WO2024062714A1 - Centrifugal compressor - Google Patents
Centrifugal compressor Download PDFInfo
- Publication number
- WO2024062714A1 WO2024062714A1 PCT/JP2023/024053 JP2023024053W WO2024062714A1 WO 2024062714 A1 WO2024062714 A1 WO 2024062714A1 JP 2023024053 W JP2023024053 W JP 2023024053W WO 2024062714 A1 WO2024062714 A1 WO 2024062714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- circumferential surface
- impeller
- chamber
- insertion hole
- Prior art date
Links
- 238000003780 insertion Methods 0.000 claims abstract description 84
- 230000037431 insertion Effects 0.000 claims abstract description 84
- 238000005192 partition Methods 0.000 claims description 29
- 230000002093 peripheral effect Effects 0.000 claims description 28
- 239000000446 fuel Substances 0.000 claims description 20
- 230000004308 accommodation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
Definitions
- the present invention relates to a centrifugal compressor that compresses air supplied to a fuel cell stack.
- the impeller compresses the air supplied to the fuel cell stack.
- the centrifugal compressor includes a motor and a housing.
- the motor rotates the rotating body.
- the housing has an impeller chamber, a motor chamber, a partition wall, and a discharge chamber.
- the impeller chamber houses the impeller.
- the motor chamber houses the motor.
- the partition wall partitions the impeller room and the motor room. Air compressed by the impeller is discharged into the discharge chamber.
- a supply flow path that supplies air to the fuel cell stack is connected to the discharge chamber.
- An insertion hole through which the rotating body is inserted is formed in the partition wall.
- a centrifugal compressor that solves the above problems includes a rotating body including an impeller that compresses air supplied to a fuel cell stack, a motor that rotates the rotating body, an impeller chamber that accommodates the impeller, and an impeller chamber that accommodates the motor. a motor chamber, a partition wall that partitions the impeller chamber and the motor chamber and is formed with an insertion hole through which the rotating body is inserted; a housing having a discharge chamber to which a supply flow path for supplying air is connected, and a part of the air compressed by the impeller is kept at a temperature lower than the temperature of the air discharged into the discharge chamber.
- a centrifugal compressor that cools the motor by being introduced into the motor chamber, wherein the air gap is formed between the insertion hole and the rotating body and between the back surface of the impeller and the partition wall.
- a constriction part that constricts the air flowing from the through hole into the through hole; a communication section that communicates with the motor chamber; and a discharge passage formed in the partition wall and extending in the flow direction of the air that has passed through the constriction section, increasing the pressure of the air that has passed through the constriction section and discharging it to the outside of the housing. It is equipped with.
- the speed of air flowing into the insertion hole from the gap between the back surface of the impeller and the partition wall increases by passing through the constriction part.
- the pressure of the air after passing through the constriction section is lower than the pressure of the air before passing through the constriction section.
- the communication portion extends in a direction intersecting the flow direction of the air that has passed through the constriction portion. Therefore, it is difficult for the air that has passed through the throttle section to flow into the motor chamber via the communication section.
- the discharge passage extends in the flow direction of the air that has passed through the constriction section. Therefore, the air that has passed through the constriction part easily flows into the discharge passage.
- the air flowing into the insertion hole from the gap between the back surface of the impeller and the partition wall is easily discharged to the outside of the housing while increasing the pressure through the discharge passage.
- a portion of the air compressed by the impeller and discharged into the discharge chamber is prevented from entering the motor chamber through the insertion hole. Therefore, a part of the air compressed by the impeller and discharged into the discharge chamber enters the motor chamber through the insertion hole, and the problem of the motor being warmed by the air entering the motor chamber is less likely to occur.
- an outer circumferential surface of a portion of the rotating body located inside the insertion hole has a first outer circumferential surface and a first outer circumferential surface that is located closer to the motor chamber than the first outer circumferential surface.
- the inner circumferential surface of the insertion hole has a first inner circumferential surface extending along the first outer circumferential surface, and a second inner circumferential surface extending along the second outer circumferential surface and having an inner diameter smaller than the first inner circumferential surface.
- the communication portion is a gap between the first outer peripheral surface and the first inner peripheral surface, and the communication portion is a gap between the first step surface and the second step surface, and a gap between the second outer peripheral surface and the second inner peripheral surface.
- the end portion of the discharge passage opposite to the outside of the housing includes a gap between the first outer circumferential surface and the first inner circumferential surface. It is preferable that they face each other in the axial direction.
- Such a configuration includes a constriction portion formed between the insertion hole and the rotating body, a communication portion formed between the insertion hole and the rotating body, and a discharge passage formed in the partition wall. This is suitable as a configuration for a centrifugal compressor.
- the throttle section lowers the pressure of air flowing from the gap into the insertion hole than the pressure inside the motor chamber. According to this, the throttle section makes the pressure of the air flowing into the insertion hole from the gap between the back surface of the impeller and the partition wall lower than the pressure inside the motor chamber. Therefore, it is possible to further prevent part of the air compressed by the impeller and discharged into the discharge chamber from entering the motor chamber through the insertion hole.
- This invention makes it possible to improve the durability of centrifugal compressors.
- FIG. 2 is an enlarged cross-sectional view of a portion of the centrifugal compressor.
- FIG. 3 is an enlarged cross-sectional view of a portion of a centrifugal compressor in another embodiment.
- centrifugal compressor An embodiment of a centrifugal compressor will be described below with reference to FIGS. 1 and 2. Note that the centrifugal compressor of the embodiment described below is installed in a fuel cell vehicle. A centrifugal compressor compresses the air supplied to the fuel cell stack.
- the centrifugal compressor 10 includes a housing 11. As shown in FIG.
- the housing 11 is made of a metal material, for example, aluminum.
- the housing 11 includes a motor housing 12 , a first compressor housing 13 , a second compressor housing 14 , a first plate 15 , a second plate 16 , and a third plate 17 .
- the motor housing 12 extends in a cylindrical shape.
- the first plate 15 is connected to one end of the motor housing 12 on the opening side.
- the first plate 15 closes one opening of the motor housing 12.
- the second plate 16 is connected to the other open end of the motor housing 12 .
- the second plate 16 closes the other opening of the motor housing 12.
- a motor chamber 18 is defined by the motor housing 12, the first plate 15, and the second plate 16. Therefore, the housing 11 has a motor chamber 18.
- the centrifugal compressor 10 includes a motor 20.
- the motor 20 is housed in the motor chamber 18. Therefore, motor chamber 18 accommodates motor 20.
- Motor housing 12 surrounds motor 20.
- the centrifugal compressor 10 includes a first bearing holding section 21.
- the first bearing holding portion 21 projects into the motor chamber 18 from the center of the first plate 15 . Therefore, the first plate 15 has the first bearing holding portion 21 .
- the first bearing holding portion 21 has a cylindrical shape.
- a chamber-forming recess 22 is formed on the end surface of the first plate 15 on the side opposite to the motor housing 12.
- the chamber forming recess 22 has a circular hole shape.
- the inside of the first bearing holding portion 21 penetrates the first plate 15 and opens to the bottom surface of the chamber forming recess 22 .
- the axis of the chamber-forming recess 22 and the axis of the first bearing holding part 21 coincide.
- the third plate 17 is connected to the end surface of the first plate 15 on the opposite side from the motor housing 12.
- a first insertion hole 23 is formed in the center of the third plate 17 .
- the axis of the first insertion hole 23 coincides with the axis of the chamber forming recess 22 and the axis of the first bearing holding part 21 .
- a thrust bearing housing chamber 24 is defined by the chamber forming recess 22 and the third plate 17.
- the thrust bearing housing chamber 24 communicates with the inside of the first bearing holding section 21 . Further, the thrust bearing housing chamber 24 communicates with the first insertion hole 23 .
- the centrifugal compressor 10 has a second bearing retaining portion 25.
- the second bearing retaining portion 25 protrudes from the center of the second plate 16 into the motor chamber 18. Therefore, the second plate 16 has the second bearing retaining portion 25.
- the second bearing retaining portion 25 is cylindrical.
- a second insertion hole 26 is formed in the center of the second plate 16.
- the second insertion hole 26 communicates with the inside of the second bearing holding portion 25 .
- the axis of the second insertion hole 26 coincides with the axis of the second bearing holding part 25.
- the first compressor housing 13 is cylindrical and has a circular first intake port 27 through which air is sucked.
- the first compressor housing 13 is connected to the end surface of the third plate 17 opposite to the first plate 15 with the axis of the first suction port 27 aligned with the axis of the first insertion hole 23. .
- the first suction port 27 opens at an end surface of the first compressor housing 13 on the opposite side from the third plate 17 . Air purified by an air cleaner (not shown) flows through the first intake port 27 .
- the centrifugal compressor 10 includes a first impeller chamber 28, a first discharge chamber 29, and a first diffuser flow path 30.
- the first impeller chamber 28 , the first discharge chamber 29 , and the first diffuser flow path 30 are formed between the first compressor housing 13 and the third plate 17 . Therefore, the housing 11 has a first impeller chamber 28 .
- the first plate 15 and the third plate 17 constitute a partition wall that partitions the first impeller chamber 28 and the motor chamber 18.
- the first impeller chamber 28 communicates with the first suction port 27 .
- the first discharge chamber 29 extends around the first impeller chamber 28 and around the axis of the first suction port 27 .
- the first diffuser flow path 30 communicates the first impeller chamber 28 and the first discharge chamber 29.
- the first impeller chamber 28 communicates with the first insertion hole 23 .
- the centrifugal compressor 10 has a first discharge passage 31.
- a first end of the first discharge passage 31 is connected to the first discharge chamber 29.
- a second end of the first discharge passage 31 opens to the outer peripheral surface of the first compressor housing 13.
- the second compressor housing 14 is cylindrical and has a circular second intake port 32 through which air is sucked.
- the second compressor housing 14 is connected to the end surface of the second plate 16 opposite to the motor housing 12 with the axis of the second suction port 32 aligned with the axis of the second insertion hole 26 .
- the second suction port 32 opens at an end surface of the second compressor housing 14 on the opposite side from the second plate 16 .
- the centrifugal compressor 10 includes a second impeller chamber 33, a second discharge chamber 34, and a second diffuser flow path 35.
- the second impeller chamber 33 , the second discharge chamber 34 , and the second diffuser flow path 35 are formed between the second compressor housing 14 and the second plate 16 . Therefore, the housing 11 has a second impeller chamber 33.
- the second plate 16 constitutes a partition wall that partitions the second impeller chamber 33 and the motor chamber 18.
- the second impeller chamber 33 communicates with the second suction port 32 .
- the second discharge chamber 34 extends around the second impeller chamber 33 and around the axis of the second suction port 32 .
- the second diffuser flow path 35 communicates the second impeller chamber 33 and the second discharge chamber 34.
- the second impeller chamber 33 communicates with the second insertion hole 26 .
- the centrifugal compressor 10 has a second discharge passage 36.
- a first end of the second discharge passage 36 communicates with the second discharge chamber 34 .
- a second end of the second discharge passage 36 opens to the outer peripheral surface of the second compressor housing 14 .
- a supply pipe 37 is connected to the second discharge passage 36 .
- Supply piping 37 is connected to fuel cell stack 38 .
- a first end of the supply pipe 37 is connected to the second discharge passage 36 .
- a second end of the supply pipe 37 is connected to a fuel cell stack 38.
- the second discharge chamber 34 is connected to a fuel cell stack 38 via a second discharge passage 36 and a supply pipe 37.
- the centrifugal compressor 10 is equipped with a connection pipe 39.
- a first end of the connecting pipe 39 communicates with the first discharge passage 31 .
- a second end of the connecting pipe 39 communicates with the second suction port 32 .
- Air discharged from the first discharge chamber 29 to the first discharge passage 31 flows within the connection pipe 39 .
- the air that has passed through the connection pipe 39 is then sucked into the second impeller chamber 33 via the second suction port 32.
- the centrifugal compressor 10 includes a rotating body 40.
- the rotating body 40 includes a rotating shaft 41 , a first impeller 42 , a second impeller 43 , and a support section 44 .
- the rotating shaft 41 is housed within the housing 11.
- the rotating shaft 41 extends along the axis of the motor housing 12 and crosses the motor chamber 18.
- the axial direction of the rotating shaft 41 coincides with the axial direction of the motor housing 12.
- the first end of the rotating shaft 41 projects from the motor chamber 18 into the first impeller chamber 28 by passing through the inside of the first bearing holding section 21, the thrust bearing housing chamber 24, and the first insertion hole 23. . Therefore, the first insertion hole 23 is an insertion hole through which the rotating body 40 is inserted.
- the housing 11 has a partition wall that partitions the first impeller chamber 28 and the motor chamber 18 and is formed with the first insertion hole 23 through which the rotating body 40 is inserted.
- the second insertion hole 26 is an insertion hole through which the rotating body 40 is inserted.
- the housing 11 has a partition wall that partitions the second impeller chamber 33 and the motor chamber 18 and is formed with the second insertion hole 26 through which the rotating body 40 is inserted.
- the first impeller 42 is connected to the first end of the rotating shaft 41.
- the first impeller 42 is housed in the first impeller chamber 28 . Therefore, the first impeller chamber 28 accommodates the first impeller 42 .
- the first impeller 42 compresses the air sucked into the first impeller chamber 28 by rotating integrally with the rotating shaft 41. Therefore, the first impeller 42 is an impeller that compresses air. Therefore, the first impeller chamber 28 is an impeller chamber that accommodates an impeller.
- the second impeller 43 is connected to the second end of the rotating shaft 41.
- the second impeller 43 is housed in the second impeller chamber 33. Therefore, the second impeller chamber 33 accommodates the second impeller 43.
- the second impeller 43 compresses the air sucked into the second impeller chamber 33 by rotating integrally with the rotating shaft 41. Therefore, the second impeller 43 is an impeller that compresses air. Therefore, the second impeller chamber 33 is an impeller chamber that accommodates an impeller. Therefore, the housing 11 has an impeller chamber that accommodates the impeller.
- the second impeller 43 compresses the air compressed by the first impeller 42.
- the support portion 44 protrudes in an annular shape from the outer peripheral surface of the rotating shaft 41.
- the support portion 44 has a disk shape.
- the support portion 44 is fixed to the outer circumferential surface of the rotating shaft 41 in a state in which it annularly protrudes radially outward from the outer circumferential surface of the rotating shaft 41 . Therefore, the support portion 44 is separate from the rotating shaft 41.
- the support portion 44 is arranged within the thrust bearing housing chamber 24 .
- the support portion 44 rotates integrally with the rotating shaft 41.
- the centrifugal compressor 10 includes a first seal member 45.
- the first seal member 45 is provided between the first insertion hole 23 and the rotating shaft 41.
- the first seal member 45 suppresses air leakage from the first impeller chamber 28 toward the motor chamber 18 .
- the first seal member 45 is, for example, a seal ring.
- the centrifugal compressor 10 includes a second seal member 46.
- the second seal member 46 is provided between the second insertion hole 26 and the rotating shaft 41.
- the second seal member 46 suppresses air leakage from the second impeller chamber 33 toward the motor chamber 18 .
- the second seal member 46 is, for example, a seal ring.
- the motor 20 includes a cylindrical rotor 47 and a cylindrical stator 48.
- the rotor 47 is fixed to the rotating shaft 41.
- Stator 48 is fixed to housing 11.
- the rotor 47 is arranged radially inside the stator 48.
- the rotor 47 rotates integrally with the rotating shaft 41.
- the rotor 47 includes a cylindrical rotor core 49 fixed to the rotating shaft 41 and a plurality of permanent magnets (not shown) provided in the rotor core 49.
- Stator 48 surrounds rotor 47.
- the stator 48 has a cylindrical stator core 50 and a coil 51.
- Stator core 50 is fixed to the inner peripheral surface of motor housing 12. Coil 51 is wound around stator core 50 .
- the rotating shaft 41 rotates integrally with the rotor 47 when current flows through the coil 51 from a battery (not shown). Therefore, the motor 20 rotates the rotating body 40.
- the motor 20 is arranged between the first impeller 42 and the second impeller 43 in the axial direction of the rotating shaft 41.
- the centrifugal compressor 10 includes a first radial bearing 52.
- the first radial bearing 52 has a cylindrical shape.
- the first radial bearing 52 is held by the first bearing holding part 21.
- the first radial bearing 52 rotatably supports a portion of the rotating shaft 41 that is located closer to the first end of the rotating shaft 41 than the motor 20 is.
- the centrifugal compressor 10 includes a second radial bearing 53.
- the second radial bearing 53 has a cylindrical shape.
- the second radial bearing 53 is held by the second bearing holding part 25.
- the second radial bearing 53 rotatably supports a portion of the rotating shaft 41 that is located closer to the second end of the rotating shaft 41 than the motor 20 is.
