WO2024111172A1 - Molded article quality variance estimation device, molded article quality variance estimation method, and injection molding system - Google Patents

Molded article quality variance estimation device, molded article quality variance estimation method, and injection molding system Download PDF

Info

Publication number
WO2024111172A1
WO2024111172A1 PCT/JP2023/028504 JP2023028504W WO2024111172A1 WO 2024111172 A1 WO2024111172 A1 WO 2024111172A1 JP 2023028504 W JP2023028504 W JP 2023028504W WO 2024111172 A1 WO2024111172 A1 WO 2024111172A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded product
calculation model
physical property
quality variation
property calculation
Prior art date
Application number
PCT/JP2023/028504
Other languages
French (fr)
Japanese (ja)
Inventor
漢 小林
遼太郎 島田
大介 八木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024111172A1 publication Critical patent/WO2024111172A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]

Definitions

  • the present invention relates to a molded product quality variation estimation device, a molded product quality variation estimation method, and an injection molding system.
  • the present invention claims priority to Japanese Patent Application No. 2022-187609 filed on November 24, 2022, and for designated countries where incorporation by reference to literature is permitted, the contents of that application are incorporated by reference into this application.
  • Instability in the physical properties of a material can affect the quality of a molded product.
  • PVT characteristics the viscosity and pressure-temperature dependence of specific volume (hereafter referred to as PVT characteristics) of the material's physical properties can cause dimensional variation in molded products.
  • flow analysis is performed using CAE (Computer Aided Engineering) to confirm moldability and assist in adjusting molding conditions. It is common to use flow analysis in the design and material selection of plastic parts. However, flow analysis requires the creation of a physical property calculation model based on the physical property data of the material, and creating a physical property calculation model for each lot of recycled material would be a huge amount of work, making it unrealistic.
  • CAE Computer Aided Engineering
  • Patent Document 1 describes a "flow analysis device that performs flow analysis of molten material in the injection molding process, characterized in that it has a material property data calculation means that calculates viscosity data as material property data based on data obtained from an injection molding machine, and a flow analysis means that performs flow analysis based on an analytical shape model, the material property data, and molding condition data.”
  • the present invention was made in consideration of the above points, and aims to improve the accuracy of flow analysis when using materials with unstable physical properties, and to make it possible to estimate the quality variation of molded products.
  • the present application includes multiple means for solving at least some of the above problems, examples of which are as follows:
  • a molded product quality variation estimation device that estimates the quality variation of a molded product produced by injection molding, and includes a physical property calculation model estimation unit that estimates a physical property calculation model corresponding to a second material based on process data when a molded product is manufactured using a first material whose physical properties are known, a learned regression model generated based on physical property calculation model coefficients corresponding to the first material, and process data when a molded product is manufactured using a second material whose physical properties are unknown, and a flow analysis unit that estimates the quality variation of the molded product when a molded product is manufactured using the second material by performing flow analysis based on the estimated physical property calculation model corresponding to the second material, where the physical property calculation model estimation unit estimates two or more types of physical property calculation models corresponding to two or more different types of physical properties based on two or more types of learned regression models corresponding to two or more different types of physical properties, and the flow analysis unit performs the flow
  • the present invention makes it possible to improve the accuracy of flow analysis when using materials with unstable physical properties, and to estimate the quality variation of molded products.
  • FIG. 1 shows examples of the physical properties of multiple recycled materials having the same product number but different lots, where FIG. 1(A) is a graph showing the PVT characteristics and FIG. 1(B) is a graph showing the viscosity.
  • FIG. 2 is a diagram showing an example of an injection molding system according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of the functional block configuration of the molded product quality variation estimation device.
  • FIG. 4 is a diagram illustrating an example of the sensor information.
  • FIG. 5 is a diagram illustrating an example of a feature amount DB (database).
  • FIG. 6 is a diagram illustrating an example of the quality DB.
  • 7A and 7B are diagrams showing examples of selected learning data sets, where FIG.
  • FIG. 7A is a diagram showing a learning data set for PVT characteristics
  • FIG. 7B is a diagram showing a learning data set for viscosity
  • FIG. 8 is a diagram illustrating an example of the configuration of the PVT characteristic calculation model estimating unit and the viscosity calculation model estimating unit.
  • FIG. 9 is a diagram showing an example of the configuration of a general computer.
  • FIG. 10 is a cross-sectional view showing an example of the configuration of an injection molding machine.
  • FIG. 11 shows an example of a mold, where Figure 11(A) is a top view of the product part of the mold, Figure 11(B) is a side view of the product part of the mold, Figure 11(C) is a top view of the runner part of the mold, and Figure 11(D) is a side view of the runner part of the mold.
  • FIG. 12 is a flowchart illustrating an example of the molding process data acquisition process.
  • 13A and 13B are diagrams for explaining the effectiveness of an estimated physical property calculation model, in which FIG. 13A is a diagram showing an example of an estimated PVT characteristic calculation model, and FIG. 13B is a diagram showing an example of an estimated viscosity calculation model.
  • Figure 14 is a diagram showing an example of a UI (User Interface) screen.
  • UI User Interface
  • various information such as "XX table,” “XX list,” and “XX queue” may be expressed as “XX information.”
  • identification information expressions such as “identification information,” “identifier,” “name,” “ID,” and “number” are used, but these are interchangeable.
  • the components are not necessarily essential, unless otherwise specified or considered to be clearly essential in principle.
  • “consists of A,” “is made of A,” “has A,” or “includes A” other elements are not excluded, unless otherwise specified to mean only that element.
  • when referring to the shape, positional relationship, etc. of components, etc. it includes things that are substantially similar or similar to that shape, etc., unless otherwise specified or considered to be clearly not essential in principle.
  • Fig. 1 shows an example of the physical properties of multiple recycled materials that are used as materials for molded products.
  • the multiple recycled materials are recycled materials A, B, and C that have the same product number but different shipping lots (e.g., different delivery times).
  • FIG. 1A shows the PVT characteristics of recycled materials A, B, and C, with the horizontal axis representing the temperature of the material [°C] and the vertical axis representing the specific volume of the material [ cm3 /g].
  • the pressure of the material is a constant value of 50 [MPa].
  • the dot plots shown in FIG. 1A are actual measurements obtained using a dedicated measuring device.
  • the line plots show the results of fitting a known calculation model called the 2-domain Tait PVT model shown in the following formula (1) to the actual measurements.
  • Figure (B) shows the viscosity of recycled materials A, B, and C, with the horizontal axis representing the shear rate of the material [1/sec] and the vertical axis representing the viscosity of the material [Pa ⁇ s].
  • the temperature of the material is kept constant at 200°C.
  • the dot plots shown in Figure (B) are actual measurements obtained using a dedicated measuring device.
  • the line plots show the results of fitting a known calculation model called the Cross-WLF model, shown in the following equation (2), to the actual measurements.
  • ⁇ Configuration example of injection molding system 10 according to an embodiment of the present invention> 2 shows an example of the configuration of an injection molding system 10 according to an embodiment of the present invention.
  • the injection molding system 10 estimates a PVT characteristic calculation model and a viscosity calculation model corresponding to a material with unstable physical properties, i.e., a material with unknown physical properties, and performs flow analysis using the estimated PVT characteristic calculation model and viscosity calculation model, thereby quantifying the variation in quality of a molded product when a material with unstable physical properties is used.
  • the injection molding system 10 includes a manufacturing control device 20, factory equipment 30, and a molded product quality variation estimation device 40.
  • the manufacturing control device 20 instructs the injection molding machine 31 included in the factory equipment 30 to manufacture products (molded products) by injection molding.
  • the manufacturing control device 20 includes a manufacturing condition determination unit 21 and a production instruction unit 22.
  • the manufacturing condition determination unit 21 determines manufacturing conditions based on standard injection molding conditions (hereinafter referred to as standard molding conditions) previously set by the user, and outputs them to the production instruction unit 22.
  • standard molding conditions include parameters corresponding to each step of the injection molding process (described in detail later).
  • the reference molding conditions include parameters such as the metering position, suck back, back pressure, back pressure speed, and rotation speed as parameters for the metering and plasticizing process.
  • the reference molding conditions also include parameters for the injection process and the pressure holding process such as material pressure, material temperature (temperature of the heater that heats the material), mold temperature (temperature and flow rate of the coolant that cools the mold), pressure holding time, and shear rate.
  • the reference molding conditions also include parameters for the injection process and the pressure holding process such as the screw position (VP switching position) that switches between injection and pressure, and the clamping force of the mold 509.
  • the reference molding conditions also include the cooling time after pressure holding as a parameter for the cooling process.
  • the manufacturing conditions include, in addition to the standard molding conditions, information specifying the injection molding machine 31, information specifying the mold, the capacity of the mold, the configuration of the runner part of the mold, information specifying the material (product number, lot number), the number of molded products to be produced, the production time, the required quality, etc.
  • the production instruction unit 22 instructs the injection molding machine 31 to manufacture a product (molded product) by outputting control information based on the manufacturing conditions.
  • the manufacturing conditions are also supplied to the molded product quality variation estimation device 40 via the injection molding machine 31.
  • the manufacturing conditions supplied to the molded product quality variation estimation device 40 are referenced when estimating the PVT characteristic calculation model and the viscosity calculation model for each material product number and lot number.
  • the factory equipment 30 includes an injection molding machine 31 and a quality inspection device 33.
  • the injection molding machine 31 executes the injection molding process according to the control information from the production instruction unit 22, and outputs the manufactured molded product to the quality inspection device 33.
  • the injection molding machine 31 has an in-mold sensor 32.
  • the in-mold sensor 32 is composed of a plurality of various sensors.
  • the in-mold sensor 32 includes, for example, at least a temperature sensor for measuring the material temperature, a pressure sensor for measuring the material pressure, and a temperature sensor for measuring the mold temperature.
  • the in-mold sensor 32 measures physical quantities (temperature, pressure, etc.) in the injection molding process as in-mold sensor values, and outputs the time series data of the measurement results as sensor information to the molded product quality variation estimation device 40.
  • the in-mold sensor 32 may measure, for example, the shear rate of the material, the physical properties of the material, the opening amount of the mold (mold opening amount), etc.
  • the physical properties of the material refer to, for example, the density of the material, the viscosity of the material, the fiber length distribution of the material (when the material contains reinforcing fibers), etc.
  • the physical quantity most correlated with the fluidity of a material is the viscosity of the material, but other quantities correlated with fluidity calculated from pressure, temperature, speed, etc. can also be used as physical quantities correlated with the fluidity of a material.
  • the quality inspection device 33 inspects the quality of the molded product.
  • the quality inspection device 33 measures the weight and dimensions as the quality of the molded product.
  • Inspection items by the quality inspection device 33 may include, for example, shape characteristics (thickness, sink marks, burrs, warping, etc.), surface characteristics such as appearance defects (welds, silver, burns, whitening, scratches, bubbles, peeling, flow marks, jetting, color, gloss, etc.), mechanical and optical characteristics (tensile strength, impact resistance, transmittance, etc.), etc.
  • an inspector may inspect the quality of the molded product.
  • the quality inspection device 33 links the manufacturing conditions at the time of manufacturing the molded product with the quality inspection results of the molded product, and outputs them to the molded product quality variation estimation device 40.
  • the molded product quality variation estimation device 40 includes a property calculation model generation unit 41, a flow analysis unit 42, an input unit 43, a display unit 44, and a communication unit 45.
  • the physical property calculation model generation unit 41 generates a physical property calculation model (specifically, a PVT characteristic calculation model and a viscosity calculation model) corresponding to a material with unknown physical properties based on the manufacturing conditions from the manufacturing control device 20, the sensor information input from the production factory equipment 30, and the quality inspection results. Note that the physical property calculation model generation unit 41 may also generate physical property calculation models for other physical properties (e.g., degree of crystallinity, crystallization rate, etc.).
  • a computational model refers to a mathematical model that mathematically abstracts a certain phenomenon.
  • a PVT characteristic computation model refers to a mathematical model that represents the PVT characteristics of a material.
  • a viscosity computation model refers to a mathematical model that represents the viscosity of a material. Note that in this embodiment, the PVT characteristic computation model and the viscosity computation model refer to computational models in which the parameters (coefficients) of the mathematical model are determined for each specified unit of material (e.g., for each lot).
  • the flow analysis unit 42 uses the PVT characteristic calculation model and viscosity calculation model corresponding to the material with unknown physical properties estimated by the physical property calculation model generation unit 41 to perform flow analysis on the material with unknown physical properties, and estimates and outputs the variation in quality of the molded product when a material with unknown physical properties is used.
  • the input unit 43 accepts various inputs from the user.
  • the display unit 44 displays the UI screen 1000 (FIG. 14).
  • the communication unit 45 connects the factory equipment 30 via a network (not shown) such as the Internet, and communicates various information.
  • FIG. 3 shows an example of the functional block configuration of the physical property calculation model generation unit 41 and the flow analysis unit 42.
  • the physical property calculation model generation unit 41 includes a sensor information storage unit 51, a feature extraction unit 52, a feature DB 53, a quality DB 54, a PVT characteristic calculation model coefficient DB 55, a viscosity calculation model coefficient DB 56, a linking processing unit 57, a learning DB 58, a learning data selection unit 59, a PVT characteristic calculation model estimation unit 60, and a viscosity calculation model estimation unit 61.
  • the sensor information storage unit 51 temporarily stores the sensor information.
  • the feature extraction unit 52 reads the sensor information temporarily stored by the sensor information storage unit 51 and extracts the feature of the physical quantity contained in the sensor information.
  • Figure 4 shows an example of sensor information.
  • the top part of the figure shows the time series change in material pressure in the injection molding process, and the bottom part shows the time series change in material temperature in the injection molding process.
  • lots A, B, and C in the figure refer to materials A, B, and C that have the same product number but different lots. The same applies to the subsequent figures.
  • the feature extraction unit 52 calculates the integral value of the material pressure during the injection process (from the start of injection to the time when the material pressure reaches its peak value) in the injection molding process as the feature value.
  • the feature extraction unit 52 also detects the peak value of the material temperature during the injection process as the feature value.
  • the feature value for example, the peak value of the physical quantity contained in the sensor information may be detected, or the integral value of the physical quantity from the injection process to the cooling process or the maximum differential value of the physical quantity may be calculated.
  • the physical quantity may also be used as the feature value directly.
  • the feature extraction unit 52 records the extracted feature value in the feature DB 53.
  • the feature values extracted by the feature extraction unit 52 and the quality inspection results of the molded product by the quality inspection device 33 correspond to the process data of the present invention.
  • Figure 5 shows an example of feature DB 53.
  • feature DB 53 the features of the sensor information, the combination of the injection molding machine 31 and the mold, and a specified material unit (lot) are linked and recorded.
  • a data group that links the specified material unit, the combination of the injection molding machine 31 and the mold, and the extracted features recorded in feature DB 53 is called a feature data set.
  • the feature values extracted from the physical quantities obtained from the in-mold sensor 32 are strongly affected by the change in material information (e.g., fluidity and physical property values) between the material units. For this reason, it becomes possible to record the material information specific to each material unit as the difference between the feature values.
  • the feature quantities extracted from the physical quantities obtained from the in-mold sensor 32 are affected by differences between the injection molding machine 31 and the mold, so the feature quantity data set stores material information specific to each material unit for each combination of the injection molding machine 31 and the mold as differences between the feature quantities.
  • the feature quantity data set is based on the premise that all combinations of the injection molding machine 31 and the mold are fixed.
  • the quality inspection results input from the quality inspection device 33 are recorded in the quality DB 54.
  • FIG. 6 shows an example of quality DB 54.
  • Quality DB 54 records quality inspection results (weight and dimensions in this figure) input from quality inspection device 33, the combination of injection molding machine 31 and mold, and a specified material unit (lot) in association with each other.
  • the PVT characteristic calculation model coefficient DB55 stores each coefficient of the PVT characteristic calculation model constructed based on the PVT characteristics of a material of a specific material unit whose physical properties are known, in association with information on the specific material unit.
  • calculation models such as the 2-domain-tait model, the Spencer-Glimore model, the Modified-Cell model, and the Simha-Somcynsky model can be used.
  • each coefficient of a viscosity calculation model constructed based on the viscosity of a material of a predetermined material unit whose physical properties are known is stored in association with information of the predetermined material unit.
  • the viscosity calculation model may be, for example, a calculation model such as the Cross-WLF model.
  • the linking processing unit 57 associates the feature data set linked to the material information acquired from the feature DB 53, the molded product quality and manufacturing conditions acquired from the quality DB 54, the coefficients of the PVT characteristic calculation model acquired from the PVT characteristic calculation model coefficient DB 55, and the coefficients of the viscosity calculation model acquired from the viscosity calculation model coefficient DB 56, using the material information as a linking key.
  • the linking processing unit 57 then records the associated feature data set, molded product quality, the coefficients of the PVT characteristic calculation model, the coefficients of the viscosity calculation model, and the materials used in manufacturing in the learning DB 58 as a learning data set.
  • the learning data selection unit 59 refers to the learning DB 58 and selects one or more learning data sets corresponding to a material (material with unknown physical properties) designated by the user as the analysis target and a material (material with known physical properties) having the same product number but a different lot. The more learning data sets selected here, the more the learning accuracy of the regression model described below can be improved.
  • the learning data selection unit 59 then extracts values that are highly correlated with the PVT characteristics (described in detail below) from the selected learning data sets as PVT characteristic learning data sets, and stores them in the learning DB 601 (FIG. 8) of the PVT characteristic calculation model estimation unit 60.
  • the learning data selection unit 59 also extracts values that are highly correlated with the viscosity (described in detail below) from the selected learning data sets as viscosity learning data sets, and stores them in the learning DB 611 (FIG. 8) of the viscosity calculation model estimation unit 61.
  • the learning data selection unit 59 corresponds to the selection unit of the present invention.
  • FIG. 7 shows an example of a learning data set extracted by the learning data selection unit 59, where (A) shows an example of a PVT characteristic learning data set, and (B) shows an example of a viscosity learning data set.
  • the explanatory variables used in training the PVT characteristic calculation model are the characteristic value of material pressure, which is highly correlated with PVT characteristics, the feature value of material temperature, and weight and dimensions as molded product quality.
  • the explanatory variables used in training the viscosity calculation model are the characteristic value of material pressure, which is highly correlated with viscosity.
  • the PVT characteristic calculation model estimation unit 60 estimates a PVT characteristic calculation model corresponding to a material with unknown physical properties.
  • the viscosity calculation model estimation unit 61 estimates a viscosity calculation model corresponding to a material with unknown physical properties.
  • FIG. 8 shows an example configuration of the PVT characteristic calculation model estimation unit 60 and the viscosity calculation model estimation unit 61.
  • the PVT characteristic calculation model estimation unit 60 includes a learning DB 601, an estimation DB 602, a regression model learning unit 603, a learned regression model DB 604, a physical property calculation model estimation unit 605, and a PVT characteristic calculation model DB 606.
  • the learning DB 601 stores a PVT characteristic learning data set used to generate a PVT characteristic calculation model selected by the learning data selection unit 59.
  • the estimation DB 602 stores an estimation data set (feature data set, molded product quality) corresponding to a material whose physical properties are unknown.
  • the regression model learning unit 603 reads the PVT characteristic learning dataset from the learning DB 601, and specifies the feature dataset and molded product quality included in the PVT characteristic learning dataset as explanatory variables of the regression model.
  • the regression model learning unit 603 also specifies the PVT characteristic calculation model coefficients as objective variables of the regression model, machine-learns a regression model that predicts the objective variable from the explanatory variables, generates a learned regression model, and stores it in the learned regression model DB 604.
  • the parameters in the regression model are determined by training data.
  • regression model refers to regression models in general
  • trained regression model refers to a regression model whose parameters are determined by a training dataset.
  • the regression model may be, for example, linear regression, ridge regression, support vector machine, neural network, random forest regression, or a regression model that combines these. Furthermore, when a regression model that can have multiple objective variables, such as a neural network, is used, multiple coefficients may be selected as objective variables from among the coefficients of the PVT characteristic calculation model.
  • the physical property calculation model estimation unit 605 estimates a PVT characteristic calculation model for a material whose PVT characteristics are unknown. Specifically, the physical property calculation model estimation unit 605 inputs the estimation data set read from the estimation DB 602 into a learned regression model read from the learned regression model DB 604 (for example, a learned regression model corresponding to a material whose product number is the same as that of a material of a specific material unit whose PVT characteristics are unknown, but whose specific material unit (for example, lot) is different) and obtains coefficients of the PVT characteristic calculation model output from the learned regression model, thereby estimating a PVT characteristic calculation model for a material whose PVT characteristics are unknown. In addition, the physical property calculation model estimation unit 605 stores the estimated PVT characteristic calculation model (hereinafter referred to as the estimated PVT characteristic calculation model) in the PVT characteristic calculation model DB 606.
  • the estimated PVT characteristic calculation model hereinafter referred to as the estimated PVT characteristic calculation model
  • the PVT characteristic calculation model DB 606 stores the known PVT characteristic calculation models stored in the PVT characteristic calculation model coefficient DB 55 and the estimated PVT characteristic calculation models estimated by the physical property calculation model estimation unit 605 as data linked to the corresponding material units and information indicating whether the PVT characteristic calculation model is known or estimated.
  • the viscosity calculation model estimation unit 61 includes a learning DB 611, an estimation DB 612, a regression model learning unit 613, a learned regression model DB 614, a physical property calculation model estimation unit 615, and a viscosity calculation model DB 616.
  • the learning DB 611 stores a viscosity learning data set used to generate a viscosity calculation model selected by the learning data selection unit 59.
