -- -- 0.0270.027 3.503.50 0.0370.037
비교강 6Comparative lecture 6 0.0840.084 0.250.25 0.0550.055 0.0150.015 0.0040.004 0.030.03 -- 0.010.01 0.010.01 0.0020.002 1.531.53 0.0220.022
비교강 7Comparison lecture 7 0.2330.233 0.170.17 0.0860.086 0.0090.009 0.0030.003 0.020.02 1.161.16 0.320.32 -- 0.1560.156 2.712.71 1.6361.636
발명강 1Invention lecture 1 0.2160.216 0.230.23 0.1340.134 0.0070.007 0.0040.004 0.020.02 0.020.02 0.010.01 0.010.01 0.0020.002 1.611.61 0.0420.042
발명강 2Invention lecture 2 0.2430.243 0.140.14 0.0930.093 0.0130.013 0.0040.004 0.020.02 0.010.01 0.010.01 0.010.01 0.0020.002 2.612.61 0.0320.032
발명강 3Invention lecture 3 0.2250.225 0.250.25 0.0650.065 0.0110.011 0.0050.005 0.030.03 0.010.01 0.010.01 0.010.01 0.0020.002 3.463.46 0.0320.032
구분division 강종 No.Steel grade No. 슬라브 재가열 온도
[℃]
Slab reheat temperature
[℃]
조압연 온도
[℃]
Rough rolling temperature
[℃]
열간 압연 마무리 온도 [℃]Hot rolling finishing temperature [℃] 두께
[mm]
thickness
[mm]
비교예 1Comparative Example 1 비교강 1Comparison lecture 1 11461146 968968 912912 2020
비교예 2Comparative Example 2 11271127 995995 898898 1515
비교예 3Comparative Example 3 11331133 876876 789789 3030
비교예 4Comparative Example 4 비교강 2Comparison lecture 2 11451145 10431043 900900 1616
비교예 5Comparative Example 5 11601160 967967 915915 1919
비교예 6Comparative Example 6 11241124 985985 932932 2525
비교예 7Comparative Example 7 비교강 3Comparison lecture 3 11431143 10061006 887887 1212
비교예 8Comparative Example 8 11551155 988988 913913 2525
비교예 9Comparative Example 9 11291129 974974 926926 4040
발명예 1Invention Example 1 발명강 1Invention lecture 1 11301130 10291029 899899 4040
발명예 2Invention Example 2 11271127 10111011 897897 2525
발명예 3Invention Example 3 11361136 10251025 906906 1919
발명예 4Invention Example 4 발명강 2Invention lecture 2 11291129 992992 893893 1010
비교예 10Comparative Example 10 11331133 10481048 982982 4040
발명예 5Invention Example 5 11251125 10231023 941941 2525
발명예 6Invention Example 6 발명강 3Invention lecture 3 11261126 10121012 940940 2525
발명예 7Invention Example 7 11231123 987987 906906 4040
비교예 11Comparative Example 11 11341134 961961 920920 8080
비교예 12Comparative Example 12 비교강 4Comparison lecture 4 11171117 996996 912912 2525
비교예 13Comparative Example 13 비교강 5Comparison lecture 5 11411141 10141014 931931 3030
비교예 14Comparative Example 14 비교강 6Comparative lecture 6 11301130 10171017 942942 2525
비교예 15Comparative Example 15 비교강 7Comparison lecture 7 11271127 10221022 925925 2525
구분division 강종 No.Steel grade No. 항복강도
[MPa]
yield strength
[MPa]
인장강도
[MPa]
tensile strength
[MPa]
연신율
[%]
elongation
[%]
비용 비교cost comparison 비고note
비교예 1Comparative Example 1 비교강 1Comparison lecture 1 229229 396396 3131 0.630.63 YS, TS 미달YS, TS insufficient
비교예 2Comparative Example 2 227227 394394 3232 YS, TS 미달YS, TS insufficient
비교예 3Comparative Example 3 232232 400400 3232 YS 미달YS is below
비교예 4Comparative Example 4 비교강 2Comparison lecture 2 293293 437437 3131 2.422.42 제조 비용 높음High manufacturing cost
비교예 5Comparative Example 5 290290 435435 3232
비교예 6Comparative Example 6 288288 434434 3232
비교예 7Comparative Example 7 비교강 3Comparison lecture 3 277277 446446 3232 2.082.08
비교예 8Comparative Example 8 278278 442442 3232
