WO2024111584A1 - Centrifugal compressor - Google Patents

Centrifugal compressor Download PDF

Info

Publication number
WO2024111584A1
WO2024111584A1 PCT/JP2023/041824 JP2023041824W WO2024111584A1 WO 2024111584 A1 WO2024111584 A1 WO 2024111584A1 JP 2023041824 W JP2023041824 W JP 2023041824W WO 2024111584 A1 WO2024111584 A1 WO 2024111584A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
motor
impeller
chamber
paths
Prior art date
Application number
PCT/JP2023/041824
Other languages
French (fr)
Japanese (ja)
Inventor
英文 森
花帆 竹内
亮 楳山
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2024111584A1 publication Critical patent/WO2024111584A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer

Definitions

  • This disclosure relates to centrifugal compressors.
  • the centrifugal compressor has a rotating body including a rotating shaft and an impeller.
  • the impeller rotates integrally with the rotating shaft.
  • the impeller compresses air.
  • the centrifugal compressor has a motor and a housing.
  • the motor rotates the rotating shaft.
  • the housing has an impeller chamber, a motor chamber, and an intake port.
  • the impeller chamber houses the impeller.
  • the motor chamber houses the motor.
  • the intake port draws air into the impeller chamber.
  • the motor includes a stator and a rotor.
  • the stator is fixed to a housing.
  • the rotor rotates integrally with the rotating shaft.
  • the rotor is disposed inside the stator.
  • the rotor constitutes a part of a rotating body.
  • the rotor includes a cylindrical member and a magnetic body.
  • the magnetic body is fixed to the inside of the cylindrical member.
  • the rotating shaft may include a first shaft member and a second shaft member.
  • the first shaft member and the second shaft member are provided on both sides of the magnetic body in the axial direction of the cylindrical member.
  • the impeller is connected to the first shaft member, for example.
  • a centrifugal compressor may have an axial passage and multiple radial passages.
  • the axial passage opens at one end of the first shaft member to which the impeller is connected and communicates with the suction port.
  • the axial passage extends inside the first shaft member in the axial direction of the rotating shaft.
  • the multiple radial passages extend inside the rotor in the radial direction of the rotating shaft and communicate with the motor chamber.
  • the multiple radial passages introduce air from the axial passage into the motor chamber.
  • the motor is then cooled by the air introduced into the motor chamber from the suction port via the axial passage and each of the radial passages.
  • each passage may be formed from a shroud surface that defines each passage, a hub surface that extends along the shroud surface and defines each passage, and a number of vanes that extend from one of the shroud surface and the hub surface to the other.
  • the air flowing through each passage is more likely to be accelerated by the centrifugal force that accompanies the rotation of the rotor, and air can be efficiently introduced from each passage into the motor chamber. As a result, the motor is efficiently cooled.
  • the rotating shaft is manufactured using a mold with a complex structure, which may increase manufacturing costs.
  • a centrifugal compressor comprises a rotor including a rotating shaft and an impeller configured to rotate integrally with the rotating shaft to compress air, a motor configured to rotate the rotating shaft, and a housing having an impeller chamber that accommodates the impeller, a motor chamber that accommodates the motor, and an intake port that draws air into the impeller chamber
  • the motor comprises a stator fixed to the housing, and a rotor configured to rotate integrally with the rotating shaft and disposed inside the stator, constituting a part of the rotor, the rotor having a tubular member and a magnetic body fixed to the inside of the tubular member
  • the rotating shaft includes a first shaft member and a second shaft member provided on both sides of the magnetic body in the axial direction of the tubular member
  • the impeller is connected to the first shaft member
  • the rotor has an opening at one end of the first shaft member to which the impeller is connected, forming the intake port.
  • a centrifugal compressor that includes an axial passage that extends through the inside of the first shaft member in the axial direction of the rotating shaft and communicates with the inside of the rotor in the radial direction of the rotating shaft, and a plurality of paths that connect the inside of the rotor to the motor chamber and introduce air from the axial passage into the motor chamber, and the motor is cooled by air introduced into the motor chamber from the suction port through the axial passage and each of the paths, and includes a first member having a shroud surface that defines a portion of each of the paths, a second member having a hub surface that extends along the shroud surface and defines a portion of each of the paths, and a plurality of blades that extend from one of the shroud surface and the hub surface to the other and define a portion of each of the paths, the plurality of blades being provided on one of the first member and the second member, and the cylindrical member has the first member and the second member inside, forms a portion of each of the paths, and opens into the motor chamber
  • FIG. 1 is a cross-sectional view of a centrifugal compressor according to a first embodiment.
  • FIG. FIG. 2 is an enlarged cross-sectional view showing a portion of the centrifugal compressor of FIG. 1 .
  • FIG. 2 is an enlarged cross-sectional view showing a portion of the centrifugal compressor of FIG. 1 .
  • FIG. 2 is an enlarged cross-sectional view showing a portion of the centrifugal compressor of FIG. 1 .
  • FIG. 2 is an enlarged cross-sectional view showing a portion of the centrifugal compressor of FIG. 1.
  • FIG. 5 is a cross-sectional view of a centrifugal compressor according to a second embodiment.
  • FIG. 7 is an enlarged cross-sectional view of a portion of the centrifugal compressor of FIG. 6.
  • a centrifugal compressor according to a first embodiment will be described below with reference to Fig. 1 to Fig. 5.
  • the centrifugal compressor of this embodiment is mounted on a fuel cell vehicle.
  • the centrifugal compressor is configured to compress air.
  • the centrifugal compressor 10 includes a housing 11.
  • the housing 11 is made of a metal material.
  • the housing 11 is made of aluminum.
  • the housing 11 is cylindrical.
  • the housing 11 includes a motor housing 12, a compressor housing 13, a turbine housing 14, a first plate 15, a second plate 16, and a seal plate 17.
  • the motor housing 12 is cylindrical.
  • the motor housing 12 has a plate-shaped end wall 12a and a peripheral wall 12b.
  • the peripheral wall 12b extends cylindrically from the outer periphery of the end wall 12a.
  • the first plate 15 is connected to the open end of the peripheral wall 12b of the motor housing 12.
  • the first plate 15 closes the opening of the peripheral wall 12b of the motor housing 12.
  • the end wall 12a and peripheral wall 12b of the motor housing 12 and the first plate 15 define a motor chamber 18.
  • the housing 11 has a motor chamber 18.
  • the first plate 15 has a first recess 15c and a second recess 15d.
  • the first recess 15c and the second recess 15d are formed on the end face 15a of the first plate 15 opposite the motor housing 12.
  • the first recess 15c and the second recess 15d are circular holes.
  • the inner diameter of the first recess 15c is larger than the inner diameter of the second recess 15d.
  • the second recess 15d is formed on the bottom face 15f of the first recess 15c.
  • the axis of the first recess 15c and the axis of the second recess 15d are aligned.
  • the seal plate 17 is fitted into the first recess 15c.
  • the seal plate 17 is attached to the first plate 15, for example, by bolts (not shown).
  • the seal plate 17 closes the opening of the second recess 15d.
  • the seal plate 17 and the second recess 15d define a thrust bearing accommodating chamber 19. Therefore, the housing 11 has the thrust bearing accommodating chamber 19.
  • the seal plate 17 also has a shaft insertion hole 17h.
  • the shaft insertion hole 17h is formed in the center of the seal plate 17.
  • the shaft insertion hole 17h opens into the thrust bearing accommodating chamber 19.
  • the first plate 15 has a first radial bearing retaining portion 21.
  • the first radial bearing retaining portion 21 is cylindrical.
  • the first radial bearing retaining portion 21 protrudes into the motor chamber 18 from the center of the end face 15b of the first plate 15 on the motor housing 12 side.
  • the first radial bearing retaining portion 21 is connected to the motor chamber 18.
  • the first radial bearing retaining portion 21 penetrates the first plate 15 and opens to the bottom surface 15h of the second recess 15d. Therefore, the first radial bearing retaining portion 21 is connected to the thrust bearing accommodating chamber 19.
  • the axis of the first radial bearing retaining portion 21 coincides with the axis of the first recess 15c and the axis of the second recess 15d.
  • the compressor housing 13 is cylindrical.
  • the compressor housing 13 has a circular suction port 22. Therefore, the housing 11 has the suction port 22.
  • the compressor housing 13 is connected to the end face 15a of the first plate 15 with the axis of the suction port 22 coinciding with the axis of the shaft insertion hole 17h of the seal plate 17.
  • the suction port 22 opens into the end face of the compressor housing 13 opposite the first plate 15.
  • the housing 11 has the impeller chamber 23.
  • the seal plate 17 separates the impeller chamber 23 from the thrust bearing accommodating chamber 19.
  • the impeller chamber 23 is connected to the suction port 22.
  • the impeller chamber 23 is in the shape of a generally truncated cone hole whose diameter gradually increases as it moves away from the suction port 22.
  • the discharge chamber 24 extends around the axis of the suction port 22 around the impeller chamber 23.
  • the compressor diffuser passage 25 connects the impeller chamber 23 and the discharge chamber 24.
  • the impeller chamber 23 is connected to the shaft insertion hole 17h of the seal plate 17.
  • the motor housing 12 has a second radial bearing retaining portion 26.
  • the second radial bearing retaining portion 26 is cylindrical.
  • the second radial bearing retaining portion 26 protrudes from the center of the inner surface of the end wall 12a of the motor housing 12 into the motor chamber 18.
  • the second radial bearing retaining portion 26 is connected to the motor chamber 18.
  • the inner side of the second radial bearing retaining portion 26 penetrates the end wall 12a of the motor housing 12 and opens to the outer surface of the end wall 12a.
  • the axis of the first radial bearing retaining portion 21 and the axis of the second radial bearing retaining portion 26 are aligned.
  • the second plate 16 is connected to the outer surface of the end wall 12a of the motor housing 12.
  • the second plate 16 has a shaft insertion hole 16h.
  • the shaft insertion hole 16h is formed in the center of the second plate 16.
  • the turbine housing 14 is cylindrical.
  • the turbine housing 14 has a circular discharge port 27.
  • the turbine housing 14 is connected to the end face 16a of the second plate 16 opposite the motor housing 12, with the axis of the discharge port 27 coinciding with the axis of the shaft insertion hole 16h of the second plate 16.
  • the discharge port 27 opens into the end face of the turbine housing 14 opposite the second plate 16.
  • a turbine chamber 28 Between the turbine housing 14 and the end face 16a of the second plate 16, a turbine chamber 28, a turbine scroll passage 29, and a communication passage 30 are formed.
  • the turbine chamber 28 is connected to the discharge port 27.
  • the turbine scroll passage 29 extends around the axis of the discharge port 27 around the turbine chamber 28.
  • the communication passage 30 connects the turbine chamber 28 and the turbine scroll passage 29.
  • the turbine chamber 28 is connected to the shaft insertion hole 16h of the second plate 16.
  • the centrifugal compressor 10 is equipped with a motor 31.
  • the motor 31 is housed in the motor chamber 18. Therefore, the motor chamber 18 houses the motor 31. And the motor 31 is housed in the housing 11.
  • the motor 31 includes a stator 32 and a rotor 33.
  • the stator 32 includes a cylindrical stator core 34 and a coil 35.
  • the coil 35 is wound around the stator core 34.
  • the stator core 34 is fixed to the inner circumferential surface of the peripheral wall 12b of the motor housing 12.
  • the stator 32 is fixed to the housing 11.
  • Coil ends 36 which are part of the coil 35, protrude from both end surfaces of the stator core 34.
  • the coil end 36 located near the first plate 15 in the stator core 34 is referred to as the "first coil end 36a.” Also, of the two coil ends 36, the coil end 36 located near the end wall 12a of the motor housing 12 in the stator core 34 is referred to as the "second coil end 36b.”
  • the stator 32 includes a resin part 37.
  • the resin part 37 covers the stator core 34 and the coil end 36.
  • the resin part 37 includes a first resin part 38, a second resin part 39, and a third resin part 40.
  • the stator 32 includes the first resin part 38, the second resin part 39, and the third resin part 40.
  • the first resin part 38 is cylindrical and covers the first coil end 36a with resin.
  • the second resin part 39 is cylindrical and covers the second coil end 36b with resin.
  • the third resin part 40 is cylindrical and covers the inner circumferential surface of the stator core 34 with resin.
  • the third resin part 40 extends in the axial direction of the stator core 34 inside the stator core 34.
  • the third resin part 40 connects the first resin part 38 and the second resin part 39.
  • the rotor 33 is disposed inside the stator 32.
  • the rotor 33 has a cylindrical member 41 and a permanent magnet 42, which is a magnetic body.
  • the cylindrical member 41 is made of, for example, a titanium alloy.
  • the cylindrical member 41 is cylindrical in shape with the axis of the cylindrical member 41 extending linearly.
  • the outer diameter of the cylindrical member 41 is constant.
  • the permanent magnet 42 is cylindrical.
  • the permanent magnet 42 is disposed inside the tubular member 41.
  • the axis of the permanent magnet 42 coincides with the axis of the tubular member 41.
  • the permanent magnet 42 is press-fitted into the inner circumferential surface of the tubular member 41. Therefore, the permanent magnet 42 is fixed inside the tubular member 41.
  • the permanent magnet 42 is magnetized in the radial direction of the permanent magnet 42. Specifically, the permanent magnet 42 is magnetized in the radial direction of the permanent magnet 42, so that the permanent magnet 42 is cylindrical with a north pole and a south pole on both radial sides of the permanent magnet 42.
  • the length of the permanent magnet 42 in the axial direction is shorter than the length of the tubular member 41 in the axial direction.
  • Both end faces of the permanent magnet 42 are located inside the tubular member 41. Therefore, both end portions located in the axial direction of the tubular member 41 protrude in the axial direction relative to both end faces of the permanent magnet 42. And both end portions of the tubular member 41 protrude in the axial direction relative to both end faces of the stator core 34.
  • the centrifugal compressor 10 has a rotating shaft 43.
  • the rotating shaft 43 includes a first shaft member 44 and a second shaft member 45.
  • the first shaft member 44 and the second shaft member 45 are provided on both sides of the permanent magnet 42 in the axial direction of the cylindrical member 41.
  • the first shaft member 44 and the second shaft member 45 are made of, for example, iron.
  • the first end of the first shaft member 44 is fixed to the first end of the tubular member 41.
  • the first shaft member 44 protrudes from the motor chamber 18 into the impeller chamber 23, passing through the inside of the first radial bearing holder 21, the thrust bearing accommodating chamber 19, and the shaft insertion hole 17h.
  • the first end of the second shaft member 45 is press-fitted into the inner circumferential surface of the second end of the tubular member 41. Therefore, the second shaft member 45 is fixed to the tubular member 41.
  • the second end of the second shaft member 45 protrudes from the motor chamber 18 into the turbine chamber 28, passing through the inside of the second radial bearing holder 26 and the shaft insertion hole 16h.
  • the centrifugal compressor 10 includes a first seal member 46.
  • the first seal member 46 is provided between the shaft insertion hole 17h of the seal plate 17 and the first shaft member 44.
  • the first seal member 46 prevents air from leaking from the impeller chamber 23 toward the motor chamber 18.
  • the centrifugal compressor 10 includes a second seal member 47.
  • the second seal member 47 is provided between the shaft insertion hole 16h of the second plate 16 and the second shaft member 45.
  • the second seal member 47 prevents air from leaking from the turbine chamber 28 toward the motor chamber 18.
  • the first seal member 46 and the second seal member 47 are, for example, seal rings.
  • the centrifugal compressor 10 is provided with a support portion 48.
  • the support portion 48 protrudes in an annular shape from the outer peripheral surface of the first shaft member 44.
  • the support portion 48 is disk-shaped.
  • the support portion 48 is fixed to the outer peripheral surface of the first shaft member 44 in a state in which it protrudes in an annular shape radially outward from the outer peripheral surface of the first shaft member 44. Therefore, the support portion 48 is separate from the first shaft member 44.
  • the support portion 48 is disposed in the thrust bearing housing chamber 19. The support portion 48 rotates integrally with the first shaft member 44.
  • the centrifugal compressor 10 includes an impeller 49.
  • the impeller 49 is attached to the second end of the first shaft member 44. Therefore, the impeller 49 is connected to the first shaft member 44.
  • the impeller 49 is disposed closer to the second end of the first shaft member 44 than the support portion 48 of the first shaft member 44.
  • the impeller 49 is cylindrical and gradually reduces in diameter from the back surface to the tip surface.
  • the impeller 49 is housed in the impeller chamber 23. Therefore, the impeller chamber 23 houses the impeller 49.
  • the outer edge of the impeller 49 extends along the inner peripheral surface of the impeller chamber 23.
  • the impeller 49 compresses air by rotating integrally with the first shaft member 44. Therefore, the impeller 49 compresses air by rotating integrally with the rotating shaft 43.
  • the rotating shaft 43 and the impeller 49 constitute the rotating body 60. Therefore, the rotating body 60 includes the rotating shaft 43 and the impeller 49.
  • the rotor 33 rotates integrally with the first shaft member 44 and the second shaft member 45. Therefore, the rotor 33 rotates integrally with the rotating shaft 43.
  • the rotor 33 constitutes a part of the rotating body 60.
  • the motor 31 rotates the rotating shaft 43.
  • the centrifugal compressor 10 includes a turbine wheel 50.
  • the turbine wheel 50 is attached to the second end of the second shaft member 45.
  • the turbine wheel 50 is housed in the turbine chamber 28.
  • the turbine wheel 50 rotates integrally with the second shaft member 45.
  • the centrifugal compressor 10 includes a first radial bearing 51 and a second radial bearing 52.
  • the first radial bearing 51 is cylindrical.
  • the first radial bearing 51 is held by the first radial bearing holder 21. Therefore, the first radial bearing holder 21 holds the first radial bearing 51.
  • the second radial bearing 52 is cylindrical.
  • the second radial bearing 52 is held by the second radial bearing holder 26. Therefore, the second radial bearing holder 26 holds the second radial bearing 52.
  • the first radial bearing 51 supports the first shaft member 44 so that it can rotate in the radial direction.
  • the second radial bearing 52 supports the second shaft member 45 so that it can rotate in the radial direction.
  • the first radial bearing 51 and the second radial bearing 52 support the rotor 33 so that it can rotate in the radial direction at both sides of the tubular member 41 in the axial direction of the tubular member 41. Note that the "radial direction" is the direction perpendicular to the axial direction of the tubular member 41.
  • the centrifugal compressor 10 is equipped with a thrust bearing 53.
  • the thrust bearing 53 is accommodated in the thrust bearing accommodation chamber 19. Therefore, the thrust bearing accommodation chamber 19 accommodates the thrust bearing 53.
  • the thrust bearing 53 rotatably supports the support portion 48 in the thrust direction. Therefore, the thrust bearing 53 rotatably supports the rotating shaft 43 in the thrust direction between the impeller 49 and the first radial bearing 51 via the support portion 48.
  • the "thrust direction" is a direction parallel to the axial direction of the cylindrical member 41. In this manner, the rotor 33 is rotatably supported by the housing 11.
  • the housing 11 has a discharge passage 59.
  • the discharge passage 59 penetrates the second radial bearing retaining portion 26 and the end wall 12a of the motor housing 12.
  • a first end of the discharge passage 59 communicates with the inside of the motor chamber 18.
  • a second end of the discharge passage 59 communicates with the outside of the housing 11.
  • the centrifugal compressor 10 configured as described above constitutes a part of a fuel cell system 55 mounted on a fuel cell vehicle.
  • the fuel cell system 55 includes a fuel cell stack 56, a supply flow path 57, and a discharge flow path 58.
  • the fuel cell stack 56 is composed of a plurality of battery cells (not shown).
  • the supply flow path 57 connects the discharge chamber 24 and the fuel cell stack 56.
