WO2024111661A1 - Film and film formation method - Google Patents

Film and film formation method Download PDF

Info

Publication number
WO2024111661A1
WO2024111661A1 PCT/JP2023/042194 JP2023042194W WO2024111661A1 WO 2024111661 A1 WO2024111661 A1 WO 2024111661A1 JP 2023042194 W JP2023042194 W JP 2023042194W WO 2024111661 A1 WO2024111661 A1 WO 2024111661A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
zinc
alloy
film
powder
Prior art date
Application number
PCT/JP2023/042194
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木弘朗
合田裕一
Original Assignee
株式会社鈴木商店
株式会社ビー・ビー・エム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社鈴木商店, 株式会社ビー・ビー・エム filed Critical 株式会社鈴木商店
Publication of WO2024111661A1 publication Critical patent/WO2024111661A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a coating and a method for forming the coating, for example, a coating having a zinc or zinc alloy coating and a method for forming the coating.
  • Patent Document 1 In order to improve the corrosion resistance of zinc or zinc alloy coatings, it is known to bake a coating containing zinc, aluminum and a silica compound onto the zinc or zinc alloy coating, and then form a porous silica coating on top of that (e.g., Patent Document 1).
  • Patent Document 1 can improve corrosion resistance. However, under harsh conditions, the coating may peel off. This may result in a decrease in corrosion resistance. In this way, when multiple zinc or zinc alloy coatings are laminated, the coatings may peel off.
  • the present invention was developed in consideration of the above problems, and aims to improve the adhesion of coatings that have zinc or zinc alloy coatings.
  • the present invention is a method for forming a coating comprising the steps of forming a second coating, which is a zinc or zinc alloy coating and has an uneven surface, by colliding a plurality of powders containing zinc or a zinc alloy onto the surface of a first coating, which is a zinc or zinc alloy coating formed on a base material, and forming a third coating, which contains zinc or a zinc alloy, on the surface of the second coating.
  • the multiple powders can be configured to include a rigid powder that is harder than the zinc or zinc alloy.
  • the multiple powders may include an alloy containing zinc and iron, or an alloy containing zinc, magnesium, and aluminum.
  • the process of forming the third coating can include a process of applying a solution containing zinc powder and an organosilicon compound to the surface of the second coating, and then performing a heat treatment to form the third coating.
  • the step of forming the third coating can include a step of applying a solution containing zinc powder, aluminum powder, and at least one of alkoxysilane and its hydrolysate to the surface of the second coating, and then performing a heat treatment to form the third coating.
  • the first coating can be a zinc-nickel alloy coating.
  • the above configuration may include a step of forming the first coating on a base material using an electroplating method.
  • the above configuration may include a step of performing a chromate treatment on the surface of the first coating using a solution containing trivalent chromium before the step of forming the second coating.
  • the above configuration may include a step of forming a silica coating on the surface of the third coating.
  • the present invention is a method for forming a coating comprising the steps of forming a first coating, which is a zinc-nickel alloy coating, on a base material using an electroplating method, forming a second coating, which is a zinc alloy coating and has an uneven surface, by colliding a plurality of powders, which include zinc or a zinc alloy and a rigid powder harder than the zinc or zinc alloy, on the surface of the first coating, and applying a solution, which includes zinc powder, aluminum powder, and at least one of an alkoxysilane and a hydrolyzate thereof, to the surface of the second coating, and then heat-treating the solution to form a mixed coating.
  • the present invention is a coating comprising a base material, a first coating which is a zinc or zinc alloy coating formed on the base material, a second coating which is a zinc or zinc alloy coating formed on the surface of the first coating and has a structure in which a plurality of powders containing zinc or a zinc alloy are crushed and bonded together, and has an uneven surface, and a third coating which is formed on the surface of the second coating and contains zinc or a zinc alloy.
  • the first coating is a zinc-nickel alloy coating
  • the multiple powders include an alloy containing zinc and iron, or an alloy containing zinc, magnesium, and aluminum
  • the third coating can be configured to include zinc and aluminum.
  • FIG. 1(a) to 1(e) are cross-sectional views showing a coating formation method according to a first embodiment.
  • 2(a) to 2(c) are cross-sectional views showing a method for forming the second coating in the first embodiment.
  • FIG. 3 is a photograph of the surface of the bolt of Treatment 2 after the vibration test in Comparative Example 2.
  • FIG. 1(a) to 1(e) are cross-sectional views showing a coating formation method according to a first embodiment.
  • a base material 10 is prepared.
  • the base material 10 is, for example, iron (Fe) or an iron alloy, and is, for example, a bolt, a nut, or the like.
  • the iron alloy contains iron at 50 mass% or more.
  • the base material 10 may be a member other than iron or an iron alloy, and may be, for example, a metal material such as copper, aluminum, or an alloy thereof, or a hard resin.
  • a first coating 12 is formed on a base material 10.
  • the first coating 12 is a zinc or zinc alloy coating.
  • the first coating 12 is, for example, a zinc coating, a zinc-nickel alloy coating, a zinc-iron alloy coating, or a zinc-tin alloy coating.
  • the zinc coating does not intentionally contain any elements other than zinc.
  • the zinc content in the zinc alloy coating is, for example, 70 to 99% by mass, and the content of metal elements other than zinc that are intentionally contained is, for example, 1 to 30% by mass.
  • the content of unavoidable metal elements that are not intentionally contained is 1% by mass or less.
  • the zinc content in the zinc-nickel alloy coating is preferably 70% by mass or more and 99% by mass or less, and the nickel content is preferably 1% by mass or more and 30% by mass or less, and more preferably the zinc content is 85% by mass or more and 90% by mass or less, and the nickel content is 10% by mass or more and 15% by mass or less.
  • the zinc-nickel alloy coating may or may not intentionally contain metal elements other than zinc and nickel. The content (mass%) of metal elements other than zinc and nickel contained in the zinc-nickel alloy coating is smaller than the content (mass%) of nickel.
  • the content (mass%) of metal elements other than zinc and nickel contained in the zinc-nickel alloy coating is preferably 1/10 or less of the content (mass%) of nickel, for example, 5 mass% or less, and more preferably 1 mass% or less.
  • the first coating 12 may be formed by electroplating or hot-dip plating. It is preferable to use electroplating in order to control the thickness and form a smooth surface.
  • the plating solution may contain a brightener.
  • the thickness of the first coating 12 is, for example, 1 ⁇ m to 20 ⁇ m, and is, for example, 6 ⁇ m.
  • a chromate treatment may be performed. This forms a chromate film on the first film 12.
  • a treatment liquid containing, for example, trivalent or hexavalent chromium is used to treat the surface of the first film 12.
  • the treatment liquid contains, for example, chromic acid. From the viewpoint of not using hexavalent chromium, which has a large environmental impact, it is preferable that the treatment liquid contains trivalent chromium and contains almost no hexavalent chromium.
  • a passive film containing chromium i.e., a chromate film
  • the thickness of the chromate film is, for example, 0.05 ⁇ m to 1 ⁇ m, and is 0.2 ⁇ m as an example.
  • a second coating 14 is formed on the surface of the first coating 12.
  • Fig. 2(a) to Fig. 2(c) are cross-sectional views showing a method of forming the second coating in embodiment 1.
  • a first coating 12 is formed on a base material 10.
  • the second film 14 is formed on the first film 12 by using a mechanical dry plating method.
  • a plurality of powders 20 are collided with the surface of the first film 12 at room temperature.
  • the powders 20 include, for example, zinc powder or zinc alloy powder.
  • the zinc powder does not intentionally include any elements other than zinc (Zn).
  • the zinc alloy powder includes, for example, 50% by mass or more of zinc and at least one element of iron (Fe), nickel (Ni), aluminum (Al) and magnesium (Mg).
  • One example of the powders 20 is a zinc alloy including 50% by mass or more of zinc and including iron.
  • Another example of the powders 20 is a zinc alloy including 50% by mass or more of zinc and including aluminum and magnesium.
  • the zinc alloy includes 70% by mass or more of zinc.
  • the powders 20 are, for example, spherical, and the particle size of the powders 20 is, for example, 10 ⁇ m or more and 150 ⁇ m or less, for example, 100 ⁇ m or less.
  • the powder 20 is injected into a barrel and centrifugal force generated when the barrel is rotated, or energy other than heat, such as air pressure, is mainly used to project the powder 20 onto the surface of the first coating 12 at high speed.
  • the powder 20 collides with the surface of the first coating 12
  • the powder 20 is crushed by the kinetic energy of the powder 20.
  • the crushed powder 13 adheres to the surface of the first coating 12.
  • the crushed powder 13 are bonded to each other and stacked.
  • the second coating 14 has an interface where the crushed powder 13 are bonded.
  • the upper surface of the second coating 14 becomes uneven because the powder 20 collides with it.
  • the powder 20 is zinc powder
  • the second coating 14 becomes a zinc coating
  • the second coating 14 becomes a zinc alloy coating.
  • the thickness of the second coating 14 is, for example, 0.1 ⁇ m or more and 3 ⁇ m or less, for example, 0.2 ⁇ m or more and 0.5 ⁇ m or less.
  • the powder 20 may have a core harder than zinc or a zinc alloy, and a zinc layer or a zinc alloy layer around the core.
  • the core is, for example, a metal or an insulator, for example, iron or an iron alloy.
  • the preferred composition of the zinc layer or zinc alloy layer is the same as the preferred composition of the zinc powder or zinc alloy powder described above.
  • a plurality of powders 20 and a plurality of shot balls may be collided with the surface of the first coating 12.
  • the shot balls are, for example, a metal or an insulator harder than the powder 20, for example, iron or an iron alloy.
  • the shot balls are, for example, spherical, and the average particle size of the shot balls is, for example, 10 ⁇ m or more and 150 ⁇ m or less, for example, 100 ⁇ m or less.
  • the second coating 14 formed as shown in Figures 2(a) to 2(c) has good adhesion between the second coating 14 and the first coating 12 because the powder 20 collides with the first coating 12.
  • the core or shot ball collides with the surface of the crushed powder 13, so that the crushed powder 13 adheres more firmly to the surface of the first coating 12.
  • a plurality of crushed powders 13 are firmly bonded to each other.
  • the surface of the second coating 14 has greater irregularities.
  • the powder 20 may contain metal powders other than zinc and zinc alloys, such as titanium powder, and ceramic powders, such as aluminum oxide.
  • a third coating 16 containing zinc or a zinc alloy is formed on the surface of the second coating 14.
  • the zinc compound contains zinc and at least one of aluminum, nickel, tin, iron, and magnesium.
  • the third coating 16 may contain a silicon compound in addition to zinc or a zinc alloy.
  • a solvent for the third coating is applied onto the second coating 14 and then heated (baked).
  • the solvent for the third coating contains zinc powder, an organosilicon compound, and a solvent.
  • the solution for the third coating may contain at least one type of metal powder, such as aluminum powder, nickel powder, tin powder, iron powder, and magnesium powder, in addition to zinc powder.
  • the solution for the third coating contains zinc powder and aluminum powder.
  • the shape of the zinc powder and the metal powder may be, for example, spherical or scaly.
  • the powder has a short diameter of, for example, 0.05 ⁇ m to 5 ⁇ m, and a long diameter of, for example, 0.5 ⁇ m to 100 ⁇ m.
  • the zinc powder contains, for example, 90% by mass or more or 99% by mass or more of zinc.
  • the metal powder other than zinc (for example, aluminum powder) contains, for example, 90% by mass or more or 99% by mass or more of a metal element other than zinc (for example, aluminum).
  • the ratio of the mass of zinc powder to the total powder mass of zinc powder and metal powder other than zinc (e.g. aluminum powder) is preferably 50% by mass or more, more preferably 70% by mass or more.
  • the ratio of the mass of metal powder other than zinc (e.g. aluminum) to the total powder mass of zinc powder and metal powder other than zinc (e.g. aluminum powder) is preferably 1% by mass or more, more preferably 5% by mass or more.