- the first radial bearing 52 and the second radial bearing 53 rotatably support the rotating shaft 41 in the radial direction at positions on both sides of the motor 20 in the axial direction of the rotating shaft 41.
- the "radial direction” is a direction perpendicular to the axial direction of the rotating shaft 41.
- the centrifugal compressor 10 includes a thrust bearing 54.
- the thrust bearing 54 is housed in the thrust bearing housing chamber 24. Therefore, the thrust bearing accommodation chamber 24 accommodates the thrust bearing 54.
- the thrust bearing 54 rotatably supports the support portion 44 in the thrust direction. Therefore, the thrust bearing 54 rotatably supports the rotating shaft 41 via the support portion 44.
- the "thrust direction" is a direction parallel to the axial direction of the rotating shaft 41.
- the air sucked into the first impeller chamber 28 through the first intake port 27 is accelerated by the rotation of the first impeller 42 and is sent into the first diffuser flow path 30 and passes through the first diffuser flow path 30.
- the pressure is increased by The air that has passed through the first diffuser flow path 30 is then discharged into the first discharge chamber 29.
- the air discharged into the first discharge chamber 29 is discharged into the first discharge passage 31 .
- the air discharged into the first discharge passage 31 is sucked into the second impeller chamber 33 via the connecting pipe 39 and the second suction port 32 .
- the air sucked into the second impeller chamber 33 is accelerated by the rotation of the second impeller 43, and is sent into the second diffuser flow path 35, and is increased in pressure by passing through the second diffuser flow path 35.
- the air that has passed through the second diffuser flow path 35 is then discharged into the second discharge chamber 34.
- the air discharged into the second discharge chamber 34 is discharged into the second discharge passage 36.
- the air discharged into the second discharge passage 36 is supplied to the fuel cell stack 38 via the supply pipe 37. Therefore, centrifugal compressor 10 supplies air to fuel cell stack 38 . Oxygen contained in the air supplied to the fuel cell stack 38 contributes to power generation by the fuel cell stack 38.
- the rotating body 40 includes a first impeller 42 and a second impeller 43 that compress air supplied to the fuel cell stack 38. Therefore, the rotating body 40 includes an impeller.
- the second discharge passage 36 and the supply pipe 37 constitute a supply passage 55 that supplies air to the fuel cell stack 38.
- the second discharge chamber 34 is a discharge chamber to which air compressed by the second impeller 43 is discharged and to which the supply flow path 55 is connected. Therefore, the housing 11 has a discharge chamber to which the supply channel 55 is connected.
- the centrifugal compressor 10 includes an introduction passage 56.
- the introduction passage 56 is formed in the first plate 15.
- a first end of the introduction passage 56 is open to the outer circumferential surface of the first plate 15 .
- a second end of the introduction passage 56 communicates with the thrust bearing housing chamber 24 .
- a branch pipe 57 is connected to the first end of the introduction passage 56.
- the branch pipe 57 is branched from the middle of the supply pipe 37.
- a first end of the branch pipe 57 is connected to the supply pipe 37.
- a second end of the branch pipe 57 is connected to a first end of the introduction passage 56.
- An intercooler 58 is provided in the middle of the branch pipe 57. The intercooler 58 cools the air flowing inside the branch pipe 57.
- Air flowing through branch pipe 57 is cooled by intercooler 58 .
- the air cooled by the intercooler 58 passes through the introduction passage 56, the thrust bearing housing chamber 24, and the first bearing holding portion 21, and is introduced into the motor chamber 18. Therefore, the introduction passage 56 introduces a portion of the air compressed by the second impeller 43 into the motor chamber 18 at a temperature lower than the temperature of the air discharged into the second discharge chamber 34 .
- the centrifugal compressor 10 is equipped with a discharge passage 59.
- the discharge passage 59 is formed in the second plate 16.
- a first end of the discharge passage 59 communicates with a portion of the second insertion hole 26 closer to the motor chamber 18 than the second seal member 46 .
- the second end of the discharge passage 59 is open to the outer circumferential surface of the second plate 16 . Therefore, the discharge path 59 communicates with the outside of the housing 11.
- the air that has flowed from inside the motor chamber 18 through the inside of the second bearing holding part 25 and into the second insertion hole 26 is discharged to the outside of the housing 11 via the discharge passage 59.
- the second impeller 43 is cylindrical and its diameter gradually decreases from the back surface 43a to the tip.
- the back surface 43a of the second impeller 43 faces the second plate 16. Therefore, the second plate 16 has an opposing surface 16a that faces the back surface 43a of the second impeller 43.
- the second impeller 43 has a through hole 43h.
- the axis of the through hole 43h coincides with the rotation axis of the second impeller 43.
- the rotation axis of the second impeller 43 is also the rotation axis of the rotor 40.
- the second impeller 43 has a cylindrical boss portion 60.
- the boss portion 60 protrudes from the center of the back surface 43a of the second impeller 43.
- the inside of the boss portion 60 communicates with the through hole 43h.
- the rotating shaft 41 passes through the inside of the boss portion 60 and the through hole 43h.
- the boss portion 60 enters the second insertion hole 26. Therefore, the boss portion 60 is located inside the second insertion hole 26.
- the boss portion 60 is a portion of the rotating body 40 located inside the second insertion hole 26 .
- the centrifugal compressor 10 includes a throttle section 61, a communication section 62, and a discharge passage 63.
- the outer circumferential surface of the boss portion 60 has a first outer circumferential surface 64 , a second outer circumferential surface 65 , and a first stepped surface 66 .
- the first outer circumferential surface 64 is continuous with the back surface 43a of the second impeller 43.
- the first outer circumferential surface 64 extends in the direction of the rotational axis of the rotating body 40 .
- the second outer circumferential surface 65 is located further away from the back surface 43a of the second impeller 43 than the first outer circumferential surface 64.
- the second outer circumferential surface 65 is located closer to the motor chamber 18 than the first outer circumferential surface 64 .
- the second outer circumferential surface 65 extends in the direction of the rotational axis of the rotating body 40 .
- the second outer peripheral surface 65 has a smaller outer diameter than the first outer peripheral surface 64.
- the first stepped surface 66 connects the first outer circumferential surface 64 and the second outer circumferential surface 65.
- the first step surface 66 extends in a direction perpendicular to the direction of the rotational axis of the rotating body 40 . Therefore, the first stepped surface 66 extends in a direction intersecting the direction of the rotational axis of the rotating body 40.
- the first stepped surface 66 is annular.
- the inner circumferential surface of the second insertion hole 26 has a first inner circumferential surface 67 , a second inner circumferential surface 68 , and a second step surface 69 .
- the first inner circumferential surface 67 is continuous with the opposing surface 16a.
- the first inner peripheral surface 67 extends along the first outer peripheral surface 64.
- the second inner circumferential surface 68 is located further away from the opposing surface 16a than the first inner circumferential surface 67.
- the second inner circumferential surface 68 is located closer to the motor chamber 18 than the first inner circumferential surface 67 is.
- the second inner peripheral surface 68 extends along the second outer peripheral surface 65.
- the second inner peripheral surface 68 has a smaller inner diameter than the first inner peripheral surface 67.
- the second stepped surface 69 connects the first inner circumferential surface 67 and the second inner circumferential surface 68.
- the second step surface 69 extends in a direction perpendicular to the direction of the rotational axis of the rotating body 40 . Therefore, the second step surface 69 extends in a direction intersecting the direction of the rotational axis of the rotating body 40.
- the second step surface 69 is annular.
- the second step surface 69 extends along the first step surface 66.
- the constricted portion 61 is a gap between the first outer circumferential surface 64 and the first inner circumferential surface 67. Therefore, the constricted portion 61 is formed between the second insertion hole 26 and the rotating body 40.
- the constricting portion 61 constricts the air flowing into the second insertion hole 26 from the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16.
- the throttle portion 61 makes the pressure of the air flowing into the second insertion hole 26 from the gap 70 lower than the pressure inside the motor chamber 18 . Therefore, the flow path in the gap between the first outer circumferential surface 64 and the second inner circumferential surface 68 is cut off so that the pressure of the air flowing into the second insertion hole 26 from the gap 70 is lower than the pressure inside the motor chamber 18.
- the area is set.
- the second insertion hole 26 has a seal receiving hole 71.
- a first end of the seal housing hole 71 communicates with a gap between the second outer circumferential surface 65 and the second inner circumferential surface 68 .
- the second end of the seal housing hole 71 communicates with the inside of the second bearing holding portion 25 .
- the gap between the second outer circumferential surface 65 and the second inner circumferential surface 68 communicates with the motor chamber 18 via the seal housing hole 71 and the inside of the second bearing holding portion 25 .
- the communication portion 62 is formed by a gap between the first step surface 66 and the second step surface 69 and a gap between the second outer circumferential surface 65 and the second inner circumferential surface 68. Therefore, the communication portion 62 is formed between the second insertion hole 26 and the rotating body 40.
- the communication portion 62 includes a gap between the first step surface 66 and the second step surface 69 and a gap between the second outer circumferential surface 65 and the second inner circumferential surface 68.
- the gap between the first step surface 66 and the second step surface 69 extends in a direction perpendicular to the direction in which the gap between the first outer circumferential surface 64 and the first inner circumferential surface 67 extends. Therefore, the communication portion 62 extends in a direction perpendicular to the flow direction of the air that has passed through the throttle portion 61 and then communicates with the motor chamber 18 . Therefore, the communication portion 62 extends in a direction perpendicular to the flow direction of the air that has passed through the constriction portion 61 and then communicates with the motor chamber 18 .
- the discharge passage 63 is formed in the second plate 16.
- the discharge passage 63 penetrates the inside of the second plate 16.
- the discharge passage 63 has an axial passage 63a, a radial passage 63b, and a connection passage 63c.
- the axial passage 63a extends in the direction of the rotation axis of the rotating body 40.
- the axial passage 63a communicates with the throttling portion 61 and the communication portion 62.
- the axial passage 63a is connected to the connection point between the throttling portion 61 and the communication portion 62.
- the radial passage 63b extends in a direction perpendicular to the direction of the rotation axis of the rotating body 40.
- the radial passage 63b penetrates the inside of the second plate 16 and opens on the outer circumferential surface of the second plate 16.
- the connection passage 63c connects the axial passage 63a and the radial passage 63b. As the connection passage 63c moves away from the axial passage 63a, it extends in a direction away from the rotation axis of the rotating body 40 and is connected to the radial passage 63b.
- the axial path 63a forms a first end of the discharge passage 63. Therefore, the first end of the discharge passage 63 communicates with the throttle section 61 and the communication section 62.
- the end of the path 63b opposite to the connection path 63c forms a second end of the discharge passage 63. Therefore, the second end of the discharge passage 63 communicates with the outside of the housing 11.
- the first end of the discharge passage 63 is the end of the discharge passage 63 on the side opposite to the outside of the housing 11.
- the first end of the discharge passage 63 faces the gap between the first outer circumferential surface 64 and the first inner circumferential surface 67 in the direction of the rotational axis of the rotating body 40 . Therefore, the axial path 63a of the discharge passage 63 extends in the flow direction of the air that has passed through the throttle section 61.
- the cross-sectional area of the passage 63b gradually increases as it moves away from the connection passage 63c.
- the air flowing through the path 63b is decelerated while passing through the path 63b, thereby increasing its pressure. Therefore, the path 63b discharges the air to the outside of the housing 11 while increasing the pressure of the air that has passed through the constriction part 61 and has become lower than the pressure inside the motor chamber 18.
- the discharge passage 63 extends in the flow direction of the air that has passed through the constriction part 61 and discharges the air that has passed through the constriction part 61 to the outside of the housing 11 while increasing the pressure of the air.
- the thrust bearing 54 is cooled by air introduced into the thrust bearing housing chamber 24 from the introduction passage 56.
- the air within the thrust bearing housing chamber 24 passes through the inside of the first bearing holding portion 21 .
- the first radial bearing 52 is cooled by air passing inside the first bearing holding part 21 .
- the air that has passed inside the first bearing holding part 21 is introduced into the motor chamber 18.
- Motor 20 is cooled by air introduced into motor chamber 18 . Therefore, in the centrifugal compressor 10, a part of the air compressed by the second impeller 43 is introduced into the motor chamber 18 at a temperature lower than the temperature of the air discharged into the second discharge chamber 34. As a result, the motor 20 is cooled down.
- the air introduced into the motor chamber 18 passes inside the second bearing holding section 25 .
- the second radial bearing 53 is cooled by air passing inside the second bearing holding section 25 .
- the air that has passed through the inside of the second bearing holding part 25 is discharged to the outside of the housing 11 via the discharge path 59.
- a part of the air compressed by the second impeller 43 and discharged into the second discharge chamber 34 may flow into the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16.
- the air that has flowed into the gap 70 then flows into the second insertion hole 26 from the gap 70 .
- the speed of the air flowing into the second insertion hole 26 from the gap 70 increases as it passes through the constriction part 61.
- the pressure of the air after passing through the constriction part 61 becomes lower than the pressure of the air before passing through the constriction part 61.
- the throttle portion 61 makes the pressure of the air flowing from the gap 70 into the second insertion hole 26 lower than the pressure inside the motor chamber 18 .
- the communication portion 62 extends in a direction intersecting the flow direction of the air that has passed through the constriction portion 61. Therefore, the air that has passed through the throttle section 61 is less likely to flow into the motor chamber 18 via the communication section 62.
- the discharge passage 63 extends in the flow direction of the air that has passed through the constriction section 61. Therefore, the air that has passed through the constriction section 61 easily flows into the discharge passage 63. Therefore, the air flowing into the second insertion hole 26 from the gap 70 is easily discharged to the outside of the housing 11 through the discharge passage 63 while increasing the pressure. As a result, a portion of the air compressed by the second impeller 43 and discharged into the second discharge chamber 34 is prevented from entering the motor chamber 18 through the second insertion hole 26.
- the motor 20 can be efficiently cooled.
- the durability of the centrifugal compressor 10 can be improved.
- the constricted portion 61 is a gap between the first outer circumferential surface 64 and the first inner circumferential surface 67.
- the communication portion 62 includes a gap between the first step surface 66 and the second step surface 69 and a gap between the second outer circumferential surface 65 and the second inner circumferential surface 68.
- the end of the discharge passage 63 on the side opposite to the outside of the housing 11 faces the gap between the first outer circumferential surface 64 and the first inner circumferential surface 67 in the direction of the rotational axis of the rotating body 40 .
- Such a configuration includes a constricted portion 61 formed between the second insertion hole 26 and the rotating body 40, a communication portion 62 formed between the second insertion hole 26 and the rotating body 40, and a second
- the throttle part 61 makes the pressure of the air flowing into the second insertion hole 26 from the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16 lower than the pressure inside the motor chamber 18. Therefore, it is easier to prevent part of the air compressed by the second impeller 43 and discharged into the second discharge chamber 34 from entering the motor chamber 18 through the second insertion hole 26. be able to.
- the rotating body 40 includes a cylindrical member 80.
- the cylindrical member 80 is fixed to the outer peripheral surface of the rotating shaft 41.
- the cylindrical member 80 rotates integrally with the rotating shaft 41.
- the outer peripheral surface of the cylindrical member 80 is located radially outward of the rotating shaft 41 relative to the outer peripheral surface of the boss portion 60.
- the end face of the boss portion 60 opposite the back surface 43a of the second impeller 43 abuts against the end face 80a of the cylindrical member 80.
- the inner circumferential surface of the second insertion hole 26 has a third inner circumferential surface 81 , a fourth inner circumferential surface 82 , and a third stepped surface 83 .
- the third inner circumferential surface 81 is continuous with the opposing surface 16a.
- the third inner circumferential surface 81 extends along the outer circumferential surface of the boss portion 60.
- the fourth inner circumferential surface 82 is located further away from the opposing surface 16a than the third inner circumferential surface 81 is.
- the fourth inner circumferential surface 82 is located closer to the motor chamber 18 than the third inner circumferential surface 81 is.
- the fourth inner peripheral surface 82 extends along the outer peripheral surface of the cylindrical member 80.
- the fourth inner peripheral surface 82 has a larger inner diameter than the third inner peripheral surface 81.
- the third stepped surface 83 connects the third inner circumferential surface 81 and the fourth inner circumferential surface 82 .
- the third step surface 83 extends in a direction perpendicular to the direction of the rotational axis of the rotating body 40 .
- the third step surface 83 extends along the end surface 80a of the cylindrical member 80.
- the centrifugal compressor 10 includes a throttle section 84, a communication section 85, and a discharge passage 86.
- the throttle portion 84 is formed by a gap between the outer circumferential surface of the boss portion 60 and the third inner circumferential surface 81 and a gap between the third step surface 83 and the end surface 80 a of the cylindrical member 80 . Therefore, the constricted portion 84 is formed between the second insertion hole 26 and the rotating body 40.
