WO2024111337A1 - Control device, control method, control program, and projection system - Google Patents

Control device, control method, control program, and projection system Download PDF

Info

Publication number
WO2024111337A1
WO2024111337A1 PCT/JP2023/038518 JP2023038518W WO2024111337A1 WO 2024111337 A1 WO2024111337 A1 WO 2024111337A1 JP 2023038518 W JP2023038518 W JP 2023038518W WO 2024111337 A1 WO2024111337 A1 WO 2024111337A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
data
image
control device
divided data
Prior art date
Application number
PCT/JP2023/038518
Other languages
French (fr)
Japanese (ja)
Inventor
真彦 宮田
和紀 井上
一樹 石田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024111337A1 publication Critical patent/WO2024111337A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a control device, a control method, a control program, and a projection system.
  • Patent Document 1 describes a display system that includes multiple display devices connected in a daisy chain and an image generation device that generates multiple divided images corresponding to each of the multiple display devices based on an input video signal input from a video output device, and when the display devices sequentially receive the divided images, they maintain the display of each divided image until the divided image is displayed on the most downstream display device, and the image generation device outputs to the display devices only those divided images of the current frame that have changed from the multiple divided images of the previous frame, thereby suppressing a decrease in the refresh rate.
  • Patent document 2 describes a display system that includes projectors arranged in two vertical rows and two horizontal rows and connected in a daisy chain, the projection area of the screen being formed by tiling irradiation by the projectors, the projectors in the top horizontal row updating frames displayed in the projection area of the top horizontal row by performing an update operation vertically to update images displayed horizontally, the projectors in the bottom horizontal row updating frames displayed in the projection area of the bottom horizontal row by performing an update operation vertically to update images displayed horizontally, and the projectors in the bottom horizontal row updating to a frame that is one frame behind the frame updated by the projectors in the top horizontal row.
  • Patent document 3 describes a multi-projection system that includes an image processing device and four projectors connected in a daisy chain, each of which extracts image data for a partial image that it is responsible for from image data for the entire image transmitted from the image processing device and projects the image data.
  • the higher-level projector replaces at least one of image data for an area not displayed by the lower-level projector or image data for an area displayed by the lower-level projector that is to be displayed at the lowest brightness with control data and transmits the replaced data to the lower-level projector.
  • Patent document 4 describes a multi-display device in which multiple displays are connected in a daisy chain, and based on the connection order and number of displays, a frame buffer is used to delay the image display on displays that are connected earlier, so that the image delay amount for each display falls within a predetermined range (within one frame).
  • Japanese Patent Publication No. 2021-173912 Japanese Patent Publication No. 2018-117315 Japanese Patent Publication No. 2019-054421 Japanese Patent Publication No. 2012-138712
  • One embodiment of the technology disclosed herein provides a control device, a control program, a control method, and a projection system that can reduce delays in the delivery of image data.
  • a control device including a processor and capable of transmitting projection image data through a serial transmission path formed by a plurality of projection devices,
  • the projection device projects a partial image of a projection image represented by the projection image data;
  • the processor is generating a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of projection devices that project the partial images; Transmitting the plurality of divided data through the transmission path; Control device.
  • the control device according to (1), The plurality of divided data are data obtained by dividing the projection image data in units of pixels or lines. Control device.
  • the control device according to (1) or (2), the number of divisions is equal to or greater than twice the number of the plurality of projection devices,
  • the processor transmits the plurality of divided data in a predetermined order; the predetermined order is an order in which the projection device corresponding to the divided data is switched in sequence among the plurality of projection devices, and this switching is repeated; Control device.
  • the order corresponds to an arrangement order of the partial images in a predetermined direction in each of the plurality of projection devices. Control device.
  • control device transmits the plurality of pieces of divided data in an order corresponding to an arrangement order in a predetermined direction in the projection image. Control device.
  • control device The control device according to (1) or (2), the processor transmits the plurality of pieces of divided data in an order according to the projection positions of the plurality of pieces of divided data based on arrangement information of the projection areas of the plurality of projection devices; Control device.
  • control device transmits the plurality of pieces of divided data in an order according to the content of the projection image. Control device.
  • the control device according to any one of (1) to (7), The processor transmits each of the plurality of pieces of divided data at a frequency corresponding to a change frequency for each region of the projection image. Control device.
  • the control device according to any one of (1) to (8), The processor transmits each of the plurality of pieces of divided data at a frequency corresponding to an amount of change in each region of the projection image. Control device.
  • the control device according to any one of (1) to (9), The processor transmits each of the plurality of pieces of divided data at a frequency according to characteristics of the plurality of projection devices. Control device.
  • the control device according to any one of (1) to (10),
  • the projection areas by the multiple projection devices include overlapping areas. Control device.
  • control device identifies the plurality of projection devices capable of forming the serial transmission path from a projection device group including the plurality of projection devices and a projection device different from the plurality of projection devices; Control device.
  • the control device according to any one of (1) to (12), The processor acquires information regarding a transmission delay of the projection image data to at least one of the plurality of projection devices. Control device.
  • the control device controls a transmission rate of the projection image data based on information about the transmission delay. Control device.
  • the control device according to any one of (1) to (14), The processor transmits each of the plurality of pieces of divided data at a frequency according to a state of an observer of the projection image. Control device.
  • a control method for a control device including a processor and capable of transmitting projection image data through a serial transmission path formed by a plurality of projection devices comprising: The projection device projects a partial image of a projection image represented by the projection image data; The processor, generating a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of projection devices that project the partial images; Transmitting the plurality of divided data through the transmission path; Control methods.
  • a control program for a control device including a processor and capable of transmitting projection image data through a serial transmission path formed by a plurality of projection devices, the control program comprising: The projection device projects a partial image of a projection image represented by the projection image data; The processor includes: generating a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of projection devices that project the partial images; Transmitting the plurality of divided data through the transmission path; A control program for executing processing.
  • a plurality of projection devices forming a serial transmission path; a control device capable of transmitting projection image data through the serial transmission path;
  • the projection device projects a partial image of a projection image represented by the projection image data;
  • the control device includes: generating a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of projection devices that project the partial images; Transmitting the plurality of divided data through the transmission path; Projection system.
  • a projection system according to claim 18, the projection device starts projection based on the received division data of the first portion of the partial image, and then maintains projection of the first portion until the division data of the first portion is received again; Projection system.
  • the present invention provides a control device, a control program, a control method, and a projection system that can reduce delays in the delivery of image data.
  • FIG. 1 is a diagram illustrating an example of a projection system 1 according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the internal configuration of a second projection device 120B. 2 is a schematic diagram showing an example of the internal configuration of a projection unit 224.
  • FIG. FIG. 2 illustrates an example of a hardware configuration of a computer 110.
  • FIG. 13 is a diagram showing an example of transmission of divided data divided in units of one pixel.
  • FIG. 13 is a diagram showing an example of transmission of divided data divided in units of one pixel.
  • 13A and 13B are diagrams illustrating an example of transmission of divided data obtained by dividing a partial image by line units.
  • FIG. 13A and 13B are diagrams illustrating an example of transmission of divided data obtained by dividing a partial image by line units.
  • 13A and 13B are diagrams illustrating an example of transmission of divided data obtained by dividing an entire image by line units.
  • 13A and 13B are diagrams illustrating an example of transmission of divided data obtained by dividing an entire image by line units.
  • FIG. 13 is a diagram showing an example of transmission of divided data divided based on the arrangement information of the projection regions 120a to 120i.
  • FIG. 13 is a diagram showing an example of transmission of divided data divided based on the arrangement information of the projection regions 120a to 120i.
  • FIG. 13 is a diagram showing an example of transmission of divided data divided based on the arrangement information of the projection regions 120a to 120i.
  • FIG. 13 is a diagram showing an example of transmission of divided data divided based on the arrangement information of the projection regions 120a to 120i.
  • FIG. 13 is a diagram showing an example of transmission of divided data divided based on the arrangement information of the projection regions 120a to 120i.
  • 13 is a diagram showing an example in which all horizontal line division data obtained by dividing projection image data is transmitted in order from top to bottom.
  • FIG. 13 is a diagram showing an example in which all vertical line division data obtained by dividing projection image data is transmitted in sequence from right to left.
  • FIG. 13A and 13B are diagrams illustrating an example of control for changing the transmission frequency of divided data according to the frequency or amount of change of an image for each region.
  • 13A and 13B are diagrams illustrating an example of control for changing the transmission frequency of divided data according to the frequency or amount of change of an image for each region.
  • FIGS. 13A and 13B are diagrams illustrating an example of control for changing the transmission frequency of divided data according to the frequency or amount of change of an image for each region.
  • 13A and 13B are diagrams illustrating an example of control for changing the frequency of transmission of divided data depending on the state of an observer who observes a projected image.
  • 13A and 13B are diagrams illustrating an example of control for changing the frequency of transmission of divided data depending on the state of an observer who observes a projected image.
  • FIG. 13 is a diagram showing an example of updating and maintaining an image represented by divided data.
  • 11A and 11B are diagrams illustrating an example of control for changing the frequency of transmission of divided data in accordance with projection devices having different characteristics.
  • FIG. 2 is a diagram showing an example of an overlapping portion 211 between projected regions.
  • FIG. 1 is a diagram showing a projection system 1A including a group of projection devices.
  • FIG. 1 is a diagram showing an example of a projection system 1 of the present embodiment.
  • the projection system 1 includes a plurality of projection devices 120 (120A to 120I) and a computer 110 that controls the projection devices 120.
  • the projection devices 120 of this example include a first projection device 120A, a second projection device 120B, a third projection device 120C, a fourth projection device 120D, a fifth projection device 120E, a sixth projection device 120F, a seventh projection device 120G, an eighth projection device 120H, and a ninth projection device 120I.
  • the projection device 120 is, for example, a projector.
  • the computer 110 is an example of a control device in the present invention. Note that, although the configuration includes nine projection devices in this example, the number of projection devices is not limited.
  • the first projection device 120A to the ninth projection device 120I are projection devices capable of projecting an image onto a projection target, such as the screen 130.
  • the first projection device 120A to the ninth projection device 120I each project a partial image of the projection image displayed on the screen 130.
  • a single projection image displayed on the screen 130 is an image generated by arranging the partial images projected by the first projection device 120A to the ninth projection device 120I.
  • the first projection device 120A to the ninth projection device 120I are arranged in three rows (left and right direction) and three columns (up and down direction).
  • the first projection device 120A to the ninth projection device 120I arranged in three rows and three columns are daisy-chained to be able to communicate with the computer 110 via the communication line 11.
  • the first projection device 120A is connected to the computer 110 via the communication line 11.
  • the second projection device 120B is connected to the first projection device 120A via the communication line 11.
  • the third projection device 120C is connected to the second projection device 120B via the communication line 11.
  • the fourth projection device 120D is connected to the third projection device 120C via the communication line 11.
  • the fifth projection device 120E is connected to the fourth projection device 120D
  • the sixth projection device 120F is connected to the fifth projection device 120E
  • the seventh projection device 120G is connected to the sixth projection device 120F
  • the eighth projection device 120H is connected to the seventh projection device 120G
  • the ninth projection device 120I is connected to the eighth projection device 120H.
  • the first projection device 120A to the ninth projection device 120I may be connected in series to the computer 110, or may be connected in parallel wirelessly or via a low-speed wired connection.
  • the first projection device 120A to the ninth projection device 120I that are daisy-chained with the control computer 110 the first projection device 120A connected to the computer 110 is also referred to as the master projection device below.
  • the projection device connected closer to the computer 110 is also referred to as the upstream projection device
  • the projection device connected farther from the computer 110 is also referred to as the downstream projection device.
  • the first projection device 120A is the most upstream projection device
  • the ninth projection device 120I is the most downstream projection device. Note that the arrangement of the projection devices 120 is not limited to 3 rows and 3 columns.
  • the computer 110 can transmit projection image data to each of the projection devices 120A-120I via a serial transmission path formed by the first projection device 120A to the ninth projection device 120I that are daisy-chained.
  • the computer 110 generates a plurality of split data by dividing the projection image data, and transmits the plurality of split data to each of the projection devices 120A-120I via the serial transmission path formed by the first projection device 120A to the ninth projection device 120I.
  • the computer 110 divides the projection image data into a number of divisions that is greater than the number of projection devices 120 (120A-120I) (9 in this example), and generates a greater number of split data than the number of projection devices 120 (120A-120I).
  • the projection image data is image data that is reproduced by arranging the split data.
  • the split data are arranged so that they have overlapping portions.
  • the first projection device 120A to the ninth projection device 120I When projecting each partial image, the first projection device 120A to the ninth projection device 120I start projection based on the divided data representing the first portion, and then maintain the projection based on the previous first portion until the next divided data representing the first portion is received again.
  • the first projection device 120A to the ninth projection device 120I may maintain the projection based on the previous first portion even after the next divided data representing the first portion is received again, and until an update flag that updates the projection of the first portion is received.
  • the screen 130 is a projection object having a projection surface on which the partial images projected by the first projection device 120A to the ninth projection device 120I are displayed.
  • the projection surface of the screen 130 is a rectangular flat surface.
  • the projection object is not limited to a screen, and may be, for example, a wall surface of a building, etc.
  • the screen 130 has projection areas 120a-120i corresponding to the first projection device 120A through the ninth projection device 120I.
  • the projection areas 120a-120i are arranged in three rows (left-right direction) and three columns (top-bottom direction) on the screen 130.
  • the projection area 120a is the area where the partial image projected by the first projection device 120A is displayed.
  • the projection area 120b is the area where the partial image projected by the second projection device 120B is displayed.
  • the projection area 120c is the area where the partial image projected by the third projection device 120C is displayed.
  • the projection area 120d is the area where the partial image projected by the fourth projection device 120D is displayed.
  • the projection area 120e is an area where a partial image by the fifth projection device 120E is displayed
  • the projection area 120f is an area where a partial image by the sixth projection device 120F is displayed
  • the projection area 120g is an area where a partial image by the seventh projection device 120G is displayed
  • the projection area 120h is an area where a partial image by the eighth projection device 120H is displayed
  • the projection area 120i is an area where a partial image by the ninth projection device 120I is displayed.
  • the projection areas 120a to 120i are rectangular.
  • the projection areas 120a to 120i by the first projection device 120A to the ninth projection device 120I include overlapping areas between adjacent projection areas.
  • the partial images projected onto the projection areas 120a to 120i include overlapping areas between adjacent partial images.
  • FIG. 2 is a diagram showing an example of the internal configuration of the second projection device 120B.
  • the second projection device 120B includes a control unit 221, communication units 222 and 223, and a projection unit 224.
  • the second projection device 120B is connected to the first projection device 120A and the third projection device 120C so as to be able to communicate with each other.
  • the first projection device 120A to the ninth projection device 120I have the same internal configuration.
  • the control unit 221 controls the projection in the second projection device 120B.
  • the control unit 221 is a device that includes a control unit composed of various processors, a communication interface (not shown) for communicating with each unit, and a storage medium (not shown) such as a hard disk, SSD (Solid State Drive), or ROM (Read Only Memory), and controls the projection unit 224.
  • the various processors of the control unit in the control unit 221 include a CPU (Central Processing Unit), which is a general-purpose processor that executes programs to perform various processes, a programmable logic device (PLD), which is a processor whose circuit configuration can be changed after manufacture, such as an FPGA (Field Programmable Gate Array), or a dedicated electrical circuit, such as an ASIC (Application Specific Integrated Circuit), which is a processor with a circuit configuration designed specifically to perform specific processes.
  • a CPU Central Processing Unit
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • control unit in the control unit 221 may be composed of one of the various processors, or may be composed of a combination of two or more processors of the same or different types (for example, a combination of multiple FPGAs or a combination of a CPU and an FPGA).
  • the communication unit 222 is a communication interface capable of communicating with the first projection device 120A.
  • the communication unit 222 is connected via the communication line 11 to the communication unit 223 of the first projection device 120A, which is located upstream of the second projection device 120B, among the first projection device 120A to the ninth projection device 120I that are daisy-chained.
  • the communication unit 223 is a communication interface capable of communicating with the third projection device 120C.
  • the communication unit 223 is connected via the communication line 11 to the communication unit 222 of the third projection device 120C, which is located downstream of the second projection device 120B in the first projection device 120A to the ninth projection device 120I that are daisy-chained.
  • the communication unit 222 of the first projection device 120A which is the master projection device, is a communication interface capable of communicating with the control computer 110, and is connected to the communication interface 113 (see FIG. 4) of the computer 110.
  • the communication units 222 and 223 may be wired communication interfaces that perform wired communication as shown in FIG. 1, or wireless communication interfaces that perform wireless communication.
  • the projection unit 224 is configured, for example, by a liquid crystal projector or a projector using LCOS (Liquid Crystal On Silicon). In the following, the projection unit 224 will be described as being a liquid crystal projector.
  • LCOS Liquid Crystal On Silicon
  • Fig. 3 is a schematic diagram showing an example of the internal configuration of the projection unit 224 in the second projection device 120B shown in Fig. 2.
  • the projection unit 224 includes a light source 224a, a light modulation unit 224b, a projection optical system 224c, and a control circuit 224d.
  • the light source 224a includes a light emitting element such as a laser or an LED (Light Emitting Diode), and emits, for example, white light.
  • the light modulation unit 224b is composed of three liquid crystal panels (light modulation elements) that modulate the three color lights emitted from the light source 224a and separated into red, blue, and green by a color separation mechanism (not shown) based on image information to emit each color image, and a dichroic prism that mixes the color images emitted from the three liquid crystal panels and emits them in the same direction.
  • Each of the three liquid crystal panels may be equipped with a red, blue, and green filter, and the white light emitted from the light source 224a may be modulated by each liquid crystal panel to emit each color image.
  • the projection optical system 224c receives light from the light source 224a and the light modulation unit 224b, and is configured, for example, by a relay optical system that includes at least one lens. The light that passes through the projection optical system 224c is projected onto the screen 130.
  • the area of the screen 130 onto which light that is transmitted through the entire range of the light modulation section 224b is irradiated becomes the projectable range on which projection section 224 can project. Within this projectable range, the area onto which light that is actually transmitted from light modulation section 224b is irradiated becomes the projection range of projection section 224 (projected area 120b). For example, by controlling the size, position, and shape of the area of light modulation section 224b through which light is transmitted, the size, position, and shape of the projection range of projection section 224 (projected area 120b) changes within the projectable range.
  • the control circuit 224d controls the light source 224a, the light modulation unit 224b, and the projection optical system 224c based on the projection partial image data input from the control unit 221, thereby projecting a partial image based on this projection partial image data onto the projection area 120b of the screen 130.
  • the projection partial image data input to the control circuit 224d is composed of three pieces of data: data for displaying red, data for displaying blue, and data for displaying green.
  • control circuit 224d changes the projection optical system 224c based on commands input from the control unit 221, thereby expanding or reducing the projection range of the projection unit 224.
  • Fig. 4 is a diagram showing an example of a hardware configuration of the computer 110.
  • the computer 110 shown in Fig. 1 includes a processor 111, a memory 112, a communication interface 113, and a user interface 114.
  • the processor 111, the memory 112, the communication interface 113, and the user interface 114 are connected by, for example, a bus 119.
  • the processor 111 is a circuit that performs signal processing, and is, for example, a CPU that controls the entire computer 110.
  • the processor 111 may also be realized by other digital circuits such as an FPGA or a DSP (Digital Signal Processor).
  • the processor 111 may also be realized by combining multiple digital circuits.
  • Memory 112 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM (Random Access Memory).
  • the main memory is used as a work area for processor 111.
  • the auxiliary memory is a non-volatile memory such as a magnetic disk, optical disk, or flash memory.
  • Various programs that operate the computer 110 are stored in the auxiliary memory.
  • the programs stored in the auxiliary memory are loaded into the main memory and executed by the processor 111.
  • the auxiliary memory may also include portable memory that is removable from the computer 110.
  • Portable memory includes memory cards such as a Universal Serial Bus (USB) flash drive or a Secure Digital (SD) memory card, and external hard disk drives.
  • USB Universal Serial Bus
  • SD Secure Digital
  • the communication interface 113 is a communication interface that communicates with the outside of the computer 110 (e.g., the first projection device 120A).
  • the communication interface 113 is controlled by the processor 111.
  • the communication interface 113 may be a wired communication interface that performs wired communication, a wireless communication interface that performs wireless communication, or may include both a wired communication interface and a wireless communication interface.
  • the user interface 114 includes, for example, an input device that accepts operational input from the user, and an output device that outputs information to the user.
  • the input device can be realized, for example, by a pointing device (for example, a mouse), a key (for example, a keyboard), or a remote control.
  • the output device can be realized, for example, by a display or a speaker.
  • the input device and the output device may also be realized by a touch panel or the like.
  • the user interface 114 is controlled by the processor 111.
  • the computer 110 transmits to the projection devices 120 (120A-120I) division data representing a first portion of a partial image, including information on the projection devices 120 (120A-120I) to be projected.
  • Each projection device 120 (120A-120I) determines whether or not it is the projection device to be projected based on the information transmitted from the computer 110, and if it is determined that it is the projection device to be projected, it projects an image of the division data onto the projection areas 120a-120i.
  • the projection target area of the projection image (whole image) of the projection device itself is set in advance in each projection device 120 (120A-120I).
  • the computer 110 transmits the divided data including information indicating which part of the projection image it is to the projection device 120 (120A-120I). Based on the information transmitted from the computer 110, each projection device 120 (120A-120I) projects the image of the divided data to be projected by its own projection device onto the projection target area 120a-120i.
  • the processor 111 generates a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of the projection devices 120 (120A-120I) that project the partial images, and transmits the generated plurality of divided data through a serial transmission path formed by the projection devices 120 (120A-120I).
  • the plurality of divided data is, for example, data obtained by dividing the projection image data by pixel unit (single pixel unit), block unit (multiple pixels unit), or line unit (vertical row or horizontal row unit).
  • the number of divisions is at least twice the number of the projection devices 120 (120A-120I).
  • the processor 111 transmits the multiple pieces of split data to the projection devices in a repeating order in which the projection device corresponding to the split data is switched between among the multiple projection devices 120 (120A-120I). Specifically, the processor 111 transmits the split data projected by the first projection device 120A, the split data projected by the second projection device 120B, ... the split data projected by the ninth projection device 120I, the split data projected by the first projection device 120A, the split data projected by the second projection device 120B, ... the split data projected by the ninth projection device 120I, ...
  • the processor 111 transmits the multiple split data to each of the multiple projection devices 120 (120A to 120I) in an order that corresponds to the arrangement order of the partial image in a specific direction. For example, in the case of splitting in units of one pixel, the processor 111 first transmits the top left pixel in the partial image of each projection device 120 (120A to 120I), then the pixel one pixel to the right of the top left pixel in the partial image of each projection device 120 (120A to 120I), then the pixel one pixel further to the right of the partial image of each projection device 120 (120A to 120I), and so on.
  • the processor 111 may transmit a plurality of divided data in an order corresponding to the arrangement order in a predetermined direction of the projected image represented by the projected image data. For example, in the case of division in units of one line, the processor 111 first transmits the top line in the projected image (whole image), then the line one line below the top line in the projected image, then the line one line below that in the projected image, and so on. In addition, in the case of division in units of pixels, the order within a line may be constant (for example, from the left pixel to the right pixel) or may be irregular.
  • the processor 111 may transmit the multiple pieces of divided data in an order according to the projection positions to which the multiple pieces of divided data are projected, based on the layout information of the projection areas 120a-120i of the multiple projection devices 120 (120A-120I). For example, the processor 111 transmits the divided data in order starting from the highest projection position (projection destination position).
  • the processor 111 may transmit the multiple pieces of split data in an order that corresponds to the content of the projection image represented by the projection image data. For example, the processor 111 may use image analysis to determine the direction in which there is most change in the projection image, and transmit the split data in vertical order if the image has most change in the vertical direction, and transmit the split data in horizontal order if the image has most change in the horizontal direction. The user may also be able to set the order (direction) in which the split data is transmitted for each specified section of the video data.
  • the processor 111 may transmit each of the multiple divided data according to the frequency of change in each region of the projected image. For example, the processor 111 transmits divided data for regions with a higher frequency of change more frequently.
  • the distribution of change frequency may be determined, for example, by image analysis.
  • the user may be able to set the transmission frequency (distribution of change frequency) for each section of video data. Changes in data refer to, for example, changes in brightness or color.
  • the determination of change is not limited to a determination for each pixel, but may also be a determination for each region of multiple pixels.
  • the processor 111 may transmit each of the multiple divided data according to the amount of change in each region of the projected image. For example, the processor 111 transmits divided data for regions with greater temporal change more frequently.
  • the distribution of the amount of change may be determined, for example, by image analysis.
  • the user may be able to set the transmission frequency (distribution of the amount of change) for each section of the video data.
  • the change in data refers to, for example, a change in brightness or color.
  • the determination of the change is not limited to a determination for each pixel, but may also be a determination for each region of multiple pixels.
  • the processor 111 may transmit each of the multiple divided data at a frequency according to the characteristics of the multiple projection devices 120 (120A to 120I).
  • the characteristics of the projection device include the number of pixels and resolution of the projection device.
  • the processor 111 transmits divided data of an image projected by a projection device with a higher number of pixels and higher resolution at a higher frequency.
  • Processor 111 identifies multiple projection devices capable of forming a serial transmission path from a group of projection devices that includes multiple projection devices 120 (120A-120I) and projection devices different from the multiple projection devices 120 (120A-120I).
  • Processor 111 transmits image data to the projection devices different from the projection devices 120 (120A-120I) that form one serial transmission path, separately from the projection devices 120 (120A-120I). If there are multiple projection devices capable of forming a serial transmission path among the different projection devices, processor 111 performs similar control on them as well.
  • the processor 111 acquires information regarding a transmission delay of the projection image data to at least one of the multiple projection devices 120 (120A to 120I).
  • the information regarding the transmission delay is the reception frame rate of the projection device.
  • each projection device 120 (120A to 120I) calculates the reception frame rate of the projection image data and feeds it back to the computer 110.
  • each projection device 120 (120A to 120I) may feed back the time when reception of the projection image data is completed to the computer 110, and the computer 110 may calculate the reception frame rate.
  • the feedback to the computer 110 may be performed using a daisy-chain transmission path, or may be performed wirelessly or using a low-speed wired connection. When feedback is performed using a daisy-chain transmission path, a transmission path capable of two-way communication is used.
  • the processor 111 controls the transmission speed of the projection image data to be sent to the projection device based on information about the transmission delay. If the reception frame rate of the projection device is low and the transmission delay exceeds an allowable value, the processor 111, for example, reduces the transmission speed of the projection image data. To reduce the transmission speed, the processor 111 reduces, for example, the number of pixels or the frame rate. At this time, the transmission speed may be partially reduced depending on the content, etc., as described above.
  • the processor 111 may transmit each of the multiple divided data at a frequency according to the state of the observer of the projected image.
  • the observer's state includes, for example, the height of the observer's eyes and the direction of the line of sight.
  • the observer's state is determined, for example, by image analysis based on imaging data obtained by imaging the periphery of the projection areas 120a to 120i.
  • the user may be able to set observer information (for example, since this is an event for children, there are many children (with their eyes positioned lower)).
  • FIGS. 5 and 6 are diagrams showing examples of split data obtained by splitting the projection image data to be transmitted from the computer 110 to each projection device 120 (120A to 120I) in units of one pixel.
  • the computer 110 transmits the one-pixel split data generated by splitting in units of one pixel in the following order: nine pieces of one-pixel split data consisting of one-pixel split data projected by the first projection device 120A, one-pixel split data projected by the second projection device 120B, one-pixel split data projected by the ninth projection device 120I, the next one-pixel split data projected by the first projection device 120A, the next one-pixel split data projected by the second projection device 120B, one-pixel split data projected by the ninth projection device 120I, and so on.
  • the computer 110 transmits the one-pixel split data including projection instruction information instructing the projection device 120 (120A to 120I) to be projected.
  • Each projection device 120 determines whether or not it is the projection device that should project based on the projection instruction information sent from computer 110, and if it is determined that it is the projection device that should project, it projects the image represented by that one-pixel division data. In other words, projection devices 120 (120A-120I) switch sequentially to a specific projection device that corresponds to the one-pixel division data in one-pixel units sent from computer 110, and project each image that represents one pixel portion.
  • images represented by 1-pixel division data projected from each of the projection devices 120 are displayed as pixel images 121a-121i representing the upper left pixel portion of the partial image of the projection area 120a-120i corresponding to the projection device 120 (120A-120I).
  • the images represented by the next pixel division data of one pixel unit projected from each of the projection devices 120 are displayed as pixel images 122a to 122i that represent the pixel portion one pixel to the right of the upper left pixel in the partial image of the projection area 120a to 120i corresponding to the projection device 120 (120A to 120I).
  • pixel images represented by pixel division data in pixel units are projected in the same manner from each projection device 120 (120A to 120I).
  • the images representing the pixel portions in the second row of the partial image are displayed one row lower in sequence.
  • the images representing the pixel portions in the second row may be displayed in a zigzag order, starting from the left and moving to the right as in the first row, or in a zigzag order, moving from right to left when the display of the first row reaches the right end.
  • the order in which the pixel images are displayed is not limited to the case where the top left corner of the partial image is displayed first, and may be, for example, the top right, bottom left, bottom right, etc. Also, the pixel images may not be displayed sequentially next to each other, but may be displayed in random positions in the partial image.
  • the projection devices 120 project each partial image onto the projection areas 120a-120i based on the one-pixel division data divided into one pixel units that is sequentially transmitted from the computer 110, and also project one projection image (whole image) generated from the nine projected partial images.
  • one-pixel division data divided into one pixel units is sequentially transmitted, but this is not limited to this.
  • multiple-pixel division data divided into blocks consisting of multiple pixels may be sequentially transmitted.
  • the computer 110 generates one-pixel divided data by dividing the projection image data into one-pixel units by a number of divisions greater than the number of projection devices 120 (120A-120I) that project the partial images, and repeatedly transmits the generated one-pixel divided data to the projection devices 120 (120A-120I) in a predetermined order.
  • This makes it possible to transmit data in smaller units compared to the conventional case in which data representing the partial images projected onto each projection area 120a-120i was transmitted for each data of the entire partial image, and the delivery delay of the one-pixel divided data transmitted to each projection area 120a-120i can be dispersed and made less noticeable. This makes it possible to suppress the delivery delay of image data (one-pixel divided data in this example) between each projection area 120a-120i, and display a high-quality projection image.
  • FIGSecond example of divided data] 7 and 8 are diagrams showing examples of split data obtained by splitting the projection image data transmitted from the computer 110 to each projection device 120 (120A to 120I) by line units.
  • the line unit refers to a horizontal row of lines in a partial image of the projection image represented by the projection image data.
  • the computer 110 transmits the horizontal line split data generated by splitting by horizontal row of lines in a repeating order, for example, nine horizontal line split data consisting of the horizontal line split data projected by the first projection device 120A, the horizontal line split data projected by the second projection device 120B, ...
  • the computer 110 transmits the horizontal line division data including projection instruction information for instructing the projection device 120 (120A to 120I) that is to perform the projection.
  • each projection device 120 determines based on the projection instruction information transmitted from computer 110 that it is the projection device that should perform the projection, as in the first division data example above, it projects the image represented by that horizontal line division data. That is, projection devices 120 (120A-120I) switch sequentially between predetermined projection devices corresponding to the horizontal line division data in units of a horizontal row transmitted from computer 110, and project each image representing the horizontal row portion.
  • an image represented by horizontal line division data for a horizontal row of lines projected from each of the projection devices 120 (120A-120I) is displayed as line images 121A-121I representing the topmost horizontal row of lines in the partial images of the projection areas 120a-120i corresponding to the projection devices 120 (120A-120I).
  • the image represented by the horizontal line division data for the next horizontal row of lines projected from each of the projection devices 120 is displayed as line images 122A-122I representing the second horizontal row of lines in the partial image of the projection area 120a-120i corresponding to the projection device 120 (120A-120I).
  • images represented by horizontal line division data in units of a horizontal row are projected in the same manner from each projection device 120 (120A to 120I) in sequence, and up to the line image representing the bottommost horizontal row of lines in the partial image are displayed.
  • the projection device 120 projects each partial image onto the projection areas 120a-120i based on the horizontal line division data divided into horizontal line units sequentially transmitted from the computer 110, and projects one projection image (whole image) generated from the nine projected partial images.
  • the number of vertical pixels included in a horizontal line unit may be one pixel or multiple pixels.
  • FIGS. 9 and 10 are diagrams showing another example of divided data obtained by dividing the projection image data transmitted from the computer 110 to each projection device 120 (120A to 120I) by line units.
  • the line unit refers to a horizontal row of lines in the projection image (whole image) represented by the projection image data.
  • the computer 110 transmits all horizontal line division data generated by dividing by horizontal row of lines, for example, first the topmost horizontal line division data in the projection image, then the horizontal line division data one line below the topmost line in the projection image, then the horizontal line division data one line below the topmost line in the projection image, and so on, until the bottommost horizontal line of the projection image.
  • the computer 110 transmits the all horizontal line division data by including projection instruction information instructing the projection device 120 (120A to 120I) to project.
  • each projection device 120 determines based on the projection instruction information transmitted from computer 110 that it is the projection device that should project, as in the first divided data example above, it projects the image represented by the divided data that its own projection device should project from among the images represented by the entire horizontal line divided data.
  • projection devices 120 switch sequentially between predetermined projection devices corresponding to the entire horizontal line divided data in units of a horizontal row of lines transmitted from computer 110, and project each image representing the entire horizontal row.
  • an image represented by the entire horizontal line division data projected from the seventh projection device 120G, the eighth projection device 120H, and the ninth projection device 120I among the projection devices 120 (120A-120I) is displayed as a line image 91 representing the topmost horizontal row of lines in the projected image (whole image) of the projected area 120g, the projected area 120h, and the projected area 120i corresponding to the seventh projection device 120G, the eighth projection device 120H, and the ninth projection device 120I.
  • the projection device 120 projects one projection image (whole image) based on all horizontal line division data divided by a single horizontal line unit sequentially transmitted from the computer 110.
  • the number of vertical pixels included in a single horizontal line unit may be one pixel or multiple pixels.
  • all horizontal line division data divided by a single horizontal line unit in the projection image (whole image) is sequentially transmitted has been described, but this is not limited to this.
  • the all horizontal line division data divided by a single horizontal line unit in the projection image (whole image) may be further divided into three horizontal line division data by a single horizontal line unit in the partial image, and the three horizontal line division data may be sequentially transmitted.
  • [Fourth divided data example] 11 to 14 are diagrams showing examples of divided data obtained by dividing the projection image data to be transmitted from the computer 110 to each projection device 120 (120A to 120I) based on the arrangement information of each projection area 120a to 120i.
  • the computer 110 transmits the divided data divided based on the arrangement information of the projection areas 120a to 120i, for example, in descending order of the projection positions (projection destination positions) of the divided data in the vertical direction of the screen 130. At this time, the computer 110 transmits the divided data together with projection instruction information that indicates the projection device 120 (120A to 120I) to project.
  • each projection device 120 determines based on the projection instruction information sent from computer 110 that it is the projection device that should perform the projection, as in the first divided data example above, it projects the image represented by that divided data.
  • the projection devices 120 switch sequentially to the specified projection device that corresponds to the divided data sent from computer 110, and project each image that represents the corresponding portion.
  • the heights of the projection areas arranged in each column of projection areas 120a-120i corresponding to the three rows and three columns of projection devices 120 differ slightly in a stepped manner. Specifically, the heights of the projection areas in the first column consisting of projection areas 120i, 120d, and 120c, the heights of the projection areas in the second column consisting of projection areas 120h, 120e, and 120b, and the heights of the projection areas in the third column consisting of projection areas 120g, 120f, and 120a are shifted downwards as you move to the right from the first column to the second column to the third column.
  • horizontal line division data for a single horizontal row in the projection area 120i located at the highest position is first transmitted from the computer 110 to the projection devices 120 (120A-120I).
  • the ninth projection device 120I determines that it is the projection device that should perform the projection based on the projection instruction information transmitted from the computer 110, and projects an image represented by that horizontal line division data.
  • the image represented by the horizontal line division data projected from the ninth projection device 120I is displayed as a line image 141 that represents the topmost horizontal row of lines in the partial image of the projection area 120i corresponding to the ninth projection device 120I.
  • the images represented by the horizontal line division data projected from the ninth projection device 120I and the eighth projection device 120H, respectively, are displayed as line image 142a representing the second horizontal row of lines in the partial image of the projection area 120i corresponding to the ninth projection device 120I, and line image 142b representing the topmost horizontal row of lines in the partial image of the projection area 120h corresponding to the eighth projection device 120H.
  • horizontal line division data for a single horizontal row in a position one step lower in projection area 120i, horizontal line division data for a single horizontal row in a position one step lower in projection area 120h, and horizontal line division data for a single horizontal row in projection area 120g at the same height as the lowered positions of projection areas 120i and 120h are transmitted from computer 110 to projection devices 120 (120A-120I).
  • the ninth projection device 120I, the eighth projection device 120H, and the seventh projection device 120G determine that they are the projection device that should project based on the projection instruction information transmitted from computer 110, and project the image represented by that horizontal line division data.
  • the images represented by the horizontal line division data projected from the ninth projection device 120I, the eighth projection device 120H, and the seventh projection device 120G are displayed as line image 143a representing the third horizontal row of lines in the partial image of the projection area 120i corresponding to the ninth projection device 120I, line image 143b representing the second horizontal row of lines in the partial image of the projection area 120h corresponding to the eighth projection device 120H, and line image 143c representing the topmost horizontal row of lines in the partial image of the projection area 120g corresponding to the seventh projection device 120G.
  • images represented by the horizontal line division data are projected in the same manner from each projection device 120 (120A to 120I) in sequence, and up to the line image representing the bottommost horizontal line portion in each partial image is displayed.
  • the line image representing the bottommost horizontal line portion in the partial image of the projection area 120a corresponding to the first projection device 120A is displayed as the final line image.
  • the projection device 120 projects each partial image onto the projection areas 120a-120i based on horizontal line division data based on the layout information of the projection areas 120a-120i sequentially transmitted from the computer 110, and projects one projection image (whole image) generated from the nine projected partial images.
  • the number of vertical pixels included in a horizontal line unit may be one pixel or multiple pixels.
  • the computer 110 generates divided data by dividing the projection image data into a number of divisions greater than the number of the projection devices 120 (120A-120I) that project the partial images based on the arrangement information of each of the projection areas 120a-120i, and repeatedly transmits the generated divided data to the projection devices 120 (120A-120I) in the order of the projection positions.
  • This allows the divided data of the partial images that generate the entire image to be transmitted in an orderly manner, for example so that line images are aligned in a horizontal row, even if the projection areas 120a-120i are not formed in a rectangular shape.
  • the delivery delay of the horizontal line divided data transmitted to each of the projection areas 120a-120i can be dispersed and made less noticeable. This allows the entire image to be generated in an orderly manner, and also suppresses the delivery delay of the image data (in this example, the horizontal line divided data) between each of the projection areas 120a-120i, allowing a high-quality projection image to be displayed.
  • the computer 110 transmits the divided data obtained by dividing the projection image data to the projection devices 120 (120A to 120I)
  • the computer 110 transmits the divided data in an order according to the content of the projection image.
  • the computer 110 performs image analysis on the projection image to determine the direction in which the image changes the most, and transmits the divided data in an order according to the direction determined by the determination result.
  • FIG. 15 shows an image of the ocean projected onto the screen 130.
  • Clouds 152 float behind the horizon 151, and waves 153 are crashing from the ocean toward the front of the image.
  • the computer 110 transmits, in order from top to bottom, for example, all horizontal line division data obtained by dividing the projected image data in accordance with the direction of the image change.
  • each projection device 120 (120A to 120I) first displays a line image 154 represented by the full horizontal line division data in the topmost horizontal line portion of the projection image (whole image) as shown in FIG. 15, and then displays similar line images in order from top to bottom as indicated by arrow A.
  • the computer 110 transmits the full horizontal line division data in order from top to bottom, but this is not limited to this.
  • the computer 110 may transmit the full horizontal line division data in order from bottom to top.
  • each projection device 120 (120A to 120I) displays the line images represented by the full horizontal line division data in order from the lower horizontal line portion to the upper horizontal line portion of the projection image (whole image).
  • FIG. 16 shows an image of a vehicle projected onto the screen 130.
  • the vehicle 161 is traveling to the right. Therefore, the background 162 of the vehicle 161 is flowing to the left.
  • the computer 110 transmits, in order from right to left, for example, all vertical line division data obtained by dividing the projected image data, in accordance with the direction of the image change.
  • each projection device 120 120A-120I first displays a line image 163 represented by the full vertical line division data in the rightmost vertical line portion of the projection image (whole image) as shown in FIG. 16, and then displays similar line images in sequence from right to left as indicated by arrow B. Note that in this example, a case has been described in which all vertical line division data is transmitted in sequence from right to left, but this is not limited to this, and it may be transmitted in sequence from left to right, for example.
  • the order (direction) in which the divided data are transmitted may be set for each predetermined section in which the direction in which there is more change in a series of video data differs. That is, in sections in which there is more change in the horizontal direction, the divided data may be transmitted to scroll horizontally, and in sections in which there is more change in the vertical direction, the divided data may be transmitted to scroll vertically. In this way, line divided data can be transmitted in sequence according to the direction in which there is more change in the image, so that delays in the delivery of image data can be suppressed and a high-quality projected image can be displayed.
  • FIG. 17, like FIG. 15, shows an image of the ocean projected onto the screen 130. Clouds 152 float in the sky beyond the horizon 151, and waves 153 crash from the ocean toward the front of the image. In an image like this, in which moving (changing) waves 153 move toward the front, there is little change in the image in the upper region 171 in the vertical direction of the overall image, and there is much change in the image in the lower region 172. In this case, the computer 110 transmits divided data more frequently to the lower region 172 where there is more change in the image, and transmits divided data less frequently to the upper region 171 where there is less change in the image.
  • FIG. 19 is a diagram showing an image of a performance stage projected on the screen 130.
  • the main character performer
  • the image of the performer 191, who is the main character, is important.
  • the computer 110 transmits divided data obtained by dividing the projection image data to the projection devices 120 (120A to 120I)
  • the computer 110 changes the transmission frequency of the divided data according to the state of the observer who observes the projection image.
  • the computer 110 performs image analysis on the image obtained by capturing the periphery of the projection areas 120a to 120i to determine the observer's state, and transmits the divided data at a frequency according to the determination result.
  • the observer's state is, for example, the height of the observer's eyes, the direction of the line of sight, etc.
  • the computer 110 transmits divided data at a high frequency to the projection areas 120a to 120c that are located below the projection areas 120a to 120i, for example at eye level with the children 202a and 202b, and transmits divided data at a low frequency to the projection areas 120d to 120i that are located above the eye level of the children 202a and 202b.
  • the first projection device 120A maintains the previous projection for the area in the projection area 120a where the one-pixel division data has not been received until the one-pixel division data is received again.
  • the previous projection of the pixel image may be maintained until, for example, an update flag for further updating the projection of the pixel image is received. This makes it possible to reduce the amount of data transfer while maintaining the quality of the image.
  • FIG. 23 is a diagram showing an example of a projected image by the projection devices 120 (120A to 120I) including projection devices with different characteristics (performance).
  • the first projection device 120A to the fourth projection device 120D and the sixth projection device 120F to the ninth projection device 120I have the same characteristics, and only the fifth projection device 120E has better characteristics than the other projection devices.
  • the characteristics (performance) of the projection device refer to the number of pixels, resolution, etc. of the projection device.
  • the computer 110 transmits divided data representing an image projected by the fifth projection device 120E, which has a high number of pixels or high resolution, at a high frequency.
  • the computer 110 first transmits divided data representing an image projected by each projection device 120 (120A to 120I) to the projection devices 120 (120A to 120I) at the same frequency.
  • the projection devices 120 (120A to 120I) project a uniform projection image by projecting the partial images represented by the transmitted division data.
  • the computer 110 transmits only the division data representing the image to be projected by the fifth projection device 120E next to the projection devices 120 (120A to 120I).
  • the fifth projection device 120E projects the partial image represented by the transmitted division data.
  • the projection devices other than the fifth projection device 120E maintain the projection of the partial images represented by the division data transmitted up to that point.
  • the partial image projected on the projection area 120e corresponding to the fifth projection device 120E can be displayed as a high-quality image.
  • ⁇ Overlapping area of projected areas> 24 is a diagram showing an example of an overlapping portion 211 between the projection area 120a by the first projection device 120A and the projection area 120b by the second projection device 120B. In this example, only the overlapping portion 211 between the projection area 120a and the projection area 120b is shown, but similar overlapping portions are provided between other adjacent projection areas.
  • each projection device 120 120A-120I
  • the computer 110 must transmit the overlapping data a number of times equivalent to the number of overlaps.
  • the first projection device 120A uses the split data corresponding to the overlapping portion 211 of the projection image data transmitted from the computer 110 as split data for its own projection device, and transfers it to the downstream second projection device 120B without separating it from the projection image data.
  • This allows the computer 110 to split and transmit the projection image data in smaller data units, dispersing and making the delivery delays caused by the overlapping portions less noticeable, and enabling the display of a high-quality projection image.
  • ⁇ Projection system including a group of projection devices> 25 is a diagram showing a projection system 1A in which the above-mentioned projection devices 120 (120A to 120I) are daisy-chained to the computer 110 via a communication line 11, and in addition, a projection device 120 (120J to 120R) is daisy-chained to the computer 110 via a communication line 12 different from the communication line 11.
  • the computer 110 identifies a plurality of projection devices capable of forming a serial transmission path from a group of projection devices including the projection devices 120 (120A to 120I) and the projection devices 120 (120J to 120R).
  • the computer 110 identifies the projection devices 120 (120A to 120I) and the projection devices 120 (120J to 120R) that form a serial transmission path.
  • the computer 110 transmits to the projection devices 120 (120A-120I) and 120 (120J-120R) divided data of the projection image data so that the entire image is projected using the projection devices 120 (120A-120I) and 120 (120J-120R).
  • the divided data of the projection image data includes, for example, the above-mentioned one pixel unit, a block unit of multiple pixels, a horizontal line divided data unit of a partial image, and a whole horizontal line divided data unit of an entire image.
  • the computer 110 transmits predetermined projection image data to the projection devices 120 (120A-120I), and transmits to the projection devices 120 (120J-120R) projection image data different from the predetermined projection image data transmitted to the projection devices 120 (120A-120I). This makes it possible to reduce the control load of the computer 110 that transmits projection image data to a plurality of projection devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

Provided are a control device, a control program, a control method, and a projection system that can suppress delivery delays of image data. A computer (110) equipped with a processor (111) is capable of transmitting projection image data through a serial transmission path formed by a plurality of projection devices (120A-120I). The projection devices (120A-120I) project partial images of a projection image represented by the projection image data. The processor (111) generates a plurality of pieces of divided data obtained by dividing the projection image data into a number of divisions greater than the number of projection devices (120A-120I) that project the partial images, and transmits the plurality of pieces of divided data through the transmission path.