  • the estimation DB 612 stores an estimation data set (feature data set, molded product quality) corresponding to a material whose physical properties are unknown.
  • the regression model learning unit 613 reads out the viscosity learning dataset from the learning DB 611, and specifies the feature dataset included in the viscosity learning dataset as the explanatory variables of the regression model.
  • the regression model learning unit 613 also specifies the viscosity calculation model coefficients as the objective variables of the regression model, machine-learns a regression model that predicts the objective variables from the explanatory variables, generates a learned regression model, and stores it in the learned regression model DB 614.
  • the physical property calculation model estimation unit 615 estimates a viscosity calculation model for a material whose viscosity is unknown. Specifically, the physical property calculation model estimation unit 615 inputs the estimation data set read from the estimation DB 612 into a learned regression model read from the learned regression model DB 614 (for example, a learned regression model corresponding to a material whose product number is the same as that of a material whose viscosity is unknown and whose predetermined material unit (for example, lot) is different) and obtains coefficients of the viscosity calculation model output from the learned regression model, thereby estimating a viscosity calculation model for a material whose viscosity is unknown and whose predetermined material unit. In addition, the physical property calculation model estimation unit 615 stores the estimated viscosity calculation model (hereinafter referred to as the estimated viscosity calculation model) in the viscosity calculation model DB 616.
  • the estimated viscosity calculation model hereinafter referred to as the estimated viscosity calculation model
  • the viscosity calculation model DB 616 stores the known viscosity calculation models stored in the viscosity calculation model coefficient DB 56 and the estimated viscosity calculation models estimated by the physical property calculation model estimation unit 615 as data linked to the corresponding material units and information indicating whether the viscosity calculation model is known or estimated.
  • the flow analysis unit 42 includes an analysis property calculation model DB 71, an analysis property model reading unit 72, an analysis unit 73, and an analysis result output unit 74.
  • the analytical property calculation model DB71 stores the estimated PVT characteristic calculation model and the estimated viscosity calculation model generated by the property calculation model generation unit 41.
  • the analytical property model readout unit 72 reads out the coefficients of the estimated PVT characteristic calculation model and the estimated viscosity calculation model from the analytical property calculation model DB71 and outputs them to the analysis unit 73.
  • the analysis unit 73 performs flow analysis on a material with unknown physical properties using the coefficients of the estimated PVT characteristic calculation model and the coefficients of the estimated viscosity calculation model according to the analysis shape and analysis conditions specified by the user, and estimates, for example, the quality (weight, dimensions, etc.) of the molded product as the analysis result and outputs it to the analysis result output unit 74.
  • the analysis shape specified by the user refers to the shape of the mold.
  • the analysis shape (mold shape) may be different from the mold shape when the regression model was trained by machine learning.
  • the analysis conditions specified by the user may be different from the reference molding conditions when the regression model was trained by machine learning.
  • the analysis result output unit 74 compiles the analysis results (quality of molded products) by the analysis unit 73 for each lot, and calculates, for example, the difference between the maximum and minimum values of the values representing quality (weight, dimensions, etc.) as the quality variation. Note that instead of or in addition to the difference between the maximum and minimum values of the values representing quality, for example, the variance, standard deviation, etc. of the values representing quality may be calculated.
  • the analysis result output unit 74 also determines whether the calculated quality variation meets the management conditions preset by the user. Furthermore, the analysis result output unit 74 notifies the user by displaying the calculated quality variation and the determination result of whether the management conditions are met on the UI screen 1000 ( Figure 14).
  • control range specified by the user may be compared with the quality variation for each lot, and notification may be given as to whether the quality variation falls within the control range. Also, it may be possible to fix the material used and notify whether the quality of the molded product falls within the control range when the shape conditions and standard molding conditions are changed. Also, it may be possible to fix the shape conditions and standard molding conditions and notify whether the quality of the molded product falls within the control range when the material is changed.
  • FIG. 9 shows an example of the configuration of a general computer 100, such as a personal computer or a server computer, that realizes the molded product quality variation estimation device 40.
  • the computer 100 includes a processor 101 such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), memory 102 such as a DRAM (Dynamic Random Access Memory), storage 103 such as a HDD (Hard Disk Drive) or SSD (Solid State Drive), input devices 104 such as a keyboard, mouse, touch panel, etc., output devices 105 such as a display, etc., and a communication module 106 such as a NIC (Network Interface Card).
  • processor 101 such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit)
  • memory 102 such as a DRAM (Dynamic Random Access Memory)
  • storage 103 such as a HDD (Hard Disk Drive) or SSD (Solid State Drive)
  • input devices 104 such as a keyboard, mouse, touch panel, etc.
  • output devices 105 such as a display, etc.
  • a communication module 106 such as a NIC (Network Interface Card).
  • the program may be installed on the computer 100 from a program source.
  • the program source may be, for example, a program distribution server or a storage medium readable by the computer 100.
  • the program distribution server may include a processor and storage resources for storing the program to be distributed, and the processor of the program distribution server may distribute the program to be distributed to other computers.
  • two or more programs may be realized as one program, and one program may be realized as two or more programs.
  • the functional blocks of the sensor information storage unit 51, feature extraction unit 52, linking processing unit 57, learning data selection unit 59, PVT characteristic calculation model estimation unit 60 (excluding various internal DBs), and viscosity calculation model estimation unit 61 (excluding various internal DBs) in the physical property calculation model generation unit 41 are realized by the processor 101 provided in the computer 100.
  • the functional blocks of the analysis physical property model reading unit 72, analysis unit 73, and analysis result output unit 74 in the flow analysis unit 42 are realized by the processor 101 provided in the computer 100.
  • These functional blocks are realized by the processor 101 executing a specific program loaded into memory. However, some or all of these functional blocks may be realized as hardware using integrated circuits or the like. Furthermore, these functional blocks may be realized by one computer 100, or by multiple computers 100. When realized by multiple computers 100, the multiple computers 100 only need to be connected via a network, and may be distributed and located in remote locations.
  • the feature quantity DB 53, quality DB 54, PVT characteristic calculation model coefficient DB 55, viscosity calculation model coefficient DB 56, learning DB 58, various DBs within the PVT characteristic calculation model estimation unit 60, and various DBs within the viscosity calculation model estimation unit 61 in the physical property calculation model generation unit 41 of the molded product quality variation estimation device 40 are realized by the memory 102 and storage 103 provided in the computer 100.
  • the flow analysis unit 42 and the analysis physical property calculation model DB 71 are realized by the memory 102 and storage 103 provided in the computer 100.
  • the input unit 43 is realized by an input device 104 provided in the computer.
  • the display unit 44 is realized by an output device 105 provided in the computer.
  • the communication unit 45 is realized by a communication module 106 provided in the computer.
  • the user will connect to the molded product quality variation estimation device 40 via a network using a terminal device such as a PC that the user uses, and operate the molded product quality variation estimation device 40.
  • FIG. 10 is a cross-sectional view showing an example of the configuration of the injection molding machine 31.
  • the injection molding process is roughly divided into the following steps: weighing/plasticization, injection, pressure holding, cooling, and removal.
  • the injection molding machine 31 uses the plasticization motor 501 as a driving force to retract the screw 502, and supplies the material, resin pellets 504, from the hopper 503 into the cylinder 505.
  • the material is then plasticized into a uniform molten state by heating the cylinder 505 with the heater 506 and by rotating the screw 502.
  • the density of the molten material and the degree of breakage of the reinforcing fibers change, and these changes can affect the quality of the molded product.
  • the injection molding machine 31 advances the screw 502 using the injection motor 507 as the driving force, and injects the molten material into the mold 509 through the nozzle 508.
  • the pressure measured by the load cell 510 is controlled so as to approach the pressure holding value included in the injection molding conditions.
  • the molten material injected into the mold 509 is simultaneously subjected to cooling from the wall surface of the mold 509 and shear heat caused by the flow. In other words, the molten material flows inside the mold 509 while being subjected to cooling and heating. If the clamping force that keeps the mold 509 closed is insufficient, tiny gaps will occur in the mold 509 after the molten material solidifies, which can affect the quality of the molded product.
  • the injection molding machine 31 cools the mold 509 below the solidification temperature to solidify the molten material. Residual stresses that occur during the cooling process can affect the quality of the molded product. Residual stresses occur due to anisotropy of the material properties caused by the flow inside the mold 509, density distribution due to holding pressure, and uneven molding shrinkage rates.
  • the injection molding machine 31 opens the mold 509 by driving the mold clamping mechanism 512 using the motor 511 as the driving force. Then, the ejector mechanism 514 is driven by the ejection motor 513 as the driving force, and the molded product, which is the solidified molten material, is removed from the mold 509. At this time, if the ejector mechanism 514 does not exert a sufficient ejection force evenly on the molded product, residual stress will remain in the molded product, which may affect the quality of the molded product.
  • the pressure value of the load cell 510 is controlled to approach the pressure value included in the reference molding conditions.
  • the temperature of the cylinder 505 is controlled by multiple heaters 506.
  • the shape of the screw 502 the shape of the cylinder 505, and the shape of the nozzle 508 in the injection molding machine 31
  • different pressure losses may occur in each injection molding machine 31.
  • the pressure of the material at the material inlet of the mold 509 becomes a lower value than the pressure specified as the reference molding conditions.
  • the temperature of the material at the material inlet of the mold 509 may differ from the temperature specified as the reference molding conditions due to the arrangement of the heater 506 and the shear heat of the material in the nozzle 508. Such differences in pressure and temperature may affect the quality of the molded product.
  • the weight and dimensions of the molded product are evaluated as a quality inspection of the molded product. It is believed that the weight of the molded product varies depending on the specific volume of the material relative to the volume of the mold 509, provided that there are no defects in the shape of the molded product, such as short shots or overpacking. Therefore, the weight of the molded product is a physical quantity that is highly correlated with the PVT characteristics. It is believed that the dimensions of the molded product vary depending on the shrinkage rate of the material, provided that there are no defects in the shape of the molded product, such as short shots or overpacking. Therefore, the dimensions of the molded product are also a physical quantity that is highly correlated with the PVT characteristics.
  • the shape characteristics of a molded product are strongly correlated with the pressure history, temperature history, and clamping force during the injection, pressure holding, and cooling processes.
  • FIG. 11 shows an example of a mold 509, where (A) is a top view of a product portion 5091 of the mold 509, (B) is a side view of the product portion 5091, (C) is a top view of a runner portion 5092 of the mold 509, and (D) is a side view of the runner portion 5092.
  • the molten material flows into the product section 5091 from five gates 5093 in the runner section 5092.
  • a material temperature sensor 321 that measures the material temperature in the mold 509
  • a material pressure sensor 322 that measures the material pressure
  • a mold temperature sensor 323 that measures the temperature of the mold 509
  • the material temperature sensor 321 and the material pressure sensor 322 are arranged.
  • the material temperature sensor 321, the material pressure sensor 322, and the mold temperature sensor 323 correspond to the in-mold sensor 32 ( Figure 1).
  • each sensor material temperature sensor 321, material pressure sensor 322, and mold temperature sensor 323
  • the arrangement of each sensor includes at least the sprue section 5094 or runner section 5092 from the material inlet in the mold 509 to the product section (cavity) 5091.
  • "preferable” merely means that some advantageous effect can be expected, and does not mean that the configuration is essential.
  • each sensor may be in a location where a characteristic flow can be observed, such as directly below the gate in product section 5091, at the resin junction (weld), or at the end of the flow (all not shown).
  • a physical quantity that correlates with the material's inherent PVT characteristics can be determined with higher accuracy from the physical quantities obtained from multiple sensors with different placements.
  • highly accurate predictions are possible.
  • the pressure and temperature of the molten material during molding vary depending on the position within the mold 509. Therefore, by using multiple sensors with different positions, it is possible to measure the physical quantities of the material under different pressure and temperature conditions under a single molding condition. This makes it possible to determine the physical quantities that correlate with the material's inherent PVT characteristics with greater precision.
  • each sensor varies depending on the mold structure and the physical quantity being measured. For physical quantities other than the mold opening amount, it is preferable to place the sensors in the sprue section 5094, if possible, regardless of the mold structure.
  • the sensors are placed in the runner section 5092 directly below the sprue section 5094, the runner section 5092 immediately before the gate section 5093, etc.
  • the gate portion 5093 is a pin gate, a three-plate structure is required for the placement of the sensors, but the sensors are placed in the runner portion 5092 directly below the sprue portion 5094. Also, if the gate portion 5093 is a pin gate, a dummy runner portion 5092 that is not connected to the product portion 5091 may be provided for measurement purposes, and the sensors may be placed on that runner portion. Providing a runner portion 5092 dedicated to measurement improves the freedom of mold design.
  • each sensor is installed in the runner section 5092 before it flows into the gate section 5093.
  • FIG. 12 is a flowchart illustrating an example of a molded product quality variation estimation process performed by the injection molding system 10.
  • the learning DB 58 of the physical property calculation model generation unit 41 already stores a learning data set corresponding to a material (material with known physical properties) that has the same product number as the material to be analyzed (material with unknown physical properties) that can be specified by the user but is from a different lot.
  • the estimation DBs 602, 612 of the physical property calculation model generation unit 41 already store an estimation data set corresponding to the material to be analyzed (material with unknown physical properties) that can be specified by the user.
  • estimation data set corresponding to the material to be analyzed (material with unknown physical properties) by the user is not stored in the estimation DBs 602, 612, it is sufficient to execute an injection molding process using the material in question in the injection molding machine 31, generate an estimation data set corresponding to the material, and store it in the estimation DBs 602, 612.
  • the molded product quality variation estimation process is started, for example, when the user specifies the product number and lot number of the material to be analyzed, the analysis shape (mold product number), analysis properties, analysis conditions, and the quality control range of the molded product on the UI screen 1000 ( Figure 14), and operates the "Execute analysis” button 1006.
  • the learning data selection unit 59 of the physical property calculation model generation unit 41 refers to the learning DB 58 and selects one or more learning data sets corresponding to materials (materials with known physical properties) that have the same product number but different lots as the material (materials with unknown physical properties) specified by the user as the analysis target.
  • the learning data selection unit 59 then extracts PVT characteristic learning data sets to be used for generating a PVT characteristic calculation model from the selected learning data sets, and stores them in the learning DB 601 of the PVT characteristic calculation model estimation unit 60.
  • the learning data selection unit 59 also extracts a viscosity learning data set to be used for generating a viscosity calculation model from the selected learning data sets, and stores them in the learning DB 611 of the viscosity calculation model estimation unit 61 (step S1).
  • the regression model learning unit 603 generates a learned regression model that outputs PVT characteristic calculation model coefficients and stores it in the learned regression model DB 604.
  • the regression model learning unit 613 generates a learned regression model that outputs viscosity calculation model coefficients and stores it in the learned regression model DB 614 (step S2).
  • the regression model learning unit 603 reads out the PVT characteristic learning dataset from the learning DB 601, and specifies the feature dataset and molded product quality included in the PVT characteristic learning dataset as explanatory variables of the regression model.
  • the regression model learning unit 603 also specifies the PVT characteristic calculation model coefficients as objective variables of the regression model, and generates a learned regression model by learning a regression model that predicts the objective variable from the explanatory variables.
  • the regression model learning unit 613 reads out the viscosity learning dataset from the learning DB 611, and specifies the feature dataset included in the viscosity learning dataset as explanatory variables of the regression model.
  • the regression model learning unit 613 also specifies the viscosity calculation model coefficients as objective variables of the regression model, and generates a learned regression model by learning a regression model that predicts the objective variable from the explanatory variables.
  • the physical property calculation model estimation unit 605 generates an estimated PVT characteristic calculation model corresponding to the material whose PVT characteristics are unknown, and stores it in the PVT characteristic calculation model DB 606.
  • the physical property calculation model estimation unit 615 generates an estimated viscosity calculation model for the material whose viscosity is unknown, and stores it in the viscosity calculation model DB 616 (step S3).
  • the physical property calculation model estimation unit 605 reads out an estimation data set corresponding to the material to be analyzed from the estimation DB 602, inputs it to the learned regression model for the PVT characteristic calculation model generated in step S2, and obtains coefficients of the PVT characteristic calculation model, thereby generating an estimated PVT characteristic calculation model corresponding to the material to be analyzed.
  • the physical property calculation model estimation unit 605 inputs an estimation data set corresponding to the material to be analyzed from the estimation DB 612 to the learned regression model for the viscosity calculation model generated in step S2, and obtains coefficients of the viscosity calculation model, thereby estimating an estimated viscosity calculation model corresponding to the material to be analyzed.
  • the estimated PVT characteristic calculation model and the estimated viscosity calculation model generated in step S3 are also stored in the analysis property calculation model DB71 of the flow analysis unit 42.
  • the analysis property model reading unit 72 of the flow analysis unit 42 reads out the coefficients of the estimated PVT characteristic calculation model and the coefficients of the estimated viscosity calculation model corresponding to the material to be analyzed from the analysis property calculation model DB 71, and outputs them to the analysis unit 73. Then, the analysis unit 73 executes a flow analysis of the material to be analyzed using the coefficients of the estimated PVT characteristic calculation model and the coefficients of the estimated viscosity calculation model according to the analysis shape and analysis conditions specified by the user, and estimates, for example, the quality (weight, dimensions, etc.) of the molded product as the analysis result and outputs it to the analysis result output unit 74 (step S4).
  • the analysis result output unit 74 compiles the analysis results (molded product quality) by the analysis unit 73 for each lot, and calculates, for example, the difference between the maximum and minimum values representing the quality (weight, dimensions, etc.) as the quality variation.
  • the analysis result output unit 74 also determines whether the calculated quality variation passes the management conditions preset by the user.
  • the analysis result output unit 74 displays the quality variation and the pass/fail judgment results for the management conditions on the UI screen 1000 ( Figure 14) (step S5). This is an example of the molded product quality variation estimation process by the injection molding system 10.
  • the molded product quality variation estimation process can generate an estimated PVT property calculation model and an estimated viscosity calculation model that correspond to the material to be analyzed.
  • the molded product quality variation estimation process can also estimate the PVT characteristics and viscosity that correspond to the material to be analyzed based on the generated estimated PVT property calculation model and estimated viscosity calculation model.
  • the molded product quality variation estimation process can then estimate the quality and its variation of the molded product when the material to be analyzed is used, based on the estimated PVT characteristics and viscosity that correspond to the material to be analyzed. This allows the user to obtain the quality variation without mass-producing the product (molded product) using the material to be analyzed, and therefore allows the user to appropriately select a material suitable for mass production of the product.
  • FIG. 13 is a diagram for explaining the validity of the estimated PVT property calculation model and the estimated viscosity calculation model generated by the molded product quality variation estimation process.
  • Figure (A) shows a comparison between the generated estimated PVT characteristic calculation model (line plot) corresponding to material D and the actual measured values (dot plot) of the PVT characteristics of material D when the pressure level is fixed at 50 MPa, 100 MPa, or 150 MPa and the temperature is changed from 30°C to 250°C in 5°C increments.
  • the horizontal axis of Figure (A) is temperature, and the vertical axis is specific volume.
  • the estimated PVT characteristic calculation model is almost identical to the actual measured values, so it can be seen that the generated estimated PVT physical property calculation model is highly valid.
  • Figure (B) shows a comparison between the generated estimated viscosity calculation model (line plot) corresponding to material D and the actual measured viscosity values (dot plot) of material D when the temperature is fixed at 200°C and the shear rate is changed in the range of 6 to 12,000 [1/sec].
  • Figure (B) is a double logarithmic graph, with the horizontal axis representing shear rate and the vertical axis representing viscosity.
  • the estimated viscosity calculation model is almost identical to the actual measured values, so it can be seen that the generated estimated viscosity calculation model is highly valid.
  • ⁇ Display example of UI screen 1000> 14 shows a display example of a UI screen 1000.
  • the UI screen 1000 is provided with an input field 1001 for specifying a material to be analyzed, an input field 1002 for specifying a mold as an analysis shape, an input field 1003 for selecting and specifying analysis conditions, an input field 1004 for selecting and specifying an analysis physical property model, an input field 1005 for specifying a control width, an "Execute Analysis" button 1006 for instructing execution of a fluid analysis under various specified conditions, and a display field 1007 for displaying the analysis results.
  • input field 1001 for example, one product number and multiple lot numbers for the material to be analyzed are input.
  • input field 1002 for example, the product number of the mold is input. Note that the mold product number input here may be different from the mold product number corresponding to the learning data set used to train the regression model.
  • the analysis conditions can be selected and specified by checking the items displayed (material temperature, mold temperature, injection speed, etc.).
  • the analysis property model can be selected and specified by checking the displayed physical properties (viscosity, PVT characteristics).
  • the type of quality (weight, dimensions) and its lower and upper limits can be input as the control range.
  • Display field 1007 displays the control range specified by the user, as well as a quantified version of the quality variation that may occur when materials D, E, and F, which have the same product number but different lots and are specified in input field 1001, are used. In addition, display field 1007 displays the pass/fail result of the quality variation relative to the control range.
  • Ultra-visible display 1000 allows the user to understand the quality variation that may occur when using the material that the user has specified as the analysis target, and visually check whether the variation falls within the control range, allowing the user to select an appropriate material.
  • the above-mentioned configurations, functions, processing units, processing means, etc. may be realized in part or in whole in hardware, for example by designing them as integrated circuits.
  • the above-mentioned configurations, functions, etc. may also be realized in software by a processor interpreting and executing a program that realizes each function.
  • Information such as the program, table, file, etc. that realizes each function can be stored in a memory, a recording device such as a hard disk or SSD, or a recording medium such as an IC card, SD card, DVD, etc.
  • the control lines and information lines shown are those that are considered necessary for the explanation, and do not necessarily show all control lines and information lines in the product. In reality, it can be considered that almost all configurations are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