  • the discharge flow path 58 connects the fuel cell stack 56 and the turbine scroll flow path 29.
  • Air drawn into the impeller chamber 23 from the intake port 22 is compressed as the impeller 49 rotates, passes through the compressor diffuser passage 25, and is discharged from the discharge chamber 24 to the supply passage 57.
  • the air discharged from the discharge chamber 24 to the supply passage 57 is then supplied to the fuel cell stack 56 via the supply passage 57.
  • the air supplied to the fuel cell stack 56 is used to generate electricity in the fuel cell stack 56.
  • the air passing through the fuel cell stack 56 is then discharged to the exhaust passage 58 as exhaust air from the fuel cell stack 56.
  • the exhaust gas from the fuel cell stack 56 is drawn into the turbine scroll passage 29 via the exhaust passage 58.
  • the exhaust gas from the fuel cell stack 56 drawn into the turbine scroll passage 29 is introduced into the turbine chamber 28 through the communication passage 30.
  • the turbine wheel 50 rotates due to the exhaust gas from the fuel cell stack 56 introduced into the turbine chamber 28.
  • the rotor 33 also rotates due to the rotation of the turbine wheel 50 which is rotated by the exhaust gas from the fuel cell stack 56.
  • the rotation of the rotor 33 is assisted by the rotation of the turbine wheel 50 due to the exhaust gas from the fuel cell stack 56.
  • the exhaust gas that has passed through the turbine chamber 28 is discharged to the outside from the discharge port 27.
  • the first shaft member 44 has a first member 61 and a second member 62.
  • the centrifugal compressor 10 includes the first member 61 and the second member 62.
  • the first member 61 is cylindrical.
  • the first member 61 penetrates the impeller 49.
  • a first end of the first member 61 protrudes from the tip end surface of the impeller 49.
  • the inside of the first member 61 forms an axial passage 63.
  • the axial passage 63 is formed in the first member 61.
  • the rotor 60 includes the axial passage 63.
  • the axis of the axial passage 63 coincides with the axis of the first member 61.
  • a first end of the axial passage 63 opens into a first end face of the first member 61.
  • the axial passage 63 opens into one end of the first shaft member 44 where the impeller 49 is provided, and communicates with the suction port 22.
  • the axial passage 63 penetrates the interior of the first member 61 in the axial direction of the rotating shaft 43.
  • the axial passage 63 extends inside the first shaft member 44 in the axial direction of the rotating shaft 43.
  • the first member 61 has a bearing portion 64 and a press-fit portion 65.
  • the bearing portion 64 is located inside the first radial bearing retaining portion 21.
  • the bearing portion 64 is supported by the first radial bearing 51.
  • the press-fit portion 65 is located closer to the second end of the first member 61 than the bearing portion 64.
  • the press-fit portion 65 is the second end of the first member 61.
  • the press-fit portion 65 is continuous with the bearing portion 64.
  • the outer diameter of the press-fit portion 65 is smaller than the outer diameter of the bearing portion 64.
  • the press-fit portion 65 is disposed inside the tubular member 41.
  • the outer peripheral surface of the bearing portion 64 and the outer peripheral surface of the press-fit portion 65 are connected by an annular step surface 66.
  • the step surface 66 extends in the radial direction of the rotating shaft 43.
  • the first member 61 has a shroud surface 67.
  • the shroud surface 67 is continuous with the second end of the axial passage 63. Therefore, the shroud surface 67 is continuous with the end of the axial passage 63 opposite the suction port 22.
  • the shroud surface 67 extends in a direction away from the suction port 22 as it moves away from the axial passage 63.
  • the shroud surface 67 is a surface curved in an arc that convexly faces the axis of the first member 61.
  • the shroud surface 67 is the inner surface of a conical hole that opens into the end face of the press-in portion 65.
  • the end of the shroud surface 67 opposite the axial passage 63 is continuous with the outer surface of the press-in portion 65.
  • the end of the shroud surface 67 opposite the axial passage 63 is located inside the tubular member 41.
  • the second member 62 is cylindrical.
  • the outer diameter of the second member 62 is the same as the outer diameter of the press-fit portion 65 of the first member 61.
  • the second member 62 is disposed closer to the permanent magnet 42 than the first member 61.
  • the second member 62 is disposed inside the tubular member 41.
  • the second member 62 has a hub surface 68.
  • the hub surface 68 extends along the shroud surface 67.
  • the hub surface 68 is an arc-shaped curved surface that is concave toward the axis of the second member 62.
  • the hub surface 68 gradually approaches the shroud surface 67 as it moves away from the axial path 63.
  • the second member 62 is provided with a plurality of blades 69.
  • the plurality of blades 69 are provided on the second member 62.
  • the plurality of blades 69 are integrally formed with the second member 62.
  • Each blade 69 stands upright from the hub surface 68.
  • the plurality of blades 69 extend from the hub surface 68 toward the shroud surface 67.
  • the outer edge of each blade 69 that faces the shroud surface 67 extends along the shroud surface 67.
  • the outer edge of each blade 69 that faces the shroud surface 67 is in contact with the shroud surface 67.
  • the press-fit portion 65 of the first member 61 is press-fitted into the inner circumferential surface of the first end of the tubular member 41.
  • the step surface 66 abuts against the first end face of the tubular member 41.
  • the step surface 66 and the first end face of the tubular member 41 are joined by, for example, welding or brazing.
  • the second member 62 is press-fitted into the inner circumferential surface of the first end of the tubular member 41. In this way, the tubular member 41 connects the first member 61 and the second member 62 with the outer circumferential edge of the shroud surface 67 and the outer circumferential edge of the hub surface 68 straddling each other in the axial direction of the rotating shaft 43.
  • the cylindrical member 41 has a plurality of communication holes 70 formed therein.
  • Each communication hole 70 is connected to the space between the shroud surface 67 and the hub surface 68, and also to the space between adjacent blades 69 in the circumferential direction of the second member 62.
  • Each communication hole 70 opens into the motor chamber 18.
  • the rotating body 60 has a plurality of paths 71.
  • the plurality of paths 71 is formed by the space between the shroud surface 67 and the hub surface 68, and by the space between adjacent blades 69 in the circumferential direction of the second member 62, and by each communication hole 70. Therefore, the shroud surface 67, the hub surface 68, and the plurality of blades 69 define a portion of each path 71.
  • the communication hole 70 forms a portion of each path 71.
  • the plurality of paths 71 extend inside the first shaft member 44 in the radial direction of the rotating shaft 43.
  • the plurality of paths 71 extend inside the rotating body 60 in the radial direction of the rotating shaft 43 and communicate with the inside of the motor chamber 18.
  • Each path 71 communicates with a space inside the first coil end 36a in the motor chamber 18.
  • the plurality of paths 71 introduce air from the shaft path 63 into the motor chamber 18.
  • the tubular member 41 has a first member 61 and a second member 62 inside, forms a part of each path 71, and opens into the motor chamber 18.
  • a portion of the air from the suction port 22 is introduced into the axial passage 63 and flows through the axial passage 63 and each of the paths 71.
  • the air flowing through each of the paths 71 is introduced into the motor chamber 18.
  • the air introduced into the motor chamber 18 passes between the stator 32 and the rotor 33, and is discharged to the outside of the housing 11 through the discharge passage 59.
  • the motor 31 is cooled by the air introduced into the motor chamber 18. In this way, in the centrifugal compressor 10, the motor 31 is cooled by the air introduced into the motor chamber 18 from the suction port 22 through the axial passage 63 and each of the paths 71.
  • each path 71 is formed by a shroud surface 67, a hub surface 68, and a number of vanes 69.
  • the air flowing through each path 71 configured in this way is easily accelerated by the centrifugal force that accompanies the rotation of the rotor 60. Therefore, air is efficiently introduced from each path 71 into the motor chamber 18. As a result, the motor 31 is efficiently cooled.
  • the first embodiment can provide the following effects.
  • (1-1) The cylindrical member 41 has a first member 61 and a second member 62 therein, forms a part of each path 71, and opens into the motor chamber 18. With this, the cylindrical member 41 has the first member 61 and the second member 62 therein, and thus it is possible to employ a rotor 60 in which a part of each path 71 is formed from a shroud surface 67, a hub surface 68, and a plurality of blades 69. Therefore, for example, in order to form a plurality of paths 71 having such a configuration inside the rotating shaft 43, it is not necessary to manufacture the rotating shaft 43 using a mold with a complex structure. Therefore, it is possible to efficiently cool the motor 31 while keeping costs down.
  • the first shaft member 44 has a first member 61 and a second member 62.
  • a plurality of radial passages 71 extend inside the first shaft member 44 in the radial direction of the rotating shaft 43.
  • An axial passage 63 is formed in the first member 61.
  • a plurality of blades 69 are integrally formed with the second member 62 and extend from the hub surface 68 toward the shroud surface 67. This configuration is suitable for introducing air into the motor chamber 18 from the side where the first shaft member 44 is located.
  • a second embodiment of a centrifugal compressor will be described below with reference to Figures 6 and 7.
  • the same components as those in the first embodiment will be denoted by the same reference numerals, and the description thereof will be omitted or simplified.
  • the second embodiment differs from the first embodiment in that the path is provided in the second shaft member, not in the first shaft member.
  • the first shaft member does not have a first member and a second member.
  • the housing 11 has a discharge passage 75.
  • the discharge passage 75 passes through the first plate 15.
  • a first end of the discharge passage 75 communicates with the inside of the motor chamber 18.
  • a second end of the discharge passage 75 communicates with the outside of the housing 11.
  • the axial passage 63 passes through the interior of the first shaft member 44 in the axial direction of the rotating shaft 43.
  • the permanent magnet 42 has a connecting passage 76.
  • the connecting passage 76 passes through the permanent magnet 42 in the axial direction.
  • the first end of the connecting passage 76 is connected to the axial passage 63.
  • the second shaft member 45 has a first member 81 and a second member 82.
  • the centrifugal compressor 10 includes the first member 81 and the second member 82.
  • the first member 81 is cylindrical.
  • the first member 81 is disposed closer to the permanent magnet 42 than the second member 82.
  • the first member 81 is disposed inside the tubular member 41.
  • the first member 81 has a shroud surface 83.
  • the shroud surface 83 is continuous with the second end of the connecting passage 76.
  • the shroud surface 83 extends in a direction away from the permanent magnet 42 as it moves away from the connecting passage 76.
  • the shroud surface 83 is an arc-shaped curved surface that is convex toward the axis of the first member 81.
  • the shroud surface 83 is the inner surface of a conical hole that penetrates the first member 81 in the axial direction.
  • the end of the shroud surface 83 opposite the connecting passage 76 is continuous with the outer surface of the first member 81.
  • the end of the shroud surface 83 opposite the connecting passage 76 is located inside the tubular member 41.
  • the second member 82 is cylindrical.
  • the second member 82 has a bearing portion 84 and a press-fit portion 85.
  • the bearing portion 84 is located inside the second radial bearing retaining portion 26.
  • the bearing portion 84 is supported by the second radial bearing 52.
  • the press-fit portion 85 is located closer to the first member 81 than the bearing portion 84.
  • the press-fit portion 85 is continuous with the bearing portion 84.
  • the outer diameter of the press-fit portion 85 is smaller than the outer diameter of the bearing portion 84.
  • the press-fit portion 85 is disposed inside the tubular member 41.
  • the outer peripheral surface of the bearing portion 84 and the outer peripheral surface of the press-fit portion 85 are connected by an annular stepped surface 86.
  • the stepped surface 86 extends in the radial direction of the rotating shaft 43.
  • the outer diameter of the press-fit portion 85 is the same as the outer diameter of the first member 81.
  • the second member 82 has a hub surface 87.
  • the hub surface 87 extends along the shroud surface 83.
  • the hub surface 87 is an arc-shaped curved surface that is concave toward the axis of the second member 82.
  • the hub surface 87 gradually approaches the shroud surface 67 as it moves away from the connecting passage 76.
  • the hub surface 87 is continuous with the outer peripheral surface of the press-fit portion 85.
  • the second member 82 is provided with a plurality of wings 88.
  • the plurality of wings 88 are provided on the second member 82.
  • the plurality of wings 88 are integrally formed with the second member 82.
  • Each of the wings 88 stands upright from the hub surface 87.
  • the plurality of wings 88 extend from the hub surface 87 toward the shroud surface 83.
  • the outer edge of each of the wings 88 on the shroud surface 83 side extends along the shroud surface 83.
  • the outer edge of each of the wings 88 on the shroud surface 83 side is in contact with the shroud surface 83.
  • the first member 81 is press-fitted into the inner peripheral surface of the second end of the tubular member 41.
  • the press-fit portion 85 of the second member 82 is press-fitted into the inner peripheral surface of the second end of the tubular member 41.
  • the step surface 86 is in contact with the second end face of the tubular member 41.
  • the step surface 86 and the second end face of the tubular member 41 are joined by, for example, welding or brazing. In this way, the tubular member 41 connects the first member 81 and the second member 82 with the outer peripheral edge of the shroud surface 83 and the outer peripheral edge of the hub surface 87 straddling each other in the axial direction of the rotating shaft 43.
  • the cylindrical member 41 has a plurality of communication holes 89 formed therein. Each communication hole 89 is connected to the space between the shroud surface 83 and the hub surface 87, and also to the space between adjacent blades 88 in the circumferential direction of the second member 82. Each communication hole 89 opens into the motor chamber 18.
  • the rotating body 60 has a plurality of paths 90.
  • the plurality of paths 90 is formed by the space between the shroud surface 83 and the hub surface 87, the space between adjacent blades 88 in the circumferential direction of the second member 82, and each communication hole 89. Therefore, the shroud surface 83, the hub surface 87, and the plurality of blades 88 define a portion of each path 90. And the communication hole 89 forms a portion of each path 90.
  • the plurality of paths 90 extend in the radial direction of the rotating shaft 43 inside the second shaft member 45.
  • the plurality of paths 90 extend in the radial direction of the rotating shaft 43 inside the rotating body 60 and communicate with the inside of the motor chamber 18.
  • Each path 90 communicates with a space inside the second coil end 36b in the motor chamber 18.
  • Each path 90 communicates with the connecting passage 76. Therefore, the connecting passage 76 connects the shaft path 63 and the plurality of paths 90. Then, air from the axial passage 63 is introduced into the motor chamber 18 via the connecting passage 76 and each path 90. Therefore, the multiple paths 90 introduce air from the axial passage 63 into the motor chamber 18.
  • the tubular member 41 has a first member 81 and a second member 82 inside, forms a part of each path 90, and opens into the motor chamber 18.
  • a portion of the air from the suction port 22 is introduced into the axial passage 63 and flows through the axial passage 63, the connecting passage 76, and each of the paths 90.
  • the air flowing through each of the paths 90 is introduced into the motor chamber 18.
  • the air introduced into the motor chamber 18 passes between the stator 32 and the rotor 33, and is discharged to the outside of the housing 11 through the discharge passage 75.
  • the motor 31 is cooled by the air introduced into the motor chamber 18. In this way, in the centrifugal compressor 10, the motor 31 is cooled by the air introduced into the motor chamber 18 from the suction port 22 through the axial passage 63 and each of the paths 90.
  • each path 90 is formed by a shroud surface 83, a hub surface 87, and a number of vanes 88.
  • the air flowing through each path 90 configured in this way is easily accelerated by the centrifugal force that accompanies the rotation of the rotor 60. Therefore, air is efficiently introduced from each path 90 into the motor chamber 18. As a result, the motor 31 is efficiently cooled.
  • the second shaft member 45 has a first member 81 and a second member 82.
  • a plurality of paths 90 extend inside the second shaft member 45 in the radial direction of the rotating shaft 43.
  • the permanent magnet 42 has a connecting passage 76 that connects the axial path 63 and the plurality of paths 90.
  • a plurality of blades 88 are formed integrally with the second member 62 and extend from the hub surface 87 toward the shroud surface 83. This configuration is suitable for introducing air into the motor chamber 18 from the side where the second shaft member 45 is located.
  • the multiple blades 69 may be provided on the first member 61.
  • the multiple blades 69 extend from the shroud surface 67 toward the hub surface 68.
  • the multiple blades 69 are provided on one of the first member 61 and the second member 62.
  • the first shaft member 44 does not have to have the second member 62.
  • a hub surface is formed on the permanent magnet 42. Therefore, the permanent magnet 42 also serves as the second member having the hub surface.
  • the centrifugal compressor 10 is provided with a plurality of blades extending from the shroud surface 67 toward the hub surface of the permanent magnet 42. Therefore, the plurality of blades are provided on the first member.
  • the multiple blades 88 may be provided on the first member 81.
  • the multiple blades 88 extend from the shroud surface 83 toward the hub surface 87.
  • the multiple blades 88 are provided on one of the first member 81 and the second member 82.
  • the second shaft member 45 does not have to have the first member 61.
  • a shroud surface is formed on the permanent magnet 42. Therefore, the permanent magnet 42 also serves as the first member having a shroud surface.
  • the step surface 66 and the first end face of the tubular member 41 do not have to be joined by, for example, welding or brazing.
  • the first member 61 may be fixed to the tubular member 41 only by pressing the press-fit portion 65 against the inner circumferential surface of the first end of the tubular member 41.
  • the step surface 86 and the second end surface of the tubular member 41 do not have to be joined by, for example, welding or brazing.
  • the second member 82 may be fixed to the tubular member 41 only by pressing the press-fit portion 85 against the inner circumferential surface of the second end of the tubular member 41.
  • the permanent magnet 42 may not be pressed into the inner circumferential surface of the tubular member 41, but may be adhered to the inner circumferential surface of the tubular member 41, for example, with an adhesive. In short, it is sufficient that the permanent magnet 42 is fixed to the inside of the tubular member 41.
  • the centrifugal compressor 10 does not necessarily have to include the turbine wheel 50 .
  • the centrifugal compressor 10 may be configured to include an impeller instead of the turbine wheel 50. That is, the centrifugal compressor 10 may be configured such that an impeller is attached to each of the first shaft member 44 and the second shaft member 45, and air compressed by one impeller is compressed again by the other impeller.
  • the magnetic body is not limited to the permanent magnet 42 and may be, for example, a laminated core, an amorphous core, or a powder core.
  • the cylindrical member 41 may be made of, for example, carbon fiber reinforced plastic. In short, the material of the cylindrical member 41 is not particularly limited.
  • the centrifugal compressor 10 does not have to be mounted on a fuel cell vehicle. In other words, the centrifugal compressor 10 is not limited to being mounted on a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This centrifugal compressor (10) comprises a rotating body (60) and a motor (31). The motor (31) comprises a rotor (33) having a cylindrical member (41). The rotating body (60) has an axial path (63) and a plurality of paths (71, 90). The centrifugal compressor (10) comprises a first member (61) having a shroud surface (67, 83), a second member (62) having a hub surface (68), and a plurality of impellers (69, 80) extending from one among the shroud surface (67, 83) and the hub surface (68) to the other. The plurality of impellers (69, 80) are provided to one among the first member (61) and the second member (62). The cylindrical member (41) has the first member (61) and the second member (62) therein, forms a portion of each path (71), and opens into a motor compartment (18).