Description

制御装置、制御方法、制御プログラム、及び投影システムCONTROL DEVICE, CONTROL METHOD, CONTROL PROGRAM, AND PROJECTION SYSTEM
 本発明は、制御装置、制御方法、制御プログラム、及び投影システムに関する。 The present invention relates to a control device, a control method, a control program, and a projection system.
 特許文献1には、デイジーチェーン接続された複数の表示装置と、映像出力装置から入力される入力映像信号に基づいて、複数の表示装置のそれぞれに対応する複数の分割画像を生成する画像生成装置と、を備え、表示装置は、分割画像を順次受け付けると、最下流の表示装置で分割画像が表示されるまでの間、それぞれ分割画像の表示を維持し、画像生成装置は、現フレームの複数の分割画像のうち、1フレーム前の複数の分割画像から変化のある分割画像のみを表示装置に出力することによって、リフレッシュレートの低下を抑制する表示システムが記載されている。 Patent Document 1 describes a display system that includes multiple display devices connected in a daisy chain and an image generation device that generates multiple divided images corresponding to each of the multiple display devices based on an input video signal input from a video output device, and when the display devices sequentially receive the divided images, they maintain the display of each divided image until the divided image is displayed on the most downstream display device, and the image generation device outputs to the display devices only those divided images of the current frame that have changed from the multiple divided images of the previous frame, thereby suppressing a decrease in the refresh rate.
 特許文献2には、縦2列横2列に配置されデイジーチェーン接続されたプロジェクターを備え、スクリーンの投射領域がプロジェクターによるタイリング照射によって構成され、横上列のプロジェクターは、横方向に表示する画像を更新する更新動作を縦方向に進めて、横上列の投射領域に表示するフレームを更新し、横下列のプロジェクターは、横方向に表示する画像を更新する更新動作を縦方向に進めて、横下列の投射領域に表示するフレームを更新し、横下列のプロジェクターは、横上列のプロジェクターが更新するフレームよりも1フレーム遅れたフレームに更新する表示システムが記載されている。 Patent document 2 describes a display system that includes projectors arranged in two vertical rows and two horizontal rows and connected in a daisy chain, the projection area of the screen being formed by tiling irradiation by the projectors, the projectors in the top horizontal row updating frames displayed in the projection area of the top horizontal row by performing an update operation vertically to update images displayed horizontally, the projectors in the bottom horizontal row updating frames displayed in the projection area of the bottom horizontal row by performing an update operation vertically to update images displayed horizontally, and the projectors in the bottom horizontal row updating to a frame that is one frame behind the frame updated by the projectors in the top horizontal row.
 特許文献3には、画像処理装置と、デイジーチェーン接続されている4台のプロジェクターと、を備え、各プロジェクターは、画像処理装置から伝送される全体画像の画像データから各々が担当する部分画像の画像データを切り出して投影を行い、上位のプロジェクターから下位のプロジェクターに画像データを伝送する際に、上位のプロジェクターは、下位のプロジェクターが表示しない領域の画像データ、又は、下位のプロジェクターが表示する領域の画像データのうち最低の輝度で表示する画像データの少なくとも一方を制御データに置換して下位のプロジェクターに伝送するマルチプロジェクションシステムが記載されている。 Patent document 3 describes a multi-projection system that includes an image processing device and four projectors connected in a daisy chain, each of which extracts image data for a partial image that it is responsible for from image data for the entire image transmitted from the image processing device and projects the image data. When transmitting image data from a higher-level projector to a lower-level projector, the higher-level projector replaces at least one of image data for an area not displayed by the lower-level projector or image data for an area displayed by the lower-level projector that is to be displayed at the lowest brightness with control data and transmits the replaced data to the lower-level projector.
 特許文献4には、複数のディスプレイをデイジーチェーン接続し、ディスプレイの接続順序と接続台数に基づき、接続順序が早いディスプレイではフレームバッファを用いて映像表示を遅延させ、全てのディスプレイにおいてそれぞれの映像遅延量が所定の範囲内(1フレーム内)に収まるようにするマルチディスプレイ装置が記載されている。 Patent document 4 describes a multi-display device in which multiple displays are connected in a daisy chain, and based on the connection order and number of displays, a frame buffer is used to delay the image display on displays that are connected earlier, so that the image delay amount for each display falls within a predetermined range (within one frame).
日本国特開2021-173912号公報Japanese Patent Publication No. 2021-173912 日本国特開2018-117315号公報Japanese Patent Publication No. 2018-117315 日本国特開2019-054421号公報Japanese Patent Publication No. 2019-054421 日本国特開2012-138712号公報Japanese Patent Publication No. 2012-138712
 本開示の技術に係る1つの実施形態は、画像データの送達遅延を抑制することが可能な制御装置、制御プログラム、制御方法、及び投影システムを提供する。 One embodiment of the technology disclosed herein provides a control device, a control program, a control method, and a projection system that can reduce delays in the delivery of image data.
(1)
 プロセッサを備え、複数の投影装置により形成される直列の伝送経路により投影画像データを送信可能な制御装置であって、
 上記投影装置は、上記投影画像データにより表される投影画像の部分画像を投影し、
 上記プロセッサは、
 上記部分画像を投影する投影装置の数より多い分割数で上記投影画像データを分割した複数の分割データを生成し、
 上記複数の分割データを上記伝送経路により送信する、
 制御装置。
(1)
A control device including a processor and capable of transmitting projection image data through a serial transmission path formed by a plurality of projection devices,
The projection device projects a partial image of a projection image represented by the projection image data;
The processor is
generating a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of projection devices that project the partial images;
Transmitting the plurality of divided data through the transmission path;
Control device.
(2)
 (1)に記載の制御装置であって、
 上記複数の分割データは、画素単位又はライン単位で上記投影画像データを分割したデータである、
 制御装置。
(2)
The control device according to (1),
The plurality of divided data are data obtained by dividing the projection image data in units of pixels or lines.
Control device.
(3)
 (1)又は(2)に記載の制御装置であって、
 上記分割数は、上記複数の投影装置の数の2倍以上であり、
 上記プロセッサは、上記複数の分割データを所定の順番で送信し、
 上記所定の順番は、上記分割データに対応する投影装置が上記複数の投影装置の中で順次切り替わり、それを繰り返す順番である、
 制御装置。
(3)
The control device according to (1) or (2),
the number of divisions is equal to or greater than twice the number of the plurality of projection devices,
The processor transmits the plurality of divided data in a predetermined order;
the predetermined order is an order in which the projection device corresponding to the divided data is switched in sequence among the plurality of projection devices, and this switching is repeated;
Control device.
(4)
 (3)に記載の制御装置であって、
 上記順番は、上記複数の投影装置のそれぞれにおいて、上記部分画像における所定方向の配列順に対応する順番である、
 制御装置。
(4)
The control device according to (3),
the order corresponds to an arrangement order of the partial images in a predetermined direction in each of the plurality of projection devices.
Control device.
(5)
 (1)又は(2)に記載の制御装置であって、
 上記プロセッサは、上記投影画像における所定方向の配列順に対応する順番で上記複数の分割データを送信する、
 制御装置。
(5)
The control device according to (1) or (2),
the processor transmits the plurality of pieces of divided data in an order corresponding to an arrangement order in a predetermined direction in the projection image.
Control device.
(6)
 (1)又は(2)に記載の制御装置であって、
 上記プロセッサは、上記複数の投影装置による被投影領域の配置情報に基づいて、上記複数の分割データの被投影位置に応じた順番で上記複数の分割データを送信する、
 制御装置。
(6)
The control device according to (1) or (2),
the processor transmits the plurality of pieces of divided data in an order according to the projection positions of the plurality of pieces of divided data based on arrangement information of the projection areas of the plurality of projection devices;
Control device.
(7)
 (1)から(6)のいずれか1つに記載の制御装置であって、
 上記プロセッサは、上記投影画像のコンテンツに応じた順番で上記複数の分割データを送信する、
 制御装置。
(7)
The control device according to any one of (1) to (6),
the processor transmits the plurality of pieces of divided data in an order according to the content of the projection image.
Control device.
(8)
 (1)から(7)のいずれか1つに記載の制御装置であって、
 上記プロセッサは、上記複数の分割データのそれぞれを、上記投影画像の領域ごとの変化頻度に応じた頻度で送信する、
 制御装置。
(8)
The control device according to any one of (1) to (7),
The processor transmits each of the plurality of pieces of divided data at a frequency corresponding to a change frequency for each region of the projection image.
Control device.
(9)
 (1)から(8)のいずれか1つに記載の制御装置であって、
 上記プロセッサは、上記複数の分割データのそれぞれを、上記投影画像の領域ごとの変化量に応じた頻度で送信する、
 制御装置。
(9)
The control device according to any one of (1) to (8),
The processor transmits each of the plurality of pieces of divided data at a frequency corresponding to an amount of change in each region of the projection image.
Control device.
(10)
 (1)から(9)のいずれか1つに記載の制御装置であって、
 上記プロセッサは、上記複数の分割データのそれぞれを、上記複数の投影装置の特性に応じた頻度で送信する、
 制御装置。
(10)
The control device according to any one of (1) to (9),
The processor transmits each of the plurality of pieces of divided data at a frequency according to characteristics of the plurality of projection devices.
Control device.
(11)
 (1)から(10)のいずれか1つに記載の制御装置であって、
 上記複数の投影装置による被投影領域は重複部分を含む、
 制御装置。
(11)
The control device according to any one of (1) to (10),
The projection areas by the multiple projection devices include overlapping areas.
Control device.
(12)
 (1)から(11)のいずれか1つに記載の制御装置であって、
 上記プロセッサは、上記複数の投影装置と、上記複数の投影装置とは異なる投影装置と、を含む投影装置群の中から、上記直列の伝送経路を形成可能な上記複数の投影装置を特定する、
 制御装置。
(12)
The control device according to any one of (1) to (11),
the processor identifies the plurality of projection devices capable of forming the serial transmission path from a projection device group including the plurality of projection devices and a projection device different from the plurality of projection devices;
Control device.
(13)
 (1)から(12)のいずれか1つに記載の制御装置であって、
 上記プロセッサは、上記複数の投影装置の少なくともいずれかへの上記投影画像データの伝送遅延に関する情報を取得する、
 制御装置。
(13)
The control device according to any one of (1) to (12),
The processor acquires information regarding a transmission delay of the projection image data to at least one of the plurality of projection devices.
Control device.
(14)
 (13)に記載の制御装置であって、
 上記プロセッサは、上記伝送遅延に関する情報に基づいて、上記投影画像データの送信速度を制御する、
 制御装置。
(14)
The control device according to (13),
The processor controls a transmission rate of the projection image data based on information about the transmission delay.
Control device.
(15)
 (1)から(14)のいずれか1つに記載の制御装置であって、
 上記プロセッサは、上記複数の分割データのそれぞれを、上記投影画像の観察者の状態に応じた頻度で送信する、
 制御装置。
(15)
The control device according to any one of (1) to (14),
The processor transmits each of the plurality of pieces of divided data at a frequency according to a state of an observer of the projection image.
Control device.
(16)
 プロセッサを備え、複数の投影装置により形成される直列の伝送経路により投影画像データを送信可能な制御装置による制御方法であって、
 上記投影装置は、上記投影画像データにより表される投影画像の部分画像を投影し、
 上記プロセッサが、
 上記部分画像を投影する投影装置の数より多い分割数で上記投影画像データを分割した複数の分割データを生成し、
 上記複数の分割データを上記伝送経路により送信する、
 制御方法。
(16)
A control method for a control device including a processor and capable of transmitting projection image data through a serial transmission path formed by a plurality of projection devices, comprising:
The projection device projects a partial image of a projection image represented by the projection image data;
The processor,
generating a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of projection devices that project the partial images;
Transmitting the plurality of divided data through the transmission path;
Control methods.
(17)
 プロセッサを備え、複数の投影装置により形成される直列の伝送経路により投影画像データを送信可能な制御装置の制御プログラムであって、
 上記投影装置は、上記投影画像データにより表される投影画像の部分画像を投影し、
 上記プロセッサに、
 上記部分画像を投影する投影装置の数より多い分割数で上記投影画像データを分割した複数の分割データを生成し、
 上記複数の分割データを上記伝送経路により送信する、
 処理を実行させるための制御プログラム。
(17)
A control program for a control device including a processor and capable of transmitting projection image data through a serial transmission path formed by a plurality of projection devices, the control program comprising:
The projection device projects a partial image of a projection image represented by the projection image data;
The processor includes:
generating a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of projection devices that project the partial images;
Transmitting the plurality of divided data through the transmission path;
A control program for executing processing.
(18)
 直列の伝送経路を形成する複数の投影装置と、
 上記直列の伝送経路により投影画像データを送信可能な制御装置と、を含み、
 上記投影装置は、上記投影画像データにより表される投影画像の部分画像を投影し、
 上記制御装置は、
 上記部分画像を投影する投影装置の数より多い分割数で上記投影画像データを分割した複数の分割データを生成し、
 上記複数の分割データを上記伝送経路により送信する、
 投影システム。
(18)
A plurality of projection devices forming a serial transmission path;
a control device capable of transmitting projection image data through the serial transmission path;
The projection device projects a partial image of a projection image represented by the projection image data;
The control device includes:
generating a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of projection devices that project the partial images;
Transmitting the plurality of divided data through the transmission path;
Projection system.
(19)
 (18)に記載の投影システムであって、
 上記投影装置は、受信した上記部分画像の第1部分の分割データに基づく投影を開始した後、上記第1部分の分割データを再度受信するまで上記第1部分の投影を維持する、
 投影システム。
(19)
A projection system according to claim 18,
the projection device starts projection based on the received division data of the first portion of the partial image, and then maintains projection of the first portion until the division data of the first portion is received again;
Projection system.
 本発明によれば、画像データの送達遅延を抑制することが可能な制御装置、制御プログラム、制御方法、及び投影システムを提供することができる。 The present invention provides a control device, a control program, a control method, and a projection system that can reduce delays in the delivery of image data.
本実施形態の投影システム1の一例を示す図である。FIG. 1 is a diagram illustrating an example of a projection system 1 according to an embodiment of the present invention. 第2投影装置120Bの内部構成の一例を示す図である。FIG. 2 is a diagram showing an example of the internal configuration of a second projection device 120B. 投影部224の内部構成の一例を示す模式図である。2 is a schematic diagram showing an example of the internal configuration of a projection unit 224. FIG. コンピュータ110のハードウェア構成の一例を示す図である。FIG. 2 illustrates an example of a hardware configuration of a computer 110. 1画素単位で分割した分割データの送信例を示す図である。FIG. 13 is a diagram showing an example of transmission of divided data divided in units of one pixel. 1画素単位で分割した分割データの送信例を示す図である。FIG. 13 is a diagram showing an example of transmission of divided data divided in units of one pixel. 部分画像のライン単位で分割した分割データの送信例を示す図である。13A and 13B are diagrams illustrating an example of transmission of divided data obtained by dividing a partial image by line units. 部分画像のライン単位で分割した分割データの送信例を示す図である。13A and 13B are diagrams illustrating an example of transmission of divided data obtained by dividing a partial image by line units. 全体画像のライン単位で分割した分割データの送信例を示す図である。13A and 13B are diagrams illustrating an example of transmission of divided data obtained by dividing an entire image by line units. 全体画像のライン単位で分割した分割データの送信例を示す図である。13A and 13B are diagrams illustrating an example of transmission of divided data obtained by dividing an entire image by line units. 被投影領域120a~120iの配置情報に基づいて分割した分割データの送信例を示す図である。FIG. 13 is a diagram showing an example of transmission of divided data divided based on the arrangement information of the projection regions 120a to 120i. 被投影領域120a~120iの配置情報に基づいて分割した分割データの送信例を示す図である。FIG. 13 is a diagram showing an example of transmission of divided data divided based on the arrangement information of the projection regions 120a to 120i. 被投影領域120a~120iの配置情報に基づいて分割した分割データの送信例を示す図である。FIG. 13 is a diagram showing an example of transmission of divided data divided based on the arrangement information of the projection regions 120a to 120i. 被投影領域120a~120iの配置情報に基づいて分割した分割データの送信例を示す図である。FIG. 13 is a diagram showing an example of transmission of divided data divided based on the arrangement information of the projection regions 120a to 120i. 投影画像データを分割した全横ライン分割データを上から下方向へ順番に送信する一例を示す図である。13 is a diagram showing an example in which all horizontal line division data obtained by dividing projection image data is transmitted in order from top to bottom. FIG. 投影画像データを分割した全縦ライン分割データを右から左方向へ順番に送信する一例を示す図である。13 is a diagram showing an example in which all vertical line division data obtained by dividing projection image data is transmitted in sequence from right to left. FIG. 領域ごとの画像の変化頻度又は変化量に応じて分割データの送信頻度を変化させる制御の一例を示す図である。13A and 13B are diagrams illustrating an example of control for changing the transmission frequency of divided data according to the frequency or amount of change of an image for each region. 領域ごとの画像の変化頻度又は変化量に応じて分割データの送信頻度を変化させる制御の一例を示す図である。13A and 13B are diagrams illustrating an example of control for changing the transmission frequency of divided data according to the frequency or amount of change of an image for each region. 領域ごとの画像の変化頻度又は変化量に応じて分割データの送信頻度を変化させる制御の一例を示す図である。13A and 13B are diagrams illustrating an example of control for changing the transmission frequency of divided data according to the frequency or amount of change of an image for each region. 投影画像を観察する観察者の状態に応じて分割データの送信頻度を変化させる制御の一例を示す図である。13A and 13B are diagrams illustrating an example of control for changing the frequency of transmission of divided data depending on the state of an observer who observes a projected image. 投影画像を観察する観察者の状態に応じて分割データの送信頻度を変化させる制御の一例を示す図である。13A and 13B are diagrams illustrating an example of control for changing the frequency of transmission of divided data depending on the state of an observer who observes a projected image. 分割データで表される画像の更新と維持の一例を示す図である。FIG. 13 is a diagram showing an example of updating and maintaining an image represented by divided data. 特性の異なる投影装置に応じて分割データの送信頻度を変化させる制御の一例を示す図である。11A and 11B are diagrams illustrating an example of control for changing the frequency of transmission of divided data in accordance with projection devices having different characteristics. 被投影領域同士の重複部分211の一例示す図である。FIG. 2 is a diagram showing an example of an overlapping portion 211 between projected regions. 投影装置群を含む投影システム1Aを示す図である。FIG. 1 is a diagram showing a projection system 1A including a group of projection devices.
 以下、本発明の実施形態の一例について、図面を参照して説明する。 Below, an example of an embodiment of the present invention will be described with reference to the drawings.
<実施形態の投影システム1>
 図1は、本実施形態の投影システム1の一例を示す図である。図1に示すように、投影システム1は、複数の投影装置120(120A~120I)と、投影装置120を制御するコンピュータ110と、を備える。本例の投影装置120は、第1投影装置120A、第2投影装置120B、第3投影装置120C、第4投影装置120D、第5投影装置120E、第6投影装置120F、第7投影装置120G、第8投影装置120H、及び第9投影装置120Iを含む。投影装置120は、例えば、プロジェクタである。コンピュータ110は、本発明における制御装置の一例である。なお、本例では9台の投影装置を含む構成としているが、投影装置の台数は限定されない。
<Projection System 1 of the Embodiment>
FIG. 1 is a diagram showing an example of a projection system 1 of the present embodiment. As shown in FIG. 1, the projection system 1 includes a plurality of projection devices 120 (120A to 120I) and a computer 110 that controls the projection devices 120. The projection devices 120 of this example include a first projection device 120A, a second projection device 120B, a third projection device 120C, a fourth projection device 120D, a fifth projection device 120E, a sixth projection device 120F, a seventh projection device 120G, an eighth projection device 120H, and a ninth projection device 120I. The projection device 120 is, for example, a projector. The computer 110 is an example of a control device in the present invention. Note that, although the configuration includes nine projection devices in this example, the number of projection devices is not limited.
 第1投影装置120Aから第9投影装置120Iは、投影対象物である例えばスクリーン130に対して画像を投影可能な投影装置である。第1投影装置120Aから第9投影装置120Iは、スクリーン130に表示される投影画像の部分画像をそれぞれ投影する。スクリーン130に表示される1つの投影画像は、第1投影装置120Aから第9投影装置120Iにより投影される各部分画像を並べることにより生成される画像である。 The first projection device 120A to the ninth projection device 120I are projection devices capable of projecting an image onto a projection target, such as the screen 130. The first projection device 120A to the ninth projection device 120I each project a partial image of the projection image displayed on the screen 130. A single projection image displayed on the screen 130 is an image generated by arranging the partial images projected by the first projection device 120A to the ninth projection device 120I.
 本例の第1投影装置120Aから第9投影装置120Iは、3行(左右方向)3列(上下方向)に配置されている。また、3行3列に配置された第1投影装置120Aから第9投影装置120Iは、通信線11を介してコンピュータ110と通信可能にデイジーチェーン接続されている。第1投影装置120Aは、通信線11を介してコンピュータ110に接続されている。第2投影装置120Bは、通信線11を介して第1投影装置120Aに接続されている。第3投影装置120Cは、通信線11を介して第2投影装置120Bに接続されている。第4投影装置120Dは、通信線11を介して第3投影装置120Cに接続されている。同様にして、第5投影装置120Eが第4投影装置120Dに、第6投影装置120Fが第5投影装置120Eに、第7投影装置120Gが第6投影装置120Fに、第8投影装置120Hが第7投影装置120Gに、第9投影装置120Iが第8投影装置120Hにそれぞれ接続されている。なお、第1投影装置120Aから第9投影装置120Iは、コンピュータ110に直列に接続されるとともに、無線や低速有線で並列に接続されていてもよい。 In this example, the first projection device 120A to the ninth projection device 120I are arranged in three rows (left and right direction) and three columns (up and down direction). The first projection device 120A to the ninth projection device 120I arranged in three rows and three columns are daisy-chained to be able to communicate with the computer 110 via the communication line 11. The first projection device 120A is connected to the computer 110 via the communication line 11. The second projection device 120B is connected to the first projection device 120A via the communication line 11. The third projection device 120C is connected to the second projection device 120B via the communication line 11. The fourth projection device 120D is connected to the third projection device 120C via the communication line 11. Similarly, the fifth projection device 120E is connected to the fourth projection device 120D, the sixth projection device 120F is connected to the fifth projection device 120E, the seventh projection device 120G is connected to the sixth projection device 120F, the eighth projection device 120H is connected to the seventh projection device 120G, and the ninth projection device 120I is connected to the eighth projection device 120H. The first projection device 120A to the ninth projection device 120I may be connected in series to the computer 110, or may be connected in parallel wirelessly or via a low-speed wired connection.
 制御用のコンピュータ110とデイジーチェーン接続された第1投影装置120Aから第9投影装置120Iにおいて、コンピュータ110に接続されている第1投影装置120Aのことを以下、マスターの投影装置ともいう。また、デイジーチェーン接続において、コンピュータ110に近い側に接続されている投影装置を上流側の投影装置、コンピュータ110から遠い側に接続されている投影装置を下流側の投影装置ともいう。本例において、第1投影装置120Aが最も上流側の投影装置であり、第9投影装置120Iが最も下流側の投影装置である。なお、投影装置120の配置は3行3列に限定されるものではない。 In the first projection device 120A to the ninth projection device 120I that are daisy-chained with the control computer 110, the first projection device 120A connected to the computer 110 is also referred to as the master projection device below. In addition, in the daisy-chain connection, the projection device connected closer to the computer 110 is also referred to as the upstream projection device, and the projection device connected farther from the computer 110 is also referred to as the downstream projection device. In this example, the first projection device 120A is the most upstream projection device, and the ninth projection device 120I is the most downstream projection device. Note that the arrangement of the projection devices 120 is not limited to 3 rows and 3 columns.
