JP2828897B2 - Mold making method - Google Patents

Mold making method

Info

Publication number
JP2828897B2
JP2828897B2 JP6078997A JP7899794A JP2828897B2 JP 2828897 B2 JP2828897 B2 JP 2828897B2 JP 6078997 A JP6078997 A JP 6078997A JP 7899794 A JP7899794 A JP 7899794A JP 2828897 B2 JP2828897 B2 JP 2828897B2
Authority
JP
Japan
Prior art keywords
resin
cavity
flow path
filling
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6078997A
Other languages
Japanese (ja)
Other versions
JPH07285156A (en
Inventor
和伸 中田
啓二 東
和生 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP6078997A priority Critical patent/JP2828897B2/en
Publication of JPH07285156A publication Critical patent/JPH07285156A/en
Application granted granted Critical
Publication of JP2828897B2 publication Critical patent/JP2828897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3835Designing moulds, e.g. using CAD-CAM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7613Measuring, controlling or regulating the termination of flow of material into the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金型製作方法、殊に多数
個取りの射出成形金型の製作方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a mold, and more particularly to a method of manufacturing a multi-cavity injection molding mold.

【0002】[0002]

【従来の技術】複数個のキャビティを備えた多数個取り
の金型では、射出成型機に接続されるスプルーと各キャ
ビティとを、通常、メインランナーとメインランナーか
ら分岐するサブランナーやゲートを通じて接続している
が、各キャビティへのこれら樹脂流路を全く同じとして
いては、各キャビティへの樹脂充填完了時点が異なると
ともに、成形品を取り出すことができるようになる時点
も異なってくることになることから、良い成形品を効率
良く成形することができる金型とするには、各キャビテ
ィへの樹脂流路を、樹脂充填完了時点が同じとなるよう
に設計製作することが必要となる。
2. Description of the Related Art In a multi-cavity mold having a plurality of cavities, a sprue connected to an injection molding machine and each cavity are usually connected through a main runner and a sub-runner or a gate branched from the main runner. However, if the resin flow paths to the cavities are completely the same, the time at which the resin is completely filled into the cavities is different, and the time at which the molded product can be taken out also differs. Therefore, in order to form a mold that can efficiently mold a good molded product, it is necessary to design and manufacture the resin flow path to each cavity so that the resin filling completion time is the same.

【0003】このために、成形材料(熱硬化性樹脂)の
金型内における流動状態について流動解析によるシミュ
レーションを行って、樹脂流路を設計することが特開平
2−120643号公報に示されている。
For this purpose, Japanese Patent Application Laid-Open No. H2-120643 discloses that a resin flow path is designed by simulating the flow state of a molding material (thermosetting resin) in a mold by flow analysis. I have.

【0004】[0004]

【発明が解決しようとする課題】この場合、シミュレー
ション上において、各キャビティへの充填完了時が同じ
となるものでも、この設計に基づいた金型を製作して実
際に成形に供した場合は、解析誤差や解析条件に含まれ
ていない他の要因等によって、充填完了時が同じとなら
ないことが多々ある上に、この対策としての金型修正加
工を何度も繰り返さなくては、充填完了時点を同じとす
ることができないのが実状である。
In this case, even if the completion of filling each cavity is the same on a simulation, if a mold based on this design is manufactured and actually used for molding, Due to analysis errors and other factors not included in the analysis conditions, the completion time of filling is often not the same.In addition, the mold correction processing as a countermeasure must be repeated many times before the completion of filling. The fact is that they cannot be the same.

【0005】本発明はこのような点に鑑み為されたもの
であり、その目的とするところは各キャビティへの樹脂
充填完了時点を同じとするにあたっての修正回数を最小
限にとどめることができる金型製作方法を提供するにあ
る。
The present invention has been made in view of such a point, and an object of the present invention is to minimize the number of corrections required to make the completion time of resin filling in each cavity the same. To provide a mold manufacturing method.

【0006】[0006]

【課題を解決するための手段】しかして本発明は、複数
個のキャビティを有する樹脂成形用の金型の製作方法で
あって、樹脂特性や金型特性、成形品形状、成形条件等
を入力値とし、キャビティに至る樹脂流路の形状データ
をパラメータとする解析によって各キャビティ毎の樹脂
充填完了時間を求めて、各キャビティでの樹脂充填完了
時間が等しくなる樹脂流路形状を定め、上記の樹脂流路
形状の試験用金型を作成し、作成した試験用金型を用い
て成形を行って、各キャビティへの樹脂充填状態を実測
し、各キャビティについて実測した樹脂充填状態から特
定のキャビティに対する他のキャビティの充填比を求
め、上記特定のキャビティについての樹脂流路形状デー
タを固定とし、他のキャビティについての樹脂流路の形
状データを変更して前記解析を行うことで、特定のキャ
ビティと他のキャビティとの充填比の上記形状データの
変化に伴う変化曲線を求め、上記変化曲線を実測に基づ
く上記充填比から導いた補正量にて補正し、補正した変
化曲線の充填比が1となる時の形状データを他のキャビ
ティの樹脂流路形状データとし、上記流路形状で金型を
製作することに特徴を有している。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing a resin molding die having a plurality of cavities, wherein a resin characteristic, a die characteristic, a molded product shape, molding conditions and the like are inputted. Value, the resin filling completion time for each cavity is obtained by analysis using the shape data of the resin flow path to the cavity as a parameter, and the resin flow path shape in which the resin filling completion time in each cavity is equal is determined. Create a test mold with a resin flow path shape, mold using the created test mold, measure the resin filling state in each cavity, and specify a specific cavity from the resin filling state measured for each cavity. To determine the filling ratio of the other cavities with respect to, fixed the resin flow path shape data for the specific cavity, and changed the resin flow path shape data for the other cavities By performing the above analysis, a change curve of the filling ratio between a specific cavity and another cavity with the change of the shape data is obtained, and the change curve is corrected by a correction amount derived from the filling ratio based on the actual measurement. It is characterized in that the shape data when the filling ratio of the corrected change curve becomes 1 is used as the resin flow path shape data of another cavity, and a mold is manufactured with the above flow path shape.