비교예 9Comparative Example 9 275275 439439 3232
발명예 1Invention Example 1 발명강 1Invention lecture 1 268268 431431 3232 1One 비용 저감 가능Cost reduction possible
발명예 2Invention Example 2 263263 428428 3232
발명예 3Invention Example 3 259259 422422 3333
발명예 4Invention Example 4 발명강 2Invention lecture 2 264264 430430 3232 0.750.75
비교예 10Comparative Example 10 228228 411411 3333 YS 미달YS is below
발명예 5Invention Example 5 257257 427427 3232 비용 저감 가능Cost reduction possible
발명예 6Invention Example 6 발명강 3Invention lecture 3 262262 429429 3232 0.940.94
발명예 7Invention Example 7 260260 429429 3232
비교예 11Comparative Example 11 204204 406406 3434 YS 미달YS is below
비교예 12Comparative Example 12 비교강 4Comparison lecture 4 381381 563563 2727 2.662.66 EL 미달Below EL
비교예 13Comparative Example 13 비교강 5Comparison lecture 5 305305 524524 2828 1.031.03 EL 미달Below EL
비교예 14Comparative Example 14 비교강 6Comparative lecture 6 223223 376376 3636 0.880.88 YS,TS미달YS, TS insufficient
비교예 15Comparative Example 15 비교강 7Comparison lecture 7 325325 563563 2323 11.5611.56 EL미달Below EL
상기 표 1 내지 3에 나타난 바와 같이, 본 발명에서 제안하는 합금 조성과 제조 조건을 충족하는 본 발명예 1~7의 경우, 목표로 하는 항복강도, 인장강도 및 연신율을 확보 가능함을 확인하였다. As shown in Tables 1 to 3, it was confirmed that the target yield strength, tensile strength and elongation could be secured in the case of invention examples 1 to 7 that satisfied the alloy composition and manufacturing conditions proposed in the present invention.
특히, 상기 발명예 7로부터 얻어지는 강재의 단면을 광학 현미경으로 촬영한 미세조직 사진을 도 1에 나타내었다. 발명예 7의 경우, 후술하는 비교예들과는 다르게, 항복 강도 및 인장 강도를 모두 만족하였고, Mn의 함량이 0.10% 미만으로 극히 낮을 뿐만 아니라, Cr, Mo, Cu, Ni의 함량 총 값도 가장 적어, 제조 원가를 획기적으로 저감 가능함을 확인하였다.In particular, a microstructure photograph of the cross section of the steel material obtained from Inventive Example 7 taken with an optical microscope is shown in Figure 1. In the case of Inventive Example 7, unlike the comparative examples described later, both yield strength and tensile strength were satisfied, and not only was the Mn content extremely low at less than 0.10%, but the total content of Cr, Mo, Cu, and Ni was also the lowest. , it was confirmed that manufacturing costs could be dramatically reduced.
한편, 발명예 1~7에서는, 면적%로, 페라이트: 70~90%, 및 펄라이트: 10~30%를 포함하는 미세조직을 갖고, 페라이트의 평균 결정립 크기가 30~50㎛ 범위를 충족함을 확인하였다. 또한, 발명예 1~7의 경우, 비교예들에 비하여 목적하는 항복강도, 인장강도 및 연신율의 확보가 가능하면서도, 제조 비용이 0.75~1 범위로 매우 낮아, 원가 절감의 효과가 있음을 확인하였다.On the other hand, in invention examples 1 to 7, in terms of area%, it has a microstructure containing 70 to 90% ferrite and 10 to 30% pearlite, and the average grain size of ferrite satisfies the range of 30 to 50 μm. Confirmed. In addition, in the case of invention examples 1 to 7, it was confirmed that compared to the comparative examples, it was possible to secure the desired yield strength, tensile strength and elongation, and the manufacturing cost was very low in the range of 0.75 to 1, resulting in a cost reduction effect. .