- the constricting portion 84 constricts the air flowing into the second insertion hole 26 from the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16.
- the throttle portion 84 makes the pressure of the air flowing into the second insertion hole 26 from the gap 70 lower than the pressure inside the motor chamber 18 . Therefore, the gap between the outer circumferential surface of the boss portion 60 and the third inner circumferential surface 81 and the The flow passage cross-sectional area of the gap between the three-step surface 83 and the end surface 80a of the cylindrical member 80 is set.
- the communication portion 85 is a gap between the outer peripheral surface of the cylindrical member 80 and the fourth inner peripheral surface 82. Therefore, the communication portion 85 is formed between the second insertion hole 26 and the rotating body 40. A gap between the outer circumferential surface of the cylindrical member 80 and the fourth inner circumferential surface 82 communicates with the seal accommodation hole 71 . The gap between the outer circumferential surface of the cylindrical member 80 and the fourth inner circumferential surface 82 extends in a direction perpendicular to the direction in which the gap between the third step surface 83 and the end surface 80a of the cylindrical member 80 extends. ing. Therefore, the communication portion 85 extends in a direction perpendicular to the flow direction of the air that has passed through the throttle portion 84 and then communicates with the motor chamber 18 . Therefore, the communication portion 85 extends in a direction perpendicular to the flow direction of the air that has passed through the constriction portion 84 and then communicates with the motor chamber 18 .
- a discharge passage 86 is formed in the second plate 16.
- the discharge passage 86 penetrates inside the second plate 16.
- the discharge passage 86 extends in a direction perpendicular to the direction of the rotational axis of the rotating body 40 .
- a first end of the discharge passage 86 communicates with the constriction portion 84 and the communication portion 85 .
- a first end of the discharge passage 86 is connected to a connection point between the throttle section 84 and the communication section 85.
- the second end of the discharge passage 86 is open to the outer circumferential surface of the second plate 16.
- the discharge passage 86 faces the gap between the third step surface 83 and the end surface 80a of the cylindrical member 80 in the radial direction of the rotating shaft 41. Therefore, the discharge passage 86 extends in the flow direction of the air that has passed through the constriction section 84.
- the cross-sectional area of the discharge passage 86 gradually increases as the distance from the constriction part 84 increases.
- the air flowing through the exhaust passage 86 is decelerated as it passes through the exhaust passage 86, thereby increasing its pressure. Therefore, the discharge passage 86 discharges the air to the outside of the housing 11 while increasing the pressure of the air that has passed through the constriction portion 84 and has become lower than the pressure inside the motor chamber 18 . In this way, the discharge passage 86 extends in the flow direction of the air that has passed through the constriction part 84 and discharges the air that has passed through the constriction part 84 to the outside of the housing 11 while increasing the pressure of the air.
- Such a configuration includes a constricted portion 84 formed between the second insertion hole 26 and the rotating body 40, a communication portion 85 formed between the second insertion hole 26 and the rotating body 40, and a second A discharge passage 86 formed in the plate 16 is suitable as a configuration of the centrifugal compressor 10.
- the throttle part 61 makes the pressure of the air flowing into the second insertion hole 26 from the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16 lower than the pressure inside the motor chamber 18. It does not have to be configured as .
- the restricting portion 61 may have any configuration as long as it restricts the air flowing into the second insertion hole 26 from the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16.
- the pressure of the air after passing through the constriction part 61 only needs to be lower than the pressure of the air before passing through the constriction part 61. According to this, the air that has passed through the throttle section 61 becomes difficult to flow into the motor chamber 18 via the communication section 62.
- the first step surface 66 may extend obliquely with respect to the rotational axis direction of the rotating body 40.
- the second step surface 69 may extend along the first step surface 66 obliquely with respect to the rotational axis direction of the rotating body 40. Therefore, the gap between the first stepped surface 66 and the second stepped surface 69 may extend obliquely to the direction in which the gap between the first outer circumferential surface 64 and the first inner circumferential surface 67 extends. .
- the communication section 62 only needs to extend in a direction intersecting the flow direction of the air that has passed through the throttle section 61 and then communicate with the motor chamber 18 .
- the introduction passage 56 may introduce a portion of the air compressed by the first impeller 42 into the motor chamber 18.
- the temperature of the air compressed by the first impeller 42 is lower than the temperature of the air compressed by the second impeller 43 and discharged into the second discharge chamber 34 .
- the introduction passage 56 only needs to introduce air into the motor chamber 18 at a temperature lower than the temperature of the air discharged into the second discharge chamber 34 .
- the centrifugal compressor 10 may be configured without the second impeller 43.
- the throttle part 61 throttles the air flowing into the first insertion hole 23 from the gap between the back surface of the first impeller 42 and the third plate 17 .
- the discharge passage 63 penetrates inside the third plate 17 .
- the centrifugal compressor 10 may be configured to include a turbine wheel instead of the second impeller 43.
- the centrifugal compressor 10 does not need to be mounted on the fuel cell vehicle.
- the centrifugal compressor 10 is not limited to one that is mounted on a vehicle.
- Centrifugal compressor 11 Housing 15 First plate (partition wall) 16 Second plate (partition wall) 17 Third plate (partition wall) 18 Motor chamber 20 Motor 23 First insertion hole (insertion hole) 26 Second insertion hole (insertion hole) 28 1st impeller room (impeller room) 33 Second impeller room (impeller room) 34 Second discharge chamber which is a discharge chamber 38 Fuel cell stack 40 Rotating body 42 First impeller (impeller) 43 Second impeller (impeller) 43a Rear surface 55 Supply channel 61, 84 Restricted portion 62, 85 Communication portion 63, 86 Discharge passage 64 First outer circumferential surface 65 Second outer circumferential surface 66 First step surface 67 First inner circumferential surface 68 Second inner circumferential surface 69 2-step surface 70 air gap
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
In a centrifugal compressor (10), the speed of air flowing into a second insertion hole (26) from a gap (70) between a back surface (43a) of a second impeller (43) and a second plate (16) is increased as a result of passing through a throttle section (61). As a consequence, the pressure of the air after passing through the throttle section (61) becomes lower than the pressure of the air before passing through the throttle section (61). A communication section (62) extends in a direction intersecting the flow direction of the air that has passed through the throttle section (61). Therefore, the air that has passed through the throttle section (61) is unlikely to flow into a motor chamber (18) through the communication section (62). A discharge passage (63) extends in the flow direction of the air that has passed through the throttle section (61). As a result, the air that has passed through the throttle section (61) easily flows into the discharge passage (63). Therefore, the air flowing into the second insertion hole (26) from the gap (70) between the back surface (43a) of the second impeller (43) and the second plate (16) is easily discharged through the discharge passage (63) to the outside of a housing (11) while increasing in pressure.
Description
本発明は、燃料電池スタックに供給される空気を圧縮する遠心圧縮機に関する。
The present invention relates to a centrifugal compressor that compresses air supplied to a fuel cell stack.
例えば特許文献1に開示されているように、燃料電池スタックに供給される空気を圧縮する遠心圧縮機は、インペラを含む回転体を備えている。インペラは、燃料電池スタックに供給される空気を圧縮する。また、遠心圧縮機は、モータと、ハウジングと、を備えている。モータは、回転体を回転させる。ハウジングは、インペラ室、モータ室、仕切壁、及び吐出室を有している。インペラ室は、インペラを収容する。モータ室は、モータを収容する。仕切壁は、インペラ室とモータ室とを仕切る。吐出室には、インペラによって圧縮された空気が吐出される。吐出室には、燃料電池スタックに空気を供給する供給流路が接続されている。仕切壁には、回転体が挿通される挿通孔が形成されている。
For example, as disclosed in Patent Document 1, a centrifugal compressor that compresses air supplied to a fuel cell stack includes a rotating body including an impeller. The impeller compresses the air supplied to the fuel cell stack. Further, the centrifugal compressor includes a motor and a housing. The motor rotates the rotating body. The housing has an impeller chamber, a motor chamber, a partition wall, and a discharge chamber. The impeller chamber houses the impeller. The motor chamber houses the motor. The partition wall partitions the impeller room and the motor room. Air compressed by the impeller is discharged into the discharge chamber. A supply flow path that supplies air to the fuel cell stack is connected to the discharge chamber. An insertion hole through which the rotating body is inserted is formed in the partition wall.
ところで、このような遠心圧縮機においては、遠心圧縮機の耐久性の向上を図るために、モータを冷却することが望まれている。そこで、インペラによって圧縮された空気の一部を、吐出室に吐出された空気の温度よりも低い温度の状態でモータ室内へ導入することにより、モータを冷却することが考えられている。
Incidentally, in such a centrifugal compressor, it is desired to cool the motor in order to improve the durability of the centrifugal compressor. Therefore, it has been considered to cool the motor by introducing a portion of the air compressed by the impeller into the motor chamber at a temperature lower than the temperature of the air discharged into the discharge chamber.
このような遠心圧縮機においては、インペラによって圧縮されて吐出室に吐出される空気の一部が、インペラの背面と仕切壁との間の空隙に流れ込む場合がある。すると、インペラの背面と仕切壁との間の空隙に流れ込んだ空気が、挿通孔を介してモータ室内に侵入してしまう虞がある。インペラによって圧縮されて吐出室に吐出される空気の温度は高い。したがって、インペラによって圧縮されて吐出室に吐出される空気の一部が、挿通孔を介してモータ室内に侵入してしまうと、モータ室内に侵入した空気によってモータが暖められてしまう。その結果、モータを冷却することが困難となる虞がある。すると、遠心圧縮機の耐久性が低下する。
In such a centrifugal compressor, a part of the air compressed by the impeller and discharged into the discharge chamber may flow into the gap between the back surface of the impeller and the partition wall. Then, there is a possibility that air flowing into the gap between the back surface of the impeller and the partition wall may enter the motor chamber through the insertion hole. The temperature of the air compressed by the impeller and discharged into the discharge chamber is high. Therefore, if a portion of the air compressed by the impeller and discharged into the discharge chamber enters the motor chamber through the insertion hole, the motor will be warmed by the air that has entered the motor chamber. As a result, it may become difficult to cool the motor. This reduces the durability of the centrifugal compressor.
上記課題を解決する遠心圧縮機は、燃料電池スタックに供給される空気を圧縮するインペラを含む回転体と、前記回転体を回転させるモータと、前記インペラを収容するインペラ室、前記モータを収容するモータ室、前記インペラ室と前記モータ室とを仕切るとともに前記回転体が挿通される挿通孔が形成されている仕切壁、及び前記インペラによって圧縮された空気が吐出されるとともに前記燃料電池スタックに前記空気を供給する供給流路が接続されている吐出室を有するハウジングと、を備え、前記インペラによって圧縮された空気の一部を、前記吐出室に吐出された空気の温度よりも低い温度の状態で前記モータ室内へ導入することにより、前記モータを冷却する遠心圧縮機であって、前記挿通孔と前記回転体との間に形成されるとともに前記インペラの背面と前記仕切壁との間の空隙から前記挿通孔に流れ込む空気を絞る絞り部と、前記挿通孔と前記回転体との間に形成されるとともに前記絞り部を通過した空気の流れ方向に対して交差する方向へ延びた後、前記モータ室に連通する連通部と、前記仕切壁に形成されるとともに前記絞り部を通過した空気の流れ方向に延び、前記絞り部を通過した空気を昇圧させつつ前記ハウジングの外部へ排出する排出通路と、を備えている。
A centrifugal compressor that solves the above problems includes a rotating body including an impeller that compresses air supplied to a fuel cell stack, a motor that rotates the rotating body, an impeller chamber that accommodates the impeller, and an impeller chamber that accommodates the motor. a motor chamber, a partition wall that partitions the impeller chamber and the motor chamber and is formed with an insertion hole through which the rotating body is inserted; a housing having a discharge chamber to which a supply flow path for supplying air is connected, and a part of the air compressed by the impeller is kept at a temperature lower than the temperature of the air discharged into the discharge chamber. A centrifugal compressor that cools the motor by being introduced into the motor chamber, wherein the air gap is formed between the insertion hole and the rotating body and between the back surface of the impeller and the partition wall. a constriction part that constricts the air flowing from the through hole into the through hole; a communication section that communicates with the motor chamber; and a discharge passage formed in the partition wall and extending in the flow direction of the air that has passed through the constriction section, increasing the pressure of the air that has passed through the constriction section and discharging it to the outside of the housing. It is equipped with.
これによれば、インペラの背面と仕切壁との間の空隙から挿通孔に流れ込む空気の速度が、絞り部を通過することにより上昇する。これにより、絞り部を通過した後の空気の圧力は、絞り部を通過する前の空気の圧力よりも低くなる。そして、連通部は、絞り部を通過した空気の流れ方向に対して交差する方向へ延びている。したがって、絞り部を通過した空気が連通部を介してモータ室内へ流れ込み難くなっている。そして、排出通路が、絞り部を通過した空気の流れ方向に延びている。よって、絞り部を通過した空気が排出通路に流れ込み易くなっている。したがって、インペラの背面と仕切壁との間の空隙から挿通孔に流れ込む空気が、排出通路を介して昇圧しながらハウジングの外部へ排出され易くなっている。その結果、インペラによって圧縮されて吐出室に吐出される空気の一部が、挿通孔を介してモータ室内に侵入してしまうことが抑制されている。したがって、インペラによって圧縮されて吐出室に吐出される空気の一部が、挿通孔を介してモータ室内に侵入することで、モータ室内に侵入した空気によってモータが暖められてしまうといった問題が生じ難くなる。よって、インペラによって圧縮された空気の一部を、吐出室に吐出された空気の温度よりも低い温度の状態でモータ室内へ導入することにより、モータを効率良く冷却することができる。その結果、遠心圧縮機の耐久性の向上を図ることができる。
According to this, the speed of air flowing into the insertion hole from the gap between the back surface of the impeller and the partition wall increases by passing through the constriction part. Thereby, the pressure of the air after passing through the constriction section is lower than the pressure of the air before passing through the constriction section. The communication portion extends in a direction intersecting the flow direction of the air that has passed through the constriction portion. Therefore, it is difficult for the air that has passed through the throttle section to flow into the motor chamber via the communication section. The discharge passage extends in the flow direction of the air that has passed through the constriction section. Therefore, the air that has passed through the constriction part easily flows into the discharge passage. Therefore, the air flowing into the insertion hole from the gap between the back surface of the impeller and the partition wall is easily discharged to the outside of the housing while increasing the pressure through the discharge passage. As a result, a portion of the air compressed by the impeller and discharged into the discharge chamber is prevented from entering the motor chamber through the insertion hole. Therefore, a part of the air compressed by the impeller and discharged into the discharge chamber enters the motor chamber through the insertion hole, and the problem of the motor being warmed by the air entering the motor chamber is less likely to occur. Become. Therefore, by introducing a portion of the air compressed by the impeller into the motor chamber at a temperature lower than the temperature of the air discharged into the discharge chamber, the motor can be efficiently cooled. As a result, the durability of the centrifugal compressor can be improved.
上記遠心圧縮機において、前記回転体における前記挿通孔の内側に位置する部分の外周面は、第1外周面と、前記第1外周面よりも前記モータ室寄りに位置するとともに前記第1外周面よりも外径が小さい第2外周面と、前記第1外周面と前記第2外周面とを接続するとともに前記回転体の回転軸線方向に対して交差する方向に延びる第1段差面と、を有し、前記挿通孔の内周面は、前記第1外周面に沿って延びる第1内周面と、前記第2外周面に沿って延びるとともに前記第1内周面よりも内径が小さい第2内周面と、前記第1内周面と前記第2内周面とを接続するとともに前記第1段差面に沿って延びる第2段差面と、を有し、前記絞り部は、前記第1外周面と前記第1内周面との間の隙間であり、前記連通部は、前記第1段差面と前記第2段差面との間の隙間、及び前記第2外周面と前記第2内周面との間の隙間を含み、前記排出通路における前記ハウジングの外部とは反対側の端部は、前記第1外周面と前記第1内周面との間の隙間に対して前記回転軸線方向で対向しているとよい。
In the centrifugal compressor, an outer circumferential surface of a portion of the rotating body located inside the insertion hole has a first outer circumferential surface and a first outer circumferential surface that is located closer to the motor chamber than the first outer circumferential surface. a second outer circumferential surface having an outer diameter smaller than The inner circumferential surface of the insertion hole has a first inner circumferential surface extending along the first outer circumferential surface, and a second inner circumferential surface extending along the second outer circumferential surface and having an inner diameter smaller than the first inner circumferential surface. and a second stepped surface that connects the first inner circumferential surface and the second inner circumferential surface and extends along the first stepped surface, and the constricted portion has a The communication portion is a gap between the first outer peripheral surface and the first inner peripheral surface, and the communication portion is a gap between the first step surface and the second step surface, and a gap between the second outer peripheral surface and the second inner peripheral surface. The end portion of the discharge passage opposite to the outside of the housing includes a gap between the first outer circumferential surface and the first inner circumferential surface. It is preferable that they face each other in the axial direction.