 コンピュータ110は、デイジーチェーン接続された第1投影装置120Aから第9投影装置120Iにより形成される直列の伝送経路によって、投影画像データを各投影装置120A~120Iに送信可能である。コンピュータ110は、投影画像データを分割した複数の分割データを生成し、第1投影装置120Aから第9投影装置120Iにより形成される直列の伝送経路によって複数の分割データを各投影装置120A~120Iに送信する。コンピュータ110は、投影装置120(120A~120I)の数(本例では、9個)より多い分割数で投影画像データを分割し、投影装置120(120A~120I)よりも多い数の分割データを生成する。投影画像データは、分割データを並べることによって再現される画像データである。分割データは、互いに重複する部分を有するように並べられている。 The computer 110 can transmit projection image data to each of the projection devices 120A-120I via a serial transmission path formed by the first projection device 120A to the ninth projection device 120I that are daisy-chained. The computer 110 generates a plurality of split data by dividing the projection image data, and transmits the plurality of split data to each of the projection devices 120A-120I via the serial transmission path formed by the first projection device 120A to the ninth projection device 120I. The computer 110 divides the projection image data into a number of divisions that is greater than the number of projection devices 120 (120A-120I) (9 in this example), and generates a greater number of split data than the number of projection devices 120 (120A-120I). The projection image data is image data that is reproduced by arranging the split data. The split data are arranged so that they have overlapping portions.
 第1投影装置120Aから第9投影装置120Iは、各部分画像の投影を行う場合、第1部分を表す分割データに基づく投影を開始した後、その第1部分を表す次の分割データを再度受信するまで、先の第1部分に基づく投影を維持する。第1投影装置120Aから第9投影装置120Iは、第1部分を表す次の分割データを再度受信しても、さらに第1部分の投影を更新する更新フラグを受信するまで、先の第1部分に基づく投影を維持するようにしてもよい。 When projecting each partial image, the first projection device 120A to the ninth projection device 120I start projection based on the divided data representing the first portion, and then maintain the projection based on the previous first portion until the next divided data representing the first portion is received again. The first projection device 120A to the ninth projection device 120I may maintain the projection based on the previous first portion even after the next divided data representing the first portion is received again, and until an update flag that updates the projection of the first portion is received.
 スクリーン130は、第1投影装置120Aから第9投影装置120Iにより投影された部分画像が表示される投影面を有した投影対象物である。図1に示す例では、スクリーン130の投影面は矩形の平面である。なお、投影対象物はスクリーンに限定されず、例えば、建築物の壁面等のようなものであってもよい。 The screen 130 is a projection object having a projection surface on which the partial images projected by the first projection device 120A to the ninth projection device 120I are displayed. In the example shown in FIG. 1, the projection surface of the screen 130 is a rectangular flat surface. Note that the projection object is not limited to a screen, and may be, for example, a wall surface of a building, etc.
 図1に示す例において、スクリーン130は、第1投影装置120Aから第9投影装置120Iに対応する被投影領域120a~120iを有する。被投影領域120a~120iは、スクリーン130において3行(左右方向)3列(上下方向)に配置される。被投影領域120aは、第1投影装置120Aにより投影された部分画像が表示される領域である。被投影領域120bは、第2投影装置120Bにより投影された部分画像が表示される領域である。被投影領域120cは、第3投影装置120Cにより投影された部分画像が表示される領域である。被投影領域120dは、第4投影装置120Dにより投影された部分画像が表示される領域である。同様に、被投影領域120eは第5投影装置120Eによる部分画像が、被投影領域120fは第6投影装置120Fによる部分画像が、被投影領域120gは第7投影装置120Gによる部分画像が、被投影領域120hは第8投影装置120Hによる部分画像が、被投影領域120iは第9投影装置120Iによる部分画像がそれぞれ表示される領域である。図1に示す例では、被投影領域120a~120iは矩形である。 In the example shown in FIG. 1, the screen 130 has projection areas 120a-120i corresponding to the first projection device 120A through the ninth projection device 120I. The projection areas 120a-120i are arranged in three rows (left-right direction) and three columns (top-bottom direction) on the screen 130. The projection area 120a is the area where the partial image projected by the first projection device 120A is displayed. The projection area 120b is the area where the partial image projected by the second projection device 120B is displayed. The projection area 120c is the area where the partial image projected by the third projection device 120C is displayed. The projection area 120d is the area where the partial image projected by the fourth projection device 120D is displayed. Similarly, the projection area 120e is an area where a partial image by the fifth projection device 120E is displayed, the projection area 120f is an area where a partial image by the sixth projection device 120F is displayed, the projection area 120g is an area where a partial image by the seventh projection device 120G is displayed, the projection area 120h is an area where a partial image by the eighth projection device 120H is displayed, and the projection area 120i is an area where a partial image by the ninth projection device 120I is displayed. In the example shown in FIG. 1, the projection areas 120a to 120i are rectangular.
 第1投影装置120A~第9投影装置120Iによる被投影領域120a~120iは、隣り合う被投影領域間において重複部分を含む。また、被投影領域120a~120iに投影された部分画像は隣り合う部分画像間において重複部分を含む。 The projection areas 120a to 120i by the first projection device 120A to the ninth projection device 120I include overlapping areas between adjacent projection areas. In addition, the partial images projected onto the projection areas 120a to 120i include overlapping areas between adjacent partial images.
<第2投影装置120Bの内部構成>
 図2は、第2投影装置120Bの内部構成の一例を示す図である。図2に示すように、第2投影装置120Bは、制御部221と、通信部222,223と、投影部224と、を備える。第2投影装置120Bは、第1投影装置120A及び第3投影装置120Cと通信可能に接続されている。なお、第1投影装置120Aから第9投影装置120Iは、同一の内部構成である。
<Internal Configuration of Second Projection Device 120B>
Fig. 2 is a diagram showing an example of the internal configuration of the second projection device 120B. As shown in Fig. 2, the second projection device 120B includes a control unit 221, communication units 222 and 223, and a projection unit 224. The second projection device 120B is connected to the first projection device 120A and the third projection device 120C so as to be able to communicate with each other. The first projection device 120A to the ninth projection device 120I have the same internal configuration.
 制御部221は、第2投影装置120Bにおける投影の制御を行う。制御部221は、各種のプロセッサにより構成される制御部と、各部と通信するための通信インタフェース(図示省略)と、ハードディスク、SSD(Solid State Drive)、又はROM(Read Only Memory)等の記憶媒体(図示省略)と、を含む装置であり、投影部224を統括制御する。制御部221における制御部の各種のプロセッサとしては、プログラムを実行して各種処理を行う汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、又はASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 The control unit 221 controls the projection in the second projection device 120B. The control unit 221 is a device that includes a control unit composed of various processors, a communication interface (not shown) for communicating with each unit, and a storage medium (not shown) such as a hard disk, SSD (Solid State Drive), or ROM (Read Only Memory), and controls the projection unit 224. The various processors of the control unit in the control unit 221 include a CPU (Central Processing Unit), which is a general-purpose processor that executes programs to perform various processes, a programmable logic device (PLD), which is a processor whose circuit configuration can be changed after manufacture, such as an FPGA (Field Programmable Gate Array), or a dedicated electrical circuit, such as an ASIC (Application Specific Integrated Circuit), which is a processor with a circuit configuration designed specifically to perform specific processes.
 これら各種のプロセッサの構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。制御部221における制御部は、各種のプロセッサのうちの1つで構成されてもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせ又はCPUとFPGAの組み合わせ)で構成されてもよい。 More specifically, the structure of these various processors is an electric circuit that combines circuit elements such as semiconductor elements. The control unit in the control unit 221 may be composed of one of the various processors, or may be composed of a combination of two or more processors of the same or different types (for example, a combination of multiple FPGAs or a combination of a CPU and an FPGA).
 通信部222は、第1投影装置120Aとの間で通信が可能な通信インタフェースである。通信部222は、デイジーチェーン接続されている第1投影装置120Aから第9投影装置120Iにおいて、第2投影装置120Bの上流側に配置される第1投影装置120Aの通信部223と、通信線11を介して接続されている。 The communication unit 222 is a communication interface capable of communicating with the first projection device 120A. The communication unit 222 is connected via the communication line 11 to the communication unit 223 of the first projection device 120A, which is located upstream of the second projection device 120B, among the first projection device 120A to the ninth projection device 120I that are daisy-chained.
 通信部223は、第3投影装置120Cとの間で通信が可能な通信インタフェースである。通信部223は、デイジーチェーン接続されている第1投影装置120Aから第9投影装置120Iにおいて、第2投影装置120Bの下流側に配置される第3投影装置120Cの通信部222と、通信線11を介して接続されている。 The communication unit 223 is a communication interface capable of communicating with the third projection device 120C. The communication unit 223 is connected via the communication line 11 to the communication unit 222 of the third projection device 120C, which is located downstream of the second projection device 120B in the first projection device 120A to the ninth projection device 120I that are daisy-chained.
 なお、マスターの投影装置である第1投影装置120Aの通信部222は、制御用のコンピュータ110との間で通信が可能な通信インタフェースであり、コンピュータ110の通信インタフェース113(図4参照)と接続されている。通信部222,223は、図1に示したように有線通信を行う有線通信インタフェースであってもよいし、無線通信を行う無線通信インタフェースであってもよい。 The communication unit 222 of the first projection device 120A, which is the master projection device, is a communication interface capable of communicating with the control computer 110, and is connected to the communication interface 113 (see FIG. 4) of the computer 110. The communication units 222 and 223 may be wired communication interfaces that perform wired communication as shown in FIG. 1, or wireless communication interfaces that perform wireless communication.
 投影部224は、例えば液晶プロジェクタ又はLCOS(Liquid Crystal On Silicon)を用いたプロジェクタ等によって構成される。以下では、投影部224が液晶プロジェクタであるものとして説明する。 The projection unit 224 is configured, for example, by a liquid crystal projector or a projector using LCOS (Liquid Crystal On Silicon). In the following, the projection unit 224 will be described as being a liquid crystal projector.
<投影部224の内部構成>
 図3は、図2に示した第2投影装置120Bにおける投影部224の内部構成の一例を示す模式図である。図3に示すように、投影部224は、光源224aと、光変調部224bと、投影光学系224cと、制御回路224dと、を備える。光源224aは、レーザ又はLED(Light Emitting Diode)等の発光素子を含み、例えば白色光を出射する。
<Internal configuration of projection unit 224>
Fig. 3 is a schematic diagram showing an example of the internal configuration of the projection unit 224 in the second projection device 120B shown in Fig. 2. As shown in Fig. 3, the projection unit 224 includes a light source 224a, a light modulation unit 224b, a projection optical system 224c, and a control circuit 224d. The light source 224a includes a light emitting element such as a laser or an LED (Light Emitting Diode), and emits, for example, white light.
 光変調部224bは、光源224aから出射されて図示省略の色分離機構によって赤、青、緑の3色に分離された各色光を、画像情報に基づいて変調して各色画像を出射する3つの液晶パネル(光変調素子)と、3つの液晶パネルから出射された各色画像を混合して同一方向に出射するダイクロイックプリズムと、によって構成される。この3つの液晶パネルにそれぞれ赤、青、緑のフィルタを搭載し、光源224aから出射された白色光を、各液晶パネルにて変調して各色画像を出射させてもよい。 The light modulation unit 224b is composed of three liquid crystal panels (light modulation elements) that modulate the three color lights emitted from the light source 224a and separated into red, blue, and green by a color separation mechanism (not shown) based on image information to emit each color image, and a dichroic prism that mixes the color images emitted from the three liquid crystal panels and emits them in the same direction. Each of the three liquid crystal panels may be equipped with a red, blue, and green filter, and the white light emitted from the light source 224a may be modulated by each liquid crystal panel to emit each color image.
 投影光学系224cは、光源224a及び光変調部224bからの光が入射されるものであり、少なくとも1つのレンズを含む、例えばリレー光学系によって構成されている。投影光学系224cを通過した光はスクリーン130に投影される。 The projection optical system 224c receives light from the light source 224a and the light modulation unit 224b, and is configured, for example, by a relay optical system that includes at least one lens. The light that passes through the projection optical system 224c is projected onto the screen 130.
 スクリーン130のうち、光変調部224bの全範囲を透過する光が照射される領域が、投影部224により投影が可能な投影可能範囲となる。この投影可能範囲のうち、光変調部224bから実際に透過する光が照射される領域が投影部224の投影範囲(被投影領域120b)となる。例えば、光変調部224bのうち光が透過する領域の大きさ、位置、及び形状を制御することにより、投影可能範囲において、投影部224の投影範囲(被投影領域120b)の大きさ、位置、及び形状が変化する。 The area of the screen 130 onto which light that is transmitted through the entire range of the light modulation section 224b is irradiated becomes the projectable range on which projection section 224 can project. Within this projectable range, the area onto which light that is actually transmitted from light modulation section 224b is irradiated becomes the projection range of projection section 224 (projected area 120b). For example, by controlling the size, position, and shape of the area of light modulation section 224b through which light is transmitted, the size, position, and shape of the projection range of projection section 224 (projected area 120b) changes within the projectable range.
 制御回路224dは、制御部221から入力される投影部分画像データに基づいて、光源224a、光変調部224b、及び投影光学系224cを制御することにより、スクリーン130の被投影領域120bにこの投影部分画像データに基づく部分画像を投影させる。制御回路224dに入力される投影部分画像データは、赤表示用データと、青表示用データと、緑表示用データとの3つによって構成される。 The control circuit 224d controls the light source 224a, the light modulation unit 224b, and the projection optical system 224c based on the projection partial image data input from the control unit 221, thereby projecting a partial image based on this projection partial image data onto the projection area 120b of the screen 130. The projection partial image data input to the control circuit 224d is composed of three pieces of data: data for displaying red, data for displaying blue, and data for displaying green.
 また、制御回路224dは、制御部221から入力される命令に基づいて、投影光学系224cを変化させることにより、投影部224の投影範囲の拡大や縮小を行う。 In addition, the control circuit 224d changes the projection optical system 224c based on commands input from the control unit 221, thereby expanding or reducing the projection range of the projection unit 224.
<コンピュータ110のハードウェア構成>
 図4は、コンピュータ110のハードウェア構成の一例を示す図である。図1に示したコンピュータ110は、図6に示すように、プロセッサ111と、メモリ112、通信インタフェース113と、ユーザインタフェース114と、を備える。プロセッサ111、メモリ112、通信インタフェース113、及びユーザインタフェース114は、例えばバス119によって接続される。
<Hardware Configuration of Computer 110>
Fig. 4 is a diagram showing an example of a hardware configuration of the computer 110. As shown in Fig. 6, the computer 110 shown in Fig. 1 includes a processor 111, a memory 112, a communication interface 113, and a user interface 114. The processor 111, the memory 112, the communication interface 113, and the user interface 114 are connected by, for example, a bus 119.
 プロセッサ111は、信号処理を行う回路であり、例えばコンピュータ110の全体の制御を司るCPUである。なお、プロセッサ111は、FPGAやDSP(Digital Signal Processor)などの他のデジタル回路により実現されてもよい。また、プロセッサ111は、複数のデジタル回路を組み合わせて実現されてもよい。 The processor 111 is a circuit that performs signal processing, and is, for example, a CPU that controls the entire computer 110. The processor 111 may also be realized by other digital circuits such as an FPGA or a DSP (Digital Signal Processor). The processor 111 may also be realized by combining multiple digital circuits.
 メモリ112には、例えばメインメモリ及び補助メモリが含まれる。メインメモリは、例えばRAM(Random Access Memory)である。メインメモリは、プロセッサ111のワークエリアとして使用される。 Memory 112 includes, for example, a main memory and an auxiliary memory. The main memory is, for example, a RAM (Random Access Memory). The main memory is used as a work area for processor 111.
 補助メモリは、例えば磁気ディスク、光ディスク、フラッシュメモリなどの不揮発性メモリである。補助メモリには、コンピュータ110を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてプロセッサ111によって実行される。 The auxiliary memory is a non-volatile memory such as a magnetic disk, optical disk, or flash memory. Various programs that operate the computer 110 are stored in the auxiliary memory. The programs stored in the auxiliary memory are loaded into the main memory and executed by the processor 111.
 また、補助メモリは、コンピュータ110から取り外し可能な可搬型のメモリを含んでもよい。可搬型のメモリには、USB(Universal Serial Bus)フラッシュドライブやSD(Secure Digital)メモリカードなどのメモリカードや、外付けハードディスクドライブなどがある。 The auxiliary memory may also include portable memory that is removable from the computer 110. Portable memory includes memory cards such as a Universal Serial Bus (USB) flash drive or a Secure Digital (SD) memory card, and external hard disk drives.
 通信インタフェース113は、コンピュータ110の外部(例えば第1投影装置120A)との間で通信を行う通信インタフェースである。通信インタフェース113は、プロセッサ111によって制御される。通信インタフェース113は、有線通信を行う有線通信インタフェースであってもよいし、無線通信を行う無線通信インタフェースであってもよいし、有線通信インタフェース及び無線通信インタフェースの両方を含んでもよい。 The communication interface 113 is a communication interface that communicates with the outside of the computer 110 (e.g., the first projection device 120A). The communication interface 113 is controlled by the processor 111. The communication interface 113 may be a wired communication interface that performs wired communication, a wireless communication interface that performs wireless communication, or may include both a wired communication interface and a wireless communication interface.
 ユーザインタフェース114は、例えば、ユーザからの操作入力を受け付ける入力デバイスや、ユーザへ情報を出力する出力デバイスなどを含む。入力デバイスは、例えばポインティングデバイス(例えばマウス)、キー(例えばキーボード)やリモコンなどにより実現することができる。出力デバイスは、例えばディスプレイやスピーカなどにより実現することができる。また、タッチパネルなどによって入力デバイス及び出力デバイスを実現してもよい。ユーザインタフェース114は、プロセッサ111によって制御される。 The user interface 114 includes, for example, an input device that accepts operational input from the user, and an output device that outputs information to the user. The input device can be realized, for example, by a pointing device (for example, a mouse), a key (for example, a keyboard), or a remote control. The output device can be realized, for example, by a display or a speaker. The input device and the output device may also be realized by a touch panel or the like. The user interface 114 is controlled by the processor 111.
[コンピュータ110の伝送と投影装置120の投影の方式]
 例えば、第1の方式としては、コンピュータ110は、投影すべき投影装置120(120A~120I)の情報を含めて部分画像の第1部分を表す分割データを投影装置120(120A~120I)に送信する。各投影装置120(120A~120I)は、コンピュータ110から送信されるその情報を基に、自投影装置が投影すべき投影装置か否かを判定し、投影すべき投影装置であると判定した場合にその分割データの画像を被投影領域120a~120iに投影する。
[Transmission method of computer 110 and projection method of projection device 120]
For example, in a first method, the computer 110 transmits to the projection devices 120 (120A-120I) division data representing a first portion of a partial image, including information on the projection devices 120 (120A-120I) to be projected. Each projection device 120 (120A-120I) determines whether or not it is the projection device to be projected based on the information transmitted from the computer 110, and if it is determined that it is the projection device to be projected, it projects an image of the division data onto the projection areas 120a-120i.
 また、例えば、第2の方式としては、予め各投影装置120(120A~120I)に、投影画像(全体画像)のうちの自投影装置の投影対象領域を設定しておく。コンピュータ110は、投影画像のどの部分かを示す情報を含めて分割データを投影装置120(120A~120I)送信する。各投影装置120(120A~120I)は、コンピュータ110から送信されるその情報を基に、自投影装置の投影対象の分割データの画像を被投影領域120a~120iに投影する。 Also, for example, in the second method, the projection target area of the projection image (whole image) of the projection device itself is set in advance in each projection device 120 (120A-120I). The computer 110 transmits the divided data including information indicating which part of the projection image it is to the projection device 120 (120A-120I). Based on the information transmitted from the computer 110, each projection device 120 (120A-120I) projects the image of the divided data to be projected by its own projection device onto the projection target area 120a-120i.
[コンピュータ110におけるプロセッサ111の処理例]
 例えば、プロセッサ111は、部分画像を投影する投影装置120(120A~120I)の数より多い分割数で投影画像データを分割した複数の分割データを生成し、生成した複数の分割データを投影装置120(120A~120I)により形成される直列の伝送経路により送信する。複数の分割データは、例えば、画素単位(1画素単位)、ブロック単位(複数画素単位)又はライン単位(縦一列、又は横一列の単位)で投影画像データを分割したデータである。分割数は、複数の投影装置120(120A~120I)の数の2倍以上である。
[Example of Processing by the Processor 111 in the Computer 110]
For example, the processor 111 generates a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of the projection devices 120 (120A-120I) that project the partial images, and transmits the generated plurality of divided data through a serial transmission path formed by the projection devices 120 (120A-120I). The plurality of divided data is, for example, data obtained by dividing the projection image data by pixel unit (single pixel unit), block unit (multiple pixels unit), or line unit (vertical row or horizontal row unit). The number of divisions is at least twice the number of the projection devices 120 (120A-120I).
 プロセッサ111は、分割データに対応する投影装置が複数の投影装置120(120A~120I)の中で順次切り替わり、それを繰り返す順番で複数の分割データを投影装置に送信する。具体的には、プロセッサ111は、第1投影装置120Aが投影する分割データ、第2投影装置120Bが投影する分割データ、…第9投影装置120Iが投影する分割データ、第1投影装置120Aが投影する分割データ、第2投影装置120Bが投影する分割データ、…第9投影装置120Iが投影する分割データ、…という繰り返しの順番で送信する。 The processor 111 transmits the multiple pieces of split data to the projection devices in a repeating order in which the projection device corresponding to the split data is switched between among the multiple projection devices 120 (120A-120I). Specifically, the processor 111 transmits the split data projected by the first projection device 120A, the split data projected by the second projection device 120B, ... the split data projected by the ninth projection device 120I, the split data projected by the first projection device 120A, the split data projected by the second projection device 120B, ... the split data projected by the ninth projection device 120I, ...
 プロセッサ111は、複数の投影装置120(120A~120I)のそれぞれにおいて、部分画像における所定方向の配列順に対応する順番で複数の分割データを投影装置に送信する。例えば、プロセッサ111は、1画素単位の分割の場合、まず各投影装置120(120A~120I)の部分画像における左上の画素、次に各投影装置120(120A~120I)の部分画像における左上の画素の1つ右の画素、次に各投影装置120(120A~120I)の部分画像のさらに1つ右の画素、…という順番で送信する。 The processor 111 transmits the multiple split data to each of the multiple projection devices 120 (120A to 120I) in an order that corresponds to the arrangement order of the partial image in a specific direction. For example, in the case of splitting in units of one pixel, the processor 111 first transmits the top left pixel in the partial image of each projection device 120 (120A to 120I), then the pixel one pixel to the right of the top left pixel in the partial image of each projection device 120 (120A to 120I), then the pixel one pixel further to the right of the partial image of each projection device 120 (120A to 120I), and so on.
