WO2024111034A1 - Frequency detection circuit and frequency detection system - Google Patents

Frequency detection circuit and frequency detection system Download PDF

Info

Publication number
WO2024111034A1
WO2024111034A1 PCT/JP2022/043084 JP2022043084W WO2024111034A1 WO 2024111034 A1 WO2024111034 A1 WO 2024111034A1 JP 2022043084 W JP2022043084 W JP 2022043084W WO 2024111034 A1 WO2024111034 A1 WO 2024111034A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
circuit
conversion
ghz
Prior art date
Application number
PCT/JP2022/043084
Other languages
French (fr)
Japanese (ja)
Inventor
平 和田
英之 中溝
達也 萩原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/043084 priority Critical patent/WO2024111034A1/en
Publication of WO2024111034A1 publication Critical patent/WO2024111034A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/14Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by heterodyning; by beat-frequency comparison

Definitions

  • This disclosure relates to a frequency detection circuit and a frequency detection system that detect the frequency of an input signal.
  • the frequency detection circuit is a circuit that detects the frequency of an arbitrary input signal.
  • the frequency detection circuit is configured using a frequency converter such as a mixer, an analog to digital converter (ADC), and an arithmetic circuit (also called a logic circuit or a digital circuit) such as a field programmable gate array (FPGA).
  • a frequency converter such as a mixer, an analog to digital converter (ADC), and an arithmetic circuit (also called a logic circuit or a digital circuit) such as a field programmable gate array (FPGA).
  • ADC analog to digital converter
  • FPGA field programmable gate array
  • Patent Document 1 shows a configuration in which a plurality of systems, each of which is made up of a mixer, a low pass filter (LPF), and a digitizer, are connected in parallel.
  • LO Local Oscillator
  • LO Local Oscillator
  • the frequency detection circuit detects the frequency of the input signal by formulating and solving simultaneous equations based on information on the frequency, amplitude, and phase of the LO signal used for frequency conversion in each system and the signal after frequency conversion in each system.
  • This disclosure has been made to solve the problems described above, and aims to provide a frequency detection circuit that can detect the frequency of the input signal without increasing the circuit size, regardless of the frequency.
  • the frequency detection circuit is characterized by comprising a frequency conversion circuit that converts the frequency of an input signal using two LO signals that are switched over time, a first LO signal and a second LO signal that has the same frequency but a different phase from the first LO signal, and a frequency calculation circuit that calculates the frequency of the input signal based on the phase difference between the signal after frequency conversion using the first LO signal by the frequency conversion circuit and the signal after frequency conversion using the second LO signal, and the phase difference between the first LO signal and the second LO signal.
  • the above configuration makes it possible to detect the frequency of the input signal without increasing the circuit size, regardless of the frequency of the input signal.
  • FIG. 1 is a block diagram showing a configuration example (when an input signal has one wave) of a frequency detection circuit according to a first embodiment
  • 4 is a block diagram showing a configuration example (when the input signal has one wave) of a frequency calculation circuit in the first embodiment
  • FIG. 11 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using a first LO signal by the mixer in the first embodiment (when the input signal has one wave).
  • FIG. 11 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using a second LO signal by the mixer in the first embodiment (when the input signal has one wave).
  • FIG. FIG. 5A is a diagram showing an example of a signal after passing through a filter in the first embodiment
  • FIG. 5B is a diagram explaining an example of the operation of a phase calculation circuit.
  • 1 is a block diagram showing a configuration example (when an input signal has two waves) of a frequency detection circuit according to a first embodiment
  • 1 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using a first LO signal by the mixer in the first embodiment (when the input signal has two waves).
  • FIG. 11 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using a second LO signal by the mixer in the first embodiment (when the input signal has two waves).
  • FIG. 4 is a diagram showing an example of a phase difference calculated by the phase difference calculation circuit in the first embodiment (when the input signal has two waves).
  • FIG. 13 is a block diagram showing another configuration example (when the input signal has one wave) of the frequency detection circuit according to the first embodiment;
  • FIG. 13 is a block diagram showing another configuration example (when the input signal has one wave) of the frequency calculation circuit in the first embodiment.
  • FIG. 13 is a block diagram showing another configuration example (when the input signal has one wave) of the frequency calculation circuit in the first embodiment.
  • FIG. 11 is a block diagram showing a configuration example (when the input signal has one wave) of a frequency detection circuit according to a second embodiment;
  • FIG. 11 is a diagram showing an example of the behavior of frequency conversion related to f LO1 by the quadrature mixer in the second embodiment (when the input signal has one wave).
  • FIG. 11 is a diagram showing an example of the behavior of frequency conversion related to f LO2 by the quadrature mixer in the second embodiment (when the input signal has one wave).
  • FIG. 11 is a diagram showing an example of the behavior of frequency conversion related to f LO1 by the quadrature mixer in the second embodiment (when the input signal has one wave).
  • FIG. 11 is a diagram showing an example of the behavior of frequency conversion related to f LO2 by the quadrature mixer in the second embodiment (when the input signal has one wave).
  • FIG. 11 is a diagram showing an example of the behavior of frequency conversion related to f LO2 by the quadrature mixer in the second embodiment (when the input signal has one wave).
  • 11 is a block diagram showing a configuration example (when the input signal has one wave) of a frequency detection system according to a third embodiment
  • 13 is a flowchart showing an example of a setting example of the frequencies of the first LO signal and the second LO signal used in the first frequency detection circuit by the arithmetic circuit in embodiment 3, and the frequencies of the first LO signal and the second LO signal for the second frequency detection circuit.
  • FIG. 1 is a block diagram showing an example of the configuration of a frequency detection circuit 1 according to a first embodiment.
  • the frequency detection circuit 1 is a circuit for detecting the frequency of an input signal, and includes a signal source 11, a mixer 12, a filter 13, and a frequency calculation circuit 14, as shown in FIG.
  • f RF denotes the frequency of the input signal
  • ⁇ RF denotes the initial phase of the input signal
  • f LOi indicates the frequencies of the first LO signal and the second LO signal generated by the signal source
  • ⁇ LOi_1 indicates the initial phase of each frequency component included in the first LO signal generated by the signal source
  • ⁇ LOi_2 indicates the initial phase of each frequency component included in the second LO signal generated by the signal source 11. Note that ⁇ LOi_1 ⁇ ⁇ LOi_2 . Also, in FIG.
  • f out indicates the frequency of the signal passing through filter 13
  • ⁇ out1 indicates the initial phase of the signal based on the first LO signal passing through filter 13
  • ⁇ out2 indicates the initial phase of the signal based on the second LO signal passing through filter 13.
  • i is 1, 2, . . . , m
  • m is an integer of 2 or more.
  • the signal source 11 is a circuit capable of generating a signal of any signal waveform or any frequency.
  • the signal source 11 generates an LO signal having the same frequency (including substantially the same meaning) as the frequency and the same initial phase (including substantially the same meaning) as the initial phase of the signal output by the frequency calculation circuit 14 according to the frequency and initial phase indicated by the signal output by the frequency calculation circuit 14.
  • the LO signals generated by the signal source 11 are a first LO signal and a second LO signal. It is preferable that the first LO signal and the second LO signal each have a plurality of frequency components.
  • the second LO signal is a signal having the same frequency as the first LO signal but a different phase.
  • the LO signal generated by the signal source 11 is switched to the first LO signal or the second LO signal depending on time. Although omitted in FIG. 1, the signal source 11 may generate an LO signal using a control signal or a reference signal input from the outside. The LO signal generated by the signal source 11 is output to the mixer 12.
  • control terminal is connected to the output terminal of the frequency calculation circuit 14, and the output terminal is connected to the LO terminal of the mixer 12.
  • this signal source 11 for example, a DAC (Digital-to-Analog Converter), a DDS (Direct Digital Synthesizer), or a PLL (Phase Locked Loop) circuit is used.
  • DAC Digital-to-Analog Converter
  • DDS Direct Digital Synthesizer
  • PLL Phase Locked Loop
  • any circuit may be used as the signal source 11 as long as it is capable of generating a signal of any signal waveform or any frequency.
  • Mixer 12 is a mixer that converts the frequency by mixing two input signals.
  • mixer 12 converts the frequency of an input signal by mixing the input signal with an LO signal (first LO signal or second LO signal) output by signal source 11.
  • the mixed signal which is the signal after frequency conversion by mixer 12, is output to filter 13.
  • an input signal is input to the RF terminal, the LO terminal is connected to the output terminal of the signal source 11, and the IF (Intermediate Frequency) terminal is connected to the input terminal of the filter 13.
  • the RF terminal and the LO terminal of the mixer 12 may be connected in reverse.
  • this mixer 12 for example, a diode mixer that uses the nonlinearity of diodes to perform mixing, or a switching mixer that uses switching transistors, etc., can be used.
  • any configuration may be used for the mixer 12 as long as it is capable of converting the frequency by mixing two input signals.
  • Filter 13 has a predetermined passband and passes signals in the frequency band within the passband among the input signals and suppresses signals in the frequency band outside the passband.
  • filter 13 passes signals in the frequency band within the passband among the signals after frequency conversion by mixer 12 and suppresses signals in the frequency band outside the passband and unwanted waves.
  • the signal that has passed through filter 13 is output to frequency calculation circuit 14.
  • the input terminal of this filter 13 is connected to the IF terminal of the mixer 12, and the output terminal is connected to the input terminal of the frequency calculation circuit 14.
  • an LPF, a HPF (High Pass Filter), or a BPF (Band Pass Filter) may be used as the filter 13.
  • the filter 13 is implemented using a chip inductor or a chip capacitor.
  • the filter 13 may also be configured using other resonators such as a microstrip or a coaxial resonator depending on the frequency band to be passed or the required amount of suppression.
  • the frequency calculation circuit 14 is a circuit that calculates the frequency of the input signal based on the phase difference between a signal based on the first LO signal passed through the filter 13 and a signal based on the second LO signal, and based on the phase difference between the first LO signal and the second LO signal generated by the signal source 11.
  • a signal indicating the calculation result by this frequency calculation circuit 14 is output to the outside.
  • the frequency calculation circuit 14 outputs to the signal source 11 a signal indicating the frequency and initial phase of the first LO signal generated by the signal source 11 and a signal indicating the frequency and initial phase of the second LO signal.
  • This frequency calculation circuit 14 is connected to the output terminal of the filter 13, and the output terminal is connected to the control terminal of the signal source 11.
  • FIG. 2 is a block diagram showing an example of the configuration of the frequency calculation circuit 14 according to the first embodiment.
  • the frequency calculation circuit 14 has a quantizer 1401, a first frequency calculation circuit 1402, a phase calculation circuit 1403, a signal source control circuit 1404, a phase difference calculation circuit 1405, a phase comparison circuit 1406, and a second frequency calculation circuit 1407.
  • Quantizer 1401 is a circuit that quantizes an input signal. In the first embodiment, quantizer 1401 quantizes a signal that has passed through filter 13. The signal quantized by quantizer 1401 is output to first frequency calculation circuit 1402 and phase calculation circuit 1403.
  • the input terminal of this quantizer 1401 is connected to the output terminal of the filter 13, and the output terminal is connected to the input terminal of the first frequency calculation circuit 1402 and the input terminal of the phase calculation circuit 1403.
  • an ADC can be used as the quantizer 1401.
  • the quantizer 1401 may perform quantization in synchronization with a clock signal input from the outside. It should be noted that the quantizer 1401 may have any configuration as long as it is capable of quantizing an input signal.
  • the first frequency calculation circuit 1402 is a circuit that calculates the frequency of an input signal.
  • the first frequency calculation circuit 1402 in the first embodiment calculates the frequency (f out ) of the signal based on the signal quantized by the quantizer 1401.
  • a signal indicating the frequency calculated by the first frequency calculation circuit 1402 is output to the second frequency calculation circuit 1407.
  • the input terminal of this first frequency calculation circuit 1402 is connected to the output terminal of the quantizer 1401, and the output terminal is connected to the first input terminal of the second frequency calculation circuit 1407.
  • This first frequency calculation circuit 1402 can be, for example, a logic circuit (also called a digital circuit) such as an FPGA.
  • a logic circuit also called a digital circuit
  • the first frequency calculation circuit 1402 calculates the frequency by, for example, arithmetic processing such as FFT (Fast Fourier Transform).
  • FFT Fast Fourier Transform
  • the first frequency calculation circuit 1402 may have any configuration as long as it is capable of calculating the frequency of the input signal.
  • the first frequency calculation circuit 1402 is capable of calculating the frequency of the input signal. In other words, since the frequency band of the signal input to the first frequency calculation circuit 1402 is within a frequency band expected in advance and there are no problems due to high frequencies, such as with the input signal to the frequency detection circuit 1, the first frequency calculation circuit 1402 can calculate the frequency of the signal using existing technology.
  • the phase calculation circuit 1403 is a circuit that calculates the initial phase of an input signal, and in the first embodiment, the phase calculation circuit 1403 calculates the initial phase of the signal based on the signal after quantization by the quantizer 1401. The signal indicating the initial phase calculated by this phase calculation circuit 1403 is output to the phase difference calculation circuit 1405.
  • phase calculation circuit 1403 The input terminal of this phase calculation circuit 1403 is connected to the output terminal of the quantizer 1401, and the output terminal is connected to the first input terminal of the phase difference calculation circuit 1405.
  • an FPGA can be used as the phase calculation circuit 1403.
  • the phase calculation circuit 1403 calculates the initial phase by, for example, arithmetic processing such as FFT.
  • phase calculation circuit 1403 any configuration may be used for the phase calculation circuit 1403 as long as it is capable of calculating the initial phase of the input signal.
  • the signal source control circuit 1404 outputs to the signal source 11 a signal indicating the frequency (f LOi ) and initial phase ( ⁇ LOi_1 ) of the first LO signal generated by the signal source 11, and a signal indicating the frequency (f LOi ) and initial phase ( ⁇ LOi_2 ) of the second LO signal. Moreover, the signal source control circuit 1404 outputs a signal indicating time ( t0 , t1 , t) to the phase difference calculation circuit 1405.
  • t is the current time
  • t0 is the time when the signal source 11 starts generating the first LO signal
  • t1 is the time when the signal source 11 starts generating the second LO signal.
  • the signal source control circuit 1404 outputs a signal indicating the phase difference ( ⁇ LOi — 1 ⁇ LOi — 2 ) between the first LO signal and the second LO signal generated by the signal source 11 to the phase comparison circuit 1406 .
  • the signal source control circuit 1404 has a first output terminal connected to the control terminal of the signal source 11, a second output terminal connected to the second input terminal of the phase difference calculation circuit 1405, and a third output terminal connected to the second input terminal of the phase comparison circuit 1406.
  • an FPGA or a memory can be used as the signal source control circuit 1404.
  • the signal source control circuit 1404 may determine f LOi , ⁇ LOi_1 , and ⁇ LOi_2 by calculation, or may read data stored in advance in a memory or the like.
  • the signal source control circuit 1404 may have any configuration as long as it is capable of outputting signals indicating f LOi and ⁇ LOi_1 , signals indicating f LOi and ⁇ LOi_2 , signals indicating t 0 , t 1 , and t, and signals indicating ⁇ LOi_1 - ⁇ LOi_2 .
  • the phase difference calculation circuit 1405 is a circuit that calculates the phase difference between two signals input at different times.
  • the phase difference calculation circuit 1405 in the first embodiment calculates the phase difference ( ⁇ out2 - ⁇ out1 ) from the initial phase calculated by the phase calculation circuit 1403, based on the time (t 0 , t 1 , t ) indicated by the signal output by the signal source control circuit 1404.
  • the signal indicating the phase difference calculated by this phase difference calculation circuit 1405 is output to the phase comparison circuit 1406.
  • This phase difference calculation circuit 1405 has a first input terminal connected to the output terminal of the phase calculation circuit 1403, a second input terminal connected to the output terminal of the signal source control circuit 1404, and an output terminal connected to the first input terminal of the phase comparison circuit 1406.
  • This phase difference calculation circuit 1405 can be configured, for example, by combining a memory that stores signals indicating the time ( t0 , t1 , t) and the initial phase ( ⁇ out1 , ⁇ out2 ), and a logic circuit such as an FPGA that calculates the phase difference based on the time and initial phase indicated by the signal stored in the memory.
  • phase difference calculation circuit 1405 may have any configuration as long as it is capable of calculating the phase difference between two signals input at different times.
  • the phase comparator circuit 1406 specifies a conversion frequency based on the phase difference ( ⁇ out2 - ⁇ out1 ) calculated by the phase difference calculation circuit 1405 and the phase difference ( ⁇ LOi_1 - ⁇ LOi_2 ) indicated by the signal output by the signal source control circuit 1404.
  • the conversion frequency is a frequency component used for frequency conversion of the input signal among a plurality of frequency components included in the first LO signal and the second LO signal.
  • the phase comparator circuit 1406 compares the absolute value of the phase difference calculated by the phase difference calculation circuit 1405 with the absolute value of the phase difference indicated by the signal output by the signal source control circuit 1404.
  • the phase comparison circuit 1406 identifies, among the multiple frequency components contained in the first LO signal and the second LO signal, a frequency component where the absolute value of the phase difference calculated by the phase difference calculation circuit 1405 matches (including the meaning of approximately matching) the absolute value of the phase difference indicated by the signal output by the signal source control circuit 1404, as the conversion frequency.
  • the phase comparison circuit 1406 specifies the sign based on the phase difference ( ⁇ out2 - ⁇ out1 ) calculated by the phase difference calculation circuit 1405 and the phase difference ( ⁇ LOi_1 - ⁇ LOi_2 ) indicated by the signal output by the signal source control circuit 1404.
  • the sign indicates the direction of phase rotation due to the frequency conversion of the input signal, and indicates f RF >f LOi or f RF ⁇ f LOi .
  • the phase comparison circuit 1406 compares the sign of the phase difference calculated by the phase difference calculation circuit 1405 with the sign of the phase difference at the conversion frequency.
  • phase comparison circuit 1406 determines that the phase has rotated in the forward direction (f RF >f LOi ) due to the frequency conversion of the input signal, and if the signs of both phase differences are different, the phase comparison circuit 1406 determines that the phase has rotated in the reverse direction (f RF ⁇ f LOi ) due to the frequency conversion of the input signal.
  • the signal indicating the result of the determination by the phase comparison circuit 1406 is sent to the second frequency calculation circuit 1407.