このような構成は、挿通孔と回転体との間に形成される絞り部と、挿通孔と回転体との間に形成される連通部と、仕切壁に形成される排出通路と、を備えている遠心圧縮機の構成として好適である。
Such a configuration includes a constriction portion formed between the insertion hole and the rotating body, a communication portion formed between the insertion hole and the rotating body, and a discharge passage formed in the partition wall. This is suitable as a configuration for a centrifugal compressor.
上記遠心圧縮機において、前記絞り部は、前記空隙から前記挿通孔に流れ込む空気の圧力を前記モータ室内の圧力よりも低くするとよい。
これによれば、絞り部が、インペラの背面と仕切壁との間の空隙から挿通孔に流れ込む空気の圧力をモータ室内の圧力よりも低くする。このため、インペラによって圧縮されて吐出室に吐出される空気の一部が、挿通孔を介してモータ室内に侵入してしまうことをさらに抑制し易くすることができる。 In the centrifugal compressor, it is preferable that the throttle section lowers the pressure of air flowing from the gap into the insertion hole than the pressure inside the motor chamber.
According to this, the throttle section makes the pressure of the air flowing into the insertion hole from the gap between the back surface of the impeller and the partition wall lower than the pressure inside the motor chamber. Therefore, it is possible to further prevent part of the air compressed by the impeller and discharged into the discharge chamber from entering the motor chamber through the insertion hole.
これによれば、絞り部が、インペラの背面と仕切壁との間の空隙から挿通孔に流れ込む空気の圧力をモータ室内の圧力よりも低くする。このため、インペラによって圧縮されて吐出室に吐出される空気の一部が、挿通孔を介してモータ室内に侵入してしまうことをさらに抑制し易くすることができる。 In the centrifugal compressor, it is preferable that the throttle section lowers the pressure of air flowing from the gap into the insertion hole than the pressure inside the motor chamber.
According to this, the throttle section makes the pressure of the air flowing into the insertion hole from the gap between the back surface of the impeller and the partition wall lower than the pressure inside the motor chamber. Therefore, it is possible to further prevent part of the air compressed by the impeller and discharged into the discharge chamber from entering the motor chamber through the insertion hole.
この発明によれば、遠心圧縮機の耐久性の向上を図ることができる。
This invention makes it possible to improve the durability of centrifugal compressors.
以下、遠心圧縮機を具体化した一実施形態を図1及び図2にしたがって説明する。なお、以下に説明する実施形態の遠心圧縮機は、燃料電池車に搭載されている。遠心圧縮機は、燃料電池スタックに供給される空気を圧縮する。
An embodiment of a centrifugal compressor will be described below with reference to FIGS. 1 and 2. Note that the centrifugal compressor of the embodiment described below is installed in a fuel cell vehicle. A centrifugal compressor compresses the air supplied to the fuel cell stack.
<遠心圧縮機10の基本構成>
図1に示すように、遠心圧縮機10は、ハウジング11を備えている。ハウジング11は、金属材料製であり、例えば、アルミニウム製である。ハウジング11は、モータハウジング12、第1コンプレッサハウジング13、第2コンプレッサハウジング14、第1プレート15、第2プレート16、及び第3プレート17を有している。 <Basic configuration ofcentrifugal compressor 10>
As shown in FIG. 1, thecentrifugal compressor 10 includes a housing 11. As shown in FIG. The housing 11 is made of a metal material, for example, aluminum. The housing 11 includes a motor housing 12 , a first compressor housing 13 , a second compressor housing 14 , a first plate 15 , a second plate 16 , and a third plate 17 .
図1に示すように、遠心圧縮機10は、ハウジング11を備えている。ハウジング11は、金属材料製であり、例えば、アルミニウム製である。ハウジング11は、モータハウジング12、第1コンプレッサハウジング13、第2コンプレッサハウジング14、第1プレート15、第2プレート16、及び第3プレート17を有している。 <Basic configuration of
As shown in FIG. 1, the
モータハウジング12は、筒状に延びている。第1プレート15は、モータハウジング12の一方の開口側の端部に連結されている。第1プレート15は、モータハウジング12の一方の開口を閉塞している。第2プレート16は、モータハウジング12の他方の開口側の端部に連結されている。第2プレート16は、モータハウジング12の他方の開口を閉塞している。そして、モータハウジング12、第1プレート15、及び第2プレート16によってモータ室18が区画されている。したがって、ハウジング11は、モータ室18を有している。
The motor housing 12 extends in a cylindrical shape. The first plate 15 is connected to one end of the motor housing 12 on the opening side. The first plate 15 closes one opening of the motor housing 12. The second plate 16 is connected to the other open end of the motor housing 12 . The second plate 16 closes the other opening of the motor housing 12. A motor chamber 18 is defined by the motor housing 12, the first plate 15, and the second plate 16. Therefore, the housing 11 has a motor chamber 18.
遠心圧縮機10は、モータ20を備えている。モータ20は、モータ室18に収容されている。したがって、モータ室18は、モータ20を収容する。モータハウジング12は、モータ20を取り囲んでいる。
The centrifugal compressor 10 includes a motor 20. The motor 20 is housed in the motor chamber 18. Therefore, motor chamber 18 accommodates motor 20. Motor housing 12 surrounds motor 20.
遠心圧縮機10は、第1軸受保持部21を備えている。第1軸受保持部21は、第1プレート15の中央部からモータ室18内に突出している。したがって、第1プレート15は、第1軸受保持部21を有している。第1軸受保持部21は、円筒状である。
The centrifugal compressor 10 includes a first bearing holding section 21. The first bearing holding portion 21 projects into the motor chamber 18 from the center of the first plate 15 . Therefore, the first plate 15 has the first bearing holding portion 21 . The first bearing holding portion 21 has a cylindrical shape.
第1プレート15におけるモータハウジング12とは反対側の端面には、室形成凹部22が形成されている。室形成凹部22は、円孔状である。第1軸受保持部21の内側は、第1プレート15を貫通して室形成凹部22の底面に開口している。室形成凹部22の軸心と第1軸受保持部21の軸心とは一致している。
A chamber-forming recess 22 is formed on the end surface of the first plate 15 on the side opposite to the motor housing 12. The chamber forming recess 22 has a circular hole shape. The inside of the first bearing holding portion 21 penetrates the first plate 15 and opens to the bottom surface of the chamber forming recess 22 . The axis of the chamber-forming recess 22 and the axis of the first bearing holding part 21 coincide.
第3プレート17は、第1プレート15におけるモータハウジング12とは反対側の端面に連結されている。第3プレート17の中央部には、第1挿通孔23が形成されている。第1挿通孔23の軸心は、室形成凹部22の軸心、及び第1軸受保持部21の軸心と一致している。そして、室形成凹部22と第3プレート17とによって、スラスト軸受収容室24が区画されている。スラスト軸受収容室24は、第1軸受保持部21の内側に連通している。また、スラスト軸受収容室24は、第1挿通孔23に連通している。
The third plate 17 is connected to the end surface of the first plate 15 on the opposite side from the motor housing 12. A first insertion hole 23 is formed in the center of the third plate 17 . The axis of the first insertion hole 23 coincides with the axis of the chamber forming recess 22 and the axis of the first bearing holding part 21 . A thrust bearing housing chamber 24 is defined by the chamber forming recess 22 and the third plate 17. The thrust bearing housing chamber 24 communicates with the inside of the first bearing holding section 21 . Further, the thrust bearing housing chamber 24 communicates with the first insertion hole 23 .
遠心圧縮機10は、第2軸受保持部25を備えている。第2軸受保持部25は、第2プレート16の中央部からモータ室18内に突出している。したがって、第2プレート16は、第2軸受保持部25を有している。第2軸受保持部25は、円筒状である。
The centrifugal compressor 10 has a second bearing retaining portion 25. The second bearing retaining portion 25 protrudes from the center of the second plate 16 into the motor chamber 18. Therefore, the second plate 16 has the second bearing retaining portion 25. The second bearing retaining portion 25 is cylindrical.
第2プレート16の中央部には、第2挿通孔26が形成されている。第2挿通孔26は、第2軸受保持部25の内側に連通している。第2挿通孔26の軸心は、第2軸受保持部25の軸心と一致している。
A second insertion hole 26 is formed in the center of the second plate 16. The second insertion hole 26 communicates with the inside of the second bearing holding portion 25 . The axis of the second insertion hole 26 coincides with the axis of the second bearing holding part 25.
第1コンプレッサハウジング13は、空気が吸入される円孔状の第1吸入口27を有する筒状である。第1コンプレッサハウジング13は、第1吸入口27の軸心が、第1挿通孔23の軸心と一致した状態で第3プレート17における第1プレート15とは反対側の端面に連結されている。第1吸入口27は、第1コンプレッサハウジング13における第3プレート17とは反対側の端面に開口している。第1吸入口27には、図示しないエアクリーナによって清浄化された空気が流れる。
The first compressor housing 13 is cylindrical and has a circular first intake port 27 through which air is sucked. The first compressor housing 13 is connected to the end surface of the third plate 17 opposite to the first plate 15 with the axis of the first suction port 27 aligned with the axis of the first insertion hole 23. . The first suction port 27 opens at an end surface of the first compressor housing 13 on the opposite side from the third plate 17 . Air purified by an air cleaner (not shown) flows through the first intake port 27 .
遠心圧縮機10は、第1インペラ室28、第1吐出室29、及び第1ディフューザ流路30を備えている。第1インペラ室28、第1吐出室29、及び第1ディフューザ流路30は、第1コンプレッサハウジング13と第3プレート17との間に形成されている。したがって、ハウジング11は、第1インペラ室28を有している。第1プレート15及び第3プレート17は、第1インペラ室28とモータ室18とを仕切る仕切壁を構成している。第1インペラ室28は、第1吸入口27に連通している。第1吐出室29は、第1インペラ室28の周囲で第1吸入口27の軸心周りに延びている。第1ディフューザ流路30は、第1インペラ室28と第1吐出室29とを連通している。第1インペラ室28は、第1挿通孔23に連通している。
The centrifugal compressor 10 includes a first impeller chamber 28, a first discharge chamber 29, and a first diffuser flow path 30. The first impeller chamber 28 , the first discharge chamber 29 , and the first diffuser flow path 30 are formed between the first compressor housing 13 and the third plate 17 . Therefore, the housing 11 has a first impeller chamber 28 . The first plate 15 and the third plate 17 constitute a partition wall that partitions the first impeller chamber 28 and the motor chamber 18. The first impeller chamber 28 communicates with the first suction port 27 . The first discharge chamber 29 extends around the first impeller chamber 28 and around the axis of the first suction port 27 . The first diffuser flow path 30 communicates the first impeller chamber 28 and the first discharge chamber 29. The first impeller chamber 28 communicates with the first insertion hole 23 .
遠心圧縮機10は、第1吐出通路31を有している。第1吐出通路31の第1端は、第1吐出室29に連通している。第1吐出通路31の第2端は、第1コンプレッサハウジング13の外周面に開口している。
The centrifugal compressor 10 has a first discharge passage 31. A first end of the first discharge passage 31 is connected to the first discharge chamber 29. A second end of the first discharge passage 31 opens to the outer peripheral surface of the first compressor housing 13.
第2コンプレッサハウジング14は、空気が吸入される円孔状の第2吸入口32を有する筒状である。第2コンプレッサハウジング14は、第2吸入口32の軸心が、第2挿通孔26の軸心と一致した状態で第2プレート16におけるモータハウジング12とは反対側の端面に連結されている。第2吸入口32は、第2コンプレッサハウジング14における第2プレート16とは反対側の端面に開口している。
The second compressor housing 14 is cylindrical and has a circular second intake port 32 through which air is sucked. The second compressor housing 14 is connected to the end surface of the second plate 16 opposite to the motor housing 12 with the axis of the second suction port 32 aligned with the axis of the second insertion hole 26 . The second suction port 32 opens at an end surface of the second compressor housing 14 on the opposite side from the second plate 16 .
遠心圧縮機10は、第2インペラ室33、第2吐出室34、及び第2ディフューザ流路35を備えている。第2インペラ室33、第2吐出室34、及び第2ディフューザ流路35は、第2コンプレッサハウジング14と第2プレート16との間に形成されている。したがって、ハウジング11は、第2インペラ室33を有している。第2プレート16は、第2インペラ室33とモータ室18とを仕切る仕切壁を構成している。第2インペラ室33は、第2吸入口32に連通している。第2吐出室34は、第2インペラ室33の周囲で第2吸入口32の軸心周りに延びている。第2ディフューザ流路35は、第2インペラ室33と第2吐出室34とを連通している。第2インペラ室33は、第2挿通孔26に連通している。
The centrifugal compressor 10 includes a second impeller chamber 33, a second discharge chamber 34, and a second diffuser flow path 35. The second impeller chamber 33 , the second discharge chamber 34 , and the second diffuser flow path 35 are formed between the second compressor housing 14 and the second plate 16 . Therefore, the housing 11 has a second impeller chamber 33. The second plate 16 constitutes a partition wall that partitions the second impeller chamber 33 and the motor chamber 18. The second impeller chamber 33 communicates with the second suction port 32 . The second discharge chamber 34 extends around the second impeller chamber 33 and around the axis of the second suction port 32 . The second diffuser flow path 35 communicates the second impeller chamber 33 and the second discharge chamber 34. The second impeller chamber 33 communicates with the second insertion hole 26 .
遠心圧縮機10は、第2吐出通路36を有している。第2吐出通路36の第1端は、第2吐出室34に連通している。第2吐出通路36の第2端は、第2コンプレッサハウジング14の外周面に開口している。第2吐出通路36には、供給配管37が接続されている。供給配管37は、燃料電池スタック38に接続されている。供給配管37の第1端は、第2吐出通路36に接続されている。供給配管37の第2端は、燃料電池スタック38に接続されている。第2吐出室34は、第2吐出通路36及び供給配管37を介して燃料電池スタック38に接続されている。
The centrifugal compressor 10 has a second discharge passage 36. A first end of the second discharge passage 36 communicates with the second discharge chamber 34 . A second end of the second discharge passage 36 opens to the outer peripheral surface of the second compressor housing 14 . A supply pipe 37 is connected to the second discharge passage 36 . Supply piping 37 is connected to fuel cell stack 38 . A first end of the supply pipe 37 is connected to the second discharge passage 36 . A second end of the supply pipe 37 is connected to a fuel cell stack 38. The second discharge chamber 34 is connected to a fuel cell stack 38 via a second discharge passage 36 and a supply pipe 37.
遠心圧縮機10は、接続配管39を備えている。接続配管39の第1端は、第1吐出通路31に連通している。接続配管39の第2端は、第2吸入口32に連通している。接続配管39内には、第1吐出室29から第1吐出通路31に吐出された空気が流れる。そして、接続配管39内を通過した空気は、第2吸入口32を介して第2インペラ室33に吸入される。
The centrifugal compressor 10 is equipped with a connection pipe 39. A first end of the connecting pipe 39 communicates with the first discharge passage 31 . A second end of the connecting pipe 39 communicates with the second suction port 32 . Air discharged from the first discharge chamber 29 to the first discharge passage 31 flows within the connection pipe 39 . The air that has passed through the connection pipe 39 is then sucked into the second impeller chamber 33 via the second suction port 32.
遠心圧縮機10は、回転体40を備えている。回転体40は、回転軸41と、第1インペラ42と、第2インペラ43と、支持部44と、を含む。回転軸41は、ハウジング11内に収容されている。
The centrifugal compressor 10 includes a rotating body 40. The rotating body 40 includes a rotating shaft 41 , a first impeller 42 , a second impeller 43 , and a support section 44 . The rotating shaft 41 is housed within the housing 11.
回転軸41は、モータハウジング12の軸線に沿って延びた状態で、モータ室18を横切っている。回転軸41の軸方向は、モータハウジング12の軸方向に一致している。回転軸41の第1端部は、モータ室18から第1軸受保持部21の内側、スラスト軸受収容室24、及び第1挿通孔23を通過して、第1インペラ室28内に突出している。したがって、第1挿通孔23は、回転体40が挿通される挿通孔である。このように、ハウジング11は、第1インペラ室28とモータ室18とを仕切るとともに回転体40が挿通される第1挿通孔23が形成されている仕切壁を有している。
The rotating shaft 41 extends along the axis of the motor housing 12 and crosses the motor chamber 18. The axial direction of the rotating shaft 41 coincides with the axial direction of the motor housing 12. The first end of the rotating shaft 41 projects from the motor chamber 18 into the first impeller chamber 28 by passing through the inside of the first bearing holding section 21, the thrust bearing housing chamber 24, and the first insertion hole 23. . Therefore, the first insertion hole 23 is an insertion hole through which the rotating body 40 is inserted. In this way, the housing 11 has a partition wall that partitions the first impeller chamber 28 and the motor chamber 18 and is formed with the first insertion hole 23 through which the rotating body 40 is inserted.
