WO2024111347A1 - Compressor and assembly method for same - Google Patents
Compressor and assembly method for same Download PDFInfo
- Publication number
- WO2024111347A1 WO2024111347A1 PCT/JP2023/038662 JP2023038662W WO2024111347A1 WO 2024111347 A1 WO2024111347 A1 WO 2024111347A1 JP 2023038662 W JP2023038662 W JP 2023038662W WO 2024111347 A1 WO2024111347 A1 WO 2024111347A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing
- boss
- compression
- insertion direction
- compressor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 18
- 230000006835 compression Effects 0.000 claims abstract description 100
- 238000007906 compression Methods 0.000 claims abstract description 100
- 238000003466 welding Methods 0.000 claims abstract description 34
- 239000012530 fluid Substances 0.000 claims abstract description 9
- 238000003780 insertion Methods 0.000 claims description 32
- 230000037431 insertion Effects 0.000 claims description 32
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 239000003507 refrigerant Substances 0.000 description 21
- 238000005259 measurement Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/12—Casings; Cylinders; Cylinder heads; Fluid connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
Definitions
- This disclosure relates to a compressor and an assembly method thereof.
- the suction boss is fixed to the housing by welding. During this process, there is a risk that the suction boss will push out and displace the compression section due to thermal deformation that occurs during welding. Because the compression section is driven by the rotating shaft, if the axial center position of the compression section shifts, it will not coincide with the axial center of the rotating shaft, impairing the performance of the compressor.
- This disclosure has been made in consideration of these circumstances, and aims to provide a compressor and an assembly method therefor that do not pose the risk of displacing the axis of the compression section, even when using a boss portion that is welded to the housing.
- a compressor includes a housing, a compression section accommodated within the housing, a rotating shaft section that drives the compression section, a boss section that connects a piping outside the housing and the compression section so that fluid can flow between them, and a welded fixing section that fixes the boss section to the housing by welding, and the boss section has a tip section that is inserted into the connection section of the compression section and connected in a press-fit state, and the tip section of the boss section and the connection section of the compression section are movable relative to each other in the insertion direction.
- a method for assembling a compressor is a method for assembling a compressor including a housing, a compression section accommodated within the housing, a rotating shaft section for driving the compression section, a boss section for connecting a piping external to the housing and the compression section so that fluid can flow between them, and a welded fixing section for fixing the boss section to the housing by welding, wherein the boss section has a tip section that is inserted into the connection section of the compression section and connected in a press-fit state, and the tip section of the boss section is connected to the connection section of the compression section so as to be movable relative to the connection section in the insertion direction.
- FIG. 1 is a vertical cross-sectional view showing a compressor according to an embodiment of the present disclosure.
- 2 is a cross-sectional view of the lower bearing taken along line AA in FIG. 1;
- FIG. 3 is a partially enlarged cross-sectional view of FIG. 2 .
- FIG. 4 is a partially enlarged cross-sectional view corresponding to FIG. 3 and showing a comparative example.
- FIG. 3 is a cross-sectional view corresponding to FIG. 2 and showing a modified example of an embodiment of the present disclosure.
- the compressor 1 is used in an air conditioner and compresses a refrigerant R, which is a gas such as carbon dioxide, in two stages.
- the compressor 1 is fixed to an installation surface FL via legs 3.
- the compressor 1 includes a housing 11, a rotary compression mechanism (compression section) 12 provided inside the housing 11, a scroll compression mechanism 13, an electric motor 14, and a rotating shaft (rotating shaft section) 15.
- the housing 11 comprises a cylindrical main body 21, and an upper lid 22 and a lower lid 23 that close the upper and lower openings of the main body 21.
- the interior of the housing 11 forms an enclosed space.
- the rotating shaft 15 is disposed inside the housing 11 and extends vertically along the axis X.
- the upper end (one end) of the rotating shaft 15 is rotatably supported by an upper bearing 31.
- the lower end (the other end) of the rotating shaft 15 is rotatably supported by a lower bearing 32.
- the lower bearing 32 is assembled integrally with the rotary compression mechanism 12, and together with the rotary compression mechanism 12 constitutes a rotary compression section (compression section).
- the electric motor 14 is disposed at the center of the rotating shaft 15 in the longitudinal direction and on the outer periphery of the rotating shaft 15, and rotates the rotating shaft 15 around the axis X.
- the electric motor 14 has a rotor 38 fixed to the outer periphery of the rotating shaft 15, and a stator 39 that faces the rotor 38 in the radial direction with a gap between it and the outer periphery of the rotor 38 and is fixed to the inner wall of the main body 21 of the housing 11 by shrink fitting or the like.
- the rotor 38 is provided with rotor passages 38a spaced at regular intervals in the circumferential direction. Each rotor passage 38a penetrates the rotor 38 in the vertical direction (axis X direction). Refrigerant discharged from the rotary compression mechanism 12 flows upward through these rotor passages 38a.
- An oil separation plate (baffle plate) 38b is fixed to the upper part of the rotor 38.
- the oil separation plate 38b is disc-shaped and is arranged to extend horizontally. The oil separation plate 38b rotates around the axis X together with the rotor 38.
- a plurality of stator passages 39a are formed on the outer periphery of the stator 39 at predetermined angular intervals in the circumferential direction. 1, an upper coil end 39b formed by folding back the winding is located at the top of the stator 39, and a lower coil end 39c formed by folding back the winding is located at the bottom of the stator 39.
- the electric motor 14 is connected to a power source via an inverter (not shown), and rotates the rotating shaft 15 at a variable frequency.
- the rotary compression mechanism 12 is provided inside the housing 11 on the lower end (other end) side of the rotating shaft 15.
- the rotary compression mechanism 12 is a two-cylinder mechanism, and includes an eccentric shaft portion 41 provided on the rotating shaft 15, a rotor 42 fixed to the eccentric shaft portion 41 and rotating in the compression chamber C1 eccentrically with respect to the axis X as the rotating shaft 15 rotates, and a cylinder 44 in which the compression chamber C1 is formed.
- the refrigerant R is supplied to the compression chamber C1 formed in the cylinder 44 from the suction pipe 33 via the suction boss (boss portion) 36.
- the refrigerant compressed in the compression chamber C1 is discharged from the rotary discharge pipe 43 via the lower bearing 32 to the area below the electric motor 14 inside the housing 11.
- the configuration around the suction boss 36 will be described later.
- the cylinder 44 is fixed from below to the lower bearing 32 by bolts 48.
- An oil pump 49 is provided below the cylinder 44 and is fixed together with the cylinder 44 by bolts 48.
- the oil pump 49 sucks oil from an oil reservoir O1 at the bottom of the housing 11 and guides it through an oil supply hole 15a that penetrates along the axis X of the rotating shaft 15 to the upper bearing 31 side.
- the scroll compression mechanism 13 is disposed above the electric motor 14 inside the housing 11.
- the scroll compression mechanism 13 includes a fixed scroll 51 fixed to the upper bearing 31 and an orbiting scroll 57 disposed below the fixed scroll 51 and facing the fixed scroll 51.
- the fixed scroll 51 has an end plate 52 fixed to the upper surface of the upper bearing 31 and a fixed wrap 53 protruding downward from the end plate 52.
- a discharge hole 52a is formed in the center of the end plate 52 (near the axis X) and penetrates vertically.
- the orbiting scroll 57 is arranged so as to be sandwiched between the upper bearing 31 and the fixed scroll 51.
- the orbiting scroll 57 has an end plate 58 connected to the upper end side of the rotating shaft 15, and an orbiting wrap 59 protruding upward from the end plate 58.
- the end plate 58 is connected via a drive bush 55 to an eccentric shaft portion 56 provided at the upper end of the rotating shaft 15, and rotates eccentrically about the axis X as the rotating shaft 15 rotates.
- the rotating wrap 59 meshes with the fixed wrap 53 to form a compression chamber C2 between the fixed wrap 53 and the rotating wrap 59, which compresses the refrigerant R.
- a balance weight chamber 63 is formed between the central recess of the upper bearing 31 and the lower part of the orbiting scroll 57. Inside the balance weight chamber 63, the balance weight 54 rotates together with the rotating shaft 15.
- the refrigerant R compressed by the rotary compression mechanism 12 and discharged into the housing 11 is sucked into the compression chamber C2 from the outer periphery of the scroll compression mechanism 13 and compressed toward the center.
- the compressed refrigerant R is discharged from the discharge pipe 34 to the outside of the housing 11 via the discharge hole 52a of the fixed scroll 51.
- a cover 45 is provided below the upper bearing 31 so as to cover the upper bearing 31.
- the cover 45 is formed by sheet metal processing and has a generally conical shape with a diameter that expands from bottom to top.
- the upper end on the outer periphery of the cover 45 is fixed to the upper bearing 31 by bolts or the like.
- the lower end of the cover 45 is provided with an intake opening 45a. That is, the intake opening 45a faces downward and is an annular area formed between the cover 45 and the rotating shaft 15.
- the cover 45 separates the space below the housing 11 from the space on the upper bearing 31 side, and the refrigerant sucked in from the intake opening 45a is guided to the scroll compression mechanism 13.
- An oil level tank 60 is provided below and outside the housing 11.
- the oil level tank 60 is a hollow container that is connected to the inside of the housing 11 via a lower pipe 61 and an upper pressure equalizing pipe 62.
- the oil level tank 60 measures the oil level of the oil reservoir O1 in the housing 11 by directing oil from the oil reservoir O1 through the lower pipe 61.
- the downstream end of the oil separator return oil pipe 65 is connected to the lower side of the housing 11.
- the upstream end of the oil separator return oil pipe 65 is connected to an oil separator (not shown). Oil separated from the refrigerant discharged from the compressor 1 by the oil separator is returned to the oil reservoir O1 in the housing 11 via the oil separator return oil pipe 65.
- the height position at which the downstream end of the oil separator return oil pipe 65 is connected to the housing 11 is below the lower bearing 32.
- An oil return pipe 67 is provided inside the housing 11 and extends vertically while in contact with the inner wall of the housing 11.
- the oil return pipe 67 is provided so that its upper end (one end) is fixed to the upper bearing 31 and its lower end (the other end) is located in the oil reservoir O1 at the bottom of the housing 11.
- FIG. 2 shows a cross section of the lower bearing 32.
- the lower bearing 32 has a central cylindrical portion 32a and three arm portions 32b extending radially from the cylindrical portion 32a.