  • This phase comparison circuit 1406 has a first input terminal connected to the output terminal of the phase difference calculation circuit 1405, a second input terminal connected to the first output terminal of the signal source control circuit 1404, and an output terminal connected to the second input terminal of the second frequency calculation circuit 1407.
  • This phase comparison circuit 1406 can be, for example, a combination of an FPGA and a memory.
  • the signal indicating the phase difference output by the signal source control circuit 1404 is stored in advance in the memory.
  • the phase comparison circuit 1406 may have any configuration as long as it is capable of identifying the conversion frequency and code based on the phase difference calculated by the phase difference calculation circuit 1405 and the phase difference indicated by the signal output by the signal source control circuit 1404.
  • the second frequency calculation circuit 1407 is a circuit that calculates the frequency (f RF ) of the input signal based on the frequency ( f out ) calculated by the first frequency calculation circuit 1402 and the frequency component and sign specified by the phase comparison circuit 1406. A signal indicating the frequency calculated by this second frequency calculation circuit 1407 is output to the outside.
  • the first input terminal of this second frequency calculation circuit 1407 is connected to the output terminal of the first frequency calculation circuit 1402, and the second input terminal is connected to the output terminal of the phase comparison circuit 1406.
  • This second frequency calculation circuit 1407 can be, for example, an FPGA.
  • the second frequency calculation circuit 1407 may have any configuration as long as it is capable of calculating the frequency of the input signal based on the frequency calculated by the first frequency calculation circuit 1402 and the frequency component and code identified by the phase comparison circuit 1406.
  • the signal source 11 two PLL circuits and a synthesizer that synthesizes the signals output by the PLL circuits are used.
  • f LO1 5 GHz
  • f LO2 10 GHz
  • ⁇ LO1_1
  • ⁇ LO2_1
  • ⁇ LO1_2 30°
  • ⁇ LO2_2 60°
  • the frequency calculation circuit 14 the configuration shown in FIG. 2 is used.
  • the quantizer 1401 an ADC is used.
  • FPGAs are used as the first frequency calculation circuit 1402, the phase calculation circuit 1403, the signal source control circuit 1404, and the second frequency calculation circuit 1407.
  • FPGAs and memories are used as the phase difference calculation circuit 1405 and the phase comparison circuit 1406.
  • the memories may be memories inside the FPGA or outside the FPGA.
  • the ADCs used as the quantizer 1401 are assumed to perform quantization in synchronization with a clock signal input from the outside, and to perform oversampling.
  • the signal source 11 when time is t0 ⁇ t ⁇ t1 , the signal source 11 generates a first LO signal.
  • the signal source 11 generates, as the first LO signal, a signal having a frequency of 5 GHz and an initial phase of 0°, and a signal having a frequency of 10 GHz and an initial phase of 0°.
  • the first LO signal generated by the signal source 11 is output to the mixer 12.
  • the mixer 12 mixes the input signal with the first LO signal generated by the signal source 11 to convert the frequency of the input signal.
  • the signal after frequency conversion by the mixer 12 using the first LO signal is output to the filter 13.
  • the signal source 11 when the time is t1 ⁇ t ⁇ t2 , the signal source 11 generates a second LO signal.
  • the signal source 11 generates, as the second LO signal, a signal having a frequency of 5 GHz and an initial phase of 30°, and a signal having a frequency of 10 GHz and an initial phase of 60°.
  • the second LO signal generated by the signal source 11 is output to the mixer 12.
  • the mixer 12 frequency-converts the input signal by mixing the input signal with the second LO signal generated by the signal source 11.
  • the signal after frequency conversion by the mixer 12 using the second LO signal is output to the filter 13.
  • f mix1 ⁇ (k f RF ⁇ l f LOi ) (1)
  • ⁇ mix1 ⁇ (k ⁇ RF ⁇ l ⁇ LOi_1 )
  • ⁇ mix2 ⁇ (k ⁇ RF ⁇ l ⁇ LOi_2 )
  • mixer 12 performs frequency conversion by subtracting the frequency of the LO signal from the frequency of the input signal, i.e., the signs of the second terms on the right-hand sides of equations (1), (2), and (3) are negative.
  • FIG. 3 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using the first LO signal by the mixer 12.
  • the horizontal axis represents frequency and the vertical axis represents power.
  • reference numeral 301 denotes the passband of the filter 13.
  • the mixer 12 performs frequency conversion of an input signal having a frequency of 3 GHz and an initial phase of 0° by mixing the input signal with a first LO signal including a signal having a frequency of 5 GHz and an initial phase of 0° and a signal having a frequency of 10 GHz and an initial phase of 0°.
  • the mixer 12 frequency-converts an input signal having a frequency of 3 GHz into a signal having a frequency of 2 GHz by using the first LO signal having a frequency of 5 GHz.
  • ⁇ 1.
  • the initial phase of the input signal having a frequency of 3 GHz is 0°
  • the initial phase of the first LO signal having a frequency of 5 GHz is 0°, so that the initial phase of the signal having a frequency of 2 GHz after frequency conversion is 0°.
  • the mixer 12 converts the input signal having a frequency of 3 GHz into a signal having a frequency of 7 GHz by using the first LO signal having a frequency of 10 GHz.
  • ⁇ 1.
  • the initial phase of the input signal having a frequency of 3 GHz is 0°
  • the initial phase of the first LO signal having a frequency of 10 GHz is 0°, so that the initial phase of the signal having a frequency of 7 GHz after frequency conversion is 0°.
  • FIG. 4 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using the second LO signal by the mixer 12.
  • the horizontal axis represents frequency and the vertical axis represents power.
  • reference numeral 401 denotes the pass band of the filter 13.
  • Mixer 12 performs frequency conversion of an input signal having a frequency of 3 GHz and an initial phase of 0° by mixing the input signal with a second LO signal including a signal having a frequency of 5 GHz and an initial phase of 30° and a signal having a frequency of 10 GHz and an initial phase of 60°.
  • the mixer 12 converts the input signal having a frequency of 3 GHz into a signal having a frequency of 2 GHz by using the second LO signal having a frequency of 5 GHz.
  • ⁇ 1.
  • the initial phase of the input signal having a frequency of 3 GHz is 0°
  • the initial phase of the signal among the second LO signals having a frequency of 5 GHz is 30°, so that the initial phase of the signal having a frequency of 2 GHz after frequency conversion is 30°.
  • the mixer 12 converts the input signal having a frequency of 3 GHz into a signal having a frequency of 7 GHz by using the second LO signal having a frequency of 10 GHz.
  • ⁇ 1.
  • the initial phase of the input signal having a frequency of 3 GHz is 0°
  • the initial phase of the second LO signal having a frequency of 10 GHz is 60°, so that the initial phase of the signal having a frequency of 7 GHz after frequency conversion is 60°.
  • the filter 13 is provided to prevent malfunction due to a signal with a large number of frequency components being input to the frequency calculation circuit 14, or to prevent failure due to a signal with a high power frequency component being input. Since many frequency components other than fout exist in the signal after frequency conversion by the mixer 12, the passband or implementation method of the filter 13 is determined so that the components other than fout can be sufficiently suppressed.
  • the filter 13 may be a BPF or HPF.
  • the filter 13 may be omitted and a through circuit may be used.
  • the filter 13 when the time is t 0 ⁇ t ⁇ t 1 , the filter 13 outputs a signal whose frequency is f out and whose initial phase is ⁇ out1 due to frequency conversion in the mixer 12 by the first LO signal. Furthermore, when the time is t 1 ⁇ t ⁇ t 2 , the filter 13 outputs a signal whose frequency is f out and whose initial phase is ⁇ out2 as a result of frequency conversion in the mixer 12 using the second LO signal.
  • the quantizer 1401 quantizes the analog signal that has passed through the filter 13.
  • the digital signal that is the signal after quantization by the quantizer 1401 is output to the first frequency calculation circuit 1402 and the phase calculation circuit 1403.
  • the first frequency calculation circuit 1402 calculates the frequency (f out ) of the signal based on the signal after quantization by the quantizer 1401.
  • a signal indicating the frequency calculated by this first frequency calculation circuit 1402 is output to the second frequency calculation circuit 1407.
  • the phase calculation circuit 1403 calculates the initial phase of the signal based on the signal after quantization by the quantizer 1401. At this time, the phase calculation circuit 1403 calculates the initial phase by FFT, and calculates the initial phase at the start time of monitoring by monitoring the signal for a certain period of time ( ⁇ t). Note that ⁇ t is a real number.
  • the signal indicating the initial phase calculated by this phase calculation circuit 1403 is output to the phase difference calculation circuit 1405.
  • the phase difference calculation circuit 1405 calculates a phase difference ( ⁇ out2 - ⁇ out1 ) from the initial phase calculated by the phase calculation circuit 1403 based on the time (t 0 , t 1 , t) indicated by the signal output by the signal source control circuit 1404. At this time, the phase difference calculation circuit 1405 first extracts ⁇ out1 and ⁇ out2 from the initial phase calculated by the phase calculation circuit 1403 based on the time indicated by the signal output by the signal source control circuit 1404. Then, the phase difference calculation circuit 1405 calculates the phase difference ( ⁇ out2 - ⁇ out1 ) . A signal indicating the phase difference calculated by this phase difference calculation circuit 1405 is output to the phase comparison circuit 1406.
  • Fig. 5A is a diagram showing an example of a signal after passing through the filter 13 in the first embodiment
  • Fig. 5B is a diagram explaining an example of the operation of the phase calculation circuit 1403.
  • reference numeral 501 indicates an example of a signal based on the first LO signal after passing through the filter 13
  • reference numeral 502 indicates an example of a signal based on the second LO signal after passing through the filter 13.
  • the waveform indicated by the dashed line in Fig. 5A indicates a waveform in the case where the signal based on the second LO signal is virtually extended to the period during which the signal based on the first LO signal passes through the filter 13.
  • the phase difference calculation circuit 1405 extracts ⁇ out1 from t 0 and the initial phase calculated by the phase calculation circuit 1403, and stores a signal indicating this ⁇ out1 in memory.
  • information on ⁇ t is necessary to calculate ⁇ out1 , and the phase difference calculation circuit 1405 may store this ⁇ t as information in advance in the memory, or may calculate ⁇ t from the time when the signal is input from the phase calculation circuit 1403.
  • the phase difference calculation circuit 1405 extracts ⁇ out2 from t 0 , t 1 and the initial phase calculated by the phase calculation circuit 1403, and stores a signal indicating ⁇ out2 in memory.
  • the phase difference calculation circuit 1405 may calculate the average value of each of ⁇ out1 and ⁇ out2 , and calculate the phase difference ( ⁇ out2 - ⁇ out1 ) from the two average values.
  • the phase difference calculation circuit 1405 may extract one value each from ⁇ out1 and ⁇ out2 , and calculate the phase difference ( ⁇ out2 - ⁇ out1 ) from the extracted values.
  • 5B illustrates a case where the monitor section starts from t 0 , but the monitor section may span t 0. In that case, however, the phase difference calculation circuit 1405 does not calculate the initial phase for the monitor section including t 0 .
  • the phase comparator circuit 1406 compares the absolute value of the phase difference ( ⁇ out2 - ⁇ out1 ) calculated by the phase difference calculation circuit 1405 with the absolute value of the phase difference ( ⁇ LOi_1 - ⁇ LOi_2 ) indicated by the signal output by the signal source control circuit 1404, and identifies a conversion frequency which is a frequency component used for frequency conversion of the input signal among a plurality of frequency components contained in the first LO signal and the second LO signal.
  • the signal indicating the frequency component identified by this phase comparator circuit 1406 is output to the second frequency calculation circuit 1407.
  • ⁇ out2 - ⁇ out1 30°
  • ⁇ LO1_1 - ⁇ LO1_2 -0° - 30°
  • the absolute value of ⁇ out2 - ⁇ out1 matches the absolute value of ⁇ LO1_1 - ⁇ LO1_2
  • phase comparator circuit 1406 compares the sign of the phase difference ( ⁇ out2 - ⁇ out1 ) calculated by the phase difference calculation circuit 1405 with the sign of the phase difference at the conversion frequency to identify the sign indicating the phase rotation direction due to the frequency conversion of the input signal.
  • the signal indicating the sign identified by this phase comparator circuit 1406 is output to the second frequency calculation circuit 1407.
  • the second frequency calculation circuit 1407 calculates the frequency (f RF ) of the input signal using the following equation (5) based on the frequency (f out ) calculated by the first frequency calculation circuit 1402 and the frequency component and sign specified by the phase comparison circuit 1406. Note that here, the sign of the second term on the right side of equation (5) is negative .
  • a signal indicating the frequency calculated by this second frequency calculation circuit 1407 is output to the outside of the frequency detection circuit 1.
  • f out 2 GHz calculated by the first frequency calculation circuit 1402
  • -1 determined by the phase comparison circuit 1406
  • f out ⁇ (f RF ⁇ f LOi ) (5)
  • the frequency detection circuit 1 in the case where the input signal to the frequency detection circuit 1 has two waves (two frequency components) as shown in FIG. 6 will be described.
  • one input signal has a frequency of f RF1 and an initial phase of ⁇ RF1
  • the other input signal has a frequency of f RF2 and an initial phase of ⁇ RF2 .
  • the signal passing through the filter 13 also has multiple waves.
  • the signals based on the first LO signal passing through the filter 13 are two waves, a signal with a frequency of f OUT1 and an initial phase of ⁇ OUT1_1 , and a signal with a frequency of f OUT2 and an initial phase of ⁇ OUT1_2 .
  • the signals based on the second LO signal passing through the filter 13 are two waves, a signal with a frequency of f OUT1 and an initial phase of ⁇ OUT2_1 , and a signal with a frequency of f OUT2 and an initial phase of ⁇ OUT2_2 .
  • f RF1 3 GHz
  • ⁇ RF1
  • f RF2 6 GHz
  • ⁇ RF2
  • f LO1 5 GHz
  • f LO2 10 GHz
  • ⁇ LO1_1
  • ⁇ LO2_1
  • ⁇ LO1_2 30°
  • ⁇ LO2_2 60°.
  • Other conditions are the same as those in the operation example of the frequency detection circuit 1 when the input signal to the frequency detection circuit 1 is one wave.
  • the signal source 11 when the time is t0 ⁇ t ⁇ t1 , the signal source 11 generates a first LO signal.
  • the signal source 11 generates, as the first LO signal, a signal having a frequency of 5 GHz and an initial phase of 0°, and a signal having a frequency of 10 GHz and an initial phase of 0°.
  • the first LO signal generated by the signal source 11 is output to the mixer 12.
  • the mixer 12 mixes the input signal with the first LO signal generated by the signal source 11 to convert the frequency of the input signal.
  • the signal after frequency conversion by the mixer 12 using the first LO signal is output to the filter 13.
  • the signal source 11 when the time is t1 ⁇ t ⁇ t2 , the signal source 11 generates a second LO signal.
  • the signal source 11 generates, as the second LO signal, a signal having a frequency of 5 GHz and an initial phase of 30°, and a signal having a frequency of 10 GHz and an initial phase of 60°.
  • the second LO signal generated by the signal source 11 is output to the mixer 12.
  • the mixer 12 frequency-converts the input signal by mixing the input signal with the second LO signal generated by the signal source 11.
  • the signal after frequency conversion by the mixer 12 using the second LO signal is output to the filter 13.
  • Fig. 7 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using the first LO signal by the mixer 12.
  • the horizontal axis is frequency
  • the vertical axis is power.
  • Reference numeral 701 indicates the passband of the filter 13.
  • a signal with a triangular tip indicates a signal obtained by frequency conversion of an input signal having a frequency of 3 GHz and an initial phase of 0°.
  • a signal with a round tip indicates a signal obtained by frequency conversion of an input signal having a frequency of 6 GHz and an initial phase of 0°.
  • the mixer 12 performs frequency conversion of an input signal having a frequency of 3 GHz and an initial phase of 0° by mixing the input signal with a first LO signal including a signal having a frequency of 5 GHz and an initial phase of 0° and a signal having a frequency of 10 GHz and an initial phase of 0°.
  • mixer 12 frequency-converts an input signal having a frequency of 6 GHz and an initial phase of 0° by mixing the input signal with a first LO signal including a signal having a frequency of 5 GHz and an initial phase of 0° and a signal having a frequency of 10 GHz and an initial phase of 0°.
  • the mixer 12 frequency-converts an input signal having a frequency of 3 GHz into a signal having a frequency of 2 GHz by using the first LO signal having a frequency of 5 GHz.
  • ⁇ 1.
  • the initial phase of the input signal having a frequency of 3 GHz is 0°
  • the initial phase of the first LO signal having a frequency of 5 GHz is 0°, so that the initial phase of the signal having a frequency of 2 GHz after frequency conversion is 0°.
  • the mixer 12 converts the input signal having a frequency of 6 GHz into a signal having a frequency of 1 GHz by using the first LO signal having a frequency of 5 GHz.
  • the mixer 12 converts the input signal having a frequency of 3 GHz into a signal having a frequency of 7 GHz by using the first LO signal having a frequency of 10 GHz.
  • ⁇ 1.
  • the initial phase of the input signal having a frequency of 3 GHz is 0°
  • the initial phase of the first LO signal having a frequency of 10 GHz is 0°, so that the initial phase of the signal having a frequency of 7 GHz after frequency conversion is 0°.
  • the mixer 12 frequency-converts an input signal having a frequency of 6 GHz into a signal having a frequency of 4 GHz by using the first LO signal having a frequency of 10 GHz.
  • ⁇ 1. Furthermore, from equation (2), in mixer 12, the initial phase of the input signal having a frequency of 6 GHz is 0°, and the initial phase of the first LO signal having a frequency of 10 GHz is 0°, so that the initial phase of the signal having a frequency of 4 GHz after frequency conversion is 0°.
  • Fig. 8 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using the second LO signal by the mixer 12.
  • the horizontal axis is frequency
  • the vertical axis is power.
  • Reference numeral 801 indicates the passband of the filter 13.
  • a signal with a triangular tip indicates a signal obtained by frequency conversion of an input signal having a frequency of 3 GHz and an initial phase of 0°.
  • a signal with a round tip indicates a signal obtained by frequency conversion of an input signal having a frequency of 6 GHz and an initial phase of 0°.
  • Mixer 12 performs frequency conversion of an input signal having a frequency of 3 GHz and an initial phase of 0° by mixing the input signal with a second LO signal including a signal having a frequency of 5 GHz and an initial phase of 30° and a signal having a frequency of 10 GHz and an initial phase of 60°.