回転軸41の第2端部は、モータ室18から第2軸受保持部25の内側、及び第2挿通孔26を通過して、第2インペラ室33内に突出している。したがって、第2挿通孔26は、回転体40が挿通される挿通孔である。このように、ハウジング11は、第2インペラ室33とモータ室18とを仕切るとともに回転体40が挿通される第2挿通孔26が形成されている仕切壁を有している。
The second end of the rotating shaft 41 projects from the motor chamber 18 into the second impeller chamber 33 through the inside of the second bearing holding section 25 and the second insertion hole 26 . Therefore, the second insertion hole 26 is an insertion hole through which the rotating body 40 is inserted. In this way, the housing 11 has a partition wall that partitions the second impeller chamber 33 and the motor chamber 18 and is formed with the second insertion hole 26 through which the rotating body 40 is inserted.
第1インペラ42は、回転軸41の第1端に連結されている。第1インペラ42は、第1インペラ室28に収容されている。したがって、第1インペラ室28は、第1インペラ42を収容する。第1インペラ42は、回転軸41と一体的に回転することで第1インペラ室28に吸入された空気を圧縮する。したがって、第1インペラ42は、空気を圧縮するインペラである。よって、第1インペラ室28は、インペラを収容するインペラ室である。
The first impeller 42 is connected to the first end of the rotating shaft 41. The first impeller 42 is housed in the first impeller chamber 28 . Therefore, the first impeller chamber 28 accommodates the first impeller 42 . The first impeller 42 compresses the air sucked into the first impeller chamber 28 by rotating integrally with the rotating shaft 41. Therefore, the first impeller 42 is an impeller that compresses air. Therefore, the first impeller chamber 28 is an impeller chamber that accommodates an impeller.
第2インペラ43は、回転軸41の第2端に連結されている。第2インペラ43は、第2インペラ室33に収容されている。したがって、第2インペラ室33は、第2インペラ43を収容する。第2インペラ43は、回転軸41と一体的に回転することで第2インペラ室33に吸入された空気を圧縮する。したがって、第2インペラ43は、空気を圧縮するインペラである。よって、第2インペラ室33は、インペラを収容するインペラ室である。したがって、ハウジング11は、インペラを収容するインペラ室を有している。第2インペラ43は、第1インペラ42によって圧縮された後の空気を圧縮する。
The second impeller 43 is connected to the second end of the rotating shaft 41. The second impeller 43 is housed in the second impeller chamber 33. Therefore, the second impeller chamber 33 accommodates the second impeller 43. The second impeller 43 compresses the air sucked into the second impeller chamber 33 by rotating integrally with the rotating shaft 41. Therefore, the second impeller 43 is an impeller that compresses air. Therefore, the second impeller chamber 33 is an impeller chamber that accommodates an impeller. Therefore, the housing 11 has an impeller chamber that accommodates the impeller. The second impeller 43 compresses the air compressed by the first impeller 42.
支持部44は、回転軸41の外周面から環状に突出している。支持部44は、円板状である。支持部44は、回転軸41の外周面から径方向外側へ環状に突出した状態で、回転軸41の外周面に固定されている。したがって、支持部44は、回転軸41とは別体である。支持部44は、スラスト軸受収容室24内に配置されている。支持部44は、回転軸41と一体的に回転する。
The support portion 44 protrudes in an annular shape from the outer peripheral surface of the rotating shaft 41. The support portion 44 has a disk shape. The support portion 44 is fixed to the outer circumferential surface of the rotating shaft 41 in a state in which it annularly protrudes radially outward from the outer circumferential surface of the rotating shaft 41 . Therefore, the support portion 44 is separate from the rotating shaft 41. The support portion 44 is arranged within the thrust bearing housing chamber 24 . The support portion 44 rotates integrally with the rotating shaft 41.
遠心圧縮機10は、第1シール部材45を備えている。第1シール部材45は、第1挿通孔23と回転軸41との間に設けられている。第1シール部材45は、第1インペラ室28からモータ室18に向かう空気の洩れを抑制する。第1シール部材45は、例えば、シールリングである。
The centrifugal compressor 10 includes a first seal member 45. The first seal member 45 is provided between the first insertion hole 23 and the rotating shaft 41. The first seal member 45 suppresses air leakage from the first impeller chamber 28 toward the motor chamber 18 . The first seal member 45 is, for example, a seal ring.
遠心圧縮機10は、第2シール部材46を備えている。第2シール部材46は、第2挿通孔26と回転軸41との間に設けられている。第2シール部材46は、第2インペラ室33からモータ室18に向かう空気の洩れを抑制する。第2シール部材46は、例えば、シールリングである。
The centrifugal compressor 10 includes a second seal member 46. The second seal member 46 is provided between the second insertion hole 26 and the rotating shaft 41. The second seal member 46 suppresses air leakage from the second impeller chamber 33 toward the motor chamber 18 . The second seal member 46 is, for example, a seal ring.
モータ20は、筒状のロータ47と、筒状のステータ48と、を備えている。ロータ47は、回転軸41に固定されている。ステータ48は、ハウジング11に固定されている。ロータ47は、ステータ48の径方向内側に配置されている。ロータ47は、回転軸41と一体的に回転する。ロータ47は、回転軸41に固定された円筒状のロータコア49と、ロータコア49に設けられた図示しない複数の永久磁石と、を有している。ステータ48は、ロータ47を取り囲んでいる。ステータ48は、円筒状のステータコア50と、コイル51と、を有している。ステータコア50は、モータハウジング12の内周面に固定されている。コイル51は、ステータコア50に巻回されている。
The motor 20 includes a cylindrical rotor 47 and a cylindrical stator 48. The rotor 47 is fixed to the rotating shaft 41. Stator 48 is fixed to housing 11. The rotor 47 is arranged radially inside the stator 48. The rotor 47 rotates integrally with the rotating shaft 41. The rotor 47 includes a cylindrical rotor core 49 fixed to the rotating shaft 41 and a plurality of permanent magnets (not shown) provided in the rotor core 49. Stator 48 surrounds rotor 47. The stator 48 has a cylindrical stator core 50 and a coil 51. Stator core 50 is fixed to the inner peripheral surface of motor housing 12. Coil 51 is wound around stator core 50 .
回転軸41は、図示しないバッテリからコイル51に電流が流れることによって、ロータ47と一体的に回転する。したがって、モータ20は、回転体40を回転させる。モータ20は、回転軸41の軸方向において、第1インペラ42と第2インペラ43との間に配置されている。
The rotating shaft 41 rotates integrally with the rotor 47 when current flows through the coil 51 from a battery (not shown). Therefore, the motor 20 rotates the rotating body 40. The motor 20 is arranged between the first impeller 42 and the second impeller 43 in the axial direction of the rotating shaft 41.
遠心圧縮機10は、第1ラジアル軸受52を備えている。第1ラジアル軸受52は円筒状である。第1ラジアル軸受52は、第1軸受保持部21に保持されている。第1ラジアル軸受52は、回転軸41におけるモータ20よりも回転軸41の第1端部寄りに位置する部位を回転可能に支持する。
The centrifugal compressor 10 includes a first radial bearing 52. The first radial bearing 52 has a cylindrical shape. The first radial bearing 52 is held by the first bearing holding part 21. The first radial bearing 52 rotatably supports a portion of the rotating shaft 41 that is located closer to the first end of the rotating shaft 41 than the motor 20 is.
遠心圧縮機10は、第2ラジアル軸受53を備えている。第2ラジアル軸受53は円筒状である。第2ラジアル軸受53は、第2軸受保持部25に保持されている。第2ラジアル軸受53は、回転軸41におけるモータ20よりも回転軸41の第2端部寄りに位置する部位を回転可能に支持する。
The centrifugal compressor 10 includes a second radial bearing 53. The second radial bearing 53 has a cylindrical shape. The second radial bearing 53 is held by the second bearing holding part 25. The second radial bearing 53 rotatably supports a portion of the rotating shaft 41 that is located closer to the second end of the rotating shaft 41 than the motor 20 is.
第1ラジアル軸受52及び第2ラジアル軸受53は、モータ20を回転軸41の軸方向で挟んだ両側の位置で回転軸41をラジアル方向で回転可能に支持する。なお、「ラジアル方向」とは、回転軸41の軸方向に対して直交する方向である。
The first radial bearing 52 and the second radial bearing 53 rotatably support the rotating shaft 41 in the radial direction at positions on both sides of the motor 20 in the axial direction of the rotating shaft 41. Note that the "radial direction" is a direction perpendicular to the axial direction of the rotating shaft 41.
遠心圧縮機10は、スラスト軸受54を備えている。スラスト軸受54は、スラスト軸受収容室24に収容されている。したがって、スラスト軸受収容室24は、スラスト軸受54を収容する。スラスト軸受54は、支持部44をスラスト方向で回転可能に支持する。したがって、スラスト軸受54は、支持部44を介して回転軸41を回転可能に支持する。なお、「スラスト方向」とは、回転軸41の軸線方向に対して平行な方向である。
The centrifugal compressor 10 includes a thrust bearing 54. The thrust bearing 54 is housed in the thrust bearing housing chamber 24. Therefore, the thrust bearing accommodation chamber 24 accommodates the thrust bearing 54. The thrust bearing 54 rotatably supports the support portion 44 in the thrust direction. Therefore, the thrust bearing 54 rotatably supports the rotating shaft 41 via the support portion 44. Note that the "thrust direction" is a direction parallel to the axial direction of the rotating shaft 41.
第1吸入口27を介して第1インペラ室28に吸入された空気は、第1インペラ42の回転によって加速されながら、第1ディフューザ流路30に送り込まれて、第1ディフューザ流路30を通過することにより昇圧される。そして、第1ディフューザ流路30を通過した空気は、第1吐出室29に吐出される。第1吐出室29に吐出された空気は、第1吐出通路31に吐出される。第1吐出通路31に吐出された空気は、接続配管39及び第2吸入口32を介して第2インペラ室33に吸入される。第2インペラ室33に吸入された空気は、第2インペラ43の回転によって加速されながら、第2ディフューザ流路35に送り込まれて、第2ディフューザ流路35を通過することにより昇圧される。そして、第2ディフューザ流路35を通過した空気は、第2吐出室34に吐出される。第2吐出室34に吐出された空気は、第2吐出通路36に吐出される。第2吐出通路36に吐出された空気は、供給配管37を介して燃料電池スタック38に供給される。したがって、遠心圧縮機10は、燃料電池スタック38に対して空気を供給する。燃料電池スタック38に供給された空気に含まれる酸素は、燃料電池スタック38の発電に寄与する。
The air sucked into the first impeller chamber 28 through the first intake port 27 is accelerated by the rotation of the first impeller 42 and is sent into the first diffuser flow path 30 and passes through the first diffuser flow path 30. The pressure is increased by The air that has passed through the first diffuser flow path 30 is then discharged into the first discharge chamber 29. The air discharged into the first discharge chamber 29 is discharged into the first discharge passage 31 . The air discharged into the first discharge passage 31 is sucked into the second impeller chamber 33 via the connecting pipe 39 and the second suction port 32 . The air sucked into the second impeller chamber 33 is accelerated by the rotation of the second impeller 43, and is sent into the second diffuser flow path 35, and is increased in pressure by passing through the second diffuser flow path 35. The air that has passed through the second diffuser flow path 35 is then discharged into the second discharge chamber 34. The air discharged into the second discharge chamber 34 is discharged into the second discharge passage 36. The air discharged into the second discharge passage 36 is supplied to the fuel cell stack 38 via the supply pipe 37. Therefore, centrifugal compressor 10 supplies air to fuel cell stack 38 . Oxygen contained in the air supplied to the fuel cell stack 38 contributes to power generation by the fuel cell stack 38.
回転体40は、燃料電池スタック38に供給される空気を圧縮する第1インペラ42及び第2インペラ43を含む。したがって、回転体40は、インペラを含む。第2吐出通路36及び供給配管37は、燃料電池スタック38に空気を供給する供給流路55を構成している。そして、第2吐出室34は、第2インペラ43によって圧縮された空気が吐出されるとともに供給流路55が接続されている吐出室である。したがって、ハウジング11は、供給流路55が接続されている吐出室を有している。
The rotating body 40 includes a first impeller 42 and a second impeller 43 that compress air supplied to the fuel cell stack 38. Therefore, the rotating body 40 includes an impeller. The second discharge passage 36 and the supply pipe 37 constitute a supply passage 55 that supplies air to the fuel cell stack 38. The second discharge chamber 34 is a discharge chamber to which air compressed by the second impeller 43 is discharged and to which the supply flow path 55 is connected. Therefore, the housing 11 has a discharge chamber to which the supply channel 55 is connected.
遠心圧縮機10は、導入通路56を備えている。導入通路56は、第1プレート15に形成されている。導入通路56の第1端は、第1プレート15の外周面に開口している。導入通路56の第2端は、スラスト軸受収容室24に連通している。
The centrifugal compressor 10 includes an introduction passage 56. The introduction passage 56 is formed in the first plate 15. A first end of the introduction passage 56 is open to the outer circumferential surface of the first plate 15 . A second end of the introduction passage 56 communicates with the thrust bearing housing chamber 24 .
導入通路56の第1端には、分岐配管57が接続されている。分岐配管57は、供給配管37の途中から分岐されている。分岐配管57の第1端は、供給配管37に接続されている。分岐配管57の第2端は、導入通路56の第1端に接続されている。分岐配管57の途中には、インタークーラ58が設けられている。インタークーラ58は、分岐配管57内を流れる空気を冷却する。
A branch pipe 57 is connected to the first end of the introduction passage 56. The branch pipe 57 is branched from the middle of the supply pipe 37. A first end of the branch pipe 57 is connected to the supply pipe 37. A second end of the branch pipe 57 is connected to a first end of the introduction passage 56. An intercooler 58 is provided in the middle of the branch pipe 57. The intercooler 58 cools the air flowing inside the branch pipe 57.
供給配管37を流れる空気の一部は、分岐配管57に流れ込む。分岐配管57を流れる空気は、インタークーラ58によって冷却される。これにより、インタークーラ58を通過した空気は、第2吐出室34に吐出された空気の温度よりも低い温度となる。そして、インタークーラ58によって冷却された空気は、導入通路56、スラスト軸受収容室24、及び第1軸受保持部21の内側を通過してモータ室18内へ導入される。したがって、導入通路56は、第2インペラ43によって圧縮された空気の一部を、第2吐出室34に吐出された空気の温度よりも低い温度の状態でモータ室18内へ導入する。
A part of the air flowing through the supply pipe 37 flows into the branch pipe 57. Air flowing through branch pipe 57 is cooled by intercooler 58 . Thereby, the temperature of the air that has passed through the intercooler 58 is lower than the temperature of the air discharged into the second discharge chamber 34. The air cooled by the intercooler 58 passes through the introduction passage 56, the thrust bearing housing chamber 24, and the first bearing holding portion 21, and is introduced into the motor chamber 18. Therefore, the introduction passage 56 introduces a portion of the air compressed by the second impeller 43 into the motor chamber 18 at a temperature lower than the temperature of the air discharged into the second discharge chamber 34 .
遠心圧縮機10は、排出路59を備えている。排出路59は、第2プレート16に形成されている。排出路59の第1端は、第2挿通孔26における第2シール部材46よりもモータ室18寄りの部分に連通している。排出路59の第2端は、第2プレート16の外周面に開口している。したがって、排出路59は、ハウジング11の外部に連通している。そして、モータ室18内から第2軸受保持部25の内側を通過して第2挿通孔26内に流れ込んだ空気は、排出路59を介してハウジング11の外部へ排出される。
The centrifugal compressor 10 is equipped with a discharge passage 59. The discharge passage 59 is formed in the second plate 16. A first end of the discharge passage 59 communicates with a portion of the second insertion hole 26 closer to the motor chamber 18 than the second seal member 46 . The second end of the discharge passage 59 is open to the outer circumferential surface of the second plate 16 . Therefore, the discharge path 59 communicates with the outside of the housing 11. The air that has flowed from inside the motor chamber 18 through the inside of the second bearing holding part 25 and into the second insertion hole 26 is discharged to the outside of the housing 11 via the discharge passage 59.