반면, 합금 조성이 본 발명의 범위를 벗어난 비교예 1~9에서는 소망하는 특성을 얻을 수 없었다. 구체적으로, 비교예 1~3은 항복 강도 및 인장 강도 중 하나 이상의 특성이 기준치에 미달하였다. 또한, 비교예 4~9는 목적하는 항복 강도 및 인장 강도를 확보하기 위해서는 Cr 및 Mn 등이 과도하게 필요하여, 제조 원가가 2.08~2.42 범위로 너무 높았다. On the other hand, in Comparative Examples 1 to 9, where the alloy composition was outside the scope of the present invention, the desired properties could not be obtained. Specifically, in Comparative Examples 1 to 3, one or more characteristics of yield strength and tensile strength fell below the standard value. In addition, Comparative Examples 4 to 9 required excessive amounts of Cr and Mn to secure the desired yield strength and tensile strength, and the manufacturing cost was too high, ranging from 2.08 to 2.42.
또한, 합금조성 성분은 본 발명의 범위 내이지만, 제조공정 조건이 본 발명의 범위를 벗어난 비교예 10~11도 항복강도가 기준치에 미달하였다. 구체적으로, 비교예 10은 열간 압연의 마무리 온도가 과도하게 높은 경우로서, 조대한 입도로 인한 강도 저하가 발생하였다. 또한, 비교예 11은 최종 제품의 두께가 두꺼워서, 소재 내부에 축적된 변형 에너지가 지나치게 낮아 입자 미세화 효과가 불충분해 강도가 미달하였다. In addition, although the alloy composition was within the scope of the present invention, the yield strength of Comparative Examples 10 to 11 in which the manufacturing process conditions were outside the scope of the present invention also fell below the standard value. Specifically, Comparative Example 10 was a case where the finishing temperature of hot rolling was excessively high, and strength decreased due to coarse grain size. In addition, in Comparative Example 11, the thickness of the final product was too thick, the strain energy accumulated inside the material was too low, and the particle refinement effect was insufficient, resulting in insufficient strength.
또한, 비교예 12 및 13는, 본 발명에서 규정하는 탄소 함량 및/또는 망간 함량을 충족하지 못하고, 관계식 2를 충족하지 못함으로써, 연신율이 미달하고, 제조 원가가 높아 비용 절감이 불가함을 확인하였다.In addition, Comparative Examples 12 and 13 did not meet the carbon content and/or manganese content specified in the present invention and did not satisfy relational expression 2, so it was confirmed that cost reduction was not possible due to insufficient elongation and high manufacturing cost. did.
비교예 14는 본 발명에서 규정하는 관계식 1 및 2와, 제조 조건을 충족하더라도, 본 발명에서 제안하는 탄소 함량이 부족하여, 항복 강도 및 인장강도가 기준치에 미달하였다.Even though Comparative Example 14 satisfies the relational equations 1 and 2 and the manufacturing conditions specified in the present invention, the carbon content suggested in the present invention is insufficient, and the yield strength and tensile strength fall below the standard values.
비교예 15는 본 발명에서 규정하는 합금 조성과, 제조 조건을 충족하더라도, 관계식 2를 충족하지 못하여, 연신율이 기준치에 미달하였고, 뿐만 아니라 제조 원가도 매우 높아 비용 절감이 불가함을 확인하였다.In Comparative Example 15, it was confirmed that even though the alloy composition and manufacturing conditions specified in the present invention were met, Equation 2 was not satisfied, so the elongation was below the standard value, and the manufacturing cost was also very high, making it impossible to reduce costs.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.As described above, the detailed description of the present invention has described preferred embodiments of the present invention, but those skilled in the art can make various modifications without departing from the scope of the present invention. Of course this is possible. Therefore, the scope of rights of the present invention should not be limited to the described embodiments, but should be determined not only by the claims described later, but also by their equivalents.