  • mixer 12 frequency converts an input signal having a frequency of 6 GHz and an initial phase of 0° by mixing the input signal with a second LO signal including a signal having a frequency of 5 GHz and an initial phase of 30° and a signal having a frequency of 10 GHz and an initial phase of 60°.
  • the mixer 12 converts the input signal having a frequency of 3 GHz into a signal having a frequency of 2 GHz by using the second LO signal having a frequency of 5 GHz.
  • ⁇ 1.
  • the initial phase of the input signal having a frequency of 3 GHz is 0°
  • the initial phase of the signal among the second LO signals having a frequency of 5 GHz is 30°, so that the initial phase of the signal having a frequency of 2 GHz after frequency conversion is 30°.
  • the mixer 12 frequency-converts an input signal having a frequency of 6 GHz into a signal having a frequency of 1 GHz by using the second LO signal having a frequency of 5 GHz.
  • the mixer 12 converts the input signal having a frequency of 3 GHz into a signal having a frequency of 7 GHz by using the second LO signal having a frequency of 10 GHz.
  • ⁇ 1.
  • the initial phase of the input signal having a frequency of 3 GHz is 0°
  • the initial phase of the second LO signal having a frequency of 10 GHz is 60°, so that the initial phase of the signal having a frequency of 7 GHz after frequency conversion is 60°.
  • the mixer 12 frequency-converts an input signal having a frequency of 6 GHz into a signal having a frequency of 4 GHz by using the second LO signal having a frequency of 10 GHz.
  • the filter 13 when the time is t0 ⁇ t ⁇ t1 , the filter 13 outputs a signal having a frequency fout1 and an initial phase ⁇ out1_1 , and a signal having a frequency fout2 and an initial phase ⁇ out1_2 , due to frequency conversion in the mixer 12 using the first LO signal.
  • the filter 13 when the time is t1 ⁇ t ⁇ t2 , the filter 13 outputs a signal whose frequency is f out1 and whose initial phase is ⁇ out2_1 , and a signal whose frequency is f out2 and whose initial phase is ⁇ out2_2 , due to frequency conversion in the mixer 12 using the second LO signal.
  • the frequency detection circuit 1 (phase difference calculation circuit 1405) performs the same operation as when the input signal to the frequency detection circuit 1 is one wave, thereby calculating the phase difference ( ⁇ out2_1 - ⁇ out1_1 , ⁇ out2_2 - ⁇ out1_2 ) between the signals that have passed through the filter 13, as shown in Figure 9.
  • the phase comparison circuit 1406 compares the absolute value of the phase difference ( ⁇ out2_1 - ⁇ out1_1 , ⁇ out2_2 - ⁇ out1_2 ) calculated by the phase difference calculation circuit 1405 with the absolute value of the phase difference ( ⁇ LOi_1 - ⁇ LOi_2 ) indicated by the signal output by the signal source control circuit 1404, and identifies a conversion frequency which is a frequency component used for frequency conversion of the input signal among multiple frequency components contained in the first LO signal and the second LO signal.
  • the signal indicating the frequency component identified by this phase comparison circuit 1406 is output to the second frequency calculation circuit 1407.
  • ⁇ out2_1 - ⁇ out1_1 -30°
  • ⁇ out2_2 - ⁇ out1_2 30°
  • phase comparator circuit 1406 compares the sign of the phase difference ( ⁇ out2_1 - ⁇ out1_1 , ⁇ out2_2 - ⁇ out1_2 ) calculated by the phase difference calculation circuit 1405 with the sign of the phase difference at the conversion frequency, and specifies the sign indicating the phase rotation direction due to the frequency conversion of the input signal.
  • the signal indicating the sign specified by this phase comparator circuit 1406 is output to the second frequency calculation circuit 1407.
  • the second frequency calculation circuit 1407 calculates the frequency (f RF1 , f RF2 ) of the input signal using equation (5) based on the frequency (f out1 , f out2 ) calculated by the first frequency calculation circuit 1402 and the frequency component and sign specified by the phase comparison circuit 1406.
  • the first frequency calculation circuit 1402 can calculate the frequencies of the signal that has passed through the filter 13 even if it is a plurality of waves by using an operation such as FFT.
  • the signal indicating the frequency calculated by this second frequency calculation circuit 1407 is output to the outside of the frequency detection circuit 1.
  • the frequencies of the first LO signal and the second LO signal are 5 GHz and 10 GHz. However, this is not limited thereto, and the frequencies of the first LO signal and the second LO signal may be any value.
  • the first LO signal and the second LO signal each include two frequency components, but the present invention is not limited to this.
  • the first LO signal and the second LO signal each may include one frequency component or three or more frequency components.
  • the first LO signal and the second LO signal each contain one frequency component, the frequency of that frequency component becomes the conversion frequency as is.
  • the phase difference calculation circuit 1405 calculates ⁇ out2 - ⁇ out1 as the phase difference. However, this is not limiting, and the phase difference calculation circuit 1405 may calculate ⁇ out1 - ⁇ out2 as the phase difference. In this case, however, the phase comparison circuit 1406 compares ⁇ out1 - ⁇ out2 with ⁇ LOi_2 - ⁇ LOi_1 .
  • the filter 13 suppresses high-frequency signals and passes low-frequency signals among the signals after frequency conversion by the mixer 12, and the frequency calculation circuit 14 calculates fRF from the phase difference.
  • the present invention is not limited to this, and the filter 13 may suppress low-frequency signals and pass high-frequency signals among the signals after frequency conversion by the mixer 12, and the frequency calculation circuit 14 may calculate fRF from the phase difference.
  • the frequency detection circuit 1 may pass signals of both frequency components and calculate f RF from the phase difference between the respective frequency components.
  • the mixer 12 is used as a frequency conversion circuit that converts the frequency of the input signal.
  • a circuit other than a mixer e.g., a frequency divider, a multiplier, or an S/H (Sample and Hold) circuit, etc.
  • S/H Sample and Hold
  • the frequency conversion circuit (the mixer 12 in FIG. 1 and FIG. 6) is provided in one stage, but the present invention is not limited to this and multiple stages of frequency conversion circuits may be provided.
  • the frequency detection circuit 1 may further include a frequency conversion circuit in front of the mixer 12. In this case, the frequency and phase of the RF signal input to the mixer 12 must be the same, and the frequency of the signal passing through the filter 13 must be the same.
  • FIG. 10 shows a case where a second mixer 16 is provided as the frequency conversion circuit in the frequency detection circuit 1. Also, in FIG. 10, a second signal source 15 is provided in the frequency detection circuit 1. 10, a frequency calculation circuit 14 outputs a signal indicating the frequency and initial phase of an LO signal generated by a second signal source 15 to the second signal source 15. Then, the second signal source 15 generates an LO signal having the same frequency (including substantially the same meaning) as the frequency and initial phase (including substantially the same meaning) as the initial phase according to the frequency and initial phase indicated by the signal output by the frequency calculation circuit 14. Then, a second mixer 16 mixes an input signal with the LO signal output by the second signal source 15 to frequency convert the input signal.
  • the frequency calculation circuit 14 calculates the frequency (f RF ) of the input signal based on the phase difference between the signal based on the first LO signal that has passed through the filter 13 and the signal based on the second LO signal, the phase difference between the first LO signal and the second LO signal generated by the signal source 11 , and the frequency of the LO signal used in the frequency conversion circuit (the second mixer 16 in Figure 10) provided in the preceding stage of the mixer 12.
  • frequency calculation circuit 14 calculates the frequency (f RF ') of the input signal to mixer 12 based on the phase difference between the signal based on the first LO signal passed through filter 13 and the signal based on the second LO signal, and the phase difference between the first LO signal and the second LO signal generated by signal source 11. In this way, frequency calculation circuit 14 can calculate the frequency (f RF ') of the input signal to mixer 12. Meanwhile, the frequency (f RF ') of this signal is the frequency of the signal after frequency conversion by a frequency conversion circuit (second mixer 16 in FIG. 10 ) provided in the stage preceding mixer 12.
  • the frequency calculation circuit 14 performs an inverse frequency conversion on the calculated frequency of the signal based on the calculated frequency of the signal (f RF ') and the frequency (f LO ) of an LO signal used in a frequency conversion circuit (second mixer 16 in FIG. 10 ) provided in front of the mixer 12. This allows the frequency calculation circuit 14 to calculate the frequency (f RF ) of the signal input to the frequency conversion circuit (frequency detection circuit 1).
  • the frequency calculation circuit 14 has the quantizer 1401 quantizing the signal that has passed through the filter 13, and then the digital circuit calculates ⁇ out2 - ⁇ out1 .
  • the present invention is not limited to this, and the frequency calculation circuit 14 may extract ⁇ out2 - ⁇ out1 using an analog circuit and then quantize it, as shown in FIG.
  • FIG. 11 is a block diagram showing another example of the configuration of the frequency calculation circuit 14 according to the first embodiment.
  • the quantizer 1401 and the first frequency calculation circuit 1402 are changed to a first frequency calculation circuit 1408, and the phase calculation circuit 1403 and the phase difference calculation circuit 1405 are changed to a phase difference calculation circuit 1409.
  • the first frequency calculation circuit 1408 has a first quantizer 1410 and a first calculator 1411.
  • the first quantizer 1410 quantizes the signal that has passed through the filter 13.
  • the signal quantized by the first quantizer 1410 is output to the first calculator 1411.
  • the first calculator 1411 performs arithmetic processing such as FFT on the signal quantized by the first quantizer 1410 to calculate the frequency (f out ) of the quantized signal.
  • a signal indicating the frequency calculated by the first calculator 1411 is output to the second frequency calculation circuit 1407. Note that, for example, an FPGA or the like is used as the first calculator 1411.
  • the phase difference calculation circuit 1409 has a delay circuit 1412, a mixer 1413, a second quantizer 1414, a memory 1415, and a second calculator 1416.
  • the delay circuit 1412 delays the signal that has passed through the filter 13.
  • the signal delayed by the delay circuit 1412 is output to the mixer 1413.
  • the mixer 1413 calculates the phase difference between the signal that has passed through the filter 13 and the signal that has been delayed by the delay circuit 1412 by mixing the two signals.
  • the analog signal indicating the phase difference calculated by the mixer 1413 is output to the second quantizer 1414.
  • the second quantizer 1414 quantizes the signal indicating the phase difference calculated by the mixer 1413.
  • the digital signal which is the signal after quantization by the second quantizer 1414, is output to the second calculator 1416.
  • the phase difference calculated by the mixer 1413 is not the value of ⁇ out2 - ⁇ out1 itself, but is a value that uniquely corresponds to ⁇ out2 - ⁇ out1 .
  • the memory 1415 pre-stores information indicating the correspondence between the phase difference calculated by the mixer 1413 and ⁇ out2 ⁇ out1 .
  • the second calculator 1416 reads out ⁇ out2 - ⁇ out1 corresponding to the signal quantized by the second quantizer 1414 from the memory 1415.
  • the signal indicating ⁇ out2 - ⁇ out1 read out by the second calculator 1416 is output to the phase comparison circuit 1406. Note that, for example, an FPGA or the like is used as the second calculator 1416.
  • FIG. 12 is a block diagram showing another example of the configuration of the frequency calculation circuit 14 in the first embodiment.
  • the phase calculation circuit 1403 and the phase difference calculation circuit 1405 are changed to a phase difference calculation circuit 1417 in comparison with the frequency calculation circuit 14 shown in FIG.
  • the phase difference calculation circuit 1417 includes a delay circuit 1418, a mixer 1419, a memory 1420, and a calculator 1421.
  • the delay circuit 1418 delays the signal quantized by the quantizer 1401.
  • the signal delayed by the delay circuit 1418 is output to the mixer 1419.
  • Mixer 1419 calculates the phase difference between the signal quantized by quantizer 1401 and the signal delayed by delay circuit 1418 by mixing them.
  • An analog signal indicating the phase difference calculated by mixer 1419 is output to calculator 1421.
  • the phase difference calculated by mixer 1419 is not the value of ⁇ out2 - ⁇ out1 itself, but is a value that uniquely corresponds to ⁇ out2 - ⁇ out1 .
  • the memory 1420 pre-stores information indicating the correspondence between the phase difference calculated by the mixer 1419 and ⁇ out2 ⁇ out1 .
  • the calculator 1421 reads out ⁇ out2 - ⁇ out1 corresponding to the phase difference calculated by the mixer 1419 from the memory 1420.
  • a signal indicating ⁇ out2 - ⁇ out1 read out by the calculator 1421 is output to the phase comparison circuit 1406. Note that, for example, an FPGA or the like is used as the calculator 1421.
  • the phase comparator circuit 1406 determines whether the absolute value of ⁇ out2 - ⁇ out1 matches the absolute value of ⁇ LOi_1 - ⁇ LOi_2 to specify the conversion frequency. However, due to variations in circuit performance or noise generated in the circuit, the absolute value of ⁇ out2 - ⁇ out1 may not match the absolute value of ⁇ LOi_1 - ⁇ LOi_2 . In such a case, the phase comparator circuit 1406 may select ⁇ LOi_1 - ⁇ LOi_2 whose absolute value is closest to the absolute value of ⁇ out2 - ⁇ out1 , and specify the corresponding frequency component as the conversion frequency.
  • the frequency of the input signal to the frequency detection circuit 1 is exactly in the middle of the frequencies of any two frequency components in the first LO signal and the second LO signal (hereinafter referred to as event A).
  • event A the signals obtained by frequency-converting the input signal in each of the two frequency components have the same frequency.
  • the frequencies of the first LO signal and the second LO signal are 5 GHz and 10 GHz, so that when f RF is 7.5 GHz, the signals obtained by frequency-converting at 5 GHz and at 10 GHz are both 2.5 GHz.
  • a circuit for monitoring the result of the determination by the phase comparison circuit 1406 may be provided in the frequency detection circuit 1.
  • this circuit notifies the outside.
  • the phase comparison circuit 1406 determines that ⁇ out2 - ⁇ out1 and ⁇ LOi_1 - ⁇ LOi_2 are significantly different values, at least one of the frequencies of the LO signals may be changed to an arbitrary value, either manually or automatically by the frequency detection circuit 1, and control may be applied to avoid the frequency relationship of event A.
  • a circuit for monitoring the calculation results by the first frequency calculation circuits 1402 and 1408 may be provided in the frequency detection circuit 1.
  • this circuit determines that the f out calculated by the first frequency calculation circuits 1402 and 1408 is DC, it notifies the outside to that effect.
  • the above circuit determines that the f out calculated by the first frequency calculation circuits 1402, 1408 is DC, at least one of the frequencies of the LO signals may be changed to an arbitrary value manually or automatically by the frequency detection circuit 1, and control may be applied to avoid the frequency relationship of event B.
  • the frequency detection circuit 1 includes a frequency conversion circuit that converts the frequency of an input signal using two LO signals that are switched over time, a first LO signal and a second LO signal that has the same frequency but a different phase from the first LO signal, and a frequency calculation circuit 14 that calculates the frequency of the input signal based on the phase difference between the signal after frequency conversion using the first LO signal by the frequency conversion circuit and the signal after frequency conversion using the second LO signal, and the phase difference between the first LO signal and the second LO signal.
  • Embodiment 2 In the frequency detection circuit 1 according to the first embodiment, in the case of a frequency relationship that results in event A, it takes time to detect the correct f RF because it cannot detect f RF correctly, or after it is determined that f RF cannot be detected, f LOi is changed so as to avoid the frequency relationship that results in event A. In contrast, in the frequency detection circuit 1 according to the second embodiment, a quadrature mixer is used as the mixer, and an image component is suppressed, so that the correct f RF can be detected even if event A occurs.
  • FIG. 13 is a block diagram showing a configuration example of a frequency detection circuit 1 according to embodiment 2.
  • the mixer 12 in the frequency detection circuit 1 according to embodiment 1 shown in FIG. 1 is changed to a quadrature mixer 17.
  • the other configuration examples of the frequency detection circuit 1 according to embodiment 2 shown in FIG. 13 are similar to the configuration example of the frequency detection circuit 1 according to embodiment 1 shown in FIG. 1, so the same reference numerals are used and the description thereof is omitted.
  • the orthogonal mixer 17 is a mixer that converts the frequency by mixing two input signals while suppressing the image component. This mixer is also called an image rejection mixer or IRM (Image Rejection Mixer).
  • IRM Image Rejection Mixer
  • the orthogonal mixer 17 in the second embodiment converts the frequency of the input signal by mixing the input signal with the LO signal (first LO signal or second LO signal) output by the signal source 11, while suppressing the input signal that exists at either a higher or lower frequency than the frequency of the frequency component contained in the LO signal (first LO signal or second LO signal).
  • the signal after frequency conversion by the orthogonal mixer 17 is output to the filter 13.
  • This quadrature mixer 17 has an RF terminal to which an input signal is input, an LO terminal connected to the output terminal of the signal source 11, and an IF terminal connected to the input terminal of the filter 13. Note that in this connection, the RF terminal and the LO terminal of the quadrature mixer 17 may be connected in reverse.
  • This quadrature mixer 17 can be, for example, a combination of a diode mixer that uses the nonlinearity of diodes to perform mixing, and a 90° phase shifter.
  • the quadrature mixer 17 may have any configuration as long as it can convert the frequency by mixing the two input signals while suppressing the image component.
  • the operation examples other than the quadrature mixer 17 are similar to the operation examples of the frequency detection circuit 1 according to the first embodiment, and therefore the description thereof will be omitted.
  • f LO1 5 GHz
  • f LO2 10 GHz
  • ⁇ LO1_1
  • ⁇ LO2_1
  • ⁇ LO1_2 30°
  • ⁇ LO2_2 60°
  • an LPF with a passband of 3 GHz is used.
  • the quadrature mixer 17 converts the frequency of the input signal while suppressing the input signal that exists at a frequency lower than the frequencies of the first LO signal and the second LO signal.
  • the quadrature mixer 17 mixes an input signal with an LO signal (first LO signal or second LO signal) output by the signal source 11 to convert the frequency of the input signal, while suppressing an input signal that exists at a frequency lower than the frequency of the frequency component contained in the LO signal (first LO signal or second LO signal).
  • the signal after frequency conversion by the quadrature mixer 17 is output to the filter 13.
  • the detailed circuit configuration of the quadrature mixer 17 and the operation principle of suppression are well known to those skilled in the art and are not directly related to the present disclosure, so a detailed description thereof will be omitted.
  • FIG. 14 is a diagram showing an example of the behavior of frequency conversion related to f LO1 by the quadrature mixer 17.