 プロセッサ111は、投影画像データにより表される投影画像の所定方向の配列順に対応する順番で複数の分割データを送信してもよい。例えば、プロセッサ111は、1ライン単位の分割の場合、まず投影画像(全体画像)における一番上のライン、次に投影画像における一番上のラインの1つ下のライン、次に投影画像のさらに1つ下のライン、…という順番で送信する。また、画素単位で分割する場合には、1つのライン内における順番が、一定(例えば左の画素から右の画素へ)であってもよいし、不規則でもよい。 The processor 111 may transmit a plurality of divided data in an order corresponding to the arrangement order in a predetermined direction of the projected image represented by the projected image data. For example, in the case of division in units of one line, the processor 111 first transmits the top line in the projected image (whole image), then the line one line below the top line in the projected image, then the line one line below that in the projected image, and so on. In addition, in the case of division in units of pixels, the order within a line may be constant (for example, from the left pixel to the right pixel) or may be irregular.
 プロセッサ111は、複数の投影装置120(120A~120I)による被投影領域120a~120iの配置情報に基づいて、複数の分割データが投影される被投影位置に応じた順番で複数の分割データを送信してもよい。例えば、プロセッサ111は、被投影位置(投影先の位置)が高い位置の分割データから順に送信する。 The processor 111 may transmit the multiple pieces of divided data in an order according to the projection positions to which the multiple pieces of divided data are projected, based on the layout information of the projection areas 120a-120i of the multiple projection devices 120 (120A-120I). For example, the processor 111 transmits the divided data in order starting from the highest projection position (projection destination position).
 プロセッサ111は、投影画像データにより表される投影画像のコンテンツに応じた順番で複数の分割データを送信してもよい。例えば、プロセッサ111は、投影画像における変化の多い方向を画像解析で判定して、縦方向に変化が多い画像の場合には分割データを縦方向の順に、横方向に変化が多い画像の場合には分割データを横方向の順に送信する。また、動画データにおける所定の区間ごとに分割データを送信する順番(方向)をユーザが設定できるようにしてもよい。 The processor 111 may transmit the multiple pieces of split data in an order that corresponds to the content of the projection image represented by the projection image data. For example, the processor 111 may use image analysis to determine the direction in which there is most change in the projection image, and transmit the split data in vertical order if the image has most change in the vertical direction, and transmit the split data in horizontal order if the image has most change in the horizontal direction. The user may also be able to set the order (direction) in which the split data is transmitted for each specified section of the video data.
 プロセッサ111は、複数の分割データのそれぞれを、投影画像の領域ごとにおける変化の頻度に応じて送信してもよい。例えば、プロセッサ111は、変化頻度が高い領域の分割データほど高い頻度で送信する。変化頻度の分布は、例えば、画像解析により判定する。また、動画データの区間ごとに送信頻度(変化頻度の分布)をユーザが設定できるようにしてもよい。データの変化とは、例えば、明るさや色の変化のことである。変化の判定は、1画素ごとの判定に限らず、複数画素の領域ごとの判定でもよい。 The processor 111 may transmit each of the multiple divided data according to the frequency of change in each region of the projected image. For example, the processor 111 transmits divided data for regions with a higher frequency of change more frequently. The distribution of change frequency may be determined, for example, by image analysis. In addition, the user may be able to set the transmission frequency (distribution of change frequency) for each section of video data. Changes in data refer to, for example, changes in brightness or color. The determination of change is not limited to a determination for each pixel, but may also be a determination for each region of multiple pixels.
 プロセッサ111は、複数の分割データのそれぞれを、投影画像の領域ごとにおける変化の量に応じて送信してもよい。例えば、プロセッサ111は、時間的な変化が大きい領域の分割データほど高い頻度で送信する。変化量の分布は、例えば、画像解析により判定する。また、動画データの区間ごとに送信頻度(変化量の分布)をユーザが設定できるようにしてもよい。データの変化とは、例えば、明るさや色の変化のことである。変化の判定は、1画素ごとの判定に限らず、複数画素の領域ごとの判定でもよい。 The processor 111 may transmit each of the multiple divided data according to the amount of change in each region of the projected image. For example, the processor 111 transmits divided data for regions with greater temporal change more frequently. The distribution of the amount of change may be determined, for example, by image analysis. In addition, the user may be able to set the transmission frequency (distribution of the amount of change) for each section of the video data. The change in data refers to, for example, a change in brightness or color. The determination of the change is not limited to a determination for each pixel, but may also be a determination for each region of multiple pixels.
 プロセッサ111は、複数の分割データのそれぞれを、複数の投影装置120(120A~120I)の特性に応じた頻度で送信してもよい。投影装置の特性とは、投影装置の画素数、解像度等である。例えば、プロセッサ111は、高画素数や高解像度の投影装置が投影する画像の分割データほど高い頻度で送信する。 The processor 111 may transmit each of the multiple divided data at a frequency according to the characteristics of the multiple projection devices 120 (120A to 120I). The characteristics of the projection device include the number of pixels and resolution of the projection device. For example, the processor 111 transmits divided data of an image projected by a projection device with a higher number of pixels and higher resolution at a higher frequency.
 プロセッサ111は、複数の投影装置120(120A~120I)と、複数の投影装置120(120A~120I)とは異なる投影装置と、を含む投影装置群の中から、直列の伝送経路を形成可能な複数の投影装置を特定する。プロセッサ111は、1つの直列の伝送経路を形成する投影装置120(120A~120I)と異なる投影装置に対して、投影装置120(120A~120I)とは別に画像データを送信する。異なる投影装置の中に直列の伝送経路を形成可能な複数の投影装置がある場合には、プロセッサ111は、そこに対しても同様の制御を行う。 Processor 111 identifies multiple projection devices capable of forming a serial transmission path from a group of projection devices that includes multiple projection devices 120 (120A-120I) and projection devices different from the multiple projection devices 120 (120A-120I). Processor 111 transmits image data to the projection devices different from the projection devices 120 (120A-120I) that form one serial transmission path, separately from the projection devices 120 (120A-120I). If there are multiple projection devices capable of forming a serial transmission path among the different projection devices, processor 111 performs similar control on them as well.
 プロセッサ111は、複数の投影装置120(120A~120I)の少なくともいずれかへの投影画像データの伝送遅延に関する情報を取得する。伝送遅延に関する情報とは、投影装置の受信フレームレートのことである。例えば、各投影装置120(120A~120I)は、投影画像データの受信フレームレートを算出してコンピュータ110にフィードバックする。また、各投影装置120(120A~120I)が投影画像データの受信完了時刻をコンピュータ110にフィードバックし、コンピュータ110が受信フレームレートを算出してもよい。コンピュータ110へのフィードバックは、デイジーチェーンの伝送経路を用いて行ってもよいし、無線や低速有線を用いて行ってもよい。デイジーチェーンの伝送経路を用いてフィードバックする場合には、双方向通信が可能な伝送経路を用いる。 The processor 111 acquires information regarding a transmission delay of the projection image data to at least one of the multiple projection devices 120 (120A to 120I). The information regarding the transmission delay is the reception frame rate of the projection device. For example, each projection device 120 (120A to 120I) calculates the reception frame rate of the projection image data and feeds it back to the computer 110. Alternatively, each projection device 120 (120A to 120I) may feed back the time when reception of the projection image data is completed to the computer 110, and the computer 110 may calculate the reception frame rate. The feedback to the computer 110 may be performed using a daisy-chain transmission path, or may be performed wirelessly or using a low-speed wired connection. When feedback is performed using a daisy-chain transmission path, a transmission path capable of two-way communication is used.
 プロセッサ111は、伝送遅延に関する情報に基づいて、投影装置に送信する投影画像データの送信速度を制御する。投影装置の受信フレームレートが低く伝送遅延が許容値を超えている場合には、プロセッサ111は、例えば、投影画像データの伝送速度を下げる。伝送速度を下げるために、プロセッサ111は、例えば、画素数やフレームレートを下げる。このとき、上記のようにコンテンツ等に応じて部分的に伝送速度を下げてもよい。 The processor 111 controls the transmission speed of the projection image data to be sent to the projection device based on information about the transmission delay. If the reception frame rate of the projection device is low and the transmission delay exceeds an allowable value, the processor 111, for example, reduces the transmission speed of the projection image data. To reduce the transmission speed, the processor 111 reduces, for example, the number of pixels or the frame rate. At this time, the transmission speed may be partially reduced depending on the content, etc., as described above.
 プロセッサ111は、複数の分割データのそれぞれを、投影画像の観察者の状態に応じた頻度で送信してもよい。観察者の状態とは、例えば、観察者の目の高さや、視線の方向等を含む。観察者の状態は、例えば、被投影領域120a~120iの周辺を撮像して得られた撮像データに基づく画像解析により判定する。また、観察者の情報(例えば子供向けイベントなので子供(目の位置が低め)が多い)をユーザが設定できるようにしてもよい。 The processor 111 may transmit each of the multiple divided data at a frequency according to the state of the observer of the projected image. The observer's state includes, for example, the height of the observer's eyes and the direction of the line of sight. The observer's state is determined, for example, by image analysis based on imaging data obtained by imaging the periphery of the projection areas 120a to 120i. In addition, the user may be able to set observer information (for example, since this is an event for children, there are many children (with their eyes positioned lower)).
<投影画像データの分割データ例>
[第1の分割データ例]
 図5及び図6は、コンピュータ110から各投影装置120(120A~120I)に送信する投影画像データを1画素単位で分割した分割データの例を示す図である。コンピュータ110は、1画素単位で分割して生成した1画素分割データを、例えば、第1投影装置120Aが投影する1画素分割データと、第2投影装置120Bが投影する1画素分割データと、…第9投影装置120Iが投影する1画素分割データとで構成する9個の1画素分割データ、第1投影装置120Aが投影する次の1画素分割データと、第2投影装置120Bが投影する次の1画素分割データと、…第9投影装置120Iが投影する次の1画素分割データとで構成する9個の1画素分割データ、…という繰り返しの順番で送信する。このとき、コンピュータ110は、投影すべき投影装置120(120A~120I)を指示する投影指示情報を含めて1画素分割データを送信する。
<Example of divided data of projection image data>
[First example of divided data]
5 and 6 are diagrams showing examples of split data obtained by splitting the projection image data to be transmitted from the computer 110 to each projection device 120 (120A to 120I) in units of one pixel. The computer 110 transmits the one-pixel split data generated by splitting in units of one pixel in the following order: nine pieces of one-pixel split data consisting of one-pixel split data projected by the first projection device 120A, one-pixel split data projected by the second projection device 120B, one-pixel split data projected by the ninth projection device 120I, the next one-pixel split data projected by the first projection device 120A, the next one-pixel split data projected by the second projection device 120B, one-pixel split data projected by the ninth projection device 120I, and so on. At this time, the computer 110 transmits the one-pixel split data including projection instruction information instructing the projection device 120 (120A to 120I) to be projected.
 各投影装置120(120A~120I)は、コンピュータ110から送信されるその投影指示情報に基づいて、自投影装置が投影すべき投影装置であるか否かを判定し、投影すべき投影装置であると判定した場合に、その1画素分割データで表される画像を投影する。すなわち、投影装置120(120A~120I)は、コンピュータ110から送信される1画素単位の1画素分割データに対応する所定の投影装置が順次切り替わり、1画素部分を表す各画像を投影する。 Each projection device 120 (120A-120I) determines whether or not it is the projection device that should project based on the projection instruction information sent from computer 110, and if it is determined that it is the projection device that should project, it projects the image represented by that one-pixel division data. In other words, projection devices 120 (120A-120I) switch sequentially to a specific projection device that corresponds to the one-pixel division data in one-pixel units sent from computer 110, and project each image that represents one pixel portion.
 例えば、図5に示すように、投影装置120(120A~120I)からそれぞれ投影された1画素単位の1画素分割データで表される画像は、投影装置120(120A~120I)に対応する被投影領域120a~120iの部分画像における左上の画素部分を表す画素画像121a~121iとして表示される。 For example, as shown in FIG. 5, images represented by 1-pixel division data projected from each of the projection devices 120 (120A-120I) are displayed as pixel images 121a-121i representing the upper left pixel portion of the partial image of the projection area 120a-120i corresponding to the projection device 120 (120A-120I).
 また、図6に示すように、投影装置120(120A~120I)からそれぞれ投影された次の1画素単位の1画素分割データで表される画像は、投影装置120(120A~120I)に対応する被投影領域120a~120iの部分画像における左上の画素の1つ右の画素部分を表す画素画像122a~122iとして表示される。 Also, as shown in FIG. 6, the images represented by the next pixel division data of one pixel unit projected from each of the projection devices 120 (120A to 120I) are displayed as pixel images 122a to 122i that represent the pixel portion one pixel to the right of the upper left pixel in the partial image of the projection area 120a to 120i corresponding to the projection device 120 (120A to 120I).
 以降、同様にして、各投影装置120(120A~120I)から1画素単位の1画素分割データで表される画素画像が投影され、部分画像における上側一段目の各画素部分を表す画素画像が右端まで表示し終わると、次に、一段下がって部分画像における二段目の画素部分を表す画像が順次表示される。なお、二段目の画素部分を表す画像の表示は、例えば、一段目と同様に左から開始して右へ移動する順番であってもよいし、一段目の表示が右端まで達したら二段目は右から左へ移動するようなジグザグに折り返す順番であってもよい。さらに、画素画像が表示される順は部分画像における左上を最初とする場合に限定されず、例えば、右上、左下、右下等を最初としてもよい。また、画素画像は隣り合わせに順次表示されるのではなく、部分画像におけるランダムな位置に表示されていくようにしてもよい。 Subsequently, pixel images represented by pixel division data in pixel units are projected in the same manner from each projection device 120 (120A to 120I). When the pixel images representing each pixel portion in the first row on the top side of the partial image are displayed to the right end, the images representing the pixel portions in the second row of the partial image are displayed one row lower in sequence. The images representing the pixel portions in the second row may be displayed in a zigzag order, starting from the left and moving to the right as in the first row, or in a zigzag order, moving from right to left when the display of the first row reaches the right end. Furthermore, the order in which the pixel images are displayed is not limited to the case where the top left corner of the partial image is displayed first, and may be, for example, the top right, bottom left, bottom right, etc. Also, the pixel images may not be displayed sequentially next to each other, but may be displayed in random positions in the partial image.
 このようにして、投影装置120(120A~120I)は、コンピュータ110から順次送信される1画素単位で分割した1画素分割データに基づいて、被投影領域120a~120iに各部分画像を投影するとともに、投影した9個の部分画像により生成される1個の投影画像(全体画像)を投影する。なお、本例では、1画素単位で分割した1画素分割データを順次送信しているが、これに限定されない。例えば、複数画素からなるブロック単位で分割した複数画素分割データを順次送信するようにしてもよい。 In this way, the projection devices 120 (120A-120I) project each partial image onto the projection areas 120a-120i based on the one-pixel division data divided into one pixel units that is sequentially transmitted from the computer 110, and also project one projection image (whole image) generated from the nine projected partial images. Note that in this example, one-pixel division data divided into one pixel units is sequentially transmitted, but this is not limited to this. For example, multiple-pixel division data divided into blocks consisting of multiple pixels may be sequentially transmitted.
 以上のように、第1の分割データ例によれば、コンピュータ110は、部分画像を投影する投影装置120(120A~120I)の数よりも多い分割数で投影画像データを1画素単位に分割した1画素分割データを生成し、生成した1画素分割データを所定の順番で投影装置120(120A~120I)に繰り返し送信する。これにより、各被投影領域120a~120iに投影される部分画像を表すデータを部分画像全体のデータごとに送信していた従来の場合と比較して、小さい単位のデータごとに送信することが可能になり、各被投影領域120a~120iに送信される1画素分割データの送達遅延を分散させて目立たなくすることができる。このため、各被投影領域120a~120i間の画像データ(本例では、1画素分割データ)の送達遅延を抑制することができ、高品質の投影画像を表示することができる。 As described above, according to the first divided data example, the computer 110 generates one-pixel divided data by dividing the projection image data into one-pixel units by a number of divisions greater than the number of projection devices 120 (120A-120I) that project the partial images, and repeatedly transmits the generated one-pixel divided data to the projection devices 120 (120A-120I) in a predetermined order. This makes it possible to transmit data in smaller units compared to the conventional case in which data representing the partial images projected onto each projection area 120a-120i was transmitted for each data of the entire partial image, and the delivery delay of the one-pixel divided data transmitted to each projection area 120a-120i can be dispersed and made less noticeable. This makes it possible to suppress the delivery delay of image data (one-pixel divided data in this example) between each projection area 120a-120i, and display a high-quality projection image.
[第2の分割データ例]
 図7及び図8は、コンピュータ110から各投影装置120(120A~120I)に送信する投影画像データをライン単位で分割した分割データの例を示す図である。本例のライン単位とは、投影画像データで表される投影画像の部分画像における横一列のラインを単位とするものである。コンピュータ110は、横一列のライン単位で分割して生成した横ライン分割データを、例えば、第1投影装置120Aが投影する横ライン分割データと、第2投影装置120Bが投影する横ライン分割データと、…第9投影装置120Iが投影する横ライン分割データとで構成する9個の横ライン分割データ、第1投影装置120Aが投影する次の横ライン分割データと、第2投影装置120Bが投影する次の横ライン分割データと、…第9投影装置120Iが投影する次の横ライン分割データとで構成する9個の横ライン分割データ、…という繰り返しの順番で送信する。このとき、コンピュータ110は、投影すべき投影装置120(120A~120I)を指示する投影指示情報を横ライン分割データに含めて送信する。
[Second example of divided data]
7 and 8 are diagrams showing examples of split data obtained by splitting the projection image data transmitted from the computer 110 to each projection device 120 (120A to 120I) by line units. In this example, the line unit refers to a horizontal row of lines in a partial image of the projection image represented by the projection image data. The computer 110 transmits the horizontal line split data generated by splitting by horizontal row of lines in a repeating order, for example, nine horizontal line split data consisting of the horizontal line split data projected by the first projection device 120A, the horizontal line split data projected by the second projection device 120B, ... the horizontal line split data projected by the ninth projection device 120I, the next horizontal line split data projected by the first projection device 120A, the next horizontal line split data projected by the second projection device 120B, ... the next horizontal line split data projected by the ninth projection device 120I, ... At this time, the computer 110 transmits the horizontal line division data including projection instruction information for instructing the projection device 120 (120A to 120I) that is to perform the projection.
 各投影装置120(120A~120I)は、コンピュータ110から送信されるその投影指示情報に基づいて、上記第1の分割データ例と同様に自投影装置が投影すべき投影装置であると判定した場合に、その横ライン分割データで表される画像を投影する。すなわち、投影装置120(120A~120I)は、コンピュータ110から送信される横一列のライン単位の横ライン分割データに対応する所定の投影装置が順次切り替わり、横一列部分を表す各画像を投影する。 When each projection device 120 (120A-120I) determines based on the projection instruction information transmitted from computer 110 that it is the projection device that should perform the projection, as in the first division data example above, it projects the image represented by that horizontal line division data. That is, projection devices 120 (120A-120I) switch sequentially between predetermined projection devices corresponding to the horizontal line division data in units of a horizontal row transmitted from computer 110, and project each image representing the horizontal row portion.
 例えば、図7に示すように、投影装置120(120A~120I)からそれぞれ投影された横一列のライン単位の横ライン分割データで表される画像は、投影装置120(120A~120I)に対応する被投影領域120a~120iの部分画像における最上の横一列のライン部分を表すライン画像121A~121Iとして表示される。 For example, as shown in FIG. 7, an image represented by horizontal line division data for a horizontal row of lines projected from each of the projection devices 120 (120A-120I) is displayed as line images 121A-121I representing the topmost horizontal row of lines in the partial images of the projection areas 120a-120i corresponding to the projection devices 120 (120A-120I).
 また、図8に示すように、投影装置120(120A~120I)からそれぞれ投影された次の横一列のライン単位の横ライン分割データで表される画像は、投影装置120(120A~120I)に対応する被投影領域120a~120iの部分画像における2段目の横一列のライン部分を表すライン画像122A~122Iとして表示される。 Also, as shown in FIG. 8, the image represented by the horizontal line division data for the next horizontal row of lines projected from each of the projection devices 120 (120A-120I) is displayed as line images 122A-122I representing the second horizontal row of lines in the partial image of the projection area 120a-120i corresponding to the projection device 120 (120A-120I).
 以降、同様にして、各投影装置120(120A~120I)から順次横一列のライン単位の横ライン分割データで表される画像が投影されて、部分画像における最下の横一列のライン部分を表すライン画像まで表示される。 After that, images represented by horizontal line division data in units of a horizontal row are projected in the same manner from each projection device 120 (120A to 120I) in sequence, and up to the line image representing the bottommost horizontal row of lines in the partial image are displayed.
 このようにして、投影装置120(120A~120I)は、コンピュータ110から順次送信される横一列のライン単位で分割された横ライン分割データに基づいて、被投影領域120a~120iに各部分画像を投影するとともに、投影した9個の部分画像により生成される1個の投影画像(全体画像)を投影する。なお、横一列のライン単位に含まれる垂直方向の画素数は一画素であっても複数画素であってもよい。 In this way, the projection device 120 (120A-120I) projects each partial image onto the projection areas 120a-120i based on the horizontal line division data divided into horizontal line units sequentially transmitted from the computer 110, and projects one projection image (whole image) generated from the nine projected partial images. Note that the number of vertical pixels included in a horizontal line unit may be one pixel or multiple pixels.
 以上のように、第2の分割データ例によれば、コンピュータ110は、部分画像を投影する投影装置120(120A~120I)の数よりも多い分割数で投影画像データを部分画像における横一列のライン単位に分割した横ライン分割データを生成し、生成した横ライン分割データを所定の順番で投影装置120(120A~120I)に繰り返し送信する。これにより、各被投影領域120a~120iに投影される部分画像を表すデータを部分画像全体のデータごとに送信していた従来の場合と比較して、小さい単位のデータごとに送信することが可能になり、各被投影領域120a~120iに送信される横ライン分割データの送達遅延を分散させて目立たなくすることができる。このため、各被投影領域120a~120i間の画像データ(本例では、横ライン分割データ)の送達遅延を抑制することができ、高品質の投影画像を表示することができる。 As described above, according to the second divided data example, the computer 110 generates horizontal line divided data by dividing the projection image data into horizontal line units in the partial image with a number of divisions greater than the number of projection devices 120 (120A-120I) that project the partial images, and repeatedly transmits the generated horizontal line divided data to the projection devices 120 (120A-120I) in a predetermined order. This makes it possible to transmit data in smaller units compared to the conventional case in which data representing the partial image projected onto each projection area 120a-120i was transmitted for each data of the entire partial image, and the delivery delay of the horizontal line divided data transmitted to each projection area 120a-120i can be dispersed and made less noticeable. This makes it possible to suppress the delivery delay of image data (in this example, horizontal line divided data) between each projection area 120a-120i, and display a high-quality projection image.
[第3の分割データ例]
 図9及び図10は、コンピュータ110から各投影装置120(120A~120I)に送信する投影画像データをライン単位で分割した分割データの別の例を示す図である。本例のライン単位とは、投影画像データで表される投影画像(全体画像)における横一列のラインを単位とするものである。コンピュータ110は、横一列のライン単位で分割して生成した全横ライン分割データを、例えば、まず投影画像における一番上の全横ライン分割データ、次に投影画像における一番上のラインの1つ下の全横ライン分割データ、次に投影画像のさらに1つ下の全横ライン分割データ、…という順番で投影画像の一番下の横一列ラインに至るまで送信する。このとき、コンピュータ110は、投影すべき投影装置120(120A~120I)を指示する投影指示情報を全横ライン分割データに含めて送信する。
[Third example of divided data]