- the arm portions 32b are arranged at equal angular intervals in the circumferential direction at angles of 120°.
- the tip of each arm portion 32b is fixed to the inner surface of the housing 11 by a plug weld portion 35 that is plug welded.
- the lower bearing 32 has one connection portion 32c that protrudes radially from the cylindrical portion 32a.
- the connection portion 32c is, for example, cylindrical in shape, and forms a flow path for the refrigerant R.
- An intake boss (boss portion) 36 is connected to the connection portion 32c.
- the reference symbol 32e is a refrigerant introduction hole that guides the refrigerant R to the cylinder 44 (see FIG. 1).
- the suction boss 36 has, from the left in the figure, a tip portion 36a, an intermediate portion 36b having a larger diameter than the tip portion 36a, and a main body portion 36c having a larger diameter than the intermediate portion 36b.
- the suction boss 36 is, for example, cylindrical, and is integrally formed by cutting.
- the rear end of the main body portion 36c of the suction boss 36 is connected to the suction pipe 33, which is an external piping of the housing 11 (see FIG. 1).
- the tip 36a of the suction boss 36 is press-fitted into the connection portion 32c of the lower bearing 32.
- the outer peripheral surface of the tip 36a and the inner peripheral surface of the connection portion 32c are fitted together to create an airtight state.
- the outer peripheral surface of the tip 36a and the inner peripheral surface of the connection portion 32c are able to move relative to each other while sliding against each other.
- the tip of the connection part 32c on the suction boss 36 side is provided with a first surface 32d that intersects with the insertion direction.
- the insertion direction refers to the direction in which the suction boss 36 is inserted into the connection part 32c, and refers to the direction of the axis X1 in FIG. 3.
- the suction boss 36 has a second surface 36d that faces the first surface 32d in the insertion direction.
- the second surface 36d is formed at a step between the tip portion 36a and the middle portion 36b.
- the second surface 36d is provided at a position that restricts relative movement in the insertion direction with respect to the first surface 32d.
- a gap t1 is formed between the first surface 32d and the second surface 36d. This gap t1 allows relative movement in the insertion direction between the suction boss 36 and the connection portion 32c (i.e., the lower bearing 32).
- the dimension of the gap t1 is, for example, 0.1 mm or more and 2.0 mm or less.
- the main body 36c of the suction boss 36 is fixed to the housing 11 by welding, thereby forming a welded fixing portion 37 between the main body 36c and the housing 11.
- the welded fixing portion 37 is formed continuously around the entire circumference of the main body 36c.
- the compressor 1 having the above-described configuration operates as follows. Refrigerant evaporated in an evaporator (not shown) is sucked into the compressor 1 through the suction pipe 33 and the suction boss 36, and is compressed by the rotary compression mechanism 12. The refrigerant compressed by the rotary compression mechanism 12 is discharged from the rotary discharge pipe 43 into the housing 11. The refrigerant discharged into the housing 11 is sucked through the suction opening 45a of the cover 45, passes through a flow passage in the cover 45, and is guided to the scroll compression mechanism 13 where it is compressed. The refrigerant compressed in the scroll compression mechanism 13 passes through the discharge hole 52a of the fixed scroll 51 and is discharged from the discharge pipe 34 to an external gas cooler or condenser.
- the intake boss 36 is assembled as follows.
- the rotary compression assembly including the cylinder 44 and the lower bearing 32 assembled by the bolts 48 is inserted into the housing 11, and the assembly of the cylinder 44 and the lower bearing 32 is fixed to the housing 11 by plug welding to the tip of each arm portion 32b of the lower bearing 32 (see plug welding portion 35 in Figure 3).
- the suction boss 36 is inserted from the outside of the housing 11, and the tip portion 36a of the suction boss 36 is press-fitted into the connecting portion 32c of the lower bearing 32.
- a gap is formed between the first surface 32d of the connecting portion 32c and the second surface 36d of the suction boss 36.
- welding is performed along the periphery of main body portion 36c of suction boss 36 from the outside of housing 11 to fix suction boss 36 to housing 11. This forms welded fixed portion 37 between the outer periphery of main body portion 36c and housing 11.
- the suction boss 36 is press-fitted into the connecting portion 32c of the lower bearing 32 before welding, positioning in the insertion direction (X1 direction) is facilitated, so the first surface 32d and the second surface 36d are brought into contact with each other to set the gap t1 to zero, and then welding is performed. If this is done, the lower bearing 32 and the cylinder 44 will be pushed out in the direction of arrow A2 as described above, and will be undesirably displaced from the axis of the rotating shaft 15. Therefore, the tip end 36a of the suction boss 36 and the connection portion 32c of the lower bearing 32 are allowed to move relative to each other in the insertion direction.
- the suction boss 36 is inserted into the connecting portion 32c of the lower bearing 32 in a press-fit state, it is capable of relative movement in the insertion direction while preventing leakage of the refrigerant R as much as possible.
- a flat surface 11a may be provided on the outer peripheral surface of the housing 11 in the area surrounding the welded fixing portion 37. Providing the flat surface 11a on a portion of the outer peripheral surface of the cylindrical housing 11 in this manner allows the flat surface 11a to be used as a reference for dimensional measurement with better reproducibility than a curved surface portion. For example, the distance D1 between the flat surface 11a and the rear end (reference position) of the main body portion 36c of the suction boss 36 can be measured (measurement step) and used as a control position during welding. This makes it easy to control the mounting position of the suction boss 36 in the insertion direction, and allows the desired gap t1 to be obtained.
- a shim of a specified thickness may be inserted between the first surface 32d and the second surface 36d, and after positioning the suction boss 36, the shim may be removed and welding may be performed.
- the mounting structure of the intake boss 36 provided on the rotary compression mechanism 12 was described, but the present disclosure is not limited to the compression type being rotary type, and can generally be applied to any boss portion that allows fluid to flow between the compression section inside the housing.
- the compressor (1) comprises a housing (11), a compression section (32, 12) accommodated within the housing, a rotating shaft (15) that drives the compression section, a boss (36) that connects the compression section to a piping (33) outside the housing so that fluid can flow between the compression section, and a welded fixing section (37) that fixes the boss to the housing by welding, and the boss has a tip (36a) that is inserted into the connection section of the compression section and connected in a press-fit state, and the tip of the boss and the connection section (32c) of the compression section are capable of moving relative to each other in the insertion direction.
- Welding is used to fix the boss portion to the housing. There is a risk that welding will cause thermal deformation, causing the boss portion to push out the compression portion and displace the axial position of the compression portion from the desired position. Since the compression portion is driven by the rotating shaft portion, if the axial position of the compression portion is displaced, it will not coincide with the axial center of the rotating shaft portion, which is undesirable. Therefore, it is decided to allow relative movement between the tip end of the boss portion and the connection portion of the compression portion in the insertion direction.
- connection portion of the compression portion is provided with a first surface (32d) that intersects with the insertion direction
- boss portion is provided with a second surface (36d) that faces the first surface in the insertion direction and regulates the relative movement between the boss portion and the compression portion in the insertion direction, and a predetermined gap (t1) is formed between the first surface and the second surface.
- the relative movement between the compression portion and the boss portion in the insertion direction is not restricted.
- the size of the gap is, for example, not less than 0.1 mm and not more than 2.0 mm.
- connection part of the compression part is provided on a bearing (32) that supports the rotating shaft part.
- connection part is provided on the bearing that supports the rotating shaft, misalignment of the bearing axis can be prevented even if the boss part is displaced during welding.
- the compressor according to the fourth aspect of the present disclosure is any one of the first to third aspects, in which the housing has a flat surface (11a) on the outer circumferential surface around the welded fixed portion.
- a flat surface is provided on the outer periphery of the housing and around the welded fixing portion. By making it a flat surface, it can be used as a reference for dimensional measurements with better reproducibility than a curved surface. This makes it easier to manage the mounting position in the insertion direction of the boss.
- the method for assembling a compressor according to the fifth aspect of the present disclosure is a method for assembling a compressor including a housing, a compression section accommodated within the housing, a rotating shaft section for driving the compression section, a boss section for connecting a piping outside the housing to the compression section so that fluid can flow between them, and a welded fixing section for fixing the boss section to the housing by welding, wherein the boss section has a tip section that is inserted into the connection section of the compression section and connected in a press-fit state, and the tip section of the boss section is connected to the connection section of the compression section so as to be movable relative to the connection section in the insertion direction.
- connection portion of the compression section is provided with a first surface that intersects with the insertion direction
- boss portion is provided with a second surface that faces the first surface in the insertion direction and prevents relative movement between the boss portion and the compression section in the insertion direction
- boss portion is welded and fixed to the housing so that a predetermined gap is formed between the first surface and the second surface.
- the compressor assembly method is the sixth aspect, in which a shim is inserted between the first surface and the second surface to set a gap, and after removing the shim, the boss portion is welded and fixed to the housing so that a predetermined gap is formed.
- the compressor assembly method is any one of the fifth to seventh aspects, in which the housing has a flat surface on the outer peripheral surface around the welded fixing portion, and includes a measurement step of measuring the distance between the flat surface and a reference position of the boss portion.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
- Compressor (AREA)
Abstract
The present invention provides a compressor with no risk of displacing the central axis of a compression part even when a boss part that is fixed, by welding, to a housing is used. Provided is a compressor including: a housing (11); a lower bearing (32) that is accommodated inside the housing (11); a rotating shaft that drives a rotary compression mechanism attached to the lower bearing (32); an intake boss (36) that is connected so as to allow a fluid to flow between a pipe outside the housing (11) and the lower bearing (32); and welding fixing portions (37) that fix, by welding, the intake boss (36) to the housing (11). The intake boss (36) has a distal end (36a) that is inserted into a connection section (32c) of the lower bearing (32), thereby being connected thereto in a press-fitted state. The distal end (36a) of the intake boss (36) and the connection section (32c) of the lower bearing (32) can be relatively moved in the inserted direction.
Description
本開示は、圧縮機及びその組立方法に関するものである。
This disclosure relates to a compressor and an assembly method thereof.
ハウジングの内部に、ロータリ圧縮機構のような冷媒を圧縮する圧縮部が設けられた圧縮機が知られている(特許文献1参照)。このような圧縮機は、ハウジングの外部の冷媒配管と接続され、ハウジング内の圧縮機構へ冷媒を導くための吸入ボスを備えている。
There is a known compressor that has a compression section inside the housing that compresses the refrigerant, such as a rotary compression mechanism (see Patent Document 1). Such a compressor is connected to a refrigerant pipe outside the housing and has a suction boss for directing the refrigerant to the compression mechanism inside the housing.