  • the horizontal axis represents frequency and the vertical axis represents power.
  • reference numeral 1401 denotes the passband of the filter 13.
  • the quadrature mixer 17 mixes an input signal having a frequency of 7.5 GHz and an initial phase of 0° with a signal having a frequency of 5 GHz and an initial phase of 0° among the frequency components contained in the first LO signal, thereby converting the frequency of the input signal.
  • the quadrature mixer 17 outputs the signal after frequency conversion without suppressing it.
  • the initial phase of the signal having a frequency of 2.5 GHz after frequency conversion is 0°.
  • FIG. 15 is a diagram showing an example of the behavior of frequency conversion related to f LO2 by the quadrature mixer 17.
  • the horizontal axis represents frequency
  • the vertical axis represents power.
  • reference numeral 1501 represents the passband of the filter 13.
  • quadrature mixer 17 mixes an input signal having a frequency of 7.5 GHz and an initial phase of 0° with a signal having a frequency of 10 GHz and an initial phase of 0° among frequency components contained in the first LO signal, thereby converting the frequency of the input signal.
  • f RF 7.5 GHz
  • f LO2 10 GHz
  • quadrature mixer 17 suppresses and outputs the signal after frequency conversion.
  • the signal having a frequency of 2.5 GHz after frequency conversion by the quadrature mixer 17 is the input signal frequency-converted by a signal having a frequency f LO1 (5 GHz) among the frequency components contained in the first LO signal.
  • 16 is a diagram showing an example of the behavior of frequency conversion related to f LO1 by the quadrature mixer 17.
  • the horizontal axis represents frequency
  • the vertical axis represents power.
  • reference numeral 1601 represents the passband of the filter 13.
  • the quadrature mixer 17 mixes an input signal having a frequency of 7.5 GHz and an initial phase of 0° with a signal having a frequency of 5 GHz and an initial phase of 30° among frequency components contained in the second LO signal, thereby converting the frequency of the input signal.
  • f RF (7.5 GHz) is a higher frequency than f LO1 (5 GHz)
  • the quadrature mixer 17 outputs the signal after frequency conversion without suppressing it.
  • the initial phase of the signal having a frequency of 2.5 GHz after frequency conversion is ⁇ 30°.
  • quadrature mixer 17 is a diagram showing an example of the behavior of frequency conversion related to f LO2 by the quadrature mixer 17.
  • the horizontal axis represents frequency
  • the vertical axis represents power.
  • reference numeral 1701 represents the passband of the filter 13.
  • quadrature mixer 17 mixes an input signal having a frequency of 7.5 GHz and an initial phase of 0° with a signal having a frequency of 10 GHz and an initial phase of 60° among frequency components contained in the second LO signal, thereby converting the frequency of the input signal.
  • f RF 7.5 GHz
  • f LO2 10 GHz
  • quadrature mixer 17 suppresses and outputs the signal after frequency conversion.
  • the signal having a frequency of 2.5 GHz after frequency conversion by the quadrature mixer 17 is the input signal frequency-converted by a signal having a frequency f LO1 (5 GHz) among the frequency components contained in the second LO signal.
  • the signals that have passed through the filter 13 have the same frequency but different initial phases.
  • the signal based on the first LO signal that has passed through the filter 13 has a frequency of 2.5 GHz and an initial phase of 0°.
  • the signal based on the second LO signal that has passed through the filter 13 has a frequency of 2.5 GHz and an initial phase of ⁇ 30°.
  • the quadrature mixer 17 has been described as suppressing an input signal that exists at a lower frequency than the first LO signal and the second LO signal while converting the frequency of the input signal. However, this is not limited thereto, and the quadrature mixer 17 may suppress an input signal that exists at a higher frequency than the first LO signal and the second LO signal while converting the frequency of the input signal.
  • the frequency conversion circuit is a quadrature mixer 17 that converts the frequency of an input signal by using the first LO signal and the second LO signal, and suppresses the image component of the signal after the frequency conversion.
  • the frequency detection circuit 1 according to the second embodiment can obtain the same effect as the frequency detection circuit 1 according to the first embodiment.
  • the frequency detection circuit 1 according to the second embodiment can correctly detect f RF even when the frequency relationship of the event A occurs by using a quadrature mixer as the mixer and suppressing the image component.
  • the frequency detection circuit 1 according to the second embodiment can improve the reliability of frequency detection.
  • Embodiment 3 In the frequency detection circuit 1 according to the first embodiment, in the case of a frequency relationship resulting in events A and B, it takes time to detect the correct f RF because it cannot detect f RF correctly, or after it is determined that f RF cannot be detected, f LOi is changed so as to avoid the frequency relationship resulting in events A and B. In contrast, in the frequency detection system according to the third embodiment, two frequency detection circuits 1 are used, and the LO signals used in the respective frequency detection circuits 1 are set to different frequencies, thereby making it possible to detect the correct f RF by avoiding events A and B in at least one of the frequency detection circuits 1.
  • FIG. 18 is a block diagram illustrating a configuration example of a frequency detection system according to the third embodiment.
  • the frequency detection system includes a first frequency detection circuit 1 - 1 , a second frequency detection circuit 1 - 2 , a determination circuit 2 , and an arithmetic circuit 3 .
  • f 2LOi indicates the frequencies of the first LO signal and the second LO signal generated by the signal source 11-2
  • ⁇ 2LOi_1 indicates the initial phase of each frequency component contained in the first LO signal generated by the signal source 11-2
  • ⁇ 2LOi_2 indicates the initial phase of each frequency component contained in the second LO signal generated by the signal source 11-2
  • f 2out indicates the frequency of the signal passing through filter 13-2
  • ⁇ 2out1 indicates the initial phase of the signal based on the first LO signal passing through filter 13-2
  • ⁇ 2out2 indicates the initial phase of the signal based on the second LO signal passing through filter 13-2.
  • the first frequency detection circuit 1-1 is a circuit that detects the frequency of the input signal. A signal indicating the frequency detected by this first frequency detection circuit 1-1 is output to the judgment circuit 2.
  • This first frequency detection circuit 1-1 (frequency calculation circuit 14-1) has a control terminal connected to the first output terminal of the calculation circuit 3, and an output terminal connected to the first input terminal of the judgment circuit 2.
  • the frequency detection circuit 1 can be used as this first frequency detection circuit 1-1. That is, in the first frequency detection circuit 1-1, the signal source 11-1 is the same as the signal source 11, the mixer 12-1 is the same as the mixer 12, the filter 13-1 is the same as the filter 13, and the frequency calculation circuit 14-1 is the same as the frequency calculation circuit .
  • the second frequency detection circuit 1-2 is a circuit that detects the frequency of the input signal.
  • the frequencies of the first LO signal and the second LO signal used in the second frequency detection circuit 1-2 are different from the frequencies of the first LO signal and the second LO signal used in the first frequency detection circuit 1-1.
  • a signal indicating the frequency detected by this second frequency detection circuit 1-2 is output to the determination circuit 2.
  • This second frequency detection circuit 1-2 (frequency calculation circuit 14-2) has a control terminal connected to the second output terminal of the calculation circuit 3, and an output terminal connected to the second input terminal of the judgment circuit 2.
  • the frequency detection circuit 1 can be used as the second frequency detection circuit 1-2. That is, in the second frequency detection circuit 1-2, the signal source 11-2 is the same as the signal source 11, the mixer 12-2 is the same as the mixer 12, the filter 13-2 is the same as the filter 13, and the frequency calculation circuit 14-2 is the same as the frequency calculation circuit 14.
  • the determination circuit 2 is a circuit that identifies the correct frequency from among the frequencies detected by the first frequency detection circuit 1-1 and the second frequency detection circuit 1-2.
  • This determination circuit 2 has a first input terminal connected to the output terminal of the first frequency detection circuit 1-1 (frequency calculation circuit 14-1) and a second input terminal connected to the output terminal of the second frequency detection circuit 1-2 (frequency calculation circuit 14-2).
  • the determination circuit 2 may be, for example, an FPGA.
  • the arithmetic circuit 3 calculates f LOi and f 2LOi so as to avoid the frequency relationship resulting in event A and event B.
  • a signal indicating f LOi calculated by this arithmetic circuit 3 is output to the signal source 11-1 via a frequency calculation circuit 14-1.
  • a signal indicating f 2LOi calculated by the arithmetic circuit 3 is output to the signal source 11-2 via a frequency calculation circuit 14-2.
  • the first output terminal of this calculation circuit 3 is connected to the control terminal of the first frequency detection circuit 1-1 (frequency calculation circuit 14-1), and the second output terminal is connected to the control terminal of the second frequency detection circuit 1-2 (frequency calculation circuit 14-2).
  • the arithmetic circuit 3 can be, for example, a computer consisting of a CPU (Central Processing Unit) and memory, a microcomputer, or an FPGA.
  • any type of arithmetic circuit may be used as the arithmetic circuit 3 as long as it is configured to execute the determination flow of f LOi and f 2LOi shown below.
  • FIG. 18 shows a case where the arithmetic circuit 3 is provided inside the frequency detection system. However, this is not limiting, and the arithmetic circuit 3 may be provided outside the frequency detection system.
  • the one frequency detection circuit 1 when the frequency relationship of event A and event B occurs, the one frequency detection circuit 1 cannot correctly detect f RF .
  • the frequencies of the first LO signal and the second LO signal used for frequency conversion are different from the frequencies of the first LO signal and the second LO signal used in the one frequency detection circuit 1 that cannot correctly detect f RF . Therefore, the other frequency detection circuit 1 can avoid the frequency relationship of event A or event B and can correctly detect f RF .
  • Events A and B occur when there is a certain combination of the frequency of the input signal and the frequencies of the first LO signal and the second LO signal.
  • the frequency of the input signal does not change and the frequencies of the first LO signal and the second LO signal are different. Therefore, when the above relationship is satisfied in one frequency detection circuit 1, the above relationship is not satisfied in the other frequency detection circuit 1.
  • the determination circuit 2 identifies the correct frequency (f RF ) from the frequency detected by the first frequency detection circuit 1-1 and the frequency detected by the second frequency detection circuit 1-2. At this time, for example, the judgment circuit 2 first compares the frequency detected by the first frequency detection circuit 1-1 with the frequency detected by the second frequency detection circuit 1-2. If the two frequencies are the same (including the meaning of approximately the same), the judgment circuit 2 judges that both frequencies are correct. On the other hand, if the two frequencies are different, the judgment circuit 2 judges whether the frequency is within the correct frequency range and selects the correct frequency.
  • f RF correct frequency
  • the judgment circuit 2 may use the phase difference ( ⁇ out2 - ⁇ out1 ) calculated by the first frequency detection circuit 1-1 and the phase difference ( ⁇ LOi_1 - ⁇ LOi_2 ) at the specified conversion frequency, as well as the phase difference ( ⁇ 2out2 - ⁇ 2out1 ) calculated by the second frequency detection circuit 1-2 and the phase difference ( ⁇ 2LOi_1 - ⁇ 2LOi_2 ) at the specified conversion frequency, to judge the validity of the frequency (f RF ) detected by the first frequency detection circuit 1-1 and the frequency (f RF ) detected by the second frequency detection circuit 1-2.
  • the judgment circuit 2 determines that the difference between the phase difference ( ⁇ out2 - ⁇ out1 ) calculated by the first frequency detection circuit 1-1 and the phase difference ( ⁇ LOi_1 - ⁇ LOi_2 ) at the identified conversion frequency is less than or equal to a threshold value, it determines that the frequency calculated by the first frequency detection circuit 1-1 is correct, and if it determines that the difference is greater than the threshold value, it determines that the frequency calculated by the first frequency detection circuit 1-1 is incorrect.
  • the judgment circuit 2 determines that the difference between the phase difference ( ⁇ 2out2 - ⁇ 2out1 ) calculated by the second frequency detection circuit 1-2 and the phase difference ( ⁇ 2LOi_1 - ⁇ 2LOi_2 ) at the specified conversion frequency is equal to or smaller than a threshold value, it determines that the frequency calculated by the second frequency detection circuit 1-2 is correct, and if it determines that the difference is greater than the threshold value, it determines that the frequency calculated by the second frequency detection circuit 1-2 is incorrect. Then, the judgment circuit 2 selects only the frequencies that it has determined to be correct based on the above judgment results.
  • f RF cannot be detected correctly when the frequency relationship of event A or event B occurs.
  • FIG. 19 is a flowchart showing an example of a procedure for setting f LOi and f 2LOi by the arithmetic circuit 3 according to the third embodiment shown in FIG.
  • the frequency detection range in the first frequency detection circuit 1-1 and the frequency detection range in the second frequency detection circuit 1-2 are from fmin to fmax .
  • step ST1901 In the procedure for setting f LOi and f 2LOi by the arithmetic circuit 3 in the third embodiment shown in FIG. 18, first, as shown in FIG. 19, for example, the arithmetic circuit 3 sets f LOi (step ST1901).
  • the arithmetic circuit 3 calculates f RF where f out becomes DC in the range from f min to f max from f LOi set in step ST1901 (step ST1902). Note that there are a plurality of values of f RF .
  • arithmetic circuit 3 sets f 2LOi (step ST1903).
  • the arithmetic circuit 3 calculates fRF from f2LOi set in step ST1903, at which f2out becomes DC in the range from fmin to fmax (step ST1904). Note that there are a plurality of values of fRF .
  • arithmetic circuit 3 compares f RF calculated in step ST1902 with f RF calculated in step ST1904 to determine whether or not they have the same value (step ST1905). If it is determined in step ST1905 that there is no fRF with the same value, the sequence proceeds to step ST1906. On the other hand, if in step ST1905 arithmetic circuit 3 determines that there is f RF with the same value, the sequence returns to step ST1903, and arithmetic circuit 3 sets f 2LOi to a value other than the value previously set in step ST1903.
  • the arithmetic circuit 3 compares the calculation result in step ST1906 with the calculation result in step ST1907, and judges whether or not there is the same combination of fRF (step ST1908). In step ST1908, if the arithmetic circuit 3 determines that there is no identical combination, the sequence ends. After that, the arithmetic circuit 3 outputs a signal indicating f LOi to the first frequency detection circuit 1-1 (frequency calculation circuit 14-1) and outputs a signal indicating f 2LOi to the second frequency detection circuit 1-2 (frequency calculation circuit 14-2). Thereafter, frequency calculation circuit 14-1 outputs f LOi to signal source 11-1, and signal source 11-1 sets the frequency of the LO signal it generates to f LOi . Similarly, frequency calculation circuit 14-2 outputs f 2LOi to signal source 11-2, and signal source 11-2 sets the LO signal it generates to f 2LOi .
  • step ST1908 determines in step ST1908 that the same combination exists
  • the sequence proceeds to step ST1909.
  • the arithmetic circuit 3 judges whether or not f 2LOi can be set to a value other than the f 2LOi set in the previous flow (step ST1909).
  • the arithmetic circuit 3 makes the above judgment while taking into consideration the f 2LOi set in the previous flow and the frequency setting range of the signal source 11-2. If the arithmetic circuit 3 determines in step ST1909 that f2LOi can be set to another value within the frequency setting range, the sequence returns to step ST1903, and the arithmetic circuit 3 sets f2LOi to another value.
  • step ST1909 the arithmetic circuit 3 determines that f 2LOi cannot be set to another value within the frequency setting range, the sequence returns to step ST1901, and the arithmetic circuit 3 sets f LOi to a value other than the previously set value.
  • the first frequency detection circuit 1-1 uses the mixer 12-1, and the second frequency detection circuit 1-2 uses the mixer 12-2.
  • the present invention is not limited to this, and the second embodiment may be applied to the third embodiment, so that the first frequency detection circuit 1-1 uses the quadrature mixer 17-1, and the second frequency detection circuit 1-2 uses the quadrature mixer 17-2.
  • the processes in steps ST1906 to ST1909 in the flowchart shown in FIG. 19 are not required.
  • the frequency detection system includes a first frequency detection circuit 1-1 that has the same configuration as the frequency detection circuit 1 and detects the frequency of an input signal, a second frequency detection circuit 1-2 that has the same configuration as the frequency detection circuit 1 and detects the frequency of an input signal using a first LO signal and a second LO signal that are different in frequency from the frequencies of the first LO signal and the second LO signal used in the first frequency detection circuit 1-1, and a determination circuit 2 that specifies the correct frequency of the input signal based on the frequency of the input signal detected by the first frequency detection circuit 1-1 and the frequency of the input signal detected by the second frequency detection circuit 1-2.
  • the frequency detection system according to the third embodiment can obtain the same effect as the frequency detection circuit 1 of the first embodiment.
  • two frequency detection circuits 1 are used, and the LO signals input to the frequency conversion circuits in the respective frequency detection circuits 1 are set to different frequencies, so that even if one of the frequency detection circuits 1 has a frequency relationship of event A or event B, the other frequency detection circuit 1 can correctly detect f RF .
  • the reliability of frequency detection can be improved.
  • the frequency detection circuit disclosed herein is capable of detecting the frequency of an input signal without increasing the circuit size, regardless of the frequency of the input signal, and is suitable for use in frequency detection circuits that detect the frequency of an input signal.
  • 1 Frequency detection circuit 1-1 First frequency detection circuit, 1-2 Second frequency detection circuit, 2 Judgment circuit, 3 Arithmetic circuit, 11 Signal source, 12 Mixer, 13 Filter, 14 Frequency calculation circuit, 15 Second signal source, 16 Second mixer, 17 Quadrature mixer, 1401 Quantizer, 1402 First frequency calculation circuit, 1403 Phase calculation circuit, 1404 Signal source control circuit, 1405 Phase difference calculation circuit, 1406 phase comparison circuit, 1407 second frequency calculation circuit, 1408 first frequency calculation circuit, 1409 phase difference calculation circuit, 1410 first quantizer, 1411 first calculator, 1412 delay circuit, 1413 mixer, 1414 second quantizer, 1415 memory, 1416 second calculator, 1417 phase difference calculation circuit, 1418 delay circuit, 1419 mixer, 1420 memory, 1421 calculator.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

The present invention comprises: a frequency conversion circuit for employing each of a first LO signal and a second LO signal having the same frequency but a different phase with respect to said first LO signal to perform frequency conversion of an input signal, the first and second LO signals being two LO signals that can be switched in accordance with time; and a frequency calculation circuit (14) for calculating the frequency of an input signal on the basis of the phase difference between the first LO signal and the second LO signal, and the phase difference between a signal that is frequency-converted by the frequency conversion circuit employing the first LO signal and a signal that is frequency-converted employing the second LO signal.