図2に示すように、第2インペラ43は、背面43aから先端に向かうに従って徐々に縮径した筒状である。第2インペラ43の背面43aは、第2プレート16に対向している。よって、第2プレート16は、第2インペラ43の背面43aに対向する対向面16aを有している。第2インペラ43は、貫通孔43hを有している。貫通孔43hの軸線は、第2インペラ43の回転軸線に一致している。なお、第2インペラ43の回転軸線は、回転体40の回転軸線でもある。
As shown in FIG. 2, the second impeller 43 is cylindrical and its diameter gradually decreases from the back surface 43a to the tip. The back surface 43a of the second impeller 43 faces the second plate 16. Therefore, the second plate 16 has an opposing surface 16a that faces the back surface 43a of the second impeller 43. The second impeller 43 has a through hole 43h. The axis of the through hole 43h coincides with the rotation axis of the second impeller 43. The rotation axis of the second impeller 43 is also the rotation axis of the rotor 40.
第2インペラ43は、円筒状のボス部60を有している。ボス部60は、第2インペラ43の背面43aの中央部から突出している。ボス部60の内側は、貫通孔43hに連通している。回転軸41は、ボス部60の内側及び貫通孔43hを通過している。ボス部60は、第2挿通孔26に入り込んでいる。したがって、ボス部60は、第2挿通孔26の内側に位置している。ボス部60は、回転体40における第2挿通孔26の内側に位置する部分である。
The second impeller 43 has a cylindrical boss portion 60. The boss portion 60 protrudes from the center of the back surface 43a of the second impeller 43. The inside of the boss portion 60 communicates with the through hole 43h. The rotating shaft 41 passes through the inside of the boss portion 60 and the through hole 43h. The boss portion 60 enters the second insertion hole 26. Therefore, the boss portion 60 is located inside the second insertion hole 26. The boss portion 60 is a portion of the rotating body 40 located inside the second insertion hole 26 .
<絞り部61、連通部62、排出通路63>
遠心圧縮機10は、絞り部61と、連通部62と、排出通路63と、を備えている。ボス部60の外周面は、第1外周面64と、第2外周面65と、第1段差面66と、を有している。第1外周面64は、第2インペラ43の背面43aに連続している。第1外周面64は、回転体40の回転軸線方向に延びている。 <Aperture section 61, communication section 62, discharge passage 63>
Thecentrifugal compressor 10 includes a throttle section 61, a communication section 62, and a discharge passage 63. The outer circumferential surface of the boss portion 60 has a first outer circumferential surface 64 , a second outer circumferential surface 65 , and a first stepped surface 66 . The first outer circumferential surface 64 is continuous with the back surface 43a of the second impeller 43. The first outer circumferential surface 64 extends in the direction of the rotational axis of the rotating body 40 .
遠心圧縮機10は、絞り部61と、連通部62と、排出通路63と、を備えている。ボス部60の外周面は、第1外周面64と、第2外周面65と、第1段差面66と、を有している。第1外周面64は、第2インペラ43の背面43aに連続している。第1外周面64は、回転体40の回転軸線方向に延びている。 <
The
第2外周面65は、第1外周面64よりも第2インペラ43の背面43aから離れた位置に配置されている。第2外周面65は、第1外周面64よりもモータ室18寄りに位置している。第2外周面65は、回転体40の回転軸線方向に延びている。第2外周面65は、第1外周面64よりも外径が小さい。
The second outer circumferential surface 65 is located further away from the back surface 43a of the second impeller 43 than the first outer circumferential surface 64. The second outer circumferential surface 65 is located closer to the motor chamber 18 than the first outer circumferential surface 64 . The second outer circumferential surface 65 extends in the direction of the rotational axis of the rotating body 40 . The second outer peripheral surface 65 has a smaller outer diameter than the first outer peripheral surface 64.
第1段差面66は、第1外周面64と第2外周面65とを接続している。第1段差面66は、回転体40の回転軸線方向に対して直交する方向に延びている。したがって、第1段差面66は、回転体40の回転軸線方向に対して交差する方向に延びている。第1段差面66は、環状である。
The first stepped surface 66 connects the first outer circumferential surface 64 and the second outer circumferential surface 65. The first step surface 66 extends in a direction perpendicular to the direction of the rotational axis of the rotating body 40 . Therefore, the first stepped surface 66 extends in a direction intersecting the direction of the rotational axis of the rotating body 40. The first stepped surface 66 is annular.
第2挿通孔26の内周面は、第1内周面67と、第2内周面68と、第2段差面69と、を有している。第1内周面67は、対向面16aに連続している。第1内周面67は、第1外周面64に沿って延びている。
The inner circumferential surface of the second insertion hole 26 has a first inner circumferential surface 67 , a second inner circumferential surface 68 , and a second step surface 69 . The first inner circumferential surface 67 is continuous with the opposing surface 16a. The first inner peripheral surface 67 extends along the first outer peripheral surface 64.
第2内周面68は、第1内周面67よりも対向面16aから離れた位置に配置されている。第2内周面68は、第1内周面67よりもモータ室18寄りに位置している。第2内周面68は、第2外周面65に沿って延びている。第2内周面68は、第1内周面67よりも内径が小さい。
The second inner circumferential surface 68 is located further away from the opposing surface 16a than the first inner circumferential surface 67. The second inner circumferential surface 68 is located closer to the motor chamber 18 than the first inner circumferential surface 67 is. The second inner peripheral surface 68 extends along the second outer peripheral surface 65. The second inner peripheral surface 68 has a smaller inner diameter than the first inner peripheral surface 67.
第2段差面69は、第1内周面67と第2内周面68とを接続している。第2段差面69は、回転体40の回転軸線方向に対して直交する方向に延びている。したがって、第2段差面69は、回転体40の回転軸線方向に対して交差する方向に延びている。第2段差面69は、環状である。第2段差面69は、第1段差面66に沿って延びている。
The second stepped surface 69 connects the first inner circumferential surface 67 and the second inner circumferential surface 68. The second step surface 69 extends in a direction perpendicular to the direction of the rotational axis of the rotating body 40 . Therefore, the second step surface 69 extends in a direction intersecting the direction of the rotational axis of the rotating body 40. The second step surface 69 is annular. The second step surface 69 extends along the first step surface 66.
絞り部61は、第1外周面64と第1内周面67との間の隙間である。したがって、絞り部61は、第2挿通孔26と回転体40との間に形成されている。そして、絞り部61は、第2インペラ43の背面43aと第2プレート16との間の空隙70から第2挿通孔26に流れ込む空気を絞る。絞り部61は、空隙70から第2挿通孔26に流れ込む空気の圧力をモータ室18内の圧力よりも低くする。したがって、空隙70から第2挿通孔26に流れ込む空気の圧力がモータ室18内の圧力よりも低くなるように、第1外周面64と第2内周面68との間の隙間の流路断面積が設定されている。
The constricted portion 61 is a gap between the first outer circumferential surface 64 and the first inner circumferential surface 67. Therefore, the constricted portion 61 is formed between the second insertion hole 26 and the rotating body 40. The constricting portion 61 constricts the air flowing into the second insertion hole 26 from the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16. The throttle portion 61 makes the pressure of the air flowing into the second insertion hole 26 from the gap 70 lower than the pressure inside the motor chamber 18 . Therefore, the flow path in the gap between the first outer circumferential surface 64 and the second inner circumferential surface 68 is cut off so that the pressure of the air flowing into the second insertion hole 26 from the gap 70 is lower than the pressure inside the motor chamber 18. The area is set.
第2挿通孔26は、シール収容孔71を有している。シール収容孔71の第1端は、第2外周面65と第2内周面68との間の隙間に連通している。シール収容孔71の第2端は、第2軸受保持部25の内側に連通している。第2外周面65と第2内周面68との間の隙間は、シール収容孔71及び第2軸受保持部25の内側を介してモータ室18に連通している。
The second insertion hole 26 has a seal receiving hole 71. A first end of the seal housing hole 71 communicates with a gap between the second outer circumferential surface 65 and the second inner circumferential surface 68 . The second end of the seal housing hole 71 communicates with the inside of the second bearing holding portion 25 . The gap between the second outer circumferential surface 65 and the second inner circumferential surface 68 communicates with the motor chamber 18 via the seal housing hole 71 and the inside of the second bearing holding portion 25 .
連通部62は、第1段差面66と第2段差面69との間の隙間、及び第2外周面65と第2内周面68との間の隙間によって形成されている。したがって、連通部62は、第2挿通孔26と回転体40との間に形成されている。連通部62は、第1段差面66と第2段差面69との間の隙間、及び第2外周面65と第2内周面68との間の隙間を含む。
The communication portion 62 is formed by a gap between the first step surface 66 and the second step surface 69 and a gap between the second outer circumferential surface 65 and the second inner circumferential surface 68. Therefore, the communication portion 62 is formed between the second insertion hole 26 and the rotating body 40. The communication portion 62 includes a gap between the first step surface 66 and the second step surface 69 and a gap between the second outer circumferential surface 65 and the second inner circumferential surface 68.
第1段差面66と第2段差面69との間の隙間は、第1外周面64と第1内周面67との間の隙間が延びる方向に対して直交する方向へ延びている。したがって、連通部62は、絞り部61を通過した空気の流れ方向に対して直交する方向へ延びた後、モータ室18に連通する。よって、連通部62は、絞り部61を通過した空気の流れ方向に対して交差する方向へ延びた後、モータ室18に連通する。
The gap between the first step surface 66 and the second step surface 69 extends in a direction perpendicular to the direction in which the gap between the first outer circumferential surface 64 and the first inner circumferential surface 67 extends. Therefore, the communication portion 62 extends in a direction perpendicular to the flow direction of the air that has passed through the throttle portion 61 and then communicates with the motor chamber 18 . Therefore, the communication portion 62 extends in a direction perpendicular to the flow direction of the air that has passed through the constriction portion 61 and then communicates with the motor chamber 18 .
排出通路63は、第2プレート16に形成されている。排出通路63は、第2プレート16の内部を貫通している。排出通路63は、軸路63aと、径路63bと、接続路63cと、を有している。軸路63aは、回転体40の回転軸線方向に延びている。軸路63aは、絞り部61及び連通部62に連通している。軸路63aは、絞り部61と連通部62との接続箇所に接続されている。径路63bは、回転体40の回転軸線方向に対して直交する方向に延びている。径路63bは、第2プレート16の内部を貫通して、第2プレート16の外周面に開口している。接続路63cは、軸路63aと径路63bとを接続している。接続路63cは、軸路63aから離れるにつれて回転体40の回転軸線に対して離間する方向へ延びて、径路63bに接続されている。
The discharge passage 63 is formed in the second plate 16. The discharge passage 63 penetrates the inside of the second plate 16. The discharge passage 63 has an axial passage 63a, a radial passage 63b, and a connection passage 63c. The axial passage 63a extends in the direction of the rotation axis of the rotating body 40. The axial passage 63a communicates with the throttling portion 61 and the communication portion 62. The axial passage 63a is connected to the connection point between the throttling portion 61 and the communication portion 62. The radial passage 63b extends in a direction perpendicular to the direction of the rotation axis of the rotating body 40. The radial passage 63b penetrates the inside of the second plate 16 and opens on the outer circumferential surface of the second plate 16. The connection passage 63c connects the axial passage 63a and the radial passage 63b. As the connection passage 63c moves away from the axial passage 63a, it extends in a direction away from the rotation axis of the rotating body 40 and is connected to the radial passage 63b.
軸路63aは、排出通路63の第1端を形成している。したがって、排出通路63の第1端は、絞り部61及び連通部62に連通している。径路63bにおける接続路63cとは反対側の端部は、排出通路63の第2端を形成している。したがって、排出通路63の第2端は、ハウジング11の外部に連通している。
The axial path 63a forms a first end of the discharge passage 63. Therefore, the first end of the discharge passage 63 communicates with the throttle section 61 and the communication section 62. The end of the path 63b opposite to the connection path 63c forms a second end of the discharge passage 63. Therefore, the second end of the discharge passage 63 communicates with the outside of the housing 11.
排出通路63の第1端は、排出通路63におけるハウジング11の外部とは反対側の端部である。排出通路63の第1端は、第1外周面64と第1内周面67との間の隙間に対して回転体40の回転軸線方向で対向している。よって、排出通路63の軸路63aは、絞り部61を通過した空気の流れ方向に延びている。
The first end of the discharge passage 63 is the end of the discharge passage 63 on the side opposite to the outside of the housing 11. The first end of the discharge passage 63 faces the gap between the first outer circumferential surface 64 and the first inner circumferential surface 67 in the direction of the rotational axis of the rotating body 40 . Therefore, the axial path 63a of the discharge passage 63 extends in the flow direction of the air that has passed through the throttle section 61.
径路63bは、接続路63cから離間するにつれて、流路断面積が徐々に大きくなっている。径路63bを流れる空気は、径路63bを通過する際に減速することにより昇圧される。したがって、径路63bは、絞り部61を通過してモータ室18内の圧力よりも低くなった空気の圧力を昇圧させつつ、空気をハウジング11の外部へ排出する。このように、排出通路63は、絞り部61を通過した空気の流れ方向に延び、絞り部61を通過した空気を昇圧させつつハウジング11の外部へ排出する。
The cross-sectional area of the passage 63b gradually increases as it moves away from the connection passage 63c. The air flowing through the path 63b is decelerated while passing through the path 63b, thereby increasing its pressure. Therefore, the path 63b discharges the air to the outside of the housing 11 while increasing the pressure of the air that has passed through the constriction part 61 and has become lower than the pressure inside the motor chamber 18. In this way, the discharge passage 63 extends in the flow direction of the air that has passed through the constriction part 61 and discharges the air that has passed through the constriction part 61 to the outside of the housing 11 while increasing the pressure of the air.
[実施形態の作用]
次に、本実施形態の作用について説明する。
スラスト軸受54は、導入通路56からスラスト軸受収容室24内に導入された空気によって冷却される。スラスト軸受収容室24内の空気は、第1軸受保持部21の内側を通過する。第1ラジアル軸受52は、第1軸受保持部21の内側を通過する空気によって冷却される。第1軸受保持部21の内側を通過した空気は、モータ室18内へ導入される。モータ20は、モータ室18に導入された空気によって冷却される。したがって、遠心圧縮機10においては、第2インペラ43によって圧縮された空気の一部を、第2吐出室34に吐出された空気の温度よりも低い温度の状態でモータ室18内へ導入することにより、モータ20を冷却する。モータ室18内に導入された空気は、第2軸受保持部25の内側を通過する。第2ラジアル軸受53は、第2軸受保持部25の内側を通過する空気によって冷却される。第2軸受保持部25の内側を通過した空気は、排出路59を介してハウジング11の外部へ排出される。 [Operation of embodiment]
Next, the operation of this embodiment will be explained.
The thrust bearing 54 is cooled by air introduced into the thrust bearinghousing chamber 24 from the introduction passage 56. The air within the thrust bearing housing chamber 24 passes through the inside of the first bearing holding portion 21 . The first radial bearing 52 is cooled by air passing inside the first bearing holding part 21 . The air that has passed inside the first bearing holding part 21 is introduced into the motor chamber 18. Motor 20 is cooled by air introduced into motor chamber 18 . Therefore, in the centrifugal compressor 10, a part of the air compressed by the second impeller 43 is introduced into the motor chamber 18 at a temperature lower than the temperature of the air discharged into the second discharge chamber 34. As a result, the motor 20 is cooled down. The air introduced into the motor chamber 18 passes inside the second bearing holding section 25 . The second radial bearing 53 is cooled by air passing inside the second bearing holding section 25 . The air that has passed through the inside of the second bearing holding part 25 is discharged to the outside of the housing 11 via the discharge path 59.
次に、本実施形態の作用について説明する。
スラスト軸受54は、導入通路56からスラスト軸受収容室24内に導入された空気によって冷却される。スラスト軸受収容室24内の空気は、第1軸受保持部21の内側を通過する。第1ラジアル軸受52は、第1軸受保持部21の内側を通過する空気によって冷却される。第1軸受保持部21の内側を通過した空気は、モータ室18内へ導入される。モータ20は、モータ室18に導入された空気によって冷却される。したがって、遠心圧縮機10においては、第2インペラ43によって圧縮された空気の一部を、第2吐出室34に吐出された空気の温度よりも低い温度の状態でモータ室18内へ導入することにより、モータ20を冷却する。モータ室18内に導入された空気は、第2軸受保持部25の内側を通過する。第2ラジアル軸受53は、第2軸受保持部25の内側を通過する空気によって冷却される。第2軸受保持部25の内側を通過した空気は、排出路59を介してハウジング11の外部へ排出される。 [Operation of embodiment]
Next, the operation of this embodiment will be explained.