吸入ボスは、ハウジングに対して溶接によって固定させる。このとき、溶接時に生じる熱変形によって吸入ボスが圧縮部を押し出して変位させてしまうおそれがある。圧縮部は回転軸部によって駆動されるので、圧縮部の軸心位置がずれると回転軸部の軸心と一致せず、圧縮機の性能を損なうことになる。
The suction boss is fixed to the housing by welding. During this process, there is a risk that the suction boss will push out and displace the compression section due to thermal deformation that occurs during welding. Because the compression section is driven by the rotating shaft, if the axial center position of the compression section shifts, it will not coincide with the axial center of the rotating shaft, impairing the performance of the compressor.
本開示は、このような事情に鑑みてなされたものであって、ハウジングに対して溶接固定されるボス部を用いた場合であっても、圧縮部の軸心を変位させるおそれがない圧縮機及びその組立方法を提供することを目的とする。
This disclosure has been made in consideration of these circumstances, and aims to provide a compressor and an assembly method therefor that do not pose the risk of displacing the axis of the compression section, even when using a boss portion that is welded to the housing.
本開示の一態様に係る圧縮機は、ハウジングと、前記ハウジング内に収容された圧縮部と、前記圧縮部を駆動する回転軸部と、前記ハウジングの外部の配管と前記圧縮部との間で流体を流通可能に接続するボス部と、前記ボス部を前記ハウジングに対して溶接して固定する溶接固定部と、を備え、前記ボス部は、前記圧縮部の接続部に対して挿入されて圧入状態で接続された先端部を有し、前記ボス部の先端部と前記圧縮部の接続部とは、挿入方向に相対移動可能とされている。
A compressor according to one aspect of the present disclosure includes a housing, a compression section accommodated within the housing, a rotating shaft section that drives the compression section, a boss section that connects a piping outside the housing and the compression section so that fluid can flow between them, and a welded fixing section that fixes the boss section to the housing by welding, and the boss section has a tip section that is inserted into the connection section of the compression section and connected in a press-fit state, and the tip section of the boss section and the connection section of the compression section are movable relative to each other in the insertion direction.
本開示の一態様に係る圧縮機の組立方法は、ハウジングと、前記ハウジング内に収容された圧縮部と、前記圧縮部を駆動する回転軸部と、前記ハウジングの外部の配管と前記圧縮部との間で流体を流通可能に接続するボス部と、前記ボス部を前記ハウジングに対して溶接して固定する溶接固定部と、を備えた圧縮機の組立方法であって、前記ボス部は、前記圧縮部の接続部に対して挿入されて圧入状態で接続された先端部を有し、前記ボス部の先端部を、前記圧縮部の接続部に対して、挿入方向に相対移動可能に接続する。
A method for assembling a compressor according to one aspect of the present disclosure is a method for assembling a compressor including a housing, a compression section accommodated within the housing, a rotating shaft section for driving the compression section, a boss section for connecting a piping external to the housing and the compression section so that fluid can flow between them, and a welded fixing section for fixing the boss section to the housing by welding, wherein the boss section has a tip section that is inserted into the connection section of the compression section and connected in a press-fit state, and the tip section of the boss section is connected to the connection section of the compression section so as to be movable relative to the connection section in the insertion direction.
ハウジングに対して溶接固定されるボス部を用いた場合であっても、ボス部と圧縮部とが相対変位するので、圧縮部の軸心を変位させるおそれがない。
Even if a boss portion is used that is fixed to the housing by welding, there is no risk of displacing the axis of the compression portion because the boss portion and the compression portion are displaced relative to each other.
以下に、本開示に係る実施形態について、図面を参照して説明する。
図1に示すように、圧縮機1は、空調機に用いられ、例えば二酸化炭素等のガスである冷媒Rを二段圧縮する。圧縮機1は、脚部3を介して設置面FLに対して固定されている。圧縮機1はハウジング11と、ハウジング11の内部に設けられたロータリ圧縮機構(圧縮部)12と、スクロール圧縮機構13と、電動モータ14と、回転軸(回転軸部)15とを備えている。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
1, thecompressor 1 is used in an air conditioner and compresses a refrigerant R, which is a gas such as carbon dioxide, in two stages. The compressor 1 is fixed to an installation surface FL via legs 3. The compressor 1 includes a housing 11, a rotary compression mechanism (compression section) 12 provided inside the housing 11, a scroll compression mechanism 13, an electric motor 14, and a rotating shaft (rotating shaft section) 15.
図1に示すように、圧縮機1は、空調機に用いられ、例えば二酸化炭素等のガスである冷媒Rを二段圧縮する。圧縮機1は、脚部3を介して設置面FLに対して固定されている。圧縮機1はハウジング11と、ハウジング11の内部に設けられたロータリ圧縮機構(圧縮部)12と、スクロール圧縮機構13と、電動モータ14と、回転軸(回転軸部)15とを備えている。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
1, the
ハウジング11は、円筒状をなす本体部21と、本体部21の上下の開口を閉塞する上部蓋部22及び下部蓋部23とを備えている。そしてハウジング11の内部は密閉空間を形成している。
The housing 11 comprises a cylindrical main body 21, and an upper lid 22 and a lower lid 23 that close the upper and lower openings of the main body 21. The interior of the housing 11 forms an enclosed space.
回転軸15は、ハウジング11の内部で軸線Xに沿って上下に延在して設けられている。回転軸15の上端(一端)側は、上部軸受31によって回転可能に支持されている。回転軸15の下端(他端)側は、下部軸受32によって回転可能に支持されている。下部軸受32は、ロータリ圧縮機構12と一体的に組み立てられており、ロータリ圧縮機構12とともにロータリ圧縮部(圧縮部)を構成している。
The rotating shaft 15 is disposed inside the housing 11 and extends vertically along the axis X. The upper end (one end) of the rotating shaft 15 is rotatably supported by an upper bearing 31. The lower end (the other end) of the rotating shaft 15 is rotatably supported by a lower bearing 32. The lower bearing 32 is assembled integrally with the rotary compression mechanism 12, and together with the rotary compression mechanism 12 constitutes a rotary compression section (compression section).
電動モータ14は、回転軸15の長手方向における中央でかつ回転軸15の外周側に配置され、回転軸15を軸線X回りに回転させる。電動モータ14は、回転軸15の外周面に固定されたロータ38と、ロータ38の外周面と隙間を空けてロータ38と径方向に対向し、ハウジング11の本体部21の内壁に焼嵌め等によって固定されたステータ39とを有している。
The electric motor 14 is disposed at the center of the rotating shaft 15 in the longitudinal direction and on the outer periphery of the rotating shaft 15, and rotates the rotating shaft 15 around the axis X. The electric motor 14 has a rotor 38 fixed to the outer periphery of the rotating shaft 15, and a stator 39 that faces the rotor 38 in the radial direction with a gap between it and the outer periphery of the rotor 38 and is fixed to the inner wall of the main body 21 of the housing 11 by shrink fitting or the like.
ロータ38には、周方向に所定間隔で設けられたロータ通路38aが設けられている。各ロータ通路38aは、上下方向(軸線X方向)にロータ38を貫通している。これらロータ通路38aを介して、ロータリ圧縮機構12から吐出された冷媒が上方へ流れる。ロータ38の上部には、油分離プレート(邪魔板)38bが固定されている。油分離プレート38bは、円板形状とされており水平方向に延在するように配置されている。油分離プレート38bは、ロータ38とともに軸線X回りに回転する。
The rotor 38 is provided with rotor passages 38a spaced at regular intervals in the circumferential direction. Each rotor passage 38a penetrates the rotor 38 in the vertical direction (axis X direction). Refrigerant discharged from the rotary compression mechanism 12 flows upward through these rotor passages 38a. An oil separation plate (baffle plate) 38b is fixed to the upper part of the rotor 38. The oil separation plate 38b is disc-shaped and is arranged to extend horizontally. The oil separation plate 38b rotates around the axis X together with the rotor 38.
ステータ39の外周には、周方向に所定角度間隔で複数のステータ通路39aが形成されている。
図1に示すように、ステータ39の上部には巻線が折り返された上側コイルエンド39bが位置し、ステータ39の下部には巻線が折り返された下側コイルエンド39cが位置している。電動モータ14は、不図示のインバータを介して電源に接続されており、回転軸15を周波数可変として回転させる。 A plurality ofstator passages 39a are formed on the outer periphery of the stator 39 at predetermined angular intervals in the circumferential direction.
1, anupper coil end 39b formed by folding back the winding is located at the top of the stator 39, and a lower coil end 39c formed by folding back the winding is located at the bottom of the stator 39. The electric motor 14 is connected to a power source via an inverter (not shown), and rotates the rotating shaft 15 at a variable frequency.
図1に示すように、ステータ39の上部には巻線が折り返された上側コイルエンド39bが位置し、ステータ39の下部には巻線が折り返された下側コイルエンド39cが位置している。電動モータ14は、不図示のインバータを介して電源に接続されており、回転軸15を周波数可変として回転させる。 A plurality of
1, an
ロータリ圧縮機構12は、ハウジング11の内部で、回転軸15の下端(他端)側に設けられている。ロータリ圧縮機構12は、本実施形態では2気筒とされており、回転軸15に設けられた偏心軸部41と、偏心軸部41に固定され、回転軸15の回転に伴って軸線Xに対して偏心して圧縮室C1内で回転するロータ42と、圧縮室C1が形成されたシリンダ44とを備えている。
The rotary compression mechanism 12 is provided inside the housing 11 on the lower end (other end) side of the rotating shaft 15. In this embodiment, the rotary compression mechanism 12 is a two-cylinder mechanism, and includes an eccentric shaft portion 41 provided on the rotating shaft 15, a rotor 42 fixed to the eccentric shaft portion 41 and rotating in the compression chamber C1 eccentrically with respect to the axis X as the rotating shaft 15 rotates, and a cylinder 44 in which the compression chamber C1 is formed.