Description

周波数検出回路及び周波数検出システムFrequency detection circuit and frequency detection system
 本開示は、入力信号の周波数を検出する周波数検出回路及び周波数検出システムに関する。 This disclosure relates to a frequency detection circuit and a frequency detection system that detect the frequency of an input signal.
 周波数検出回路は、任意の入力信号の周波数を検出する回路である。
 例えば、周波数検出回路は、ミキサ等の周波数変換器、ADC(Analog to Digital Converter)、及び、FPGA(Field Programmable Gate Array)等の演算回路(論理回路又はディジタル回路ともいう)を用いて構成される。
The frequency detection circuit is a circuit that detects the frequency of an arbitrary input signal.
For example, the frequency detection circuit is configured using a frequency converter such as a mixer, an analog to digital converter (ADC), and an arithmetic circuit (also called a logic circuit or a digital circuit) such as a field programmable gate array (FPGA).
 従来の周波数検出回路としては、例えば特許文献1に、ミキサ、LPF(Low Pass Filter)、及び、ディジタイザから成る系が複数並列化された構成が示されている。
 この周波数検出回路では、複数のミキサに対し、周波数、振幅、及び、初期位相が異なるLO(Local Oscillator)信号を入力して入力信号を周波数変換する。そして、この周波数検出回路では、各系での周波数変換に使用したLO信号の周波数、振幅、及び、位相の情報、及び、各系での周波数変換後の信号に基づいて、連立方程式を立式してそれを解くことで、入力信号の周波数を検出している。
As a conventional frequency detection circuit, for example, Patent Document 1 shows a configuration in which a plurality of systems, each of which is made up of a mixer, a low pass filter (LPF), and a digitizer, are connected in parallel.
In this frequency detection circuit, LO (Local Oscillator) signals with different frequencies, amplitudes, and initial phases are input to a plurality of mixers to convert the frequency of the input signal.The frequency detection circuit detects the frequency of the input signal by formulating and solving simultaneous equations based on information on the frequency, amplitude, and phase of the LO signal used for frequency conversion in each system and the signal after frequency conversion in each system.
特開2013-83652号公報JP 2013-83652 A
 しかしながら、特許文献1における周波数検出回路では、入力信号が高周波化すると、LO信号の周波数を増やす必要がある。このため、この周波数検出回路では、連立方程式を解くために系の並列数を増やす必要があり、周波数検出回路の規模が増大するという課題があった。 However, in the frequency detection circuit of Patent Document 1, when the input signal becomes higher frequency, it is necessary to increase the frequency of the LO signal. As a result, in this frequency detection circuit, it is necessary to increase the number of parallel systems in order to solve the simultaneous equations, which poses the problem of an increase in the size of the frequency detection circuit.
 本開示は、上記のような課題を解決するためになされたもので、入力信号の周波数に関わらず回路規模を増大することなく周波数を検出可能となる周波数検出回路を提供することを目的としている。 This disclosure has been made to solve the problems described above, and aims to provide a frequency detection circuit that can detect the frequency of the input signal without increasing the circuit size, regardless of the frequency.
 本開示に係る周波数検出回路は、時間によって切り替えられる2つのLO信号である、第1のLO信号、及び、当該第1のLO信号に対して周波数が同じで位相が異なる第2のLO信号をそれぞれ用い、入力信号を周波数変換する周波数変換回路と、周波数変換回路による第1のLO信号を用いた周波数変換後の信号と第2のLO信号を用いた周波数変換後の信号との位相差、及び、第1のLO信号と第2のLO信号との位相差に基づいて、入力信号の周波数を算出する周波数算出回路とを備えたことを特徴とする。 The frequency detection circuit according to the present disclosure is characterized by comprising a frequency conversion circuit that converts the frequency of an input signal using two LO signals that are switched over time, a first LO signal and a second LO signal that has the same frequency but a different phase from the first LO signal, and a frequency calculation circuit that calculates the frequency of the input signal based on the phase difference between the signal after frequency conversion using the first LO signal by the frequency conversion circuit and the signal after frequency conversion using the second LO signal, and the phase difference between the first LO signal and the second LO signal.
 本開示によれば、上記のように構成したので、入力信号の周波数に関わらず回路規模を増大することなく周波数を検出可能となる。  According to the present disclosure, the above configuration makes it possible to detect the frequency of the input signal without increasing the circuit size, regardless of the frequency of the input signal.
実施の形態1に係る周波数検出回路の構成例(入力信号が1波である場合)を示すブロック図である。1 is a block diagram showing a configuration example (when an input signal has one wave) of a frequency detection circuit according to a first embodiment; 実施の形態1における周波数算出回路の構成例(入力信号が1波である場合)を示すブロック図である。4 is a block diagram showing a configuration example (when the input signal has one wave) of a frequency calculation circuit in the first embodiment; FIG. 実施の形態1におけるミキサによる第1のLO信号を用いた周波数変換後の信号の周波数スペクトルの一例(入力信号が1波である場合)を示す図である。11 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using a first LO signal by the mixer in the first embodiment (when the input signal has one wave). FIG. 実施の形態1におけるミキサによる第2のLO信号を用いた周波数変換後の信号の周波数スペクトルの一例(入力信号が1波である場合)を示す図である。11 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using a second LO signal by the mixer in the first embodiment (when the input signal has one wave). FIG. 図5Aは、実施の形態1におけるフィルタを通過後の信号の一例を示す図であり、図5Bは、位相算出回路の動作例を説明する図である。FIG. 5A is a diagram showing an example of a signal after passing through a filter in the first embodiment, and FIG. 5B is a diagram explaining an example of the operation of a phase calculation circuit. 実施の形態1に係る周波数検出回路の構成例(入力信号が2波である場合)を示すブロック図である。1 is a block diagram showing a configuration example (when an input signal has two waves) of a frequency detection circuit according to a first embodiment; 実施の形態1におけるミキサによる第1のLO信号を用いた周波数変換後の信号の周波数スペクトルの一例(入力信号が2波である場合)を示す図である。1 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using a first LO signal by the mixer in the first embodiment (when the input signal has two waves). FIG. 実施の形態1におけるミキサによる第2のLO信号を用いた周波数変換後の信号の周波数スペクトルの一例(入力信号が2波である場合)を示す図である。11 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using a second LO signal by the mixer in the first embodiment (when the input signal has two waves). FIG. 実施の形態1における位相差算出回路により算出された位相差の一例(入力信号が2波である場合)を示す図である。4 is a diagram showing an example of a phase difference calculated by the phase difference calculation circuit in the first embodiment (when the input signal has two waves). FIG. 実施の形態1に係る周波数検出回路の他の構成例(入力信号が1波である場合)を示すブロック図である。13 is a block diagram showing another configuration example (when the input signal has one wave) of the frequency detection circuit according to the first embodiment; FIG. 実施の形態1における周波数算出回路の他の構成例(入力信号が1波である場合)を示すブロック図である。FIG. 13 is a block diagram showing another configuration example (when the input signal has one wave) of the frequency calculation circuit in the first embodiment. 実施の形態1における周波数算出回路の他の構成例(入力信号が1波である場合)を示すブロック図である。FIG. 13 is a block diagram showing another configuration example (when the input signal has one wave) of the frequency calculation circuit in the first embodiment. 実施の形態2に係る周波数検出回路の構成例(入力信号が1波である場合)を示すブロック図である。FIG. 11 is a block diagram showing a configuration example (when the input signal has one wave) of a frequency detection circuit according to a second embodiment; 実施の形態2における直交ミキサによるfLO1に関わる周波数変換のふるまいの一例(入力信号が1波である場合)を示す図である。FIG. 11 is a diagram showing an example of the behavior of frequency conversion related to f LO1 by the quadrature mixer in the second embodiment (when the input signal has one wave). 実施の形態2における直交ミキサによるfLO2に関わる周波数変換のふるまいの一例(入力信号が1波である場合)を示す図である。FIG. 11 is a diagram showing an example of the behavior of frequency conversion related to f LO2 by the quadrature mixer in the second embodiment (when the input signal has one wave). 実施の形態2における直交ミキサによるfLO1に関わる周波数変換のふるまいの一例(入力信号が1波である場合)を示す図である。FIG. 11 is a diagram showing an example of the behavior of frequency conversion related to f LO1 by the quadrature mixer in the second embodiment (when the input signal has one wave). 実施の形態2における直交ミキサによるfLO2に関わる周波数変換のふるまいの一例(入力信号が1波である場合)を示す図である。FIG. 11 is a diagram showing an example of the behavior of frequency conversion related to f LO2 by the quadrature mixer in the second embodiment (when the input signal has one wave). 実施の形態3に係る周波数検出システムの構成例(入力信号が1波である場合)を示すブロック図である。FIG. 11 is a block diagram showing a configuration example (when the input signal has one wave) of a frequency detection system according to a third embodiment; 実施の形態3における演算回路による第1の周波数検出回路で用いられる第1のLO信号及び第2のLO信号の周波数並びに第2の周波数検出回路に対する第1のLO信号及び第2のLO信号の周波数の設定例の一例を示すフローチャートである。13 is a flowchart showing an example of a setting example of the frequencies of the first LO signal and the second LO signal used in the first frequency detection circuit by the arithmetic circuit in embodiment 3, and the frequencies of the first LO signal and the second LO signal for the second frequency detection circuit.
 以下、実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1は実施の形態1に係る周波数検出回路1の構成例を示すブロック図である。
 周波数検出回路1は、入力信号の周波数を検出する回路である。この周波数検出回路1は、図1に示すように、信号源11、ミキサ12、フィルタ13、及び、周波数算出回路14を備えている。
Hereinafter, the embodiments will be described in detail with reference to the drawings.
Embodiment 1.
FIG. 1 is a block diagram showing an example of the configuration of a frequency detection circuit 1 according to a first embodiment.
The frequency detection circuit 1 is a circuit for detecting the frequency of an input signal, and includes a signal source 11, a mixer 12, a filter 13, and a frequency calculation circuit 14, as shown in FIG.
 図1において、fRFは入力信号の周波数を示し、θRFは入力信号の初期位相を示している。
 また、図1において、fLOiは信号源11により生成される第1のLO信号及び第2のLO信号の周波数を示し、θLOi_1は信号源11により生成される第1のLO信号に含まれる周波数成分毎の初期位相を示し、θLOi_2は信号源11により生成される第2のLO信号に含まれる周波数成分毎の初期位相を示している。なお、θLOi_1≠θLOi_2である。
 また、図1において、foutはフィルタ13を通過する信号の周波数を示し、θout1はフィルタ13を通過する第1のLO信号に基づく信号の初期位相を示し、θout2はフィルタ13を通過する第2のLO信号に基づく信号の初期位相を示している。
 なお、iは1、2、…、mであり、mは2以上の整数である。
In FIG. 1, f RF denotes the frequency of the input signal, and θ RF denotes the initial phase of the input signal.
1, f LOi indicates the frequencies of the first LO signal and the second LO signal generated by the signal source 11, θ LOi_1 indicates the initial phase of each frequency component included in the first LO signal generated by the signal source 11, and θ LOi_2 indicates the initial phase of each frequency component included in the second LO signal generated by the signal source 11. Note that θ LOi_1 ≠ θ LOi_2 .
Also, in FIG. 1, f out indicates the frequency of the signal passing through filter 13, θ out1 indicates the initial phase of the signal based on the first LO signal passing through filter 13, and θ out2 indicates the initial phase of the signal based on the second LO signal passing through filter 13.
Here, i is 1, 2, . . . , m, and m is an integer of 2 or more.
 信号源11は、任意の信号波形又は任意の周波数の信号を生成可能な回路である。実施の形態1における信号源11は、周波数算出回路14により出力された信号が示す周波数及び初期位相に応じ、当該周波数と同一(略同一の意味を含む)の周波数であり且つ当該初期位相と同一(略同一の意味を含む)の初期位相であるLO信号を生成する。なお、信号源11が生成するLO信号は、第1のLO信号及び第2のLO信号である。第1のLO信号及び第2のLO信号はそれぞれ、複数の周波数成分を有することが望ましい。また、第2のLO信号は、第1のLO信号に対して周波数が同じで位相が異なる信号である。信号源11により生成されるLO信号は、時間によって第1のLO信号又は第2のLO信号に切り替わる。また、図1では省略しているが、信号源11は、外部から入力された制御信号又は基準信号を用いて、LO信号を生成してもよい。この信号源11により生成されたLO信号は、ミキサ12に出力される。 The signal source 11 is a circuit capable of generating a signal of any signal waveform or any frequency. In the first embodiment, the signal source 11 generates an LO signal having the same frequency (including substantially the same meaning) as the frequency and the same initial phase (including substantially the same meaning) as the initial phase of the signal output by the frequency calculation circuit 14 according to the frequency and initial phase indicated by the signal output by the frequency calculation circuit 14. The LO signals generated by the signal source 11 are a first LO signal and a second LO signal. It is preferable that the first LO signal and the second LO signal each have a plurality of frequency components. The second LO signal is a signal having the same frequency as the first LO signal but a different phase. The LO signal generated by the signal source 11 is switched to the first LO signal or the second LO signal depending on time. Although omitted in FIG. 1, the signal source 11 may generate an LO signal using a control signal or a reference signal input from the outside. The LO signal generated by the signal source 11 is output to the mixer 12.
 この信号源11では、制御端子が周波数算出回路14の出力端子に接続され、出力端子がミキサ12のLO端子に接続される。 In this signal source 11, the control terminal is connected to the output terminal of the frequency calculation circuit 14, and the output terminal is connected to the LO terminal of the mixer 12.
 この信号源11としては、例えば、DAC(Digital-to-Analog Converter)、DDS(Direct Digital Synthesizer)、又は、PLL(Phase Locked Loop)回路等が用いられる。また、第1のLO信号及び第2のLO信号は複数の周波数成分を持つので、信号源11として、複数のPLL回路、及び、当該PLL回路により出力された信号を合成する合成器が組み合わされた構成が用いられてもよい。 As this signal source 11, for example, a DAC (Digital-to-Analog Converter), a DDS (Direct Digital Synthesizer), or a PLL (Phase Locked Loop) circuit is used. In addition, since the first LO signal and the second LO signal have multiple frequency components, a configuration in which multiple PLL circuits and a synthesizer that synthesizes the signals output by the PLL circuits are combined may be used as the signal source 11.
 なお、信号源11としては、任意の信号波形又は任意の周波数の信号を生成可能な回路であれば、どのような回路が用いられてもよい。 Note that any circuit may be used as the signal source 11 as long as it is capable of generating a signal of any signal waveform or any frequency.
 ミキサ12は、入力された2つの信号を混合することにより周波数を変換する混合器である。実施の形態1におけるミキサ12は、入力信号と信号源11により出力されたLO信号(第1のLO信号又は第2のLO信号)とを混合することにより当該入力信号を周波数変換する。このミキサ12による周波数変換後の信号である混合信号は、フィルタ13に出力される。 Mixer 12 is a mixer that converts the frequency by mixing two input signals. In embodiment 1, mixer 12 converts the frequency of an input signal by mixing the input signal with an LO signal (first LO signal or second LO signal) output by signal source 11. The mixed signal, which is the signal after frequency conversion by mixer 12, is output to filter 13.
 このミキサ12では、RF端子に入力信号が入力され、LO端子が信号源11の出力端子に接続され、IF(Intermediate Frequency)端子がフィルタ13の入力端子に接続される。なお、この接続において、ミキサ12のRF端子とLO端子とが逆に接続されてもよい。 In this mixer 12, an input signal is input to the RF terminal, the LO terminal is connected to the output terminal of the signal source 11, and the IF (Intermediate Frequency) terminal is connected to the input terminal of the filter 13. Note that in this connection, the RF terminal and the LO terminal of the mixer 12 may be connected in reverse.
 このミキサ12としては、例えば、ダイオードの非線形性を利用して混合を行うダイオードミクサ、又は、スイッチングトランジスタを用いたスイッチングミキサ等が用いられる。 As this mixer 12, for example, a diode mixer that uses the nonlinearity of diodes to perform mixing, or a switching mixer that uses switching transistors, etc., can be used.
 なお、ミキサ12としては、入力された2つの信号を混合することにより周波数を変換することが可能な構成であれば、どのような構成が用いられてもよい。 Note that any configuration may be used for the mixer 12 as long as it is capable of converting the frequency by mixing two input signals.
 フィルタ13は、所定の通過帯域を有し、入力された信号のうち、通過帯域内の周波数帯域にある信号を通過させ、通過帯域外の周波数帯域にある信号を抑圧するフィルタである。実施の形態1におけるフィルタ13は、ミキサ12による周波数変換後の信号のうち、通過帯域内の周波数帯域にある信号を通過させ、通過帯域外の周波数帯域にある信号及び不要波を抑圧する。このフィルタ13を通過した信号は、周波数算出回路14に出力される。 Filter 13 has a predetermined passband and passes signals in the frequency band within the passband among the input signals and suppresses signals in the frequency band outside the passband. In embodiment 1, filter 13 passes signals in the frequency band within the passband among the signals after frequency conversion by mixer 12 and suppresses signals in the frequency band outside the passband and unwanted waves. The signal that has passed through filter 13 is output to frequency calculation circuit 14.
 このフィルタ13は、入力端子がミキサ12のIF端子に接続され、出力端子が周波数算出回路14の入力端子に接続される。 The input terminal of this filter 13 is connected to the IF terminal of the mixer 12, and the output terminal is connected to the input terminal of the frequency calculation circuit 14.
 このフィルタ13としては、例えば、LPF、HPF(High Pass Filter)、又は、BPF(Band Pass Filter)等が用いられる。なお、フィルタ13は、チップインダクタ、又は、チップキャパシタ等を用いて実装される。また、フィルタ13は、通過させる周波数帯又は必要な抑圧量に応じて、他のマイクロストリップ、又は、同軸共振器等の共振器を用いて構成されてもよい。 For example, an LPF, a HPF (High Pass Filter), or a BPF (Band Pass Filter) may be used as the filter 13. The filter 13 is implemented using a chip inductor or a chip capacitor. The filter 13 may also be configured using other resonators such as a microstrip or a coaxial resonator depending on the frequency band to be passed or the required amount of suppression.