【0007】[0007]

【作用】本発明によれば、解析によって得た流路形状
を、実際に成形に供した場合と解析値との差によって補
正して最終の流路形状を定めて金型を製作することか
ら、実成形の際の金型内での樹脂の流れを解析だけでは
掴めなかった状態を考慮したものとすることができる。
According to the present invention, since the flow path shape obtained by the analysis is corrected by the difference between the case where it is actually used for molding and the analysis value, the final flow path shape is determined and the mold is manufactured. In addition, it is possible to take into account a state where the flow of the resin in the mold at the time of actual molding cannot be grasped only by analysis.

【0008】この時、樹脂特性や金型特性、成形品形
状、成形条件等を入力値とし、キャビティに至る樹脂流
路の形状データをパラメータとする解析によって各キャ
ビティ毎の樹脂充填完了時間を求めて、各キャビティで
の樹脂充填完了時間が等しくなる樹脂流路形状を定める
にあたり、成形サイクル時間を最小とする条件のもとに
樹脂流路形状を定めておけば、成形サイクル時間の短縮
も図ることができる。
At this time, the resin filling completion time for each cavity is obtained by analysis using the resin characteristics, mold characteristics, molded product shape, molding conditions and the like as input values, and using the shape data of the resin flow path to the cavity as parameters. In order to determine the shape of the resin flow path in which the resin filling completion time in each cavity is equal, if the shape of the resin flow path is determined under the condition of minimizing the molding cycle time, the molding cycle time is also reduced. be able to.

【0009】また、キャビティ及び樹脂流路をスプルー
を中心とする対称な複数ブロックに分割するとともに単
一ブロック内における樹脂流路を対象として解析並びに
補正を行うならば、解析のための演算時間を短縮するこ
とができる。作成した試験用金型を用いて成形を行っ
て、各キャビティへの樹脂充填状態を実測するにあた
り、樹脂充填量を変えて成形した成形品から樹脂充填状
態を実測する時には、初期に製作する試験用金型を計測
用機器を付加したものとする必要がなく、これの修正に
て最終金型製作とすることができる。
Further, if the cavity and the resin flow path are divided into a plurality of symmetrical blocks around the sprue and the analysis and correction are performed on the resin flow path in a single block, the calculation time for the analysis is reduced. Can be shortened. In order to measure the resin filling state in each cavity by performing molding using the created test mold, when measuring the resin filling state from the molded product molded by changing the resin filling amount, it is a test to make the initial production It is not necessary to add a measuring device to the tool, and the final tool can be manufactured by modifying the tool.

【0010】更に、キャビティに至る樹脂流路の形状デ
ータのうちスプルーとメインランナーとゲートは固定入
力値とし、サブランナーの形状データをパラメータとす
るならば、パラメータが少なくなるために、解析演算が
容易となる。
Further, if the sprue, the main runner and the gate in the shape data of the resin flow path to the cavity are fixed input values, and the shape data of the sub-runner is a parameter, the number of parameters is reduced. It will be easier.

【0011】[0011]

【実施例】以下本発明を図示の実施例に基づいて詳述す
ると、本発明においては、まず、目的とする成形品を得
るための金型設計を、この成形品を成形する場合の流動
解析によるシミュレーションによって各キャビティへの
成形材料の充填が同時に完了するものとなるようにする
ことで行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiment. First, in the present invention, a mold design for obtaining a target molded product is analyzed by a flow analysis when the molded product is molded. The simulation is performed so that the filling of the molding material into each cavity is completed at the same time.