Claims (7)

  1. 중량%로, 탄소(C): 0.15~0.25%, 실리콘(Si): 0.05~0.5%, 망간(Mn): 0.15% 이하(0%는 제외), 인(P): 0.03% 이하(0%는 제외), 황(S): 0.01% 이하(0%는 제외), 알루미늄(Al): 0.05% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고,In weight percent, carbon (C): 0.15-0.25%, silicon (Si): 0.05-0.5%, manganese (Mn): 0.15% or less (excluding 0%), phosphorus (P): 0.03% or less (0%) (excluding), sulfur (S): 0.01% or less (excluding 0%), aluminum (Al): 0.05% or less (excluding 0%), including the balance Fe and other inevitable impurities,
    페라이트와 펄라이트의 이상(dual phase) 조직으로 구성되고,It is composed of a dual phase structure of ferrite and pearlite,
    하기 관계식 1 및 2를 만족하며, 두께가 40㎜ 이하인, 저망간 강재.A low manganese steel that satisfies the following equations 1 and 2 and has a thickness of 40 mm or less.
    [관계식 1][Relationship 1]
    [C]/[Mn] > 1.5[C]/[Mn] > 1.5
    (상기 관계식 1에 있어서, [C] 및 [Mn]는 각각 괄호 안의 원소에 대한 중량% 함량을 나타낸다.)(In Equation 1 above, [C] and [Mn] each represent the weight percent content of the elements in parentheses.)
    [관계식 2][Relational Expression 2]
    [Cr] + [Mo] + [Cu] + [Ni] < 0.05[Cr] + [Mo] + [Cu] + [Ni] < 0.05
    (상기 관계식 2에 있어서, [Cr], [Mo], [Cu] 및 [Ni]은 각각 괄호 안의 원소에 대한 중량% 함량을 나타낸다.)(In Equation 2 above, [Cr], [Mo], [Cu], and [Ni] each represent the weight percent content of the elements in parentheses.)
  2. 청구항 1에 있어서,In claim 1,
    미세조직으로서, 면적%로, 페라이트: 70~90%, 및 펄라이트: 10~30%를 포함하는, 저망간 강재.A low manganese steel containing, as a microstructure, by area %, ferrite: 70-90%, and pearlite: 10-30%.
  3. 청구항 1에 있어서,In claim 1,
    항복강도가 235MPa 이상이고, 인장강도가 400MPa 이상인, 저망간 강재.Low manganese steel with a yield strength of 235 MPa or more and a tensile strength of 400 MPa or more.
  4. 청구항 3에 있어서,In claim 3,
    연신율이 30% 이상인, 저망간 강재.Low manganese steel with an elongation of 30% or more.
  5. 청구항 1에 있어서,In claim 1,
    상기 페라이트의 평균 결정립 크기는 30~50㎛인, 저망간 강재.A low manganese steel where the average grain size of the ferrite is 30 to 50 μm.
  6. 중량%로, 탄소(C): 0.15~0.25%, 실리콘(Si): 0.05~0.5%, 망간(Mn): 0.15% 이하(0%는 제외), 인(P): 0.03% 이하(0%는 제외), 황(S): 0.01% 이하(0%는 제외), 알루미늄(Al): 0.05% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식 1 및 2를 만족하는 강 슬라브를 1050~1180℃에서 재가열하는 단계; In weight percent, carbon (C): 0.15-0.25%, silicon (Si): 0.05-0.5%, manganese (Mn): 0.15% or less (excluding 0%), phosphorus (P): 0.03% or less (0%) (excluding 0%), sulfur (S): 0.01% or less (excluding 0%), aluminum (Al): 0.05% or less (excluding 0%), including the balance Fe and other inevitable impurities, and the following equations 1 and 2 Reheating the satisfactory steel slab at 1050-1180°C;
    상기 재가열된 강 슬라브를 950~1050℃에서 조압연하는 단계; 및Rough rolling the reheated steel slab at 950 to 1050°C; and
    상기 조압연된 슬라브를 800~950℃에서 열간 압연함으로써 두께가 40㎜ 이하인 열연 강판을 얻는단계;Obtaining a hot-rolled steel sheet with a thickness of 40 mm or less by hot-rolling the rough-rolled slab at 800 to 950 ° C.;
    를 포함하는, 저망간 강재의 제조방법.Method for manufacturing low manganese steel, including.
    [관계식 1][Relational Expression 1]
    [C]/[Mn] > 1.5[C]/[Mn] > 1.5
    (상기 관계식 1에 있어서, [C] 및 [Mn]는 각각 괄호 안의 원소에 대한 중량% 함량을 나타낸다.)(In the above relational equation 1, [C] and [Mn] each represent the weight percent content of the elements in parentheses.)
    [관계식 2][Relational Expression 2]
    [Cr] + [Mo] + [Cu] + [Ni] < 0.05[Cr] + [Mo] + [Cu] + [Ni] < 0.05
    (상기 관계식 2에 있어서, [Cr], [Mo], [Cu] 및 [Ni]은 각각 괄호 안의 원소에 대한 중량% 함량을 나타낸다.)(In Equation 2 above, [Cr], [Mo], [Cu], and [Ni] each represent the weight percent content of the elements in parentheses.)
  7. 청구항 6에 있어서,In claim 6,
    상기 열간 압연 중에, 강판 표면에 100 bar 이상의 고압수를 분사함으로써 표면 스케일층 두께가 최소가 되도록 디스케일링을 실시하는, 저망간 강재의 제조방법.A method of manufacturing low manganese steel, in which descaling is performed to minimize the thickness of the surface scale layer by spraying high-pressure water of 100 bar or more on the surface of the steel sheet during the hot rolling.
PCT/KR2023/018346 2022-11-24 2023-11-15 Steel material having low manganese content and method of manufacturing same WO2024111984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0159018 2022-11-24
KR1020220159018A KR20240077000A (en) 2022-11-24 2022-11-24 Steel material having extremely low manganeses contents and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2024111984A1 true WO2024111984A1 (en) 2024-05-30