The thrust bearing 54 is cooled by air introduced into the thrust bearing
ところで、第2インペラ43によって圧縮されて第2吐出室34に吐出される空気の一部が、第2インペラ43の背面43aと第2プレート16との間の空隙70に流れ込む場合がある。そして、空隙70に流れ込んだ空気は、空隙70から第2挿通孔26に流れ込む。このとき、空隙70から第2挿通孔26に流れ込む空気の速度が、絞り部61を通過することにより上昇する。これにより、絞り部61を通過した後の空気の圧力は、絞り部61を通過する前の空気の圧力よりも低くなる。具体的には、絞り部61は、空隙70から第2挿通孔26に流れ込む空気の圧力をモータ室18内の圧力よりも低くする。
Incidentally, a part of the air compressed by the second impeller 43 and discharged into the second discharge chamber 34 may flow into the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16. The air that has flowed into the gap 70 then flows into the second insertion hole 26 from the gap 70 . At this time, the speed of the air flowing into the second insertion hole 26 from the gap 70 increases as it passes through the constriction part 61. Thereby, the pressure of the air after passing through the constriction part 61 becomes lower than the pressure of the air before passing through the constriction part 61. Specifically, the throttle portion 61 makes the pressure of the air flowing from the gap 70 into the second insertion hole 26 lower than the pressure inside the motor chamber 18 .
そして、連通部62は、絞り部61を通過した空気の流れ方向に対して交差する方向へ延びている。したがって、絞り部61を通過した空気が連通部62を介してモータ室18内へ流れ込み難くなっている。そして、排出通路63が、絞り部61を通過した空気の流れ方向に延びている。よって、絞り部61を通過した空気が排出通路63に流れ込み易くなっている。したがって、空隙70から第2挿通孔26に流れ込む空気が、排出通路63を介して昇圧しながらハウジング11の外部へ排出され易くなっている。その結果、第2インペラ43によって圧縮されて第2吐出室34に吐出される空気の一部が、第2挿通孔26を介してモータ室18内に侵入してしまうことが抑制されている。
The communication portion 62 extends in a direction intersecting the flow direction of the air that has passed through the constriction portion 61. Therefore, the air that has passed through the throttle section 61 is less likely to flow into the motor chamber 18 via the communication section 62. The discharge passage 63 extends in the flow direction of the air that has passed through the constriction section 61. Therefore, the air that has passed through the constriction section 61 easily flows into the discharge passage 63. Therefore, the air flowing into the second insertion hole 26 from the gap 70 is easily discharged to the outside of the housing 11 through the discharge passage 63 while increasing the pressure. As a result, a portion of the air compressed by the second impeller 43 and discharged into the second discharge chamber 34 is prevented from entering the motor chamber 18 through the second insertion hole 26.
[実施形態の効果]
上記実施形態では以下の効果を得ることができる。
(1)第2インペラ43の背面43aと第2プレート16との間の空隙70から第2挿通孔26に流れ込む空気の速度が、絞り部61を通過することにより上昇する。これにより、絞り部61を通過した後の空気の圧力は、絞り部61を通過する前の空気の圧力よりも低くなる。そして、連通部62は、絞り部61を通過した空気の流れ方向に対して交差する方向へ延びている。したがって、絞り部61を通過した空気が連通部62を介してモータ室18内へ流れ込み難くなっている。そして、排出通路63が、絞り部61を通過した空気の流れ方向に延びている。よって、絞り部61を通過した空気が排出通路63に流れ込み易くなっている。したがって、第2インペラ43の背面43aと第2プレート16との間の空隙70から第2挿通孔26に流れ込む空気が、排出通路63を介して昇圧しながらハウジング11の外部へ排出され易くなっている。その結果、第2インペラ43によって圧縮されて第2吐出室34に吐出される空気の一部が、第2挿通孔26を介してモータ室18内に侵入してしまうことが抑制されている。したがって、第2インペラ43によって圧縮されて第2吐出室34に吐出される空気の一部が、第2挿通孔26を介してモータ室18内に侵入することで、モータ室18内に侵入した空気によってモータ20が暖められてしまうといった問題が生じ難くなる。よって、第2インペラ43によって圧縮された空気の一部を、第2吐出室34に吐出された空気の温度よりも低い温度の状態でモータ室18内へ導入することにより、モータ20を効率良く冷却することができる。その結果、遠心圧縮機10の耐久性の向上を図ることができる。 [Effects of the embodiment]
The above embodiment can provide the following effects.
(1) The speed of the air flowing from thegap 70 between the back surface 43a of the second impeller 43 and the second plate 16 into the second insertion hole 26 increases by passing through the throttle portion 61. As a result, the pressure of the air after passing through the throttle portion 61 becomes lower than the pressure of the air before passing through the throttle portion 61. The communication portion 62 extends in a direction intersecting the flow direction of the air that has passed through the throttle portion 61. Therefore, it is difficult for the air that has passed through the throttle portion 61 to flow into the motor chamber 18 through the communication portion 62. The exhaust passage 63 extends in the flow direction of the air that has passed through the throttle portion 61. Therefore, it is easy for the air that has passed through the throttle portion 61 to flow into the exhaust passage 63. Therefore, the air that flows from the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16 into the second insertion hole 26 is easily discharged to the outside of the housing 11 through the exhaust passage 63 while increasing in pressure. As a result, a part of the air compressed by the second impeller 43 and discharged to the second discharge chamber 34 is prevented from entering the motor chamber 18 through the second insertion hole 26. Therefore, a problem that the motor 20 is warmed by the air that has entered the motor chamber 18 due to a part of the air compressed by the second impeller 43 and discharged to the second discharge chamber 34 entering the motor chamber 18 through the second insertion hole 26 is unlikely to occur. Therefore, by introducing a part of the air compressed by the second impeller 43 into the motor chamber 18 at a temperature lower than the temperature of the air discharged to the second discharge chamber 34, the motor 20 can be efficiently cooled. As a result, the durability of the centrifugal compressor 10 can be improved.
上記実施形態では以下の効果を得ることができる。
(1)第2インペラ43の背面43aと第2プレート16との間の空隙70から第2挿通孔26に流れ込む空気の速度が、絞り部61を通過することにより上昇する。これにより、絞り部61を通過した後の空気の圧力は、絞り部61を通過する前の空気の圧力よりも低くなる。そして、連通部62は、絞り部61を通過した空気の流れ方向に対して交差する方向へ延びている。したがって、絞り部61を通過した空気が連通部62を介してモータ室18内へ流れ込み難くなっている。そして、排出通路63が、絞り部61を通過した空気の流れ方向に延びている。よって、絞り部61を通過した空気が排出通路63に流れ込み易くなっている。したがって、第2インペラ43の背面43aと第2プレート16との間の空隙70から第2挿通孔26に流れ込む空気が、排出通路63を介して昇圧しながらハウジング11の外部へ排出され易くなっている。その結果、第2インペラ43によって圧縮されて第2吐出室34に吐出される空気の一部が、第2挿通孔26を介してモータ室18内に侵入してしまうことが抑制されている。したがって、第2インペラ43によって圧縮されて第2吐出室34に吐出される空気の一部が、第2挿通孔26を介してモータ室18内に侵入することで、モータ室18内に侵入した空気によってモータ20が暖められてしまうといった問題が生じ難くなる。よって、第2インペラ43によって圧縮された空気の一部を、第2吐出室34に吐出された空気の温度よりも低い温度の状態でモータ室18内へ導入することにより、モータ20を効率良く冷却することができる。その結果、遠心圧縮機10の耐久性の向上を図ることができる。 [Effects of the embodiment]
The above embodiment can provide the following effects.
(1) The speed of the air flowing from the
(2)絞り部61は、第1外周面64と第1内周面67との間の隙間である。連通部62は、第1段差面66と第2段差面69との間の隙間、及び第2外周面65と第2内周面68との間の隙間を含む。排出通路63におけるハウジング11の外部とは反対側の端部は、第1外周面64と第1内周面67との間の隙間に対して回転体40の回転軸線方向で対向している。このような構成は、第2挿通孔26と回転体40との間に形成される絞り部61と、第2挿通孔26と回転体40との間に形成される連通部62と、第2プレート16に形成される排出通路63と、を備えている遠心圧縮機10の構成として好適である。
(2) The constricted portion 61 is a gap between the first outer circumferential surface 64 and the first inner circumferential surface 67. The communication portion 62 includes a gap between the first step surface 66 and the second step surface 69 and a gap between the second outer circumferential surface 65 and the second inner circumferential surface 68. The end of the discharge passage 63 on the side opposite to the outside of the housing 11 faces the gap between the first outer circumferential surface 64 and the first inner circumferential surface 67 in the direction of the rotational axis of the rotating body 40 . Such a configuration includes a constricted portion 61 formed between the second insertion hole 26 and the rotating body 40, a communication portion 62 formed between the second insertion hole 26 and the rotating body 40, and a second This is a suitable configuration for the centrifugal compressor 10 that includes a discharge passage 63 formed in the plate 16.
(3)絞り部61が、第2インペラ43の背面43aと第2プレート16との間の空隙70から第2挿通孔26に流れ込む空気の圧力をモータ室18内の圧力よりも低くする。このため、第2インペラ43によって圧縮されて第2吐出室34に吐出される空気の一部が、第2挿通孔26を介してモータ室18内に侵入してしまうことをさらに抑制し易くすることができる。
(3) The throttle part 61 makes the pressure of the air flowing into the second insertion hole 26 from the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16 lower than the pressure inside the motor chamber 18. Therefore, it is easier to prevent part of the air compressed by the second impeller 43 and discharged into the second discharge chamber 34 from entering the motor chamber 18 through the second insertion hole 26. be able to.
[変更例]
なお、上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。 [Example of change]
Note that the above embodiment can be modified and implemented as follows. The above embodiment and the following modification examples can be implemented in combination with each other within a technically consistent range.
なお、上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。 [Example of change]
Note that the above embodiment can be modified and implemented as follows. The above embodiment and the following modification examples can be implemented in combination with each other within a technically consistent range.
図3に示すように、ボス部60の外周面の外径が一定であってもよい。回転体40は、筒状部材80を含む。筒状部材80は、回転軸41の外周面に固定されている。筒状部材80は、回転軸41と一体的に回転する。筒状部材80の外周面は、ボス部60の外周面よりも回転軸41の径方向外側に位置している。ボス部60における第2インペラ43の背面43aとは反対側の端面は、筒状部材80の端面80aに当接している。
As shown in FIG. 3, the outer diameter of the outer peripheral surface of the boss portion 60 may be constant. The rotating body 40 includes a cylindrical member 80. The cylindrical member 80 is fixed to the outer peripheral surface of the rotating shaft 41. The cylindrical member 80 rotates integrally with the rotating shaft 41. The outer peripheral surface of the cylindrical member 80 is located radially outward of the rotating shaft 41 relative to the outer peripheral surface of the boss portion 60. The end face of the boss portion 60 opposite the back surface 43a of the second impeller 43 abuts against the end face 80a of the cylindrical member 80.
第2挿通孔26の内周面は、第3内周面81と、第4内周面82と、第3段差面83と、を有している。第3内周面81は、対向面16aに連続している。第3内周面81は、ボス部60の外周面に沿って延びている。第4内周面82は、第3内周面81よりも対向面16aから離れた位置に配置されている。第4内周面82は、第3内周面81よりもモータ室18寄りに位置している。第4内周面82は、筒状部材80の外周面に沿って延びている。第4内周面82は、第3内周面81よりも内径が大きい。第3段差面83は、第3内周面81と第4内周面82とを接続している。第3段差面83は、回転体40の回転軸線方向に対して直交する方向に延びている。第3段差面83は、筒状部材80の端面80aに沿って延びている。
The inner circumferential surface of the second insertion hole 26 has a third inner circumferential surface 81 , a fourth inner circumferential surface 82 , and a third stepped surface 83 . The third inner circumferential surface 81 is continuous with the opposing surface 16a. The third inner circumferential surface 81 extends along the outer circumferential surface of the boss portion 60. The fourth inner circumferential surface 82 is located further away from the opposing surface 16a than the third inner circumferential surface 81 is. The fourth inner circumferential surface 82 is located closer to the motor chamber 18 than the third inner circumferential surface 81 is. The fourth inner peripheral surface 82 extends along the outer peripheral surface of the cylindrical member 80. The fourth inner peripheral surface 82 has a larger inner diameter than the third inner peripheral surface 81. The third stepped surface 83 connects the third inner circumferential surface 81 and the fourth inner circumferential surface 82 . The third step surface 83 extends in a direction perpendicular to the direction of the rotational axis of the rotating body 40 . The third step surface 83 extends along the end surface 80a of the cylindrical member 80.
遠心圧縮機10は、絞り部84と、連通部85と、排出通路86と、を備えている。絞り部84は、ボス部60の外周面と第3内周面81との間の隙間、及び第3段差面83と筒状部材80の端面80aとの間の隙間によって形成されている。したがって、絞り部84は、第2挿通孔26と回転体40との間に形成されている。そして、絞り部84は、第2インペラ43の背面43aと第2プレート16との間の空隙70から第2挿通孔26に流れ込む空気を絞る。絞り部84は、空隙70から第2挿通孔26に流れ込む空気の圧力をモータ室18内の圧力よりも低くする。したがって、空隙70から第2挿通孔26に流れ込む空気の圧力がモータ室18内の圧力よりも低くなるように、ボス部60の外周面と第3内周面81との間の隙間、及び第3段差面83と筒状部材80の端面80aとの間の隙間の流路断面積が設定されている。
The centrifugal compressor 10 includes a throttle section 84, a communication section 85, and a discharge passage 86. The throttle portion 84 is formed by a gap between the outer circumferential surface of the boss portion 60 and the third inner circumferential surface 81 and a gap between the third step surface 83 and the end surface 80 a of the cylindrical member 80 . Therefore, the constricted portion 84 is formed between the second insertion hole 26 and the rotating body 40. The constricting portion 84 constricts the air flowing into the second insertion hole 26 from the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16. The throttle portion 84 makes the pressure of the air flowing into the second insertion hole 26 from the gap 70 lower than the pressure inside the motor chamber 18 . Therefore, the gap between the outer circumferential surface of the boss portion 60 and the third inner circumferential surface 81 and the The flow passage cross-sectional area of the gap between the three-step surface 83 and the end surface 80a of the cylindrical member 80 is set.
連通部85は、筒状部材80の外周面と第4内周面82との間の隙間である。したがって、連通部85は、第2挿通孔26と回転体40との間に形成されている。筒状部材80の外周面と第4内周面82との間の隙間は、シール収容孔71に連通している。筒状部材80の外周面と第4内周面82との間の隙間は、第3段差面83と筒状部材80の端面80aとの間の隙間が延びる方向に対して直交する方向へ延びている。したがって、連通部85は、絞り部84を通過した空気の流れ方向に対して直交する方向へ延びた後、モータ室18に連通する。よって、連通部85は、絞り部84を通過した空気の流れ方向に対して交差する方向へ延びた後、モータ室18に連通する。
The communication portion 85 is a gap between the outer peripheral surface of the cylindrical member 80 and the fourth inner peripheral surface 82. Therefore, the communication portion 85 is formed between the second insertion hole 26 and the rotating body 40. A gap between the outer circumferential surface of the cylindrical member 80 and the fourth inner circumferential surface 82 communicates with the seal accommodation hole 71 . The gap between the outer circumferential surface of the cylindrical member 80 and the fourth inner circumferential surface 82 extends in a direction perpendicular to the direction in which the gap between the third step surface 83 and the end surface 80a of the cylindrical member 80 extends. ing. Therefore, the communication portion 85 extends in a direction perpendicular to the flow direction of the air that has passed through the throttle portion 84 and then communicates with the motor chamber 18 . Therefore, the communication portion 85 extends in a direction perpendicular to the flow direction of the air that has passed through the constriction portion 84 and then communicates with the motor chamber 18 .
排出通路86は、第2プレート16に形成されている。排出通路86は、第2プレート16の内部を貫通している。排出通路86は、回転体40の回転軸線方向に対して直交する方向に延びている。排出通路86の第1端は、絞り部84及び連通部85に連通している。排出通路86の第1端は、絞り部84と連通部85との接続箇所に接続されている。排出通路86の第2端は、第2プレート16の外周面に開口している。排出通路86は、第3段差面83と筒状部材80の端面80aとの間の隙間に対して回転軸41の径方向で対向している。よって、排出通路86は、絞り部84を通過した空気の流れ方向に延びている。
A discharge passage 86 is formed in the second plate 16. The discharge passage 86 penetrates inside the second plate 16. The discharge passage 86 extends in a direction perpendicular to the direction of the rotational axis of the rotating body 40 . A first end of the discharge passage 86 communicates with the constriction portion 84 and the communication portion 85 . A first end of the discharge passage 86 is connected to a connection point between the throttle section 84 and the communication section 85. The second end of the discharge passage 86 is open to the outer circumferential surface of the second plate 16. The discharge passage 86 faces the gap between the third step surface 83 and the end surface 80a of the cylindrical member 80 in the radial direction of the rotating shaft 41. Therefore, the discharge passage 86 extends in the flow direction of the air that has passed through the constriction section 84.