According to the present invention, quality variance of molded articles when using a material having inconsistent physical properties is estimated. This molded article quality variance estimation device comprises: a physical property calculation model estimation unit that estimates physical property calculation models corresponding to a second material whose physical properties are unknown on the basis of process data when a molded article was manufactured using a first material whose physical properties are known and a learned regression model generated on the basis of a physical property calculation model coefficient corresponding to the first material, as well as process data when a molded article was manufactured using the second material; a flow analysis unit that performs a flow analysis on the basis of the estimated physical property calculation models corresponding to the second material, and estimates the quality variance of molded articles using the second material. The physical property calculation model estimation unit estimates two or more physical property calculation models, each corresponding to two or more differing physical properties. The flow analysis unit performs the flow analysis on the basis of the estimated two or more physical property calculation models.

Description

成形品品質ばらつき推定装置、成形品品質ばらつき推定方法、及び射出成形システムApparatus and method for estimating quality variation of molded product, and injection molding system
 本発明は、成形品品質ばらつき推定装置、成形品品質ばらつき推定方法、及び射出成形システムに関する。本発明は2022年11月24日に出願された日本国特許の出願番号2022-187609の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。 The present invention relates to a molded product quality variation estimation device, a molded product quality variation estimation method, and an injection molding system. The present invention claims priority to Japanese Patent Application No. 2022-187609 filed on November 24, 2022, and for designated countries where incorporation by reference to literature is permitted, the contents of that application are incorporated by reference into this application.
 射出成形の分野においては、社会的な資源循環への要求に応じ、合成樹脂等の材料をバージン材から、環境負荷の低いリサイクル材に切り替えることが推進されている。ただし、リサイクル材は、熱履歴が異なる様々なプラスチック製品等を原料とするため、リサイクル材供給業者から同一の製品番号を付して出荷されているものであっても、出荷時のロットが異なるものどうしを比較した場合、それらの物性は必ずしも同一ではなく安定していない。 In the field of injection molding, in response to societal demands for resource circulation, there is a push to switch from virgin synthetic resins and other materials to recycled materials, which have a lower environmental impact. However, because recycled materials are made from a variety of plastic products with different thermal histories, even if they are shipped from recycled material suppliers with the same product number, their physical properties are not necessarily the same or stable when comparing products from different shipping lots.
 材料の物性の不安定さは成形品の品質に影響を与え得る。特に、材料の物性のうち、粘度、及び比容積の圧力・温度依存性(以下、PVT特性と称する)は、成形品の寸法にばらつきを生じさせ得ることが知られている。 Instability in the physical properties of a material can affect the quality of a molded product. In particular, it is known that the viscosity and pressure-temperature dependence of specific volume (hereafter referred to as PVT characteristics) of the material's physical properties can cause dimensional variation in molded products.
 粘度やPVT特性等の物性が異なる材料を新たに採用して射出成形を行う場合、成形性の確認や成形条件の調整を支援するため、CAE(Computer Aided Engineering)を用いた流動解析が行われる。プラスチック部品の設計・材料選定に流動解析を用いる手法は一般的である。ただし、流動解析には、材料の物性データに基づいて物性計算モデルを作成する必要があるが、リサイクル材の各ロット全てに対応して物性計算モデルを作成することは作業量が膨大となるため現実的ではない。 When a new material with different physical properties such as viscosity or PVT characteristics is used for injection molding, flow analysis is performed using CAE (Computer Aided Engineering) to confirm moldability and assist in adjusting molding conditions. It is common to use flow analysis in the design and material selection of plastic parts. However, flow analysis requires the creation of a physical property calculation model based on the physical property data of the material, and creating a physical property calculation model for each lot of recycled material would be a huge amount of work, making it unrealistic.
 流動解析に関し、例えば特許文献1には「射出成形の工程における溶融材料の流動解析を行う流動解析装置であって、射出成形機から得られたデータに基づいて材料物性データとしての粘度データを算出する材料物性データ算出手段と、解析形状モデル、材料物性データおよび成形条件データに基づいて流動解析を行う流動解析手段とを有することを特徴とする流動解析装置」が記載されている。 Regarding flow analysis, for example, Patent Document 1 describes a "flow analysis device that performs flow analysis of molten material in the injection molding process, characterized in that it has a material property data calculation means that calculates viscosity data as material property data based on data obtained from an injection molding machine, and a flow analysis means that performs flow analysis based on an analytical shape model, the material property data, and molding condition data."
特開2003-145577号公報JP 2003-145577 A
 特許文献1に記載の流動解析装置の場合、材料の物性として粘度のみを用いて流動解析を行うため、複数の物性を用いて流動解析を行う場合に比較して解析精度が低い。したがって、例えば、製品番号が同一であってロットが異なる複数の材料を用いた場合の成形品の品質ばらつきを適切に推定することができない。 In the case of the flow analysis device described in Patent Document 1, flow analysis is performed using only viscosity as the physical property of the material, so the analysis precision is lower than when flow analysis is performed using multiple physical properties. Therefore, for example, it is not possible to properly estimate the quality variation of molded products when multiple materials with the same product number but different lots are used.
 本発明は、上記の点に鑑みてなされたものであり、物性が安定していない材料を採用した場合における流動解析の精度を向上させるとともに、成形品の品質のばらつきを推定できるようにすることを目的とする。 The present invention was made in consideration of the above points, and aims to improve the accuracy of flow analysis when using materials with unstable physical properties, and to make it possible to estimate the quality variation of molded products.
 本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下の通りである。 The present application includes multiple means for solving at least some of the above problems, examples of which are as follows:
 上記課題を解決するため、本発明の一態様に係る成形品品質ばらつき推定装置は、射出成形による成形品の品質ばらつきを推定する成形品品質ばらつき推定装置であって、物性が既知の第1材料を用いて成形品を製造した場合のプロセスデータ、及び前記第1材料に対応する物性計算モデル係数に基づいて生成された学習済回帰モデル、並びに物性が未知の第2材料を用いて成形品を製造した場合のプロセスデータに基づき、前記第2材料に対応する物性計算モデルを推定する物性計算モデル推定部と、推定された前記第2材料に対応する前記物性計算モデルに基づいて流動解析を行うことにより、前記第2材料を用いて成形品を製造する場合における前記成形品の品質ばらつきを推定する流動解析部と、を備え、前記物性計算モデル推定部は、異なる2種類以上の物性にそれぞれ対応する2種類以上の前記学習済回帰モデルに基づき、異なる2種類以上の物性にそれぞれ対応する2種類以上の前記物性計算モデルを推定し、前記流動解析部は、推定された前記2種類以上の物性計算モデルに基づいて前記流動解析を行う。 In order to solve the above problem, a molded product quality variation estimation device according to one embodiment of the present invention is a molded product quality variation estimation device that estimates the quality variation of a molded product produced by injection molding, and includes a physical property calculation model estimation unit that estimates a physical property calculation model corresponding to a second material based on process data when a molded product is manufactured using a first material whose physical properties are known, a learned regression model generated based on physical property calculation model coefficients corresponding to the first material, and process data when a molded product is manufactured using a second material whose physical properties are unknown, and a flow analysis unit that estimates the quality variation of the molded product when a molded product is manufactured using the second material by performing flow analysis based on the estimated physical property calculation model corresponding to the second material, where the physical property calculation model estimation unit estimates two or more types of physical property calculation models corresponding to two or more different types of physical properties based on two or more types of learned regression models corresponding to two or more different types of physical properties, and the flow analysis unit performs the flow analysis based on the estimated two or more types of physical property calculation models.
 本発明によれば、物性が安定していない材料を採用した場合における流動解析の精度を向上させることができ、成形品の品質のばらつきを推定することが可能となる。 The present invention makes it possible to improve the accuracy of flow analysis when using materials with unstable physical properties, and to estimate the quality variation of molded products.
 上記した以外の課題、構成、及び効果は、以下の実施形態の説明により明らかにされる。  Problems, configurations, and advantages other than those mentioned above will become clear from the description of the embodiments below.
図1は、製品番号が同一であってロットが異なる複数のリサイクル材の物性の例を示しており、図1(A)はPVT特性を示す図であり、図1(B)は粘度を示す図である。FIG. 1 shows examples of the physical properties of multiple recycled materials having the same product number but different lots, where FIG. 1(A) is a graph showing the PVT characteristics and FIG. 1(B) is a graph showing the viscosity. 図2は、本発明の実施形態に係る射出成形システムの一例を示す図である。FIG. 2 is a diagram showing an example of an injection molding system according to an embodiment of the present invention. 図3は、成形品品質ばらつき推定装置の機能ブロックの構成例を示す図である。FIG. 3 is a diagram showing an example of the functional block configuration of the molded product quality variation estimation device. 図4は、センサ情報の一例を示す図である。FIG. 4 is a diagram illustrating an example of the sensor information. 図5は、特徴量DB(データベース)の一例を示す図である。FIG. 5 is a diagram illustrating an example of a feature amount DB (database). 図6は、品質DBの一例を示す図である。FIG. 6 is a diagram illustrating an example of the quality DB. 図7は、選定した学習用データセットの一例を示す図であり、図7(A)はPVT特性用の学習用データセットを示す図であり、図7(B)は粘度用の学習用データセットを示す図である。7A and 7B are diagrams showing examples of selected learning data sets, where FIG. 7A is a diagram showing a learning data set for PVT characteristics, and FIG. 7B is a diagram showing a learning data set for viscosity. 図8は、PVT特性計算モデル推定部、及び粘度計算モデル推定部の構成例を示す図である。FIG. 8 is a diagram illustrating an example of the configuration of the PVT characteristic calculation model estimating unit and the viscosity calculation model estimating unit. 図9は、一般的な計算機の構成例を示す図である。FIG. 9 is a diagram showing an example of the configuration of a general computer. 図10は、射出成形機の構成例を示す断面図である。FIG. 10 is a cross-sectional view showing an example of the configuration of an injection molding machine. 図11は、金型の一例を示す図であり、図11(A)は金型の製品部の上面図、図11(B)は金型の製品部の側面図、図11(C)は金型のランナ部の上面図、図11(D)は金型のランナ部の側面図である。Figure 11 shows an example of a mold, where Figure 11(A) is a top view of the product part of the mold, Figure 11(B) is a side view of the product part of the mold, Figure 11(C) is a top view of the runner part of the mold, and Figure 11(D) is a side view of the runner part of the mold. 図12は、成形プロセスデータ取得処理の一例を説明するフローチャートである。FIG. 12 is a flowchart illustrating an example of the molding process data acquisition process. 図13は、推定された物性計算モデルの有効性を説明するための図であり、図13(A)は推定されたPVT特性計算モデルの例を示す図であり、図13(B)は推定された粘度計算モデルの一例を示す図である。13A and 13B are diagrams for explaining the effectiveness of an estimated physical property calculation model, in which FIG. 13A is a diagram showing an example of an estimated PVT characteristic calculation model, and FIG. 13B is a diagram showing an example of an estimated viscosity calculation model. 図14は、UI(User Interface)画面の表示例を示す図である。Figure 14 is a diagram showing an example of a UI (User Interface) screen.
 以下、図面を参照して本発明の実施形態を説明する。実施形態は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施することが可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。各種情報の例として、「テーブル」、「リスト」、「キュー」等の表現にて説明することがあるが、各種情報はこれら以外のデータ構造で表現されてもよい。例えば、「XXテーブル」、「XXリスト」、「XXキュー」等の各種情報は、「XX情報」としてもよい。識別情報について説明する際に、「識別情報」、「識別子」、「名」、「ID」、「番号」等の表現を用いるが、これらについてはお互いに置換が可能である。実施形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合及び原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須ではない。また、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除しない。同様に、以下の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合及び原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含む。 Below, an embodiment of the present invention will be described with reference to the drawings. The embodiment is an example for explaining the present invention, and appropriate omissions and simplifications have been made to clarify the explanation. The present invention can be implemented in various other forms. Unless otherwise specified, each component may be singular or plural. The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. For this reason, the present invention is not necessarily limited to the position, size, shape, range, etc. disclosed in the drawings. As examples of various information, descriptions may be given using expressions such as "table," "list," and "queue," but various information may be expressed using data structures other than these. For example, various information such as "XX table," "XX list," and "XX queue" may be expressed as "XX information." When explaining identification information, expressions such as "identification information," "identifier," "name," "ID," and "number" are used, but these are interchangeable. In all drawings for explaining the embodiment, the same components are generally given the same reference numerals, and repeated explanations are omitted. In the following embodiments, the components (including element steps, etc.) are not necessarily essential, unless otherwise specified or considered to be clearly essential in principle. Furthermore, when it is said that "consists of A," "is made of A," "has A," or "includes A," other elements are not excluded, unless otherwise specified to mean only that element. Similarly, in the following embodiments, when referring to the shape, positional relationship, etc. of components, etc., it includes things that are substantially similar or similar to that shape, etc., unless otherwise specified or considered to be clearly not essential in principle.
 <リサイクル材の物性について>
 図1は、成形品の材料となる複数のリサイクル材の物性の例を示している。当該複数のリサイクル材は、製品番号が同一であって、出荷時のロットが異なる(例えば、納入時期が異なる)リサイクル材A,B,Cである。
<Physical properties of recycled materials>
Fig. 1 shows an example of the physical properties of multiple recycled materials that are used as materials for molded products. The multiple recycled materials are recycled materials A, B, and C that have the same product number but different shipping lots (e.g., different delivery times).
 同図(A)は、リサイクル材A,B,CのPVT特性を示しており、横軸は材料の温度[℃]、縦軸は材料の比容積[cm/g]である。なお、材料の圧力は一定値50[MPa]とされている。同図(A)に示す点プロットは、専用の測定装置を用いて得られた実測値である。線プロットは、実測値に対して、次式(1)に示す2-domain Tait PVTモデルと称される既知の計算モデルをフィッティングした結果を示している。 FIG. 1A shows the PVT characteristics of recycled materials A, B, and C, with the horizontal axis representing the temperature of the material [°C] and the vertical axis representing the specific volume of the material [ cm3 /g]. The pressure of the material is a constant value of 50 [MPa]. The dot plots shown in FIG. 1A are actual measurements obtained using a dedicated measuring device. The line plots show the results of fitting a known calculation model called the 2-domain Tait PVT model shown in the following formula (1) to the actual measurements.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 同図(B)は、リサイクル材A,B,Cの粘度を示しており、横軸は材料の剪断速度[1/sec]、縦軸は材料の粘度[Pa・s]である。材料の温度は一定値200[℃]とされている。同図(B)に示す点プロットは、専用の測定装置を用いて得られた実測値である。線プロットは、実測値に対して、次式(2)に示すCross-WLFモデルと称される既知の計算モデルをフィッティングした結果を示している。 Figure (B) shows the viscosity of recycled materials A, B, and C, with the horizontal axis representing the shear rate of the material [1/sec] and the vertical axis representing the viscosity of the material [Pa·s]. The temperature of the material is kept constant at 200°C. The dot plots shown in Figure (B) are actual measurements obtained using a dedicated measuring device. The line plots show the results of fitting a known calculation model called the Cross-WLF model, shown in the following equation (2), to the actual measurements.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図1から明らかなように、リサイクル材の場合、製品番号が同一であってもロットが異なる場合、物性(同図の場合、PVT特性、及び粘度)が安定していないことが確認できる。 As is clear from Figure 1, in the case of recycled materials, even if the product number is the same, if the lot is different, the physical properties (PVT characteristics and viscosity in the figure) are not stable.
 <本発明の実施形態に係る射出成形システム10の構成例>
 次に、図2は、本発明の実施形態に係る射出成形システム10の構成例を示している。射出成形システム10は、物性が安定していない材料、すなわち、物性が未知の材料に対応するPVT特性計算モデル、及び粘度計算モデルを推定し、推定したPVT特性計算モデル、及び粘度計算モデルを用いて流動解析を実行することにより、物性が安定していない材料を採用した場合における成形品の品質のばらつきを定量化するものである。
<Configuration example of injection molding system 10 according to an embodiment of the present invention>
2 shows an example of the configuration of an injection molding system 10 according to an embodiment of the present invention. The injection molding system 10 estimates a PVT characteristic calculation model and a viscosity calculation model corresponding to a material with unstable physical properties, i.e., a material with unknown physical properties, and performs flow analysis using the estimated PVT characteristic calculation model and viscosity calculation model, thereby quantifying the variation in quality of a molded product when a material with unstable physical properties is used.
 射出成形システム10は、製造制御装置20、工場設備30、及び成形品品質ばらつき推定装置40を備える。 The injection molding system 10 includes a manufacturing control device 20, factory equipment 30, and a molded product quality variation estimation device 40.
 製造制御装置20は、工場設備30に含まれる射出成形機31に対し、射出成形による製品(成形品)の製造を指示するものである。製造制御装置20は、製造条件決定部21、及び生産指示部22を備える。 The manufacturing control device 20 instructs the injection molding machine 31 included in the factory equipment 30 to manufacture products (molded products) by injection molding. The manufacturing control device 20 includes a manufacturing condition determination unit 21 and a production instruction unit 22.
 製造条件決定部21は、予めユーザから設定された基準となる射出成形条件(以下、基準成形条件と称する)に基づいた製造条件を決定して生産指示部22に出力する。基準成形条件は、射出成形プロセスの各工程(詳細後述)に対応したパラメータを含む。 The manufacturing condition determination unit 21 determines manufacturing conditions based on standard injection molding conditions (hereinafter referred to as standard molding conditions) previously set by the user, and outputs them to the production instruction unit 22. The standard molding conditions include parameters corresponding to each step of the injection molding process (described in detail later).
 例えば、基準成形条件は、計量・可塑化工程に対するパラメータとして、計量位置、サックバック、背圧、背圧速度、回転数等のパラメータを含む。また、基準成形条件は、射出工程、及び保圧工程に対するパラメータとして、材料圧力、材料温度(材料を加熱するヒータの温度)、金型温度(金型を冷却する冷媒の温度、流量)、保圧時間、せん断速度等を含む。また、基準成形条件は、射出工程、及び保圧工程に対するパラメータとして、射出と圧力とを切り替えるスクリュ位置(VP切替位置)、金型509の型締め力等を含む。さらに、基準成形条件は、冷却工程に対するパラメータとして、保圧後の冷却時間を含む。 For example, the reference molding conditions include parameters such as the metering position, suck back, back pressure, back pressure speed, and rotation speed as parameters for the metering and plasticizing process. The reference molding conditions also include parameters for the injection process and the pressure holding process such as material pressure, material temperature (temperature of the heater that heats the material), mold temperature (temperature and flow rate of the coolant that cools the mold), pressure holding time, and shear rate. The reference molding conditions also include parameters for the injection process and the pressure holding process such as the screw position (VP switching position) that switches between injection and pressure, and the clamping force of the mold 509. The reference molding conditions also include the cooling time after pressure holding as a parameter for the cooling process.
 製造条件は、基準成形条件の他、射出成形機31を指定する情報、金型を指定する情報、金型の容量、金型のランナ部の構成、材料を指定する情報(製品番号、ロット番号)、生産する成形品の数量、生産時期、要求品質等を含む。 The manufacturing conditions include, in addition to the standard molding conditions, information specifying the injection molding machine 31, information specifying the mold, the capacity of the mold, the configuration of the runner part of the mold, information specifying the material (product number, lot number), the number of molded products to be produced, the production time, the required quality, etc.
 生産指示部22は、製造条件に基づく制御情報を出力することにより、射出成形機31に対して製品(成形品)の製造を指示する。なお、製造条件は、射出成形機31を介して成形品品質ばらつき推定装置40にも供給される。成形品品質ばらつき推定装置40に供給された製造条件は、材料の製品番号やロット番号毎にPVT特性計算モデル、及び粘度計算モデルを推定する際に参照される。 The production instruction unit 22 instructs the injection molding machine 31 to manufacture a product (molded product) by outputting control information based on the manufacturing conditions. The manufacturing conditions are also supplied to the molded product quality variation estimation device 40 via the injection molding machine 31. The manufacturing conditions supplied to the molded product quality variation estimation device 40 are referenced when estimating the PVT characteristic calculation model and the viscosity calculation model for each material product number and lot number.
 工場設備30は、射出成形機31、及び品質検査装置33を備える。 The factory equipment 30 includes an injection molding machine 31 and a quality inspection device 33.
 射出成形機31は、生産指示部22からの制御情報に従い、射出成形プロセスを実行し、製造した成形品を品質検査装置33に出力する。射出成形機31は、金型内センサ32を有する。金型内センサ32は、複数の各種センサからなる。金型内センサ32は、例えば、材料温度を測定する温度センサ、材料圧力を測定する圧力センサ、金型温度を測定する温度センサを少なくとも含む。金型内センサ32は、金型内センサ値として射出成形プロセスにおける物理量(温度、圧力等)を測定し、測定結果の時系列データをセンサ情報として成形品品質ばらつき推定装置40に出力する。なお、金型内センサ32により、例えば、材料のせん断速度、材料の物性、金型の開き量(型開き量)等を測定するようにしてもよい。材料の物性とは、例えば、材料の密度、材料の粘度、材料の繊維長の分布(材料が強化繊維含有の場合)等を指す。このうち、材料の流動性に最も相関する物理量は、材料の粘度であるが、材料の流動性に相関する物理量としては、その他の圧力、温度、速度等から算出した流動性に相関する量を用いることもできる。 The injection molding machine 31 executes the injection molding process according to the control information from the production instruction unit 22, and outputs the manufactured molded product to the quality inspection device 33. The injection molding machine 31 has an in-mold sensor 32. The in-mold sensor 32 is composed of a plurality of various sensors. The in-mold sensor 32 includes, for example, at least a temperature sensor for measuring the material temperature, a pressure sensor for measuring the material pressure, and a temperature sensor for measuring the mold temperature. The in-mold sensor 32 measures physical quantities (temperature, pressure, etc.) in the injection molding process as in-mold sensor values, and outputs the time series data of the measurement results as sensor information to the molded product quality variation estimation device 40. The in-mold sensor 32 may measure, for example, the shear rate of the material, the physical properties of the material, the opening amount of the mold (mold opening amount), etc. The physical properties of the material refer to, for example, the density of the material, the viscosity of the material, the fiber length distribution of the material (when the material contains reinforcing fibers), etc. Of these, the physical quantity most correlated with the fluidity of a material is the viscosity of the material, but other quantities correlated with fluidity calculated from pressure, temperature, speed, etc. can also be used as physical quantities correlated with the fluidity of a material.