【0012】すなわち、成形品形状データ(使用される
金型のキャビティ形状のデータであり、微小な有限の要
素に分割することによって得る)、樹脂データ(粘度や
比熱、密度、固化温度等の物性データ)、成形条件デー
タ(樹脂の温度、金型の温度、射出時間等のデータ)、
金型特性(熱伝導率、比熱、密度)等を基に、金型のキ
ャビティに至る樹脂流路の形状データをパラメータとし
て、流動解析によって各キャビティごとの圧損値と充填
完了時点とを求めるとともに、これらの値が各キャビテ
ィで同じとなるように、キャビティ10に至る樹脂流路
(図2に示すスプルー11、メインランナー12、サブ
ランナー13、ゲート14の各径と長さ)を決定する。
That is, molded product shape data (data of the cavity shape of the mold used, obtained by dividing into minute finite elements), resin data (physical properties such as viscosity, specific heat, density, solidification temperature, etc.) Data), molding condition data (data of resin temperature, mold temperature, injection time, etc.),
Based on the mold characteristics (thermal conductivity, specific heat, density), etc., the pressure loss value and filling completion time for each cavity are determined by flow analysis, using the shape data of the resin flow path leading to the mold cavity as a parameter. The resin flow path (diameter and length of each of the sprue 11, the main runner 12, the sub-runner 13, and the gate 14 shown in FIG. 2) reaching the cavity 10 is determined so that these values become the same in each cavity.

【0013】上記流動解析は、たとえば、次の運動方程
The above flow analysis is performed, for example, by the following equation of motion.

【0014】[0014]

【式1】 (Equation 1)

【0015】(x,y:流れの方向、z:厚さ方向、τ
x,τy:x,y方向の専断応力、P=圧力)と、
(X, y: flow direction, z: thickness direction, τ
x, τy: shear stress in x, y directions, P = pressure)

【0016】[0016]

【式2】 (Equation 2)

【0017】(u,v:x,y方向の流速(厚さ方向に
分布)で与えられる連続の式と、
(U, v: a continuous equation given by the flow velocity in the x and y directions (distribution in the thickness direction)

【0018】[0018]

【式3】 (Equation 3)

【0019】(T:温度(厚さ方向に分布)、η:粘
度、λ:熱伝導率、ρ:密度、CP :比熱、γ:剪断速
度(厚さ方向に分布)、J:定数、t:時間)で与えら
れるエネルギー方程式により行うもので、成形樹脂の流
れ場を位置及び時間の関数として求めることができると
ともに、樹脂圧力及び樹脂粘度を位置情報及び時間情報
と共に求めることができ、これらからキャビティ10の
圧損値及び充填完了時点を求めることができる。
(T: temperature (distributed in the thickness direction), η: viscosity, λ: thermal conductivity, ρ: density, C P : specific heat, γ: shear rate (distributed in the thickness direction), J: constant, t: time), the flow field of the molding resin can be obtained as a function of position and time, and the resin pressure and resin viscosity can be obtained together with the position information and time information. From this, the pressure loss value of the cavity 10 and the point of time when the filling is completed can be obtained.

【0020】そして、各キャビティ10の圧損値及び充
填完了時点が同じとなる流路をもつ金型設計によって試
験用の金型を製作し、この金型によって実際の成形を行
うことで各キャビティへの成形材料の充填状態を実測
し、特定のキャビティと他のキャビティとの間の充填比
を調べる。この充填比は、図3に示すように、各キャビ
ティ10a,10bに圧力センサー5a,5bを配し
て、射出開始から圧力センサー5a,5bの立ち上がり
までの時間ta,tbを調べることで、両キャビティ1
0a,10bの充填比A/Bを充填に要した時間の比t
a/tbで得ることができる(A/B=ta/tb)。
Then, a test mold is manufactured by a mold design having a flow path in which the pressure loss value and the filling completion time of each cavity 10 are the same, and actual molding is performed by this mold to fill each cavity. The filling state of the molding material is actually measured, and the filling ratio between a specific cavity and another cavity is examined. As shown in FIG. 3, the filling ratio is determined by arranging the pressure sensors 5a and 5b in the cavities 10a and 10b and examining the times ta and tb from the start of injection to the rise of the pressure sensors 5a and 5b. Cavity 1
Ratio of time required for filling at filling ratio A / B of 0a, 10b t
a / tb (A / B = ta / tb).

【0021】また、上記の特定キャビティについての流
路形状を固定とし、他のキャビティについての流路形状
を変更した際に特定キャビティと他のキャビティとの充
填比がどのように変化するかを上記の流動解析を用いて
求める。図4に他のキャビティに至るサブランナー径を
変更した時の充填比変化曲線fを示す。この場合、充填
比が1であるところのサブランナー径Pは、上記の製作
を行った金型のものと同じとなる。
The flow path shape for the specific cavity is fixed, and how the filling ratio between the specific cavity and the other cavity changes when the flow path shape for the other cavity is changed is described above. Determined using flow analysis. FIG. 4 shows a filling ratio change curve f when the diameter of the sub-runner reaching another cavity is changed. In this case, the diameter P of the sub-runner where the filling ratio is 1 is the same as that of the die manufactured above.