  • the organosilicon compound includes, for example, at least one of an alkoxysilane and a hydrolyzate thereof.
  • the alkoxysilane is preferably a tetraalkoxysilane having 3 or less carbon atoms, such as tetramethoxysilane, tetraethoxysilane, or tetrapropoxysilane.
  • the solvent of the third coating solution is, for example, an alcohol, ester, glycol, or ether.
  • the solvent is preferably an alcohol, such as methanol, ethanol, propanol, isopropanol, butanol, hexanol, methoxybutanol, or methoxymethylbutanol.
  • the total content of the zinc powder and metal powder in the third coating solution is, for example, 20 to 60 mass %.
  • the content of the organosilicon compound in the solution is, for example, 5 to 40 mass %.
  • the content of the organic solvent in the third coating solution is, for example, 10 to 60 mass %.
  • the third coating solution is applied to the surface of the second coating 14 by, for example, dipping, spraying, or spin coating.
  • the temperature of the heat treatment after applying the third coating solution is, for example, 100°C to 400°C.
  • the temperature of the heat treatment is equal to or higher than the temperature at which the solvent in the third coating solution evaporates.
  • the heat treatment time is, for example, 10 minutes to 120 minutes.
  • the third coating 16 is formed on the surface of the second coating 14.
  • the thickness of the third coating 16 is, for example, 1 ⁇ m to 20 ⁇ m, and is, for example, 8 ⁇ m.
  • the total content of zinc powder and metal powder other than zinc e.g.
  • aluminum powder) in the third coating 16 is, for example, 70 mass% or more and 95 mass% or less, and the content of silicon compounds is, for example, 5 mass% or more and 30 mass% or less.
  • the ratio of the mass of zinc powder to the total powder mass of zinc powder and metal powder other than zinc (e.g. aluminum powder) is preferably 50% or more, and more preferably 70% or more.
  • the zinc powder content in the third coating 16 is 70% by mass
  • the aluminum powder content is 15% by mass
  • the silicon compound content is 15% by mass.
  • a porous silica film 18 is formed on the third film 16.
  • the porous silica film 18 is formed by applying a silica film solution onto the third film 16 and performing a heat treatment (baking treatment).
  • the silica film solution contains a silicon compound and a solvent.
  • the silicon compound is, for example, at least one of an organosiloxane and a silane coupling agent.
  • the silicon compound may contain an alkali metal silicate.
  • the silica film solution may contain a titanium compound.
  • the titanium compound is, for example, an organic titanate compound.
  • the solvent of the silica film solution is, for example, water, alcohols, esters, glycols, or ethers.
  • the content of the silicon compound in the silica film solution is, for example, 40% by mass or more and 90% by mass or less, and the content of the solvent is, for example, 10% by mass or more and 60% by mass or less.
  • the silica film solution is applied to the surface of the third film 16 by, for example, dipping, spraying, or spin coating.
  • the temperature of the heat treatment after applying the silica film solution is, for example, 100°C to 400°C.
  • the temperature of the heat treatment is equal to or higher than the temperature at which the solvent in the silica film solution evaporates.
  • the heat treatment time is, for example, 10 minutes to 120 minutes.
  • a porous silica film 18 is formed on the surface of the third film 16.
  • the thickness of the silica film 18 is, for example, 0.1 ⁇ m to 10 ⁇ m, and is, for example, 1 ⁇ m.
  • the content of the silicon compound is, for example, 50 mass% or more and 95 mass% or less
  • the content of the titanium compound is, for example, 5 mass% or more and 50 mass% or less
  • the content of the silicon compound and the titanium compound are 75 mass% and 25 mass%, respectively.
  • peeling may occur between the zinc or zinc alloy coating and the mixed coating under harsh conditions.
  • a plurality of powders 20 containing zinc or zinc alloy are collided with the surface of the first coating 12, which is a zinc or zinc alloy coating formed on the base material 10, to form the second coating 14, which is a zinc or zinc alloy coating and has an uneven surface.
  • a third coating 16 containing zinc or zinc alloy is formed on the surface of the second coating 14. The plurality of powders 20 collide with the surface of the first coating 12, so that the first coating 12 and the second coating 14 are firmly bonded to each other.
  • the second coating 14 formed in this manner has a structure in which multiple powder particles 13 containing zinc or a zinc alloy are crushed and bonded to each other, as shown in FIG. 2(c).
  • the multiple powders 20 include rigid powder (nuclei or shot balls) that are harder than zinc or zinc alloy.
  • the rigid powder collides with the zinc or zinc alloy attached to the surface of the first coating 12. This makes the first coating 12 and the second coating 14 more firmly bonded together, and the surface of the second coating 14 becomes more uneven, so that the second coating 14 and the third coating 16 are more firmly bonded together. This can further improve the adhesion between the first coating 12 and the third coating 16.
  • the powder 20 contains an alloy containing zinc and iron, or an alloy containing zinc, magnesium, and aluminum. This can further improve the adhesion between the first coating 12 and the third coating 16.
  • a solution containing zinc powder and an organosilicon compound is applied to the surface of the second coating 14, and then heat-treated to form the third coating 16.
  • forming the third coating 16 on the first coating 12 can improve corrosion resistance.
  • forming the third coating 16 on the first coating 12 reduces the adhesion between the first coating 12 and the third coating 16. Therefore, it is preferable to form the second coating 14.
  • a solution containing zinc powder, aluminum powder, and at least one of alkoxysilane and its hydrolysate is applied to the surface of the second coating 14, and then heat-treated to form the third coating 16.
  • the third coating 16 on the first coating 12 in this way, corrosion resistance can be improved.
  • forming the third coating 16 on the first coating 12 reduces the adhesion between the first coating 12 and the third coating 16. Therefore, it is preferable to form the second coating 14.
  • the third coating 16 formed in this way contains zinc and aluminum.
  • the first coating 12 is a zinc-nickel alloy coating.
  • the first coating 12 is formed on the base material 10 by electroplating. In this case, if the second coating 14 is not provided, the adhesion between the first coating 12 and the third coating 16 may decrease. Therefore, it is preferable to form the second coating 14.
  • the first coating 12 is chromated using a solution containing trivalent chromium. This further improves the adhesion between the first coating 12 and the second coating 14.
  • a silica film 18 may be formed on the third film 16. This further improves corrosion resistance.
  • Step 1 An M24 hexagonal bolt, an M24 nut and an M24 washer made of SPCC-SD steel were prepared as the base material 10.
  • Step 2 The base material 10 was electroplated to form a zinc-nickel alloy coating as the first coating 12.
  • a plating solution was used in which zinc and nickel were dissolved in an aqueous sodium hydroxide solution with a mass ratio of 20:3.
  • the surface of the first coating 12 was washed with water.
  • the thickness of the first coating 12 was approximately 6 ⁇ m, and the zinc content in the first coating 12 was 87 to 92 mass %, and the nickel content was 8 to 13 mass %.
  • a chromate treatment was performed using a solution containing trivalent chromium. The thickness of the chromate coating after the chromate treatment was approximately 0.2 ⁇ m.
  • Step 3 A second coating 14 was formed on the surface of the first coating 12.
  • the powder 20 was a spherical zinc alloy powder with a diameter of approximately 100 ⁇ m.
  • the zinc alloy powder was an alloy of zinc, aluminum, and magnesium with a diameter of approximately 100 ⁇ m, and contained 50% or more by mass of zinc.
  • Spherical stainless steel balls with a diameter of approximately 100 ⁇ m were used as shot balls.
  • the thickness of the second coating 14 was approximately 0.2 ⁇ m to 0.3 ⁇ m.
  • Step 4 A third coating 16 was formed on the surface of the second coating 14.
  • Metas YC-B17J and Metas YC-B3 manufactured by Yuken Kogyo Co., Ltd. were mixed in a volume ratio of 25:3 and applied to the surface of the first coating 12. Then, a heat treatment was performed for 30 minutes or more at 250°C to 290°C. The above application and heat treatment were repeated twice.
  • YC-B17J contains zinc powder, aluminum powder as a metal powder other than zinc, and tetraethoxysilane as an organosilicon compound.
  • the thickness of the third coating 16 is about 8 ⁇ m, and the zinc, aluminum, and silicon compound contents in the third coating 16 are 70 mass%, 15 mass%, and 15 mass%, respectively.
  • Step 5 A porous silica film 18 was formed on the surface of the third film 16. Metas YC-T, Lubras C14 or Lubras C24 manufactured by Yuken Kogyo Co., Ltd. was used as a silica film solution and applied to the surface of the third film 16. Then, a heat treatment was performed at 110°C to 160°C for 10 minutes or more. The thickness of the porous silica film 18 was about 1 ⁇ m, and the content of the silicon compound and the titanium compound was 75% by mass and 25% by mass, respectively.
  • Comparative Example 1 As Comparative Example 1, a sample was prepared without carrying out step 3. As Comparative Example 2, a sample was prepared by carrying out an alkaline roughening treatment instead of step 3.
  • the alkaline roughening treatment is a treatment in which the surface of the first coating 12 is exposed to a strong alkaline solution, and the surface of the first coating 12 can be made rough.
  • the strong alkaline solution used was an aqueous solution of NaOH with a concentration of 100 g/L.
  • the treatment temperature was 20°C to 30°C, and the treatment time was 5 to 10 minutes.
  • Table 1 shows the results of the adhesion evaluation by the cross-cut method test in Comparative Examples 1 and 2 and Example 1.
  • Comparative Example 1 is classified as 4 by the cross-cut method and has low adhesion. Comparative Example 2 and Example 1 are classified as 0 by the cross-cut method and have high adhesion. Comparative Example 1 has high corrosion resistance, but the adhesion between the first film 12 and the third film 16 is low, and the third film 16 is easily peeled off from the first film 12. As in Comparative Example 2, when the third film 16 is formed on the first film 12 after performing an alkaline roughening treatment to increase the unevenness of the surface of the first film 12, the adhesion between the first film 12 and the third film 16 is improved.
  • Example 1 when the second film 14 is formed on the first film 12 and the third film 16 is formed on the second film 14, the adhesion between the first film 12 and the third film 16 is improved. In the adhesion evaluation using the cross-cut method, both Comparative Example 2 and Example 1 are good.
  • Figure 3 is a photograph of the surface of the bolt of treatment 2 after the vibration test in Comparative Example 2. As shown in Figure 3, the coating has peeled off due to the vibration test at dashed circle 30. In this way, when a box containing bolts, washers, and nuts is subjected to vibration during transportation, each sample may be hit or rubbed, causing the coating to peel off. Each sample was evaluated for the presence or absence of coating peeling after the vibration test.
  • Table 2 shows the results of the adhesion evaluation by vibration test in Comparative Example 2 and Example 1.
  • A, B, and C different silica coating solutions were used when forming the silica coating 18 in step 5.
  • Example 1 As shown in Table 2, peeling was observed frequently in Comparative Example 2. Peeling was hardly observed in Example 1.
  • the adhesion between the first coating 12 and the third coating 16 is improved.
  • the adhesion of Comparative Example 2 may be insufficient.
  • Example 1 by providing the second coating 14, the adhesion between the first coating 12 and the third coating 16 can be improved, and peeling of the third coating 16 from the first coating 12 can be suppressed even if a large impact is applied to the sample.
  • Example 1 in Example 1, the powder 20 is collided with the surface of the first coating 12 to improve the adhesion between the crushed powder 13 and the first coating 12. Therefore, the results of the Example are considered to be generalizable to cases where the first coating 12 is zinc or a zinc alloy.
  • the surface unevenness of the second coating 14 increases, improving the adhesion between the second coating 14 and the third coating 16. Therefore, the results of the Example are considered to be generalizable to cases where the third coating 16 is zinc or a zinc alloy.
  • the silica coating 18 contributes to improving corrosion resistance, it is considered not to contribute much to the adhesion between the first coating 12 and the third coating 16. Therefore, the results of Example 1 are also generalizable to cases where the silica coating 18 is not used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