 品質検査装置33は、成形品の品質を検査する。例えば、品質検査装置33は、成形品の品質として重量、及び寸法を測定する。なお、品質検査装置33による検査項目として、例えば、形状特性(厚さ、ヒケ、バリ、反り等)、外観不良等の表面特性(ウェルド、シルバー、焼け、白化、傷、気泡、剥離、フローマーク、ジェッティング、色、光沢等)、機械的・光学特性(引張強度、耐衝撃特性、透過率等)等を追加してもよい。また、品質検査装置33の代わりに、または追加して、検査員(人力)が成形品の品質検査を行ってもよい。品質検査装置33は、成形品製造時の製造条件と、成形品の品質検査結果とを紐づけて、成形品品質ばらつき推定装置40に出力する。 The quality inspection device 33 inspects the quality of the molded product. For example, the quality inspection device 33 measures the weight and dimensions as the quality of the molded product. Inspection items by the quality inspection device 33 may include, for example, shape characteristics (thickness, sink marks, burrs, warping, etc.), surface characteristics such as appearance defects (welds, silver, burns, whitening, scratches, bubbles, peeling, flow marks, jetting, color, gloss, etc.), mechanical and optical characteristics (tensile strength, impact resistance, transmittance, etc.), etc. Also, instead of or in addition to the quality inspection device 33, an inspector (manually) may inspect the quality of the molded product. The quality inspection device 33 links the manufacturing conditions at the time of manufacturing the molded product with the quality inspection results of the molded product, and outputs them to the molded product quality variation estimation device 40.
 成形品品質ばらつき推定装置40は、物性計算モデル生成部41、流動解析部42、入力部43、表示部44、及び通信部45を備える。 The molded product quality variation estimation device 40 includes a property calculation model generation unit 41, a flow analysis unit 42, an input unit 43, a display unit 44, and a communication unit 45.
 物性計算モデル生成部41は、製造制御装置20からの製造条件、並びに生産工場設備30から入力されたセンサ情報、及び品質検査結果に基づき、物性が未知の材料に対応する物性計算モデル(具体的には、PVT特性計算モデル、及び粘度計算モデル)を生成する。なお、物性計算モデル生成部41において、その他の物性(例えば、結晶化度、結晶化速度等)の物性計算モデルを生成するようにしてもよい。 The physical property calculation model generation unit 41 generates a physical property calculation model (specifically, a PVT characteristic calculation model and a viscosity calculation model) corresponding to a material with unknown physical properties based on the manufacturing conditions from the manufacturing control device 20, the sensor information input from the production factory equipment 30, and the quality inspection results. Note that the physical property calculation model generation unit 41 may also generate physical property calculation models for other physical properties (e.g., degree of crystallinity, crystallization rate, etc.).
 一般に、計算モデルとは、ある現象を数学的に抽象化した数理モデルを指す。PVT特性計算モデルとは、材料のPVT特性を表す数理モデルを指す。粘度計算モデルとは、材料の粘度を表す数理モデルを指す。なお、本実施形態において、PVT特性計算モデル、及び粘度計算モデルとは、材料の所定単位毎(例えば、ロット毎)に数理モデルのパラメータ(係数)が決定された計算モデルのことを指す。 Generally, a computational model refers to a mathematical model that mathematically abstracts a certain phenomenon. A PVT characteristic computation model refers to a mathematical model that represents the PVT characteristics of a material. A viscosity computation model refers to a mathematical model that represents the viscosity of a material. Note that in this embodiment, the PVT characteristic computation model and the viscosity computation model refer to computational models in which the parameters (coefficients) of the mathematical model are determined for each specified unit of material (e.g., for each lot).
 流動解析部42は、物性計算モデル生成部41によって推定された、物性が未知の材料に対応するPVT特性計算モデル、及び粘度計算モデルを用い、物性が未知の材料に対する流動解析を実行し、物性が未知の材料を用いた場合の成形品の品質のばらつきを推定して出力する。 The flow analysis unit 42 uses the PVT characteristic calculation model and viscosity calculation model corresponding to the material with unknown physical properties estimated by the physical property calculation model generation unit 41 to perform flow analysis on the material with unknown physical properties, and estimates and outputs the variation in quality of the molded product when a material with unknown physical properties is used.
 入力部43は、ユーザからの各種の入力を受け付ける。表示部44は、UI画面1000(図14)を表示する。通信部45は、インターネットに代表されるネットワーク(不図示)を介して工場設備30を接続し、各種の情報を通信する。 The input unit 43 accepts various inputs from the user. The display unit 44 displays the UI screen 1000 (FIG. 14). The communication unit 45 connects the factory equipment 30 via a network (not shown) such as the Internet, and communicates various information.
 次に、図3は、物性計算モデル生成部41、及び流動解析部42の機能ブロックの構成例を示している。 Next, FIG. 3 shows an example of the functional block configuration of the physical property calculation model generation unit 41 and the flow analysis unit 42.
 物性計算モデル生成部41は、センサ情報保持部51、特徴量抽出部52、特徴量DB53、品質DB54、PVT特性計算モデル係数DB55、粘度計算モデル係数DB56、連結処理部57、学習用DB58、学習用データ選定部59、PVT特性計算モデル推定部60、及び粘度計算モデル推定部61を備える。 The physical property calculation model generation unit 41 includes a sensor information storage unit 51, a feature extraction unit 52, a feature DB 53, a quality DB 54, a PVT characteristic calculation model coefficient DB 55, a viscosity calculation model coefficient DB 56, a linking processing unit 57, a learning DB 58, a learning data selection unit 59, a PVT characteristic calculation model estimation unit 60, and a viscosity calculation model estimation unit 61.
 センサ情報保持部51は、センサ情報を一時的に保持する。特徴量抽出部52は、センサ情報保持部51によって一時的に保持されているセンサ情報を読み出し、センサ情報に含まれた物理量の特徴量を抽出する。 The sensor information storage unit 51 temporarily stores the sensor information. The feature extraction unit 52 reads the sensor information temporarily stored by the sensor information storage unit 51 and extracts the feature of the physical quantity contained in the sensor information.
 図4は、センサ情報の一例を示している。同図の上段は射出成形プロセスにおける材料圧力の時系列変化を示し、同図の下段は射出成形プロセスにおける材料温度の時系列変化を示している。なお、図中におけるロットA,B,Cは、製品番号が同一であってロットが異なる材料A,B,Cを意味する。以降の図面においても同様とする。 Figure 4 shows an example of sensor information. The top part of the figure shows the time series change in material pressure in the injection molding process, and the bottom part shows the time series change in material temperature in the injection molding process. Note that lots A, B, and C in the figure refer to materials A, B, and C that have the same product number but different lots. The same applies to the subsequent figures.
 例えば、特徴量抽出部52は、射出成形プロセスにおける射出工程(射出開始タイミングから材料圧力がピーク値に達するタイミングまで)における材料圧力の積分値を特徴量として算出する。また、特徴量抽出部52は、射出工程における材料温度のピーク値を特徴量として検出する。なお、特徴量として、例えば、センサ情報に含まれた物理量のピーク値を検出したり、射出工程から冷却工程までの物理量の積分値、物理量の最大微分値を算出したりしてもよい。また、物理量をそのまま特徴量としてもよい。特徴量抽出部52は、抽出した特徴量を特徴量DB53に記録する。特徴量抽出部52によって抽出された特徴量、及び品質検査装置33による成形品の品質検査結果は、本発明のプロセスデータに相当する。 For example, the feature extraction unit 52 calculates the integral value of the material pressure during the injection process (from the start of injection to the time when the material pressure reaches its peak value) in the injection molding process as the feature value. The feature extraction unit 52 also detects the peak value of the material temperature during the injection process as the feature value. Note that, as the feature value, for example, the peak value of the physical quantity contained in the sensor information may be detected, or the integral value of the physical quantity from the injection process to the cooling process or the maximum differential value of the physical quantity may be calculated. The physical quantity may also be used as the feature value directly. The feature extraction unit 52 records the extracted feature value in the feature DB 53. The feature values extracted by the feature extraction unit 52 and the quality inspection results of the molded product by the quality inspection device 33 correspond to the process data of the present invention.
 図5は、特徴量DB53の一例を示している。特徴量DB53には、センサ情報の特徴量と、射出成形機31と金型との組み合わせと、所定の材料単位(ロット)とが紐づけられて記録される。特徴量DB53に記録された、所定の材料単位と、射出成形機31と金型との組み合わせと、抽出した特徴量とを紐づけたデータ群を、特徴量データセットと称する。 Figure 5 shows an example of feature DB 53. In feature DB 53, the features of the sensor information, the combination of the injection molding machine 31 and the mold, and a specified material unit (lot) are linked and recorded. A data group that links the specified material unit, the combination of the injection molding machine 31 and the mold, and the extracted features recorded in feature DB 53 is called a feature data set.
 ここで、射出成形機31と金型との組み合わせを固定し、且つ、射出成形プロセスにおける基準成形条件を固定した状態において、材料の所定の材料単位だけ(例えば、ロットだけ)を変化させた場合、金型内センサ32から得られる物理量から抽出される特徴量は、材料単位間の材料情報(例えば、流動性や物性値)の変化の影響を強く受ける。このため、材料単位毎に固有の材料情報を特徴量間の差として記録することが可能となる。 Here, when the combination of the injection molding machine 31 and the mold is fixed and the reference molding conditions in the injection molding process are fixed, and only a specific material unit of the material (e.g., only the lot) is changed, the feature values extracted from the physical quantities obtained from the in-mold sensor 32 are strongly affected by the change in material information (e.g., fluidity and physical property values) between the material units. For this reason, it becomes possible to record the material information specific to each material unit as the difference between the feature values.
 金型内センサ32から得られる物理量から抽出される特徴量は、射出成形機31及び金型の機差による影響を受けるため、特徴量データセットは、射出成形機31と金型の組み合わせ毎に、材料単位毎に固有の材料情報を特徴量間の差として保存する。本実施形態は、特徴量データセットは、全て、射出成形機31と金型の組み合わせが固定されていることを前提とする。 The feature quantities extracted from the physical quantities obtained from the in-mold sensor 32 are affected by differences between the injection molding machine 31 and the mold, so the feature quantity data set stores material information specific to each material unit for each combination of the injection molding machine 31 and the mold as differences between the feature quantities. In this embodiment, the feature quantity data set is based on the premise that all combinations of the injection molding machine 31 and the mold are fixed.
 図3に戻る。品質DB54には、品質検査装置33から入力された品質検査結果が記録される。 Returning to Figure 3, the quality inspection results input from the quality inspection device 33 are recorded in the quality DB 54.
 図6は、品質DB54の一例を示している。品質DB54には、品質検査装置33から入力された品質検査結果(同図の場合、重量、寸法)と、射出成形機31と金型との組み合わせと、所定の材料単位(ロット)とが紐づけられて記録される。 FIG. 6 shows an example of quality DB 54. Quality DB 54 records quality inspection results (weight and dimensions in this figure) input from quality inspection device 33, the combination of injection molding machine 31 and mold, and a specified material unit (lot) in association with each other.
 図3に戻る。PVT特性計算モデル係数DB55には、物性が既知の所定の材料単位の材料のPVT特性に基づいて構築されたPVT特性計算モデルの各係数が、所定の材料単位の情報と紐づいて記憶されている。PVT特性計算モデルには、例えば2-domain-taitモデル、Spencer-Glimoreモデル、Modified-Cellモデル、Simha-Somcynskyモデル等の計算モデルを用いることができる。 Returning to Figure 3, the PVT characteristic calculation model coefficient DB55 stores each coefficient of the PVT characteristic calculation model constructed based on the PVT characteristics of a material of a specific material unit whose physical properties are known, in association with information on the specific material unit. For the PVT characteristic calculation model, calculation models such as the 2-domain-tait model, the Spencer-Glimore model, the Modified-Cell model, and the Simha-Somcynsky model can be used.
 粘度計算モデル係数DB56には、物性が既知の所定の材料単位の材料の粘度に基づいて構築された粘度計算モデルの各係数が、所定の材料単位の情報と紐づいて記憶されている。本実施形態において、粘度計算モデルには、例えばCross-WLFモデル等の計算モデルを用いることができる。 In the viscosity calculation model coefficient DB56, each coefficient of a viscosity calculation model constructed based on the viscosity of a material of a predetermined material unit whose physical properties are known is stored in association with information of the predetermined material unit. In this embodiment, the viscosity calculation model may be, for example, a calculation model such as the Cross-WLF model.
 連結処理部57は、特徴量DB53から取得した材料情報と紐付けられた特徴量データセットと、品質DB54から取得した成形品品質及び製造条件と、PVT特性計算モデル係数DB55から取得したPVT特性計算モデルの各係数と、粘度計算モデル係数DB56から取得した粘度計算モデルの各係数とを、材料情報を結合キーとして対応付ける。そして、連結処理部57は、対応付けた特徴量データセットと、成形品品質と、PVT特性計算モデルの各係数と、粘度計算モデルの各係数と、製造に使用した材料と、を学習用データセットとして学習用DB58に記録する。 The linking processing unit 57 associates the feature data set linked to the material information acquired from the feature DB 53, the molded product quality and manufacturing conditions acquired from the quality DB 54, the coefficients of the PVT characteristic calculation model acquired from the PVT characteristic calculation model coefficient DB 55, and the coefficients of the viscosity calculation model acquired from the viscosity calculation model coefficient DB 56, using the material information as a linking key.The linking processing unit 57 then records the associated feature data set, molded product quality, the coefficients of the PVT characteristic calculation model, the coefficients of the viscosity calculation model, and the materials used in manufacturing in the learning DB 58 as a learning data set.
 学習用データ選定部59は、学習用DB58を参照し、ユーザによって解析対象に指定された材料(物性が未知の材料)と製品番号が同一であってロットが異なる材料(物性が既知の材料)に対応する学習用データセットを1組以上選定する。なお、ここで選定する学習用データセットの組数が多い程、後述する回帰モデルの学習精度を向上させることができる。そして、学習用データ選定部59は、選定した学習データセットからPVT特性と相関が高い値(詳細後述)をPVT特性学習用データセットとして抽出し、PVT特性計算モデル推定部60の学習用DB601(図8)に格納する。また、学習用データ選定部59は、選定した学習データセットから粘度と相関が高い値(詳細後述)を粘度学習用データセットとして抽出し、粘度計算モデル推定部61の学習用DB611(図8)に格納する。学習用データ選定部59は、本発明の選定部に相当する。 The learning data selection unit 59 refers to the learning DB 58 and selects one or more learning data sets corresponding to a material (material with unknown physical properties) designated by the user as the analysis target and a material (material with known physical properties) having the same product number but a different lot. The more learning data sets selected here, the more the learning accuracy of the regression model described below can be improved. The learning data selection unit 59 then extracts values that are highly correlated with the PVT characteristics (described in detail below) from the selected learning data sets as PVT characteristic learning data sets, and stores them in the learning DB 601 (FIG. 8) of the PVT characteristic calculation model estimation unit 60. The learning data selection unit 59 also extracts values that are highly correlated with the viscosity (described in detail below) from the selected learning data sets as viscosity learning data sets, and stores them in the learning DB 611 (FIG. 8) of the viscosity calculation model estimation unit 61. The learning data selection unit 59 corresponds to the selection unit of the present invention.
 図7は、学習用データ選定部59によって抽出された学習用データセットの一例であり、同図(A)はPVT特性学習用データセットの一例を示し、同図(B)は粘度学習用データセットの一例を示している。 FIG. 7 shows an example of a learning data set extracted by the learning data selection unit 59, where (A) shows an example of a PVT characteristic learning data set, and (B) shows an example of a viscosity learning data set.
 同図(A)に示すように、PVT特性計算モデルの学習には、説明変数として、PVT特性と相関が高い材料圧力の特性値、材料温度の特徴量、成形品品質としての重量、寸法が用いられる。同図(B)に示すように、粘度計算モデルの学習には、説明変数として、粘度と相関が高い材料圧力の特性値が用いられる。 As shown in the figure (A), the explanatory variables used in training the PVT characteristic calculation model are the characteristic value of material pressure, which is highly correlated with PVT characteristics, the feature value of material temperature, and weight and dimensions as molded product quality. As shown in the figure (B), the explanatory variables used in training the viscosity calculation model are the characteristic value of material pressure, which is highly correlated with viscosity.
 図3に戻る。PVT特性計算モデル推定部60は、物性が未知の材料に対応するPVT特性計算モデルを推定する。粘度計算モデル推定部61は、物性が未知の材料に対応する粘度計算モデルを推定する。 Returning to Figure 3, the PVT characteristic calculation model estimation unit 60 estimates a PVT characteristic calculation model corresponding to a material with unknown physical properties. The viscosity calculation model estimation unit 61 estimates a viscosity calculation model corresponding to a material with unknown physical properties.
 次に、図8は、PVT特性計算モデル推定部60、及び粘度計算モデル推定部61の構成例を示している。 Next, FIG. 8 shows an example configuration of the PVT characteristic calculation model estimation unit 60 and the viscosity calculation model estimation unit 61.
 PVT特性計算モデル推定部60は、学習用DB601、推定用DB602、回帰モデル学習部603、学習済回帰モデルDB604、物性計算モデル推定部605、及びPVT特性計算モデルDB606を備える。 The PVT characteristic calculation model estimation unit 60 includes a learning DB 601, an estimation DB 602, a regression model learning unit 603, a learned regression model DB 604, a physical property calculation model estimation unit 605, and a PVT characteristic calculation model DB 606.
 学習用DB601には、学習用データ選定部59により選定されたPVT特性計算モデルの生成に用いるPVT特性学習用データセットが格納される。推定用DB602には、物性が未知の材料に対応する推定用データセット(特徴量データセット、成形品品質)が格納される。 The learning DB 601 stores a PVT characteristic learning data set used to generate a PVT characteristic calculation model selected by the learning data selection unit 59. The estimation DB 602 stores an estimation data set (feature data set, molded product quality) corresponding to a material whose physical properties are unknown.
 回帰モデル学習部603は、学習用DB601からPVT特性学習用データセットを読み出し、PVT特性学習用データセットに含まれる、特徴量データセットと成形品品質とを回帰モデルの説明変数に指定する。また、回帰モデル学習部603は、PVT特性計算モデル係数を回帰モデルの目的変数に指定し、説明変数から目的変数を予測する回帰モデルを機械学習し、学習済回帰モデルを生成して学習済回帰モデルDB604に格納する。 The regression model learning unit 603 reads the PVT characteristic learning dataset from the learning DB 601, and specifies the feature dataset and molded product quality included in the PVT characteristic learning dataset as explanatory variables of the regression model. The regression model learning unit 603 also specifies the PVT characteristic calculation model coefficients as objective variables of the regression model, machine-learns a regression model that predicts the objective variable from the explanatory variables, generates a learned regression model, and stores it in the learned regression model DB 604.
 一般に、回帰モデルとは、説明変数xから目的変数yを予測するモデル(y=f(x))を指す。回帰モデル内のパラメータは学習用データによって決定される。本実施形態において「回帰モデル」とは、回帰モデル全般を意味し、「学習済回帰モデル」とは、学習用データセットによって、回帰モデルのパラメータが決定された回帰モデルを意味する。 Generally, a regression model refers to a model that predicts a response variable y from an explanatory variable x (y = f(x)). The parameters in the regression model are determined by training data. In this embodiment, "regression model" refers to regression models in general, and "trained regression model" refers to a regression model whose parameters are determined by a training dataset.
 本実施形態においては、回帰モデルとして、例えば、線形回帰、リッジ回帰、サポートベクタマシン、ニューラルネットワーク、ランダムフォレスト回帰等、またはこれらを組み合わせた回帰モデルを採用することができる。また、例えばニューラルネットワークのように複数の目的変数を持つことができる回帰モデルを採用した場合、目的変数としてPVT特性計算モデルの係数の中から複数の係数を選定してもよい。 In this embodiment, the regression model may be, for example, linear regression, ridge regression, support vector machine, neural network, random forest regression, or a regression model that combines these. Furthermore, when a regression model that can have multiple objective variables, such as a neural network, is used, multiple coefficients may be selected as objective variables from among the coefficients of the PVT characteristic calculation model.
 物性計算モデル推定部605は、PVT特性が未知である材料のPVT特性計算モデルを推定する。具体的には、物性計算モデル推定部605は、推定用DB602から読み出した推定用データセットを、学習済回帰モデルDB604から読み出した学習済回帰モデル(例えば、後述するPVT特性が未知である所定の材料単位の材料と製品番号が同一であって、所定の材料単位(例えば、ロット)が異なる材料に対応する学習済回帰モデル)に入力して、学習済回帰モデルから出力されるPVT特性計算モデルの係数を得ることにより、PVT特性が未知である材料のPVT特性計算モデルを推定する。また、物性計算モデル推定部605は、推定したPVT特性計算モデル(以下、推定PVT特性計算モデルと称する)をPVT特性計算モデルDB606に格納する。 The physical property calculation model estimation unit 605 estimates a PVT characteristic calculation model for a material whose PVT characteristics are unknown. Specifically, the physical property calculation model estimation unit 605 inputs the estimation data set read from the estimation DB 602 into a learned regression model read from the learned regression model DB 604 (for example, a learned regression model corresponding to a material whose product number is the same as that of a material of a specific material unit whose PVT characteristics are unknown, but whose specific material unit (for example, lot) is different) and obtains coefficients of the PVT characteristic calculation model output from the learned regression model, thereby estimating a PVT characteristic calculation model for a material whose PVT characteristics are unknown. In addition, the physical property calculation model estimation unit 605 stores the estimated PVT characteristic calculation model (hereinafter referred to as the estimated PVT characteristic calculation model) in the PVT characteristic calculation model DB 606.
 PVT特性計算モデルDB606は、PVT特性計算モデル係数DB55に格納されている既知のPVT特性計算モデルと、物性計算モデル推定部605により推定された推定PVT特性計算モデルとを、対応する材料単位と、PVT特性計算モデルが既知であるか又は推定されたものであるかを示す情報とに紐づいたデータとして記憶する。 The PVT characteristic calculation model DB 606 stores the known PVT characteristic calculation models stored in the PVT characteristic calculation model coefficient DB 55 and the estimated PVT characteristic calculation models estimated by the physical property calculation model estimation unit 605 as data linked to the corresponding material units and information indicating whether the PVT characteristic calculation model is known or estimated.
 同様に、粘度計算モデル推定部61は、学習用DB611、推定用DB612、回帰モデル学習部613、学習済回帰モデルDB614、物性計算モデル推定部615、及び粘度計算モデルDB616を備える。 Similarly, the viscosity calculation model estimation unit 61 includes a learning DB 611, an estimation DB 612, a regression model learning unit 613, a learned regression model DB 614, a physical property calculation model estimation unit 615, and a viscosity calculation model DB 616.
 学習用DB611には、学習用データ選定部59により選定された粘度計算モデルの生成に用いる粘度学習用データセットが格納されている。推定用DB612には、物性が未知の材料に対応する推定用データセット(特徴量データセット、成形品品質)が格納される。 The learning DB 611 stores a viscosity learning data set used to generate a viscosity calculation model selected by the learning data selection unit 59. The estimation DB 612 stores an estimation data set (feature data set, molded product quality) corresponding to a material whose physical properties are unknown.
 回帰モデル学習部613は、学習用DB611から粘度学習用データセットを読み出し、粘度学習用データセットに含まれる、特徴量データセットを回帰モデルの説明変数に指定する。また、回帰モデル学習部613は、粘度計算モデル係数を回帰モデルの目的変数に指定し、説明変数から目的変数を予測する回帰モデルを機械学習し、学習済回帰モデルを生成して学習済回帰モデルDB614に格納する。 The regression model learning unit 613 reads out the viscosity learning dataset from the learning DB 611, and specifies the feature dataset included in the viscosity learning dataset as the explanatory variables of the regression model. The regression model learning unit 613 also specifies the viscosity calculation model coefficients as the objective variables of the regression model, machine-learns a regression model that predicts the objective variables from the explanatory variables, generates a learned regression model, and stores it in the learned regression model DB 614.