Description

遠心圧縮機Centrifugal Compressor
 本開示は、遠心圧縮機に関する。 This disclosure relates to centrifugal compressors.
 遠心圧縮機は、回転軸、及びインペラを含む回転体を備えている。インペラは、回転軸と一体的に回転する。インペラは、空気を圧縮する。遠心圧縮機は、モータと、ハウジングと、を備えている。モータは、回転軸を回転させる。ハウジングは、インペラ室、モータ室、及び吸入口を有している。インペラ室は、インペラを収容する。モータ室は、モータを収容する。吸入口は、インペラ室に空気を吸入する。 The centrifugal compressor has a rotating body including a rotating shaft and an impeller. The impeller rotates integrally with the rotating shaft. The impeller compresses air. The centrifugal compressor has a motor and a housing. The motor rotates the rotating shaft. The housing has an impeller chamber, a motor chamber, and an intake port. The impeller chamber houses the impeller. The motor chamber houses the motor. The intake port draws air into the impeller chamber.
 モータは、ステータと、ロータと、を備えている。ステータは、ハウジングに固定されている。ロータは、回転軸と一体的に回転する。ロータは、ステータの内側に配置されている。ロータは、回転体の一部を構成する。ロータは、筒部材と、磁性体と、を有している。磁性体は、筒部材の内側に固定されている。回転軸は、第1軸部材及び第2軸部材を含む場合がある。第1軸部材及び第2軸部材は、筒部材の軸方向で磁性体を挟んだ両側に設けられている。インペラは、例えば、第1軸部材に連結されている。 The motor includes a stator and a rotor. The stator is fixed to a housing. The rotor rotates integrally with the rotating shaft. The rotor is disposed inside the stator. The rotor constitutes a part of a rotating body. The rotor includes a cylindrical member and a magnetic body. The magnetic body is fixed to the inside of the cylindrical member. The rotating shaft may include a first shaft member and a second shaft member. The first shaft member and the second shaft member are provided on both sides of the magnetic body in the axial direction of the cylindrical member. The impeller is connected to the first shaft member, for example.
 ところで、このような遠心圧縮機においては、モータを冷却することが望まれている。そこで、例えば特許文献1のように、遠心圧縮機は、軸路と、複数の径路と、を備えている場合がある。軸路は、第1軸部材のインペラが連結された一端に開口して吸入口に連通している。軸路は、第1軸部材の内部を回転軸の軸方向に延びている。複数の径路は、回転体の内部を回転軸の径方向に延びて、モータ室内に連通している。複数の径路は、軸路からの空気をモータ室内に導入する。そして、吸入口から軸路及び各径路を介してモータ室内に導入される空気によってモータが冷却される。 In such a centrifugal compressor, it is desirable to cool the motor. For example, as in Patent Document 1, a centrifugal compressor may have an axial passage and multiple radial passages. The axial passage opens at one end of the first shaft member to which the impeller is connected and communicates with the suction port. The axial passage extends inside the first shaft member in the axial direction of the rotating shaft. The multiple radial passages extend inside the rotor in the radial direction of the rotating shaft and communicate with the motor chamber. The multiple radial passages introduce air from the axial passage into the motor chamber. The motor is then cooled by the air introduced into the motor chamber from the suction port via the axial passage and each of the radial passages.
特許第6968253号公報Patent No. 6968253
 ところで、各径路は、各径路を区画するシュラウド面と、シュラウド面に沿って延びるとともに各径路を区画するハブ面と、シュラウド面及びハブ面の一方から他方に向けて延びる複数の翼と、から形成されている場合がある。このような構成の複数の径路を採用すると、各径路を流れる空気が回転体の回転に伴う遠心力によって加速され易くなるため、各径路からモータ室内に空気を効率良く導入することができる。その結果、モータが効率良く冷却される。しかしながら、このような複数の径路を、例えば、回転軸の内部に形成する場合、複雑な構造の鋳型を用いて回転軸を製造することになるため、製造コストが増大してしまう虞がある。 Incidentally, each passage may be formed from a shroud surface that defines each passage, a hub surface that extends along the shroud surface and defines each passage, and a number of vanes that extend from one of the shroud surface and the hub surface to the other. When multiple passages with such a configuration are used, the air flowing through each passage is more likely to be accelerated by the centrifugal force that accompanies the rotation of the rotor, and air can be efficiently introduced from each passage into the motor chamber. As a result, the motor is efficiently cooled. However, when such multiple passages are formed inside a rotating shaft, for example, the rotating shaft is manufactured using a mold with a complex structure, which may increase manufacturing costs.
 一態様の遠心圧縮機は、回転軸、及び前記回転軸と一体的に回転することで空気を圧縮するように構成されたインペラを含む回転体と、前記回転軸を回転させるように構成されたモータと、前記インペラを収容するインペラ室、前記モータを収容するモータ室、及び前記インペラ室に空気を吸入する吸入口を有するハウジングと、を備え、前記モータは、前記ハウジングに固定されるステータと、前記回転軸と一体的に回転するように構成されるとともに前記ステータの内側に配置され、前記回転体の一部を構成するロータと、を備え、前記ロータは、筒部材と、前記筒部材の内側に固定される磁性体と、を有し、前記回転軸は、前記筒部材の軸方向で前記磁性体を挟んだ両側に設けられる第1軸部材及び第2軸部材を含み、前記インペラは、前記第1軸部材に連結されており、前記回転体は、前記第1軸部材の前記インペラが連結された一端に開口して前記吸入口に連通し、前記第1軸部材の内部を前記回転軸の軸方向に延びる軸路と、前記回転体の内部を前記回転軸の径方向に延びて前記モータ室内に連通し、前記軸路からの空気を前記モータ室内に導入する複数の径路と、を備え、前記吸入口から前記軸路及び前記各径路を介して前記モータ室内に導入される空気によって前記モータが冷却される遠心圧縮機であって、前記各径路の一部分を区画するシュラウド面を有する第1部材と、前記シュラウド面に沿って延びるとともに前記各径路の一部分を区画するハブ面を有する第2部材と、前記シュラウド面及び前記ハブ面の一方から他方に向けて延びるとともに前記各径路の一部分を区画する複数の翼と、を備え、前記複数の翼は、前記第1部材及び前記第2部材の一方に設けられており、前記筒部材は、内部に前記第1部材と前記第2部材とを有するとともに前記各径路の一部分を形成し、前記モータ室内に開口している。 A centrifugal compressor according to one embodiment comprises a rotor including a rotating shaft and an impeller configured to rotate integrally with the rotating shaft to compress air, a motor configured to rotate the rotating shaft, and a housing having an impeller chamber that accommodates the impeller, a motor chamber that accommodates the motor, and an intake port that draws air into the impeller chamber, the motor comprises a stator fixed to the housing, and a rotor configured to rotate integrally with the rotating shaft and disposed inside the stator, constituting a part of the rotor, the rotor having a tubular member and a magnetic body fixed to the inside of the tubular member, the rotating shaft includes a first shaft member and a second shaft member provided on both sides of the magnetic body in the axial direction of the tubular member, the impeller is connected to the first shaft member, and the rotor has an opening at one end of the first shaft member to which the impeller is connected, forming the intake port. A centrifugal compressor that includes an axial passage that extends through the inside of the first shaft member in the axial direction of the rotating shaft and communicates with the inside of the rotor in the radial direction of the rotating shaft, and a plurality of paths that connect the inside of the rotor to the motor chamber and introduce air from the axial passage into the motor chamber, and the motor is cooled by air introduced into the motor chamber from the suction port through the axial passage and each of the paths, and includes a first member having a shroud surface that defines a portion of each of the paths, a second member having a hub surface that extends along the shroud surface and defines a portion of each of the paths, and a plurality of blades that extend from one of the shroud surface and the hub surface to the other and define a portion of each of the paths, the plurality of blades being provided on one of the first member and the second member, and the cylindrical member has the first member and the second member inside, forms a portion of each of the paths, and opens into the motor chamber.
第1実施形態における遠心圧縮機の断面図である。1 is a cross-sectional view of a centrifugal compressor according to a first embodiment. FIG. 図1の遠心圧縮機の一部分を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing a portion of the centrifugal compressor of FIG. 1 . 図1の遠心圧縮機の一部分を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing a portion of the centrifugal compressor of FIG. 1 . 図1の遠心圧縮機の一部分を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing a portion of the centrifugal compressor of FIG. 1 . 図1の遠心圧縮機の一部分を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing a portion of the centrifugal compressor of FIG. 1. 第2実施形態における遠心圧縮機の断面図である。FIG. 5 is a cross-sectional view of a centrifugal compressor according to a second embodiment. 図6の遠心圧縮機の一部分を拡大して示す断面図である。FIG. 7 is an enlarged cross-sectional view of a portion of the centrifugal compressor of FIG. 6.
 [第1実施形態]
 以下、遠心圧縮機を具体化した第1実施形態を図1~図5にしたがって説明する。本実施形態の遠心圧縮機は、燃料電池車に搭載されている。遠心圧縮機は、空気を圧縮するように構成されている。
[First embodiment]
A centrifugal compressor according to a first embodiment will be described below with reference to Fig. 1 to Fig. 5. The centrifugal compressor of this embodiment is mounted on a fuel cell vehicle. The centrifugal compressor is configured to compress air.
 <遠心圧縮機10の基本構成>
 図1に示すように、遠心圧縮機10は、ハウジング11を備えている。ハウジング11は、金属材料製である。ハウジング11は、例えば、アルミニウム製である。ハウジング11は、筒状である。ハウジング11は、モータハウジング12、コンプレッサハウジング13、タービンハウジング14、第1プレート15、第2プレート16、及びシールプレート17を有している。
<Basic configuration of centrifugal compressor 10>
As shown in Fig. 1, the centrifugal compressor 10 includes a housing 11. The housing 11 is made of a metal material. For example, the housing 11 is made of aluminum. The housing 11 is cylindrical. The housing 11 includes a motor housing 12, a compressor housing 13, a turbine housing 14, a first plate 15, a second plate 16, and a seal plate 17.
 モータハウジング12は、筒状である。モータハウジング12は、板状の端壁12aと、周壁12bと、を有している。周壁12bは、端壁12aの外周部から筒状に延びている。第1プレート15は、モータハウジング12の周壁12bの開口する端部に連結されている。第1プレート15は、モータハウジング12の周壁12bの開口を閉塞している。そして、モータハウジング12の端壁12a及び周壁12bと第1プレート15とによって、モータ室18が区画されている。したがって、ハウジング11は、モータ室18を有している。 The motor housing 12 is cylindrical. The motor housing 12 has a plate-shaped end wall 12a and a peripheral wall 12b. The peripheral wall 12b extends cylindrically from the outer periphery of the end wall 12a. The first plate 15 is connected to the open end of the peripheral wall 12b of the motor housing 12. The first plate 15 closes the opening of the peripheral wall 12b of the motor housing 12. The end wall 12a and peripheral wall 12b of the motor housing 12 and the first plate 15 define a motor chamber 18. Thus, the housing 11 has a motor chamber 18.
 図2に示すように、第1プレート15は、第1凹部15c及び第2凹部15dを有している。第1凹部15c及び第2凹部15dは、第1プレート15におけるモータハウジング12とは反対側の端面15aに形成されている。第1凹部15c及び第2凹部15dは、円孔状である。第1凹部15cの内径は、第2凹部15dの内径よりも大きい。第2凹部15dは、第1凹部15cの底面15fに形成されている。第1凹部15cの軸線と第2凹部15dの軸線とは一致している。 As shown in FIG. 2, the first plate 15 has a first recess 15c and a second recess 15d. The first recess 15c and the second recess 15d are formed on the end face 15a of the first plate 15 opposite the motor housing 12. The first recess 15c and the second recess 15d are circular holes. The inner diameter of the first recess 15c is larger than the inner diameter of the second recess 15d. The second recess 15d is formed on the bottom face 15f of the first recess 15c. The axis of the first recess 15c and the axis of the second recess 15d are aligned.
 シールプレート17は、第1凹部15cに嵌め込まれている。シールプレート17は、例えば、図示しないボルトによって第1プレート15に取り付けられている。シールプレート17は、第2凹部15dの開口を閉塞している。そして、シールプレート17と第2凹部15dとによって、スラスト軸受収容室19が区画されている。したがって、ハウジング11は、スラスト軸受収容室19を有している。また、シールプレート17は、シャフト挿通孔17hを有している。シャフト挿通孔17hは、シールプレート17の中央部に形成されている。シャフト挿通孔17hは、スラスト軸受収容室19に開口している。 The seal plate 17 is fitted into the first recess 15c. The seal plate 17 is attached to the first plate 15, for example, by bolts (not shown). The seal plate 17 closes the opening of the second recess 15d. The seal plate 17 and the second recess 15d define a thrust bearing accommodating chamber 19. Therefore, the housing 11 has the thrust bearing accommodating chamber 19. The seal plate 17 also has a shaft insertion hole 17h. The shaft insertion hole 17h is formed in the center of the seal plate 17. The shaft insertion hole 17h opens into the thrust bearing accommodating chamber 19.
 第1プレート15は、第1ラジアル軸受保持部21を有している。第1ラジアル軸受保持部21は、円筒状である。第1ラジアル軸受保持部21は、第1プレート15におけるモータハウジング12側の端面15bの中央部からモータ室18内に突出している。第1ラジアル軸受保持部21は、モータ室18に連通している。第1ラジアル軸受保持部21は、第1プレート15を貫通して第2凹部15dの底面15hに開口している。したがって、第1ラジアル軸受保持部21は、スラスト軸受収容室19に連通している。第1ラジアル軸受保持部21の軸線は、第1凹部15cの軸線及び第2凹部15dの軸線と一致している。 The first plate 15 has a first radial bearing retaining portion 21. The first radial bearing retaining portion 21 is cylindrical. The first radial bearing retaining portion 21 protrudes into the motor chamber 18 from the center of the end face 15b of the first plate 15 on the motor housing 12 side. The first radial bearing retaining portion 21 is connected to the motor chamber 18. The first radial bearing retaining portion 21 penetrates the first plate 15 and opens to the bottom surface 15h of the second recess 15d. Therefore, the first radial bearing retaining portion 21 is connected to the thrust bearing accommodating chamber 19. The axis of the first radial bearing retaining portion 21 coincides with the axis of the first recess 15c and the axis of the second recess 15d.
 コンプレッサハウジング13は、筒状である。コンプレッサハウジング13は、円孔状の吸入口22を有している。したがって、ハウジング11は、吸入口22を有している。コンプレッサハウジング13は、吸入口22の軸線が、シールプレート17のシャフト挿通孔17hの軸線と一致した状態で、第1プレート15の端面15aに連結されている。吸入口22は、コンプレッサハウジング13における第1プレート15とは反対側の端面に開口している。 The compressor housing 13 is cylindrical. The compressor housing 13 has a circular suction port 22. Therefore, the housing 11 has the suction port 22. The compressor housing 13 is connected to the end face 15a of the first plate 15 with the axis of the suction port 22 coinciding with the axis of the shaft insertion hole 17h of the seal plate 17. The suction port 22 opens into the end face of the compressor housing 13 opposite the first plate 15.