This film formation method comprises: a step for forming a second film 14, which is a zinc or zinc alloy film and has an uneven surface, by colliding a plurality of zinc- or zinc alloy-containing powders with the surface of a first film 12, which is a zinc or zinc alloy film and formed on a base material 10; and a step for forming a zinc- or zinc alloy-containing third film 16 on the surface of the second film 14. 

Description

皮膜および皮膜形成方法Coating and coating formation method
 本発明は、皮膜および皮膜形成方法に関し、例えば亜鉛または亜鉛合金皮膜を有する皮膜および皮膜形成方法に関する。 The present invention relates to a coating and a method for forming the coating, for example, a coating having a zinc or zinc alloy coating and a method for forming the coating.
 亜鉛または亜鉛合金皮膜の耐食性向上のため、亜鉛または亜鉛合金皮膜上に、亜鉛、アルミニウムおよびシリカ化合物を含む皮膜を焼付塗装し、その上に多孔質シリカ皮膜を形成することが知られている(例えば特許文献1) In order to improve the corrosion resistance of zinc or zinc alloy coatings, it is known to bake a coating containing zinc, aluminum and a silica compound onto the zinc or zinc alloy coating, and then form a porous silica coating on top of that (e.g., Patent Document 1).
特開2016-84510号公報JP 2016-84510 A
 特許文献1の方法によれば、耐食性を高めることができる。しかしながら、過酷な条件下では皮膜に剥がれが生じることがある。これにより、耐食性が低下することがある。このように、亜鉛または亜鉛合金皮膜を複数積層するときに、皮膜が剥がれることがある。 The method of Patent Document 1 can improve corrosion resistance. However, under harsh conditions, the coating may peel off. This may result in a decrease in corrosion resistance. In this way, when multiple zinc or zinc alloy coatings are laminated, the coatings may peel off.
 本発明は、上記課題に鑑みなされたものであり、亜鉛または亜鉛合金皮膜を有する皮膜の密着性を向上させることを目的とする。 The present invention was developed in consideration of the above problems, and aims to improve the adhesion of coatings that have zinc or zinc alloy coatings.
 本発明は、下地材上に形成された亜鉛または亜鉛合金皮膜である第1皮膜の表面に、亜鉛または亜鉛合金を含む複数の粉体を衝突させることで、亜鉛または亜鉛合金皮膜であり表面が凹凸状である第2皮膜を形成する工程と、前記第2皮膜の表面に、亜鉛または亜鉛合金を含む第3皮膜を形成する工程と、を含む皮膜形成方法である。 The present invention is a method for forming a coating comprising the steps of forming a second coating, which is a zinc or zinc alloy coating and has an uneven surface, by colliding a plurality of powders containing zinc or a zinc alloy onto the surface of a first coating, which is a zinc or zinc alloy coating formed on a base material, and forming a third coating, which contains zinc or a zinc alloy, on the surface of the second coating.
 上記構成において、前記複数の粉体は、前記亜鉛または亜鉛合金より硬い剛体紛を含む構成とすることができる。 In the above configuration, the multiple powders can be configured to include a rigid powder that is harder than the zinc or zinc alloy.
 上記構成において、前記複数の粉体は、亜鉛および鉄を含有する合金、または、亜鉛、マグネシウムおよびアルミニウムを含有する合金を含む構成とすることができる。 In the above configuration, the multiple powders may include an alloy containing zinc and iron, or an alloy containing zinc, magnesium, and aluminum.
 上記構成において、前記第3皮膜を形成する工程は、前記第2皮膜の表面に亜鉛粉体および有機ケイ素化合物を含む溶液を塗布し、加熱処理することにより前記第3皮膜を形成する工程を含む構成とすることができる。 In the above configuration, the process of forming the third coating can include a process of applying a solution containing zinc powder and an organosilicon compound to the surface of the second coating, and then performing a heat treatment to form the third coating.
 上記構成において、前記第3皮膜を形成する工程は、前記第2皮膜の表面に亜鉛粉体、アルミニウム粉体、並びにアルコキシシランおよびその加水分解物の少なくとも一方を含む溶液を塗布し、加熱処理することにより前記第3皮膜を形成する工程を含む構成とすることができる。 In the above configuration, the step of forming the third coating can include a step of applying a solution containing zinc powder, aluminum powder, and at least one of alkoxysilane and its hydrolysate to the surface of the second coating, and then performing a heat treatment to form the third coating.
 上記構成において、前記第1皮膜は、亜鉛ニッケル合金皮膜である構成とすることができる。 In the above configuration, the first coating can be a zinc-nickel alloy coating.
 上記構成において、下地材上に、電気めっき法を用い前記第1皮膜を形成する工程を含む構成とすることができる。 The above configuration may include a step of forming the first coating on a base material using an electroplating method.
 上記構成において、前記第2皮膜を形成する工程の前に、前記第1皮膜の表面に三価クロムを含む溶液を用いクロメート処理を行う工程を含む構成とすることができる。 The above configuration may include a step of performing a chromate treatment on the surface of the first coating using a solution containing trivalent chromium before the step of forming the second coating.
 上記構成において、前記第3皮膜の表面にシリカ皮膜を形成する工程を含む構成とすることができる。 The above configuration may include a step of forming a silica coating on the surface of the third coating.
 本発明は、下地材上に、電気めっき法を用い亜鉛ニッケル合金皮膜である第1皮膜を形成する工程と、前記第1皮膜の表面に、亜鉛または亜鉛合金と前記亜鉛または亜鉛合金より硬い剛体紛とを含む複数の粉体を衝突させることで、亜鉛合金皮膜であり表面が凹凸状である第2皮膜を形成する工程と、前記第2皮膜の表面に、亜鉛粉体、アルミニウム粉体、並びにアルコキシシランおよびその加水分解物の少なくとも一方を含む溶液を塗布し、加熱処理することで混合皮膜を形成する工程と、を含む皮膜形成方法である。 The present invention is a method for forming a coating comprising the steps of forming a first coating, which is a zinc-nickel alloy coating, on a base material using an electroplating method, forming a second coating, which is a zinc alloy coating and has an uneven surface, by colliding a plurality of powders, which include zinc or a zinc alloy and a rigid powder harder than the zinc or zinc alloy, on the surface of the first coating, and applying a solution, which includes zinc powder, aluminum powder, and at least one of an alkoxysilane and a hydrolyzate thereof, to the surface of the second coating, and then heat-treating the solution to form a mixed coating.
 本発明は、下地材と、前記下地材上に形成された亜鉛または亜鉛合金皮膜である第1皮膜と、前記第1皮膜の表面に設けられ、亜鉛または亜鉛合金を含む複数の粉体が潰れ互いに接合した構造を有する亜鉛または亜鉛合金皮膜であり表面が凹凸状である第2皮膜と、前記第2皮膜の表面に設けられ、亜鉛または亜鉛合金を含む第3皮膜と、を備える皮膜である。 The present invention is a coating comprising a base material, a first coating which is a zinc or zinc alloy coating formed on the base material, a second coating which is a zinc or zinc alloy coating formed on the surface of the first coating and has a structure in which a plurality of powders containing zinc or a zinc alloy are crushed and bonded together, and has an uneven surface, and a third coating which is formed on the surface of the second coating and contains zinc or a zinc alloy.
 上記構成において、前記第1皮膜は亜鉛ニッケル合金皮膜であり、前記複数の粉体は、亜鉛および鉄を含有する合金、または、亜鉛、マグネシウムおよびアルミニウムを含有する合金を含み、前記第3皮膜は、亜鉛およびアルミニウムを含む構成とすることができる。 In the above configuration, the first coating is a zinc-nickel alloy coating, the multiple powders include an alloy containing zinc and iron, or an alloy containing zinc, magnesium, and aluminum, and the third coating can be configured to include zinc and aluminum.
 本発明によれば、亜鉛または亜鉛合金皮膜を有する皮膜の密着性を向上させることができる。 According to the present invention, it is possible to improve the adhesion of a coating having a zinc or zinc alloy coating.
図1(a)から図1(e)は、実施形態1に係る皮膜形成方法を示す断面図である。1(a) to 1(e) are cross-sectional views showing a coating formation method according to a first embodiment. 図2(a)から図2(c)は、実施形態1における第2皮膜の形成方法を示す断面図である。2(a) to 2(c) are cross-sectional views showing a method for forming the second coating in the first embodiment. 図3は、比較例2における振動試験後の処理2のボルトの表面の写真である。FIG. 3 is a photograph of the surface of the bolt of Treatment 2 after the vibration test in Comparative Example 2.
[実施形態1]
 図1(a)から図1(e)は、実施形態1に係る皮膜形成方法を示す断面図である。
[Embodiment 1]
1(a) to 1(e) are cross-sectional views showing a coating formation method according to a first embodiment.
[工程1:下地材の準備]
 図1(a)に示すように、下地材10を準備する。下地材10は、例えば鉄(Fe)または鉄合金であり、例えばボルト、ナット等である。鉄合金は、鉄を50質量%以上含む。下地材10は鉄または鉄合金以外の部材でもよく、例えば銅、アルミニウムまたはこれらの合金等の金属材料または硬めの樹脂でもよい。
[Step 1: Preparation of base material]
As shown in Fig. 1(a), a base material 10 is prepared. The base material 10 is, for example, iron (Fe) or an iron alloy, and is, for example, a bolt, a nut, or the like. The iron alloy contains iron at 50 mass% or more. The base material 10 may be a member other than iron or an iron alloy, and may be, for example, a metal material such as copper, aluminum, or an alloy thereof, or a hard resin.
[工程2:第1皮膜12の形成]
 図1(b)に示すように、下地材10上に、第1皮膜12を形成する。第1皮膜12は、亜鉛または亜鉛合金皮膜である。第1皮膜12は、例えば亜鉛皮膜、亜鉛ニッケル合金皮膜、亜鉛鉄合金皮膜、亜鉛錫合金皮膜である。亜鉛皮膜は亜鉛以外の元素を意図的に含まない。亜鉛合金皮膜における亜鉛の含有量は例えば70~99質量%であり、亜鉛以外の意図的に含有する金属元素の含有量は例えば1~30質量%である。意図的に含有しない不回避金属元素の含有率は1質量%以下である。亜鉛系皮膜が亜鉛ニッケル合金皮膜のとき、亜鉛ニッケル合金皮膜における亜鉛の含有率は70質量%以上かつ99質量%以下でありニッケルの含有率は1質量%以上かつ30質量%以下であることが好ましく、亜鉛の含有率は85質量%以上かつ90質量%以下でありニッケルの含有率は10質量%以上かつ15質量%以下であることがより好ましい。亜鉛ニッケル合金皮膜は亜鉛およびニッケル以外の金属元素を意図的に含んでもよいし、意図的に含まなくてもよい。亜鉛ニッケル合金皮膜に含まれる亜鉛およびニッケル以外の金属元素の含有率(質量%)はニッケルの含有率(質量%)より小さい。亜鉛ニッケル合金皮膜に含まれる亜鉛およびニッケル以外の金属元素の含有率(質量%)はニッケルの含有率(質量%)の1/10以下がより好ましく、例えば5質量%以下であり、1質量% 以下である。第1皮膜12の形成方法は電気めっき法を用い形成してもよいし、溶融めっき法を用い形成してもよい。膜厚の制御性および表面を滑らかに形成するため電気めっき法を用いることが好ましい。めっき液には光沢剤を含んでもよい。第1皮膜12の膜厚は例えば1μm~20μmであり、一例として6μmである。