9 and 10 are diagrams showing another example of divided data obtained by dividing the projection image data transmitted from the computer 110 to each projection device 120 (120A to 120I) by line units. In this example, the line unit refers to a horizontal row of lines in the projection image (whole image) represented by the projection image data. The computer 110 transmits all horizontal line division data generated by dividing by horizontal row of lines, for example, first the topmost horizontal line division data in the projection image, then the horizontal line division data one line below the topmost line in the projection image, then the horizontal line division data one line below the topmost line in the projection image, and so on, until the bottommost horizontal line of the projection image. At this time, the computer 110 transmits the all horizontal line division data by including projection instruction information instructing the projection device 120 (120A to 120I) to project.
 各投影装置120(120A~120I)は、コンピュータ110から送信されるその投影指示情報に基づいて、上記第1の分割データ例と同様に自投影装置が投影すべき投影装置であると判定した場合に、その全横ライン分割データで表される画像のうちの自投影装置が投影すべき分割データで表される画像を投影する。すなわち、投影装置120(120A~120I)は、コンピュータ110から送信される横一列のライン単位の全横ライン分割データに対応する所定の投影装置が順次切り替わり、全横一列部分を表す各画像を投影する。 When each projection device 120 (120A-120I) determines based on the projection instruction information transmitted from computer 110 that it is the projection device that should project, as in the first divided data example above, it projects the image represented by the divided data that its own projection device should project from among the images represented by the entire horizontal line divided data. In other words, projection devices 120 (120A-120I) switch sequentially between predetermined projection devices corresponding to the entire horizontal line divided data in units of a horizontal row of lines transmitted from computer 110, and project each image representing the entire horizontal row.
 例えば、図9に示すように、投影装置120(120A~120I)のうちの第7投影装置120Gと第8投影装置120Hと第9投影装置120Iから投影された全横ライン分割データで表される画像は、第7投影装置120Gと第8投影装置120Hと第9投影装置120Iに対応する被投影領域120gと被投影領域120hと被投影領域120iの投影画像(全体画像)における一番上の横一列のライン部分を表すライン画像91として表示される。 For example, as shown in FIG. 9, an image represented by the entire horizontal line division data projected from the seventh projection device 120G, the eighth projection device 120H, and the ninth projection device 120I among the projection devices 120 (120A-120I) is displayed as a line image 91 representing the topmost horizontal row of lines in the projected image (whole image) of the projected area 120g, the projected area 120h, and the projected area 120i corresponding to the seventh projection device 120G, the eighth projection device 120H, and the ninth projection device 120I.
 また、図10に示すように、投影装置120(120A~120I)のうちの第7投影装置120Gと第8投影装置120Hと第9投影装置120Iから投影された次の全横ライン分割データで表される画像は、第7投影装置120Gと第8投影装置120Hと第9投影装置120Iに対応する被投影領域120gと被投影領域120hと被投影領域120iの投影画像(全体画像)における上から2番目の横一列のライン部分を表すライン画像92として表示される。 Also, as shown in FIG. 10, the image represented by the next full horizontal line division data projected from the seventh projection device 120G, the eighth projection device 120H, and the ninth projection device 120I among the projection devices 120 (120A-120I) is displayed as a line image 92 representing the second horizontal row of lines from the top in the projected image (whole image) of the projected area 120g, the projected area 120h, and the projected area 120i corresponding to the seventh projection device 120G, the eighth projection device 120H, and the ninth projection device 120I.
 以降、同様にして、3行3列に配置された投影装置120(120A~120I)のうちの所定の1行に配置される3台の投影装置、例えば、上述した1行目の第7投影装置120Gと第8投影装置120Hと第9投影装置120I、次に2行目の第4投影装置120Dと第5投影装置120Eと第6投影装置120F、次に3行目の第1投影装置120Aと第2投影装置120Bと第3投影装置120Cから順次全横ライン分割データで表される画像が投影されて、投影画像における一番下の横一列のライン部分を表すライン画像まで表示される。 In the same manner, images represented by the entire horizontal line division data are projected from three projection devices arranged in a given row among the projection devices 120 (120A-120I) arranged in three rows and three columns, for example, the seventh projection device 120G, eighth projection device 120H, and ninth projection device 120I in the first row described above, then the fourth projection device 120D, fifth projection device 120E, and sixth projection device 120F in the second row, and then the first projection device 120A, second projection device 120B, and third projection device 120C in the third row, until a line image representing the bottom row of lines in the projected image is displayed.
 このようにして、投影装置120(120A~120I)は、コンピュータ110から順次送信される横一列のライン単位で分割された全横ライン分割データに基づいて、1個の投影画像(全体画像)を投影する。なお、横一列のライン単位に含まれる垂直方向の画素数は一画素であっても複数画素であってもよい。また、本例では、投影画像(全体画像)における横一列のライン単位で分割した全横ライン分割データを順次送信する場合を説明したが、これに限定されない。例えば、投影画像(全体画像)における横一列のライン単位で分割した全横ライン分割データをさらに部分画像における横一列のライン単位で3つの横ライン分割データに分割し、その3つの横ライン分割データを順次送信するようにしてもよい。 In this way, the projection device 120 (120A-120I) projects one projection image (whole image) based on all horizontal line division data divided by a single horizontal line unit sequentially transmitted from the computer 110. The number of vertical pixels included in a single horizontal line unit may be one pixel or multiple pixels. In addition, in this example, a case where all horizontal line division data divided by a single horizontal line unit in the projection image (whole image) is sequentially transmitted has been described, but this is not limited to this. For example, the all horizontal line division data divided by a single horizontal line unit in the projection image (whole image) may be further divided into three horizontal line division data by a single horizontal line unit in the partial image, and the three horizontal line division data may be sequentially transmitted.
 以上のように、第3の分割データ例によれば、コンピュータ110は、部分画像を投影する投影装置120(120A~120I)の数よりも多い分割数で投影画像データを全体画像における横一列のライン単位に分割した全横ライン分割データを生成し、生成した全横ライン分割データを所定の順番で投影装置120(120A~120I)に繰り返し送信する。これにより、各被投影領域120a~120iに投影される部分画像を表すデータを部分画像全体のデータごとに送信していた従来の場合と比較して、小さい単位のデータごとに送信することが可能になり、各被投影領域120a~120iに送信される全横ライン分割データの送達遅延を分散させて目立たなくすることができる。このため、各被投影領域120a~120i間の画像データ(本例では、全横ライン分割データ)の送達遅延を抑制することができ、高品質の投影画像を表示することができる。 As described above, according to the third divided data example, the computer 110 generates all horizontal line divided data by dividing the projection image data into horizontal line units in the entire image with a number of divisions greater than the number of projection devices 120 (120A-120I) that project the partial images, and repeatedly transmits the generated all horizontal line divided data to the projection devices 120 (120A-120I) in a predetermined order. This makes it possible to transmit data in smaller units compared to the conventional case in which data representing the partial images projected onto each projection area 120a-120i was transmitted for each data of the entire partial image, and the delivery delay of the all horizontal line divided data transmitted to each projection area 120a-120i can be dispersed and made less noticeable. This makes it possible to suppress the delivery delay of image data (in this example, all horizontal line divided data) between each projection area 120a-120i, and display a high-quality projection image.
[第4の分割データ例]
 図11から図14は、コンピュータ110から各投影装置120(120A~120I)に送信する投影画像データを各被投影領域120a~120iの配置情報に基づいて分割した分割データの例を示す図である。コンピュータ110は、被投影領域120a~120iの配置情報に基づいて分割した分割データを、例えば、その分割データの被投影位置(投影先の位置)がスクリーン130の垂直方向において高い順番に送信する。このとき、コンピュータ110は、投影すべき投影装置120(120A~120I)を指示する投影指示情報を分割データに含めて送信する。
[Fourth divided data example]
11 to 14 are diagrams showing examples of divided data obtained by dividing the projection image data to be transmitted from the computer 110 to each projection device 120 (120A to 120I) based on the arrangement information of each projection area 120a to 120i. The computer 110 transmits the divided data divided based on the arrangement information of the projection areas 120a to 120i, for example, in descending order of the projection positions (projection destination positions) of the divided data in the vertical direction of the screen 130. At this time, the computer 110 transmits the divided data together with projection instruction information that indicates the projection device 120 (120A to 120I) to project.
 各投影装置120(120A~120I)は、コンピュータ110から送信されるその投影指示情報に基づいて、上記第1の分割データ例と同様に自投影装置が投影すべき投影装置であると判定した場合に、その分割データで表される画像を投影する。すなわち、投影装置120(120A~120I)は、コンピュータ110から送信される分割データに対応する所定の投影装置が順次切り替わり、対応部分を表す各画像を投影する。 When each projection device 120 (120A-120I) determines based on the projection instruction information sent from computer 110 that it is the projection device that should perform the projection, as in the first divided data example above, it projects the image represented by that divided data. In other words, the projection devices 120 (120A-120I) switch sequentially to the specified projection device that corresponds to the divided data sent from computer 110, and project each image that represents the corresponding portion.
 例えば、図11に示すように、3行3列の投影装置120(120A~120I)に対応する被投影領域120a~120iの各列に並ぶ被投影領域の高さが少しずつ階段状に相違しているとする。具体的には、被投影領域120i,120d,120cで構成される1列目の被投影領域の高さ、被投影領域120h,120e,120bで構成される2列目の被投影領域の高さ、被投影領域120g,120f,120aで構成される3列目の被投影領域の高さが1列目、2列目、3列目と右に行くほど下がるようにずれているとする。 For example, as shown in FIG. 11, the heights of the projection areas arranged in each column of projection areas 120a-120i corresponding to the three rows and three columns of projection devices 120 (120A-120I) differ slightly in a stepped manner. Specifically, the heights of the projection areas in the first column consisting of projection areas 120i, 120d, and 120c, the heights of the projection areas in the second column consisting of projection areas 120h, 120e, and 120b, and the heights of the projection areas in the third column consisting of projection areas 120g, 120f, and 120a are shifted downwards as you move to the right from the first column to the second column to the third column.
 この場合、例えば、図12に示すように、まず、最も高い位置に設けられている被投影領域120iにおける横一列のライン単位の横ライン分割データがコンピュータ110から投影装置120(120A~120I)に送信される。これに対して、第9投影装置120Iは、コンピュータ110から送信された投影指示情報に基づいて、自投影装置が投影すべき投影装置であると判定し、その横ライン分割データで表される画像を投影する。第9投影装置120Iから投影された横ライン分割データで表される画像は、第9投影装置120Iに対応する被投影領域120iの部分画像における最上の横一列のライン部分を表すライン画像141として表示される。 In this case, for example, as shown in FIG. 12, horizontal line division data for a single horizontal row in the projection area 120i located at the highest position is first transmitted from the computer 110 to the projection devices 120 (120A-120I). In response to this, the ninth projection device 120I determines that it is the projection device that should perform the projection based on the projection instruction information transmitted from the computer 110, and projects an image represented by that horizontal line division data. The image represented by the horizontal line division data projected from the ninth projection device 120I is displayed as a line image 141 that represents the topmost horizontal row of lines in the partial image of the projection area 120i corresponding to the ninth projection device 120I.
 また、次に、図13に示すように、被投影領域120iにおける一段下がった位置の横一列のライン単位の横ライン分割データと、その被投影領域120iの一段下がった位置と同じ高さの被投影領域120hにおける横一列のライン単位の横ライン分割データがコンピュータ110から投影装置120(120A~120I)に送信される。これに対して、第9投影装置120Iと第8投影装置120Hは、コンピュータ110から送信された投影指示情報に基づいて、自投影装置が投影すべき投影装置であると判定し、その横ライン分割データで表される画像を投影する。第9投影装置120Iと第8投影装置120Hからそれぞれ投影された横ライン分割データで表される画像は、第9投影装置120Iに対応する被投影領域120iの部分画像における2段目の横一列のライン部分を表すライン画像142a及び第8投影装置120Hに対応する被投影領域120hの部分画像における最上の横一列のライン部分を表すライン画像142bとして表示される。 13, horizontal line division data for a single horizontal row in a position one step lower in projection area 120i and horizontal line division data for a single horizontal row in a projection area 120h at the same height as the position one step lower in projection area 120i are transmitted from computer 110 to projection devices 120 (120A-120I). In response, ninth projection device 120I and eighth projection device 120H determine that they are the projection devices that should project based on the projection instruction information transmitted from computer 110, and project the image represented by that horizontal line division data. The images represented by the horizontal line division data projected from the ninth projection device 120I and the eighth projection device 120H, respectively, are displayed as line image 142a representing the second horizontal row of lines in the partial image of the projection area 120i corresponding to the ninth projection device 120I, and line image 142b representing the topmost horizontal row of lines in the partial image of the projection area 120h corresponding to the eighth projection device 120H.
 また、次に、図14に示すように、被投影領域120iにおけるさらに一段下がった位置の横一列のライン単位の横ライン分割データと、被投影領域120hにおける一段下がった位置の横一列のライン単位の横ライン分割データと、その被投影領域120i,120hの下がった位置と同じ高さの被投影領域120gにおける横一列のライン単位の横ライン分割データがコンピュータ110から投影装置120(120A~120I)に送信される。これに対して、第9投影装置120Iと第8投影装置120Hと第7投影装置120Gは、コンピュータ110から送信された投影指示情報に基づいて、自投影装置が投影すべき投影装置であると判定し、その横ライン分割データで表される画像を投影する。第9投影装置120Iと第8投影装置120Hと第7投影装置120Gからそれぞれ投影された横ライン分割データで表される画像は、第9投影装置120Iに対応する被投影領域120iの部分画像における3段目の横一列のライン部分を表すライン画像143a、第8投影装置120Hに対応する被投影領域120hの部分画像における2段目の横一列のライン部分を表すライン画像143b、及び第7投影装置120Gに対応する被投影領域120gの部分画像における最上の横一列のライン部分を表すライン画像143cとして表示される。 14, horizontal line division data for a single horizontal row in a position one step lower in projection area 120i, horizontal line division data for a single horizontal row in a position one step lower in projection area 120h, and horizontal line division data for a single horizontal row in projection area 120g at the same height as the lowered positions of projection areas 120i and 120h are transmitted from computer 110 to projection devices 120 (120A-120I). In response to this, the ninth projection device 120I, the eighth projection device 120H, and the seventh projection device 120G determine that they are the projection device that should project based on the projection instruction information transmitted from computer 110, and project the image represented by that horizontal line division data. The images represented by the horizontal line division data projected from the ninth projection device 120I, the eighth projection device 120H, and the seventh projection device 120G are displayed as line image 143a representing the third horizontal row of lines in the partial image of the projection area 120i corresponding to the ninth projection device 120I, line image 143b representing the second horizontal row of lines in the partial image of the projection area 120h corresponding to the eighth projection device 120H, and line image 143c representing the topmost horizontal row of lines in the partial image of the projection area 120g corresponding to the seventh projection device 120G.
 以降、同様にして、各投影装置120(120A~120I)から順次横ライン分割データで表される画像が投影されて、各部分画像における最下の横一列のライン部分を表すライン画像まで表示される。本例の場合、第1投影装置120Aに対応する被投影領域120aの部分画像における最下の横一列のライン部分を表すライン画像が最終のライン画像として表示される。 After that, images represented by the horizontal line division data are projected in the same manner from each projection device 120 (120A to 120I) in sequence, and up to the line image representing the bottommost horizontal line portion in each partial image is displayed. In this example, the line image representing the bottommost horizontal line portion in the partial image of the projection area 120a corresponding to the first projection device 120A is displayed as the final line image.
 このようにして、投影装置120(120A~120I)は、コンピュータ110から順次送信される被投影領域120a~120iの配置情報に基づいた横ライン分割データに基づいて、被投影領域120a~120iに各部分画像を投影するとともに、投影した9個の部分画像により生成される1個の投影画像(全体画像)を投影する。なお、横一列のライン単位に含まれる垂直方向の画素数は一画素であっても複数画素であってもよい。 In this way, the projection device 120 (120A-120I) projects each partial image onto the projection areas 120a-120i based on horizontal line division data based on the layout information of the projection areas 120a-120i sequentially transmitted from the computer 110, and projects one projection image (whole image) generated from the nine projected partial images. Note that the number of vertical pixels included in a horizontal line unit may be one pixel or multiple pixels.
 以上のように、第4の分割データ例によれば、コンピュータ110は、部分画像を投影する投影装置120(120A~120I)の数よりも多い分割数で投影画像データを各被投影領域120a~120iの配置情報に基づいて分割した分割データを生成し、生成した分割データを被投影位置の順番で投影装置120(120A~120I)に繰り返し送信する。これにより、被投影領域120a~120iが矩形状に形成されていないような場合であっても、全体画像を生成する部分画像の分割データを順序良く例えばライン画像が横方向の列で揃うように送信することができる。また、各被投影領域120a~120iに送信される横ライン分割データの送達遅延を分散させて目立たなくすることができる。このため、全体画像を順序良く生成することができるとともに、各被投影領域120a~120i間の画像データ(本例では、横ライン分割データ)の送達遅延を抑制することができ、高品質の投影画像を表示することができる。 As described above, according to the fourth divided data example, the computer 110 generates divided data by dividing the projection image data into a number of divisions greater than the number of the projection devices 120 (120A-120I) that project the partial images based on the arrangement information of each of the projection areas 120a-120i, and repeatedly transmits the generated divided data to the projection devices 120 (120A-120I) in the order of the projection positions. This allows the divided data of the partial images that generate the entire image to be transmitted in an orderly manner, for example so that line images are aligned in a horizontal row, even if the projection areas 120a-120i are not formed in a rectangular shape. In addition, the delivery delay of the horizontal line divided data transmitted to each of the projection areas 120a-120i can be dispersed and made less noticeable. This allows the entire image to be generated in an orderly manner, and also suppresses the delivery delay of the image data (in this example, the horizontal line divided data) between each of the projection areas 120a-120i, allowing a high-quality projection image to be displayed.
<投影画像データの送信順序>
 コンピュータ110は、投影画像データを分割した分割データを投影装置120(120A~120I)に送信する場合、投影画像のコンテンツに応じた順番で送信する。例えば、コンピュータ110は、投影画像を画像解析して画像の変化が多い方向を判定し、その判定結果に応じた方向の順番で分割データを送信する。
<Transmission order of projection image data>
When the computer 110 transmits the divided data obtained by dividing the projection image data to the projection devices 120 (120A to 120I), the computer 110 transmits the divided data in an order according to the content of the projection image. For example, the computer 110 performs image analysis on the projection image to determine the direction in which the image changes the most, and transmits the divided data in an order according to the direction determined by the determination result.
 図15は、スクリーン130上に投影した海の画像を示す図である。水平線151の奥に雲152が浮かび、海から画像の手前側に向かって波153が打ち寄せている。このように動き(変化)のある波153が横一列で手前側に移動するような画像の場合、すなわち、画像の変化が上下方向である場合には、コンピュータ110は、画像の変化の方向に対応させて、投影画像データを分割した例えば全横ライン分割データを上から下方向へ順番に送信する。 FIG. 15 shows an image of the ocean projected onto the screen 130. Clouds 152 float behind the horizon 151, and waves 153 are crashing from the ocean toward the front of the image. In the case of an image in which waves 153 with movement (change) move toward the front in a horizontal line like this, that is, when the image changes in the up and down direction, the computer 110 transmits, in order from top to bottom, for example, all horizontal line division data obtained by dividing the projected image data in accordance with the direction of the image change.
 各投影装置120(120A~120I)は、コンピュータ110から送信される全横ライン分割データに基づいて、図15に示すように、まず全横ライン分割データで表されるライン画像154を投影画像(全体画像)における一番上の横一列のライン部分に表示し、次に矢印Aで示す上から下方向へ同様のライン画像を順番に表示する。なお、本例では、コンピュータ110が全横ライン分割データを上から下方向へ順番に送信する場合について説明したが、これに限定されない。例えば、コンピュータ110は、全横ライン分割データを下から上方向へ順番に送信するようにしてもよい。その場合には、各投影装置120(120A~120I)は、全横ライン分割データで表されるライン画像を投影画像(全体画像)における下側の横一列のライン部分から上側の横一列のライン部分へと順番に表示する。 Based on the full horizontal line division data transmitted from the computer 110, each projection device 120 (120A to 120I) first displays a line image 154 represented by the full horizontal line division data in the topmost horizontal line portion of the projection image (whole image) as shown in FIG. 15, and then displays similar line images in order from top to bottom as indicated by arrow A. Note that in this example, a case has been described in which the computer 110 transmits the full horizontal line division data in order from top to bottom, but this is not limited to this. For example, the computer 110 may transmit the full horizontal line division data in order from bottom to top. In that case, each projection device 120 (120A to 120I) displays the line images represented by the full horizontal line division data in order from the lower horizontal line portion to the upper horizontal line portion of the projection image (whole image).
 図16は、スクリーン130上に投影した車両の画像を示す図である。車両161は右方向へ走行している。したがって、車両161の背景162は左方向に流れている。このように動き(変化)のある車両161及びその背景162が左右方向へ移動するような画像の場合、すなわち、画像の変化が左右方向である場合には、コンピュータ110は、画像の変化の方向に対応させて、投影画像データを分割した例えば全縦ライン分割データを右から左方向へ順番に送信する。 FIG. 16 shows an image of a vehicle projected onto the screen 130. The vehicle 161 is traveling to the right. Therefore, the background 162 of the vehicle 161 is flowing to the left. In the case of an image in which the vehicle 161 and its background 162, which are moving (changing), move in the left-right direction, that is, when the image changes in the left-right direction, the computer 110 transmits, in order from right to left, for example, all vertical line division data obtained by dividing the projected image data, in accordance with the direction of the image change.
 各投影装置120(120A~120I)は、コンピュータ110から送信される全縦ライン分割データに基づいて、図16に示すように、まず全縦ライン分割データで表されるライン画像163を投影画像(全体画像)における一番右の縦一列のライン部分に表示し、次に矢印Bで示す右から左方向へ同様のライン画像を順番に表示する。なお、本例では、全縦ライン分割データを右から左方向へ順番に送信する場合について説明したが、これに限定されず、例えば、左から右方向へ順番に送信するようにしてもよい。 Based on the full vertical line division data transmitted from the computer 110, each projection device 120 (120A-120I) first displays a line image 163 represented by the full vertical line division data in the rightmost vertical line portion of the projection image (whole image) as shown in FIG. 16, and then displays similar line images in sequence from right to left as indicated by arrow B. Note that in this example, a case has been described in which all vertical line division data is transmitted in sequence from right to left, but this is not limited to this, and it may be transmitted in sequence from left to right, for example.