シリンダ44に形成された圧縮室C1には、吸入管33から吸入ボス(ボス部)36を介して冷媒Rが供給されるようになっている。圧縮室C1にて圧縮された冷媒は、下部軸受32を介してロータリ吐出管43からハウジング11内の電動モータ14の下方の領域に吐出される。吸入ボス36周りの構成については、後に説明する。
The refrigerant R is supplied to the compression chamber C1 formed in the cylinder 44 from the suction pipe 33 via the suction boss (boss portion) 36. The refrigerant compressed in the compression chamber C1 is discharged from the rotary discharge pipe 43 via the lower bearing 32 to the area below the electric motor 14 inside the housing 11. The configuration around the suction boss 36 will be described later.
シリンダ44は、下部軸受32に対してボルト48によって下方から固定されている。シリンダ44の下方には、シリンダ44とともにボルト48によって固定された油ポンプ49が設けられている。油ポンプ49によって、ハウジング11の下部の油溜まりO1から油が吸い込まれ、回転軸15の軸線Xに沿って貫通された油供給穴15aを通過して上部軸受31側へと導かれる。
The cylinder 44 is fixed from below to the lower bearing 32 by bolts 48. An oil pump 49 is provided below the cylinder 44 and is fixed together with the cylinder 44 by bolts 48. The oil pump 49 sucks oil from an oil reservoir O1 at the bottom of the housing 11 and guides it through an oil supply hole 15a that penetrates along the axis X of the rotating shaft 15 to the upper bearing 31 side.
スクロール圧縮機構13は、ハウジング11の内部で電動モータ14の上方に配置されている。スクロール圧縮機構13は、上部軸受31に固定された固定スクロール51と、固定スクロール51の下方で固定スクロール51に対向して配置された旋回スクロール57とを備えている。
The scroll compression mechanism 13 is disposed above the electric motor 14 inside the housing 11. The scroll compression mechanism 13 includes a fixed scroll 51 fixed to the upper bearing 31 and an orbiting scroll 57 disposed below the fixed scroll 51 and facing the fixed scroll 51.
固定スクロール51は、上部軸受31の上面に固定された端板52と、端板52から下方に突出する固定ラップ53とを有している。端板52の中央部(軸線X近傍)には、上下に貫通する吐出孔52aが形成されている。
The fixed scroll 51 has an end plate 52 fixed to the upper surface of the upper bearing 31 and a fixed wrap 53 protruding downward from the end plate 52. A discharge hole 52a is formed in the center of the end plate 52 (near the axis X) and penetrates vertically.
旋回スクロール57は、上部軸受31と固定スクロール51との間に挟まれるようにして配置されている。旋回スクロール57は、回転軸15の上端側に接続された端板58と、端板58から上方に突出する旋回ラップ59とを有している。
The orbiting scroll 57 is arranged so as to be sandwiched between the upper bearing 31 and the fixed scroll 51. The orbiting scroll 57 has an end plate 58 connected to the upper end side of the rotating shaft 15, and an orbiting wrap 59 protruding upward from the end plate 58.
端板58は、回転軸15の上端に設けられた偏心軸部56に対してドライブブッシュ55を介して連結されており、回転軸15の回転に伴って軸線Xに対して偏心して旋回運動する。
The end plate 58 is connected via a drive bush 55 to an eccentric shaft portion 56 provided at the upper end of the rotating shaft 15, and rotates eccentrically about the axis X as the rotating shaft 15 rotates.
旋回ラップ59は、固定ラップ53と噛み合うことで固定ラップ53との間に冷媒Rを圧縮する圧縮室C2を形成している。
The rotating wrap 59 meshes with the fixed wrap 53 to form a compression chamber C2 between the fixed wrap 53 and the rotating wrap 59, which compresses the refrigerant R.
上部軸受31の中央側の凹所と旋回スクロール57の下方との間には、バランスウェイト室63が形成されている。バランスウェイト室63内では、回転軸15とともにバランスウェイト54が回転する。
A balance weight chamber 63 is formed between the central recess of the upper bearing 31 and the lower part of the orbiting scroll 57. Inside the balance weight chamber 63, the balance weight 54 rotates together with the rotating shaft 15.
ロータリ圧縮機構12で圧縮されてハウジング11内に吐出された冷媒Rは、スクロール圧縮機構13の外周側から圧縮室C2内に吸い込まれて、中心側に向かって圧縮される。圧縮された冷媒Rは、固定スクロール51の吐出孔52aを介して、吐出管34からハウジング11の外部へ吐出される。
The refrigerant R compressed by the rotary compression mechanism 12 and discharged into the housing 11 is sucked into the compression chamber C2 from the outer periphery of the scroll compression mechanism 13 and compressed toward the center. The compressed refrigerant R is discharged from the discharge pipe 34 to the outside of the housing 11 via the discharge hole 52a of the fixed scroll 51.
上部軸受31の下方には、上部軸受31を覆うようにカバー45が設けられている。カバー45は、板金加工されて成形されており、下方から上方に向かって拡径された略円錐形状とされている。カバー45の外周側における上端は、ボルト等によって上部軸受31に対して固定されている。
A cover 45 is provided below the upper bearing 31 so as to cover the upper bearing 31. The cover 45 is formed by sheet metal processing and has a generally conical shape with a diameter that expands from bottom to top. The upper end on the outer periphery of the cover 45 is fixed to the upper bearing 31 by bolts or the like.
カバー45の下端には吸入開口45aが設けられている。すなわち、吸入開口45aは、下方を向いており、カバー45と回転軸15との間に形成された円環状の領域である。カバー45によってハウジング11の下方の空間と上部軸受31側の空間とが仕切られており、吸入開口45aから吸い込まれた冷媒がスクロール圧縮機構13に導かれるようになっている。
The lower end of the cover 45 is provided with an intake opening 45a. That is, the intake opening 45a faces downward and is an annular area formed between the cover 45 and the rotating shaft 15. The cover 45 separates the space below the housing 11 from the space on the upper bearing 31 side, and the refrigerant sucked in from the intake opening 45a is guided to the scroll compression mechanism 13.
ハウジング11の外部でかつ下方には、オイルレベルタンク60が設けられている。オイルレベルタンク60は、中空の容器とされ下部配管61と上部の均圧管62を介してハウジング11内と連通している。オイルレベルタンク60は、ハウジング11内の油溜まりO1から下部配管61を介して油を導くことによって、油溜まりO1の油面高さを計測するものである。
An oil level tank 60 is provided below and outside the housing 11. The oil level tank 60 is a hollow container that is connected to the inside of the housing 11 via a lower pipe 61 and an upper pressure equalizing pipe 62. The oil level tank 60 measures the oil level of the oil reservoir O1 in the housing 11 by directing oil from the oil reservoir O1 through the lower pipe 61.
ハウジング11の下方側部には、オイルセパレータ返油管65の下流端が接続されている。オイルセパレータ返油管65の上流端は、図示しないオイルセパレータに接続されている。オイルセパレータにて圧縮機1から吐出された冷媒から分離した油が、オイルセパレータ返油管65を介してハウジング11内の油溜まりO1へと戻される。オイルセパレータ返油管65の下流端がハウジング11に接続される高さ位置は、下部軸受32の下方とされている。
The downstream end of the oil separator return oil pipe 65 is connected to the lower side of the housing 11. The upstream end of the oil separator return oil pipe 65 is connected to an oil separator (not shown). Oil separated from the refrigerant discharged from the compressor 1 by the oil separator is returned to the oil reservoir O1 in the housing 11 via the oil separator return oil pipe 65. The height position at which the downstream end of the oil separator return oil pipe 65 is connected to the housing 11 is below the lower bearing 32.
ハウジング11内には、ハウジング11の内壁に接触しつつ上下方向に延在する油戻し管67が設けられている。油戻し管67は、上端(一端)が上部軸受31に固定され、下端(他端)がハウジング11の下部の油溜まりO1に位置するように設けられている。
An oil return pipe 67 is provided inside the housing 11 and extends vertically while in contact with the inner wall of the housing 11. The oil return pipe 67 is provided so that its upper end (one end) is fixed to the upper bearing 31 and its lower end (the other end) is located in the oil reservoir O1 at the bottom of the housing 11.
<吸入ボス36周りの構成>
以下に、吸入ボス36周りの構成について説明する。
図2には、下部軸受32を見た横断面が示されている。下部軸受32は、中央の円筒部32aと、円筒部32aから半径方向に延びた3つの腕部32bとを備えている。各腕部32bは、周方向に等角度間隔で120°の角度を有して配置されている。各腕部32bの先端は、栓溶接(プラグ溶接)が行われた栓溶接部35によってハウジング11の内面に対して固定されている。 <Configuration around thesuction boss 36>
The configuration around thesuction boss 36 will be described below.
2 shows a cross section of thelower bearing 32. The lower bearing 32 has a central cylindrical portion 32a and three arm portions 32b extending radially from the cylindrical portion 32a. The arm portions 32b are arranged at equal angular intervals in the circumferential direction at angles of 120°. The tip of each arm portion 32b is fixed to the inner surface of the housing 11 by a plug weld portion 35 that is plug welded.
以下に、吸入ボス36周りの構成について説明する。
図2には、下部軸受32を見た横断面が示されている。下部軸受32は、中央の円筒部32aと、円筒部32aから半径方向に延びた3つの腕部32bとを備えている。各腕部32bは、周方向に等角度間隔で120°の角度を有して配置されている。各腕部32bの先端は、栓溶接(プラグ溶接)が行われた栓溶接部35によってハウジング11の内面に対して固定されている。 <Configuration around the
The configuration around the
2 shows a cross section of the
下部軸受32は、円筒部32aから半径方向に突出する1つの接続部32cを備えている。接続部32cは、例えば円筒形とされた筒形状とされており、冷媒Rの流路を形成する。接続部32cに対して吸入ボス(ボス部)36が接続されている。なお、符号32eは、冷媒Rをシリンダ44(図1参照)へ導く冷媒導入穴である。
The lower bearing 32 has one connection portion 32c that protrudes radially from the cylindrical portion 32a. The connection portion 32c is, for example, cylindrical in shape, and forms a flow path for the refrigerant R. An intake boss (boss portion) 36 is connected to the connection portion 32c. The reference symbol 32e is a refrigerant introduction hole that guides the refrigerant R to the cylinder 44 (see FIG. 1).