 物性計算モデル推定部615は、粘度が未知である材料の粘度計算モデルを推定する。具体的には、物性計算モデル推定部615は、推定用DB612から読み出した推定用データセットを、学習済回帰モデルDB614から読み出した学習済回帰モデル(例えば、粘度が未知である所定の材料単位の材料と製品番号が同一であって、所定の材料単位(例えば、ロット)が異なる材料に対応する学習済回帰モデル)に入力して、学習済回帰モデルから出力される粘度計算モデルの係数を得ることにより、粘度が未知である所定の材料単位の材料の粘度計算モデルを推定する。また、物性計算モデル推定部615は、推定した粘度計算モデル(以下、推定粘度計算モデルと称する)を粘度計算モデルDB616に格納する。 The physical property calculation model estimation unit 615 estimates a viscosity calculation model for a material whose viscosity is unknown. Specifically, the physical property calculation model estimation unit 615 inputs the estimation data set read from the estimation DB 612 into a learned regression model read from the learned regression model DB 614 (for example, a learned regression model corresponding to a material whose product number is the same as that of a material whose viscosity is unknown and whose predetermined material unit (for example, lot) is different) and obtains coefficients of the viscosity calculation model output from the learned regression model, thereby estimating a viscosity calculation model for a material whose viscosity is unknown and whose predetermined material unit. In addition, the physical property calculation model estimation unit 615 stores the estimated viscosity calculation model (hereinafter referred to as the estimated viscosity calculation model) in the viscosity calculation model DB 616.
 粘度計算モデルDB616は、粘度計算モデル係数DB56に格納されている既知の粘度計算モデルと、物性計算モデル推定部615により推定された推定粘度計算モデルとを、対応する材料単位と、粘度計算モデルが既知であるか又は推定されたものであるかを示す情報とに紐づいたデータとして記憶する。 The viscosity calculation model DB 616 stores the known viscosity calculation models stored in the viscosity calculation model coefficient DB 56 and the estimated viscosity calculation models estimated by the physical property calculation model estimation unit 615 as data linked to the corresponding material units and information indicating whether the viscosity calculation model is known or estimated.
 図3に戻る。流動解析部42は、解析物性計算モデルDB71、解析物性モデル読み出し部72、解析部73、及び解析結果出力部74を備える。 Returning to FIG. 3, the flow analysis unit 42 includes an analysis property calculation model DB 71, an analysis property model reading unit 72, an analysis unit 73, and an analysis result output unit 74.
 解析物性計算モデルDB71には、物性計算モデル生成部41によって生成された推定PVT特性計算モデル、及び推定粘度計算モデルが格納される。解析物性モデル読み出し部72は、解析物性計算モデルDB71から、推定PVT特性計算モデルの係数、及び推定粘度計算モデルの係数を読み出して解析部73に出力する。解析部73は、ユーザが指定する解析形状、及び解析条件に従い、推定PVT特性計算モデルの係数、及び推定粘度計算モデルの係数を用いて、物性が未知の材料に対する流動解析を実行し、解析結果として、例えば、推定される成形品の品質(重量、寸法等)を推定して解析結果出力部74に出力する。 The analytical property calculation model DB71 stores the estimated PVT characteristic calculation model and the estimated viscosity calculation model generated by the property calculation model generation unit 41. The analytical property model readout unit 72 reads out the coefficients of the estimated PVT characteristic calculation model and the estimated viscosity calculation model from the analytical property calculation model DB71 and outputs them to the analysis unit 73. The analysis unit 73 performs flow analysis on a material with unknown physical properties using the coefficients of the estimated PVT characteristic calculation model and the coefficients of the estimated viscosity calculation model according to the analysis shape and analysis conditions specified by the user, and estimates, for example, the quality (weight, dimensions, etc.) of the molded product as the analysis result and outputs it to the analysis result output unit 74.
 ここで、ユーザが指定する解析形状とは、金型の形状を指す。当該解析形状(金型形状)は、回帰モデルを機械学習した際の金型形状とは異なるものでもよい。また、ユーザが指定する解析条件とは、回帰モデルを機械学習した際の基準成形条件とは異なるものでもよい。 Here, the analysis shape specified by the user refers to the shape of the mold. The analysis shape (mold shape) may be different from the mold shape when the regression model was trained by machine learning. Furthermore, the analysis conditions specified by the user may be different from the reference molding conditions when the regression model was trained by machine learning.
 解析結果出力部74は、解析部73による解析結果(成形品の品質)をロット毎にまとめて、例えば、品質を表す値(重量、寸法等)の最大値と最小値の差分を品質ばらつきとして算出する。なお、品質を表す値の最大値と最小値の差分の代わりに、または追加して、例えば、品質を表す値の分散、標準偏差等を算出してもよい。また、解析結果出力部74は、算出した品質のばらつきが、ユーザが予め設定した管理条件に合格しているか否かを判定する。さらに、解析結果出力部74は、算出した品質のばらつきと、管理条件に合格しているか否かの判定結果をUI画面1000(図14)に表示してユーザに通知する。 The analysis result output unit 74 compiles the analysis results (quality of molded products) by the analysis unit 73 for each lot, and calculates, for example, the difference between the maximum and minimum values of the values representing quality (weight, dimensions, etc.) as the quality variation. Note that instead of or in addition to the difference between the maximum and minimum values of the values representing quality, for example, the variance, standard deviation, etc. of the values representing quality may be calculated. The analysis result output unit 74 also determines whether the calculated quality variation meets the management conditions preset by the user. Furthermore, the analysis result output unit 74 notifies the user by displaying the calculated quality variation and the determination result of whether the management conditions are met on the UI screen 1000 (Figure 14).
 管理条件に対する合否判定としては、例えば、ユーザが指定した管理幅とロット毎の品質ばらつきを比較して、品質ばらつきが管理幅に収まるか否かを通知してもよい。また、使用する材料を固定して、形状条件及び基準成形条件を変化させた場合に成形品の品質が管理幅に収まるか否かを通知してもよい。また、形状条件及び基準成形条件を固定して、材料を変更した場合に成形品の品質が管理幅に収まるか否かを通知してもよい。 To determine whether the control conditions are met, for example, the control range specified by the user may be compared with the quality variation for each lot, and notification may be given as to whether the quality variation falls within the control range. Also, it may be possible to fix the material used and notify whether the quality of the molded product falls within the control range when the shape conditions and standard molding conditions are changed. Also, it may be possible to fix the shape conditions and standard molding conditions and notify whether the quality of the molded product falls within the control range when the material is changed.
 次に、図9は、成形品品質ばらつき推定装置40を実現するパーソナルコンピュータやサーバコンピュータ等の一般的な計算機100の構成例を示している。 Next, FIG. 9 shows an example of the configuration of a general computer 100, such as a personal computer or a server computer, that realizes the molded product quality variation estimation device 40.
 計算機100は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等のプロセッサ101、DRAM(Dynamic Random Access Memory)等のメモリ102、HDD(Hard Disk Drive)やSSD(Solid State Drive)等のストレージ103、キーボード、マウス、タッチパネル等の入力装置104、ディスプレイ等の出力装置105、及び、NIC(Network Interface Card)等の通信モジュール106を備える The computer 100 includes a processor 101 such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), memory 102 such as a DRAM (Dynamic Random Access Memory), storage 103 such as a HDD (Hard Disk Drive) or SSD (Solid State Drive), input devices 104 such as a keyboard, mouse, touch panel, etc., output devices 105 such as a display, etc., and a communication module 106 such as a NIC (Network Interface Card).
 計算機100は、プロセッサ101によりプログラムを実行し、記憶資源(メモリ102、及びストレージ103)や通信モジュール106等を用いながら、プログラムで定められた処理を行う。そのため、プログラムを実行して行う処理の主体を、プロセッサ101としてもよい。同様に、プログラムを実行して行う処理の主体が、プロセッサを有するコントローラ、装置、システム、計算機、ノードであってもよい。プログラムを実行して行う処理の主体は、演算部であれば良く、特定の処理を行う専用回路を含んでいてもよい。ここで、専用回路とは、例えばFPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)、CPLD(Complex Programmable Logic Device)等である。 The computer 100 executes a program using the processor 101, and performs processing defined by the program using storage resources (memory 102 and storage 103), a communication module 106, etc. Therefore, the subject of processing performed by executing a program may be the processor 101. Similarly, the subject of processing performed by executing a program may be a controller, device, system, computer, or node having a processor. The subject of processing performed by executing a program may be a calculation unit, and may include a dedicated circuit that performs specific processing. Here, a dedicated circuit is, for example, an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), or a CPLD (Complex Programmable Logic Device).
 プログラムは、プログラムソースから計算機100にインストールされてもよい。プログラムソースは、例えば、プログラム配布サーバまたは計算機100が読み取り可能な記憶メディアであってもよい。プログラムソースがプログラム配布サーバの場合、プログラム配布サーバはプロセッサと配布対象のプログラムを記憶する記憶資源を含み、プログラム配布サーバのプロセッサが配布対象のプログラムを他の計算機に配布してもよい。また、実施形態において、2以上のプログラムが1つのプログラムとして実現されてもよいし、1つのプログラムが2以上のプログラムとして実現されてもよい。 The program may be installed on the computer 100 from a program source. The program source may be, for example, a program distribution server or a storage medium readable by the computer 100. When the program source is a program distribution server, the program distribution server may include a processor and storage resources for storing the program to be distributed, and the processor of the program distribution server may distribute the program to be distributed to other computers. In addition, in an embodiment, two or more programs may be realized as one program, and one program may be realized as two or more programs.
 物性計算モデル生成部41におけるセンサ情報保持部51、特徴量抽出部52、連結処理部57、学習用データ選定部59、PVT特性計算モデル推定部60(内部の各種DBを除く)、及び粘度計算モデル推定部61(内部の各種DBを除く)の各機能ブロックは、計算機100が備えるプロセッサ101により実現される。同様に、流動解析部42における解析物性モデル読み出し部72、解析部73、及び解析結果出力部74の各機能ブロックは、計算機100が備えるプロセッサ101により実現される。 The functional blocks of the sensor information storage unit 51, feature extraction unit 52, linking processing unit 57, learning data selection unit 59, PVT characteristic calculation model estimation unit 60 (excluding various internal DBs), and viscosity calculation model estimation unit 61 (excluding various internal DBs) in the physical property calculation model generation unit 41 are realized by the processor 101 provided in the computer 100. Similarly, the functional blocks of the analysis physical property model reading unit 72, analysis unit 73, and analysis result output unit 74 in the flow analysis unit 42 are realized by the processor 101 provided in the computer 100.
 これらの機能ブロックは、プロセッサ101がメモリにロードされた所定のプログラムを実行することによって実現される。ただし、これらの機能ブロックの一部または全部を集積回路等によりハードウェアとして実現してもよい。また、これらの機能ブロックは、1台の計算機100によって実現してもよいし、複数台の計算機100によって実現してもよい。複数台の計算機100によって実現する場合、複数台の計算機100は、ネットワークを介して接続されていればよく、遠隔地に分散して配置してもよい。 These functional blocks are realized by the processor 101 executing a specific program loaded into memory. However, some or all of these functional blocks may be realized as hardware using integrated circuits or the like. Furthermore, these functional blocks may be realized by one computer 100, or by multiple computers 100. When realized by multiple computers 100, the multiple computers 100 only need to be connected via a network, and may be distributed and located in remote locations.
 成形品品質ばらつき推定装置40の物性計算モデル生成部41における特徴量DB53、品質DB54、PVT特性計算モデル係数DB55、粘度計算モデル係数DB56、学習用DB58、PVT特性計算モデル推定部60の内部の各種DB、及び粘度計算モデル推定部61の内部の各種DBは、計算機100が備えるメモリ102、及びストレージ103により実現される。同様に、流動解析部42は、解析物性計算モデルDB71は、計算機100が備えるメモリ102、及びストレージ103により実現される。 The feature quantity DB 53, quality DB 54, PVT characteristic calculation model coefficient DB 55, viscosity calculation model coefficient DB 56, learning DB 58, various DBs within the PVT characteristic calculation model estimation unit 60, and various DBs within the viscosity calculation model estimation unit 61 in the physical property calculation model generation unit 41 of the molded product quality variation estimation device 40 are realized by the memory 102 and storage 103 provided in the computer 100. Similarly, the flow analysis unit 42 and the analysis physical property calculation model DB 71 are realized by the memory 102 and storage 103 provided in the computer 100.
 入力部43は、コンピュータが備える入力装置104により実現される。表示部44は、コンピュータが備える出力装置105により実現される。通信部45は、コンピュータが備える通信モジュール106により実現される。 The input unit 43 is realized by an input device 104 provided in the computer. The display unit 44 is realized by an output device 105 provided in the computer. The communication unit 45 is realized by a communication module 106 provided in the computer.
 なお、成形品品質ばらつき推定装置40が、例えば、クラウドサーバ上に存在する場合、ユーザは、自身が用いるPC等の端末装置により、ネットワークを介して成形品品質ばらつき推定装置40に接続し、成形品品質ばらつき推定装置40を操作することになる。 In addition, if the molded product quality variation estimation device 40 exists, for example, on a cloud server, the user will connect to the molded product quality variation estimation device 40 via a network using a terminal device such as a PC that the user uses, and operate the molded product quality variation estimation device 40.
 <射出成形機31による射出成形プロセス>
 次に、射出成形機31による射出成形プロセスについて説明する。図10は、射出成形機31の構成例を示す断面図である。
<Injection molding process by injection molding machine 31>
Next, a description will be given of an injection molding process using the injection molding machine 31. Fig. 10 is a cross-sectional view showing an example of the configuration of the injection molding machine 31.
 上述したように、一連の射出成形プロセスは、計量・可塑化工程、射出工程、保圧工程、冷却工程、及び取出工程に大別される。 As mentioned above, the injection molding process is roughly divided into the following steps: weighing/plasticization, injection, pressure holding, cooling, and removal.
 計量・可塑化工程において、射出成形機31は、可塑化用モータ501を駆動力としてスクリュ502を後退させ、ホッパー503から、材料である樹脂ペレット504をシリンダ505内へ供給する。そして、ヒータ506によるシリンダ505に対する加熱とスクリュ502の回転とにより、材料を可塑化させて均一な溶融状態とする。スクリュ502の背圧、及び回転数は、その設定により、溶融材料の密度と強化繊維の破断度合いとが変化し、これらの変化は成形品品質に影響を与え得る。 In the metering and plasticization process, the injection molding machine 31 uses the plasticization motor 501 as a driving force to retract the screw 502, and supplies the material, resin pellets 504, from the hopper 503 into the cylinder 505. The material is then plasticized into a uniform molten state by heating the cylinder 505 with the heater 506 and by rotating the screw 502. Depending on the settings of the back pressure and rotation speed of the screw 502, the density of the molten material and the degree of breakage of the reinforcing fibers change, and these changes can affect the quality of the molded product.
 射出工程、及び保圧工程において、射出成形機31は、射出用モータ507を駆動力としてスクリュ502を前進させ、ノズル508を介して溶融材料を金型509内へ射出する。この際、ロードセル510によって測定される圧力が、射出成形条件に含まれる保圧値に近づくように制御される。金型509内に射出された溶融材料には、金型509の壁面からの冷却と、流動に起因するせん断発熱とが並行して作用する。すなわち、溶融材料は、冷却作用と加熱作用を受けながら金型509内を流動する。金型509を閉じておく力である型締め力は、その力が不十分である場合、溶融材料が固化した後に金型509に微小な隙間が生じてしまい成形品品質に影響を与え得る。 In the injection process and the pressure holding process, the injection molding machine 31 advances the screw 502 using the injection motor 507 as the driving force, and injects the molten material into the mold 509 through the nozzle 508. At this time, the pressure measured by the load cell 510 is controlled so as to approach the pressure holding value included in the injection molding conditions. The molten material injected into the mold 509 is simultaneously subjected to cooling from the wall surface of the mold 509 and shear heat caused by the flow. In other words, the molten material flows inside the mold 509 while being subjected to cooling and heating. If the clamping force that keeps the mold 509 closed is insufficient, tiny gaps will occur in the mold 509 after the molten material solidifies, which can affect the quality of the molded product.
 冷却工程において、射出成形機31は、金型509を固化温度以下に冷却して溶融材料を固化させる。冷却工程において発生する残留応力は、成形品品質に影響を与え得る。残留応力は、金型509内での流動により生じる材料物性の異方性、保圧による密度分布、成形収縮率の不均等に伴い発生する。 In the cooling process, the injection molding machine 31 cools the mold 509 below the solidification temperature to solidify the molten material. Residual stresses that occur during the cooling process can affect the quality of the molded product. Residual stresses occur due to anisotropy of the material properties caused by the flow inside the mold 509, density distribution due to holding pressure, and uneven molding shrinkage rates.
 取出工程において、射出成形機31は、モータ511を駆動力として型締機構512を駆動させることにより、金型509を開放する。そして、突き出し用モータ513を駆動力としてエジェクタ機構514を駆動させることにより、溶融材料が固化した成形品を金型509から取り出す。この際、エジェクタ機構514による十分な突き出し力が成形品に均等に作用しなかった場合、成形品に残留応力が残ってしまい、成形品の品質に影響を与え得る。 In the removal process, the injection molding machine 31 opens the mold 509 by driving the mold clamping mechanism 512 using the motor 511 as the driving force. Then, the ejector mechanism 514 is driven by the ejection motor 513 as the driving force, and the molded product, which is the solidified molten material, is removed from the mold 509. At this time, if the ejector mechanism 514 does not exert a sufficient ejection force evenly on the molded product, residual stress will remain in the molded product, which may affect the quality of the molded product.
 射出成形機31において、ロードセル510の圧力値は、基準成形条件に含まれた圧力値へ近づくように制御される。シリンダ505の温度は、複数のヒータ506により制御される。ただし、射出成形機31には、スクリュ502の形状、シリンダ505の形状、及びノズル508の形状に機差が存在するため、射出成形機31毎に異なる圧力損失が生じ得る。これにより、金型509の材料流入口における材料の圧力は、基準成形条件として指示された圧力よりも低い値となる。また、金型509の材料流入口における材料の温度は、ヒータ506の配置とノズル508における材料のせん断発熱とに起因して基準成形条件として指示された温度と異なる場合がある。そして、このような圧力や温度の違いが、成形品の品質に影響を与え得る。 In the injection molding machine 31, the pressure value of the load cell 510 is controlled to approach the pressure value included in the reference molding conditions. The temperature of the cylinder 505 is controlled by multiple heaters 506. However, since there are machine differences in the shape of the screw 502, the shape of the cylinder 505, and the shape of the nozzle 508 in the injection molding machine 31, different pressure losses may occur in each injection molding machine 31. As a result, the pressure of the material at the material inlet of the mold 509 becomes a lower value than the pressure specified as the reference molding conditions. In addition, the temperature of the material at the material inlet of the mold 509 may differ from the temperature specified as the reference molding conditions due to the arrangement of the heater 506 and the shear heat of the material in the nozzle 508. Such differences in pressure and temperature may affect the quality of the molded product.
 本実施形態では、成形品の品質検査として、成形品の重量、及び寸法を評価する。成形品の重量は、成形品の形状にショートショットやオーバーパック等の不良が無い場合、金型509の容積に対する材料の比容積によって変化すると考えられる。よって、成形品の重量は、PVT特性と相関の大きい物理量である。成形品の寸法は、成形品の形状にショートショットやオーバーパック等の不良が無い場合、材料の収縮率によって変化すると考えらえる。よって、成形品の寸法もPVT特性と相関の大きい物理量である。 In this embodiment, the weight and dimensions of the molded product are evaluated as a quality inspection of the molded product. It is believed that the weight of the molded product varies depending on the specific volume of the material relative to the volume of the mold 509, provided that there are no defects in the shape of the molded product, such as short shots or overpacking. Therefore, the weight of the molded product is a physical quantity that is highly correlated with the PVT characteristics. It is believed that the dimensions of the molded product vary depending on the shrinkage rate of the material, provided that there are no defects in the shape of the molded product, such as short shots or overpacking. Therefore, the dimensions of the molded product are also a physical quantity that is highly correlated with the PVT characteristics.
 成形品の形状特性(重量、寸法等)は、射出工程、保圧工程、及び冷却工程における、圧力の履歴、温度の履歴、及び型締力に強い相関がある。 The shape characteristics of a molded product (weight, dimensions, etc.) are strongly correlated with the pressure history, temperature history, and clamping force during the injection, pressure holding, and cooling processes.
 次に、図11は、金型509の一例を示しており、同図(A)は金型509の製品部5091の上面図、同図(B)は製品部5091の側面図、同図(C)は金型509のランナ部5092の上面図、同図(D)はランナ部5092の側面図を示している。 Next, FIG. 11 shows an example of a mold 509, where (A) is a top view of a product portion 5091 of the mold 509, (B) is a side view of the product portion 5091, (C) is a top view of a runner portion 5092 of the mold 509, and (D) is a side view of the runner portion 5092.
 金型509においては、溶融材料がランナ部5092の5点のゲート部5093から製品部5091に流入する。製品部5091には、金型509内の材料温度を測定する材料温度センサ321、材料圧力を測定する材料圧力センサ322、及び金型509の温度を測定する金型温度センサ323が配置されている。ランナ部5092には、材料温度センサ321、及び材料圧力センサ322が配置されている。材料温度センサ321、材料圧力センサ322、及び金型温度センサ323は、金型内センサ32(図1)に相当する。 In the mold 509, the molten material flows into the product section 5091 from five gates 5093 in the runner section 5092. In the product section 5091, a material temperature sensor 321 that measures the material temperature in the mold 509, a material pressure sensor 322 that measures the material pressure, and a mold temperature sensor 323 that measures the temperature of the mold 509 are arranged. In the runner section 5092, the material temperature sensor 321 and the material pressure sensor 322 are arranged. The material temperature sensor 321, the material pressure sensor 322, and the mold temperature sensor 323 correspond to the in-mold sensor 32 (Figure 1).
 なお、各センサ(材料温度センサ321、材料圧力センサ322、及び金型温度センサ323)の配置については、少なくとも金型509内の材料流入口から製品部(キャビティ)5091に至るまでのスプル部5094またはランナ部5092を含むことが好ましい。なお、本明細書において「好ましい」とは、何らかの有利な効果を期待できるという意味するにすぎず、その構成が必須であるとの意味ではない。 In addition, it is preferable that the arrangement of each sensor (material temperature sensor 321, material pressure sensor 322, and mold temperature sensor 323) includes at least the sprue section 5094 or runner section 5092 from the material inlet in the mold 509 to the product section (cavity) 5091. In this specification, "preferable" merely means that some advantageous effect can be expected, and does not mean that the configuration is essential.
 さらに、各センサの配置については、例えば、製品部5091内のゲート直下部、樹脂合流部(ウェルド部)、流動末端部等(いずれも不図示)のように、特徴的な流動が観測されうる部位であってもよい。この場合、配置が異なる複数のセンサにより得られる物理量から、より高精度に材料固有のPVT特性に相関する物理量を求めることができる。また、材料固有の粘度に相関を持つゲート直下部の圧力センサにより得られるピークまでの積分値を使用することで、高精度に予測が可能となる。 Furthermore, the placement of each sensor may be in a location where a characteristic flow can be observed, such as directly below the gate in product section 5091, at the resin junction (weld), or at the end of the flow (all not shown). In this case, a physical quantity that correlates with the material's inherent PVT characteristics can be determined with higher accuracy from the physical quantities obtained from multiple sensors with different placements. Also, by using the integral value up to the peak obtained by the pressure sensor directly below the gate, which correlates with the material's inherent viscosity, highly accurate predictions are possible.
 例えば、基準成形条件下の成形において、成形中の溶融材料の圧力、及び温度は金型509内の位置によって異なる。そのため、配置が異なる複数のセンサによって、1つの成形条件で異なる圧力・温度条件下における材料の物理量を測定することが可能である。これにより、より高精度に材料固有のPVT特性に相関する物理量を求めることができる。 For example, during molding under standard molding conditions, the pressure and temperature of the molten material during molding vary depending on the position within the mold 509. Therefore, by using multiple sensors with different positions, it is possible to measure the physical quantities of the material under different pressure and temperature conditions under a single molding condition. This makes it possible to determine the physical quantities that correlate with the material's inherent PVT characteristics with greater precision.
 なお、金型構造と測定する物理量とによって、各センサの適切な配置は異なる。金型開き量以外の物理量では、いずれの金型構造であっても、可能であれば、スプル部5094に配置することが好ましい。 The appropriate placement of each sensor varies depending on the mold structure and the physical quantity being measured. For physical quantities other than the mold opening amount, it is preferable to place the sensors in the sprue section 5094, if possible, regardless of the mold structure.