Family

ID=91195991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018346 WO2024111984A1 (en) 2022-11-24 2023-11-15 Steel material having low manganese content and method of manufacturing same

Country Status (2)

Country Link
KR (1) KR20240077000A (en)
WO (1) WO2024111984A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077757A (en) * 2004-01-29 2005-08-03 제이에프이 스틸 가부시키가이샤 High strength steel sheet and method for maufacturing same
JP2007191730A (en) * 2006-01-17 2007-08-02 Nippon Steel Corp Steel for welded structure with excellent seawater corrosion resistance, and corrosion protection method for ship ballast tank using the same
KR20210075692A (en) * 2019-12-13 2021-06-23 주식회사 포스코 Steel having excellent laser cutting properties and method of manufacturing the same
KR20210079482A (en) * 2019-12-19 2021-06-30 주식회사 포스코 Steel sheet having excellent ductility and low-temperature impact toughness and method for manufacturing thereof
KR20220089178A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Steel having excellent laser cutting properties and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301241A (en) 2004-03-16 2005-10-27 Fuji Photo Film Co Ltd Anti-reflection film, its manufacturing method, polarizing plate and image forming apparatus
JP4481326B2 (en) 2007-10-09 2010-06-16 富士通株式会社 Signal transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077757A (en) * 2004-01-29 2005-08-03 제이에프이 스틸 가부시키가이샤 High strength steel sheet and method for maufacturing same
JP2007191730A (en) * 2006-01-17 2007-08-02 Nippon Steel Corp Steel for welded structure with excellent seawater corrosion resistance, and corrosion protection method for ship ballast tank using the same
KR20210075692A (en) * 2019-12-13 2021-06-23 주식회사 포스코 Steel having excellent laser cutting properties and method of manufacturing the same
KR20210079482A (en) * 2019-12-19 2021-06-30 주식회사 포스코 Steel sheet having excellent ductility and low-temperature impact toughness and method for manufacturing thereof
KR20220089178A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Steel having excellent laser cutting properties and method of manufacturing the same

Also Published As

Publication number Publication date
KR20240077000A (en) 2024-05-31

Similar Documents

Publication Publication Date Title
WO2012067379A2 (en) Method for manufacturing high-strength cold-rolled/hot-rolled dp steel having a tensile strength grade of 590 mpa and excellent workability, as well as little deviation in the material properties thereof
WO2018074887A1 (en) High-strength reinforcing steel and method for manufacturing same
WO2012064129A2 (en) Method for manufacturing high-strength cold-rolled/hot-rolled trip steel having a tensile strength of 590 mpa grade, superior workability, and low mechanical-property deviation
WO2009145563A2 (en) Ultra high strength steel sheet with an excellent heat treatment property for hot press forming, quenched member, and manufacturing method for same
WO2018117646A1 (en) Thick steel sheet having excellent cryogenic impact toughness and manufacturing method therefor
WO2015099222A1 (en) Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same
WO2017082687A1 (en) Microalloyed wire having excellent cold workability and manufacturing method therefor
WO2018117614A1 (en) Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same
WO2018117700A1 (en) High-strength high-toughness thick steel sheet and manufacturing method therefor
WO2020022778A1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2021125858A2 (en) Enamel steel sheet and manufacturing method therefor
WO2021112488A1 (en) Thick composite-phase steel having excellent durability and manufacturing method therefor
WO2018110906A1 (en) High-carbon hot-rolled steel sheet having excellent surface quality and manufacturing method therefor
WO2021172604A1 (en) Non-heat treated wire rod with excellent wire drawability and impact toughness and manufacturing method therefor
WO2021117989A1 (en) Cold rolled steel sheet with ultra-high strength, and manufacturing method therefor
WO2019004540A1 (en) Hot-stamped part and method for manufacturing same
WO2013154254A1 (en) High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same
WO2018117650A1 (en) Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same
WO2018117606A1 (en) Hot dip coated steel having excellent processability, and manufacturing method therefor
WO2016105003A1 (en) Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor
WO2023121179A1 (en) Ultrathick steel materials for flange having excellent strength and low temperature impact toughness, and manufacturing method therefor
WO2024111984A1 (en) Steel material having low manganese content and method of manufacturing same
WO2022139205A1 (en) Steel having excellent laser cutting properties and method of manufacturing same
WO2021091140A1 (en) High-strength steel having high yield ratio and excellent durability, and method for producing same