図3に示すように、吸入ボス36は、同図において左から順に、先端部36aと、先端部36aよりも大径とされた中間部36bと、中間部36bよりも大径とされた本体部36cとを備えている。吸入ボス36は、例えば円筒形とされており、切削加工によって一体的に形成されている。吸入ボス36の本体部36cの後端には、ハウジング11の外部の配管である吸入管33が接続されている(図1参照)。
As shown in FIG. 3, the suction boss 36 has, from the left in the figure, a tip portion 36a, an intermediate portion 36b having a larger diameter than the tip portion 36a, and a main body portion 36c having a larger diameter than the intermediate portion 36b. The suction boss 36 is, for example, cylindrical, and is integrally formed by cutting. The rear end of the main body portion 36c of the suction boss 36 is connected to the suction pipe 33, which is an external piping of the housing 11 (see FIG. 1).
吸入ボス36の先端部36aは、下部軸受32の接続部32cに対して圧入されている。すなわち、先端部36aの外周面と接続部32cの内周面とが嵌め合わされており、気密状態とされている。ただし、先端部36aの外周面と接続部32cの内周面とは摺動しながら相対移動可能となっている。
The tip 36a of the suction boss 36 is press-fitted into the connection portion 32c of the lower bearing 32. In other words, the outer peripheral surface of the tip 36a and the inner peripheral surface of the connection portion 32c are fitted together to create an airtight state. However, the outer peripheral surface of the tip 36a and the inner peripheral surface of the connection portion 32c are able to move relative to each other while sliding against each other.
接続部32cの吸入ボス36側の先端には、挿入方向に対して交差する第1面32dが設けられている。ここで、挿入方向とは、接続部32cに対して吸入ボス36を挿入する方向を意味し、図3において軸線X1方向を意味する。
The tip of the connection part 32c on the suction boss 36 side is provided with a first surface 32d that intersects with the insertion direction. Here, the insertion direction refers to the direction in which the suction boss 36 is inserted into the connection part 32c, and refers to the direction of the axis X1 in FIG. 3.
吸入ボス36には、第1面32dに対して挿入方向において対向する第2面36dが設けられている。第2面36dは、先端部36aと中間部36bとの間の段差に形成されている。第2面36dは、第1面32dに対して挿入方向における相対移動を規制する位置に設けられている。しかし、本実施形態では、第1面32dと第2面36dとの間に隙間t1が形成されている。この隙間t1によって、吸入ボス36と接続部32c(すなわち下部軸受32)との挿入方向における相対移動が許容されている。隙間t1の寸法としては、例えば、0.1mm以上2.0mm以下である。
The suction boss 36 has a second surface 36d that faces the first surface 32d in the insertion direction. The second surface 36d is formed at a step between the tip portion 36a and the middle portion 36b. The second surface 36d is provided at a position that restricts relative movement in the insertion direction with respect to the first surface 32d. However, in this embodiment, a gap t1 is formed between the first surface 32d and the second surface 36d. This gap t1 allows relative movement in the insertion direction between the suction boss 36 and the connection portion 32c (i.e., the lower bearing 32). The dimension of the gap t1 is, for example, 0.1 mm or more and 2.0 mm or less.
吸入ボス36の本体部36cは、ハウジング11に対して溶接によって固定されており、これにより、ハウジング11との間には溶接固定部37が形成されている。溶接固定部37は、本体部36cの全周にわたって連続的に形成されている。
The main body 36c of the suction boss 36 is fixed to the housing 11 by welding, thereby forming a welded fixing portion 37 between the main body 36c and the housing 11. The welded fixing portion 37 is formed continuously around the entire circumference of the main body 36c.
上述した構成の圧縮機1は、以下のように動作する。
図示しない蒸発器で蒸発した冷媒が吸入管33から吸入ボス36を介して圧縮機1内に吸い込まれ、ロータリ圧縮機構12で圧縮される。ロータリ圧縮機構12で圧縮された冷媒は、ロータリ吐出管43からハウジング11の内部に吐出される。
ハウジング11内に吐出された冷媒は、カバー45の吸入開口45aから吸い込まれ、カバー45内の流路を通りスクロール圧縮機構13へと導かれて圧縮される。スクロール圧縮機構13で圧縮された冷媒は、固定スクロール51の吐出孔52aを通り吐出管34から外部のガスクーラ又は凝縮器へと吐出される。 Thecompressor 1 having the above-described configuration operates as follows.
Refrigerant evaporated in an evaporator (not shown) is sucked into thecompressor 1 through the suction pipe 33 and the suction boss 36, and is compressed by the rotary compression mechanism 12. The refrigerant compressed by the rotary compression mechanism 12 is discharged from the rotary discharge pipe 43 into the housing 11.
The refrigerant discharged into thehousing 11 is sucked through the suction opening 45a of the cover 45, passes through a flow passage in the cover 45, and is guided to the scroll compression mechanism 13 where it is compressed. The refrigerant compressed in the scroll compression mechanism 13 passes through the discharge hole 52a of the fixed scroll 51 and is discharged from the discharge pipe 34 to an external gas cooler or condenser.
図示しない蒸発器で蒸発した冷媒が吸入管33から吸入ボス36を介して圧縮機1内に吸い込まれ、ロータリ圧縮機構12で圧縮される。ロータリ圧縮機構12で圧縮された冷媒は、ロータリ吐出管43からハウジング11の内部に吐出される。
ハウジング11内に吐出された冷媒は、カバー45の吸入開口45aから吸い込まれ、カバー45内の流路を通りスクロール圧縮機構13へと導かれて圧縮される。スクロール圧縮機構13で圧縮された冷媒は、固定スクロール51の吐出孔52aを通り吐出管34から外部のガスクーラ又は凝縮器へと吐出される。 The
Refrigerant evaporated in an evaporator (not shown) is sucked into the
The refrigerant discharged into the
<吸入ボス36の組立工程>
吸入ボス36は、以下のように組み立てられる。
ボルト48によって組み立てられたシリンダ44及び下部軸受32を含むロータリ圧縮部とされた組立体を、ハウジング11内に挿入し、下部軸受32の各腕部32bの先端に栓溶接を行うことによって(図3の栓溶接部35参照)、シリンダ44及び下部軸受32の組立体をハウジング11に対して固定する。
そして、ハウジング11の外側から吸入ボス36を挿入し、吸入ボス36の先端部36aを下部軸受32の接続部32cに圧入する。このとき、接続部32cの第1面32dと吸入ボス36の第2面36dとの間には隙間が形成されている。
次に、ハウジング11の外部から吸入ボス36の本体部36cの周囲に沿って溶接を行い、吸入ボス36をハウジング11に対して固定する。これにより、本体部36cの外周とハウジング11との間に溶接固定部37が形成させる。 <Assembly process of thesuction boss 36>
Theintake boss 36 is assembled as follows.
The rotary compression assembly including thecylinder 44 and the lower bearing 32 assembled by the bolts 48 is inserted into the housing 11, and the assembly of the cylinder 44 and the lower bearing 32 is fixed to the housing 11 by plug welding to the tip of each arm portion 32b of the lower bearing 32 (see plug welding portion 35 in Figure 3).
Then, thesuction boss 36 is inserted from the outside of the housing 11, and the tip portion 36a of the suction boss 36 is press-fitted into the connecting portion 32c of the lower bearing 32. At this time, a gap is formed between the first surface 32d of the connecting portion 32c and the second surface 36d of the suction boss 36.
Next, welding is performed along the periphery ofmain body portion 36c of suction boss 36 from the outside of housing 11 to fix suction boss 36 to housing 11. This forms welded fixed portion 37 between the outer periphery of main body portion 36c and housing 11.
吸入ボス36は、以下のように組み立てられる。
ボルト48によって組み立てられたシリンダ44及び下部軸受32を含むロータリ圧縮部とされた組立体を、ハウジング11内に挿入し、下部軸受32の各腕部32bの先端に栓溶接を行うことによって(図3の栓溶接部35参照)、シリンダ44及び下部軸受32の組立体をハウジング11に対して固定する。
そして、ハウジング11の外側から吸入ボス36を挿入し、吸入ボス36の先端部36aを下部軸受32の接続部32cに圧入する。このとき、接続部32cの第1面32dと吸入ボス36の第2面36dとの間には隙間が形成されている。
次に、ハウジング11の外部から吸入ボス36の本体部36cの周囲に沿って溶接を行い、吸入ボス36をハウジング11に対して固定する。これにより、本体部36cの外周とハウジング11との間に溶接固定部37が形成させる。 <Assembly process of the
The
The rotary compression assembly including the
Then, the
Next, welding is performed along the periphery of
以上説明した本実施形態の作用効果は以下の通りである。
ハウジング11に対して吸入ボス36を固定するために溶接が用いられる。溶接によって熱変形が生じ、吸入ボス36が下部軸受32及びシリンダ44を押し出して下部軸受32及びシリンダ44の軸心位置を所望位置から変位させてしまうおそれがある。
具体的には、図4に示すように、溶接時の熱変形によって矢印A1方向に変形が生じ、仮に隙間t1がゼロの場合には、下部軸受32及びシリンダ44を矢印A2の方向に押し出してしまう。一般に、溶接前に吸入ボス36を下部軸受32の接続部32cに圧入する際には、挿入方向(X1方向)の位置決めが容易になるので、第1面32dと第2面36dとを当接させて隙間t1をゼロとした上で溶接を行う。そうすると、上述のように下部軸受32及びシリンダ44を矢印A2の方向に押し出してしまい、回転軸15の軸心からずれてしまい好ましくない。
そこで、吸入ボス36の先端部36aと下部軸受32の接続部32cとの間で挿入方向に相対移動可能とすることとした。これにより、吸入ボス36をハウジング11に対して溶接固定した際に熱変形が生じたとしても、吸入ボス36と下部軸受32及びシリンダ44との間の相対移動によって熱変形が吸収されることになり、吸入ボス36によって下部軸受32及びシリンダ44の位置が変位されることを可及的に回避することができる。
なお、吸入ボス36は下部軸受32の接続部32cに対して圧入状態で挿入されているので、冷媒Rが漏洩することを可及的に回避した状態で挿入方向に相対移動可能となっている。 The effects of the present embodiment described above are as follows.
Welding is used to fix thesuction boss 36 to the housing 11. Thermal deformation occurs due to welding, and there is a risk that the suction boss 36 will push out the lower bearing 32 and the cylinder 44, displacing the axial center positions of the lower bearing 32 and the cylinder 44 from the desired positions.
Specifically, as shown in Fig. 4, thermal deformation during welding causes deformation in the direction of arrow A1, and if the gap t1 were zero, thelower bearing 32 and the cylinder 44 would be pushed out in the direction of arrow A2. Generally, when the suction boss 36 is press-fitted into the connecting portion 32c of the lower bearing 32 before welding, positioning in the insertion direction (X1 direction) is facilitated, so the first surface 32d and the second surface 36d are brought into contact with each other to set the gap t1 to zero, and then welding is performed. If this is done, the lower bearing 32 and the cylinder 44 will be pushed out in the direction of arrow A2 as described above, and will be undesirably displaced from the axis of the rotating shaft 15.