 コンプレッサハウジング13とシールプレート17との間には、インペラ室23と、吐出室24と、コンプレッサディフューザ流路25と、が形成されている。したがって、ハウジング11は、インペラ室23を有している。シールプレート17は、インペラ室23とスラスト軸受収容室19とを隔てている。インペラ室23は、吸入口22に連通している。インペラ室23は、吸入口22から離れるにつれて徐々に拡径していく略円錐台孔形状になっている。吐出室24は、インペラ室23の周囲で吸入口22の軸線周りに延びている。コンプレッサディフューザ流路25は、インペラ室23と吐出室24とを連通している。インペラ室23は、シールプレート17のシャフト挿通孔17hに連通している。 Between the compressor housing 13 and the seal plate 17, an impeller chamber 23, a discharge chamber 24, and a compressor diffuser passage 25 are formed. Thus, the housing 11 has the impeller chamber 23. The seal plate 17 separates the impeller chamber 23 from the thrust bearing accommodating chamber 19. The impeller chamber 23 is connected to the suction port 22. The impeller chamber 23 is in the shape of a generally truncated cone hole whose diameter gradually increases as it moves away from the suction port 22. The discharge chamber 24 extends around the axis of the suction port 22 around the impeller chamber 23. The compressor diffuser passage 25 connects the impeller chamber 23 and the discharge chamber 24. The impeller chamber 23 is connected to the shaft insertion hole 17h of the seal plate 17.
 図3に示すように、モータハウジング12は、第2ラジアル軸受保持部26を有している。第2ラジアル軸受保持部26は、円筒状である。第2ラジアル軸受保持部26は、モータハウジング12の端壁12aの内面の中央部からモータ室18内に突出している。第2ラジアル軸受保持部26は、モータ室18に連通している。第2ラジアル軸受保持部26の内側は、モータハウジング12の端壁12aを貫通して端壁12aの外面に開口している。第1ラジアル軸受保持部21の軸線と第2ラジアル軸受保持部26の軸線とは一致している。 As shown in FIG. 3, the motor housing 12 has a second radial bearing retaining portion 26. The second radial bearing retaining portion 26 is cylindrical. The second radial bearing retaining portion 26 protrudes from the center of the inner surface of the end wall 12a of the motor housing 12 into the motor chamber 18. The second radial bearing retaining portion 26 is connected to the motor chamber 18. The inner side of the second radial bearing retaining portion 26 penetrates the end wall 12a of the motor housing 12 and opens to the outer surface of the end wall 12a. The axis of the first radial bearing retaining portion 21 and the axis of the second radial bearing retaining portion 26 are aligned.
 第2プレート16は、モータハウジング12の端壁12aの外面に連結されている。第2プレート16は、シャフト挿通孔16hを有している。シャフト挿通孔16hは、第2プレート16の中央部に形成されている。 The second plate 16 is connected to the outer surface of the end wall 12a of the motor housing 12. The second plate 16 has a shaft insertion hole 16h. The shaft insertion hole 16h is formed in the center of the second plate 16.
 タービンハウジング14は、筒状である。タービンハウジング14は、円孔状の吐出口27を有している。タービンハウジング14は、吐出口27の軸線が、第2プレート16のシャフト挿通孔16hの軸線と一致した状態で、第2プレート16におけるモータハウジング12とは反対側の端面16aに連結されている。吐出口27は、タービンハウジング14における第2プレート16とは反対側の端面に開口している。 The turbine housing 14 is cylindrical. The turbine housing 14 has a circular discharge port 27. The turbine housing 14 is connected to the end face 16a of the second plate 16 opposite the motor housing 12, with the axis of the discharge port 27 coinciding with the axis of the shaft insertion hole 16h of the second plate 16. The discharge port 27 opens into the end face of the turbine housing 14 opposite the second plate 16.
 タービンハウジング14と第2プレート16の端面16aとの間には、タービン室28と、タービンスクロール流路29と、連通通路30と、が形成されている。タービン室28は、吐出口27に連通している。タービンスクロール流路29は、タービン室28の周囲で吐出口27の軸線周りに延びている。連通通路30は、タービン室28とタービンスクロール流路29とを連通している。タービン室28は、第2プレート16のシャフト挿通孔16hに連通している。 Between the turbine housing 14 and the end face 16a of the second plate 16, a turbine chamber 28, a turbine scroll passage 29, and a communication passage 30 are formed. The turbine chamber 28 is connected to the discharge port 27. The turbine scroll passage 29 extends around the axis of the discharge port 27 around the turbine chamber 28. The communication passage 30 connects the turbine chamber 28 and the turbine scroll passage 29. The turbine chamber 28 is connected to the shaft insertion hole 16h of the second plate 16.
 図1に示すように、遠心圧縮機10は、モータ31を備えている。モータ31は、モータ室18に収容されている。したがって、モータ室18は、モータ31を収容する。そして、モータ31は、ハウジング11内に収容されている。 As shown in FIG. 1, the centrifugal compressor 10 is equipped with a motor 31. The motor 31 is housed in the motor chamber 18. Therefore, the motor chamber 18 houses the motor 31. And the motor 31 is housed in the housing 11.
 モータ31は、ステータ32と、ロータ33と、を備えている。ステータ32は、筒状のステータコア34と、コイル35と、を有している。コイル35は、ステータコア34に巻回されている。ステータコア34は、モータハウジング12の周壁12bの内周面に固定されている。したがって、ステータ32は、ハウジング11に固定されている。ステータコア34の両端面には、コイル35の一部であるコイルエンド36がそれぞれ突出している。なお、以下の説明では、2つのコイルエンド36のうち、ステータコア34における第1プレート15近傍に位置するコイルエンド36を、「第1コイルエンド36a」と記載する。また、2つのコイルエンド36のうち、ステータコア34におけるモータハウジング12の端壁12a近傍に位置するコイルエンド36を、「第2コイルエンド36b」と記載する。 The motor 31 includes a stator 32 and a rotor 33. The stator 32 includes a cylindrical stator core 34 and a coil 35. The coil 35 is wound around the stator core 34. The stator core 34 is fixed to the inner circumferential surface of the peripheral wall 12b of the motor housing 12. Thus, the stator 32 is fixed to the housing 11. Coil ends 36, which are part of the coil 35, protrude from both end surfaces of the stator core 34. In the following description, of the two coil ends 36, the coil end 36 located near the first plate 15 in the stator core 34 is referred to as the "first coil end 36a." Also, of the two coil ends 36, the coil end 36 located near the end wall 12a of the motor housing 12 in the stator core 34 is referred to as the "second coil end 36b."
 図4に示すように、ステータ32は、樹脂部37を備えている。樹脂部37は、ステータコア34及びコイルエンド36を被覆している。樹脂部37は、第1樹脂部38、第2樹脂部39、及び第3樹脂部40を有している。したがって、ステータ32は、第1樹脂部38、第2樹脂部39、及び第3樹脂部40を備えている。第1樹脂部38は、第1コイルエンド36aを樹脂で覆う筒状である。第2樹脂部39は、第2コイルエンド36bを樹脂で覆う筒状である。第3樹脂部40は、ステータコア34の内周面を樹脂で覆う筒状である。第3樹脂部40は、ステータコア34の内側でステータコア34の軸方向に延びている。第3樹脂部40は、第1樹脂部38と第2樹脂部39とを接続している。 As shown in FIG. 4, the stator 32 includes a resin part 37. The resin part 37 covers the stator core 34 and the coil end 36. The resin part 37 includes a first resin part 38, a second resin part 39, and a third resin part 40. Thus, the stator 32 includes the first resin part 38, the second resin part 39, and the third resin part 40. The first resin part 38 is cylindrical and covers the first coil end 36a with resin. The second resin part 39 is cylindrical and covers the second coil end 36b with resin. The third resin part 40 is cylindrical and covers the inner circumferential surface of the stator core 34 with resin. The third resin part 40 extends in the axial direction of the stator core 34 inside the stator core 34. The third resin part 40 connects the first resin part 38 and the second resin part 39.
 ロータ33は、ステータ32の内側に配置されている。ロータ33は、筒部材41と、磁性体である永久磁石42と、を有している。筒部材41は、例えば、チタン合金製である。筒部材41は、筒部材41の軸線が直線状に延びる筒状である。筒部材41の外径は一定である。 The rotor 33 is disposed inside the stator 32. The rotor 33 has a cylindrical member 41 and a permanent magnet 42, which is a magnetic body. The cylindrical member 41 is made of, for example, a titanium alloy. The cylindrical member 41 is cylindrical in shape with the axis of the cylindrical member 41 extending linearly. The outer diameter of the cylindrical member 41 is constant.
 永久磁石42は、円筒状である。永久磁石42は、筒部材41の内側に配置されている。永久磁石42の軸線は、筒部材41の軸線と一致している。永久磁石42は、筒部材41の内周面に圧入されている。したがって、永久磁石42は、筒部材41の内側に固定されている。永久磁石42は、永久磁石42の径方向に着磁されている。具体的には、永久磁石42は、永久磁石42の径方向で着磁されることにより永久磁石42の径方向の両側の部位にN極とS極とを有する円筒状である。 The permanent magnet 42 is cylindrical. The permanent magnet 42 is disposed inside the tubular member 41. The axis of the permanent magnet 42 coincides with the axis of the tubular member 41. The permanent magnet 42 is press-fitted into the inner circumferential surface of the tubular member 41. Therefore, the permanent magnet 42 is fixed inside the tubular member 41. The permanent magnet 42 is magnetized in the radial direction of the permanent magnet 42. Specifically, the permanent magnet 42 is magnetized in the radial direction of the permanent magnet 42, so that the permanent magnet 42 is cylindrical with a north pole and a south pole on both radial sides of the permanent magnet 42.
 永久磁石42における軸線が延びる方向の長さは、筒部材41における軸線が延びる方向の長さよりも短い。永久磁石42の両端面は、筒部材41の内側に位置している。よって、筒部材41の軸方向に位置する両端部それぞれは、永久磁石42の両端面それぞれに対して軸方向へ突出している。そして、筒部材41の両端部は、ステータコア34の両端面それぞれに対して軸方向へ突出している。 The length of the permanent magnet 42 in the axial direction is shorter than the length of the tubular member 41 in the axial direction. Both end faces of the permanent magnet 42 are located inside the tubular member 41. Therefore, both end portions located in the axial direction of the tubular member 41 protrude in the axial direction relative to both end faces of the permanent magnet 42. And both end portions of the tubular member 41 protrude in the axial direction relative to both end faces of the stator core 34.
 図1に示すように、遠心圧縮機10は、回転軸43を備えている。回転軸43は、第1軸部材44及び第2軸部材45を含む。第1軸部材44及び第2軸部材45は、筒部材41の軸方向で永久磁石42を挟んだ両側に設けられている。第1軸部材44及び第2軸部材45は、例えば、鉄製である。 As shown in FIG. 1, the centrifugal compressor 10 has a rotating shaft 43. The rotating shaft 43 includes a first shaft member 44 and a second shaft member 45. The first shaft member 44 and the second shaft member 45 are provided on both sides of the permanent magnet 42 in the axial direction of the cylindrical member 41. The first shaft member 44 and the second shaft member 45 are made of, for example, iron.
 第1軸部材44の第1端部は、筒部材41の第1端部に固定されている。第1軸部材44は、モータ室18から第1ラジアル軸受保持部21の内側、スラスト軸受収容室19、及びシャフト挿通孔17hを通過して、インペラ室23内に突出している。第2軸部材45の第1端部は、筒部材41の第2端部の内周面に圧入されている。したがって、第2軸部材45は、筒部材41に固定されている。第2軸部材45の第2端部は、モータ室18から第2ラジアル軸受保持部26の内側、及びシャフト挿通孔16hを通過して、タービン室28内に突出している。 The first end of the first shaft member 44 is fixed to the first end of the tubular member 41. The first shaft member 44 protrudes from the motor chamber 18 into the impeller chamber 23, passing through the inside of the first radial bearing holder 21, the thrust bearing accommodating chamber 19, and the shaft insertion hole 17h. The first end of the second shaft member 45 is press-fitted into the inner circumferential surface of the second end of the tubular member 41. Therefore, the second shaft member 45 is fixed to the tubular member 41. The second end of the second shaft member 45 protrudes from the motor chamber 18 into the turbine chamber 28, passing through the inside of the second radial bearing holder 26 and the shaft insertion hole 16h.
 遠心圧縮機10は、第1シール部材46を備えている。第1シール部材46は、シールプレート17のシャフト挿通孔17hと第1軸部材44との間に設けられている。第1シール部材46は、インペラ室23からモータ室18に向かう空気の洩れを抑制する。遠心圧縮機10は、第2シール部材47を備えている。第2シール部材47は、第2プレート16のシャフト挿通孔16hと第2軸部材45との間に設けられている。第2シール部材47は、タービン室28からモータ室18に向かう空気の洩れを抑制する。第1シール部材46及び第2シール部材47は、例えば、シールリングである。 The centrifugal compressor 10 includes a first seal member 46. The first seal member 46 is provided between the shaft insertion hole 17h of the seal plate 17 and the first shaft member 44. The first seal member 46 prevents air from leaking from the impeller chamber 23 toward the motor chamber 18. The centrifugal compressor 10 includes a second seal member 47. The second seal member 47 is provided between the shaft insertion hole 16h of the second plate 16 and the second shaft member 45. The second seal member 47 prevents air from leaking from the turbine chamber 28 toward the motor chamber 18. The first seal member 46 and the second seal member 47 are, for example, seal rings.
 遠心圧縮機10は、支持部48を備えている。支持部48は、第1軸部材44の外周面から環状に突出している。支持部48は、円板状である。支持部48は、第1軸部材44の外周面から径方向外側へ環状に突出した状態で、第1軸部材44の外周面に固定されている。したがって、支持部48は、第1軸部材44とは別体である。支持部48は、スラスト軸受収容室19内に配置されている。支持部48は、第1軸部材44と一体的に回転する。 The centrifugal compressor 10 is provided with a support portion 48. The support portion 48 protrudes in an annular shape from the outer peripheral surface of the first shaft member 44. The support portion 48 is disk-shaped. The support portion 48 is fixed to the outer peripheral surface of the first shaft member 44 in a state in which it protrudes in an annular shape radially outward from the outer peripheral surface of the first shaft member 44. Therefore, the support portion 48 is separate from the first shaft member 44. The support portion 48 is disposed in the thrust bearing housing chamber 19. The support portion 48 rotates integrally with the first shaft member 44.