【0022】次いで、上記の充填比変化曲線fを、実成
形を行うことで求めた充填比A/Bによって補正する。
つまり、図5に示すように、サブランナー径がPである
時の充填比が、実成形を行うことによって得られた充填
比(図中Xで示す)となるように、充填比A/Bから解
析上での充填比である1を引いた値を充填比変化曲線f
に加算することでシフトさせて充填比変化曲線fcを得
る。そして、この充填比変化曲線fcと充填比1との交
点におけるサブランナー径Pdを、特定キャビティとの
間で充填比を求めた他のキャビティのサブランナー径と
するのである。この結果、特定キャビティへの充填完了
時と、他のキャビティへの充填完了時とが同時になる。
Next, the above-mentioned filling ratio change curve f is corrected by the filling ratio A / B obtained by performing actual molding.
That is, as shown in FIG. 5, the filling ratio A / B is set so that the filling ratio when the sub-runner diameter is P becomes the filling ratio (indicated by X in the drawing) obtained by performing the actual molding. Is a value obtained by subtracting 1 which is the filling ratio on the analysis from the above, and the filling ratio change curve f
To obtain a filling ratio change curve fc. Then, the sub-runner diameter Pd at the intersection of the filling ratio change curve fc and the filling ratio 1 is set as the sub-runner diameter of another cavity from which the filling ratio is determined with respect to the specific cavity. As a result, the completion of filling the specific cavity and the completion of filling the other cavities are simultaneous.

【0023】サブランナー以外の流路においてもサブラ
ンナーと同様にして評価することができる。また、キャ
ビティが3つ以上ある場合においても、特定のキャビテ
ィに対する充填比を各キャビティにおいて求めて比較す
ることで充填完了時が同じとなる流路を得る。いずれに
しても、流動解析によって得た流路形状を、実際に成形
に供した場合と解析値との差によって補正して最終の流
路形状を得ていることから、このようにして求めた流路
で金型を製作すれば、確実に各キャビティへの充填完了
時点が同じとなるものを得ることができる。そして、こ
こで言う金型の製作は、最初に製作した金型の修正であ
ってもよいわけであるから、その意味で、きわめて少な
い修正回数で求める金型を製作することができるもので
ある。
The evaluation can be performed in the same manner as the sub-runner in the flow path other than the sub-runner. Further, even when there are three or more cavities, the filling ratio with respect to a specific cavity is obtained in each cavity and compared to obtain a flow path having the same filling completion time. In any case, the flow path shape obtained by the flow analysis was corrected in accordance with the difference between the case where it was actually subjected to molding and the analysis value to obtain the final flow path shape, and thus the flow path shape was obtained in this manner. If a mold is manufactured in the flow path, it is possible to surely obtain a mold in which the completion time of filling each cavity is the same. And since the manufacture of the mold here may be a correction of the mold manufactured first, in that sense, it is possible to manufacture the mold required with a very small number of corrections. .

【0024】ところで、上記実施例では、圧力センサー
を用いて測定した充填所要時間の比ta/tbで充填比
を得たが、この場合、圧力センサーの関係で、最初に製
作した金型を修正して実際の成形品の成形用とすること
が困難となるために、充填比は各キャビティで成形され
た成形品の重量比や体積比から導いてもよい。重量比を
用いる場合には、図6(a)に示すように、各キャビティ
10a,10bに成形材料を完全充填して得た成形品の
各重量Wa,Wbと、図6(b)に示すように充填量を少
なくして、つまり完全充填前の状態で充填を中止してし
まうことで得た未完全充填成形品の各重量Wa’,W
b’とから、 (Wa’/Wa)/(Wb’/Wb) を求めて、この重量比を充填比A/Bとする。ただし、
完全充填前の状態での重量比は、樹脂の射出量の増加に
伴って、図7に示すように変化することから、完全充填
前の変化が大きくなる直前(充填率が重量比で90〜9
8%)の数点の(図中枠で囲んだ部分)の重量比を使用
する。
By the way, in the above embodiment, the filling ratio was obtained by the ratio ta / tb of the required filling time measured using the pressure sensor. In this case, the mold manufactured first was modified due to the relation of the pressure sensor. In order to make it difficult to form an actual molded product, the filling ratio may be derived from the weight ratio or volume ratio of the molded product molded in each cavity. When the weight ratio is used, as shown in FIG. 6 (a), each weight Wa, Wb of the molded product obtained by completely filling each cavity 10a, 10b with the molding material is shown in FIG. 6 (b). The weights Wa ', W of the incompletely filled molded product obtained by reducing the filling amount as described above, that is, by stopping the filling before the complete filling.
From (b ′), (Wa ′ / Wa) / (Wb ′ / Wb) is obtained, and this weight ratio is defined as a filling ratio A / B. However,
Since the weight ratio before complete filling changes as shown in FIG. 7 with an increase in the amount of injected resin, immediately before the change before complete filling becomes large (the filling ratio is 90 to 90% by weight). 9
(8%) (weight ratio of several points).

【0025】そして、この重量による充填比A/Bで充
填比変化曲線fを補正するにあたっては、充填比A/B
と解析上での特定キャビティと他のキャビティとの重量
相当量比との差を用いる。この重量相当量比は、まず上
記の未完全充填の成形品を実成形した際の充填率(未完
全充填成形品重量/完全充填成形品重量)となるまでの
充填時間及び射出速度を解析で求め、求めた射出速度と
充填時間とを乗算したものに更に樹脂密度及び樹脂流路
における射出速度が決定される位置の断面積を乗算する
ことで、特定キャビティ及び他のキャビティの各重量相
当量を求めて、両重量相当量の比を求めることによって
得る。
When the filling ratio change curve f is corrected by the filling ratio A / B based on the weight, the filling ratio A / B
And the difference between the weight equivalent ratio of the specific cavity and the other cavity in the analysis. The weight equivalent ratio is obtained by first analyzing the filling time and injection speed until the filling rate (incompletely filled molded article weight / completely filled molded article weight) when the above-mentioned incompletely filled molded article is actually molded. The obtained injection speed is multiplied by the filling time, and the product is further multiplied by the cross-sectional area of the position where the injection speed is determined in the resin flow path and the resin flow path. To obtain the ratio between the two weight equivalents.