Therefore, thetip end 36a of the suction boss 36 and the connection portion 32c of the lower bearing 32 are allowed to move relative to each other in the insertion direction. As a result, even if thermal deformation occurs when the suction boss 36 is fixed to the housing 11 by welding, the thermal deformation is absorbed by the relative movement between the suction boss 36 and the lower bearing 32 and the cylinder 44, and displacement of the positions of the lower bearing 32 and the cylinder 44 by the suction boss 36 can be prevented as much as possible.
Since thesuction boss 36 is inserted into the connecting portion 32c of the lower bearing 32 in a press-fit state, it is capable of relative movement in the insertion direction while preventing leakage of the refrigerant R as much as possible.
ハウジング11に対して吸入ボス36を固定するために溶接が用いられる。溶接によって熱変形が生じ、吸入ボス36が下部軸受32及びシリンダ44を押し出して下部軸受32及びシリンダ44の軸心位置を所望位置から変位させてしまうおそれがある。
具体的には、図4に示すように、溶接時の熱変形によって矢印A1方向に変形が生じ、仮に隙間t1がゼロの場合には、下部軸受32及びシリンダ44を矢印A2の方向に押し出してしまう。一般に、溶接前に吸入ボス36を下部軸受32の接続部32cに圧入する際には、挿入方向(X1方向)の位置決めが容易になるので、第1面32dと第2面36dとを当接させて隙間t1をゼロとした上で溶接を行う。そうすると、上述のように下部軸受32及びシリンダ44を矢印A2の方向に押し出してしまい、回転軸15の軸心からずれてしまい好ましくない。
そこで、吸入ボス36の先端部36aと下部軸受32の接続部32cとの間で挿入方向に相対移動可能とすることとした。これにより、吸入ボス36をハウジング11に対して溶接固定した際に熱変形が生じたとしても、吸入ボス36と下部軸受32及びシリンダ44との間の相対移動によって熱変形が吸収されることになり、吸入ボス36によって下部軸受32及びシリンダ44の位置が変位されることを可及的に回避することができる。
なお、吸入ボス36は下部軸受32の接続部32cに対して圧入状態で挿入されているので、冷媒Rが漏洩することを可及的に回避した状態で挿入方向に相対移動可能となっている。 The effects of the present embodiment described above are as follows.
Welding is used to fix the
Specifically, as shown in Fig. 4, thermal deformation during welding causes deformation in the direction of arrow A1, and if the gap t1 were zero, the
Therefore, the
Since the
下部軸受32の接続部32cに設けた第1面32dと吸入ボス36に設けた第2面36dとの間に隙間t1を設けることによって、吸入ボス36と下部軸受32との挿入方向における相対移動が規制されることがない。
吸入ボス36をハウジング11に対して溶接固定した後に隙間t1を管理することによって、溶接時の熱変形によって下部軸受32及びシリンダ44が吸入ボス36によって変位されていないことが確認でき、簡便に品質管理を行うことができる。 By providing a gap t1 between thefirst surface 32d provided on the connection portion 32c of the lower bearing 32 and the second surface 36d provided on the suction boss 36, the relative movement between the suction boss 36 and the lower bearing 32 in the insertion direction is not restricted.
By controlling the gap t1 after welding and fixing thesuction boss 36 to the housing 11, it is possible to confirm that the lower bearing 32 and cylinder 44 are not displaced by the suction boss 36 due to thermal deformation during welding, making it possible to perform quality control easily.
吸入ボス36をハウジング11に対して溶接固定した後に隙間t1を管理することによって、溶接時の熱変形によって下部軸受32及びシリンダ44が吸入ボス36によって変位されていないことが確認でき、簡便に品質管理を行うことができる。 By providing a gap t1 between the
By controlling the gap t1 after welding and fixing the
<変形例>
本実施形態は、以下のように変形することができる。
図5に示すように、ハウジング11の外周面に対して、溶接固定部37の周囲の領域に、平面部11aを設けても良い。このように円筒形とされたハウジング11の外周面の一部に平面部11aを設けることによって、曲面部に比べて再現性良く寸法計測時の基準とすることができる。例えば、平面部11aと吸入ボス36の本体部36cの後端(基準位置)との間の距離D1を計測し(計測工程)、溶接時の管理位置とすることができる。これにより、吸入ボス36の挿入方向における取付位置を容易に管理することができ、所望の隙間t1を得ることができる。 <Modification>
This embodiment can be modified as follows.
As shown in Fig. 5, aflat surface 11a may be provided on the outer peripheral surface of the housing 11 in the area surrounding the welded fixing portion 37. Providing the flat surface 11a on a portion of the outer peripheral surface of the cylindrical housing 11 in this manner allows the flat surface 11a to be used as a reference for dimensional measurement with better reproducibility than a curved surface portion. For example, the distance D1 between the flat surface 11a and the rear end (reference position) of the main body portion 36c of the suction boss 36 can be measured (measurement step) and used as a control position during welding. This makes it easy to control the mounting position of the suction boss 36 in the insertion direction, and allows the desired gap t1 to be obtained.
本実施形態は、以下のように変形することができる。
図5に示すように、ハウジング11の外周面に対して、溶接固定部37の周囲の領域に、平面部11aを設けても良い。このように円筒形とされたハウジング11の外周面の一部に平面部11aを設けることによって、曲面部に比べて再現性良く寸法計測時の基準とすることができる。例えば、平面部11aと吸入ボス36の本体部36cの後端(基準位置)との間の距離D1を計測し(計測工程)、溶接時の管理位置とすることができる。これにより、吸入ボス36の挿入方向における取付位置を容易に管理することができ、所望の隙間t1を得ることができる。 <Modification>
This embodiment can be modified as follows.
As shown in Fig. 5, a
また、溶接前に、第1面32dと第2面36dとの間に所定厚さのシムを挿入し、吸入ボス36の位置決めをした後にシムを取り外し、溶接を行うこととしても良い。
Alternatively, before welding, a shim of a specified thickness may be inserted between the first surface 32d and the second surface 36d, and after positioning the suction boss 36, the shim may be removed and welding may be performed.
なお、上述した実施形態では、ロータリ圧縮機構12に設けた吸入ボス36の取付構造について説明したが、本開示は圧縮形式がロータリ式に限定されるものではなく、一般に流体をハウジング内の圧縮部との間で流通させるボス部であれば適用できるものである。
In the above embodiment, the mounting structure of the intake boss 36 provided on the rotary compression mechanism 12 was described, but the present disclosure is not limited to the compression type being rotary type, and can generally be applied to any boss portion that allows fluid to flow between the compression section inside the housing.
以上説明した各実施形態に記載の圧縮機及びその組立方法は、例えば以下のように把握される。
The compressor and the assembly method thereof described in each of the above-described embodiments can be understood, for example, as follows.
本開示の第1態様に係る圧縮機(1)は、ハウジング(11)と、前記ハウジング内に収容された圧縮部(32,12)と、前記圧縮部を駆動する回転軸部(15)と、前記ハウジングの外部の配管(33)と前記圧縮部との間で流体を流通可能に接続するボス部(36)と、前記ボス部を前記ハウジングに対して溶接して固定する溶接固定部(37)と、を備え、前記ボス部は、前記圧縮部の接続部に対して挿入されて圧入状態で接続された先端部(36a)を有し、前記ボス部の先端部と前記圧縮部の接続部(32c)とは、挿入方向に相対移動可能とされている。
The compressor (1) according to the first aspect of the present disclosure comprises a housing (11), a compression section (32, 12) accommodated within the housing, a rotating shaft (15) that drives the compression section, a boss (36) that connects the compression section to a piping (33) outside the housing so that fluid can flow between the compression section, and a welded fixing section (37) that fixes the boss to the housing by welding, and the boss has a tip (36a) that is inserted into the connection section of the compression section and connected in a press-fit state, and the tip of the boss and the connection section (32c) of the compression section are capable of moving relative to each other in the insertion direction.
ハウジングに対してボス部を固定するために溶接が用いられる。溶接によって熱変形が生じ、ボス部が圧縮部を押し出して圧縮部の軸心位置を所望位置から変位させてしまうおそれがある。圧縮部は回転軸部によって駆動されるので、圧縮部の軸心位置がずれると回転軸部の軸心と一致せず好ましくない。そこで、ボス部の先端部と圧縮部の接続部との間で挿入方向に相対移動可能とすることとした。これにより、ボス部をハウジングに対して溶接固定した際に熱変形が生じたとしても、ボス部と圧縮部との間の相対移動によって熱変形が吸収されることになり、ボス部によって圧縮部の位置が変位されることを可及的に回避することができる。
なお、ボス部は圧縮部に対して圧入状態で挿入されているので、流体が漏洩することを可及的に回避した状態で挿入方向に相対移動可能となっている。
ボス部が圧縮部に対して圧入状態で相対移動可能となっているので、圧縮機の振動を減衰することもできる。 Welding is used to fix the boss portion to the housing. There is a risk that welding will cause thermal deformation, causing the boss portion to push out the compression portion and displace the axial position of the compression portion from the desired position. Since the compression portion is driven by the rotating shaft portion, if the axial position of the compression portion is displaced, it will not coincide with the axial center of the rotating shaft portion, which is undesirable. Therefore, it is decided to allow relative movement between the tip end of the boss portion and the connection portion of the compression portion in the insertion direction. As a result, even if thermal deformation occurs when the boss portion is welded and fixed to the housing, the thermal deformation is absorbed by the relative movement between the boss portion and the compression portion, and it is possible to prevent the position of the compression portion from being displaced by the boss portion as much as possible.
In addition, since the boss portion is inserted into the compression portion in a press-fit state, it is possible for the boss portion to move relatively in the insertion direction while preventing leakage of fluid as much as possible.
Since the boss portion is press-fitted and movable relative to the compression portion, vibrations of the compressor can also be damped.