 ゲート部5093が、サイドゲート、ジャンプゲート、サブマリンゲート、及びバナナゲートである場合、スプル部5094直下のランナ部5092や、ゲート部5093直前のランナ部5092等に各センサを配置する。 If the gate section 5093 is a side gate, jump gate, submarine gate, or banana gate, the sensors are placed in the runner section 5092 directly below the sprue section 5094, the runner section 5092 immediately before the gate section 5093, etc.
 ゲート部5093がピンゲートである場合、3プレート構造となるため、各センサの配置には工夫が必要だが、スプル部5094直下のランナ部5092等に各センサを配置する。また、ゲート部5093がピンゲートである場合、製品部5091には繋がらないダミーのランナ部5092を測定用に設けて各センサを配置してもよい。測定専用のランナ部5092を設けることにより、金型設計の自由度が向上する。 If the gate portion 5093 is a pin gate, a three-plate structure is required for the placement of the sensors, but the sensors are placed in the runner portion 5092 directly below the sprue portion 5094. Also, if the gate portion 5093 is a pin gate, a dummy runner portion 5092 that is not connected to the product portion 5091 may be provided for measurement purposes, and the sensors may be placed on that runner portion. Providing a runner portion 5092 dedicated to measurement improves the freedom of mold design.
 ゲート部5093がフィルムゲートやファンゲートである場合、ゲート部5093に流入する前のランナ部5092に各センサを設置する。 If the gate section 5093 is a film gate or a fan gate, each sensor is installed in the runner section 5092 before it flows into the gate section 5093.
 <射出成形システム10による成形品品質ばらつき推定処理>
 次に、図12は、射出成形システム10による成形品品質ばらつき推定処理の一例を説明するフローチャートである。
<Processing for Estimating Quality Variation of Molded Product by Injection Molding System 10>
Next, FIG. 12 is a flowchart illustrating an example of a molded product quality variation estimation process performed by the injection molding system 10.
 成形品品質ばらつき推定処理の前提として、物性計算モデル生成部41の学習用DB58には、ユーザによって指定され得る解析対象の材料(物性が未知の材料)と製品番号が同一であってロットが異なる材料(物性が既知の材料)に対応する学習用データセットが既に格納されているものとする。また、物性計算モデル生成部41の推定用DB602,612には、ユーザによって指定され得る解析対象の材料(物性が未知の材料)に対応する推定用データセットが既に格納されているものとする。ただし、ユーザによって解析対象の材料(物性が未知の材料)に対応する推定用データセットが推定用DB602,612の格納されていない場合、射出成形機31にて当該材料を用いた射出成形プロセスを実行させ、当該材料に対応する推定用データセットを生成して推定用DB602,612に格納すればよい。 As a premise for the molded product quality variation estimation process, it is assumed that the learning DB 58 of the physical property calculation model generation unit 41 already stores a learning data set corresponding to a material (material with known physical properties) that has the same product number as the material to be analyzed (material with unknown physical properties) that can be specified by the user but is from a different lot. In addition, it is assumed that the estimation DBs 602, 612 of the physical property calculation model generation unit 41 already store an estimation data set corresponding to the material to be analyzed (material with unknown physical properties) that can be specified by the user. However, if the estimation data set corresponding to the material to be analyzed (material with unknown physical properties) by the user is not stored in the estimation DBs 602, 612, it is sufficient to execute an injection molding process using the material in question in the injection molding machine 31, generate an estimation data set corresponding to the material, and store it in the estimation DBs 602, 612.
 成形品品質ばらつき推定処理は、例えば、UI画面1000(図14)においてユーザが解析の対象とする材料の製品番号及びロット番号、解析形状(金型の製品番号)、解析物性、解析条件、形成品の品質管理幅を指定し、「解析実行」ボタン1006を操作したことに応じて開始される。 The molded product quality variation estimation process is started, for example, when the user specifies the product number and lot number of the material to be analyzed, the analysis shape (mold product number), analysis properties, analysis conditions, and the quality control range of the molded product on the UI screen 1000 (Figure 14), and operates the "Execute analysis" button 1006.
 始めに、物性計算モデル生成部41の学習用データ選定部59が、学習用DB58を参照し、ユーザによって解析対象に指定された材料(物性が未知の材料)と製品番号が同一であってロットが異なる材料(物性が既知の材料)に対応する1組以上の学習用データセットを選定する。そして、学習用データ選定部59が、選定した学習データセットからPVT特性計算モデルの生成に用いるPVT特性学習用データセットを抽出して、PVT特性計算モデル推定部60の学習用DB601に格納する。また、学習用データ選定部59は、選定した学習データセットから粘度計算モデルの生成に用いる粘度学習用データセットを抽出して、粘度計算モデル推定部61の学習用DB611に格納する(ステップS1)。 First, the learning data selection unit 59 of the physical property calculation model generation unit 41 refers to the learning DB 58 and selects one or more learning data sets corresponding to materials (materials with known physical properties) that have the same product number but different lots as the material (materials with unknown physical properties) specified by the user as the analysis target. The learning data selection unit 59 then extracts PVT characteristic learning data sets to be used for generating a PVT characteristic calculation model from the selected learning data sets, and stores them in the learning DB 601 of the PVT characteristic calculation model estimation unit 60. The learning data selection unit 59 also extracts a viscosity learning data set to be used for generating a viscosity calculation model from the selected learning data sets, and stores them in the learning DB 611 of the viscosity calculation model estimation unit 61 (step S1).
 次に、回帰モデル学習部603が、PVT特性計算モデル係数を出力する学習済回帰モデルを生成して学習済回帰モデルDB604に格納する。これと同時に、回帰モデル学習部613が、粘度計算モデル係数を出力する学習済回帰モデルを生成して学習済回帰モデルDB614に格納する(ステップS2)。 Next, the regression model learning unit 603 generates a learned regression model that outputs PVT characteristic calculation model coefficients and stores it in the learned regression model DB 604. At the same time, the regression model learning unit 613 generates a learned regression model that outputs viscosity calculation model coefficients and stores it in the learned regression model DB 614 (step S2).
 具体的には、回帰モデル学習部603が、学習用DB601からPVT特性学習用データセットを読み出し、PVT特性学習用データセットに含まれる、特徴量データセットと成形品品質とを回帰モデルの説明変数に指定する。また、回帰モデル学習部603が、PVT特性計算モデル係数を回帰モデルの目的変数に指定し、説明変数から目的変数を予測する回帰モデルを学習することによって、学習済回帰モデルを生成する。これと同時に、回帰モデル学習部613が、学習用DB611から粘度学習用データセットを読み出し、粘度学習用データセットに含まれる、特徴量データセットを回帰モデルの説明変数に指定する。また、回帰モデル学習部613が、粘度計算モデル係数を回帰モデルの目的変数に指定し、説明変数から目的変数を予測する回帰モデルを学習することによって、学習済回帰モデルを生成する。 Specifically, the regression model learning unit 603 reads out the PVT characteristic learning dataset from the learning DB 601, and specifies the feature dataset and molded product quality included in the PVT characteristic learning dataset as explanatory variables of the regression model. The regression model learning unit 603 also specifies the PVT characteristic calculation model coefficients as objective variables of the regression model, and generates a learned regression model by learning a regression model that predicts the objective variable from the explanatory variables. At the same time, the regression model learning unit 613 reads out the viscosity learning dataset from the learning DB 611, and specifies the feature dataset included in the viscosity learning dataset as explanatory variables of the regression model. The regression model learning unit 613 also specifies the viscosity calculation model coefficients as objective variables of the regression model, and generates a learned regression model by learning a regression model that predicts the objective variable from the explanatory variables.
 次に、物性計算モデル推定部605が、PVT特性が未知である材料に対応する推定PVT特性計算モデルを生成してPVT特性計算モデルDB606に格納する。これと同時に、物性計算モデル推定部615が、粘度が未知である材料の推定粘度計算モデルを生成して粘度計算モデルDB616に格納する(ステップS3)。 Next, the physical property calculation model estimation unit 605 generates an estimated PVT characteristic calculation model corresponding to the material whose PVT characteristics are unknown, and stores it in the PVT characteristic calculation model DB 606. At the same time, the physical property calculation model estimation unit 615 generates an estimated viscosity calculation model for the material whose viscosity is unknown, and stores it in the viscosity calculation model DB 616 (step S3).
 具体的には、物性計算モデル推定部605が、推定用DB602から解析対象の材料に対応する推定用データセットを読み出し、ステップS2で生成されたPVT特性計算モデル用の学習済回帰モデルに入力して、PVT特性計算モデルの係数を得ることにより、解析対象の材料に対応する推定PVT特性計算モデルを生成する。これと同時に、物性計算モデル推定部605が推定用DB612から解析対象の材料に対応する推定用データセットを、ステップS2で生成された粘度計算モデル用の学習済回帰モデルに入力して、粘度計算モデルの係数を得ることにより、解析対象の材料に対応する推定粘度計算モデルを推定する。 Specifically, the physical property calculation model estimation unit 605 reads out an estimation data set corresponding to the material to be analyzed from the estimation DB 602, inputs it to the learned regression model for the PVT characteristic calculation model generated in step S2, and obtains coefficients of the PVT characteristic calculation model, thereby generating an estimated PVT characteristic calculation model corresponding to the material to be analyzed. At the same time, the physical property calculation model estimation unit 605 inputs an estimation data set corresponding to the material to be analyzed from the estimation DB 612 to the learned regression model for the viscosity calculation model generated in step S2, and obtains coefficients of the viscosity calculation model, thereby estimating an estimated viscosity calculation model corresponding to the material to be analyzed.
 なお、ステップS3で生成された推定PVT特性計算モデル、及び推定粘度計算モデルは、流動解析部42の解析物性計算モデルDB71にも格納される。 The estimated PVT characteristic calculation model and the estimated viscosity calculation model generated in step S3 are also stored in the analysis property calculation model DB71 of the flow analysis unit 42.
 次に、流動解析部42の解析物性モデル読み出し部72が、解析物性計算モデルDB71から、解析対象の材料に対応する推定PVT特性計算モデルの係数、及び推定粘度計算モデルの係数を読み出して解析部73に出力する。そして。解析部73が、ユーザから指定された指定された解析形状、及び解析条件に従い、推定PVT特性計算モデルの係数、及び推定粘度計算モデルの係数を用いて、解析対象の材料に対する流動解析を実行し、解析結果として、例えば、推定される成形品の品質(重量、寸法等)を推定して解析結果出力部74に出力する(ステップS4)。 Next, the analysis property model reading unit 72 of the flow analysis unit 42 reads out the coefficients of the estimated PVT characteristic calculation model and the coefficients of the estimated viscosity calculation model corresponding to the material to be analyzed from the analysis property calculation model DB 71, and outputs them to the analysis unit 73. Then, the analysis unit 73 executes a flow analysis of the material to be analyzed using the coefficients of the estimated PVT characteristic calculation model and the coefficients of the estimated viscosity calculation model according to the analysis shape and analysis conditions specified by the user, and estimates, for example, the quality (weight, dimensions, etc.) of the molded product as the analysis result and outputs it to the analysis result output unit 74 (step S4).
 次に、解析結果出力部74が、解析部73による解析結果(成形品の品質)をロット毎にまとめて、例えば、品質を表す値(重量、寸法等)の最大値と最小値の差分を品質ばらつきとして算出する。また、解析結果出力部74は、算出した品質のばらつきが、ユーザが予め設定した管理条件に合格しているか否かを判定する。そして、解析結果出力部74が、品質のばらつき,及び管理条件に対する合否判定の結果をUI画面1000(図14)に表示する(ステップS5)。以上が、射出成形システム10による成形品品質ばらつき推定処理の一例である。 Then, the analysis result output unit 74 compiles the analysis results (molded product quality) by the analysis unit 73 for each lot, and calculates, for example, the difference between the maximum and minimum values representing the quality (weight, dimensions, etc.) as the quality variation. The analysis result output unit 74 also determines whether the calculated quality variation passes the management conditions preset by the user. The analysis result output unit 74 then displays the quality variation and the pass/fail judgment results for the management conditions on the UI screen 1000 (Figure 14) (step S5). This is an example of the molded product quality variation estimation process by the injection molding system 10.
 成形品品質ばらつき推定処理は、解析対象の材料に対応する推定PVT物性計算モデル、及び推定粘度計算モデルを生成することができる。また、成形品品質ばらつき推定処理は、生成した推定PVT物性計算モデル、及び推定粘度計算モデルに基づいて解析対象の材料に対応するPVT特性、及び粘度を推定できる。そして、成形品品質ばらつき推定処理は、推定した解析対象の材料に対応するPVT特性、及び粘度に基づき、解析対象の材料を使用した場合の成形品の品質とそのばらつきを推定できる。これにより、ユーザは、解析対象の材料を使用して製品(成形品)を量産することなく、その品質のばらつきを得ることができるので、製品の量産に適した材料を適切に選択できる。 The molded product quality variation estimation process can generate an estimated PVT property calculation model and an estimated viscosity calculation model that correspond to the material to be analyzed. The molded product quality variation estimation process can also estimate the PVT characteristics and viscosity that correspond to the material to be analyzed based on the generated estimated PVT property calculation model and estimated viscosity calculation model. The molded product quality variation estimation process can then estimate the quality and its variation of the molded product when the material to be analyzed is used, based on the estimated PVT characteristics and viscosity that correspond to the material to be analyzed. This allows the user to obtain the quality variation without mass-producing the product (molded product) using the material to be analyzed, and therefore allows the user to appropriately select a material suitable for mass production of the product.
 <推定PVT物性計算モデル、及び推定粘度計算モデルの妥当性>
 次に、図13は、成形品品質ばらつき推定処理によって生成された推定PVT物性計算モデル、及び推定粘度計算モデルの妥当性について説明するための図である。
<Validity of the estimated PVT property calculation model and the estimated viscosity calculation model>
Next, FIG. 13 is a diagram for explaining the validity of the estimated PVT property calculation model and the estimated viscosity calculation model generated by the molded product quality variation estimation process.
 当該妥当性の評価では、製品番号が同一であってロットが異なる材料A,B,C,Dを用い、材料のA~Dの物性を既存の方法によって測定した。その後、材料A,B,Cに対応する学習用データセットを用いて学習済回帰モデルを作成した。そして、材料A,B,Cに基づく学習済回帰モデルに、材料Dに対応する推定用学習データセットを入力することにより、材料Dに対応する推定PVT物性計算モデル、及び推定粘度計算モデルを生成した。さらに、推定PVT物性計算モデル及び推定粘度計算モデルと、材料Dの物性の実測値とを比較評価した。 In this validity evaluation, materials A, B, C, and D with the same product number but different lots were used, and the physical properties of materials A to D were measured using existing methods. After that, a trained regression model was created using the training datasets corresponding to materials A, B, and C. Then, an estimated PVT physical property calculation model and an estimated viscosity calculation model corresponding to material D were generated by inputting the estimation training dataset corresponding to material D into the trained regression model based on materials A, B, and C. Furthermore, the estimated PVT physical property calculation model and estimated viscosity calculation model were compared and evaluated with the actual measured values of the physical properties of material D.
 同図(A)は、生成された材料Dに対応する推定PVT特性計算モデル(線プロット)と、圧力水準を50[MPa]、100[MPa]、または150[MPa]に固定した状態で、温度を30[℃]から250[℃]まで5[℃]刻みで変化させた場合における、材料DのPVT特性の実測値(点プロット)との比較を示している。同図(A)の横軸は温度、縦軸は比容積である。同図(A)において、推定PVT特性計算モデルは、実測値とほぼ一致するので、生成された推定PVT物性計算モデルは妥当性が高いものであることがわかる。 Figure (A) shows a comparison between the generated estimated PVT characteristic calculation model (line plot) corresponding to material D and the actual measured values (dot plot) of the PVT characteristics of material D when the pressure level is fixed at 50 MPa, 100 MPa, or 150 MPa and the temperature is changed from 30°C to 250°C in 5°C increments. The horizontal axis of Figure (A) is temperature, and the vertical axis is specific volume. In Figure (A), the estimated PVT characteristic calculation model is almost identical to the actual measured values, so it can be seen that the generated estimated PVT physical property calculation model is highly valid.
 同図(B)は、生成された材料Dに対応する推定粘度計算モデル(線プロット)と、温度を200[℃]に固定した状態で、せん断速度を6~12000[1/sec]の範囲で変化させた場合における、材料Dの粘度の実測値(点プロット)との比較を示している。同図(B)は両軸対数グラフであり、横軸はせん断速度、縦軸は粘度である。同図(B)において、推定粘度計算モデルは、実測値とほぼ一致するので、生成された推定粘度計算モデルは妥当性が高いものであることがわかる。 Figure (B) shows a comparison between the generated estimated viscosity calculation model (line plot) corresponding to material D and the actual measured viscosity values (dot plot) of material D when the temperature is fixed at 200°C and the shear rate is changed in the range of 6 to 12,000 [1/sec]. Figure (B) is a double logarithmic graph, with the horizontal axis representing shear rate and the vertical axis representing viscosity. In Figure (B), the estimated viscosity calculation model is almost identical to the actual measured values, so it can be seen that the generated estimated viscosity calculation model is highly valid.
 <UI画面1000の表示例>
 次に、図14は、UI画面1000の表示例を示している。UI画面1000には、解析対象の材料を指定するための入力欄1001、解析形状として金型を指定するための入力欄1002、解析条件を選択、指定するための入力欄1003、解析物性モデルを選択、指定するための入力欄1004、管理幅を指定するための入力欄1005、指定した各種条件下での流体解析の実行を指示するための「解析実行」ボタン1006、及び、解析結果を表示するための表示欄1007が設けられている。
<Display example of UI screen 1000>
14 shows a display example of a UI screen 1000. The UI screen 1000 is provided with an input field 1001 for specifying a material to be analyzed, an input field 1002 for specifying a mold as an analysis shape, an input field 1003 for selecting and specifying analysis conditions, an input field 1004 for selecting and specifying an analysis physical property model, an input field 1005 for specifying a control width, an "Execute Analysis" button 1006 for instructing execution of a fluid analysis under various specified conditions, and a display field 1007 for displaying the analysis results.
 入力欄1001には、例えば、解析対象とする材料についての1つの製品番号と複数のロット番号を入力する。入力欄1002には、例えば、金型の製品番号を入力する。なお、ここで、入力する金型の製品番号は、回帰モデルの学習に用いられた学習用データセットに対応する金型の製品番号と異なるものであってもよい。入力欄1003では、解析条件として表示されている項目(材料温度、金型温度、射出速度等)をチェックすることにより選択、指定できる。入力欄1004では、表示されている物性(粘度、PVT特性)をチェックすることにより解析物性モデルを選択、指定できる。入力欄1005では、管理幅として、品質の種類(重量、寸法)と、その下限値、及び上限値を入力できる。 In input field 1001, for example, one product number and multiple lot numbers for the material to be analyzed are input. In input field 1002, for example, the product number of the mold is input. Note that the mold product number input here may be different from the mold product number corresponding to the learning data set used to train the regression model. In input field 1003, the analysis conditions can be selected and specified by checking the items displayed (material temperature, mold temperature, injection speed, etc.). In input field 1004, the analysis property model can be selected and specified by checking the displayed physical properties (viscosity, PVT characteristics). In input field 1005, the type of quality (weight, dimensions) and its lower and upper limits can be input as the control range.
 表示欄1007には、ユーザが指定した管理幅とともに、入力欄1001にて指定された、同一の製品番号を有し、ロットが異なる材料D,E,Fを用いた場合に生じ得る品質ばらつきが定量化して表示される。さらに、表示欄1007には、管理幅に対する品質ばらつきの合否結果が表示される。 Display field 1007 displays the control range specified by the user, as well as a quantified version of the quality variation that may occur when materials D, E, and F, which have the same product number but different lots and are specified in input field 1001, are used. In addition, display field 1007 displays the pass/fail result of the quality variation relative to the control range.
 UI画面1000によれば、ユーザは、自身が解析対象に指定した材料を用いた場合に生じ得る品質ばらつきを把握できるとともに、そのばらつきが管理幅に収まるか否かを視認でき、適切な材料を選択することができる。 Ultra-visible display 1000 allows the user to understand the quality variation that may occur when using the material that the user has specified as the analysis target, and visually check whether the variation falls within the control range, allowing the user to select an appropriate material.
 本発明は、上述した実施形態に限定されるものではなく、様々な変形が可能である。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えたり、追加したりすることが可能である。 The present invention is not limited to the above-described embodiments, and various modifications are possible. For example, the above-described embodiments have been described in detail to clearly explain the present invention, and the present invention is not necessarily limited to having all of the configurations described. Furthermore, it is possible to replace part of the configuration of one embodiment with or add to the configuration of another embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Furthermore, the above-mentioned configurations, functions, processing units, processing means, etc. may be realized in part or in whole in hardware, for example by designing them as integrated circuits. The above-mentioned configurations, functions, etc. may also be realized in software by a processor interpreting and executing a program that realizes each function. Information such as the program, table, file, etc. that realizes each function can be stored in a memory, a recording device such as a hard disk or SSD, or a recording medium such as an IC card, SD card, DVD, etc. Furthermore, the control lines and information lines shown are those that are considered necessary for the explanation, and do not necessarily show all control lines and information lines in the product. In reality, it can be considered that almost all configurations are connected to each other.
 10・・・射出成形システム、20・・・製造制御装置、21・・・製造条件決定部、22・・・生産指示部、31・・・射出成形機、32・・・金型内センサ、321・・・材料温度センサ、322・・・材料圧力センサ、323・・・金型温度センサ、33・・・品質検査装置、40・・・推定装置、41・・・物性計算モデル生成部、42・・・流動解析部、43・・・入力部、44・・・表示部、45・・・通信部、51・・・センサ情報保持部、52・・・特徴量抽出部、53・・・特徴量DB、54・・・品質DB、55・・・PVT特性計算モデル係数DB、56・・・粘度計算モデル係数DB、57・・・連結処理部、58・・・学習用DB、59・・・学習用データ選定部、60・・・PVT特性計算モデル推定部、601・・・学習用DB、602・・・推定用DB、603・・・回帰モデル学習部、604・・・学習済回帰モデルDB、605・・・物性計算モデル推定部、606・・・PVT特性計算モデルDB、61・・・粘度計算モデル推定部、611・・・学習用DB、612・・・推定用DB、613・・・回帰モデル学習部、614・・・学習済回帰モデルDB、615・・・物性計算モデル推定部、606・・・粘度計算モデルDB、71・・・解析物性計算モデルDB、72・・・解析物性計算モデル読み出し部、73・・・解析部、74・・・解析結果出力部、100・・・計算機、509・・・金型、5091・・・製品部、5092・・・ランナ部、5093・・・ゲート部、5094・・・スプル部、1000・・・UI画面 10: injection molding system, 20: manufacturing control device, 21: manufacturing condition determination unit, 22: production instruction unit, 31: injection molding machine, 32: in-mold sensor, 321: material temperature sensor, 322: material pressure sensor, 323: mold temperature sensor, 33: quality inspection device, 40: estimation device, 41: physical property calculation model generation unit, 42: flow analysis unit, 43: input unit, 44: display unit, 45: communication unit, 51: sensor information storage unit, 52: feature extraction unit, 53: feature DB, 54: quality DB, 55: PVT characteristic calculation model coefficient DB, 56: viscosity calculation model coefficient DB, 57: linking processing unit, 58: learning DB, 59: learning data selection unit, 60: PVT characteristic calculation model estimation unit, 601...Learning DB, 602...Estimation DB, 603...Regression model learning section, 604...Learned regression model DB, 605...Physical property calculation model estimation section, 606...PVT characteristic calculation model DB, 61...Viscosity calculation model estimation section, 611...Learning DB, 612...Estimation DB, 613...Regression model learning section, 614...Learned regression model DB, 615...Physical property calculation model estimation section, 606...Viscosity calculation model DB, 71...Analysis physical property calculation model DB, 72...Analysis physical property calculation model reading section, 73...Analysis section, 74...Analysis result output section, 100...Computer, 509...Mold, 5091...Product section, 5092...Runner section, 5093...Gate section, 5094...Spur section, 1000...UI screen