【0026】体積比を用いる場合には、各キャビティ1
0a,10bに成形材料を完全充填して得た成形品の各
体積Ca,Cbと、図6(b)に示すように充填量を少な
くして、つまり完全充填前の状態で充填を中止してしま
うことで得た未完全充填成形品の各体積Ca’,Cb’
とから、 (Ca’/Ca)/(Cb’/Cb) を求めて、この体積比を充填比A/Bとし、この充填比
A/Bと、解析による体積相当量比との差で充填比変化
曲線fを補正する。体積比相当量は、上記の未完全充填
の成形品を実成形した際の充填率(未完全充填成形品体
積/完全充填成形品体積)となるまでの充填時間及び射
出速度を解析で求め、求めた射出速度と充填時間とを乗
算したものに更に樹脂流路における射出速度が決定され
る位置の断面積を乗算することで得る。
When the volume ratio is used, each cavity 1
Each of the volumes Ca and Cb of the molded product obtained by completely filling the molding materials into the parts 0a and 10b and the filling amount as shown in FIG. 6B are reduced, that is, the filling is stopped before the complete filling. Each volume Ca ', Cb' of the incompletely filled molded product obtained by
From this, (Ca ′ / Ca) / (Cb ′ / Cb) is obtained, and this volume ratio is defined as a filling ratio A / B, and the filling is performed by a difference between the filling ratio A / B and the volume equivalent ratio by analysis. The ratio change curve f is corrected. The volume ratio equivalent amount is obtained by analyzing the filling time and the injection speed until the filling rate (uncompletely filled molded product volume / completely filled molded product volume) when the above-mentioned partially filled molded product is actually molded, The product is obtained by multiplying the product of the obtained injection speed and the filling time by the cross-sectional area at the position where the injection speed is determined in the resin flow path.

【0027】ところで、金型に多数のキャビティ10を
形成する場合、スプルー11を中心として、メインラン
ナー12やサブランナー13、キャビティ10等が対称
となるように配置するのが通常である。例えば、図8に
示す配置では、ブロックB1とブロックB4がスプルー
11を中心とする点対称関係にあり、ブロックB1とブ
ロックB2がスプルー11を通る対称軸Laについて対
称関係にあり、さらにブロックB1とブロックB3とが
スプルー11とメインランナー12とを通る対称軸Lb
について対称関係にある。このような場合、ブロックB
1にあるキャビティ10についての樹脂流路を評価対称
とするだけでよく、解析に要する時間の短縮を図ること
ができる。また、この図からも明らかように、樹脂流路
のうち、サブランナー13をパラメータとして解析を行
うことが実際的である。
When a large number of cavities 10 are formed in a mold, the main runner 12, the sub-runner 13, the cavities 10 and the like are usually arranged symmetrically about the sprue 11. For example, in the arrangement shown in FIG. 8, the block B1 and the block B4 are in a point symmetrical relationship around the sprue 11, the block B1 and the block B2 are in a symmetrical relationship about a symmetry axis La passing through the sprue 11, and The block B3 passes through the sprue 11 and the main runner 12, and the axis of symmetry Lb
Are symmetrical. In such a case, block B
It is only necessary to make the resin flow path for the cavity 10 in 1 symmetrical for evaluation, and the time required for analysis can be reduced. Further, as is apparent from this figure, it is practical to perform an analysis using the sub-runner 13 as a parameter in the resin flow path.

【0028】なお、最初の解析によって金型設計を行う
時、成形品形状データや樹脂データ、成形条件データ、
金型特性(熱伝導率、比熱、密度)等のうち、成形サイ
クル時間の短縮について重要視される条件(例えば金型
温度、樹脂温度、射出速度等)を選択し、成形機の能力
及び樹脂性質等から成形条件幅を決定し、選択した各条
件において成形条件幅内の数点において射出成形解析を
行うことで、図9に示すように、上記の選択条件と成形
サイクル時間との関係を求めるとともに、成形サイクル
時間が最小となる時の選択条件の組み合わせを求めて、
この条件下で、前述の流動解析による樹脂流路の形状デ
ータを求めることを行えば、成形サイクル時間が短く且
つ各キャビティへの樹脂充填が同時完了する樹脂流路形
状データを得ることができる。
When a mold is designed by the first analysis, molded product shape data, resin data, molding condition data,
From the mold characteristics (thermal conductivity, specific heat, density), etc., select the conditions (eg, mold temperature, resin temperature, injection speed, etc.) that are important for shortening the molding cycle time, and select the molding machine capacity and resin. By determining the molding condition width from the properties and the like, and performing injection molding analysis at several points within the molding condition width at each selected condition, the relationship between the above-mentioned selection condition and the molding cycle time is determined as shown in FIG. And the combination of the selection conditions when the molding cycle time is minimized,
Under these conditions, if the shape data of the resin flow path is obtained by the flow analysis described above, it is possible to obtain the resin flow path shape data in which the molding cycle time is short and the filling of the resin into each cavity is completed at the same time.