[Step 2: Formation of first coating 12]
As shown in FIG. 1B, a first coating 12 is formed on a base material 10. The first coating 12 is a zinc or zinc alloy coating. The first coating 12 is, for example, a zinc coating, a zinc-nickel alloy coating, a zinc-iron alloy coating, or a zinc-tin alloy coating. The zinc coating does not intentionally contain any elements other than zinc. The zinc content in the zinc alloy coating is, for example, 70 to 99% by mass, and the content of metal elements other than zinc that are intentionally contained is, for example, 1 to 30% by mass. The content of unavoidable metal elements that are not intentionally contained is 1% by mass or less. When the zinc-based coating is a zinc-nickel alloy coating, the zinc content in the zinc-nickel alloy coating is preferably 70% by mass or more and 99% by mass or less, and the nickel content is preferably 1% by mass or more and 30% by mass or less, and more preferably the zinc content is 85% by mass or more and 90% by mass or less, and the nickel content is 10% by mass or more and 15% by mass or less. The zinc-nickel alloy coating may or may not intentionally contain metal elements other than zinc and nickel. The content (mass%) of metal elements other than zinc and nickel contained in the zinc-nickel alloy coating is smaller than the content (mass%) of nickel. The content (mass%) of metal elements other than zinc and nickel contained in the zinc-nickel alloy coating is preferably 1/10 or less of the content (mass%) of nickel, for example, 5 mass% or less, and more preferably 1 mass% or less. The first coating 12 may be formed by electroplating or hot-dip plating. It is preferable to use electroplating in order to control the thickness and form a smooth surface. The plating solution may contain a brightener. The thickness of the first coating 12 is, for example, 1 μm to 20 μm, and is, for example, 6 μm.
 亜鉛ニッケル合金を形成した後クロメート処理を行ってもよい。これにより、第1皮膜12上にクロメート皮膜が形成される。クロメート処理としては、例えば三価または六価を含む処理液を用い、第1皮膜12の表面を処理する。処理液は例えばクロム酸を含む。環境負荷の大きい六価クロムを用いない観点から処理液は三価クロムを含み六価クロムをほとんど含まないことが好ましい。第1皮膜12が形成された下地材10を処理液に浸漬することで、第1皮膜12の表面にクロムを含む不動態皮膜(すなわちクロメート皮膜)が形成される。クロメート皮膜の膜厚は例えば0.05μm~1μmであり、一例として0.2μmである。 After forming the zinc-nickel alloy, a chromate treatment may be performed. This forms a chromate film on the first film 12. For the chromate treatment, a treatment liquid containing, for example, trivalent or hexavalent chromium is used to treat the surface of the first film 12. The treatment liquid contains, for example, chromic acid. From the viewpoint of not using hexavalent chromium, which has a large environmental impact, it is preferable that the treatment liquid contains trivalent chromium and contains almost no hexavalent chromium. By immersing the base material 10 on which the first film 12 is formed in the treatment liquid, a passive film containing chromium (i.e., a chromate film) is formed on the surface of the first film 12. The thickness of the chromate film is, for example, 0.05 μm to 1 μm, and is 0.2 μm as an example.
[工程3:第2皮膜14の形成]
 次に、図1(c)に示すように、第1皮膜12の表面に第2皮膜14を形成する。図2(a)から図2(c)は、実施形態1における第2皮膜の形成方法を示す断面図である。図2(a)に示すように、下地材10上に第1皮膜12が形成されている。
[Step 3: Formation of second coating 14]
Next, as shown in Fig. 1(c), a second coating 14 is formed on the surface of the first coating 12. Fig. 2(a) to Fig. 2(c) are cross-sectional views showing a method of forming the second coating in embodiment 1. As shown in Fig. 2(a), a first coating 12 is formed on a base material 10.
 図2(b)に示すように、メカニカル乾式メッキ法を用い第1皮膜12上に第2皮膜14を形成する。メカニカル乾式メッキ法としては、常温において第1皮膜12の表面に複数の粉体20を衝突させる。粉体20は、例えば亜鉛紛または亜鉛合金紛を含む。亜鉛粉は亜鉛(Zn)以外の元素を意図的に含まない。亜鉛合金粉は、例えば亜鉛を50質量%以上含み、鉄(Fe)、ニッケル(Ni)、アルミニウム(Al)およびマグネシウム(Mg)の少なくとも1つの元素を含む。粉体20の一例は、亜鉛を50質量%以上含み、鉄を含む亜鉛合金である。粉体20の別の一例は、亜鉛を50質量%以上含み、アルミニウムおよびマグネシウムを含む亜鉛合金である。亜鉛合金は亜鉛を70質量%以上含むことが好ましい。粉体20は例えば球形であり、粉体20の粒径は例えば10μm以上かつ150μm以下であり、例えば100μm以下である。例えば、粉体20をバレル内に投入しバレルを回転させたときの遠心力、または空気圧等の熱以外のエネルギーを主に用い、粉体20を第1皮膜12の表面に高速に投射する。 As shown in FIG. 2(b), the second film 14 is formed on the first film 12 by using a mechanical dry plating method. In the mechanical dry plating method, a plurality of powders 20 are collided with the surface of the first film 12 at room temperature. The powders 20 include, for example, zinc powder or zinc alloy powder. The zinc powder does not intentionally include any elements other than zinc (Zn). The zinc alloy powder includes, for example, 50% by mass or more of zinc and at least one element of iron (Fe), nickel (Ni), aluminum (Al) and magnesium (Mg). One example of the powders 20 is a zinc alloy including 50% by mass or more of zinc and including iron. Another example of the powders 20 is a zinc alloy including 50% by mass or more of zinc and including aluminum and magnesium. It is preferable that the zinc alloy includes 70% by mass or more of zinc. The powders 20 are, for example, spherical, and the particle size of the powders 20 is, for example, 10 μm or more and 150 μm or less, for example, 100 μm or less. For example, the powder 20 is injected into a barrel and centrifugal force generated when the barrel is rotated, or energy other than heat, such as air pressure, is mainly used to project the powder 20 onto the surface of the first coating 12 at high speed.
 図2(c)に示すように、粉体20が第1皮膜12の表面に衝突すると、粉体20の運動エネルギーにより、粉体20が潰れる。潰れた粉体13は第1皮膜12の表面に凝着する。複数の潰れた粉体13は互いに接合し、積層する。これにより、潰れた粉体13が接合した第2皮膜14となる。第2皮膜14には、潰れた粉体13の接合した界面が存在する。また、第2皮膜14の上面は粉体20が衝突するため、凹凸が大きくなる。粉体20が亜鉛粉のとき、第2皮膜14は亜鉛皮膜となり、粉体20が亜鉛合金粉のとき、第2皮膜14は亜鉛合金皮膜となる。第2皮膜14の厚さは例えば0.1μm以上かつ3μm以下であり、例えば0.2μm以上かつ0.5μm以下である。 As shown in FIG. 2(c), when the powder 20 collides with the surface of the first coating 12, the powder 20 is crushed by the kinetic energy of the powder 20. The crushed powder 13 adheres to the surface of the first coating 12. The crushed powder 13 are bonded to each other and stacked. This forms the second coating 14 in which the crushed powder 13 are bonded. The second coating 14 has an interface where the crushed powder 13 are bonded. In addition, the upper surface of the second coating 14 becomes uneven because the powder 20 collides with it. When the powder 20 is zinc powder, the second coating 14 becomes a zinc coating, and when the powder 20 is zinc alloy powder, the second coating 14 becomes a zinc alloy coating. The thickness of the second coating 14 is, for example, 0.1 μm or more and 3 μm or less, for example, 0.2 μm or more and 0.5 μm or less.
 図2(b)において、粉体20は、亜鉛または亜鉛合金より硬い核と、核の周囲に亜鉛層または亜鉛合金層と、を有してもよい。核は、例えば金属または絶縁体であり、例えば鉄または鉄合金のである。亜鉛層または亜鉛合金層の好ましい組成は上記した亜鉛紛または亜鉛合金紛の好ましい組成と同じである。図2(b)において、粉体20を第1皮膜12の表面に衝突させるときに、複数の粉体20と複数のショット球とを第1皮膜12の表面に衝突させてもよい。ショット球は粉体20より硬い金属または絶縁体であり、例えば鉄または鉄合金のである。ショット球は例えば球形であり、ショット球の平均粒径は例えば10μm以上かつ150μm以下であり、例えば100μm以下である。 In FIG. 2(b), the powder 20 may have a core harder than zinc or a zinc alloy, and a zinc layer or a zinc alloy layer around the core. The core is, for example, a metal or an insulator, for example, iron or an iron alloy. The preferred composition of the zinc layer or zinc alloy layer is the same as the preferred composition of the zinc powder or zinc alloy powder described above. In FIG. 2(b), when the powder 20 is collided with the surface of the first coating 12, a plurality of powders 20 and a plurality of shot balls may be collided with the surface of the first coating 12. The shot balls are, for example, a metal or an insulator harder than the powder 20, for example, iron or an iron alloy. The shot balls are, for example, spherical, and the average particle size of the shot balls is, for example, 10 μm or more and 150 μm or less, for example, 100 μm or less.
 図2(a)から図2(c)のように形成した第2皮膜14は、粉体20が第1皮膜12に衝突するため第2皮膜14と第1皮膜12との密着性がよい。特に、粉体20が硬い核を有する場合、またはショット球と粉体20とを第1皮膜12に衝突させる場合、核またはショット球が潰れた粉体13の表面に衝突するため、潰れた粉体13は第1皮膜12の表面により強固に凝着する。複数の潰れた粉体13は互いに強固に接合する。さらに、第2皮膜14の表面は凹凸はより大きくなる。粉体20は、チタン粉体等の亜鉛および亜鉛合金以外の金属粉体、酸化アルミニウム等のセラミック粉体を含んでもよい。 The second coating 14 formed as shown in Figures 2(a) to 2(c) has good adhesion between the second coating 14 and the first coating 12 because the powder 20 collides with the first coating 12. In particular, when the powder 20 has a hard core, or when the shot ball and the powder 20 are collided with the first coating 12, the core or shot ball collides with the surface of the crushed powder 13, so that the crushed powder 13 adheres more firmly to the surface of the first coating 12. A plurality of crushed powders 13 are firmly bonded to each other. Furthermore, the surface of the second coating 14 has greater irregularities. The powder 20 may contain metal powders other than zinc and zinc alloys, such as titanium powder, and ceramic powders, such as aluminum oxide.