なお、ボス部は圧縮部に対して圧入状態で挿入されているので、流体が漏洩することを可及的に回避した状態で挿入方向に相対移動可能となっている。
ボス部が圧縮部に対して圧入状態で相対移動可能となっているので、圧縮機の振動を減衰することもできる。 Welding is used to fix the boss portion to the housing. There is a risk that welding will cause thermal deformation, causing the boss portion to push out the compression portion and displace the axial position of the compression portion from the desired position. Since the compression portion is driven by the rotating shaft portion, if the axial position of the compression portion is displaced, it will not coincide with the axial center of the rotating shaft portion, which is undesirable. Therefore, it is decided to allow relative movement between the tip end of the boss portion and the connection portion of the compression portion in the insertion direction. As a result, even if thermal deformation occurs when the boss portion is welded and fixed to the housing, the thermal deformation is absorbed by the relative movement between the boss portion and the compression portion, and it is possible to prevent the position of the compression portion from being displaced by the boss portion as much as possible.
In addition, since the boss portion is inserted into the compression portion in a press-fit state, it is possible for the boss portion to move relatively in the insertion direction while preventing leakage of fluid as much as possible.
Since the boss portion is press-fitted and movable relative to the compression portion, vibrations of the compressor can also be damped.
本開示の第2態様に係る圧縮機は、前記第1態様において、前記圧縮部の接続部には、挿入方向に対して交差する第1面(32d)が設けられ、前記ボス部には、前記第1面に対して挿入方向において対向するとともに、該ボス部と前記圧縮部との挿入方向における相対移動を規制する第2面(36d)が設けられ、前記第1面と前記第2面との間には、所定の隙間(t1)が形成されている。
In the compressor according to the second aspect of the present disclosure, in the first aspect, the connection portion of the compression portion is provided with a first surface (32d) that intersects with the insertion direction, and the boss portion is provided with a second surface (36d) that faces the first surface in the insertion direction and regulates the relative movement between the boss portion and the compression portion in the insertion direction, and a predetermined gap (t1) is formed between the first surface and the second surface.
圧縮部に設けた第1面とボス部に設けた第2面との間に隙間を設けることによって、圧縮部とボス部との挿入方向における相対移動が規制されることがない。
ボス部をハウジングに対して溶接固定した後に隙間を管理することによって、溶接時の熱変形によって圧縮部がボス部によって変位されていないことが確認でき、簡便に品質管理を行うことができる。
隙間の寸法としては、例えば、0.1mm以上2.0mm以下である。 By providing a gap between the first surface of the compression portion and the second surface of the boss portion, the relative movement between the compression portion and the boss portion in the insertion direction is not restricted.
By controlling the gap after welding and fixing the boss portion to the housing, it is possible to confirm that the compressed portion is not displaced by the boss portion due to thermal deformation during welding, making quality control easy.
The size of the gap is, for example, not less than 0.1 mm and not more than 2.0 mm.
ボス部をハウジングに対して溶接固定した後に隙間を管理することによって、溶接時の熱変形によって圧縮部がボス部によって変位されていないことが確認でき、簡便に品質管理を行うことができる。
隙間の寸法としては、例えば、0.1mm以上2.0mm以下である。 By providing a gap between the first surface of the compression portion and the second surface of the boss portion, the relative movement between the compression portion and the boss portion in the insertion direction is not restricted.
By controlling the gap after welding and fixing the boss portion to the housing, it is possible to confirm that the compressed portion is not displaced by the boss portion due to thermal deformation during welding, making quality control easy.
The size of the gap is, for example, not less than 0.1 mm and not more than 2.0 mm.
本開示の第3態様に係る圧縮機は、前記第1態様又は前記第2態様において、前記圧縮部の接続部は、前記回転軸部を支持する軸受(32)に設けられている。
In the compressor according to the third aspect of the present disclosure, in the first or second aspect, the connection part of the compression part is provided on a bearing (32) that supports the rotating shaft part.
回転軸部を支持する軸受に接続部が設けられている場合であっても、溶接固定時にボス部が変位したとしても、軸受の軸心がずれることを回避することができる。
Even if a connection part is provided on the bearing that supports the rotating shaft, misalignment of the bearing axis can be prevented even if the boss part is displaced during welding.
本開示の第4態様に係る圧縮機は、前記第1態様から前記第3態様のいずれかにおいて、前記ハウジングは、前記溶接固定部の周囲の外周面に、平面部(11a)を備えている。
The compressor according to the fourth aspect of the present disclosure is any one of the first to third aspects, in which the housing has a flat surface (11a) on the outer circumferential surface around the welded fixed portion.
ハウジングの外周面でかつ溶接固定部の周囲に平面部を設けることとした。平面部とすることによって、曲面部に比べて再現性良く寸法計測時の基準とすることができる。これにより、ボス部の挿入方向における取付位置を容易に管理することができる。
A flat surface is provided on the outer periphery of the housing and around the welded fixing portion. By making it a flat surface, it can be used as a reference for dimensional measurements with better reproducibility than a curved surface. This makes it easier to manage the mounting position in the insertion direction of the boss.
本開示の第5態様に係る圧縮機の組立方法は、ハウジングと、前記ハウジング内に収容された圧縮部と、前記圧縮部を駆動する回転軸部と、前記ハウジングの外部の配管と前記圧縮部との間で流体を流通可能に接続するボス部と、前記ボス部を前記ハウジングに対して溶接して固定する溶接固定部と、を備えた圧縮機の組立方法であって、前記ボス部は、前記圧縮部の接続部に対して挿入されて圧入状態で接続された先端部を有し、前記ボス部の先端部を、前記圧縮部の接続部に対して、挿入方向に相対移動可能に接続する。
The method for assembling a compressor according to the fifth aspect of the present disclosure is a method for assembling a compressor including a housing, a compression section accommodated within the housing, a rotating shaft section for driving the compression section, a boss section for connecting a piping outside the housing to the compression section so that fluid can flow between them, and a welded fixing section for fixing the boss section to the housing by welding, wherein the boss section has a tip section that is inserted into the connection section of the compression section and connected in a press-fit state, and the tip section of the boss section is connected to the connection section of the compression section so as to be movable relative to the connection section in the insertion direction.
本開示の第6態様に係る圧縮機の組立方法は、前記第5態様において、前記圧縮部の接続部には、挿入方向に対して交差する第1面が設けられ、前記ボス部には、前記第1面に対して挿入方向において対向するとともに、該ボス部と前記圧縮部との挿入方向における相対移動を妨げる第2面が設けられ、前記第1面と前記第2面との間には、所定の隙間が形成されるように、前記ボス部を前記ハウジングに対して溶接して固定する。
The compressor assembly method according to the sixth aspect of the present disclosure is the fifth aspect, in which the connection portion of the compression section is provided with a first surface that intersects with the insertion direction, the boss portion is provided with a second surface that faces the first surface in the insertion direction and prevents relative movement between the boss portion and the compression section in the insertion direction, and the boss portion is welded and fixed to the housing so that a predetermined gap is formed between the first surface and the second surface.
本開示の第7態様に係る圧縮機の組立方法は、前記第6態様において、前記第1面と前記第2面との間にシムを挿入して隙間を設定し、前記シムを取り外した後に、所定の隙間が形成されるように、前記ボス部を前記ハウジングに対して溶接して固定する。
The compressor assembly method according to the seventh aspect of the present disclosure is the sixth aspect, in which a shim is inserted between the first surface and the second surface to set a gap, and after removing the shim, the boss portion is welded and fixed to the housing so that a predetermined gap is formed.
本開示の第8態様に係る圧縮機の組立方法は、前記第5態様から前記第7態様のいずれかにおいて、前記ハウジングは、前記溶接固定部の周囲の外周面に、平面部を備え、前記平面部と前記ボス部の基準位置との距離を計測する計測工程を有している。
The compressor assembly method according to the eighth aspect of the present disclosure is any one of the fifth to seventh aspects, in which the housing has a flat surface on the outer peripheral surface around the welded fixing portion, and includes a measurement step of measuring the distance between the flat surface and a reference position of the boss portion.