 遠心圧縮機10は、インペラ49を備えている。インペラ49は、第1軸部材44の第2端部に取り付けられている。したがって、インペラ49は、第1軸部材44に連結されている。インペラ49は、第1軸部材44における支持部48よりも第1軸部材44の第2端部寄りに配置されている。インペラ49は、背面から先端面に向かうに従って徐々に縮径した筒状である。インペラ49は、インペラ室23に収容されている。したがって、インペラ室23は、インペラ49を収容する。インペラ49の外縁は、インペラ室23の内周面に沿って延びている。インペラ49は、第1軸部材44と一体的に回転することで空気を圧縮する。したがって、インペラ49は、回転軸43と一体的に回転することで空気を圧縮する。 The centrifugal compressor 10 includes an impeller 49. The impeller 49 is attached to the second end of the first shaft member 44. Therefore, the impeller 49 is connected to the first shaft member 44. The impeller 49 is disposed closer to the second end of the first shaft member 44 than the support portion 48 of the first shaft member 44. The impeller 49 is cylindrical and gradually reduces in diameter from the back surface to the tip surface. The impeller 49 is housed in the impeller chamber 23. Therefore, the impeller chamber 23 houses the impeller 49. The outer edge of the impeller 49 extends along the inner peripheral surface of the impeller chamber 23. The impeller 49 compresses air by rotating integrally with the first shaft member 44. Therefore, the impeller 49 compresses air by rotating integrally with the rotating shaft 43.
 回転軸43、及びインペラ49は、回転体60を構成している。したがって、回転体60は、回転軸43、及びインペラ49を含む。ロータ33は、第1軸部材44及び第2軸部材45と一体的に回転する。したがって、ロータ33は、回転軸43と一体的に回転する。ロータ33は、回転体60の一部を構成する。モータ31は、回転軸43を回転させる。 The rotating shaft 43 and the impeller 49 constitute the rotating body 60. Therefore, the rotating body 60 includes the rotating shaft 43 and the impeller 49. The rotor 33 rotates integrally with the first shaft member 44 and the second shaft member 45. Therefore, the rotor 33 rotates integrally with the rotating shaft 43. The rotor 33 constitutes a part of the rotating body 60. The motor 31 rotates the rotating shaft 43.
 遠心圧縮機10は、タービンホイール50を備えている。タービンホイール50は、第2軸部材45の第2端部に取り付けられている。タービンホイール50は、タービン室28に収容されている。タービンホイール50は、第2軸部材45と一体的に回転する。 The centrifugal compressor 10 includes a turbine wheel 50. The turbine wheel 50 is attached to the second end of the second shaft member 45. The turbine wheel 50 is housed in the turbine chamber 28. The turbine wheel 50 rotates integrally with the second shaft member 45.
 遠心圧縮機10は、第1ラジアル軸受51と、第2ラジアル軸受52と、を備えている。第1ラジアル軸受51は、円筒状である。第1ラジアル軸受51は、第1ラジアル軸受保持部21に保持されている。したがって、第1ラジアル軸受保持部21は、第1ラジアル軸受51を保持する。第2ラジアル軸受52は、円筒状である。第2ラジアル軸受52は、第2ラジアル軸受保持部26に保持されている。したがって、第2ラジアル軸受保持部26は、第2ラジアル軸受52を保持する。 The centrifugal compressor 10 includes a first radial bearing 51 and a second radial bearing 52. The first radial bearing 51 is cylindrical. The first radial bearing 51 is held by the first radial bearing holder 21. Therefore, the first radial bearing holder 21 holds the first radial bearing 51. The second radial bearing 52 is cylindrical. The second radial bearing 52 is held by the second radial bearing holder 26. Therefore, the second radial bearing holder 26 holds the second radial bearing 52.
 第1ラジアル軸受51は、第1軸部材44をラジアル方向で回転可能に支持する。第2ラジアル軸受52は、第2軸部材45をラジアル方向で回転可能に支持する。第1ラジアル軸受51及び第2ラジアル軸受52は、筒部材41を筒部材41の軸方向で挟んだ両側の位置でロータ33をラジアル方向で回転可能に支持する。なお、「ラジアル方向」とは、筒部材41の軸方向に対して直交する方向である。 The first radial bearing 51 supports the first shaft member 44 so that it can rotate in the radial direction. The second radial bearing 52 supports the second shaft member 45 so that it can rotate in the radial direction. The first radial bearing 51 and the second radial bearing 52 support the rotor 33 so that it can rotate in the radial direction at both sides of the tubular member 41 in the axial direction of the tubular member 41. Note that the "radial direction" is the direction perpendicular to the axial direction of the tubular member 41.
 図2に示すように、遠心圧縮機10は、スラスト軸受53を備えている。スラスト軸受53は、スラスト軸受収容室19に収容されている。したがって、スラスト軸受収容室19は、スラスト軸受53を収容する。スラスト軸受53は、支持部48をスラスト方向で回転可能に支持する。したがって、スラスト軸受53は、インペラ49と第1ラジアル軸受51との間で支持部48を介して回転軸43をスラスト方向で回転可能に支持する。なお、「スラスト方向」とは、筒部材41の軸方向に対して平行な方向である。このように、ロータ33は、ハウジング11に回転可能に支持されている。 As shown in FIG. 2, the centrifugal compressor 10 is equipped with a thrust bearing 53. The thrust bearing 53 is accommodated in the thrust bearing accommodation chamber 19. Therefore, the thrust bearing accommodation chamber 19 accommodates the thrust bearing 53. The thrust bearing 53 rotatably supports the support portion 48 in the thrust direction. Therefore, the thrust bearing 53 rotatably supports the rotating shaft 43 in the thrust direction between the impeller 49 and the first radial bearing 51 via the support portion 48. Note that the "thrust direction" is a direction parallel to the axial direction of the cylindrical member 41. In this manner, the rotor 33 is rotatably supported by the housing 11.
 図3に示すように、ハウジング11は、排出通路59を有している。排出通路59は、第2ラジアル軸受保持部26及びモータハウジング12の端壁12aを貫通している。排出通路59の第1端は、モータ室18内に連通している。排出通路59の第2端は、ハウジング11外に連通している。 As shown in FIG. 3, the housing 11 has a discharge passage 59. The discharge passage 59 penetrates the second radial bearing retaining portion 26 and the end wall 12a of the motor housing 12. A first end of the discharge passage 59 communicates with the inside of the motor chamber 18. A second end of the discharge passage 59 communicates with the outside of the housing 11.
 <燃料電池システム55>
 図1に示すように、上記構成の遠心圧縮機10は、燃料電池車に搭載された燃料電池システム55の一部を構成している。燃料電池システム55は、遠心圧縮機10の他に、燃料電池スタック56と、供給流路57と、排出流路58と、を備えている。燃料電池スタック56は、図示しない複数の電池セルから構成されている。供給流路57は、吐出室24と燃料電池スタック56とを接続する。排出流路58は、燃料電池スタック56とタービンスクロール流路29とを接続する。
<Fuel Cell System 55>
As shown in Fig. 1, the centrifugal compressor 10 configured as described above constitutes a part of a fuel cell system 55 mounted on a fuel cell vehicle. In addition to the centrifugal compressor 10, the fuel cell system 55 includes a fuel cell stack 56, a supply flow path 57, and a discharge flow path 58. The fuel cell stack 56 is composed of a plurality of battery cells (not shown). The supply flow path 57 connects the discharge chamber 24 and the fuel cell stack 56. The discharge flow path 58 connects the fuel cell stack 56 and the turbine scroll flow path 29.
 ロータ33が回転すると、インペラ49及びタービンホイール50がロータ33と一体的に回転する。したがって、モータ31は、インペラ49を回転させる。インペラ49が回転すると、吸入口22からインペラ室23に空気が吸入される。したがって、吸入口22は、インペラ室23に空気を吸入する。なお、吸入口22を流れる空気は、図示しないエアクリーナによって清浄化されている。 When the rotor 33 rotates, the impeller 49 and the turbine wheel 50 rotate integrally with the rotor 33. Therefore, the motor 31 rotates the impeller 49. When the impeller 49 rotates, air is drawn into the impeller chamber 23 from the suction port 22. Therefore, the suction port 22 draws air into the impeller chamber 23. The air flowing through the suction port 22 is cleaned by an air cleaner (not shown).
 吸入口22からインペラ室23内に吸入された空気は、インペラ49の回転に伴って圧縮されながらコンプレッサディフューザ流路25を通過して、吐出室24から供給流路57へ吐出される。そして、吐出室24から供給流路57へ吐出された空気は、供給流路57を介して燃料電池スタック56に供給される。燃料電池スタック56に供給された空気は、燃料電池スタック56を発電するために使用される。その後、燃料電池スタック56を通過する空気は、燃料電池スタック56の排気として排出流路58へ排出される。 Air drawn into the impeller chamber 23 from the intake port 22 is compressed as the impeller 49 rotates, passes through the compressor diffuser passage 25, and is discharged from the discharge chamber 24 to the supply passage 57. The air discharged from the discharge chamber 24 to the supply passage 57 is then supplied to the fuel cell stack 56 via the supply passage 57. The air supplied to the fuel cell stack 56 is used to generate electricity in the fuel cell stack 56. The air passing through the fuel cell stack 56 is then discharged to the exhaust passage 58 as exhaust air from the fuel cell stack 56.
 燃料電池スタック56の排気は、排出流路58を介してタービンスクロール流路29に吸入される。タービンスクロール流路29に吸入される燃料電池スタック56の排気は、連通通路30を通じてタービン室28に導入される。タービンホイール50は、タービン室28に導入された燃料電池スタック56の排気により回転する。ロータ33は、モータ31の駆動による回転に加え、燃料電池スタック56の排気により回転するタービンホイール50の回転によっても回転する。そして、燃料電池スタック56の排気によるタービンホイール50の回転によりロータ33の回転が補助される。タービン室28を通過した排気は、吐出口27から外部へ吐出される。 The exhaust gas from the fuel cell stack 56 is drawn into the turbine scroll passage 29 via the exhaust passage 58. The exhaust gas from the fuel cell stack 56 drawn into the turbine scroll passage 29 is introduced into the turbine chamber 28 through the communication passage 30. The turbine wheel 50 rotates due to the exhaust gas from the fuel cell stack 56 introduced into the turbine chamber 28. In addition to being rotated by the drive of the motor 31, the rotor 33 also rotates due to the rotation of the turbine wheel 50 which is rotated by the exhaust gas from the fuel cell stack 56. The rotation of the rotor 33 is assisted by the rotation of the turbine wheel 50 due to the exhaust gas from the fuel cell stack 56. The exhaust gas that has passed through the turbine chamber 28 is discharged to the outside from the discharge port 27.
 <第1部材61及び第2部材62>
 図2に示すように、第1軸部材44は、第1部材61及び第2部材62を有している。したがって、遠心圧縮機10は、第1部材61と、第2部材62と、を備えている。第1部材61は、円筒状である。第1部材61は、インペラ49を貫通している。第1部材61の第1端は、インペラ49の先端面から突出している。第1部材61の内側は、軸路63になっている。よって、第1部材61には、軸路63が形成されている。したがって、回転体60は、軸路63を備えている。
<First Member 61 and Second Member 62>
As shown in Fig. 2, the first shaft member 44 has a first member 61 and a second member 62. Thus, the centrifugal compressor 10 includes the first member 61 and the second member 62. The first member 61 is cylindrical. The first member 61 penetrates the impeller 49. A first end of the first member 61 protrudes from the tip end surface of the impeller 49. The inside of the first member 61 forms an axial passage 63. Thus, the axial passage 63 is formed in the first member 61. Thus, the rotor 60 includes the axial passage 63.
 軸路63の軸線は、第1部材61の軸線に一致している。軸路63の第1端は、第1部材61の第1端面に開口している。したがって、軸路63は、第1軸部材44のインペラ49が設けられた一端に開口して吸入口22に連通している。軸路63は、第1部材61の内部を回転軸43の軸方向に貫通している。したがって、軸路63は、第1軸部材44の内部を回転軸43の軸方向に延びている。 The axis of the axial passage 63 coincides with the axis of the first member 61. A first end of the axial passage 63 opens into a first end face of the first member 61. Thus, the axial passage 63 opens into one end of the first shaft member 44 where the impeller 49 is provided, and communicates with the suction port 22. The axial passage 63 penetrates the interior of the first member 61 in the axial direction of the rotating shaft 43. Thus, the axial passage 63 extends inside the first shaft member 44 in the axial direction of the rotating shaft 43.
 図5に示すように、第1部材61は、軸受部64と、圧入部65と、を有している。軸受部64は、第1ラジアル軸受保持部21の内側に位置している。そして、軸受部64は、第1ラジアル軸受51に支持されている。 As shown in FIG. 5, the first member 61 has a bearing portion 64 and a press-fit portion 65. The bearing portion 64 is located inside the first radial bearing retaining portion 21. The bearing portion 64 is supported by the first radial bearing 51.
 圧入部65は、軸受部64よりも第1部材61の第2端寄りに位置している。圧入部65は、第1部材61の第2端部である。圧入部65は、軸受部64に連続している。圧入部65の外径は、軸受部64の外径よりも小さい。圧入部65は、筒部材41の内側に配置されている。軸受部64の外周面と圧入部65の外周面とは、環状の段差面66によって接続されている。段差面66は、回転軸43の径方向に延びている。 The press-fit portion 65 is located closer to the second end of the first member 61 than the bearing portion 64. The press-fit portion 65 is the second end of the first member 61. The press-fit portion 65 is continuous with the bearing portion 64. The outer diameter of the press-fit portion 65 is smaller than the outer diameter of the bearing portion 64. The press-fit portion 65 is disposed inside the tubular member 41. The outer peripheral surface of the bearing portion 64 and the outer peripheral surface of the press-fit portion 65 are connected by an annular step surface 66. The step surface 66 extends in the radial direction of the rotating shaft 43.
 第1部材61は、シュラウド面67を有している。シュラウド面67は、軸路63の第2端に連続している。したがって、シュラウド面67は、軸路63における吸入口22とは反対側の端部に連続している。シュラウド面67は、軸路63から離れるにつれて吸入口22から離間する方向へ延びている。シュラウド面67は、第1部材61の軸線に向けて凸となる弧状に湾曲した面である。シュラウド面67は、圧入部65の端面に開口する円錐孔の内周面である。シュラウド面67における軸路63とは反対側の端部は、圧入部65の外周面に連続している。シュラウド面67における軸路63とは反対側の端部は、筒部材41の内側に位置している。 The first member 61 has a shroud surface 67. The shroud surface 67 is continuous with the second end of the axial passage 63. Therefore, the shroud surface 67 is continuous with the end of the axial passage 63 opposite the suction port 22. The shroud surface 67 extends in a direction away from the suction port 22 as it moves away from the axial passage 63. The shroud surface 67 is a surface curved in an arc that convexly faces the axis of the first member 61. The shroud surface 67 is the inner surface of a conical hole that opens into the end face of the press-in portion 65. The end of the shroud surface 67 opposite the axial passage 63 is continuous with the outer surface of the press-in portion 65. The end of the shroud surface 67 opposite the axial passage 63 is located inside the tubular member 41.
 第2部材62は、円柱状である。第2部材62の外径は、第1部材61の圧入部65の外径と同じである。第2部材62は、第1部材61よりも永久磁石42寄りに配置されている。第2部材62は、筒部材41の内側に配置されている。 The second member 62 is cylindrical. The outer diameter of the second member 62 is the same as the outer diameter of the press-fit portion 65 of the first member 61. The second member 62 is disposed closer to the permanent magnet 42 than the first member 61. The second member 62 is disposed inside the tubular member 41.