[工程4:第3皮膜16の形成]
 次に、図1(d)に示すように、第2皮膜14の表面に亜鉛または亜鉛合金を含む第3皮膜16を形成する。亜鉛化合物は、亜鉛に例えばアルミニウム、ニッケル、錫、鉄およびマグネシウムの少なくも1つを含む。第3皮膜16は、亜鉛または亜鉛合金に加えケイ素化合物を含んでもよい。
[Step 4: Formation of third coating 16]
1(d), a third coating 16 containing zinc or a zinc alloy is formed on the surface of the second coating 14. The zinc compound contains zinc and at least one of aluminum, nickel, tin, iron, and magnesium. The third coating 16 may contain a silicon compound in addition to zinc or a zinc alloy.
 第3皮膜16の形成方法の一列としては、第2皮膜14上に第3皮膜用溶剤を塗布し、加熱処理(焼付け処理)することで形成する。第3皮膜用溶剤は、亜鉛粉体、有機ケイ素化合物および溶媒を含む。第3皮膜用溶液は、亜鉛粉体に加え、アルミニウム粉体、ニッケル粉体、錫粉体、鉄粉体およびマグネシウム粉体の少なくも1種類の金属粉体を含んでいてもよい。特に、第3皮膜用溶液は、亜鉛粉体とアルミニウム粉体を含むことが好ましい。亜鉛粉体および金属粉体の形状は、例えば球状でもよいし鱗片状でもよい。粉体の短径は例えば0.05μm~5μmであり、長径は例えば0.5μm~100μmである。亜鉛粉体は、例えば亜鉛を90質量%以上または99質量%以上含む。亜鉛以外の金属粉体(例えばアルミニウム粉体)は、例えば亜鉛以外の金属元素(例えばアルミニウム)を90質量%以上または99質量%以上含む。亜鉛粉体と亜鉛以外の金属粉体(例えばアルミニウム粉体)との合計の粉体質量に対する亜鉛粉体の質量の比は50質量%以上が好ましく、70質量%以上がより好ましい。亜鉛粉体と亜鉛以外の金属粉体(例えばアルミニウム粉体)との合計の粉体質量に対する亜鉛以外の金属粉体(例えばアルミニウム)の質量の比は1質量%以上が好ましく、5質量%以上がより好ましい。 In one method of forming the third coating 16, a solvent for the third coating is applied onto the second coating 14 and then heated (baked). The solvent for the third coating contains zinc powder, an organosilicon compound, and a solvent. The solution for the third coating may contain at least one type of metal powder, such as aluminum powder, nickel powder, tin powder, iron powder, and magnesium powder, in addition to zinc powder. In particular, it is preferable that the solution for the third coating contains zinc powder and aluminum powder. The shape of the zinc powder and the metal powder may be, for example, spherical or scaly. The powder has a short diameter of, for example, 0.05 μm to 5 μm, and a long diameter of, for example, 0.5 μm to 100 μm. The zinc powder contains, for example, 90% by mass or more or 99% by mass or more of zinc. The metal powder other than zinc (for example, aluminum powder) contains, for example, 90% by mass or more or 99% by mass or more of a metal element other than zinc (for example, aluminum). The ratio of the mass of zinc powder to the total powder mass of zinc powder and metal powder other than zinc (e.g. aluminum powder) is preferably 50% by mass or more, more preferably 70% by mass or more. The ratio of the mass of metal powder other than zinc (e.g. aluminum) to the total powder mass of zinc powder and metal powder other than zinc (e.g. aluminum powder) is preferably 1% by mass or more, more preferably 5% by mass or more.
 有機ケイ素化合物は例えばアルコキシシランおよびその加水分解物の少なくとも一方を含む。アルコキシシランは、特に炭素数が3個以下のテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等のテトラアルコキシシランが好ましい。第3皮膜用溶液の溶媒は、例えばアルコール類、エステル類、グリコール類またはエーテル類である。溶媒は、特にメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ヘキサノール、メトキシブタノール、メトキシメチルブタノール等のアルコール類が好ましい。第3皮膜用溶液内の亜鉛粉体および金属粉体の合計の含有量は例えば20~60質量%である。溶液内の有機シリコン化合物の含有量は例えば5~40質量%である。第3皮膜用溶液内の有機溶剤の含有量は例えば10~60質量%である。 The organosilicon compound includes, for example, at least one of an alkoxysilane and a hydrolyzate thereof. The alkoxysilane is preferably a tetraalkoxysilane having 3 or less carbon atoms, such as tetramethoxysilane, tetraethoxysilane, or tetrapropoxysilane. The solvent of the third coating solution is, for example, an alcohol, ester, glycol, or ether. The solvent is preferably an alcohol, such as methanol, ethanol, propanol, isopropanol, butanol, hexanol, methoxybutanol, or methoxymethylbutanol. The total content of the zinc powder and metal powder in the third coating solution is, for example, 20 to 60 mass %. The content of the organosilicon compound in the solution is, for example, 5 to 40 mass %. The content of the organic solvent in the third coating solution is, for example, 10 to 60 mass %.
 第3皮膜用溶液の第2皮膜14の表面への塗布は、例えば浸漬法、スプレー法またはスピンコート法を用いる。第3皮膜用溶液を塗布した後の加熱処理の温度は例えば100℃~400℃である。加熱処理の温度は第3皮膜用溶液内の溶媒が蒸発する温度以上である。加熱処理の時間は例えば10分~120分である。これにより、第2皮膜14の表面に第3皮膜16が形成される。第3皮膜16の膜厚は、例えば1μm~20μmであり、一例として8μmである。第3皮膜16内の亜鉛粉体および亜鉛以外の金属粉体(例えばアルミニウム粉体)の合計の含有量は例えば70質量%以上かつ95質量%以下であり、シリコン化合物の含有量は例えば5質量%以上かつ30質量%以下である。亜鉛粉体と亜鉛以外の金属粉体(例えばアルミニウム粉体)との合計の粉体質量に対する亜鉛粉体の質量の比は50%以上が好ましく、70%以上がより好ましい。一例として第3皮膜16における亜鉛粉体の含有量は70質量%、アルミニウム粉体の含有量は15質量%、シリコン化合物の含有量は15質量%である。 The third coating solution is applied to the surface of the second coating 14 by, for example, dipping, spraying, or spin coating. The temperature of the heat treatment after applying the third coating solution is, for example, 100°C to 400°C. The temperature of the heat treatment is equal to or higher than the temperature at which the solvent in the third coating solution evaporates. The heat treatment time is, for example, 10 minutes to 120 minutes. As a result, the third coating 16 is formed on the surface of the second coating 14. The thickness of the third coating 16 is, for example, 1 μm to 20 μm, and is, for example, 8 μm. The total content of zinc powder and metal powder other than zinc (e.g. aluminum powder) in the third coating 16 is, for example, 70 mass% or more and 95 mass% or less, and the content of silicon compounds is, for example, 5 mass% or more and 30 mass% or less. The ratio of the mass of zinc powder to the total powder mass of zinc powder and metal powder other than zinc (e.g. aluminum powder) is preferably 50% or more, and more preferably 70% or more. As an example, the zinc powder content in the third coating 16 is 70% by mass, the aluminum powder content is 15% by mass, and the silicon compound content is 15% by mass.
[工程5:シリカ皮膜18の形成]
 次に、図1(e)に示すように、第3皮膜16上に多孔質シリカ皮膜18を形成する。多孔質シリカ皮膜18の形成は、第3皮膜16上にシリカ皮膜用溶液を塗布し、加熱処理(焼付け処理)することで形成する。シリカ皮膜用溶液は、シリコン化合物および溶媒を含む。シリコン化合物は例えばオルガノシロキサンおよびシランカップリング剤の少なくとも一方である。シリコン化合物は、ケイ酸アルカリ金属を含んでもよい。シリカ皮膜用溶液はチタン化合物を含んでもよい。チタン化合物は例えば有機チタネート化合物である。シリカ皮膜用溶液の溶媒は、例えば水、アルコール類、エステル類、グリコール類またはエーテル類である。シリカ皮膜用溶液内のシリコン化合物の含有量は例えば40質量%以上かつ90質量%以下であり、溶媒の含有量は例えば10質量%以上かつ60質量%以下である。シリカ皮膜用溶液を第3皮膜16の表面へ塗布することで、第3皮膜16の表面に例えばポリオルガノシロキサン薄膜が形成される。
[Step 5: Formation of silica coating 18]
Next, as shown in FIG. 1(e), a porous silica film 18 is formed on the third film 16. The porous silica film 18 is formed by applying a silica film solution onto the third film 16 and performing a heat treatment (baking treatment). The silica film solution contains a silicon compound and a solvent. The silicon compound is, for example, at least one of an organosiloxane and a silane coupling agent. The silicon compound may contain an alkali metal silicate. The silica film solution may contain a titanium compound. The titanium compound is, for example, an organic titanate compound. The solvent of the silica film solution is, for example, water, alcohols, esters, glycols, or ethers. The content of the silicon compound in the silica film solution is, for example, 40% by mass or more and 90% by mass or less, and the content of the solvent is, for example, 10% by mass or more and 60% by mass or less. By applying the silica film solution to the surface of the third film 16, a polyorganosiloxane thin film, for example, is formed on the surface of the third film 16.
 シリカ皮膜用溶液の第3皮膜16の表面への塗布は、例えば浸漬法、スプレー法またはスピンコート法を用いる。シリカ皮膜用溶液を塗布した後の加熱処理の温度は例えば100℃~400℃である。加熱処理の温度はシリカ皮膜用溶液内の溶媒が蒸発する温度以上である。加熱処理の時間は例えば10分~120分である。これにより、第3皮膜16の表面に多孔質シリカ皮膜18が形成される。シリカ皮膜18の膜厚は、例えば0.1μm~10μmであり、一例として1μmである。多孔質シリカ皮膜18がシリコン化合物とチタン化合物を含む場合、シリコン化合物の含有量は例えば50質量%以上かつ95質量%以下であり、チタン化合物の含有量は例えば5質量%以上かつ50質量%以下であり、一例としてシリコン化合物およびチタン化合物の含有量はそれぞれ75質量%および25質量%である。 The silica film solution is applied to the surface of the third film 16 by, for example, dipping, spraying, or spin coating. The temperature of the heat treatment after applying the silica film solution is, for example, 100°C to 400°C. The temperature of the heat treatment is equal to or higher than the temperature at which the solvent in the silica film solution evaporates. The heat treatment time is, for example, 10 minutes to 120 minutes. As a result, a porous silica film 18 is formed on the surface of the third film 16. The thickness of the silica film 18 is, for example, 0.1 μm to 10 μm, and is, for example, 1 μm. When the porous silica film 18 contains a silicon compound and a titanium compound, the content of the silicon compound is, for example, 50 mass% or more and 95 mass% or less, and the content of the titanium compound is, for example, 5 mass% or more and 50 mass% or less, and, for example, the content of the silicon compound and the titanium compound are 75 mass% and 25 mass%, respectively.