Claims (15)

  1.  射出成形による成形品の品質ばらつきを推定する成形品品質ばらつき推定装置であって、
     物性が既知の第1材料を用いて成形品を製造した場合のプロセスデータ、及び前記第1材料に対応する物性計算モデル係数に基づいて生成された学習済回帰モデル、並びに物性が未知の第2材料を用いて成形品を製造した場合のプロセスデータに基づき、前記第2材料に対応する物性計算モデルを推定する物性計算モデル推定部と、
     推定された前記第2材料に対応する前記物性計算モデルに基づいて流動解析を行うことにより、前記第2材料を用いて成形品を製造する場合における前記成形品の品質ばらつきを推定する流動解析部と、を備え、
     前記物性計算モデル推定部は、異なる2種類以上の物性にそれぞれ対応する2種類以上の前記学習済回帰モデルに基づき、異なる2種類以上の物性にそれぞれ対応する2種類以上の前記物性計算モデルを推定し、
     前記流動解析部は、推定された前記2種類以上の物性計算モデルに基づいて前記流動解析を行う
    成形品品質ばらつき推定装置。
    A molded product quality variation estimation device that estimates quality variation of a molded product produced by injection molding, comprising:
    a physical property calculation model estimating unit that estimates a physical property calculation model corresponding to a second material based on process data when a molded product is manufactured using a first material whose physical properties are known, a learned regression model generated based on a physical property calculation model coefficient corresponding to the first material, and process data when a molded product is manufactured using a second material whose physical properties are unknown;
    a flow analysis unit that estimates a quality variation of a molded product when the molded product is manufactured using the second material by performing a flow analysis based on the physical property calculation model corresponding to the estimated second material,
    the physical property calculation model estimation unit estimates two or more types of the physical property calculation models corresponding to two or more different types of physical properties, based on two or more types of the trained regression models corresponding to two or more different types of physical properties, respectively;
    The flow analysis unit is a molded product quality variation estimation device that performs the flow analysis based on the estimated two or more types of physical property calculation models.
  2.  請求項1に記載の成形品品質ばらつき推定装置であって、
     前記第1材料、及び前記第2材料は、リサイクル材であり、
     前記第1材料と前記第2材料とは、製品番号が同一であってロットが異なる
    成形品品質ばらつき推定装置。
    The molded product quality variation estimation device according to claim 1,
    the first material and the second material are recycled materials,
    The first material and the second material have the same product number but are from different lots.
  3.  請求項1に記載の成形品品質ばらつき推定装置であって、
     前記第1材料を用いて成形品を製造した場合の前記プロセスデータを説明変数とし、前記物性計算モデル係数を目的変数とする回帰モデルを学習することにより前記学習済回帰モデルを生成する回帰モデル学習部、を備える
    成形品品質ばらつき推定装置。
    The molded product quality variation estimation device according to claim 1,
    a regression model learning unit that generates the learned regression model by learning a regression model in which the process data when a molded product is manufactured using the first material is used as an explanatory variable and the physical property calculation model coefficients are used as objective variables.
  4.  請求項3に記載の成形品品質ばらつき推定装置であって、
     前記回帰モデルの学習に用いる前記説明変数を選定する選定部、を備える
    成形品品質ばらつき推定装置。
    The molded product quality variation estimation device according to claim 3,
    A molded product quality variation estimation device comprising: a selection unit that selects the explanatory variables to be used in learning the regression model.
  5.  請求項4に記載の成形品品質ばらつき推定装置であって、
     前記選定部は、前記説明変数として、前記目的変数とされる前記物性計算モデル係数に対応する物性と相関が高い前記プロセスデータを選定する
    成形品品質ばらつき推定装置。
    The molded product quality variation estimation device according to claim 4,
    The selection unit selects, as the explanatory variable, the process data that is highly correlated with the physical property corresponding to the physical property calculation model coefficient that is set as the objective variable.
  6.  請求項1に記載の成形品品質ばらつき推定装置であって、
     前記異なる2種類以上の物性は、PVT特性、粘度、結晶化度、及び結晶化速度のうちの少なくとも一つを含む
    成形品品質ばらつき推定装置。
    The molded product quality variation estimation device according to claim 1,
    The two or more different physical properties include at least one of PVT characteristics, viscosity, crystallinity, and crystallization rate.
  7.  請求項5に記載の成形品品質ばらつき推定装置であって、
     前記プロセスデータは、金型内センサ値の特徴量、及び前記成形品の品質を含む
    成形品品質ばらつき推定装置。
    The molded product quality variation estimation device according to claim 5,
    The process data includes feature values of in-mold sensor values and the quality of the molded product.
  8.  請求項7に記載の成形品品質ばらつき推定装置であって、
     前記金型内センサ値は、圧力、及び温度の少なくとも一方を含む
    成形品品質ばらつき推定装置。
    The molded product quality variation estimation device according to claim 7,
    The molded product quality variation estimation device, wherein the in-mold sensor value includes at least one of pressure and temperature.
  9.  請求項8に記載の成形品品質ばらつき推定装置であって、
     前記特徴量は、前記金型内センサ値の射出工程における積分値、前記金型内センサ値のピーク値、前記金型内センサ値の射出工程から冷却工程までの積分値、及び前記金型内センサ値の最大微分値のうちの少なくとも一つを含む
    成形品品質ばらつき推定装置。
    The molded product quality variation estimation device according to claim 8,
    The feature value includes at least one of an integral value of the in-mold sensor value during the injection process, a peak value of the in-mold sensor value, an integral value of the in-mold sensor value from the injection process to the cooling process, and a maximum differential value of the in-mold sensor value.
  10.  請求項9に記載の成形品品質ばらつき推定装置であって、
     前記成形品の前記品質は、重量、及び寸法の少なくとも一方を含む
    成形品品質ばらつき推定装置。
    The molded product quality variation estimation device according to claim 9,
    The quality of the molded product includes at least one of weight and dimensions.
  11.  請求項10に記載の成形品品質ばらつき推定装置であって、
     前記選定部は、
      粘度計算モデル係数を目的変数とする前記回帰モデルの前記説明変数として、前記金型内センサ値としての圧力の前記射出工程における積分値を選定し、
      PVT特性計算モデル係数を目的変数とする前記回帰モデルの前記説明変数として、前記金型内センサ値としての圧力に基づく特徴量、前記金型内センサ値としての温度に基づく特徴量、並びに、前記品質としての重量、及び寸法を選定する
    成形品品質ばらつき推定装置。
    The molded product quality variation estimation device according to claim 10,
    The selection unit is
    An integral value of the pressure as the in-mold sensor value during the injection process is selected as the explanatory variable of the regression model having a viscosity calculation model coefficient as a response variable;
    A molded product quality variation estimation device that selects a feature based on pressure as the in-mold sensor value, a feature based on temperature as the in-mold sensor value, and weight and dimensions as the quality as the explanatory variables of the regression model with PVT characteristic calculation model coefficients as the objective variable.
  12.  請求項1に記載の成形品品質ばらつき推定装置であって、
     前記流動解析部は、前記第2材料を用いて成形品を製造する場合における前記成形品の前記品質ばらつきとして、前記成形品の重量、及び寸法の少なくとも一方の最小値と最大値とを推定する
    成形品品質ばらつき推定装置。
    The molded product quality variation estimation device according to claim 1,
    The flow analysis unit is a molded product quality variation estimation device that estimates the minimum and maximum values of at least one of the weight and dimensions of the molded product as the quality variation of the molded product when the molded product is manufactured using the second material.
  13.  請求項12に記載の成形品品質ばらつき推定装置であって、
     前記流動解析部は、推定した前記品質ばらつきと管理幅とを比較し、前記品質ばらつきが前記管理幅から外れた場合、その旨をユーザに通知する
    成形品品質ばらつき推定装置。
    The molded product quality variation estimation device according to claim 12,
    The flow analysis unit compares the estimated quality variation with a control range, and if the quality variation falls outside the control range, notifies a user to that effect.
  14.  射出成形による成形品の品質ばらつきを推定する成形品品質ばらつき推定装置による成形品品質ばらつき推定方法であって、
     物性が既知の第1材料を用いて成形品を製造した場合のプロセスデータ、及び前記第1材料に対する物性計算モデル係数に基づいて生成された学習済回帰モデル、並びに物性が未知の第2材料を用いて成形品を製造した場合のプロセスデータに基づき、前記第2材料に対応する物性計算モデルを推定する物性計算モデル推定ステップと、
     推定された前記第2材料に対応する前記物性計算モデルに基づいて流動解析を行うことにより、前記第2材料を用いて成形品を製造する場合における前記成形品の品質ばらつきを推定する流動解析ステップと、を含み、
     前記物性計算モデル推定ステップは、異なる2種類以上の物性にそれぞれ対応する2種類以上の前記学習済回帰モデルに基づき、異なる2種類以上の物性にそれぞれ対応する2種類以上の前記物性計算モデルを推定し、
     前記流動解析ステップは、推定された前記2種類以上の物性計算モデルに基づいて前記流動解析を行う
    成形品品質ばらつき推定方法。
    A method for estimating quality variation of a molded product by a molded product quality variation estimation device that estimates quality variation of a molded product produced by injection molding, comprising:
    a physical property calculation model estimation step of estimating a physical property calculation model corresponding to the second material based on process data when a molded product is manufactured using a first material whose physical properties are known, a learned regression model generated based on a physical property calculation model coefficient for the first material, and process data when a molded product is manufactured using a second material whose physical properties are unknown;
    A flow analysis step of estimating a quality variation of a molded product when the molded product is manufactured using the second material by performing a flow analysis based on the physical property calculation model corresponding to the estimated second material,
    the physical property calculation model estimation step estimates two or more types of the physical property calculation models corresponding to two or more different types of physical properties, based on two or more types of the trained regression models corresponding to two or more different types of physical properties, respectively;
    The flow analysis step is a method for estimating quality variation of a molded product, the flow analysis being performed based on the estimated two or more types of physical property calculation models.
  15.  射出成形機、及び品質検査装置を有する工場設備と、
     前記射出成形機により製造される成形品の品質ばらつきを推定する成形品品質ばらつき推定装置と、を備える射出成形システムであって、
     前記射出成形機は、射出成形における金型内センサ値を出力し、
     前記品質検査装置は、前記射出成形機により製造された成形品の品質検査結果を出力し、
     前記成形品品質ばらつき推定装置は、
      物性が既知の第1材料を用いて成形品を製造した場合の、前記金型内センサ値に基づく特徴量、及び前記品質検査結果を含むプロセスデータ、及び前記第1材料に対する物性計算モデル係数に基づいて生成された学習済回帰モデル、並びに物性が未知の第2材料を用いて成形品を製造した場合のプロセスデータに基づき、前記第2材料に対応する物性計算モデルを推定する物性計算モデル推定部と、
      推定された前記第2材料に対応する前記物性計算モデルに基づいて流動解析を行うことにより、前記第2材料を用いて成形品を製造する場合における前記成形品の品質ばらつきを推定する流動解析部と、を備え、
      前記物性計算モデル推定部は、異なる2種類以上の物性にそれぞれ対応する2種類以上の前記学習済回帰モデルに基づき、異なる2種類以上の物性にそれぞれ対応する2種類以上の前記物性計算モデルを推定し、
      前記流動解析部は、推定された前記2種類以上の物性計算モデルに基づいて前記流動解析を行う
    射出成形システム。
    Factory facilities including injection molding machines and quality inspection equipment;
    a molded product quality variation estimation device that estimates quality variation of a molded product manufactured by the injection molding machine,
    The injection molding machine outputs an in-mold sensor value during injection molding,
    the quality inspection device outputs a quality inspection result of a molded product manufactured by the injection molding machine;
    The molded product quality variation estimation device includes:
    a physical property calculation model estimating unit that estimates a physical property calculation model corresponding to a second material based on process data including the feature amount based on the in-mold sensor value and the quality inspection result when a molded product is manufactured using a first material having known physical properties, a learned regression model generated based on a physical property calculation model coefficient for the first material, and process data when a molded product is manufactured using a second material having unknown physical properties; and
    a flow analysis unit that estimates a quality variation of a molded product when the molded product is manufactured using the second material by performing a flow analysis based on the physical property calculation model corresponding to the estimated second material,
    the physical property calculation model estimation unit estimates two or more types of physical property calculation models corresponding to two or more different types of physical properties, based on two or more types of trained regression models corresponding to two or more different types of physical properties, respectively;
    The flow analysis unit is an injection molding system that performs the flow analysis based on the two or more types of estimated physical property calculation models.
PCT/JP2023/028504 2022-11-24 2023-08-04 Molded article quality variance estimation device, molded article quality variance estimation method, and injection molding system WO2024111172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022187609A JP2024076178A (en) 2022-11-24 2022-11-24 Apparatus and method for estimating quality variation of molded product, and injection molding system
JP2022-187609 2022-11-24