排出通路86は、絞り部84から離間するにつれて、流路断面積が徐々に大きくなっている。排出通路86を流れる空気は、排出通路86を通過する際に減速することにより昇圧される。したがって、排出通路86は、絞り部84を通過してモータ室18内の圧力よりも低くなった空気の圧力を昇圧しつつ、空気をハウジング11の外部へ排出する。このように、排出通路86は、絞り部84を通過した空気の流れ方向に延び、絞り部84を通過した空気を昇圧させつつハウジング11の外部へ排出する。このような構成は、第2挿通孔26と回転体40との間に形成される絞り部84と、第2挿通孔26と回転体40との間に形成される連通部85と、第2プレート16に形成される排出通路86と、を備えている遠心圧縮機10の構成として好適である。
The cross-sectional area of the discharge passage 86 gradually increases as the distance from the constriction part 84 increases. The air flowing through the exhaust passage 86 is decelerated as it passes through the exhaust passage 86, thereby increasing its pressure. Therefore, the discharge passage 86 discharges the air to the outside of the housing 11 while increasing the pressure of the air that has passed through the constriction portion 84 and has become lower than the pressure inside the motor chamber 18 . In this way, the discharge passage 86 extends in the flow direction of the air that has passed through the constriction part 84 and discharges the air that has passed through the constriction part 84 to the outside of the housing 11 while increasing the pressure of the air. Such a configuration includes a constricted portion 84 formed between the second insertion hole 26 and the rotating body 40, a communication portion 85 formed between the second insertion hole 26 and the rotating body 40, and a second A discharge passage 86 formed in the plate 16 is suitable as a configuration of the centrifugal compressor 10.
実施形態において、絞り部61が、第2インペラ43の背面43aと第2プレート16との間の空隙70から第2挿通孔26に流れ込む空気の圧力をモータ室18内の圧力よりも低くするように構成されていなくてもよい。要は、絞り部61は、第2インペラ43の背面43aと第2プレート16との間の空隙70から第2挿通孔26に流れ込む空気を絞る構成であればよい。そして、絞り部61を通過した後の空気の圧力が、絞り部61を通過する前の空気の圧力よりも低くなればよい。これによれば、絞り部61を通過した空気が連通部62を介してモータ室18内へ流れ込み難くなる。
In the embodiment, the throttle part 61 makes the pressure of the air flowing into the second insertion hole 26 from the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16 lower than the pressure inside the motor chamber 18. It does not have to be configured as . In short, the restricting portion 61 may have any configuration as long as it restricts the air flowing into the second insertion hole 26 from the gap 70 between the back surface 43a of the second impeller 43 and the second plate 16. The pressure of the air after passing through the constriction part 61 only needs to be lower than the pressure of the air before passing through the constriction part 61. According to this, the air that has passed through the throttle section 61 becomes difficult to flow into the motor chamber 18 via the communication section 62.
実施形態において、第1段差面66が、回転体40の回転軸線方向に対して斜めに延びていてもよい。そして、第2段差面69が、第1段差面66に沿って、回転体40の回転軸線方向に対して斜めに延びていてもよい。よって、第1段差面66と第2段差面69との間の隙間が、第1外周面64と第1内周面67との間の隙間が延びる方向に対して斜めに延びていてもよい。要は、連通部62は、絞り部61を通過した空気の流れ方向に対して交差する方向へ延びた後、モータ室18に連通していればよい。
In the embodiment, the first step surface 66 may extend obliquely with respect to the rotational axis direction of the rotating body 40. The second step surface 69 may extend along the first step surface 66 obliquely with respect to the rotational axis direction of the rotating body 40. Therefore, the gap between the first stepped surface 66 and the second stepped surface 69 may extend obliquely to the direction in which the gap between the first outer circumferential surface 64 and the first inner circumferential surface 67 extends. . In short, the communication section 62 only needs to extend in a direction intersecting the flow direction of the air that has passed through the throttle section 61 and then communicate with the motor chamber 18 .
実施形態において、導入通路56は、第1インペラ42によって圧縮された空気の一部をモータ室18内へ導入してもよい。第1インペラ42によって圧縮された空気の温度は、第2インペラ43によって圧縮されて第2吐出室34に吐出される空気の温度よりも低い。要は、導入通路56は、第2吐出室34に吐出された空気の温度よりも低い温度の状態でモータ室18内へ空気を導入すればよい。
In the embodiment, the introduction passage 56 may introduce a portion of the air compressed by the first impeller 42 into the motor chamber 18. The temperature of the air compressed by the first impeller 42 is lower than the temperature of the air compressed by the second impeller 43 and discharged into the second discharge chamber 34 . In short, the introduction passage 56 only needs to introduce air into the motor chamber 18 at a temperature lower than the temperature of the air discharged into the second discharge chamber 34 .
実施形態において、遠心圧縮機10は、第2インペラ43を備えていない構成であってもよい。この場合、絞り部61は、第1インペラ42の背面と第3プレート17との間の空隙から第1挿通孔23に流れ込む空気を絞る。また、排出通路63は、第3プレート17の内部を貫通している。
In the embodiment, the centrifugal compressor 10 may be configured without the second impeller 43. In this case, the throttle part 61 throttles the air flowing into the first insertion hole 23 from the gap between the back surface of the first impeller 42 and the third plate 17 . Moreover, the discharge passage 63 penetrates inside the third plate 17 .
実施形態において、遠心圧縮機10は、第2インペラ43に代えて、タービンホイールを備えている構成であってもよい。
実施形態において、遠心圧縮機10は、燃料電池車に搭載されていなくてもよい。要は、遠心圧縮機10は、車両に搭載されるものに限定されるものではない。 In the embodiment, thecentrifugal compressor 10 may be configured to include a turbine wheel instead of the second impeller 43.
In the embodiment, thecentrifugal compressor 10 does not need to be mounted on the fuel cell vehicle. In short, the centrifugal compressor 10 is not limited to one that is mounted on a vehicle.
実施形態において、遠心圧縮機10は、燃料電池車に搭載されていなくてもよい。要は、遠心圧縮機10は、車両に搭載されるものに限定されるものではない。 In the embodiment, the
In the embodiment, the
10 遠心圧縮機
11 ハウジング
15 第1プレート(仕切壁)
16 第2プレート(仕切壁)
17 第3プレート(仕切壁)
18 モータ室
20 モータ
23 第1挿通孔(挿通孔)
26 第2挿通孔(挿通孔)
28 第1インペラ室(インペラ室)
33 第2インペラ室(インペラ室)
34 吐出室である第2吐出室
38 燃料電池スタック
40 回転体
42 第1インペラ(インペラ)
43 第2インペラ(インペラ)
43a 背面
55 供給流路
61,84 絞り部
62,85 連通部
63,86 排出通路
64 第1外周面
65 第2外周面
66 第1段差面
67 第1内周面
68 第2内周面
69 第2段差面
70 空隙 10Centrifugal compressor 11 Housing 15 First plate (partition wall)
16 Second plate (partition wall)
17 Third plate (partition wall)
18Motor chamber 20 Motor 23 First insertion hole (insertion hole)
26 Second insertion hole (insertion hole)
28 1st impeller room (impeller room)
33 Second impeller room (impeller room)
34 Second discharge chamber which is adischarge chamber 38 Fuel cell stack 40 Rotating body 42 First impeller (impeller)
43 Second impeller (impeller)
43a Rear surface 55 Supply channel 61, 84 Restricted portion 62, 85 Communication portion 63, 86 Discharge passage 64 First outer circumferential surface 65 Second outer circumferential surface 66 First step surface 67 First inner circumferential surface 68 Second inner circumferential surface 69 2-step surface 70 air gap
11 ハウジング
15 第1プレート(仕切壁)
16 第2プレート(仕切壁)
17 第3プレート(仕切壁)
18 モータ室
20 モータ
23 第1挿通孔(挿通孔)
26 第2挿通孔(挿通孔)
28 第1インペラ室(インペラ室)
33 第2インペラ室(インペラ室)
34 吐出室である第2吐出室
38 燃料電池スタック
40 回転体
42 第1インペラ(インペラ)
43 第2インペラ(インペラ)
43a 背面
55 供給流路
61,84 絞り部
62,85 連通部
63,86 排出通路
64 第1外周面
65 第2外周面
66 第1段差面
67 第1内周面
68 第2内周面
69 第2段差面
70 空隙 10
16 Second plate (partition wall)
17 Third plate (partition wall)
18
26 Second insertion hole (insertion hole)
28 1st impeller room (impeller room)
33 Second impeller room (impeller room)
34 Second discharge chamber which is a
43 Second impeller (impeller)
Claims (3)
- 燃料電池スタックに供給される空気を圧縮するインペラを含む回転体と、
前記回転体を回転させるモータと、
前記インペラを収容するインペラ室、前記モータを収容するモータ室、前記インペラ室と前記モータ室とを仕切るとともに前記回転体が挿通される挿通孔が形成されている仕切壁、及び前記インペラによって圧縮された空気が吐出されるとともに前記燃料電池スタックに前記空気を供給する供給流路が接続されている吐出室を有するハウジングと、を備え、
前記インペラによって圧縮された空気の一部を、前記吐出室に吐出された空気の温度よりも低い温度の状態で前記モータ室内へ導入することにより、前記モータを冷却する遠心圧縮機であって、
前記挿通孔と前記回転体との間に形成されるとともに前記インペラの背面と前記仕切壁との間の空隙から前記挿通孔に流れ込む空気を絞る絞り部と、
前記挿通孔と前記回転体との間に形成されるとともに前記絞り部を通過した空気の流れ方向に対して交差する方向へ延びた後、前記モータ室に連通する連通部と、
前記仕切壁に形成されるとともに前記絞り部を通過した空気の流れ方向に延び、前記絞り部を通過した空気を昇圧させつつ前記ハウジングの外部へ排出する排出通路と、を備えていることを特徴とする遠心圧縮機。 a rotating body including an impeller that compresses air supplied to the fuel cell stack;
a motor that rotates the rotating body;
an impeller chamber that accommodates the impeller; a motor chamber that accommodates the motor; a partition wall that partitions the impeller chamber and the motor chamber and is formed with an insertion hole through which the rotating body is inserted; a housing having a discharge chamber through which air is discharged and to which a supply flow path for supplying the air to the fuel cell stack is connected;
A centrifugal compressor that cools the motor by introducing a part of the air compressed by the impeller into the motor chamber at a temperature lower than the temperature of the air discharged into the discharge chamber,
a constriction portion that is formed between the insertion hole and the rotating body and that throttles air flowing into the insertion hole from a gap between the back surface of the impeller and the partition wall;
a communication portion formed between the insertion hole and the rotating body and extending in a direction intersecting the flow direction of the air that has passed through the constriction portion, and communicating with the motor chamber;
A discharge passage is formed in the partition wall and extends in the flow direction of the air that has passed through the constriction part, and discharges the air that has passed through the constriction part to the outside of the housing while increasing the pressure of the air. centrifugal compressor. - 前記回転体における前記挿通孔の内側に位置する部分の外周面は、
第1外周面と、
前記第1外周面よりも前記モータ室寄りに位置するとともに前記第1外周面よりも外径が小さい第2外周面と、
前記第1外周面と前記第2外周面とを接続するとともに前記回転体の回転軸線方向に対して交差する方向に延びる第1段差面と、を有し、
前記挿通孔の内周面は、
前記第1外周面に沿って延びる第1内周面と、
前記第2外周面に沿って延びるとともに前記第1内周面よりも内径が小さい第2内周面と、
前記第1内周面と前記第2内周面とを接続するとともに前記第1段差面に沿って延びる第2段差面と、を有し、
前記絞り部は、前記第1外周面と前記第1内周面との間の隙間であり、
前記連通部は、前記第1段差面と前記第2段差面との間の隙間、及び前記第2外周面と前記第2内周面との間の隙間を含み、
前記排出通路における前記ハウジングの外部とは反対側の端部は、前記第1外周面と前記第1内周面との間の隙間に対して前記回転軸線方向で対向していることを特徴とする請求項1に記載の遠心圧縮機。 The outer circumferential surface of the portion of the rotating body located inside the insertion hole is
a first outer peripheral surface;
a second outer circumferential surface that is located closer to the motor chamber than the first outer circumferential surface and has a smaller outer diameter than the first outer circumferential surface;
a first stepped surface connecting the first outer circumferential surface and the second outer circumferential surface and extending in a direction intersecting the rotational axis direction of the rotating body;
The inner peripheral surface of the insertion hole is
a first inner circumferential surface extending along the first outer circumferential surface;
a second inner circumferential surface extending along the second outer circumferential surface and having an inner diameter smaller than the first inner circumferential surface;
a second step surface connecting the first inner circumferential surface and the second inner circumferential surface and extending along the first step surface;
The narrowed portion is a gap between the first outer circumferential surface and the first inner circumferential surface,
The communication portion includes a gap between the first step surface and the second step surface, and a gap between the second outer circumferential surface and the second inner circumferential surface,
An end of the discharge passage opposite to the outside of the housing faces a gap between the first outer circumferential surface and the first inner circumferential surface in the direction of the rotation axis. The centrifugal compressor according to claim 1. - 前記絞り部は、前記空隙から前記挿通孔に流れ込む空気の圧力を前記モータ室内の圧力よりも低くすることを特徴とする請求項1又は請求項2に記載の遠心圧縮機。 The centrifugal compressor according to claim 1 or 2, wherein the throttle section makes the pressure of the air flowing from the gap into the insertion hole lower than the pressure inside the motor chamber.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-149213 | 2022-09-20 | ||
JP2022149213A JP2024043954A (en) | 2022-09-20 | 2022-09-20 | Centrifugal Compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024062714A1 true WO2024062714A1 (en) | 2024-03-28 |
Family
ID=90454355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/024053 WO2024062714A1 (en) | 2022-09-20 | 2023-06-28 | Centrifugal compressor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024043954A (en) |
WO (1) | WO2024062714A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019087869A1 (en) * | 2017-11-01 | 2019-05-09 | 株式会社Ihi | Centrifugal compressor |
US20200166050A1 (en) * | 2017-06-30 | 2020-05-28 | Hanon Systems | Air compressor |
JP2021156190A (en) * | 2020-03-26 | 2021-10-07 | 株式会社豊田自動織機 | Centrifugal compressor |
JP2022131915A (en) * | 2021-02-26 | 2022-09-07 | 株式会社豊田自動織機 | Fluid machine |
-
2022
- 2022-09-20 JP JP2022149213A patent/JP2024043954A/en active Pending
-
2023
- 2023-06-28 WO PCT/JP2023/024053 patent/WO2024062714A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200166050A1 (en) * | 2017-06-30 | 2020-05-28 | Hanon Systems | Air compressor |
WO2019087869A1 (en) * | 2017-11-01 | 2019-05-09 | 株式会社Ihi | Centrifugal compressor |
JP2021156190A (en) * | 2020-03-26 | 2021-10-07 | 株式会社豊田自動織機 | Centrifugal compressor |
JP2022131915A (en) * | 2021-02-26 | 2022-09-07 | 株式会社豊田自動織機 | Fluid machine |
Also Published As
Publication number | Publication date |
---|---|
JP2024043954A (en) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200212462A1 (en) | Electrically driven compressor | |
US20230204037A1 (en) | Centrifugal compressor | |
US20140248141A1 (en) | Turbocompressor and Use | |
US11359642B2 (en) | Electric compressor | |
WO2024062714A1 (en) | Centrifugal compressor | |
EP1571343B1 (en) | Automotive motor-compressor assembly | |
CN116771693A (en) | Centrifugal compressor | |
WO2024062715A1 (en) | Centrifugal compressor | |
WO2023228760A1 (en) | Centrifugal compressor | |
WO2024202824A1 (en) | Centrifugal compressor | |
WO2024134989A1 (en) | Centrifugal compressor | |
WO2024143021A1 (en) | Centrifugal compressor | |
WO2024154573A1 (en) | Centrifugal compressor | |
WO2024079950A1 (en) | Centrifugal compressor | |
JP2024126733A (en) | Centrifugal Compressor | |
JP2023174294A (en) | centrifugal compressor | |
WO2023243264A1 (en) | Centrifugal compressor | |
US20230296107A1 (en) | Centrifugal compressor | |
JP2024014301A (en) | centrifugal compressor | |
WO2024111584A1 (en) | Centrifugal compressor | |
JP2024122618A (en) | Centrifugal Compressor | |
JP2023135590A (en) | centrifugal compressor | |
JP2024034733A (en) | centrifugal compressor | |
JP2023088583A (en) | centrifugal compressor | |
WO2024057662A1 (en) | Centrifugal compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23867842 Country of ref document: EP Kind code of ref document: A1 |