 第2部材62は、ハブ面68を有している。ハブ面68は、シュラウド面67に沿って延びている。ハブ面68は、第2部材62の軸線に向けて凹となる弧状に湾曲した面である。ハブ面68は、軸路63から離れるにつれてシュラウド面67に徐々に接近している。 The second member 62 has a hub surface 68. The hub surface 68 extends along the shroud surface 67. The hub surface 68 is an arc-shaped curved surface that is concave toward the axis of the second member 62. The hub surface 68 gradually approaches the shroud surface 67 as it moves away from the axial path 63.
 第2部材62には、複数の翼69が設けられている。したがって、複数の翼69は、第2部材62に設けられている。複数の翼69は、第2部材62に一体形成されている。各翼69は、ハブ面68から起立している。複数の翼69は、ハブ面68からシュラウド面67に向けて延びている。各翼69におけるシュラウド面67と対向する外縁は、シュラウド面67に沿って延びている。各翼69におけるシュラウド面67と対向する外縁は、シュラウド面67に接触している。 The second member 62 is provided with a plurality of blades 69. Thus, the plurality of blades 69 are provided on the second member 62. The plurality of blades 69 are integrally formed with the second member 62. Each blade 69 stands upright from the hub surface 68. The plurality of blades 69 extend from the hub surface 68 toward the shroud surface 67. The outer edge of each blade 69 that faces the shroud surface 67 extends along the shroud surface 67. The outer edge of each blade 69 that faces the shroud surface 67 is in contact with the shroud surface 67.
 第1部材61の圧入部65は、筒部材41の第1端部の内周面に圧入されている。また、段差面66は、筒部材41の第1端面に当接している。段差面66と筒部材41の第1端面とは、例えば、溶接やろう付け等により接合されている。第2部材62は、筒部材41の第1端部の内周面に圧入されている。このように、筒部材41は、シュラウド面67の外周縁とハブ面68の外周縁とを回転軸43の軸方向で跨いだ状態で第1部材61と第2部材62とを連結している。 The press-fit portion 65 of the first member 61 is press-fitted into the inner circumferential surface of the first end of the tubular member 41. The step surface 66 abuts against the first end face of the tubular member 41. The step surface 66 and the first end face of the tubular member 41 are joined by, for example, welding or brazing. The second member 62 is press-fitted into the inner circumferential surface of the first end of the tubular member 41. In this way, the tubular member 41 connects the first member 61 and the second member 62 with the outer circumferential edge of the shroud surface 67 and the outer circumferential edge of the hub surface 68 straddling each other in the axial direction of the rotating shaft 43.
 筒部材41には、連通孔70が複数形成されている。各連通孔70は、シュラウド面67とハブ面68との間の空間であって、且つ、第2部材62の周方向で隣り合う翼69同士の間の空間にそれぞれ連通している。各連通孔70は、モータ室18内に開口している。 The cylindrical member 41 has a plurality of communication holes 70 formed therein. Each communication hole 70 is connected to the space between the shroud surface 67 and the hub surface 68, and also to the space between adjacent blades 69 in the circumferential direction of the second member 62. Each communication hole 70 opens into the motor chamber 18.
 回転体60は、複数の径路71を備えている。複数の径路71は、シュラウド面67とハブ面68との間の空間であって、且つ、第2部材62の周方向で隣り合う翼69同士の間の空間と、各連通孔70と、によって形成されている。したがって、シュラウド面67、ハブ面68、及び複数の翼69は、各径路71の一部分を区画する。そして、連通孔70は、各径路71の一部分を形成している。複数の径路71は、第1軸部材44の内部を回転軸43の径方向に延びている。複数の径路71は、回転体60の内部を回転軸43の径方向に延びてモータ室18内に連通している。各径路71は、モータ室18内における第1コイルエンド36aよりも内側の空間に連通している。そして、複数の径路71は、軸路63からの空気をモータ室18内に導入する。このように、筒部材41は、内部に第1部材61と第2部材62とを有するとともに各径路71の一部分を形成し、モータ室18内に開口している。 The rotating body 60 has a plurality of paths 71. The plurality of paths 71 is formed by the space between the shroud surface 67 and the hub surface 68, and by the space between adjacent blades 69 in the circumferential direction of the second member 62, and by each communication hole 70. Therefore, the shroud surface 67, the hub surface 68, and the plurality of blades 69 define a portion of each path 71. The communication hole 70 forms a portion of each path 71. The plurality of paths 71 extend inside the first shaft member 44 in the radial direction of the rotating shaft 43. The plurality of paths 71 extend inside the rotating body 60 in the radial direction of the rotating shaft 43 and communicate with the inside of the motor chamber 18. Each path 71 communicates with a space inside the first coil end 36a in the motor chamber 18. The plurality of paths 71 introduce air from the shaft path 63 into the motor chamber 18. In this way, the tubular member 41 has a first member 61 and a second member 62 inside, forms a part of each path 71, and opens into the motor chamber 18.
 [第1実施形態の作用]
 次に、第1実施形態の作用について説明する。
 吸入口22からの空気の一部は、軸路63に導入されて軸路63及び各径路71を流れる。各径路71を流れる空気は、モータ室18内に導入される。モータ室18内に導入された空気は、ステータ32とロータ33との間を通過して、排出通路59からハウジング11外へ排出される。モータ31は、モータ室18内に導入された空気によって冷却される。このように、遠心圧縮機10においては、吸入口22から軸路63及び各径路71を介してモータ室18内に導入された空気によってモータ31が冷却される。
[Operation of the First Embodiment]
Next, the operation of the first embodiment will be described.
A portion of the air from the suction port 22 is introduced into the axial passage 63 and flows through the axial passage 63 and each of the paths 71. The air flowing through each of the paths 71 is introduced into the motor chamber 18. The air introduced into the motor chamber 18 passes between the stator 32 and the rotor 33, and is discharged to the outside of the housing 11 through the discharge passage 59. The motor 31 is cooled by the air introduced into the motor chamber 18. In this way, in the centrifugal compressor 10, the motor 31 is cooled by the air introduced into the motor chamber 18 from the suction port 22 through the axial passage 63 and each of the paths 71.
 各径路71の一部分は、シュラウド面67と、ハブ面68と、複数の翼69とから形成されている。このような構成の各径路71を流れる空気は、回転体60の回転に伴う遠心力によって加速され易くなる。よって、各径路71からモータ室18内に空気が効率良く導入される。その結果、モータ31が効率良く冷却される。 A portion of each path 71 is formed by a shroud surface 67, a hub surface 68, and a number of vanes 69. The air flowing through each path 71 configured in this way is easily accelerated by the centrifugal force that accompanies the rotation of the rotor 60. Therefore, air is efficiently introduced from each path 71 into the motor chamber 18. As a result, the motor 31 is efficiently cooled.
 [第1実施形態の効果]
 第1実施形態では以下の効果を得ることができる。
 (1-1)筒部材41は、内部に第1部材61と第2部材62とを有するとともに各径路71の一部分を形成し、モータ室18内に開口している。これによれば、筒部材41が、内部に第1部材61と第2部材62とを有することにより、各径路71の一部分がシュラウド面67、ハブ面68、及び複数の翼69から形成される回転体60を採用することができる。したがって、例えば、このような構成の複数の径路71を回転軸43の内部に形成するために、複雑な構造の鋳型を用いて回転軸43を製造するといった必要が無い。よって、コストを抑えつつも、モータ31を効率良く冷却することができる。
[Effects of the First Embodiment]
The first embodiment can provide the following effects.
(1-1) The cylindrical member 41 has a first member 61 and a second member 62 therein, forms a part of each path 71, and opens into the motor chamber 18. With this, the cylindrical member 41 has the first member 61 and the second member 62 therein, and thus it is possible to employ a rotor 60 in which a part of each path 71 is formed from a shroud surface 67, a hub surface 68, and a plurality of blades 69. Therefore, for example, in order to form a plurality of paths 71 having such a configuration inside the rotating shaft 43, it is not necessary to manufacture the rotating shaft 43 using a mold with a complex structure. Therefore, it is possible to efficiently cool the motor 31 while keeping costs down.
 (1-2)第1軸部材44は、第1部材61及び第2部材62を有している。複数の径路71は、第1軸部材44の内部を回転軸43の径方向に延びている。第1部材61には、軸路63が形成されている。複数の翼69は、第2部材62に一体形成されるとともにハブ面68からシュラウド面67に向けて延びている。このような構成は、第1軸部材44が位置する側からモータ室18内に空気を導入する構成として好適である。 (1-2) The first shaft member 44 has a first member 61 and a second member 62. A plurality of radial passages 71 extend inside the first shaft member 44 in the radial direction of the rotating shaft 43. An axial passage 63 is formed in the first member 61. A plurality of blades 69 are integrally formed with the second member 62 and extend from the hub surface 68 toward the shroud surface 67. This configuration is suitable for introducing air into the motor chamber 18 from the side where the first shaft member 44 is located.
 [第2実施形態]
 以下、遠心圧縮機を具体化した第2実施形態を図6及び図7にしたがって説明する。なお、以下に説明する実施形態では、既に説明した第1実施形態と同一構成について同一符号を付すなどして、その重複する説明を省略又は簡略する。第2実施形態では、径路が第1軸部材に設けられているのではなく、第2軸部材に設けられている点が第1実施形態とは異なる。そして、第2実施形態では、第1軸部材は、第1部材及び第2部材を有していない。
[Second embodiment]
A second embodiment of a centrifugal compressor will be described below with reference to Figures 6 and 7. In the embodiment described below, the same components as those in the first embodiment will be denoted by the same reference numerals, and the description thereof will be omitted or simplified. The second embodiment differs from the first embodiment in that the path is provided in the second shaft member, not in the first shaft member. In the second embodiment, the first shaft member does not have a first member and a second member.
 図6に示すように、ハウジング11は、排出通路75を有している。排出通路75は、第1プレート15を貫通している。排出通路75の第1端は、モータ室18内に連通している。排出通路75の第2端は、ハウジング11外に連通している。 As shown in FIG. 6, the housing 11 has a discharge passage 75. The discharge passage 75 passes through the first plate 15. A first end of the discharge passage 75 communicates with the inside of the motor chamber 18. A second end of the discharge passage 75 communicates with the outside of the housing 11.
 軸路63は、第1軸部材44の内部を回転軸43の軸方向に貫通している。永久磁石42は、接続通路76を有している。接続通路76は、永久磁石42を軸方向に貫通している。接続通路76の第1端は、軸路63に連通している。 The axial passage 63 passes through the interior of the first shaft member 44 in the axial direction of the rotating shaft 43. The permanent magnet 42 has a connecting passage 76. The connecting passage 76 passes through the permanent magnet 42 in the axial direction. The first end of the connecting passage 76 is connected to the axial passage 63.
 図7に示すように、第2軸部材45は、第1部材81及び第2部材82を有している。したがって、遠心圧縮機10は、第1部材81と、第2部材82と、を備えている。第1部材81は、円筒状である。第1部材81は、第2部材82よりも永久磁石42寄りに配置されている。第1部材81は、筒部材41の内側に配置されている。 As shown in FIG. 7, the second shaft member 45 has a first member 81 and a second member 82. Thus, the centrifugal compressor 10 includes the first member 81 and the second member 82. The first member 81 is cylindrical. The first member 81 is disposed closer to the permanent magnet 42 than the second member 82. The first member 81 is disposed inside the tubular member 41.
 第1部材81は、シュラウド面83を有している。シュラウド面83は、接続通路76の第2端に連続している。シュラウド面83は、接続通路76から離れるにつれて永久磁石42から離間する方向へ延びている。シュラウド面83は、第1部材81の軸線に向けて凸となる弧状に湾曲した面である。シュラウド面83は、第1部材81を軸方向に貫通する円錐孔の内周面である。シュラウド面83における接続通路76とは反対側の端部は、第1部材81の外周面に連続している。シュラウド面83における接続通路76とは反対側の端部は、筒部材41の内側に位置している。 The first member 81 has a shroud surface 83. The shroud surface 83 is continuous with the second end of the connecting passage 76. The shroud surface 83 extends in a direction away from the permanent magnet 42 as it moves away from the connecting passage 76. The shroud surface 83 is an arc-shaped curved surface that is convex toward the axis of the first member 81. The shroud surface 83 is the inner surface of a conical hole that penetrates the first member 81 in the axial direction. The end of the shroud surface 83 opposite the connecting passage 76 is continuous with the outer surface of the first member 81. The end of the shroud surface 83 opposite the connecting passage 76 is located inside the tubular member 41.
 第2部材82は、円柱状である。第2部材82は、軸受部84と、圧入部85と、を有している。軸受部84は、第2ラジアル軸受保持部26の内側に位置している。そして、軸受部84は、第2ラジアル軸受52に支持されている。 The second member 82 is cylindrical. The second member 82 has a bearing portion 84 and a press-fit portion 85. The bearing portion 84 is located inside the second radial bearing retaining portion 26. The bearing portion 84 is supported by the second radial bearing 52.
 圧入部85は、軸受部84よりも第1部材81寄りに位置している。圧入部85は、軸受部84に連続している。圧入部85の外径は、軸受部84の外径よりも小さい。圧入部85は、筒部材41の内側に配置されている。軸受部84の外周面と圧入部85の外周面とは、環状の段差面86によって接続されている。段差面86は、回転軸43の径方向に延びている。圧入部85の外径は、第1部材81の外径と同じである。 The press-fit portion 85 is located closer to the first member 81 than the bearing portion 84. The press-fit portion 85 is continuous with the bearing portion 84. The outer diameter of the press-fit portion 85 is smaller than the outer diameter of the bearing portion 84. The press-fit portion 85 is disposed inside the tubular member 41. The outer peripheral surface of the bearing portion 84 and the outer peripheral surface of the press-fit portion 85 are connected by an annular stepped surface 86. The stepped surface 86 extends in the radial direction of the rotating shaft 43. The outer diameter of the press-fit portion 85 is the same as the outer diameter of the first member 81.
 第2部材82は、ハブ面87を有している。ハブ面87は、シュラウド面83に沿って延びている。ハブ面87は、第2部材82の軸線に向けて凹となる弧状に湾曲した面である。ハブ面87は、接続通路76から離れるにつれてシュラウド面67に徐々に接近している。ハブ面87は、圧入部85の外周面に連続している。 The second member 82 has a hub surface 87. The hub surface 87 extends along the shroud surface 83. The hub surface 87 is an arc-shaped curved surface that is concave toward the axis of the second member 82. The hub surface 87 gradually approaches the shroud surface 67 as it moves away from the connecting passage 76. The hub surface 87 is continuous with the outer peripheral surface of the press-fit portion 85.