 特許文献1では、過酷な条件下では亜鉛または亜鉛合金皮膜と混合皮膜とが剥がれが生じることがある。実施形態1では、図2(a)から図2(c)のように、下地材10上に形成された亜鉛または亜鉛合金皮膜である第1皮膜12の表面に、亜鉛または亜鉛合金を含む複数の粉体20を衝突させることで、亜鉛または亜鉛合金皮膜であり表面が凹凸状である第2皮膜14を形成する。図1(d)のように、第2皮膜14の表面に、亜鉛または亜鉛合金を含む第3皮膜16を形成する。複数の粉体20が第1皮膜12の表面に衝突することで、第1皮膜12と第2皮膜14とは強固に接合する。また、第2皮膜14の表面は凹凸面となるため、第2皮膜14と第3皮膜16とが強固に接合する。これにより、第1皮膜12と第3皮膜16とのの密着性を向上させることができる。このように形成した第2皮膜14は、図2(c)のように、亜鉛または亜鉛合金を含む複数の粉体13が潰れ互いに接合した構造を有する。 In Patent Document 1, peeling may occur between the zinc or zinc alloy coating and the mixed coating under harsh conditions. In the first embodiment, as shown in FIG. 2(a) to FIG. 2(c), a plurality of powders 20 containing zinc or zinc alloy are collided with the surface of the first coating 12, which is a zinc or zinc alloy coating formed on the base material 10, to form the second coating 14, which is a zinc or zinc alloy coating and has an uneven surface. As shown in FIG. 1(d), a third coating 16 containing zinc or zinc alloy is formed on the surface of the second coating 14. The plurality of powders 20 collide with the surface of the first coating 12, so that the first coating 12 and the second coating 14 are firmly bonded to each other. In addition, since the surface of the second coating 14 is an uneven surface, the second coating 14 and the third coating 16 are firmly bonded to each other. This improves the adhesion between the first coating 12 and the third coating 16. The second coating 14 formed in this manner has a structure in which multiple powder particles 13 containing zinc or a zinc alloy are crushed and bonded to each other, as shown in FIG. 2(c).
 図2(b)において、第2皮膜14を形成するときに、複数の粉体20は、亜鉛または亜鉛合金より硬い剛体紛(核またはショット球)を含む。剛体紛が第1皮膜12の表面に付着した亜鉛または亜鉛合金に衝突する。これにより、第1皮膜12と第2皮膜14とがより強固に接合し、第2皮膜14の表面はより凹凸面となり第2皮膜14と第3皮膜16とがより強固に接合する。これにより、第1皮膜12と第3皮膜16とのの密着性をより向上させることができる。 In FIG. 2(b), when the second coating 14 is formed, the multiple powders 20 include rigid powder (nuclei or shot balls) that are harder than zinc or zinc alloy. The rigid powder collides with the zinc or zinc alloy attached to the surface of the first coating 12. This makes the first coating 12 and the second coating 14 more firmly bonded together, and the surface of the second coating 14 becomes more uneven, so that the second coating 14 and the third coating 16 are more firmly bonded together. This can further improve the adhesion between the first coating 12 and the third coating 16.
 粉体20は、亜鉛および鉄を含有する合金、または、亜鉛、マグネシウムおよびアルミニウムを含有する合金を含む。これにより、第1皮膜12と第3皮膜16とのの密着性をより向上させることができる。 The powder 20 contains an alloy containing zinc and iron, or an alloy containing zinc, magnesium, and aluminum. This can further improve the adhesion between the first coating 12 and the third coating 16.
 図1(d)における第3皮膜16の形成では、第2皮膜14の表面に亜鉛粉体および有機ケイ素化合物を含む溶液を塗布し、加熱処理することで第3皮膜16を形成する。特許文献1のように第1皮膜12上に第3皮膜16を形成することにより耐食性を向上できる。しかし、第1皮膜12上に第3皮膜16を形成すると第1皮膜12と第3皮膜16との密着性が低下する。そこで、第2皮膜14を形成することが好ましい。 In forming the third coating 16 in FIG. 1(d), a solution containing zinc powder and an organosilicon compound is applied to the surface of the second coating 14, and then heat-treated to form the third coating 16. As in Patent Document 1, forming the third coating 16 on the first coating 12 can improve corrosion resistance. However, forming the third coating 16 on the first coating 12 reduces the adhesion between the first coating 12 and the third coating 16. Therefore, it is preferable to form the second coating 14.
 また、図1(d)における第3皮膜16の形成では、第2皮膜14の表面に亜鉛粉体、アルミニウム粉体、並びにアルコキシシランおよびその加水分解物の少なくとも一方を含む溶液を塗布し、加熱処理することで第3皮膜16を形成する。これにより第1皮膜12上に第3皮膜16を形成することにより耐食性を向上できる。しかし、第1皮膜12上に第3皮膜16を形成すると第1皮膜12と第3皮膜16との密着性が低下する。そこで、第2皮膜14を形成することが好ましい。このように形成した第3皮膜16は、亜鉛およびアルミニウムを含む。 In addition, in forming the third coating 16 in FIG. 1(d), a solution containing zinc powder, aluminum powder, and at least one of alkoxysilane and its hydrolysate is applied to the surface of the second coating 14, and then heat-treated to form the third coating 16. By forming the third coating 16 on the first coating 12 in this way, corrosion resistance can be improved. However, forming the third coating 16 on the first coating 12 reduces the adhesion between the first coating 12 and the third coating 16. Therefore, it is preferable to form the second coating 14. The third coating 16 formed in this way contains zinc and aluminum.
 図1(a)のように、第1皮膜12は、亜鉛ニッケル合金皮膜である。また、下地材10上に、電気めっき法を用い第1皮膜12を形成する。この場合、第2皮膜14を設けないと第1皮膜12と第3皮膜16との密着性が低下することがある。よって、第2皮膜14を形成することが好ましい。 As shown in FIG. 1(a), the first coating 12 is a zinc-nickel alloy coating. The first coating 12 is formed on the base material 10 by electroplating. In this case, if the second coating 14 is not provided, the adhesion between the first coating 12 and the third coating 16 may decrease. Therefore, it is preferable to form the second coating 14.
 第2皮膜14を形成する前に、第1皮膜12に三価クロムを含む溶液を用いクロメート処理を行う。これにより、第1皮膜12と第2皮膜14との密着性がより向上する。 Before forming the second coating 14, the first coating 12 is chromated using a solution containing trivalent chromium. This further improves the adhesion between the first coating 12 and the second coating 14.
 また、図1(e)のように、第3皮膜16上にシリカ皮膜18(多孔質シリカ皮膜)を形成してもよい。これにより、耐食性がより向上する。 Also, as shown in FIG. 1(e), a silica film 18 (porous silica film) may be formed on the third film 16. This further improves corrosion resistance.
 実施例および比較例として、以下の実験を行った。実験の工程は以下である。
工程1:下地材10としてSPCC-SD鋼材のM24六角ボルト、M24ナットおよびM24ワッシャーを準備した。
The following experiments were carried out as examples and comparative examples. The steps of the experiments are as follows.
Step 1: An M24 hexagonal bolt, an M24 nut and an M24 washer made of SPCC-SD steel were prepared as the base material 10.
工程2:下地材10に電気めっきを施し第1皮膜12として亜鉛ニッケル合金皮膜を形成した。亜鉛とニッケルとの質量比を20:3とし、水酸化ナトリウム水溶液に溶解させためっき液を用いた。第1皮膜12を形成後、第1皮膜12の表面を水洗した。第1皮膜12の膜厚は約6μmであり、第1皮膜12内の亜鉛の含有率は87~92質量%、ニッケルの含有量は8~13質量%である。その後、三価クロムを含む溶液を用いクロメート処理を行った。クロメート処理によりクロメート皮膜の膜厚は約0.2μmである。 Step 2: The base material 10 was electroplated to form a zinc-nickel alloy coating as the first coating 12. A plating solution was used in which zinc and nickel were dissolved in an aqueous sodium hydroxide solution with a mass ratio of 20:3. After the first coating 12 was formed, the surface of the first coating 12 was washed with water. The thickness of the first coating 12 was approximately 6 μm, and the zinc content in the first coating 12 was 87 to 92 mass %, and the nickel content was 8 to 13 mass %. Then, a chromate treatment was performed using a solution containing trivalent chromium. The thickness of the chromate coating after the chromate treatment was approximately 0.2 μm.
 工程3:第1皮膜12の表面に第2皮膜14を形成した。粉体20を直径が約100μmの球形の亜鉛合金粉とした。亜鉛合金粉は、直径が約100μmであり、亜鉛、アルミニウムおよびマグネシウムからなる合金であり50質量%以上の亜鉛を含む。ショット球として直径が約100μmの球形のステンレス球を用いた。第2皮膜14の厚さは0.2μm~0.3μm程度である。 Step 3: A second coating 14 was formed on the surface of the first coating 12. The powder 20 was a spherical zinc alloy powder with a diameter of approximately 100 μm. The zinc alloy powder was an alloy of zinc, aluminum, and magnesium with a diameter of approximately 100 μm, and contained 50% or more by mass of zinc. Spherical stainless steel balls with a diameter of approximately 100 μm were used as shot balls. The thickness of the second coating 14 was approximately 0.2 μm to 0.3 μm.
 工程4:第2皮膜14の表面に第3皮膜16を形成した。第3皮膜用溶液として、ユケン工業株式会社製 メタス YC-B17Jとメタス YC-B3とを体積比25:3の比率で混合し、第1皮膜12の表面に塗布した。その後、250℃~290℃において30分以上の加熱処理を行った。以上の塗布および加熱処理を2回繰り返した。YC-B17Jには、亜鉛粉体、亜鉛以外の金属粉体としてアルミニウム粉体、有機ケイ素化合物としてテトラエトキシシランが含まれている。第3皮膜16の膜厚は約8μmであり、第3皮膜16内の亜鉛、アルミニウムおよびシリコン化合物の含有率はそれぞれ70質量%、15質量%および15質量%である。 Step 4: A third coating 16 was formed on the surface of the second coating 14. As a solution for the third coating, Metas YC-B17J and Metas YC-B3 manufactured by Yuken Kogyo Co., Ltd. were mixed in a volume ratio of 25:3 and applied to the surface of the first coating 12. Then, a heat treatment was performed for 30 minutes or more at 250°C to 290°C. The above application and heat treatment were repeated twice. YC-B17J contains zinc powder, aluminum powder as a metal powder other than zinc, and tetraethoxysilane as an organosilicon compound. The thickness of the third coating 16 is about 8 μm, and the zinc, aluminum, and silicon compound contents in the third coating 16 are 70 mass%, 15 mass%, and 15 mass%, respectively.