 なお、図15及び図16に示す例では、上下方向又は左右方向へ分割データを順番に送信する場合について説明したが、これに限定されない。例えば、一連の動画データにおける変化が多い方向が異なる所定の区間ごとに分割データを送信する順番(方向)を設定するようにしてもよい。すなわち、横方向に変化が多い区間では横スクロールするように分割データを送信し、縦方向に変化が多い区間では縦スクロールするように分割データを送信してもよい。このように、画像の変化が多い方向に合わせてライン分割データを順番に送信できるので、画像データの送達遅延を抑制することができ、高品質の投影画像を表示することができる。 Note that, although the examples shown in Figures 15 and 16 have been described with reference to cases where the divided data are transmitted in the up-down or left-right direction in sequence, this is not limiting. For example, the order (direction) in which the divided data are transmitted may be set for each predetermined section in which the direction in which there is more change in a series of video data differs. That is, in sections in which there is more change in the horizontal direction, the divided data may be transmitted to scroll horizontally, and in sections in which there is more change in the vertical direction, the divided data may be transmitted to scroll vertically. In this way, line divided data can be transmitted in sequence according to the direction in which there is more change in the image, so that delays in the delivery of image data can be suppressed and a high-quality projected image can be displayed.
<投影画像データの送信頻度>
[画像の変化に応じた送信頻度]
 コンピュータ110は、投影画像データを分割した分割データを投影装置120(120A~120I)に送信する場合、投影画像における領域ごとの画像の変化頻度又は変化量に応じて分割データの送信頻度を変化させる。例えば、コンピュータ110は、投影画像を画像解析して画像の変化が多い領域を判定し、その判定結果に応じた頻度で分割データを送信する。画像の変化とは、例えば、明るさ、色等の変化である。変化には、例えば、変化の頻度と変化の量が含まれる。
<Frequency of transmission of projected image data>
[Transmission frequency according to image changes]
When the computer 110 transmits divided data obtained by dividing the projection image data to the projection devices 120 (120A to 120I), it changes the transmission frequency of the divided data according to the frequency or amount of change in the image for each region in the projection image. For example, the computer 110 performs image analysis on the projection image to determine regions with a large amount of image change, and transmits the divided data at a frequency according to the determination result. Image changes include, for example, changes in brightness, color, etc. The changes include, for example, the frequency and amount of change.
 図17は、図15と同様、スクリーン130上に投影した海の画像を示す図である。水平線151の奥の空に雲152が浮かび、海から画像の手前側に向かって波153が打ち寄せている。このように動き(変化)のある波153が手前側に移動するような画像では、全体画像の垂直方向における上側の領域171の画像の変化は少なく、下側の領域172の画像の変化は多い。この場合、コンピュータ110は、画像の変化が多い下側の領域172に分割データを高い頻度で送信し、画像の変化が少ない上側の領域171に分割データを低い頻度で送信する。 FIG. 17, like FIG. 15, shows an image of the ocean projected onto the screen 130. Clouds 152 float in the sky beyond the horizon 151, and waves 153 crash from the ocean toward the front of the image. In an image like this, in which moving (changing) waves 153 move toward the front, there is little change in the image in the upper region 171 in the vertical direction of the overall image, and there is much change in the image in the lower region 172. In this case, the computer 110 transmits divided data more frequently to the lower region 172 where there is more change in the image, and transmits divided data less frequently to the upper region 171 where there is less change in the image.
 図18は、スクリーン130上に投影した飛行機の画像を示す図である。1台のプロペラ飛行機181がこちらに向かって飛行している。このように飛行しているプロペラ飛行機181の画像では、全体画像におけるプロペラ飛行機181のプロペラ182の画像の変化が多く、プロペラ182以外の画像の変化が少ない。この場合、コンピュータ110は、画像の変化が多いプロペラ182が含まれた領域183に分割データを高い頻度で送信し、画像の変化が少ないプロペラ182以外の領域184に分割データを低い頻度で送信する。 FIG. 18 shows an image of an airplane projected on the screen 130. A propeller airplane 181 is flying towards us. In this image of a flying propeller airplane 181, there is a lot of change in the image of the propeller 182 of the propeller airplane 181 in the overall image, and little change in the image other than the propeller 182. In this case, the computer 110 transmits divided data with high frequency to an area 183 that includes the propeller 182, where there is a lot of change in the image, and transmits divided data with low frequency to an area 184 other than the propeller 182, where there is little change in the image.
 図19は、スクリーン130上に投影した演奏ステージの画像を示す図である。ステージ上に演奏者191が居て、ステージの手前側に多数の観客192が居る。このように主役(演奏者)が存在する画像では、全体画像におけるステージの演奏者191画像の変化が多く、演奏者191以外の例えば観客192の画像の変化が少ない。また、主役である演奏者191の画像が重要である。この場合、コンピュータ110は、画像の変化が多い演奏者191が含まれた領域193に分割データを高い頻度で送信し、画像の変化が少ない演奏者191以外の領域194に分割データを低い頻度で送信する。これにより、変化の頻度及び変化の量が多い領域の画像を高品質に表示することができるとともに、変化の頻度及び変化の量が少ない領域への低い頻度のデータ送信によりデータ転送量を削減できる。なお、図17から図19において、投影画像データを分割した分割データの形態は、上述したように1画素単位、複数画素のブロック単位、部分画像の横ライン分割データ単位、全体画像の全横ライン分割データ単位のいずれの形態であってもよい。 19 is a diagram showing an image of a performance stage projected on the screen 130. There is a performer 191 on the stage, and a large number of spectators 192 are in front of the stage. In an image in which the main character (performer) is present, there are many changes in the image of the performer 191 on the stage in the overall image, and there are few changes in the images of the performer 191 and other characters, such as the spectators 192. The image of the performer 191, who is the main character, is important. In this case, the computer 110 transmits divided data to the area 193 containing the performer 191, which has many changes in the image, at a high frequency, and transmits divided data to the area 194 other than the performer 191, which has few changes in the image, at a low frequency. This allows the image of the area with many changes in frequency and amount of change to be displayed with high quality, and the amount of data transfer can be reduced by transmitting data less frequently to the area with few changes in frequency and amount of change. In addition, in FIGS. 17 to 19, the form of the divided data obtained by dividing the projected image data may be in any form, such as one pixel unit, multiple pixel block unit, horizontal line divided data unit of a partial image, or all horizontal line divided data unit of the overall image, as described above.
[画像観察者に応じた送信頻度]
 コンピュータ110は、投影画像データを分割した分割データを投影装置120(120A~120I)に送信する場合、投影画像を観察する観察者の状態に応じて分割データの送信頻度を変化させる。例えば、コンピュータ110は、被投影領域120a~120iの周辺を撮像して得られた画像を画像解析して観察者の状態を判定し、その判定結果に応じた頻度で分割データを送信する。観察者の状態とは、例えば、観察者の目の高さ、視線の方向等である。
[Transmission frequency according to image observer]
When the computer 110 transmits divided data obtained by dividing the projection image data to the projection devices 120 (120A to 120I), the computer 110 changes the transmission frequency of the divided data according to the state of the observer who observes the projection image. For example, the computer 110 performs image analysis on the image obtained by capturing the periphery of the projection areas 120a to 120i to determine the observer's state, and transmits the divided data at a frequency according to the determination result. The observer's state is, for example, the height of the observer's eyes, the direction of the line of sight, etc.
 図20は、被投影領域120a~120iの前方に居る観察者が子供202a、202bである場合の一例を示す図である。観察者の画像は、例えばスクリーン130の上側に設置された撮像装置201によって撮像される。撮像された画像は撮像装置201が接続されているコンピュータ110に送信される。コンピュータ110は、撮像装置201から送信された撮像画像を画像解析して観察者の状態を判定し、観察者に子供が多いことを検出する。コンピュータ110は、図20に示すように、被投影領域120a~120iのうちの子供202a,202bの例えば目の高さに合った下部に配置されている被投影領域120a~120cに分割データを高い頻度で送信し、子供202a,202bの目の高さよりも上方に配置されている被投影領域120d~120iに分割データを低い頻度で送信する。 FIG. 20 is a diagram showing an example in which the observers in front of the projection areas 120a to 120i are children 202a and 202b. The images of the observers are captured by an imaging device 201 installed, for example, above the screen 130. The captured images are sent to a computer 110 to which the imaging device 201 is connected. The computer 110 performs image analysis on the captured images sent from the imaging device 201 to determine the state of the observers and detects that there are many children among the observers. As shown in FIG. 20, the computer 110 transmits divided data at a high frequency to the projection areas 120a to 120c that are located below the projection areas 120a to 120i, for example at eye level with the children 202a and 202b, and transmits divided data at a low frequency to the projection areas 120d to 120i that are located above the eye level of the children 202a and 202b.
 図21は、被投影領域120a~120iの前方に居る観察者が大人203a、203bである場合の一例を示す図である。観察者の画像は、図20の場合と同様に撮像装置201によって撮像される。コンピュータ110は、画像解析により観察者に大人が多いことを検出し、図21に示すように、被投影領域120a~120iのうちの大人203a,203bの例えば視線の方向に合った中段に配置されている被投影領域120d~120fに分割データを高い頻度で送信し、大人203a,203bの視線の方向よりも下方及び上方に配置されている被投影領域120a~120c及び被投影領域120g~120iに分割データを低い頻度で送信する。これにより、観察者の状態に応じた領域の画像を高品質に表示することができるとともに、データ転送量を削減することも可能である。 21 is a diagram showing an example in which the observers in front of the projection areas 120a to 120i are adults 203a and 203b. The images of the observers are captured by the imaging device 201 in the same way as in FIG. 20. The computer 110 detects that there are many adults among the observers by image analysis, and transmits divided data at a high frequency to the projection areas 120d to 120f, which are located in the middle of the projection areas 120a to 120i, for example, in the direction of the line of sight of the adults 203a and 203b, as shown in FIG. 21, and transmits divided data at a low frequency to the projection areas 120a to 120c and the projection areas 120g to 120i, which are located below and above the line of sight of the adults 203a and 203b. This makes it possible to display images of the areas according to the observer's state with high quality and also to reduce the amount of data transfer.
<分割データで表される画像の更新と維持>
 図22は、第1投影装置120Aにより投影された部分画像が表示される被投影領域120aの一例を示す図である。図22に示すように、第1投影装置120Aは、1画素単位の1画素分割データにより表される例えば画素画像121a~129aを投影している。第1投影装置120Aは、この状態においてコンピュータ110から例えば画素画像122aを表す次の1画素分割データのみが送信された場合、送信された次の1画素分割データに基づく画素画像122aの投影のみを更新し、1画素分割データが送信されていない他の画素画像121a,123a~129aの投影をそれまでの画素画像の投影に維持する。
Updating and maintaining images represented by split data
Fig. 22 is a diagram showing an example of the projection area 120a where a partial image projected by the first projection device 120A is displayed. As shown in Fig. 22, the first projection device 120A projects, for example, pixel images 121a to 129a represented by one-pixel division data in one-pixel units. In this state, when only the next one-pixel division data representing, for example, pixel image 122a is transmitted from the computer 110, the first projection device 120A updates only the projection of pixel image 122a based on the transmitted next one-pixel division data, and maintains the projection of the other pixel images 121a, 123a to 129a for which one-pixel division data has not been transmitted as the projection of the previous pixel images.
 すなわち、第1投影装置120Aは、被投影領域120aにおける1画素分割データを受信していない部分の領域については1画素分割データを再度受信するまでそれまでの投影を維持する。ただし、1画素分割データを再度受信した場合であっても、例えば、さらに画素画像の投影を更新するための更新フラグを受信するまではそれまでの画素画像の投影を維持するようにしてもよい。これにより、画像の品質を維持しつつ、データ転送量を削減することができる。 In other words, the first projection device 120A maintains the previous projection for the area in the projection area 120a where the one-pixel division data has not been received until the one-pixel division data is received again. However, even if the one-pixel division data is received again, the previous projection of the pixel image may be maintained until, for example, an update flag for further updating the projection of the pixel image is received. This makes it possible to reduce the amount of data transfer while maintaining the quality of the image.
<投影装置の特性と分割データの送信頻度>
 図23は、特性(性能)の異なる投影装置が含まれた投影装置120(120A~120I)による投影画像の一例を示す図である。例えば、投影装置120(120A~120I)のうち第1投影装置120A~第4投影装置120D及び第6投影装置120F~第9投影装置120Iの特性が同等で、第5投影装置120Eだけが他の投影装置よりも良い特性の投影装置であるとする。ここで、投影装置の特性(性能)とは、投影装置の画素数、解像度等のことをいう。この場合、コンピュータ110は、高画素数又は高解像度の第5投影装置120Eが投影する画像を表す分割データを高い頻度で送信する。具体的には、コンピュータ110は、まず各投影装置120(120A~120I)が投影する画像を表す分割データを同じ頻度で投影装置120(120A~120I)に対して送信する。投影装置120(120A~120I)は、送信された分割データにより表される部分画像の投影によって一様の投影画像を投影する。コンピュータ110は、次に第5投影装置120Eが投影する画像を表す分割データのみを投影装置120(120A~120I)に対して送信する。第5投影装置120Eは、送信された分割データにより表される部分画像を投影する。このとき、第5投影装置120E以外の投影装置は、送信されているそれまでの分割データにより表される部分画像の投影を維持する。これにより、図23に示すように、第5投影装置120Eに対応する被投影領域120eに投影された部分画像を高品質の画像として表示することができる。
<Projector characteristics and frequency of sending divided data>
FIG. 23 is a diagram showing an example of a projected image by the projection devices 120 (120A to 120I) including projection devices with different characteristics (performance). For example, among the projection devices 120 (120A to 120I), the first projection device 120A to the fourth projection device 120D and the sixth projection device 120F to the ninth projection device 120I have the same characteristics, and only the fifth projection device 120E has better characteristics than the other projection devices. Here, the characteristics (performance) of the projection device refer to the number of pixels, resolution, etc. of the projection device. In this case, the computer 110 transmits divided data representing an image projected by the fifth projection device 120E, which has a high number of pixels or high resolution, at a high frequency. Specifically, the computer 110 first transmits divided data representing an image projected by each projection device 120 (120A to 120I) to the projection devices 120 (120A to 120I) at the same frequency. The projection devices 120 (120A to 120I) project a uniform projection image by projecting the partial images represented by the transmitted division data. The computer 110 transmits only the division data representing the image to be projected by the fifth projection device 120E next to the projection devices 120 (120A to 120I). The fifth projection device 120E projects the partial image represented by the transmitted division data. At this time, the projection devices other than the fifth projection device 120E maintain the projection of the partial images represented by the division data transmitted up to that point. As a result, as shown in FIG. 23, the partial image projected on the projection area 120e corresponding to the fifth projection device 120E can be displayed as a high-quality image.
<被投影領域同士の重複部分>
 図24は、第1投影装置120Aによる被投影領域120aと第2投影装置120Bによる被投影領域120bの重複部分211の一例示す図である。本例では、被投影領域120aと被投影領域120bの重複部分211のみを示すが、他の隣り合う被投影領域間にも同様に重複部分が設けられている。
<Overlapping area of projected areas>
24 is a diagram showing an example of an overlapping portion 211 between the projection area 120a by the first projection device 120A and the projection area 120b by the second projection device 120B. In this example, only the overlapping portion 211 between the projection area 120a and the projection area 120b is shown, but similar overlapping portions are provided between other adjacent projection areas.
 例えば、各投影装置120(120A~120I)がコンピュータ110から送信されてくる投影画像データのうち自投影装置が投影すべき分割データを受信した際にその分割データを投影画像データから切り離して自投影装置内に取り込まずに次の投影装置に転送する場合には、被投影領域同士が重複する投影装置間で重複部分のデータを他の投影装置と合同で使用することができる。このため、コンピュータ110は、重複部分のデータを1回のみ送信すればよい。これに対して、各投影装置120(120A~120I)がコンピュータ110から送信されてくる投影画像データのうち自投影装置が投影すべき分割データを受信した際にその分割データを投影画像データから切り離して自投影装置内に取り込んで次の投影装置に転送しない場合には、被投影領域同士が重複する投影装置間で重複部分のデータを他の投影装置と合同で使用することができない。このため、コンピュータ110は、重複数に相当する回数分、重複部分のデータを送信しなければならない。 For example, when each projection device 120 (120A-120I) receives split data to be projected by its own projection device from among the projection image data transmitted from the computer 110, if the split data is separated from the projection image data and transferred to the next projection device without being imported into the own projection device, the overlapping data can be used jointly by the other projection devices between the projection devices whose projection areas overlap. Therefore, the computer 110 needs to transmit the overlapping data only once. In contrast, when each projection device 120 (120A-120I) receives split data to be projected by its own projection device from among the projection image data transmitted from the computer 110, if the split data is not separated from the projection image data and imported into the own projection device and transferred to the next projection device, the overlapping data cannot be used jointly by the other projection devices between the projection devices whose projection areas overlap. Therefore, the computer 110 must transmit the overlapping data a number of times equivalent to the number of overlaps.
 そこで、例えば、コンピュータ110から送信されてくる投影画像データの重複部分211に相当する分割データを第1投影装置120Aが自投影装置の分割データとして用いつつ、投影画像データから切り離さずに下流側の第2投影装置120Bに転送することで、コンピュータ110は、投影画像データを少ないデータ単位で分割して送信することができ、重複部分による送達遅延を分散させて目立たなくし、高品質の投影画像を表示することができる。 For example, the first projection device 120A uses the split data corresponding to the overlapping portion 211 of the projection image data transmitted from the computer 110 as split data for its own projection device, and transfers it to the downstream second projection device 120B without separating it from the projection image data. This allows the computer 110 to split and transmit the projection image data in smaller data units, dispersing and making the delivery delays caused by the overlapping portions less noticeable, and enabling the display of a high-quality projection image.
<投影装置群を含む投影システム>
 図25は、コンピュータ110に通信線11を介して上述した投影装置120(120A~120I)がデイジーチェーン接続されている他に、通信線11とは異なる通信線12を介して投影装置120(120J~120R)がデイジーチェーン接続されている投影システム1Aを示す図である。コンピュータ110は、投影装置120(120A~120I)と投影装置120(120J~120R)とを含む投影装置群の中から、直列の伝送経路を形成可能な複数の投影装置を特定する。本例の場合、コンピュータ110は、直列の伝送経路を形成する投影装置120(120A~120I)と投影装置120(120J~120R)とを特定する。コンピュータ110は、投影装置120(120A~120I)及び投影装置120(120J~120R)を使用して全体画像を投影するように投影画像データを分割した分割データを投影装置120(120A~120I)及び投影装置120(120J~120R)に送信する。投影画像データの分割データには例えば上述した1画素単位、複数画素のブロック単位、部分画像の横ライン分割データ単位、全体画像の全横ライン分割データ単位等が含まれる。コンピュータ110は、投影装置120(120A~120I)に対して所定の投影画像データを送信し、投影装置120(120J~120R)に対しては投影装置120(120A~120I)に対して送信する所定の投影画像データとは異なる投影画像データを別途送信する。これにより、複数の投影装置に投影画像データを送信するコンピュータ110の制御負荷を抑制することが可能である。
<Projection system including a group of projection devices>
25 is a diagram showing a projection system 1A in which the above-mentioned projection devices 120 (120A to 120I) are daisy-chained to the computer 110 via a communication line 11, and in addition, a projection device 120 (120J to 120R) is daisy-chained to the computer 110 via a communication line 12 different from the communication line 11. The computer 110 identifies a plurality of projection devices capable of forming a serial transmission path from a group of projection devices including the projection devices 120 (120A to 120I) and the projection devices 120 (120J to 120R). In this example, the computer 110 identifies the projection devices 120 (120A to 120I) and the projection devices 120 (120J to 120R) that form a serial transmission path. The computer 110 transmits to the projection devices 120 (120A-120I) and 120 (120J-120R) divided data of the projection image data so that the entire image is projected using the projection devices 120 (120A-120I) and 120 (120J-120R). The divided data of the projection image data includes, for example, the above-mentioned one pixel unit, a block unit of multiple pixels, a horizontal line divided data unit of a partial image, and a whole horizontal line divided data unit of an entire image. The computer 110 transmits predetermined projection image data to the projection devices 120 (120A-120I), and transmits to the projection devices 120 (120J-120R) projection image data different from the predetermined projection image data transmitted to the projection devices 120 (120A-120I). This makes it possible to reduce the control load of the computer 110 that transmits projection image data to a plurality of projection devices.
 なお、前述した実施形態で説明した制御方法は、予め用意された制御プログラムをコンピュータで実行することにより実現できる。本制御プログラムは、コンピュータが読み取り可能な記憶媒体に記録され、記憶媒体から読み出されることによって実行される。また、本制御プログラムは、フラッシュメモリ等の非一過性の記憶媒体に記憶された形で提供されてもよいし、インターネット等のネットワークを介して提供されてもよい。本制御プログラムを実行するコンピュータは、制御装置に含まれるものであってもよいし、制御装置と通信可能なスマートフォン、タブレット端末、又はパーソナルコンピュータ等の電子機器に含まれるものでもあってもよいし、これら制御装置及び電子機器と通信可能なサーバ装置に含まれるものであってもよい。 The control method described in the above embodiment can be realized by executing a prepared control program on a computer. This control program is recorded on a computer-readable storage medium and executed by reading it from the storage medium. This control program may be provided in a form stored in a non-transitory storage medium such as a flash memory, or provided via a network such as the Internet. The computer that executes this control program may be included in a control device, or may be included in an electronic device such as a smartphone, tablet terminal, or personal computer that can communicate with the control device, or may be included in a server device that can communicate with these control devices and electronic devices.
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above, it goes without saying that the present invention is not limited to these examples. It is clear that a person skilled in the art can come up with various modified or revised examples within the scope of the claims, and it is understood that these also naturally fall within the technical scope of the present invention. Furthermore, the components in the above embodiments may be combined in any manner as long as it does not deviate from the spirit of the invention.
 なお、本出願は、2022年11月21日出願の日本特許出願(特願2022-185697)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Patent Application No. 2022-185697) filed on November 21, 2022, the contents of which are incorporated by reference into this application.
 1,1A 投影システム
 11,12 通信線
 91,92,141,142b,143a,143b,143c,154,163 ライン画像
 110 コンピュータ
 111 プロセッサ
 112 メモリ
 113 通信インタフェース
 114 ユーザインタフェース
 119 バス
 120,120A~120R 投影装置
 120a~120i 被投影領域
 121a~121i,122a~122i,123a,124a,125a,126a,127a,128a,129a 画素画像
 121A~121I,122A~122I ライン画像
 130 スクリーン
 151 水平線
 152 雲
 153 波
 161 車両
 162 背景
 171,172,183,184,193,194 領域
 181 プロペラ飛行機
 182 プロペラ
 191 演奏者
 192 観客
 201 撮像装置
 202a,202b 子供
 203a,203b 大人
 211 重複部分
 221 制御部
 222,223 通信部
 224 投影部
 224a 光源
 224b 光変調部
 224c 投影光学系
 224d 制御回路
1, 1A Projection system 11, 12 Communication line 91, 92, 141, 142b, 143a, 143b, 143c, 154, 163 Line image 110 Computer 111 Processor 112 Memory 113 Communication interface 114 User interface 119 Bus 120, 120A to 120R Projection device 120a to 120i Projected area 121a to 121i, 122a to 122i, 123a, 124a, 125a, 126a, 127a, 128a, 129a Pixel image 121A to 121I, 122A to 122I Line image 130 Screen 151 Horizon 152 Cloud 153 Wave 161 Vehicle 162 Background 171, 172, 183, 184, 193, 194 Area 181 Propeller airplane 182 Propeller 191 Performer 192 Audience 201 Imaging device 202a, 202b Children 203a, 203b Adults 211 Overlapping portion 221 Control unit 222, 223 Communication unit 224 Projection unit 224a Light source 224b Light modulation unit 224c Projection optical system 224d Control circuit