【0029】ちなみに熱可塑性樹脂成形の場合の成形サ
イクル時間は充填時間と保圧時間と冷却時間と型開き時
間との和、熱硬化性樹脂成形の場合の成形サイクル時間
は充填時間と硬化時間と型開き時間との和であり、成形
サイクル時間を最小とするにあたっての上記射出成形解
析は、成形サイクル時間として充填時間を代用してもよ
い。
In the case of thermoplastic resin molding, the molding cycle time is the sum of the filling time, the dwell time, the cooling time, and the mold opening time. In the case of thermosetting resin molding, the molding cycle time is the filling time, the curing time, In the injection molding analysis for minimizing the molding cycle time, the filling time may be used as the molding cycle time.

【0030】[0030]

【発明の効果】以上のように本発明においては、解析に
よって得た流路形状を、実際に成形に供した場合と解析
値との差によって補正して最終の流路形状を得て、この
ようにして求めた流路で金型を製作することから、実成
形の際の金型内での樹脂の流れを解析だけでは掴めなか
った状態を考慮したものとすることができるものであ
り、このために修正を何度も繰り返さずとも、各キャビ
ティへの充填が同時完了することになる金型を製作する
ことができるものである。
As described above, in the present invention, the final flow path shape is obtained by correcting the flow path shape obtained by the analysis based on the difference between the case of actually performing molding and the analysis value. Since the mold is manufactured with the flow path obtained in this way, it is possible to take into account the state where the flow of the resin in the mold at the time of actual molding could not be grasped by analysis alone, Therefore, it is possible to manufacture a mold in which the filling of each cavity is completed at the same time without repeating the correction many times.

【0031】そして、樹脂特性や金型特性、成形品形
状、成形条件等を入力値とし、キャビティに至る樹脂流
路の形状データをパラメータとする解析によって各キャ
ビティ毎の樹脂充填完了時間を求めて、各キャビティで
の樹脂充填完了時間が等しくなる樹脂流路形状を定める
にあたり、成形サイクル時間を最小とする条件のもとに
樹脂流路形状を定めておくならば、成形サイクル時間が
短く、しかも同時充填完了となる金型を得ることができ
る。
Then, the resin filling time for each cavity is obtained by analysis using the resin characteristics, mold characteristics, molded product shape, molding conditions and the like as input values and using the shape data of the resin flow path to the cavity as a parameter. In defining the resin flow path shape in which the resin filling completion time in each cavity is equal, if the resin flow path shape is determined under the condition of minimizing the molding cycle time, the molding cycle time is short, and A mold that completes simultaneous filling can be obtained.

【0032】また、キャビティ及び樹脂流路をスプルー
を中心とする対称な複数ブロックに分割するとともに単
一ブロック内における樹脂流路を対象として解析並びに
補正を行うならば、評価部分を限定することによる解析
のための演算時間の短縮を図ることができる。作成した
試験用の金型を用いて成形を行って、各キャビティへの
樹脂充填状態を実測するにあたり、樹脂充填量を変えて
成形した成形品から樹脂充填状態を実測する時には、充
填比をより正確に求めることができるとともに、初期に
製作する試験用金型を計測用機器を付加したものとする
必要がないために、これの修正にて最終金型製作とする
ことができる。
Further, if the cavity and the resin flow path are divided into a plurality of symmetric blocks around the sprue, and the analysis and correction are performed on the resin flow path in a single block, the evaluation portion is limited. Calculation time for analysis can be reduced. Performing molding using the test mold created and measuring the resin filling state in each cavity.When measuring the resin filling state from the molded product molded by changing the resin filling amount, increase the filling ratio. Since it can be obtained accurately and it is not necessary to add a measuring device to the test mold to be initially produced, the final mold can be produced by modifying this.

【0033】更に、キャビティに至る樹脂流路の形状デ
ータのうちスプルーとメインランナーとゲートは固定入
力値とし、サブランナーの形状データをパラメータとす
るならば、パラメータが少なくなるために、解析演算が
容易となる。
Furthermore, if the sprue, main runner, and gate of the shape data of the resin flow path to the cavity are fixed input values and the shape data of the sub-runner are parameters, the number of parameters is reduced, so that the analysis calculation is not performed. It will be easier.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るフローチャートである。FIG. 1 is a flowchart according to the present invention.

【図2】樹脂流路の一例を示すもので、(a)は側面図、
(b)は正面図、(c)は底面図である。
FIG. 2 shows an example of a resin flow path, (a) is a side view,
(b) is a front view, and (c) is a bottom view.