 周波数算出回路14は、フィルタ13を通過した第1のLO信号に基づく信号と第2のLO信号に基づく信号との位相差、及び、信号源11により生成される第1のLO信号と第2のLO信号との位相差に基づいて、入力信号の周波数を算出する回路である。この周波数算出回路14による算出結果を示す信号は、外部に出力される。
 また、周波数算出回路14は、信号源11により生成される第1のLO信号の周波数及び初期位相を示す信号、並びに、第2のLO信号の周波数及び初期位相を示す信号を信号源11に出力する。
The frequency calculation circuit 14 is a circuit that calculates the frequency of the input signal based on the phase difference between a signal based on the first LO signal passed through the filter 13 and a signal based on the second LO signal, and based on the phase difference between the first LO signal and the second LO signal generated by the signal source 11. A signal indicating the calculation result by this frequency calculation circuit 14 is output to the outside.
Furthermore, the frequency calculation circuit 14 outputs to the signal source 11 a signal indicating the frequency and initial phase of the first LO signal generated by the signal source 11 and a signal indicating the frequency and initial phase of the second LO signal.
 この周波数算出回路14は、入力端子がフィルタ13の出力端子に接続され、出力端子が信号源11の制御端子に接続される。 The input terminal of this frequency calculation circuit 14 is connected to the output terminal of the filter 13, and the output terminal is connected to the control terminal of the signal source 11.
 図2は、実施の形態1における周波数算出回路14の構成例を示すブロック図である。
 周波数算出回路14は、図2に示すように、量子化器1401、第1の周波数算出回路1402、位相算出回路1403、信号源制御回路1404、位相差算出回路1405、位相比較回路1406、及び、第2の周波数算出回路1407を有している。
FIG. 2 is a block diagram showing an example of the configuration of the frequency calculation circuit 14 according to the first embodiment.
As shown in FIG. 2, the frequency calculation circuit 14 has a quantizer 1401, a first frequency calculation circuit 1402, a phase calculation circuit 1403, a signal source control circuit 1404, a phase difference calculation circuit 1405, a phase comparison circuit 1406, and a second frequency calculation circuit 1407.
 量子化器1401は、入力された信号を量子化する回路である。実施の形態1における量子化器1401は、フィルタ13を通過した信号を量子化する。この量子化器1401による量子化後の信号は、第1の周波数算出回路1402及び位相算出回路1403に出力される。 Quantizer 1401 is a circuit that quantizes an input signal. In the first embodiment, quantizer 1401 quantizes a signal that has passed through filter 13. The signal quantized by quantizer 1401 is output to first frequency calculation circuit 1402 and phase calculation circuit 1403.
 この量子化器1401は、入力端子がフィルタ13の出力端子に接続され、出力端子が第1の周波数算出回路1402の入力端子及び位相算出回路1403の入力端子に接続される。 The input terminal of this quantizer 1401 is connected to the output terminal of the filter 13, and the output terminal is connected to the input terminal of the first frequency calculation circuit 1402 and the input terminal of the phase calculation circuit 1403.
 この量子化器1401としては、例えば、ADCを用いることができる。なお、量子化器1401としてADCを用いる場合、量子化器1401は、外部から入力されたクロック信号に同期して量子化を行ってもよい。
 なお、量子化器1401は、入力された信号を量子化することが可能な構成であれば、どのような構成が用いられてもよい。
For example, an ADC can be used as the quantizer 1401. When an ADC is used as the quantizer 1401, the quantizer 1401 may perform quantization in synchronization with a clock signal input from the outside.
It should be noted that the quantizer 1401 may have any configuration as long as it is capable of quantizing an input signal.
 第1の周波数算出回路1402は、入力された信号の周波数を算出する回路である。実施の形態1における第1の周波数算出回路1402は、量子化器1401による量子化後の信号に基づいて、当該信号の周波数(fout)を算出する。この第1の周波数算出回路1402により算出された周波数を示す信号は、第2の周波数算出回路1407に出力される。 The first frequency calculation circuit 1402 is a circuit that calculates the frequency of an input signal. The first frequency calculation circuit 1402 in the first embodiment calculates the frequency (f out ) of the signal based on the signal quantized by the quantizer 1401. A signal indicating the frequency calculated by the first frequency calculation circuit 1402 is output to the second frequency calculation circuit 1407.
 この第1の周波数算出回路1402は、入力端子が量子化器1401の出力端子に接続され、出力端子が第2の周波数算出回路1407の第1の入力端子に接続される。 The input terminal of this first frequency calculation circuit 1402 is connected to the output terminal of the quantizer 1401, and the output terminal is connected to the first input terminal of the second frequency calculation circuit 1407.
 この第1の周波数算出回路1402としては、例えば、FPGA等の論理回路(ディジタル回路ともいう)を用いることができる。なお、第1の周波数算出回路1402としてFPGAを用いる場合、第1の周波数算出回路1402は、例えば、FFT(Fast Fourier Transform)等の演算処理によって周波数を算出する。 This first frequency calculation circuit 1402 can be, for example, a logic circuit (also called a digital circuit) such as an FPGA. When an FPGA is used as the first frequency calculation circuit 1402, the first frequency calculation circuit 1402 calculates the frequency by, for example, arithmetic processing such as FFT (Fast Fourier Transform).
 なお、第1の周波数算出回路1402としては、入力された信号の周波数を算出することが可能な構成であれば、どのような構成が用いられてもよい。 The first frequency calculation circuit 1402 may have any configuration as long as it is capable of calculating the frequency of the input signal.
 なお、第1の周波数算出回路1402では、入力された信号の周波数を算出可能としている。すなわち、第1の周波数算出回路1402に入力される信号の周波数帯域が事前に想定される周波数帯域内であり、周波数検出回路1への入力信号のような高周波化による問題がないため、第1の周波数算出回路1402では既存技術により上記信号の周波数を算出可能である。 The first frequency calculation circuit 1402 is capable of calculating the frequency of the input signal. In other words, since the frequency band of the signal input to the first frequency calculation circuit 1402 is within a frequency band expected in advance and there are no problems due to high frequencies, such as with the input signal to the frequency detection circuit 1, the first frequency calculation circuit 1402 can calculate the frequency of the signal using existing technology.
 位相算出回路1403は、入力された信号の初期位相を算出する回路であり、実施の形態1における位相算出回路1403は、量子化器1401による量子化後の信号に基づいて、当該信号の初期位相を算出する。この位相算出回路1403により算出された初期位相を示す信号は、位相差算出回路1405に出力される。 The phase calculation circuit 1403 is a circuit that calculates the initial phase of an input signal, and in the first embodiment, the phase calculation circuit 1403 calculates the initial phase of the signal based on the signal after quantization by the quantizer 1401. The signal indicating the initial phase calculated by this phase calculation circuit 1403 is output to the phase difference calculation circuit 1405.
 この位相算出回路1403は、入力端子が量子化器1401の出力端子に接続され、出力端子が位相差算出回路1405の第1の入力端子に接続される。 The input terminal of this phase calculation circuit 1403 is connected to the output terminal of the quantizer 1401, and the output terminal is connected to the first input terminal of the phase difference calculation circuit 1405.
 この位相算出回路1403としては、例えば、FPGAを用いることができる。なお、位相算出回路1403としてFPGAを用いる場合、位相算出回路1403は、例えば、FFT等の演算処理によって初期位相を算出する。 For example, an FPGA can be used as the phase calculation circuit 1403. When an FPGA is used as the phase calculation circuit 1403, the phase calculation circuit 1403 calculates the initial phase by, for example, arithmetic processing such as FFT.
 なお、位相算出回路1403としては、入力された信号の初期位相を算出することが可能な構成であれば、どのような構成が用いられてもよい。 Note that any configuration may be used for the phase calculation circuit 1403 as long as it is capable of calculating the initial phase of the input signal.
 信号源制御回路1404は、信号源11により生成される第1のLO信号の周波数(fLOi)及び初期位相(θLOi_1)を示す信号、並びに、第2のLO信号の周波数(fLOi)及び初期位相(θLOi_2)を示す信号を信号源11に出力する。
 また、信号源制御回路1404は、時刻(t、t、t)を示す信号を位相差算出回路1405に出力する。ここで、tは現在時刻であり、tは信号源11において第1のLO信号の生成が開始される時刻であり、tは信号源11において第2のLO信号の生成が開始される時刻である。
 また、信号源制御回路1404は、信号源11により生成される第1のLO信号と第2のLO信号との位相差(θLОi_1-θLОi_2)を示す信号を位相比較回路1406に出力する。
The signal source control circuit 1404 outputs to the signal source 11 a signal indicating the frequency (f LOi ) and initial phase (θ LOi_1 ) of the first LO signal generated by the signal source 11, and a signal indicating the frequency (f LOi ) and initial phase (θ LOi_2 ) of the second LO signal.
Moreover, the signal source control circuit 1404 outputs a signal indicating time ( t0 , t1 , t) to the phase difference calculation circuit 1405. Here, t is the current time, t0 is the time when the signal source 11 starts generating the first LO signal, and t1 is the time when the signal source 11 starts generating the second LO signal.
Furthermore, the signal source control circuit 1404 outputs a signal indicating the phase difference (θ LOi — 1 −θ LOi — 2 ) between the first LO signal and the second LO signal generated by the signal source 11 to the phase comparison circuit 1406 .
 この信号源制御回路1404は、第1の出力端子が信号源11の制御端子に接続され、第2の出力端子が位相差算出回路1405の第2の入力端子に接続され、第3の出力端子が位相比較回路1406の第2の入力端子に接続される。 The signal source control circuit 1404 has a first output terminal connected to the control terminal of the signal source 11, a second output terminal connected to the second input terminal of the phase difference calculation circuit 1405, and a third output terminal connected to the second input terminal of the phase comparison circuit 1406.
 この信号源制御回路1404としては、例えば、FPGA又はメモリを用いることができる。なお、信号源制御回路1404は、fLOi,θLOi_1,θLOi_2は演算によって求めてもよいし、メモリ等に予め記憶しておいたデータを読み出してもよい。 For example, an FPGA or a memory can be used as the signal source control circuit 1404. Note that the signal source control circuit 1404 may determine f LOi , θ LOi_1 , and θ LOi_2 by calculation, or may read data stored in advance in a memory or the like.
 なお、信号源制御回路1404は、fLOi及びθLOi_1を示す信号、fLOi及びθLOi_2を示す信号、t、t、tを示す信号、並びに、θLОi_1-θLОi_2を示す信号を出力することが可能な構成であれば、どのような構成が用いられてもよい。 Note that the signal source control circuit 1404 may have any configuration as long as it is capable of outputting signals indicating f LOi and θ LOi_1 , signals indicating f LOi and θ LOi_2 , signals indicating t 0 , t 1 , and t, and signals indicating θ LOi_1LOi_2 .
 位相差算出回路1405は、異なる時刻に入力された2つの信号の位相差を算出する回路である。実施の形態1における位相差算出回路1405は、信号源制御回路1404により出力された信号が示す時刻(t、t、t)に基づいて、位相算出回路1403により算出された初期位相から、その位相差(θout2-θout1)を算出する。この位相差算出回路1405により算出された位相差を示す信号は、位相比較回路1406に出力される。 The phase difference calculation circuit 1405 is a circuit that calculates the phase difference between two signals input at different times. The phase difference calculation circuit 1405 in the first embodiment calculates the phase difference (θ out2 - θ out1 ) from the initial phase calculated by the phase calculation circuit 1403, based on the time (t 0 , t 1 , t ) indicated by the signal output by the signal source control circuit 1404. The signal indicating the phase difference calculated by this phase difference calculation circuit 1405 is output to the phase comparison circuit 1406.
 この位相差算出回路1405は、第1の入力端子が位相算出回路1403の出力端子に接続され、第2の入力端子が信号源制御回路1404の出力端子に接続され、出力端子が位相比較回路1406の第1の入力端子に接続される。 This phase difference calculation circuit 1405 has a first input terminal connected to the output terminal of the phase calculation circuit 1403, a second input terminal connected to the output terminal of the signal source control circuit 1404, and an output terminal connected to the first input terminal of the phase comparison circuit 1406.
 この位相差算出回路1405としては、例えば、時刻(t、t、t)及び初期位相(θout1、θout2)を示す信号を記憶するメモリ、及び、当該メモリに記憶された信号が示す時刻及び初期位相に基づいて位相差を算出するFPGA等の論理回路を組み合わせた構成を用いることができる。 This phase difference calculation circuit 1405 can be configured, for example, by combining a memory that stores signals indicating the time ( t0 , t1 , t) and the initial phase (θ out1 , θ out2 ), and a logic circuit such as an FPGA that calculates the phase difference based on the time and initial phase indicated by the signal stored in the memory.
 なお、位相差算出回路1405は、異なる時刻に入力された2つの信号の位相差を算出することが可能な構成であれば、どのような構成が用いられてもよい。 Note that the phase difference calculation circuit 1405 may have any configuration as long as it is capable of calculating the phase difference between two signals input at different times.
 位相比較回路1406は、位相差算出回路1405により算出された位相差(θout2-θout1)、及び、信号源制御回路1404により出力された信号が示す位相差(θLОi_1-θLОi_2)に基づいて、変換周波数を特定する。変換周波数は、第1のLO信号及び第2のLО信号に含まれる複数の周波数成分のうち、入力信号の周波数変換に用いられた周波数成分である。この際、位相比較回路1406は、位相差算出回路1405により算出された位相差の絶対値と、信号源制御回路1404により出力された信号が示す位相差の絶対値とを比較する。そして、位相比較回路1406は、第1のLO信号及び第2のLО信号に含まれる複数の周波数成分のうち、位相差算出回路1405により算出された位相差の絶対値と信号源制御回路1404により出力された信号が示す位相差の絶対値とが一致(略一致の意味を含む)する周波数成分を、変換周波数として特定する。 The phase comparator circuit 1406 specifies a conversion frequency based on the phase difference (θ out2 - θ out1 ) calculated by the phase difference calculation circuit 1405 and the phase difference (θ LOi_1 - θ LOi_2 ) indicated by the signal output by the signal source control circuit 1404. The conversion frequency is a frequency component used for frequency conversion of the input signal among a plurality of frequency components included in the first LO signal and the second LO signal. At this time, the phase comparator circuit 1406 compares the absolute value of the phase difference calculated by the phase difference calculation circuit 1405 with the absolute value of the phase difference indicated by the signal output by the signal source control circuit 1404. Then, the phase comparison circuit 1406 identifies, among the multiple frequency components contained in the first LO signal and the second LO signal, a frequency component where the absolute value of the phase difference calculated by the phase difference calculation circuit 1405 matches (including the meaning of approximately matching) the absolute value of the phase difference indicated by the signal output by the signal source control circuit 1404, as the conversion frequency.
 また、位相比較回路1406は、位相差算出回路1405により算出された位相差(θout2-θout1)、及び、信号源制御回路1404により出力された信号が示す位相差(θLОi_1-θLОi_2)に基づいて、符号を特定する。符号は、入力信号の周波数変換による位相の回転方向を示す符号であり、fRF>fLOi又はfRF<fLOiを示す符号である。この際、位相比較回路1406は、位相差算出回路1405により算出された位相差の符号と、上記変換周波数での位相差の符号とを比較する。そして、位相比較回路1406は、両位相差の符号が同じであれば入力信号の周波数変換により位相が順方向に回転した(fRF>fLOi)と判定し、両位相差の符号が異なっていれば入力信号の周波数変換により位相が逆方向に回転した(fRF<fLOi)と判定する。 Further, the phase comparison circuit 1406 specifies the sign based on the phase difference (θ out2out1 ) calculated by the phase difference calculation circuit 1405 and the phase difference (θ LOi_1LOi_2 ) indicated by the signal output by the signal source control circuit 1404. The sign indicates the direction of phase rotation due to the frequency conversion of the input signal, and indicates f RF >f LOi or f RF <f LOi . At this time, the phase comparison circuit 1406 compares the sign of the phase difference calculated by the phase difference calculation circuit 1405 with the sign of the phase difference at the conversion frequency. Then, if the signs of both phase differences are the same, the phase comparison circuit 1406 determines that the phase has rotated in the forward direction (f RF >f LOi ) due to the frequency conversion of the input signal, and if the signs of both phase differences are different, the phase comparison circuit 1406 determines that the phase has rotated in the reverse direction (f RF <f LOi ) due to the frequency conversion of the input signal.
 この位相比較回路1406による特定結果を示す信号は、第2の周波数算出回路1407にされる。 The signal indicating the result of the determination by the phase comparison circuit 1406 is sent to the second frequency calculation circuit 1407.
 この位相比較回路1406は、第1の入力端子が位相差算出回路1405の出力端子に接続され、第2の入力端子が信号源制御回路1404の第1の出力端子に接続され、出力端子が第2の周波数算出回路1407の第2の入力端子に接続される。 This phase comparison circuit 1406 has a first input terminal connected to the output terminal of the phase difference calculation circuit 1405, a second input terminal connected to the first output terminal of the signal source control circuit 1404, and an output terminal connected to the second input terminal of the second frequency calculation circuit 1407.
 この位相比較回路1406としては、例えば、FPGA及びメモリを組み合わせた構成を用いることができる。なお、信号源制御回路1404により出力された位相差を示す信号は、予めメモリに記憶される。 This phase comparison circuit 1406 can be, for example, a combination of an FPGA and a memory. The signal indicating the phase difference output by the signal source control circuit 1404 is stored in advance in the memory.
 なお、位相比較回路1406は、位相差算出回路1405により算出された位相差、及び、信号源制御回路1404により出力された信号が示す位相差に基づいて、変換周波数及び符号を特定することが可能な構成であれば、どのような構成が用いられてもよい。 The phase comparison circuit 1406 may have any configuration as long as it is capable of identifying the conversion frequency and code based on the phase difference calculated by the phase difference calculation circuit 1405 and the phase difference indicated by the signal output by the signal source control circuit 1404.
 第2の周波数算出回路1407は、第1の周波数算出回路1402により算出された周波数(fout)、及び、位相比較回路1406により特定された周波数成分及び符号に基づいて、入力信号の周波数(fRF)を算出する回路である。この第2の周波数算出回路1407により算出された周波数を示す信号は、外部に出力される。 The second frequency calculation circuit 1407 is a circuit that calculates the frequency (f RF ) of the input signal based on the frequency ( f out ) calculated by the first frequency calculation circuit 1402 and the frequency component and sign specified by the phase comparison circuit 1406. A signal indicating the frequency calculated by this second frequency calculation circuit 1407 is output to the outside.
 この第2の周波数算出回路1407は、第1の入力端子が第1の周波数算出回路1402の出力端子に接続され、第2の入力端子が位相比較回路1406の出力端子に接続される。 The first input terminal of this second frequency calculation circuit 1407 is connected to the output terminal of the first frequency calculation circuit 1402, and the second input terminal is connected to the output terminal of the phase comparison circuit 1406.