Claims (19)

  1.  プロセッサを備え、複数の投影装置により形成される直列の伝送経路により投影画像データを送信可能な制御装置であって、
     前記投影装置は、前記投影画像データにより表される投影画像の部分画像を投影し、
     前記プロセッサは、
     前記部分画像を投影する投影装置の数より多い分割数で前記投影画像データを分割した複数の分割データを生成し、
     前記複数の分割データを前記伝送経路により送信する、
     制御装置。
    A control device including a processor and capable of transmitting projection image data through a serial transmission path formed by a plurality of projection devices,
    The projection device projects a partial image of a projection image represented by the projection image data;
    The processor,
    generating a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of projection devices that project the partial images;
    Transmitting the plurality of divided data through the transmission path;
    Control device.
  2.  請求項1に記載の制御装置であって、
     前記複数の分割データは、画素単位又はライン単位で前記投影画像データを分割したデータである、
     制御装置。
    The control device according to claim 1 ,
    The plurality of divided data are data obtained by dividing the projection image data in units of pixels or lines.
    Control device.
  3.  請求項1に記載の制御装置であって、
     前記分割数は、前記複数の投影装置の数の2倍以上であり、
     前記プロセッサは、前記複数の分割データを所定の順番で送信し、
     前記所定の順番は、前記分割データに対応する投影装置が前記複数の投影装置の中で順次切り替わり、それを繰り返す順番である、
     制御装置。
    The control device according to claim 1 ,
    the number of divisions is equal to or greater than twice the number of the plurality of projection devices,
    The processor transmits the plurality of divided data in a predetermined order;
    The predetermined order is an order in which the projection device corresponding to the divided data is switched in sequence among the plurality of projection devices, and this switching is repeated.
    Control device.
  4.  請求項3に記載の制御装置であって、
     前記順番は、前記複数の投影装置のそれぞれにおいて、前記部分画像における所定方向の配列順に対応する順番である、
     制御装置。
    The control device according to claim 3,
    the order corresponds to an arrangement order of the partial images in a predetermined direction in each of the plurality of projection devices.
    Control device.
  5.  請求項1に記載の制御装置であって、
     前記プロセッサは、前記投影画像における所定方向の配列順に対応する順番で前記複数の分割データを送信する、
     制御装置。
    The control device according to claim 1 ,
    the processor transmits the plurality of pieces of divided data in an order corresponding to an arrangement order in a predetermined direction in the projection image.
    Control device.
  6.  請求項1に記載の制御装置であって、
     前記プロセッサは、前記複数の投影装置による被投影領域の配置情報に基づいて、前記複数の分割データの被投影位置に応じた順番で前記複数の分割データを送信する、
     制御装置。
    The control device according to claim 1 ,
    the processor transmits the plurality of pieces of divided data in an order corresponding to the projection positions of the plurality of pieces of divided data based on arrangement information of the projection areas of the plurality of projection devices.
    Control device.
  7.  請求項1に記載の制御装置であって、
     前記プロセッサは、前記投影画像のコンテンツに応じた順番で前記複数の分割データを送信する、
     制御装置。
    The control device according to claim 1 ,
    the processor transmits the plurality of pieces of divided data in an order according to the content of the projection image.
    Control device.
  8.  請求項1に記載の制御装置であって、
     前記プロセッサは、前記複数の分割データのそれぞれを、前記投影画像の領域ごとの変化頻度に応じた頻度で送信する、
     制御装置。
    The control device according to claim 1 ,
    The processor transmits each of the plurality of pieces of divided data at a frequency corresponding to a change frequency for each region of the projection image.
    Control device.
  9.  請求項1に記載の制御装置であって、
     前記プロセッサは、前記複数の分割データのそれぞれを、前記投影画像の領域ごとの変化量に応じた頻度で送信する、
     制御装置。
    The control device according to claim 1 ,
    The processor transmits each of the plurality of pieces of divided data at a frequency according to an amount of change in each region of the projection image.
    Control device.
  10.  請求項1に記載の制御装置であって、
     前記プロセッサは、前記複数の分割データのそれぞれを、前記複数の投影装置の特性に応じた頻度で送信する、
     制御装置。
    The control device according to claim 1 ,
    the processor transmits each of the plurality of divided data at a frequency according to characteristics of the plurality of projection devices.
    Control device.
  11.  請求項1に記載の制御装置であって、
     前記複数の投影装置による被投影領域は重複部分を含む、
     制御装置。
    The control device according to claim 1 ,
    The projected areas by the multiple projection devices include overlapping areas.
    Control device.
  12.  請求項1に記載の制御装置であって、
     前記プロセッサは、前記複数の投影装置と、前記複数の投影装置とは異なる投影装置と、を含む投影装置群の中から、前記直列の伝送経路を形成可能な前記複数の投影装置を特定する、
     制御装置。
    The control device according to claim 1 ,
    the processor identifies the plurality of projection devices capable of forming the serial transmission path from a projection device group including the plurality of projection devices and a projection device different from the plurality of projection devices;
    Control device.
  13.  請求項1に記載の制御装置であって、
     前記プロセッサは、前記複数の投影装置の少なくともいずれかへの前記投影画像データの伝送遅延に関する情報を取得する、
     制御装置。
    The control device according to claim 1 ,
    The processor acquires information regarding a transmission delay of the projection image data to at least one of the plurality of projection devices.
    Control device.
  14.  請求項13に記載の制御装置であって、
     前記プロセッサは、前記伝送遅延に関する情報に基づいて、前記投影画像データの送信速度を制御する、
     制御装置。
    The control device according to claim 13,
    The processor controls a transmission rate of the projection image data based on information about the transmission delay.
    Control device.
  15.  請求項1に記載の制御装置であって、
     前記プロセッサは、前記複数の分割データのそれぞれを、前記投影画像の観察者の状態に応じた頻度で送信する、
     制御装置。
    The control device according to claim 1 ,
    The processor transmits each of the plurality of pieces of divided data at a frequency according to a state of an observer of the projection image.
    Control device.
  16.  プロセッサを備え、複数の投影装置により形成される直列の伝送経路により投影画像データを送信可能な制御装置による制御方法であって、
     前記投影装置は、前記投影画像データにより表される投影画像の部分画像を投影し、
     前記プロセッサが、
     前記部分画像を投影する投影装置の数より多い分割数で前記投影画像データを分割した複数の分割データを生成し、
     前記複数の分割データを前記伝送経路により送信する、
     制御方法。
    A control method for a control device including a processor and capable of transmitting projection image data through a serial transmission path formed by a plurality of projection devices, comprising:
    The projection device projects a partial image of a projection image represented by the projection image data;
    The processor,
    generating a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of projection devices that project the partial images;
    Transmitting the plurality of divided data through the transmission path;
    Control methods.
  17.  プロセッサを備え、複数の投影装置により形成される直列の伝送経路により投影画像データを送信可能な制御装置の制御プログラムであって、
     前記投影装置は、前記投影画像データにより表される投影画像の部分画像を投影し、
     前記プロセッサに、
     前記部分画像を投影する投影装置の数より多い分割数で前記投影画像データを分割した複数の分割データを生成し、
     前記複数の分割データを前記伝送経路により送信する、
     処理を実行させるための制御プログラム。
    A control program for a control device including a processor and capable of transmitting projection image data through a serial transmission path formed by a plurality of projection devices, the control program comprising:
    The projection device projects a partial image of a projection image represented by the projection image data;
    The processor,
    generating a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of projection devices that project the partial images;
    Transmitting the plurality of divided data through the transmission path;
    A control program for executing processing.
  18.  直列の伝送経路を形成する複数の投影装置と、
     前記直列の伝送経路により投影画像データを送信可能な制御装置と、を含み、
     前記投影装置は、前記投影画像データにより表される投影画像の部分画像を投影し、
     前記制御装置は、
     前記部分画像を投影する投影装置の数より多い分割数で前記投影画像データを分割した複数の分割データを生成し、
     前記複数の分割データを前記伝送経路により送信する、
     投影システム。
    A plurality of projection devices forming a serial transmission path;
    a control device capable of transmitting projection image data through the serial transmission path;
    The projection device projects a partial image of a projection image represented by the projection image data;
    The control device includes:
    generating a plurality of divided data by dividing the projection image data into a number of divisions greater than the number of projection devices that project the partial images;
    Transmitting the plurality of divided data through the transmission path;
    Projection system.
  19.  請求項18に記載の投影システムであって、
     前記投影装置は、受信した前記部分画像の第1部分の分割データに基づく投影を開始した後、前記第1部分の分割データを再度受信するまで前記第1部分の投影を維持する、
     投影システム。
    20. The projection system of claim 18,
    the projection device starts projection based on the received division data of the first portion of the partial image, and then maintains projection of the first portion until the division data of the first portion is received again;
    Projection system.
PCT/JP2023/038518 2022-11-21 2023-10-25 Control device, control method, control program, and projection system WO2024111337A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022185697 2022-11-21
JP2022-185697 2022-11-21