【図3】一実施例における充填比の測定方法を示すもの
で、(a)は測定手段である圧力センサーの配置を示すモ
デル図、(b)は圧力センサー出力の説明図である。
3A and 3B show a method of measuring a filling ratio in one embodiment, in which FIG. 3A is a model diagram showing an arrangement of a pressure sensor as a measuring means, and FIG. 3B is an explanatory diagram of an output of the pressure sensor.

【図4】充填比変化曲線の説明図である。FIG. 4 is an explanatory diagram of a filling ratio change curve.

【図5】補正充填比変化曲線の説明図である。FIG. 5 is an explanatory diagram of a correction filling ratio change curve.

【図6】(a)は完全充填成形品の説明図、(b)は未完全充
填成形品の説明図である。
FIG. 6 (a) is an explanatory view of a completely filled molded article, and FIG. 6 (b) is an explanatory view of an incompletely filled molded article.

【図7】射出量と重量比との関係を示す説明図である。FIG. 7 is an explanatory diagram showing a relationship between an injection amount and a weight ratio.

【図8】樹脂流路の対称関係の説明図である。FIG. 8 is an explanatory diagram of a symmetric relationship between resin flow paths.

【図9】金型温度と成形サイクル時間、樹脂温度と成形
サイクル時間、射出速度と成形サイクル時間の相関を示
す説明図である。
FIG. 9 is an explanatory diagram showing a correlation between a mold temperature and a molding cycle time, a resin temperature and a molding cycle time, and an injection speed and a molding cycle time.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−91703(JP,A) 特開 平6−39882(JP,A) 「特集 ランナー、ゲート設計からみ たプラスチック製品の品質向上」、型技 術、第4巻、第8号(1989年8月号)、 平成1年8月1日発行、p.18−68 Louis T.Manzione 著,天野 修 訳、「射出成形CAE」 株式会社工業調査会、平成元年2月10日 発行、P.192−202、P.272−284 (58)調査した分野(Int.Cl.6,DB名) B29C 45/00 - 45/84 B29C 33/38 G01N 11/00 - 11/08 G05B 17/00────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-91703 (JP, A) JP-A-6-39882 (JP, A) "Special issue: Quality improvement of plastic products from the viewpoint of runner and gate design", Mold Technology, Vol. 4, No. 8 (August 1989), published August 1, 2001, p. 18-68 Louis T.M. Manzion, Translated by Osamu Amano, “Injection Molding CAE”, Industrial Research Council, Inc., published on February 10, 1989, p. 192-202, p. 272-284 (58) Fields investigated (Int.Cl. 6 , DB name) B29C 45/00-45/84 B29C 33/38 G01N 11/00-11/08 G05B 17/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数個のキャビティを有する樹脂成形用
の金型の製作方法であって、 樹脂特性や金型特性、成形品形状、成形条件等を入力値
とし、キャビティに至る樹脂流路の形状データをパラメ
ータとする解析によって各キャビティ毎の樹脂充填完了
時間を求めて、各キャビティでの樹脂充填完了時間が等
しくなる樹脂流路形状を定め、 上記の樹脂流路形状の試験用金型を作成し、 作成した試験用金型を用いて成形を行って、各キャビテ
ィへの樹脂充填状態を実測し、 各キャビティについて実測した樹脂充填状態から特定の
キャビティに対する他のキャビティの充填比を求め、 上記特定のキャビティについての樹脂流路形状データを
固定とし、他のキャビティについての樹脂流路の形状デ
ータを変更して前記解析を行うことで、特定のキャビテ
ィと他のキャビティとの充填比の上記形状データの変化
に伴う変化曲線を求め、 上記変化曲線を実測に基づく上記充填比から導いた補正
量にて補正し、 補正した変化曲線の充填比が1となる時の形状データを
他のキャビティの樹脂流路形状データとし、 上記流路形状で金型を製作することを特徴とする金型製
作方法。
1. A method for manufacturing a resin molding die having a plurality of cavities, comprising: inputting resin characteristics, die characteristics, molded product shape, molding conditions, and the like; The resin filling completion time for each cavity is determined by analysis using the shape data as a parameter, and the resin flow path shape in which the resin filling completion time in each cavity is equal is determined. Created, molded using the created test mold, measured the resin filling state in each cavity, calculated the filling ratio of other cavities to specific cavities from the measured resin filling state for each cavity, By fixing the resin flow path shape data for the specific cavity and changing the resin flow path shape data for the other cavities and performing the analysis, a specific key is obtained. The change curve of the filling ratio between the cavity and the other cavity due to the change of the shape data is obtained, and the change curve is corrected with a correction amount derived from the filling ratio based on the actual measurement. A mold manufacturing method, wherein the shape data at the time of 1 is used as the resin flow channel shape data of another cavity, and a die is manufactured with the flow channel shape.
【請求項2】 樹脂特性や金型特性、成形品形状、成形
条件等を入力値とし、キャビティに至る樹脂流路の形状
データをパラメータとする解析によって各キャビティ毎
の樹脂充填完了時間を求めて、各キャビティでの樹脂充
填完了時間が等しくなる樹脂流路形状を定めるにあた
り、成形サイクル時間を最小とする条件のもとに樹脂流
路形状を定めていることを特徴とする請求項1記載の金
型製作方法。
2. A resin filling completion time for each cavity is obtained by analysis using resin characteristics, mold characteristics, molded product shape, molding conditions, and the like as input values, and using the shape data of a resin flow path to the cavities as parameters. 2. The resin flow path shape according to claim 1, wherein the resin flow path shape in which the resin filling completion time in each cavity is equal is determined under the condition of minimizing the molding cycle time. Mold making method.
【請求項3】 キャビティ及び樹脂流路をスプルーを中
心とする対称な複数ブロックに分割するとともに単一ブ
ロック内における樹脂流路を対象として解析並びに補正
を行うことを特徴とする請求項1記載の金型製作方法。
3. The method according to claim 1, wherein the cavity and the resin flow path are divided into a plurality of symmetric blocks around the sprue, and the analysis and correction are performed on the resin flow path in a single block. Mold making method.
【請求項4】 作成した試験用金型を用いて成形を行っ
て、各キャビティへの樹脂充填状態を実測するにあた
り、樹脂充填量を変えて成形した成形品から樹脂充填状
態を実測することを特徴とする請求項1記載の金型製作
方法。
4. When molding is performed using the created test die and the resin filling state in each cavity is measured, it is necessary to measure the resin filling state from a molded article molded by changing the resin filling amount. The method for manufacturing a mold according to claim 1, wherein:
【請求項5】 キャビティに至る樹脂流路の形状データ
のうちスプルーとメインランナーとゲートは固定入力値
とし、サブランナーの形状データをパラメータとするこ
とを特徴とする請求項1または2または3記載の金型製
作方法。
5. The sprue, the main runner, and the gate among the shape data of the resin flow path to the cavity are fixed input values, and the shape data of the sub-runner is a parameter. Mold making method.
JP6078997A 1994-04-18 1994-04-18 Mold making method Expired - Lifetime JP2828897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6078997A JP2828897B2 (en) 1994-04-18 1994-04-18 Mold making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6078997A JP2828897B2 (en) 1994-04-18 1994-04-18 Mold making method