 この第2の周波数算出回路1407としては、例えば、FPGAを用いることができる。 This second frequency calculation circuit 1407 can be, for example, an FPGA.
 なお、第2の周波数算出回路1407は、第1の周波数算出回路1402により算出された周波数、及び、位相比較回路1406により特定された周波数成分及び符号に基づいて、入力信号の周波数を算出することが可能な構成であれば、どのような構成が用いられてもよい。 The second frequency calculation circuit 1407 may have any configuration as long as it is capable of calculating the frequency of the input signal based on the frequency calculated by the first frequency calculation circuit 1402 and the frequency component and code identified by the phase comparison circuit 1406.
 次に、図1に示す実施の形態1に係る周波数検出回路1による動作例について説明する。
 ここでは、説明を簡単にするため、周波数検出回路1への入力信号は1波(周波数成分は1つ)とし、fRF=3GHz、θRF=0°とする。また、第1のLO信号及び第2のLО信号に含まれる周波数成分はそれぞれ2つ(m=2)とする。また、信号源11として、2つのPLL回路及び当該PLL回路により出力された信号を合成する合成器を用いる。また、fLO1=5GHz、fLO2=10GHz、θLO1_1=0°、θLO2_1=0°、θLO1_2=30°、θLO2_2=60°とする。また、フィルタ13として、通過帯域が2.5GHzであるLPFを用いる。また、周波数算出回路14として、図2に示した構成を用いる。また、量子化器1401として、ADCを用いる。また、第1の周波数算出回路1402、位相算出回路1403、信号源制御回路1404、及び、第2の周波数算出回路1407として、FPGAを用いる。また、位相差算出回路1405及び位相比較回路1406として、FPGA及びメモリを用いる。なお、メモリは、FPGA内のメモリであってもよいし、FPGA外のメモリであってもよい。また、量子化器1401として用いたADCは、ともに外部から入力されたクロック信号に同期して量子化を行うものとし、オーバーサンプリングしているものとする。
Next, an example of the operation of the frequency detection circuit 1 according to the first embodiment shown in FIG. 1 will be described.
Here, for the sake of simplicity, the input signal to the frequency detection circuit 1 is one wave (one frequency component), f RF = 3 GHz, and θ RF = 0°. The first LO signal and the second LO signal each contain two frequency components (m = 2). As the signal source 11, two PLL circuits and a synthesizer that synthesizes the signals output by the PLL circuits are used. As the filter 13, f LO1 = 5 GHz, f LO2 = 10 GHz, θ LO1_1 = 0°, θ LO2_1 = 0°, θ LO1_2 = 30°, and θ LO2_2 = 60° are used. As the frequency calculation circuit 14, the configuration shown in FIG. 2 is used. As the quantizer 1401, an ADC is used. Moreover, FPGAs are used as the first frequency calculation circuit 1402, the phase calculation circuit 1403, the signal source control circuit 1404, and the second frequency calculation circuit 1407. Moreover, FPGAs and memories are used as the phase difference calculation circuit 1405 and the phase comparison circuit 1406. The memories may be memories inside the FPGA or outside the FPGA. Moreover, the ADCs used as the quantizer 1401 are assumed to perform quantization in synchronization with a clock signal input from the outside, and to perform oversampling.
 図1に示す実施の形態1に係る周波数検出回路1による動作例では、まず、時刻がt≦t≦tの場合において、信号源11は、第1のLO信号を生成する。ここでは、信号源11は、第1のLO信号として、周波数が5GHzであり且つ初期位相が0°である信号、及び、周波数が10GHzであり且つ初期位相が0°である信号を生成する。この信号源11により生成された第1のLO信号は、ミキサ12に出力される。 In an example of operation of the frequency detection circuit 1 according to the first embodiment shown in Fig. 1, first, when time is t0 ≤ t ≤ t1 , the signal source 11 generates a first LO signal. Here, the signal source 11 generates, as the first LO signal, a signal having a frequency of 5 GHz and an initial phase of 0°, and a signal having a frequency of 10 GHz and an initial phase of 0°. The first LO signal generated by the signal source 11 is output to the mixer 12.
 次いで、ミキサ12は、入力信号と信号源11により生成された第1のLO信号とを混合することで当該入力信号を周波数変換する。このミキサ12による第1のLO信号を用いた周波数変換後の信号は、フィルタ13に出力される。 Then, the mixer 12 mixes the input signal with the first LO signal generated by the signal source 11 to convert the frequency of the input signal. The signal after frequency conversion by the mixer 12 using the first LO signal is output to the filter 13.
 次いで、時刻がt<t≦tの場合において、信号源11は、第2のLO信号を生成する。ここでは、信号源11は、第2のLO信号として、周波数が5GHzであり且つ初期位相が30°である信号、及び、周波数が10GHzであり且つ初期位相が60°である信号を生成する。この信号源11により生成された第2のLO信号は、ミキサ12に出力される。 Next, when the time is t1 <t≦ t2 , the signal source 11 generates a second LO signal. Here, the signal source 11 generates, as the second LO signal, a signal having a frequency of 5 GHz and an initial phase of 30°, and a signal having a frequency of 10 GHz and an initial phase of 60°. The second LO signal generated by the signal source 11 is output to the mixer 12.
 次いで、ミキサ12は、入力信号と信号源11により生成された第2のLO信号とを混合することで当該入力信号を周波数変換する。このミキサ12による第2のLO信号を用いた周波数変換後の信号は、フィルタ13に出力される。 Then, the mixer 12 frequency-converts the input signal by mixing the input signal with the second LO signal generated by the signal source 11. The signal after frequency conversion by the mixer 12 using the second LO signal is output to the filter 13.
 ここで、ミキサ12による周波数変換後の信号の周波数をfmix1とすると、fmix1は以下の式(1)で表される。
 ここで、k及びlは0又は正の整数であり、α=+1又は-1である。
mix1=α(k・fRF±l・fLOi)    (1)
Here, if the frequency of the signal after frequency conversion by the mixer 12 is f mix1 , f mix1 is expressed by the following equation (1).
Here, k and l are 0 or positive integers, and α=+1 or −1.
f mix1 =α(k f RF ±l f LOi ) (1)
 また、ミキサ12による第1のLO信号を用いた周波数変換後の信号の初期位相をθmix1とし、ミキサ12による第2のLO信号を用いた周波数変換後の信号の初期位相をθmix2とすると、θmix1は以下の式(2)で表され、θmix2は以下の式(3)で表される。
θmix1=α(k・θRF±l・θLOi_1)  (2)
θmix2=α(k・θRF±l・θLOi_2)  (3)
Furthermore, if the initial phase of the signal after frequency conversion using the first LO signal by mixer 12 is θ mix1 and the initial phase of the signal after frequency conversion using the second LO signal by mixer 12 is θ mix2 , θ mix1 is expressed by the following equation (2), and θ mix2 is expressed by the following equation (3).
θ mix1 =α(k·θ RF ±l·θ LOi_1 ) (2)
θ mix2 =α(k·θ RF ±l·θ LOi_2 ) (3)
 また、ここでは、ミキサ12は入力信号の周波数からLO信号の周波数を差し引くことで周波数変換を行うものとし、すなわち、式(1)、式(2)及び式(3)の右辺第2項の符号はマイナスとする。 Furthermore, here, mixer 12 performs frequency conversion by subtracting the frequency of the LO signal from the frequency of the input signal, i.e., the signs of the second terms on the right-hand sides of equations (1), (2), and (3) are negative.
 次いで、LPFであるフィルタ13は、ミキサ12による第1のLO信号を用いた周波数変換後の信号のうち、低い周波数成分の信号を通過させる。このため、フィルタ13を通過する第1のLO信号に基づく所望の出力信号の周波数はfout=α(fRF-fLO1)であるが、式(1)より、出力信号には多数のスプリアスが含まれる。 Next, filter 13, which is an LPF, passes the signal with low frequency components among the signals that have been frequency converted using the first LO signal by mixer 12. Therefore, the frequency of the desired output signal based on the first LO signal that passes through filter 13 is f out =α(f RF -f LO1 ), but according to equation (1), the output signal contains a large number of spurious components.
 次いで、LPFであるフィルタ13は、ミキサ12による第2のLO信号を用いた周波数変換後の信号のうち、低い周波数成分の信号を通過させる。このため、フィルタ13を通過する第2のLO信号に基づく所望の出力信号の周波数はfout=α(fRF-fLO1)であるが、式(1)より、出力信号には多数のスプリアスが含まれる。 Next, filter 13, which is an LPF, passes the signal with low frequency components among the signals that have been frequency converted using the second LO signal by mixer 12. Therefore, the frequency of the desired output signal based on the second LO signal that passes through filter 13 is f out =α(f RF -f LO1 ), but according to equation (1), the output signal contains many spurious components.
 以降、説明を簡単にするため、k=l=1とし、式(1)、式(2)及び式(3)の右辺第2項の符号はマイナスとする。この場合、以下の式(4)が成り立つ。
θmix2-θmix1=α(θLOi_1-θLOi_2)       (4)
In the following, for ease of explanation, k=l=1, and the signs of the second terms on the right-hand sides of formulas (1), (2) and (3) are negative. In this case, the following formula (4) holds.
θ mix2 −θ mix1 =α (θ LOi_1 −θ LOi_2 ) (4)
 この式(4)から、ミキサ12による第1のLO信号を用いた周波数変換後の信号と第2のLO信号を用いた周波数変換後の信号との位相差の絶対値は、第1のLO信号と第2のLO信号との位相差の絶対値と等しいことがわかる。但し、式(4)の左辺は、第2のLO信号を用いた周波数変換後の信号の初期位相から第1のLO信号を用いた周波数変換後の信号の初期位相を引いた値であるのに対し、右辺は第1のLO信号の初期位相から第2のLO信号の初期位相を引いた値であるので、注意を要する。 From equation (4), it can be seen that the absolute value of the phase difference between the signal after frequency conversion using the first LO signal by mixer 12 and the signal after frequency conversion using the second LO signal is equal to the absolute value of the phase difference between the first LO signal and the second LO signal. However, care must be taken because the left side of equation (4) is the value obtained by subtracting the initial phase of the signal after frequency conversion using the first LO signal from the initial phase of the signal after frequency conversion using the second LO signal, whereas the right side is the value obtained by subtracting the initial phase of the second LO signal from the initial phase of the first LO signal.
 図3は、ミキサ12による第1のLO信号を用いた周波数変換後の信号の周波数スペクトルの一例を示す図である。図3において、横軸は周波数であり、縦軸は電力である。また、符号301は、フィルタ13の通過帯域を示している。
 ミキサ12は、周波数が3GHzであり且つ初期位相が0°である入力信号と、周波数が5GHzであり且つ初期位相0°である信号及び周波数が10GHzであり且つ初期位相が0°である信号を含む第1のLO信号とを混合することで、当該入力信号を周波数変換する。
3 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using the first LO signal by the mixer 12. In FIG. 3, the horizontal axis represents frequency and the vertical axis represents power. Also, reference numeral 301 denotes the passband of the filter 13.
The mixer 12 performs frequency conversion of an input signal having a frequency of 3 GHz and an initial phase of 0° by mixing the input signal with a first LO signal including a signal having a frequency of 5 GHz and an initial phase of 0° and a signal having a frequency of 10 GHz and an initial phase of 0°.
 ここで、式(1)より、ミキサ12は、周波数が3GHzである入力信号を、第1のLO信号のうちの周波数が5GHzである信号によって、周波数が2GHzである信号に周波数変換する。この場合、α=-1である。
 また、式(2)より、ミキサ12は、周波数が3GHzである入力信号の初期位相は0°であり、第1のLO信号のうちの周波数が5GHzである信号の初期位相は0°であることから、周波数変換後の周波数が2GHzである信号の初期位相は0°である。
Here, according to equation (1), the mixer 12 frequency-converts an input signal having a frequency of 3 GHz into a signal having a frequency of 2 GHz by using the first LO signal having a frequency of 5 GHz. In this case, α=−1.
Furthermore, from equation (2), in mixer 12, the initial phase of the input signal having a frequency of 3 GHz is 0°, and the initial phase of the first LO signal having a frequency of 5 GHz is 0°, so that the initial phase of the signal having a frequency of 2 GHz after frequency conversion is 0°.
 また、式(1)より、ミキサ12は、周波数が3GHzである入力信号を、第1のLO信号のうちの周波数が10GHzである信号によって、周波数が7GHzである信号に周波数変換する。この場合、α=-1である。
 また、式(2)より、ミキサ12は、周波数が3GHzである入力信号の初期位相は0°であり、第1のLO信号のうちの周波数が10GHzである信号の初期位相は0°であることから、周波数変換後の周波数が7GHzである信号の初期位相は0°である。
Furthermore, from equation (1), the mixer 12 converts the input signal having a frequency of 3 GHz into a signal having a frequency of 7 GHz by using the first LO signal having a frequency of 10 GHz. In this case, α=−1.
Furthermore, from equation (2), in mixer 12, the initial phase of the input signal having a frequency of 3 GHz is 0°, and the initial phase of the first LO signal having a frequency of 10 GHz is 0°, so that the initial phase of the signal having a frequency of 7 GHz after frequency conversion is 0°.
 そして、フィルタ13は、ミキサ12による周波数変換後の信号のうち、2.5GHzの通過帯域内にある周波数が2GHzである信号を通過させ、2.5GHzの通過帯域外にある周波数が7GHzである信号を抑圧する。すなわち、この場合、fout=2GHz、θout1=0°となる。 Then, the filter 13 passes a signal having a frequency of 2 GHz within the pass band of 2.5 GHz, among the signals after frequency conversion by the mixer 12, and suppresses a signal having a frequency of 7 GHz outside the pass band of 2.5 GHz. That is, in this case, f out =2 GHz, and θ out1 =0°.
 図4は、ミキサ12による第2のLO信号を用いた周波数変換後の信号の周波数スペクトルの一例を示す図である。図4において、横軸は周波数であり、縦軸は電力である。また、符号401は、フィルタ13の通過帯域を示している。
 ミキサ12は、周波数が3GHzであり且つ初期位相が0°である入力信号と、周波数が5GHzであり且つ初期位相が30°である信号及び周波数が10GHzであり且つ初期位相が60°である信号を含む第2のLO信号とを混合することで、当該入力信号を周波数変換する。
4 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using the second LO signal by the mixer 12. In FIG. 4, the horizontal axis represents frequency and the vertical axis represents power. Also, reference numeral 401 denotes the pass band of the filter 13.
Mixer 12 performs frequency conversion of an input signal having a frequency of 3 GHz and an initial phase of 0° by mixing the input signal with a second LO signal including a signal having a frequency of 5 GHz and an initial phase of 30° and a signal having a frequency of 10 GHz and an initial phase of 60°.
 ここで、式(1)より、ミキサ12は、周波数が3GHzである入力信号を、第2のLO信号のうちの周波数が5GHzである信号によって、周波数が2GHzである信号に周波数変換する。この場合、α=-1である。
 また、式(3)より、ミキサ12は、周波数が3GHzである入力信号の初期位相は0°であり、第2のLO信号のうちの周波数が5GHzである信号の初期位相は30°であることから、周波数変換後の周波数が2GHzである信号の初期位相は30°である。
Here, from equation (1), the mixer 12 converts the input signal having a frequency of 3 GHz into a signal having a frequency of 2 GHz by using the second LO signal having a frequency of 5 GHz. In this case, α=−1.
Furthermore, from equation (3), in mixer 12, the initial phase of the input signal having a frequency of 3 GHz is 0°, and the initial phase of the signal among the second LO signals having a frequency of 5 GHz is 30°, so that the initial phase of the signal having a frequency of 2 GHz after frequency conversion is 30°.
 また、式(1)より、ミキサ12は、周波数が3GHzである入力信号を、第2のLO信号のうちの周波数が10GHzである信号によって、周波数が7GHzである信号に周波数変換する。この場合、α=-1である。
 また、式(3)より、ミキサ12は、周波数が3GHzである入力信号の初期位相は0°であり、第2のLO信号のうちの周波数が10GHzである信号の初期位相は60°であることから、周波数変換後の周波数が7GHzである信号の初期位相は60°である。
Furthermore, from equation (1), the mixer 12 converts the input signal having a frequency of 3 GHz into a signal having a frequency of 7 GHz by using the second LO signal having a frequency of 10 GHz. In this case, α=−1.
Furthermore, from equation (3), in mixer 12, the initial phase of the input signal having a frequency of 3 GHz is 0°, and the initial phase of the second LO signal having a frequency of 10 GHz is 60°, so that the initial phase of the signal having a frequency of 7 GHz after frequency conversion is 60°.
 そして、フィルタ13は、ミキサ12による周波数変換後の信号のうち、2.5GHzの通過帯域内にある周波数が2GHzである信号を通過させ、2.5GHzの通過帯域外にある周波数が7GHzである信号を抑圧する。すなわち、この場合、fout=2GHz、θout2=30°となる。 Then, the filter 13 passes a signal having a frequency of 2 GHz that is within the pass band of 2.5 GHz, among the signals after frequency conversion by the mixer 12, and suppresses a signal having a frequency of 7 GHz that is outside the pass band of 2.5 GHz. That is, in this case, f out =2 GHz, and θ out2 =30°.
 このように、フィルタ13を通過した第1のLO信号に基づく信号及び第2のLO信号に基づく信号は、周波数が同じであり、初期位相が異なる。
 なお、フィルタ13は、周波数算出回路14に多数の周波数成分の信号が入力されることによる誤動作を防止するため、又は、高い電力の周波数成分の信号が入力されることによる故障を防止するために設けられている。
 ミキサ12による周波数変換後の信号にはfout以外に多数の周波数成分が存在するため、fout以外の成分を十分抑圧できるようにフィルタ13の通過帯域又は実装方法を決定する。その場合のフィルタ13は、BPF又はHPFであってもよい。
 更に、ミキサ12による周波数変換後の信号に含まれるfout以外の周波数成分が、周波数算出回路14の動作可能な周波数以外となる場合、又は、それらの周波数成分の電力が低い場合等、周波数算出回路14で誤動作及び故障が起きない場合は、フィルタ13は設けず、スルー回路としてもよい。
In this way, the signal based on the first LO signal and the signal based on the second LO signal that have passed through the filter 13 have the same frequency but different initial phases.