Publications (1)

Publication Number Publication Date
WO2024111337A1 true WO2024111337A1 (en) 2024-05-30

Family

ID=91195449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038518 WO2024111337A1 (en) 2022-11-21 2023-10-25 Control device, control method, control program, and projection system

Country Status (1)

Country Link
WO (1) WO2024111337A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056671A (en) * 1999-08-19 2001-02-27 Sony Corp Multi-picture display system
US20140111530A1 (en) * 2012-10-22 2014-04-24 Orion Co., Ltd. Apparatus and method for buffering signal delay between display device in multi-display environment
JP2018117315A (en) * 2017-01-20 2018-07-26 セイコーエプソン株式会社 Display system, display device, and control method of display device
JP2019219657A (en) * 2018-06-14 2019-12-26 三星電子株式会社Samsung Electronics Co.,Ltd. Electronic apparatus and method for control thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056671A (en) * 1999-08-19 2001-02-27 Sony Corp Multi-picture display system
US20140111530A1 (en) * 2012-10-22 2014-04-24 Orion Co., Ltd. Apparatus and method for buffering signal delay between display device in multi-display environment
JP2018117315A (en) * 2017-01-20 2018-07-26 セイコーエプソン株式会社 Display system, display device, and control method of display device
JP2019219657A (en) * 2018-06-14 2019-12-26 三星電子株式会社Samsung Electronics Co.,Ltd. Electronic apparatus and method for control thereof

Similar Documents

Publication Publication Date Title
US11037523B2 (en) Display method of display panel that uses different display algorithms for different display areas, display panel and display device
US7876285B2 (en) Projection system, information processing apparatus, information processing program, recording medium therefor, projector, computer program therefor, and recording medium therefor
US9918058B2 (en) Information processing to allow projector units to project images in cooperation
JP4211815B2 (en) Display device, multi-display system, image information generation method, image information generation program, and recording medium
US9554105B2 (en) Projection type image display apparatus and control method therefor
JP6946690B2 (en) Display device, display method and program
CN107665105B (en) Display equipment interface conversion device, multi-screen display system and multi-screen display method
US10761624B2 (en) Display apparatus and method for controlling display apparatus
US9967540B2 (en) Ultra high definition 3D conversion device and an ultra high definition 3D display system
US11016379B2 (en) Projector and control method of projector for notifying image supply device of resolution information
US20200382750A1 (en) Method of controlling display device, and display device
US20170127031A1 (en) Display apparatus and method of controlling the apparatus
WO2024111337A1 (en) Control device, control method, control program, and projection system
CN112399157A (en) Projector and projection method
WO2016139889A1 (en) Image processing device, image processing method, and display device
JP2006033672A (en) Curved surface multi-screen projection method, and its device
US20230039541A1 (en) Display method for display system, display method for display apparatus, and display system
CN111586377A (en) Projection system and projection splicing method thereof
CN114143524B (en) Laser projection system and projection method
US11145273B2 (en) Method of controlling display device, and display device
CN114450937B (en) Control device, control method, storage medium, and projection system
CN114007051B (en) Laser projection system and display method of projection image thereof
JP2021105642A (en) Control method for display system and display system
JP2019090857A (en) Projection control apparatus, projection device, and projection control method
CN103037188A (en) Projector special for crosswise splicing and cinema projecting apparatus formed by the same