Publications (2)

Publication Number Publication Date
JPH07285156A JPH07285156A (en) 1995-10-31
JP2828897B2 true JP2828897B2 (en) 1998-11-25

Family

ID=13677540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6078997A Expired - Lifetime JP2828897B2 (en) 1994-04-18 1994-04-18 Mold making method

Country Status (1)

Country Link
JP (1) JP2828897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114701060B (en) * 2022-03-22 2023-04-25 华中科技大学 Integral ceramic pouring filter system for casting and preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
「特集 ランナー、ゲート設計からみたプラスチック製品の品質向上」、型技術、第4巻、第8号(1989年8月号)、平成1年8月1日発行、p.18−68
Louis T.Manzione著,天野 修 訳、「射出成形CAE」株式会社工業調査会、平成元年2月10日発行、P.192−202、P.272−284

Also Published As

Publication number Publication date
JPH07285156A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
US5811133A (en) Injection molding apparatus for predicting deformation amount in injection-molded article
US9573307B1 (en) Method for preparing a fiber-reinforced composite article by using computer-aided engineering
US5097432A (en) Evaluation method of flow analysis on molding of a molten material
Wang et al. Measurement of specific volume of polymers under simulated injection molding processes
US20100036646A1 (en) Analytical model preparation method, and simulation system method for predicting molding failure
KR102285242B1 (en) Screw shape estimation device, screw shape estimation method and screw shape estimation program
KR920004583B1 (en) Method and apparatus for measuring flow and curing characteristices of resin
JP2828897B2 (en) Mold making method
CN111745925B (en) Injection molding analysis method and injection molding analysis system
JP6639899B2 (en) Molded article design support method, molded article design support apparatus, computer software, storage medium
US6845289B2 (en) Hybrid model and method for determining manufacturing properties of an injection-molded part
EP3511149B1 (en) Curvature deformation prevention design method for resin molded article, program, recording medium, and curvature deformation prevention design apparatus for resin molded article
JP2003271678A (en) Numerical analysis method and device
JPH04305424A (en) Method for evaluating optimum injection molding condition utilizing flow analysis and injection molding apparatus
JP3439308B2 (en) Prediction method of pressure loss in mold cavity and injection molding machine using it
WO2024111172A1 (en) Molded article quality variance estimation device, molded article quality variance estimation method, and injection molding system
Singh et al. Modelling and analysis of mold filling parameters for PP and abs materials using software simulation
JP2002219739A (en) Method for estimating amount of change in shape of injection-molded article
JPH11184906A (en) Molding analysis method and molding die design method using the same
JPH02120642A (en) Method and apparatus for measuring flow and curing characteristics of resin
JPH0655597A (en) Injection-molding process simulation method and device thereof
JPH11156909A (en) Method for estimating strength of fused part of multilayered injection molded product
JP2024076178A (en) Apparatus and method for estimating quality variation of molded product, and injection molding system
JP2003231167A (en) Numerical analysis method and device of injection molding process
JP2854802B2 (en) How to set the time to remove the thermosetting resin

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 15

EXPY Cancellation because of completion of term