1 圧縮機
3 脚部
11 ハウジング
11a 平面部
12 ロータリ圧縮機構(圧縮部)
13 スクロール圧縮機構
14 電動モータ
15 回転軸(回転軸部)
15a 油供給穴
21 本体部
22 上部蓋部
23 下部蓋部
31 上部軸受(軸受部)
32 下部軸受(圧縮部)
32a 円筒部
32b 腕部
32c 接続部
32d 第1面
32e 冷媒導入穴
33 吸入管
34 吐出管
35 栓溶接部
36 吸入ボス(ボス部)
36a 先端部
36b 中間部
36c 本体部
36d 第2面
37 溶接固定部
38 ロータ
38a ロータ通路
38b 油分離プレート
39 ステータ
39a ステータ通路
39b 上側コイルエンド
39c 下側コイルエンド
41 偏心軸部
42 ロータ
43 ロータリ吐出管
44 シリンダ
45 カバー
45a 吸入開口
48 ボルト
49 油ポンプ
51 固定スクロール
52 端板
52a 吐出孔
53 固定ラップ
54 バランスウェイト
55 ドライブブッシュ
56 偏心軸部
57 旋回スクロール
58 端板
59 旋回ラップ
60 オイルレベルタンク
61 下部配管
62 均圧管
63 バランスウェイト室
65 オイルセパレータ返油管
67 油戻し管
C1 圧縮室
C2 圧縮室
FL 設置面
O1 油溜まり
t1 隙間
X 軸線 1Compressor 3 Leg 11 Housing 11a Planar portion 12 Rotary compression mechanism (compression portion)
13Scroll compression mechanism 14 Electric motor 15 Rotating shaft (rotating shaft portion)
15aOil supply hole 21 Body portion 22 Upper cover portion 23 Lower cover portion 31 Upper bearing (bearing portion)
32 Lower bearing (compression section)
32a:cylindrical portion 32b: arm portion 32c: connecting portion 32d: first surface 32e: refrigerant introduction hole 33: suction pipe 34: discharge pipe 35: plug welded portion 36: suction boss (boss portion)
36a Tip portion 36b Middle portion 36c Main body portion 36d Second surface 37 Welded fixed portion 38 Rotor 38a Rotor passage 38b Oil separation plate 39 Stator 39a Stator passage 39b Upper coil end 39c Lower coil end 41 Eccentric shaft portion 42 Rotor 43 Rotary discharge pipe 44 Cylinder 45 Cover 45a Suction opening 48 Bolt 49 Oil pump 51 Fixed scroll 52 End plate 52a Discharge hole 53 Fixed wrap 54 Balance weight 55 Drive bush 56 Eccentric shaft portion 57 Orbiting scroll 58 End plate 59 Orbiting wrap 60 Oil level tank 61 Lower piping 62 Pressure equalizing pipe 63 Balance weight chamber 65 Oil separator return pipe 67 Oil return pipe C1 Compression chamber C2 Compression chamber FL Installation surface O1 Oil reservoir t1 Gap X Axis
3 脚部
11 ハウジング
11a 平面部
12 ロータリ圧縮機構(圧縮部)
13 スクロール圧縮機構
14 電動モータ
15 回転軸(回転軸部)
15a 油供給穴
21 本体部
22 上部蓋部
23 下部蓋部
31 上部軸受(軸受部)
32 下部軸受(圧縮部)
32a 円筒部
32b 腕部
32c 接続部
32d 第1面
32e 冷媒導入穴
33 吸入管
34 吐出管
35 栓溶接部
36 吸入ボス(ボス部)
36a 先端部
36b 中間部
36c 本体部
36d 第2面
37 溶接固定部
38 ロータ
38a ロータ通路
38b 油分離プレート
39 ステータ
39a ステータ通路
39b 上側コイルエンド
39c 下側コイルエンド
41 偏心軸部
42 ロータ
43 ロータリ吐出管
44 シリンダ
45 カバー
45a 吸入開口
48 ボルト
49 油ポンプ
51 固定スクロール
52 端板
52a 吐出孔
53 固定ラップ
54 バランスウェイト
55 ドライブブッシュ
56 偏心軸部
57 旋回スクロール
58 端板
59 旋回ラップ
60 オイルレベルタンク
61 下部配管
62 均圧管
63 バランスウェイト室
65 オイルセパレータ返油管
67 油戻し管
C1 圧縮室
C2 圧縮室
FL 設置面
O1 油溜まり
t1 隙間
X 軸線 1
13
15a
32 Lower bearing (compression section)
32a:
Claims (8)
- ハウジングと、
前記ハウジング内に収容された圧縮部と、
前記圧縮部を駆動する回転軸部と、
前記ハウジングの外部の配管と前記圧縮部との間で流体を流通可能に接続するボス部と、
前記ボス部を前記ハウジングに対して溶接して固定する溶接固定部と、
を備え、
前記ボス部は、前記圧縮部の接続部に対して挿入されて圧入状態で接続された先端部を有し、
前記ボス部の先端部と前記圧縮部の接続部とは、挿入方向に相対移動可能とされている圧縮機。 Housing and
A compression section accommodated within the housing;
A rotating shaft portion that drives the compression portion;
a boss portion that connects a pipe outside the housing and the compression portion so as to allow a fluid to flow between the pipe and the compression portion;
a weld fixing portion that fixes the boss portion to the housing by welding;
Equipped with
the boss portion has a tip portion that is inserted into and connected to the connection portion of the compression portion in a press-fit state,
A compressor in which the tip end of the boss portion and the connection portion of the compression portion are relatively movable in an insertion direction. - 前記圧縮部の接続部には、挿入方向に対して交差する第1面が設けられ、
前記ボス部には、前記第1面に対して挿入方向において対向するとともに、該ボス部と前記圧縮部との挿入方向における相対移動を規制する第2面が設けられ、
前記第1面と前記第2面との間には、所定の隙間が形成されている請求項1に記載の圧縮機。 The connection portion of the compression portion is provided with a first surface that intersects with the insertion direction,
the boss portion is provided with a second surface that faces the first surface in the insertion direction and restricts relative movement between the boss portion and the compression portion in the insertion direction,
The compressor according to claim 1 , wherein a predetermined gap is formed between the first surface and the second surface. - 前記圧縮部の接続部は、前記回転軸部を支持する軸受に設けられている請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the connection of the compression section is provided on a bearing that supports the rotating shaft section.
- 前記ハウジングは、前記溶接固定部の周囲の外周面に、平面部を備えている請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the housing has a flat surface on the outer peripheral surface around the welded fixing portion.
- ハウジングと、
前記ハウジング内に収容された圧縮部と、
前記圧縮部を駆動する回転軸部と、
前記ハウジングの外部の配管と前記圧縮部との間で流体を流通可能に接続するボス部と、
前記ボス部を前記ハウジングに対して溶接して固定する溶接固定部と、
を備えた圧縮機の組立方法であって、
前記ボス部は、前記圧縮部の接続部に対して挿入されて圧入状態で接続された先端部を有し、
前記ボス部の先端部を、前記圧縮部の接続部に対して、挿入方向に相対移動可能に接続する圧縮機の組立方法。 Housing and
A compression section accommodated within the housing;
A rotating shaft portion that drives the compression portion;
a boss portion that connects a pipe outside the housing and the compression portion so as to allow a fluid to flow between the pipe and the compression portion;
a weld fixing portion that fixes the boss portion to the housing by welding;
A method for assembling a compressor comprising:
the boss portion has a tip portion that is inserted into and connected to the connection portion of the compression portion in a press-fit state,
A method for assembling a compressor, comprising connecting a tip end of the boss portion to a connecting portion of the compression portion so as to be movable relative to the connecting portion in an insertion direction. - 前記圧縮部の接続部には、挿入方向に対して交差する第1面が設けられ、
前記ボス部には、前記第1面に対して挿入方向において対向するとともに、該ボス部と前記圧縮部との挿入方向における相対移動を妨げる第2面が設けられ、
前記第1面と前記第2面との間には、所定の隙間が形成されるように、前記ボス部を前記ハウジングに対して溶接して固定する請求項5に記載の圧縮機の組立方法。 The connection portion of the compression portion is provided with a first surface that intersects with the insertion direction,
the boss portion has a second surface that faces the first surface in the insertion direction and prevents relative movement between the boss portion and the compression portion in the insertion direction;
6. The method for assembling a compressor according to claim 5, further comprising the step of welding and fixing the boss portion to the housing so that a predetermined gap is formed between the first surface and the second surface. - 前記第1面と前記第2面との間にシムを挿入して隙間を設定し、
前記シムを取り外した後に、所定の隙間が形成されるように、前記ボス部を前記ハウジングに対して溶接して固定する請求項6に記載の圧縮機の組立方法。 Inserting a shim between the first surface and the second surface to set a gap;
7. The method for assembling a compressor according to claim 6, further comprising the step of: welding and fixing said boss portion to said housing so that a predetermined gap is formed after said shim is removed. - 前記ハウジングは、前記溶接固定部の周囲の外周面に、平面部を備え、
前記平面部と前記ボス部の基準位置との距離を計測する計測工程を有している請求項5に記載の圧縮機の組立方法。 The housing has a flat portion on an outer circumferential surface around the welded fixing portion,
6. The method for assembling a compressor according to claim 5, further comprising a measuring step of measuring a distance between said flat portion and a reference position of said boss portion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022188402A JP2024076714A (en) | 2022-11-25 | 2022-11-25 | Compressor and assembly method of the same |
JP2022-188402 | 2022-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024111347A1 true WO2024111347A1 (en) | 2024-05-30 |
Family
ID=91195490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/038662 WO2024111347A1 (en) | 2022-11-25 | 2023-10-26 | Compressor and assembly method for same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024076714A (en) |
WO (1) | WO2024111347A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6217393A (en) * | 1985-07-16 | 1987-01-26 | Mitsubishi Electric Corp | Scroll compressor |
JPS63314388A (en) * | 1987-06-18 | 1988-12-22 | Daikin Ind Ltd | Manufacture of rotary compressor |
JPH0533771A (en) * | 1991-07-30 | 1993-02-09 | Daikin Ind Ltd | Compressor and manufacture thereof |
JPH11336666A (en) * | 1998-05-27 | 1999-12-07 | Funai Electric Co Ltd | Compressor |
JP2008151075A (en) * | 2006-12-19 | 2008-07-03 | Toshiba Kyaria Kk | Sealed compressor and refrigeration cycle device |
-
2022
- 2022-11-25 JP JP2022188402A patent/JP2024076714A/en active Pending
-
2023
- 2023-10-26 WO PCT/JP2023/038662 patent/WO2024111347A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6217393A (en) * | 1985-07-16 | 1987-01-26 | Mitsubishi Electric Corp | Scroll compressor |
JPS63314388A (en) * | 1987-06-18 | 1988-12-22 | Daikin Ind Ltd | Manufacture of rotary compressor |
JPH0533771A (en) * | 1991-07-30 | 1993-02-09 | Daikin Ind Ltd | Compressor and manufacture thereof |
JPH11336666A (en) * | 1998-05-27 | 1999-12-07 | Funai Electric Co Ltd | Compressor |
JP2008151075A (en) * | 2006-12-19 | 2008-07-03 | Toshiba Kyaria Kk | Sealed compressor and refrigeration cycle device |
Also Published As
Publication number | Publication date |
---|---|
JP2024076714A (en) | 2024-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10890183B2 (en) | Scroll compressor with fixing features | |
KR101587286B1 (en) | compressor | |
JPH0472486A (en) | Scroll compressor | |
KR101767062B1 (en) | Hermetic compressor and manufacturing method thereof | |
JP6805391B2 (en) | Rotary compressor and its assembly method | |
JP2006226273A (en) | Sealed compressor and refrigerating cycle device | |
US6089834A (en) | Helical compressor and method of assembling the same | |
US8578603B2 (en) | Compressor and manufacturing method thereof | |
EP3339644A1 (en) | Scroll compressor and method for producing scroll compressor | |
WO2024111347A1 (en) | Compressor and assembly method for same | |
WO2017077826A1 (en) | Scroll compressor and method for producing scroll compressor | |
JP2004245067A (en) | Rotary compressor | |
AU2016201894B2 (en) | Rotary compressor | |
WO2024111354A1 (en) | Compressor and assembly method for same | |
US9546657B2 (en) | Compressor having a lower frame and a method of manufacturing the same | |
JP4415178B2 (en) | Scroll fluid machine and assembly method thereof | |
WO2024111344A1 (en) | Compressor, and air conditioning device provided with same | |
WO2024085064A1 (en) | Electric compressor | |
WO2023090118A1 (en) | Compressor | |
WO2023090110A1 (en) | Compressor | |
WO2024111342A1 (en) | Compressor | |
JP5430208B2 (en) | Sealed fluid machinery | |
WO2022107212A1 (en) | Hermetic electric compressor | |
WO2023090149A1 (en) | Compressor | |
WO2024085066A1 (en) | Electric compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23894359 Country of ref document: EP Kind code of ref document: A1 |