 第2部材82には、複数の翼88が設けられている。したがって、複数の翼88は、第2部材82に設けられている。複数の翼88は、第2部材82に一体形成されている。各翼88は、ハブ面87から起立している。複数の翼88は、ハブ面87からシュラウド面83に向けて延びている。各翼88におけるシュラウド面83側の外縁は、シュラウド面83に沿って延びている。各翼88におけるシュラウド面83側の外縁は、シュラウド面83に接触している。 The second member 82 is provided with a plurality of wings 88. Thus, the plurality of wings 88 are provided on the second member 82. The plurality of wings 88 are integrally formed with the second member 82. Each of the wings 88 stands upright from the hub surface 87. The plurality of wings 88 extend from the hub surface 87 toward the shroud surface 83. The outer edge of each of the wings 88 on the shroud surface 83 side extends along the shroud surface 83. The outer edge of each of the wings 88 on the shroud surface 83 side is in contact with the shroud surface 83.
 第1部材81は、筒部材41の第2端部の内周面に圧入されている。第2部材82の圧入部85は、筒部材41の第2端部の内周面に圧入されている。また、段差面86は、筒部材41の第2端面に当接している。段差面86と筒部材41の第2端面とは、例えば、溶接やろう付け等により接合されている。このように、筒部材41は、シュラウド面83の外周縁とハブ面87の外周縁とを回転軸43の軸方向で跨いだ状態で第1部材81と第2部材82とを連結している。 The first member 81 is press-fitted into the inner peripheral surface of the second end of the tubular member 41. The press-fit portion 85 of the second member 82 is press-fitted into the inner peripheral surface of the second end of the tubular member 41. The step surface 86 is in contact with the second end face of the tubular member 41. The step surface 86 and the second end face of the tubular member 41 are joined by, for example, welding or brazing. In this way, the tubular member 41 connects the first member 81 and the second member 82 with the outer peripheral edge of the shroud surface 83 and the outer peripheral edge of the hub surface 87 straddling each other in the axial direction of the rotating shaft 43.
 筒部材41には、連通孔89が複数形成されている。各連通孔89は、シュラウド面83とハブ面87との間の空間であって、且つ、第2部材82の周方向で隣り合う翼88同士の間の空間にそれぞれ連通している。各連通孔89は、モータ室18内に開口している。 The cylindrical member 41 has a plurality of communication holes 89 formed therein. Each communication hole 89 is connected to the space between the shroud surface 83 and the hub surface 87, and also to the space between adjacent blades 88 in the circumferential direction of the second member 82. Each communication hole 89 opens into the motor chamber 18.
 回転体60は、複数の径路90を備えている。複数の径路90は、シュラウド面83とハブ面87との間の空間であって、且つ、第2部材82の周方向で隣り合う翼88同士の間の空間と、各連通孔89と、によって形成されている。したがって、シュラウド面83、ハブ面87、及び複数の翼88は、各径路90の一部分を区画する。そして、連通孔89は、各径路90の一部分を形成している。複数の径路90は、第2軸部材45の内部を回転軸43の径方向に延びている。複数の径路90は、回転体60の内部を回転軸43の径方向に延びてモータ室18内に連通している。各径路90は、モータ室18内における第2コイルエンド36bよりも内側の空間に連通している。各径路90は、接続通路76に連通している。したがって、接続通路76は、軸路63と複数の径路90とを接続している。そして、軸路63からの空気は、接続通路76及び各径路90を介してモータ室18内に導入される。したがって、複数の径路90は、軸路63からの空気をモータ室18内に導入する。このように、筒部材41は、内部に第1部材81と第2部材82とを有するとともに各径路90の一部分を形成し、モータ室18内に開口している。 The rotating body 60 has a plurality of paths 90. The plurality of paths 90 is formed by the space between the shroud surface 83 and the hub surface 87, the space between adjacent blades 88 in the circumferential direction of the second member 82, and each communication hole 89. Therefore, the shroud surface 83, the hub surface 87, and the plurality of blades 88 define a portion of each path 90. And the communication hole 89 forms a portion of each path 90. The plurality of paths 90 extend in the radial direction of the rotating shaft 43 inside the second shaft member 45. The plurality of paths 90 extend in the radial direction of the rotating shaft 43 inside the rotating body 60 and communicate with the inside of the motor chamber 18. Each path 90 communicates with a space inside the second coil end 36b in the motor chamber 18. Each path 90 communicates with the connecting passage 76. Therefore, the connecting passage 76 connects the shaft path 63 and the plurality of paths 90. Then, air from the axial passage 63 is introduced into the motor chamber 18 via the connecting passage 76 and each path 90. Therefore, the multiple paths 90 introduce air from the axial passage 63 into the motor chamber 18. In this way, the tubular member 41 has a first member 81 and a second member 82 inside, forms a part of each path 90, and opens into the motor chamber 18.
 [第2実施形態の作用]
 次に、第2実施形態の作用について説明する。
 吸入口22からの空気の一部は、軸路63に導入されて軸路63、接続通路76、及び各径路90を流れる。各径路90を流れる空気は、モータ室18内に導入される。モータ室18内に導入された空気は、ステータ32とロータ33との間を通過して、排出通路75からハウジング11外へ排出される。モータ31は、モータ室18内に導入された空気によって冷却される。このように、遠心圧縮機10においては、吸入口22から軸路63及び各径路90を介してモータ室18内に導入された空気によってモータ31が冷却される。
[Operation of the second embodiment]
Next, the operation of the second embodiment will be described.
A portion of the air from the suction port 22 is introduced into the axial passage 63 and flows through the axial passage 63, the connecting passage 76, and each of the paths 90. The air flowing through each of the paths 90 is introduced into the motor chamber 18. The air introduced into the motor chamber 18 passes between the stator 32 and the rotor 33, and is discharged to the outside of the housing 11 through the discharge passage 75. The motor 31 is cooled by the air introduced into the motor chamber 18. In this way, in the centrifugal compressor 10, the motor 31 is cooled by the air introduced into the motor chamber 18 from the suction port 22 through the axial passage 63 and each of the paths 90.
 各径路90の一部分は、シュラウド面83と、ハブ面87と、複数の翼88とから形成されている。このような構成の各径路90を流れる空気は、回転体60の回転に伴う遠心力によって加速され易くなる。よって、各径路90からモータ室18内に空気が効率良く導入される。その結果、モータ31が効率良く冷却される。 A portion of each path 90 is formed by a shroud surface 83, a hub surface 87, and a number of vanes 88. The air flowing through each path 90 configured in this way is easily accelerated by the centrifugal force that accompanies the rotation of the rotor 60. Therefore, air is efficiently introduced from each path 90 into the motor chamber 18. As a result, the motor 31 is efficiently cooled.
 [第2実施形態の効果]
 第2実施形態では、第1実施形態の効果(1-1)と同様な効果に加えて、以下の効果を得ることができる。
[Effects of the second embodiment]
In the second embodiment, in addition to the effect (1-1) of the first embodiment, the following effect can be obtained.
 (2-1)第2軸部材45は、第1部材81及び第2部材82を有している。複数の径路90は、第2軸部材45の内部を回転軸43の径方向に延びている。永久磁石42は、軸路63と複数の径路90とを接続する接続通路76を有している。複数の翼88は、第2部材62に一体形成されるとともにハブ面87からシュラウド面83に向けて延びている。このような構成は、第2軸部材45が位置する側からモータ室18内に空気を導入する構成として好適である。 (2-1) The second shaft member 45 has a first member 81 and a second member 82. A plurality of paths 90 extend inside the second shaft member 45 in the radial direction of the rotating shaft 43. The permanent magnet 42 has a connecting passage 76 that connects the axial path 63 and the plurality of paths 90. A plurality of blades 88 are formed integrally with the second member 62 and extend from the hub surface 87 toward the shroud surface 83. This configuration is suitable for introducing air into the motor chamber 18 from the side where the second shaft member 45 is located.
 (2-2)接続通路76内を空気が通過する。したがって、接続通路76内を流れる空気によって、永久磁石42を冷却することができる。よって、モータ31をさらに効率良く冷却することができる。 (2-2) Air passes through the connecting passage 76. Therefore, the permanent magnet 42 can be cooled by the air flowing through the connecting passage 76. This allows the motor 31 to be cooled more efficiently.
 [変更例]
 なお、上記各実施形態は、以下のように変更して実施することができる。上記各実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
[Example of change]
The above-described embodiments may be modified as follows: The above-described embodiments and the following modifications may be combined with each other to the extent that no technical contradiction occurs.
 ○ 第1実施形態において、複数の翼69が、第1部材61に設けられていてもよい。この場合、複数の翼69は、シュラウド面67からハブ面68に向けて延びている。要は、複数の翼69は、シュラウド面67及びハブ面68の一方から他方に向けて延びていればよい。そして、複数の翼69は、第1部材61及び第2部材62の一方に設けられていればよい。 In the first embodiment, the multiple blades 69 may be provided on the first member 61. In this case, the multiple blades 69 extend from the shroud surface 67 toward the hub surface 68. In short, it is sufficient that the multiple blades 69 extend from one of the shroud surface 67 and the hub surface 68 toward the other. And, it is sufficient that the multiple blades 69 are provided on one of the first member 61 and the second member 62.
 ○ 第1実施形態において、第1軸部材44は、第2部材62を有していなくてもよい。この場合、例えば、永久磁石42にハブ面を形成する。したがって、永久磁石42は、ハブ面を有する第2部材を兼ねる。そして、遠心圧縮機10は、シュラウド面67から永久磁石42のハブ面に向けて延びる複数の翼を備えている。したがって、複数の翼は、第1部材に設けられている。 ○ In the first embodiment, the first shaft member 44 does not have to have the second member 62. In this case, for example, a hub surface is formed on the permanent magnet 42. Therefore, the permanent magnet 42 also serves as the second member having the hub surface. The centrifugal compressor 10 is provided with a plurality of blades extending from the shroud surface 67 toward the hub surface of the permanent magnet 42. Therefore, the plurality of blades are provided on the first member.
 ○ 第2実施形態において、複数の翼88が、第1部材81に設けられていてもよい。この場合、複数の翼88は、シュラウド面83からハブ面87に向けて延びている。要は、複数の翼88は、シュラウド面83及びハブ面87の一方から他方に向けて延びていればよい。そして、複数の翼88は、第1部材81及び第2部材82の一方に設けられていればよい。 In the second embodiment, the multiple blades 88 may be provided on the first member 81. In this case, the multiple blades 88 extend from the shroud surface 83 toward the hub surface 87. In short, it is sufficient that the multiple blades 88 extend from one of the shroud surface 83 and the hub surface 87 toward the other. And, it is sufficient that the multiple blades 88 are provided on one of the first member 81 and the second member 82.
 ○ 第2実施形態において、第2軸部材45は、第1部材61を有していなくてもよい。この場合、例えば、永久磁石42にシュラウド面を形成する。したがって、永久磁石42は、シュラウド面を有する第1部材を兼ねる。 In the second embodiment, the second shaft member 45 does not have to have the first member 61. In this case, for example, a shroud surface is formed on the permanent magnet 42. Therefore, the permanent magnet 42 also serves as the first member having a shroud surface.
 ○ 第1実施形態において、段差面66と筒部材41の第1端面とが、例えば、溶接やろう付け等により接合されていなくてもよい。要は、第1部材61は、圧入部65における筒部材41の第1端部の内周面に対する圧入のみによって筒部材41に固定されていてもよい。 In the first embodiment, the step surface 66 and the first end face of the tubular member 41 do not have to be joined by, for example, welding or brazing. In short, the first member 61 may be fixed to the tubular member 41 only by pressing the press-fit portion 65 against the inner circumferential surface of the first end of the tubular member 41.
 ○ 第2実施形態において、段差面86と筒部材41の第2端面とが、例えば、溶接やろう付け等により接合されていなくてもよい。要は、第2部材82は、圧入部85における筒部材41の第2端部の内周面に対する圧入のみによって筒部材41に固定されていてもよい。 In the second embodiment, the step surface 86 and the second end surface of the tubular member 41 do not have to be joined by, for example, welding or brazing. In short, the second member 82 may be fixed to the tubular member 41 only by pressing the press-fit portion 85 against the inner circumferential surface of the second end of the tubular member 41.
 ○ 上記各実施形態において、永久磁石42が、例えば、筒部材41の内周面に圧入されておらず、例えば、接着剤によって筒部材41の内周面に接着されていてもよい。要は、永久磁石42は、筒部材41の内側に固定されていればよい。 In each of the above embodiments, the permanent magnet 42 may not be pressed into the inner circumferential surface of the tubular member 41, but may be adhered to the inner circumferential surface of the tubular member 41, for example, with an adhesive. In short, it is sufficient that the permanent magnet 42 is fixed to the inside of the tubular member 41.
 ○ 上記各実施形態において、遠心圧縮機10は、タービンホイール50を備えていない構成であってもよい。
 ○ 上記各実施形態において、遠心圧縮機10は、タービンホイール50に代えて、インペラを備えている構成であってもよい。つまり、遠心圧縮機10は、第1軸部材44及び第2軸部材45それぞれにインペラが取り付けられており、一方のインペラによって圧縮された空気が、他方のインペラによって再び圧縮されるような構成であってもよい。
In each of the above-described embodiments, the centrifugal compressor 10 does not necessarily have to include the turbine wheel 50 .
In each of the above-described embodiments, the centrifugal compressor 10 may be configured to include an impeller instead of the turbine wheel 50. That is, the centrifugal compressor 10 may be configured such that an impeller is attached to each of the first shaft member 44 and the second shaft member 45, and air compressed by one impeller is compressed again by the other impeller.
 ○ 上記各実施形態において、磁性体としては、永久磁石42に限らず、例えば、積層コア、アモルファスコア、又は、圧粉コア等であってもよい。
 ○ 上記各実施形態において、筒部材41が、例えば、炭素繊維強化プラスチックから構成されていてもよい。要は、筒部材41の材質は、特に限定されるものではない。
In each of the above-described embodiments, the magnetic body is not limited to the permanent magnet 42 and may be, for example, a laminated core, an amorphous core, or a powder core.
In each of the above-described embodiments, the cylindrical member 41 may be made of, for example, carbon fiber reinforced plastic. In short, the material of the cylindrical member 41 is not particularly limited.
 ○ 上記各実施形態において、遠心圧縮機10は、燃料電池車に搭載されていなくてもよい。要は、遠心圧縮機10は、車両に搭載されるものに限定されるものではない。 ○ In each of the above embodiments, the centrifugal compressor 10 does not have to be mounted on a fuel cell vehicle. In other words, the centrifugal compressor 10 is not limited to being mounted on a vehicle.