 工程5:第3皮膜16の表面に多孔質シリカ皮膜18を形成した。シリカ皮膜用溶液として、ユケン工業株式会社製 メタスYC-T、ルブラスC14またはルブラスC24を用い、第3皮膜16の表面に塗布した。その後、110℃~160℃において10分以上の加熱処理を行った。多孔質シリカ皮膜18の膜厚は約1μmであり、シリコン化合物およびチタン化合物の含有量はそれぞれ75質量%および25質量%である。 Step 5: A porous silica film 18 was formed on the surface of the third film 16. Metas YC-T, Lubras C14 or Lubras C24 manufactured by Yuken Kogyo Co., Ltd. was used as a silica film solution and applied to the surface of the third film 16. Then, a heat treatment was performed at 110°C to 160°C for 10 minutes or more. The thickness of the porous silica film 18 was about 1 μm, and the content of the silicon compound and the titanium compound was 75% by mass and 25% by mass, respectively.
[比較例]
 比較例1として、工程3を実施しないサンプルを作成した。比較例2として、工程3の代わりにアルカリ粗し処理を行いサンプルを作成した。アルカリ粗し処理は、第1皮膜12の表面を強アルカリ溶液に曝す処理であり、第1皮膜12の表面を粗面とすることができる。強アルカリ溶液はNaOHの濃度が100g/Lの水溶液を用いた。処理温度は20℃~30℃であり、処理時間は5分~10分である。
[Comparative Example]
As Comparative Example 1, a sample was prepared without carrying out step 3. As Comparative Example 2, a sample was prepared by carrying out an alkaline roughening treatment instead of step 3. The alkaline roughening treatment is a treatment in which the surface of the first coating 12 is exposed to a strong alkaline solution, and the surface of the first coating 12 can be made rough. The strong alkaline solution used was an aqueous solution of NaOH with a concentration of 100 g/L. The treatment temperature was 20°C to 30°C, and the treatment time was 5 to 10 minutes.
[クロスカット法試験]
 密着性の評価として、JIS-K5600-5-6(ISO2409)により規定されているクロスカット法を用い皮膜の付着性を評価した。皮膜に1mm間隔で格子状の6本×6本の切り込みを入れ、切込みを入れた皮膜上に粘着テープを貼り付けはがす。切込みを入れた領域の皮膜の剥がれの程度により皮膜の密着性を評価した。剥がれの程度はJIS-K5600-5-6の分類とした。分類0では、剥がれがほとんどなく、分類が大きくなると剥がれが大きいことを示している。
[Cross-cut method test]
The adhesion of the film was evaluated using the cross-cut method specified by JIS-K5600-5-6 (ISO2409). A grid of 6 x 6 cuts was made in the film at 1 mm intervals, and an adhesive tape was attached to the film with the cuts and peeled off. The adhesion of the film was evaluated based on the degree of peeling of the film in the cut areas. The degree of peeling was classified according to JIS-K5600-5-6. Classification 0 indicates almost no peeling, and higher classifications indicate greater peeling.
 表1は、比較例1、2および実施例1におけるクロスカット法試験による密着性評価の結果を示す表である。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the results of the adhesion evaluation by the cross-cut method test in Comparative Examples 1 and 2 and Example 1.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1では、クロスカット法の分類4であり密着性が低い。比較例2および実施例1では、クロスカット法の分類0であり、密着性が高い。比較例1では、耐食性が高いものの第1皮膜12と第3皮膜16の密着性が低く、第3皮膜16が第1皮膜12から剥がれやすい。比較例2のように、アルカリ粗し処理を行い第1皮膜12の表面の凹凸を大きくした後、第1皮膜12上に第3皮膜16を形成すると、第1皮膜12と第3皮膜16との間の密着性が向上する。実施例1のように、第1皮膜12上に第2皮膜14を形成し、第2皮膜14上に第3皮膜16を形成すると、第1皮膜12と第3皮膜16との密着性が向上する。クロスカット法を用いた密着性評価では、比較例2および実施例1はいずれも良好である。 As shown in Table 1, Comparative Example 1 is classified as 4 by the cross-cut method and has low adhesion. Comparative Example 2 and Example 1 are classified as 0 by the cross-cut method and have high adhesion. Comparative Example 1 has high corrosion resistance, but the adhesion between the first film 12 and the third film 16 is low, and the third film 16 is easily peeled off from the first film 12. As in Comparative Example 2, when the third film 16 is formed on the first film 12 after performing an alkaline roughening treatment to increase the unevenness of the surface of the first film 12, the adhesion between the first film 12 and the third film 16 is improved. As in Example 1, when the second film 14 is formed on the first film 12 and the third film 16 is formed on the second film 14, the adhesion between the first film 12 and the third film 16 is improved. In the adhesion evaluation using the cross-cut method, both Comparative Example 2 and Example 1 are good.
[振動試験]
 比較例2および実施例1のボルト、ワッシャーおよびナットを箱詰めし、運搬による振動を与えた後の外観試験を行った。シリカ皮膜18を形成するときの処理の異なる3種類のサンプルを用いた。各処理毎に、ボルトの個数は9個、ワッシャーの個数は18個、ナットの個数は9個である。
[Vibration test]
The bolts, washers, and nuts of Comparative Example 2 and Example 1 were packed in boxes and subjected to vibration during transportation, after which an appearance test was carried out. Three types of samples were used, each of which was different in the treatment for forming the silica coating 18. For each treatment, the number of bolts was 9, the number of washers was 18, and the number of nuts was 9.
 図3は、比較例2における振動試験後の処理2のボルトの表面の写真である。図3に示すように、破線丸30において振動試験により皮膜が剥がれている。このように、ボルト、ワッシャーおよびナットを箱詰めした箱に運搬の振動を加えると、各サンプルは衝突または擦れ皮膜が剥がれることがある。各サンプルについて振動試験後の皮膜の剥がれの有無を評価した。 Figure 3 is a photograph of the surface of the bolt of treatment 2 after the vibration test in Comparative Example 2. As shown in Figure 3, the coating has peeled off due to the vibration test at dashed circle 30. In this way, when a box containing bolts, washers, and nuts is subjected to vibration during transportation, each sample may be hit or rubbed, causing the coating to peel off. Each sample was evaluated for the presence or absence of coating peeling after the vibration test.
 表2は、比較例2、実施例1における振動試験による密着性評価の結果を示す表である。A、BおよびCは、工程5においてシリカ皮膜18を形成するときに、異なるシリカ皮膜用溶液を用いている。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the results of the adhesion evaluation by vibration test in Comparative Example 2 and Example 1. In A, B, and C, different silica coating solutions were used when forming the silica coating 18 in step 5.
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、比較例2では、剥がれの発生が多く観察された。実施例1では剥がれはほとんど観察されない。比較例2のように、第1皮膜12の表面の凹凸を大きくすることで、第1皮膜12と第3皮膜16との密着性が向上する。しかし、振動試験のように、大きな衝撃がサンプルに加わる場合に比較例2の密着性では不十分な場合もある。実施例1では、第2皮膜14を設けることで、第1皮膜12と第3皮膜16との密着性を向上でき、かつ大きな衝撃がサンプルに加わっても第3皮膜16が第1皮膜12から剥がれることを抑制できる。 As shown in Table 2, peeling was observed frequently in Comparative Example 2. Peeling was hardly observed in Example 1. By increasing the unevenness of the surface of the first coating 12 as in Comparative Example 2, the adhesion between the first coating 12 and the third coating 16 is improved. However, when a large impact is applied to the sample, such as in a vibration test, the adhesion of Comparative Example 2 may be insufficient. In Example 1, by providing the second coating 14, the adhesion between the first coating 12 and the third coating 16 can be improved, and peeling of the third coating 16 from the first coating 12 can be suppressed even if a large impact is applied to the sample.
 図2(a)から図2(c)のように、実施例1では、粉体20を第1皮膜12の表面に衝突させることにより、潰れた粉体13と第1皮膜12との密着性を向上させている。よって、実施例の結果は、第1皮膜12が亜鉛または亜鉛合金の場合に一般化できると考えられる。第2皮膜14の表面の凹凸が大きくなるため、第2皮膜14と第3皮膜16との密着が向上する。よって、実施例の結果は、第3皮膜16が亜鉛または亜鉛合金の場合に一般化できると考えられる。シリカ皮膜18は、耐食性の向上に寄与するものの、第1皮膜12と第3皮膜16との密着性にはあまり寄与しないと考えられる。よって、実施例1の結果はシリカ皮膜18を用いない場合にも一般化できる。 2(a) to 2(c), in Example 1, the powder 20 is collided with the surface of the first coating 12 to improve the adhesion between the crushed powder 13 and the first coating 12. Therefore, the results of the Example are considered to be generalizable to cases where the first coating 12 is zinc or a zinc alloy. The surface unevenness of the second coating 14 increases, improving the adhesion between the second coating 14 and the third coating 16. Therefore, the results of the Example are considered to be generalizable to cases where the third coating 16 is zinc or a zinc alloy. Although the silica coating 18 contributes to improving corrosion resistance, it is considered not to contribute much to the adhesion between the first coating 12 and the third coating 16. Therefore, the results of Example 1 are also generalizable to cases where the silica coating 18 is not used.
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。  Although the embodiments of the present invention have been described in detail above, the present invention is not limited to these specific embodiments, and various modifications and variations are possible within the scope of the gist of the present invention as described in the claims.
 10 下地材
 12 第1皮膜
 14 第2皮膜
 16 第3皮膜
 18 シリカ皮膜
 