Publications (1)

Publication Number Publication Date
WO2024111172A1 true WO2024111172A1 (en) 2024-05-30

Family

ID=91196047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028504 WO2024111172A1 (en) 2022-11-24 2023-08-04 Molded article quality variance estimation device, molded article quality variance estimation method, and injection molding system

Country Status (2)

Country Link
JP (1) JP2024076178A (en)
WO (1) WO2024111172A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224712A (en) * 1990-01-31 1991-10-03 Hitachi Ltd Simulation of injection molding process and apparatus therefor
JP2021191621A (en) * 2020-06-05 2021-12-16 株式会社ジェイテクト Resin condition estimator and molding condition determination support device
JP2022141495A (en) * 2021-03-15 2022-09-29 株式会社日立製作所 Injection molding condition generation system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224712A (en) * 1990-01-31 1991-10-03 Hitachi Ltd Simulation of injection molding process and apparatus therefor
JP2021191621A (en) * 2020-06-05 2021-12-16 株式会社ジェイテクト Resin condition estimator and molding condition determination support device
JP2022141495A (en) * 2021-03-15 2022-09-29 株式会社日立製作所 Injection molding condition generation system and method

Also Published As

Publication number Publication date
JP2024076178A (en) 2024-06-05

Similar Documents

Publication Publication Date Title
US11440229B2 (en) Injection molding system, molding condition correction system, and injection molding method
US9919465B1 (en) Molding system for preparing an injection molded fiber reinforced composite article
JP6825055B2 (en) Injection molding support system, molding condition correction system, injection molding support method, molding condition correction method and computer program
WO2022195974A1 (en) Injection molding condition generation system and method
Sun et al. The application of modified PVT data on the warpage prediction of injection molded part
US9862133B1 (en) Molding system for preparing an injection molded fiber reinforced composite article
US10427344B1 (en) Molding system for preparing an injection molded fiber reinforced composite article
CN113733505B (en) Injection molding system, molding condition correction system, and injection molding method
US20230373145A1 (en) Injection molding support system and method
CN111745925B (en) Injection molding analysis method and injection molding analysis system
JP7118941B2 (en) RESIN MOLDING ANALYSIS METHOD, PROGRAM AND RECORDING MEDIUM
WO2024111172A1 (en) Molded article quality variance estimation device, molded article quality variance estimation method, and injection molding system
WO2020100726A1 (en) Resin molding analysis method, program, and recording medium
WO2022270331A1 (en) Injection molding system
JP7277273B2 (en) Machine learning device and design support device
WO2023032402A1 (en) Pvt characteristics calculation model estimation system and method
JP2017113981A (en) Method and apparatus for supporting design of molding, computer software and storage medium
WO2024111171A1 (en) Injection molding condition generation device, injection molding condition generation method, and injection molding system
CN114829102A (en) Learning model generation method, computer program, set value determination device, molding machine, and molding device system
JP2022113537A (en) Resin molded product analysis method and program
JP2023054760A (en) Resin molding analysis method, program and recording medium
Moritzer et al. Validation and Comparison of Fem-Simulation Results of the Fused Deposition Modeling Process under Consideration of Different Mesh Resolutions
Zielonka Characterization and Optimization of Melt Temperature Homogeneity in Injection Molding
JP2022030608A (en) Resin molding analysis method, program, and recording medium
JP2828897B2 (en) Mold making method