Claims (3)

  1.  回転軸、及び前記回転軸と一体的に回転することで空気を圧縮するように構成されたインペラを含む回転体と、
     前記回転軸を回転させるように構成されたモータと、
     前記インペラを収容するインペラ室、前記モータを収容するモータ室、及び前記インペラ室に空気を吸入する吸入口を有するハウジングと、を備え、
     前記モータは、
     前記ハウジングに固定されるステータと、
     前記回転軸と一体的に回転するように構成されるとともに前記ステータの内側に配置され、前記回転体の一部を構成するロータと、を備え、
     前記ロータは、
     筒部材と、
     前記筒部材の内側に固定される磁性体と、を有し、
     前記回転軸は、前記筒部材の軸方向で前記磁性体を挟んだ両側に設けられる第1軸部材及び第2軸部材を含み、
     前記インペラは、前記第1軸部材に連結されており、
     前記回転体は、
     前記第1軸部材の前記インペラが連結された一端に開口して前記吸入口に連通し、前記第1軸部材の内部を前記回転軸の軸方向に延びる軸路と、
     前記回転体の内部を前記回転軸の径方向に延びて前記モータ室内に連通し、前記軸路からの空気を前記モータ室内に導入する複数の径路と、を備え、
     前記吸入口から前記軸路及び前記各径路を介して前記モータ室内に導入される空気によって前記モータが冷却される遠心圧縮機であって、
     前記各径路の一部分を区画するシュラウド面を有する第1部材と、
     前記シュラウド面に沿って延びるとともに前記各径路の一部分を区画するハブ面を有する第2部材と、
     前記シュラウド面及び前記ハブ面の一方から他方に向けて延びるとともに前記各径路の一部分を区画する複数の翼と、を備え、
     前記複数の翼は、前記第1部材及び前記第2部材の一方に設けられており、
     前記筒部材は、内部に前記第1部材と前記第2部材とを有するとともに前記各径路の一部分を形成し、前記モータ室内に開口している遠心圧縮機。
    A rotor including a rotating shaft and an impeller configured to rotate integrally with the rotating shaft to compress air;
    a motor configured to rotate the rotary shaft;
    a housing having an impeller chamber that houses the impeller, a motor chamber that houses the motor, and an intake port that draws air into the impeller chamber,
    The motor is
    a stator fixed to the housing;
    a rotor configured to rotate integrally with the rotating shaft, disposed inside the stator, and constituting a part of the rotating body;
    The rotor is
    A cylindrical member;
    a magnetic body fixed to the inside of the cylindrical member;
    the rotating shaft includes a first shaft member and a second shaft member provided on both sides of the magnetic body in an axial direction of the cylindrical member,
    The impeller is connected to the first shaft member,
    The rotating body is
    an axial passage that opens at one end of the first shaft member to which the impeller is connected and communicates with the suction port, and that extends through the first shaft member in the axial direction of the rotary shaft;
    a plurality of passages extending in a radial direction of the rotary shaft through the interior of the rotor and communicating with the motor chamber, for introducing air from the axial passage into the motor chamber;
    A centrifugal compressor in which the motor is cooled by air introduced into the motor chamber from the suction port through the axial passage and each of the radial passages,
    a first member having a shroud surface that defines a portion of each of the paths;
    a second member having a hub surface extending along the shroud surface and defining a portion of each of the paths;
    a plurality of vanes extending from one of the shroud surface and the hub surface toward the other and defining a portion of each of the paths;
    the plurality of wings are provided on one of the first member and the second member,
    The cylindrical member has the first member and the second member therein, forms a part of each of the paths, and is open into the motor chamber.
  2.  前記第1軸部材は、前記第1部材及び前記第2部材を有し、
     前記複数の径路は、前記第1軸部材の内部を前記径方向に延びており、
     前記第1部材には、前記軸路が形成されており、
     前記複数の翼は、前記第2部材に一体形成されるとともに前記ハブ面から前記シュラウド面に向けて延びている請求項1に記載の遠心圧縮機。
    The first shaft member has the first member and the second member,
    The plurality of paths extend in the radial direction inside the first shaft member,
    The first member has the shaft passage formed therein,
    2. The centrifugal compressor according to claim 1, wherein the plurality of vanes are integrally formed with the second member and extend from the hub surface toward the shroud surface.
  3.  前記第2軸部材は、前記第1部材及び前記第2部材を有し、
     前記複数の径路は、前記第2軸部材の内部を前記径方向に延びており、
     前記磁性体は、前記軸路と前記複数の径路とを接続する接続通路を有し、
     前記複数の翼は、前記第2部材に一体形成されるとともに前記ハブ面から前記シュラウド面に向けて延びている請求項1に記載の遠心圧縮機。
    the second shaft member has the first member and the second member,
    The plurality of paths extend in the radial direction inside the second shaft member,
    the magnetic body has a connection passage that connects the axial path and the plurality of paths,
    2. The centrifugal compressor according to claim 1, wherein the plurality of vanes are integrally formed with the second member and extend from the hub surface toward the shroud surface.
PCT/JP2023/041824 2022-11-25 2023-11-21 Centrifugal compressor WO2024111584A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022188351A JP2024076672A (en) 2022-11-25 2022-11-25 Centrifugal Compressor
JP2022-188351 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024111584A1 true WO2024111584A1 (en) 2024-05-30

Family

ID=91196095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041824 WO2024111584A1 (en) 2022-11-25 2023-11-21 Centrifugal compressor

Country Status (2)

Country Link
JP (1) JP2024076672A (en)
WO (1) WO2024111584A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118742A (en) * 2006-11-01 2008-05-22 Toyota Motor Corp Rotary motor
JP2010516930A (en) * 2007-01-19 2010-05-20 ダイムラー・アクチェンゲゼルシャフト Fluid flow engine
JP6968253B2 (en) * 2017-07-26 2021-11-17 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Methods for manufacturing shafts, centrifugal compressors and centrifugal compressors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118742A (en) * 2006-11-01 2008-05-22 Toyota Motor Corp Rotary motor
JP2010516930A (en) * 2007-01-19 2010-05-20 ダイムラー・アクチェンゲゼルシャフト Fluid flow engine
JP6968253B2 (en) * 2017-07-26 2021-11-17 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Methods for manufacturing shafts, centrifugal compressors and centrifugal compressors

Also Published As

Publication number Publication date
JP2024076672A (en) 2024-06-06

Similar Documents

Publication Publication Date Title
US20230204037A1 (en) Centrifugal compressor
CN111156180A (en) Gas compressor, rotor system and micro gas turbine
WO2024111584A1 (en) Centrifugal compressor
CN211778076U (en) Gas compressor, rotor system and micro gas turbine
US20230117537A1 (en) Centrifugal compressor
WO2023243264A1 (en) Centrifugal compressor
WO2024134989A1 (en) Centrifugal compressor
CN112682329B (en) High-speed electric air compressor of fuel cell
WO2023228760A1 (en) Centrifugal compressor
CN116420027A (en) Fluid machinery
WO2024079950A1 (en) Centrifugal compressor
JP2023135590A (en) centrifugal compressor
US20230296107A1 (en) Centrifugal compressor
KR101289800B1 (en) Permanent magnetic motor and fluid charger comprising the same
JP2023174294A (en) centrifugal compressor
JP2023135071A (en) centrifugal compressor
WO2024062715A1 (en) Centrifugal compressor
JP2024034733A (en) centrifugal compressor
JP2024014301A (en) centrifugal compressor
WO2024062714A1 (en) Centrifugal compressor
CN116771693A (en) Centrifugal compressor
JP2024039922A (en) centrifugal compressor
WO2023042441A1 (en) Electric turbo compressor
WO2023047652A1 (en) Electric turbo compressor
JP2023172660A (en) Electric fluid machinery