10 Base material 12 First coating 14 Second coating 16 Third coating 18 Silica coating

Claims (12)

  1.  下地材上に形成された亜鉛または亜鉛合金皮膜である第1皮膜の表面に、亜鉛または亜鉛合金を含む複数の粉体を衝突させることで、亜鉛または亜鉛合金皮膜であり表面が凹凸状である第2皮膜を形成する工程と、
     前記第2皮膜の表面に、亜鉛または亜鉛合金を含む第3皮膜を形成する工程と、
    を含む皮膜形成方法。
    a step of forming a second coating, which is a zinc or zinc alloy coating and has an uneven surface, by colliding a plurality of powders containing zinc or a zinc alloy onto a surface of a first coating, which is a zinc or zinc alloy coating formed on a base material;
    forming a third coating containing zinc or a zinc alloy on a surface of the second coating;
    A method for forming a coating comprising the steps of:
  2.  前記複数の粉体は、前記亜鉛または亜鉛合金より硬い剛体紛を含む請求項1に記載の皮膜形成方法。 The coating formation method according to claim 1, wherein the plurality of powders includes a rigid powder harder than the zinc or zinc alloy.
  3.  前記複数の粉体は、亜鉛および鉄を含有する合金、または、亜鉛、マグネシウムおよびアルミニウムを含有する合金を含む請求項1または2に記載の皮膜形成方法。 The coating formation method according to claim 1 or 2, wherein the plurality of powders include an alloy containing zinc and iron, or an alloy containing zinc, magnesium, and aluminum.
  4.  前記第3皮膜を形成する工程は、前記第2皮膜の表面に亜鉛粉体および有機ケイ素化合物を含む溶液を塗布し、加熱処理することにより前記第3皮膜を形成する工程を含む請求項1または2に記載の皮膜形成方法。 The method for forming a film according to claim 1 or 2, wherein the step of forming the third film includes a step of applying a solution containing zinc powder and an organosilicon compound to the surface of the second film, and then performing a heat treatment to form the third film.
  5.  前記第3皮膜を形成する工程は、前記第2皮膜の表面に亜鉛粉体、アルミニウム粉体、並びにアルコキシシランおよびその加水分解物の少なくとも一方を含む溶液を塗布し、加熱処理することにより前記第3皮膜を形成する工程を含む請求項1または2に記載の皮膜形成方法。 The method for forming a film according to claim 1 or 2, wherein the step of forming the third film includes a step of applying a solution containing zinc powder, aluminum powder, and at least one of an alkoxysilane and a hydrolyzate thereof to the surface of the second film, and then performing a heat treatment to form the third film.
  6.  前記第1皮膜は、亜鉛ニッケル合金皮膜である請求項1または2に記載の皮膜形成方法。 The coating formation method according to claim 1 or 2, wherein the first coating is a zinc-nickel alloy coating.
  7.  下地材上に、電気めっき法を用い前記第1皮膜を形成する工程を含む請求項1または2に記載の皮膜形成方法。 The method for forming a coating according to claim 1 or 2, which includes a step of forming the first coating on a base material using an electroplating method.
  8.  前記第2皮膜を形成する工程の前に、前記第1皮膜の表面に三価クロムを含む溶液を用いクロメート処理を行う工程を含む請求項1または2に記載の皮膜形成方法。 The method for forming the coating according to claim 1 or 2, further comprising a step of performing a chromate treatment on the surface of the first coating using a solution containing trivalent chromium before the step of forming the second coating.
  9.  前記第3皮膜の表面にシリカ皮膜を形成する工程を含む請求項1または2に記載の皮膜形成方法。 The coating method according to claim 1 or 2, which includes a step of forming a silica coating on the surface of the third coating.
  10.  下地材上に、電気めっき法を用い亜鉛ニッケル合金皮膜である第1皮膜を形成する工程と、
     前記第1皮膜の表面に、亜鉛または亜鉛合金と前記亜鉛または亜鉛合金より硬い剛体紛とを含む複数の粉体を衝突させることで、亜鉛合金皮膜であり表面が凹凸状である第2皮膜を形成する工程と、
     前記第2皮膜の表面に、亜鉛粉体、アルミニウム粉体、並びにアルコキシシランおよびその加水分解物の少なくとも一方を含む溶液を塗布し、加熱処理することで混合皮膜を形成する工程と、
    を含む皮膜形成方法。
    forming a first coating, which is a zinc-nickel alloy coating, on a base material by electroplating;
    a step of forming a second coating, which is a zinc alloy coating and has an uneven surface, by colliding a plurality of powders, which include zinc or a zinc alloy and a rigid powder harder than the zinc or the zinc alloy, on a surface of the first coating;
    A step of applying a solution containing zinc powder, aluminum powder, and at least one of an alkoxysilane and a hydrolyzate thereof to a surface of the second coating film, and performing a heat treatment to form a mixed coating film;
    A method for forming a coating comprising the steps of:
  11.  下地材と、
     前記下地材上に形成された亜鉛または亜鉛合金皮膜である第1皮膜と、
     前記第1皮膜の表面に設けられ、亜鉛または亜鉛合金を含む複数の粉体が潰れ互いに接合した構造を有する亜鉛または亜鉛合金皮膜であり表面が凹凸状である第2皮膜と、
     前記第2皮膜の表面に設けられ、亜鉛または亜鉛合金を含む第3皮膜と、
    を備える皮膜。
    The base material and
    A first coating which is a zinc or zinc alloy coating formed on the base material;
    A second coating is provided on a surface of the first coating, and is a zinc or zinc alloy coating having a structure in which a plurality of powder particles containing zinc or a zinc alloy are crushed and bonded to each other, and has an uneven surface;
    a third coating provided on a surface of the second coating and containing zinc or a zinc alloy;
    A coating comprising:
  12.  前記第1皮膜は亜鉛ニッケル合金皮膜であり、
     前記複数の粉体は、亜鉛および鉄を含有する合金、または、亜鉛、マグネシウムおよびアルミニウムを含有する合金を含み、
     前記第3皮膜は、亜鉛およびアルミニウムを含む請求項11に記載の皮膜。
     
    the first coating is a zinc-nickel alloy coating,
    the plurality of powders include an alloy containing zinc and iron, or an alloy containing zinc, magnesium, and aluminum;
    The coating of claim 11 , wherein the third coating comprises zinc and aluminum.
PCT/JP2023/042194 2022-11-25 2023-11-24 Film and film formation method WO2024111661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-188587 2022-11-25
JP2022188587A JP2024076808A (en) 2022-11-25 2022-11-25 Coating and coating formation method

Publications (1)

Publication Number Publication Date
WO2024111661A1 true WO2024111661A1 (en) 2024-05-30

Family

ID=91196199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042194 WO2024111661A1 (en) 2022-11-25 2023-11-24 Film and film formation method

Country Status (2)

Country Link
JP (1) JP2024076808A (en)
WO (1) WO2024111661A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645372A (en) * 1979-09-13 1981-04-25 Dowa Teppun Kogyo Kk Material for blast and surface treatment method by use of said material
JPS63179735A (en) * 1987-01-21 1988-07-23 住友金属工業株式会社 Coated steel material having excellent corrosion resistance after coating
JPH02138482A (en) * 1988-11-16 1990-05-28 Nkk Corp Production of steel plate coated with alloyed zinc by galvanization having excellent workability and paintability
JP2000144446A (en) * 1998-11-08 2000-05-26 Nkk Corp Organic-coated steel sheet excellent in corrosion resistance
JP2004002904A (en) * 2002-04-05 2004-01-08 Yuken Industry Co Ltd Base material provided with two-layered electrochemical formation treatment film and automobile parts
WO2009093318A1 (en) * 2008-01-24 2009-07-30 Yuken Industry Co., Ltd. Member with corrosion-resistant coating film, process for production of the same, and coating composition for the production thereof
JP2021063283A (en) * 2019-10-17 2021-04-22 株式会社鈴木商店 Coating formation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645372A (en) * 1979-09-13 1981-04-25 Dowa Teppun Kogyo Kk Material for blast and surface treatment method by use of said material
JPS63179735A (en) * 1987-01-21 1988-07-23 住友金属工業株式会社 Coated steel material having excellent corrosion resistance after coating
JPH02138482A (en) * 1988-11-16 1990-05-28 Nkk Corp Production of steel plate coated with alloyed zinc by galvanization having excellent workability and paintability
JP2000144446A (en) * 1998-11-08 2000-05-26 Nkk Corp Organic-coated steel sheet excellent in corrosion resistance
JP2004002904A (en) * 2002-04-05 2004-01-08 Yuken Industry Co Ltd Base material provided with two-layered electrochemical formation treatment film and automobile parts
WO2009093318A1 (en) * 2008-01-24 2009-07-30 Yuken Industry Co., Ltd. Member with corrosion-resistant coating film, process for production of the same, and coating composition for the production thereof
JP2021063283A (en) * 2019-10-17 2021-04-22 株式会社鈴木商店 Coating formation method

Also Published As

Publication number Publication date
JP2024076808A (en) 2024-06-06

Similar Documents

Publication Publication Date Title
US4366185A (en) Metal-resin composite and process for its production
US6777097B2 (en) Corrosion resistant rare earth magnet and its preparation
JP2608569B2 (en) Laminated vapor-deposited steel sheet
CN103290350B (en) The method of magnesium alloy material or magnesium alloy product and conduction corrosion protection coating thereof
US20150251216A1 (en) Magnesium Alloy with Dense Surface Texture and Surface Treatment Method Thereof
EP2418303A1 (en) Zinc-coated steel sheet
WO2016157665A1 (en) Heat-absorbent and radiant steel sheet, and heat-absorbent and radiant member
CN114182249B (en) Method for improving corrosion resistance of cold-sprayed double-layer coating
JPS6039169A (en) Hydrophilic surface treating agent for metal
CN1210874A (en) Inorganic coating
WO2021075255A1 (en) Method for forming coating film
JP5369986B2 (en) Painted metal material and casing made of it
WO2024111661A1 (en) Film and film formation method
JP7114914B2 (en) Anti-rust treated metal parts and coating paint
JP2006083464A (en) Rust-preventive metallic component, and its manufacturing method
JP2011037083A (en) Coated metal material enclosure using coated metal material and coating material composition
US6562289B1 (en) Method for improving the corrosion protection of permanent magnets containing rare earth metals
WO2005053949A1 (en) Coated metal plate with excellent corrosion resistance and reduced environmental impact
CN109136864A (en) A method of in magnet steel surface vacuum coated with aluminum tin composite coating
JPS6017704B2 (en) Composite resin coated metal body
JP2004017455A (en) Resin-coated metallic sheeting and electrical/electronic equipment using the sheeting
CN113913079B (en) Anti-corrosion protective layer for metal plate and preparation process thereof
JP5989274B1 (en) Absorbing / dissipating steel plate and absorbing / dissipating member
KR101516379B1 (en) Surface treatment method for magnesium or magnesium alloy
CN115770719B (en) Zinc-aluminum-magnesium surface coating treatment process capable of preventing coating from falling off during stamping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894665

Country of ref document: EP

Kind code of ref document: A1