The filter 13 is provided to prevent malfunction due to a signal with a large number of frequency components being input to the frequency calculation circuit 14, or to prevent failure due to a signal with a high power frequency component being input.
Since many frequency components other than fout exist in the signal after frequency conversion by the mixer 12, the passband or implementation method of the filter 13 is determined so that the components other than fout can be sufficiently suppressed. In this case, the filter 13 may be a BPF or HPF.
Furthermore, in cases where frequency components other than f out contained in the signal after frequency conversion by the mixer 12 are frequencies other than those at which the frequency calculation circuit 14 can operate, or where the power of these frequency components is low, and so on, the frequency calculation circuit 14 will not malfunction or fail, the filter 13 may be omitted and a through circuit may be used.
 以上のように、フィルタ13は、時刻がt≦t≦tの場合には、第1のLO信号によるミキサ12での周波数変換により、周波数がfoutであり且つ初期位相がθout1である信号を出力する。
 また、フィルタ13は、時刻がt<t≦tの場合には、第2のLO信号によるミキサ12での周波数変換により、周波数がfoutであり且つ初期位相がθout2である信号を出力する。
As described above, when the time is t 0 ≦t≦t 1 , the filter 13 outputs a signal whose frequency is f out and whose initial phase is θ out1 due to frequency conversion in the mixer 12 by the first LO signal.
Furthermore, when the time is t 1 <t≦t 2 , the filter 13 outputs a signal whose frequency is f out and whose initial phase is θ out2 as a result of frequency conversion in the mixer 12 using the second LO signal.
 次いで、量子化器1401は、フィルタ13を通過した信号であるアナログ信号を量子化する。この量子化器1401による量子化後の信号であるディジタル信号は、第1の周波数算出回路1402及び位相算出回路1403に出力される。 Next, the quantizer 1401 quantizes the analog signal that has passed through the filter 13. The digital signal that is the signal after quantization by the quantizer 1401 is output to the first frequency calculation circuit 1402 and the phase calculation circuit 1403.
 次いで、第1の周波数算出回路1402は、量子化器1401による量子化後の信号に基づいて、当該信号の周波数(fout)を算出する。この第1の周波数算出回路1402により算出された周波数を示す信号は、第2の周波数算出回路1407に出力される。ここでは、第1の周波数算出回路1402から、fout=2GHzを示す信号が第2の周波数算出回路1407に出力される。 Next, the first frequency calculation circuit 1402 calculates the frequency (f out ) of the signal based on the signal after quantization by the quantizer 1401. A signal indicating the frequency calculated by this first frequency calculation circuit 1402 is output to the second frequency calculation circuit 1407. Here, a signal indicating f out = 2 GHz is output from the first frequency calculation circuit 1402 to the second frequency calculation circuit 1407.
 次いで、位相算出回路1403は、量子化器1401による量子化後の信号に基づいて、当該信号の初期位相を算出する。この際、位相算出回路1403は、FFTによって初期位相を算出しており、ある時間(Δt)の間で信号をモニタすることで、モニタの開始時刻での初期位相を算出する。なお、Δtは実数である。この位相算出回路1403により算出された初期位相を示す信号は、位相差算出回路1405に出力される。 Then, the phase calculation circuit 1403 calculates the initial phase of the signal based on the signal after quantization by the quantizer 1401. At this time, the phase calculation circuit 1403 calculates the initial phase by FFT, and calculates the initial phase at the start time of monitoring by monitoring the signal for a certain period of time (Δt). Note that Δt is a real number. The signal indicating the initial phase calculated by this phase calculation circuit 1403 is output to the phase difference calculation circuit 1405.
 次いで、位相差算出回路1405は、信号源制御回路1404により出力された信号が示す時刻(t、t、t)に基づいて、位相算出回路1403により算出された初期位相から、位相差(θout2-θout1)を算出する。この際、まず、位相差算出回路1405は、信号源制御回路1404により出力された信号が示す時刻に基づいて、位相算出回路1403により算出された初期位相から、θout1及びθout2を抽出する。そして、位相差算出回路1405は、その位相差(θout2-θout1)を算出する。この位相差算出回路1405により算出された位相差を示す信号は、位相比較回路1406に出力される。ここでは、θout2-θout1=30°-0°=30°となる。 Next, the phase difference calculation circuit 1405 calculates a phase difference (θ out2 - θ out1 ) from the initial phase calculated by the phase calculation circuit 1403 based on the time (t 0 , t 1 , t) indicated by the signal output by the signal source control circuit 1404. At this time, the phase difference calculation circuit 1405 first extracts θ out1 and θ out2 from the initial phase calculated by the phase calculation circuit 1403 based on the time indicated by the signal output by the signal source control circuit 1404. Then, the phase difference calculation circuit 1405 calculates the phase difference (θ out2 - θ out1 ) . A signal indicating the phase difference calculated by this phase difference calculation circuit 1405 is output to the phase comparison circuit 1406. Here, θ out2 - θ out1 = 30° - 0° = 30°.
 図5Aは、実施の形態1におけるフィルタ13を通過後の信号の一例を示す図であり、図5Bは、位相算出回路1403の動作例を説明する図である。図5Aにおいて、符号501はフィルタ13を通過後の第1のLO信号に基づく信号の一例を示し、符号502はフィルタ13を通過後の第2のLO信号に基づく信号の一例を示している。なお、図5Aにおける破線で示す波形は、仮想的に、第2のLO信号に基づく信号を、第1のLO信号に基づく信号がフィルタ13を通過する期間にまで引き延ばした場合の波形を示している。
 この図5A及び図5Bに示すように、まず、位相差算出回路1405は、t及び位相算出回路1403により算出された初期位相からθout1を抽出し、当該θout1を示す信号をメモリに記憶する。ここで、θout1を算出するためにはΔtの情報が必要であるが、位相差算出回路1405は、このΔtを予めメモリに情報として記憶しておいてもよいし、位相算出回路1403から信号が入力された時刻からΔtを算出してもよい。
 次に、時刻がtの場合には初期位相が変わるため、位相差算出回路1405は、t、t及び位相算出回路1403により算出された初期位相からθout2を抽出し、当該θout2を示す信号をメモリに記憶する。
 なお、図5Bにおけるモニタ区間kのように、位相算出回路1403におけるモニタ区間がtをまたいでいる場合、当該モニタ区間内でフィルタ13からの出力信号が不連続となっているため、位相算出回路1403は正しく初期位相を算出できない。このため、位相算出回路1403は、モニタ区間がtをまたいでいるかどうかを判定し、モニタ区間がtをまたいでいると判定した場合には初期位相の算出を行わないようにする。すなわち、位相算出回路1403は、tに基づいて、tを含むモニタ区間を、初期位相の算出に用いないように除外する。
 最後に、位相差算出回路1405は、メモリに記憶しておいたθout1及びθout2から、位相差(θout2-θout1)を算出する。この際、メモリに複数のθout1及び複数のθout2を記憶している場合、位相差算出回路1405は、θout1及びθout2それぞれの平均値を算出して、2つの平均値から位相差(θout2-θout1)を算出してもよい。又は、メモリに複数のθout1及び複数のθout2を記憶している場合、位相差算出回路1405は、θout1及びθout2それぞれから1つずつ値を抽出して、抽出した値から位相差(θout2-θout1)を算出してもよい。
Fig. 5A is a diagram showing an example of a signal after passing through the filter 13 in the first embodiment, and Fig. 5B is a diagram explaining an example of the operation of the phase calculation circuit 1403. In Fig. 5A, reference numeral 501 indicates an example of a signal based on the first LO signal after passing through the filter 13, and reference numeral 502 indicates an example of a signal based on the second LO signal after passing through the filter 13. Note that the waveform indicated by the dashed line in Fig. 5A indicates a waveform in the case where the signal based on the second LO signal is virtually extended to the period during which the signal based on the first LO signal passes through the filter 13.
5A and 5B, first, the phase difference calculation circuit 1405 extracts θ out1 from t 0 and the initial phase calculated by the phase calculation circuit 1403, and stores a signal indicating this θ out1 in memory. Here, information on Δt is necessary to calculate θ out1 , and the phase difference calculation circuit 1405 may store this Δt as information in advance in the memory, or may calculate Δt from the time when the signal is input from the phase calculation circuit 1403.
Next, when the time is t1 , the initial phase changes, so the phase difference calculation circuit 1405 extracts θ out2 from t 0 , t 1 and the initial phase calculated by the phase calculation circuit 1403, and stores a signal indicating θ out2 in memory.
In addition, when the monitor section in the phase calculation circuit 1403 crosses t1 , as in the monitor section k in Fig. 5B, the output signal from the filter 13 is discontinuous within the monitor section, and the phase calculation circuit 1403 cannot correctly calculate the initial phase. Therefore, the phase calculation circuit 1403 judges whether the monitor section crosses t1 , and when it is judged that the monitor section crosses t1 , it does not calculate the initial phase. That is, the phase calculation circuit 1403 excludes the monitor section including t1 based on t1 so as not to use it in the calculation of the initial phase.
Finally, the phase difference calculation circuit 1405 calculates the phase difference (θ out2out1 ) from θ out1 and θ out2 stored in the memory. In this case, if a plurality of θ out1 and a plurality of θ out2 are stored in the memory, the phase difference calculation circuit 1405 may calculate the average value of each of θ out1 and θ out2 , and calculate the phase difference (θ out2out1 ) from the two average values. Alternatively, if a plurality of θ out1 and a plurality of θ out2 are stored in the memory, the phase difference calculation circuit 1405 may extract one value each from θ out1 and θ out2 , and calculate the phase difference (θ out2out1 ) from the extracted values.
 なお、図5Bでは、tからモニタ区間を開始する場合について記載しているが、モニタ区間はtをまたいでもよい。但し、その場合、位相差算出回路1405は、tを含むモニタ区間については、初期位相の算出を行わないようにする。 5B illustrates a case where the monitor section starts from t 0 , but the monitor section may span t 0. In that case, however, the phase difference calculation circuit 1405 does not calculate the initial phase for the monitor section including t 0 .
 次いで、位相比較回路1406は、位相差算出回路1405により算出された位相差(θout2-θout1)の絶対値と、信号源制御回路1404により出力された信号が示す位相差(θLОi_1-θLОi_2)の絶対値とを比較し、第1のLO信号及び第2のLО信号に含まれる複数の周波数成分のうち、入力信号の周波数変換に用いられた周波数成分である変換周波数を特定する。この位相比較回路1406により特定された周波数成分を示す信号は、第2の周波数算出回路1407に出力される。
 ここで、θout2-θout1=30°であり、θLО1_1-θLО1_2=-0°-30°=-30°であり、θLО2_1-θLО2_2=0°-60°=-60°である。この場合、θout2-θout1の絶対値とθLО1_1-θLО1_2の絶対値とが一致することから、位相比較回路1406は、第1のLO信号及び第2のLO信号に含まれる複数の周波数成分のうち、θLО1_1,θLО1_2に対応するfLO1(=5GHz)を変換周波数として特定する。
Next, the phase comparator circuit 1406 compares the absolute value of the phase difference (θ out2 - θ out1 ) calculated by the phase difference calculation circuit 1405 with the absolute value of the phase difference (θ LOi_1 - θ LOi_2 ) indicated by the signal output by the signal source control circuit 1404, and identifies a conversion frequency which is a frequency component used for frequency conversion of the input signal among a plurality of frequency components contained in the first LO signal and the second LO signal. The signal indicating the frequency component identified by this phase comparator circuit 1406 is output to the second frequency calculation circuit 1407.
Here, θ out2 - θ out1 = 30°, θ LO1_1 - θ LO1_2 = -0° - 30° = -30°, and θ LO2_1 - θ LO2_2 = 0° - 60° = -60°. In this case, the absolute value of θ out2 - θ out1 matches the absolute value of θ LO1_1 - θ LO1_2 , so the phase comparator circuit 1406 specifies f LO1 (= 5 GHz) corresponding to θ LO1_1 and θ LO1_2 as the conversion frequency from among the multiple frequency components included in the first LO signal and the second LO signal.
 また、位相比較回路1406は、位相差算出回路1405により算出された位相差(θout2-θout1)の符号と、上記変換周波数での位相差の符号とを比較し、入力信号の周波数変換による位相の回転方向を示す符号を特定する。この位相比較回路1406により特定された符号を示す信号は、第2の周波数算出回路1407に出力される。
 ここで、θout2-θout1の符号とθLО1_1-θLО1_2の符号とが異なることから、位相比較回路1406は、入力信号の周波数変換により位相が逆方向に回転した(fRF<5GHzすなわちα=-1)と判定する。
Furthermore, the phase comparator circuit 1406 compares the sign of the phase difference (θ out2 - θ out1 ) calculated by the phase difference calculation circuit 1405 with the sign of the phase difference at the conversion frequency to identify the sign indicating the phase rotation direction due to the frequency conversion of the input signal. The signal indicating the sign identified by this phase comparator circuit 1406 is output to the second frequency calculation circuit 1407.
Here, since the sign of θ out2out1 is different from the sign of θ LO1_1LO1_2 , the phase comparator circuit 1406 determines that the phase has rotated in the opposite direction due to frequency conversion of the input signal (f RF <5 GHz, ie α=-1).
 次いで、第2の周波数算出回路1407は、第1の周波数算出回路1402により算出された周波数(fout)、及び、位相比較回路1406により特定された周波数成分及び符号に基づいて、下式(5)を用いて入力信号の周波数(fRF)を算出する。なお、ここでは、式(5)の右辺第2項の符号はマイナスである。この第2の周波数算出回路1407により算出された周波数を示す信号は、周波数検出回路1の外部に出力される。
 ここでは、第1の周波数算出回路1402により算出されたfout=2GHz、及び、位相比較回路1406により判定されたfLO1(=5GHz)及びα=-1に基づいて、式(5)より入力信号の周波数としてfRF=3GHzを算出する。
out=α(fRF±fLOi)      (5)
Next, the second frequency calculation circuit 1407 calculates the frequency (f RF ) of the input signal using the following equation (5) based on the frequency (f out ) calculated by the first frequency calculation circuit 1402 and the frequency component and sign specified by the phase comparison circuit 1406. Note that here, the sign of the second term on the right side of equation (5) is negative . A signal indicating the frequency calculated by this second frequency calculation circuit 1407 is output to the outside of the frequency detection circuit 1.
Here, based on f out =2 GHz calculated by the first frequency calculation circuit 1402, and f LO1 (=5 GHz) and α=-1 determined by the phase comparison circuit 1406, f RF =3 GHz is calculated as the frequency of the input signal from equation (5).
f out =α(f RF ±f LOi ) (5)
 次に、図6に示すように、周波数検出回路1への入力信号が2波(周波数成分が2つ)である場合での周波数検出回路1の動作例について説明する。
 ここでは、上記2波の入力信号のうち、一方の入力信号の周波数をfRF1とし且つ初期位相をθRF1とし、他方の入力信号の周波数をfRF2とし且つ初期位相をθRF2とする。また、入力信号が複数波である場合、フィルタ13を通過する信号も複数波となる。ここでは、フィルタ13を通過する第1のLO信号に基づく信号は、周波数がfоut1であり且つ初期位相がθоut1_1である信号、及び、周波数がfоut2であり且つ初期位相がθоut1_2である信号の2波である。また、フィルタ13を通過する第2のLO信号に基づく信号は、周波数がfоut1であり且つ初期位相がθоut2_1である信号、及び、周波数がfоut2であり且つ初期位相がθоut2_2である信号の2波である。
 また、説明を簡単にするため、fRF1=3GHz、θRF1=0°、fRF2=6GHz、θRF2=0°とする。また、第1のLО信号及び第2のLO信号に含まれる周波数成分はそれぞれ2つ(m=2)とする。また、fLO1=5GHz、fLO2=10GHz、θLO1_1=0°、θLO2_1=0°、θLO1_2=30°、θLO2_2=60°とする。それ以外の条件については、周波数検出回路1への入力信号が1波である場合での周波数検出回路1の動作例での条件と同じとする。
Next, an example of the operation of the frequency detection circuit 1 in the case where the input signal to the frequency detection circuit 1 has two waves (two frequency components) as shown in FIG. 6 will be described.
Here, of the two waves of input signals, one input signal has a frequency of f RF1 and an initial phase of θ RF1 , and the other input signal has a frequency of f RF2 and an initial phase of θ RF2 . When the input signal has multiple waves, the signal passing through the filter 13 also has multiple waves. Here, the signals based on the first LO signal passing through the filter 13 are two waves, a signal with a frequency of f OUT1 and an initial phase of θ OUT1_1 , and a signal with a frequency of f OUT2 and an initial phase of θ OUT1_2 . Moreover, the signals based on the second LO signal passing through the filter 13 are two waves, a signal with a frequency of f OUT1 and an initial phase of θ OUT2_1 , and a signal with a frequency of f OUT2 and an initial phase of θ OUT2_2 .
For simplicity of explanation, f RF1 = 3 GHz, θ RF1 = 0°, f RF2 = 6 GHz, and θ RF2 = 0°. The first LO signal and the second LO signal each contain two frequency components (m = 2). Also, f LO1 = 5 GHz, f LO2 = 10 GHz, θ LO1_1 = 0°, θ LO2_1 = 0°, θ LO1_2 = 30°, and θ LO2_2 = 60°. Other conditions are the same as those in the operation example of the frequency detection circuit 1 when the input signal to the frequency detection circuit 1 is one wave.
 図6に示す実施の形態1に係る周波数検出回路1の動作例では、まず、時刻がt≦t≦tの場合において、信号源11は、第1のLO信号を生成する。ここでは、信号源11は、第1のLO信号として、周波数が5GHzであり且つ初期位相が0°である信号、及び、周波数が10GHzであり且つ初期位相が0°である信号を生成する。この信号源11により生成された第1のLO信号は、ミキサ12に出力される。 In the operation example of the frequency detection circuit 1 according to the first embodiment shown in Fig. 6, first, when the time is t0 ≤ t ≤ t1 , the signal source 11 generates a first LO signal. Here, the signal source 11 generates, as the first LO signal, a signal having a frequency of 5 GHz and an initial phase of 0°, and a signal having a frequency of 10 GHz and an initial phase of 0°. The first LO signal generated by the signal source 11 is output to the mixer 12.
 次いで、ミキサ12は、入力信号と信号源11により生成された第1のLO信号とを混合することで当該入力信号を周波数変換する。このミキサ12による第1のLO信号を用いた周波数変換後の信号は、フィルタ13に出力される。 Then, the mixer 12 mixes the input signal with the first LO signal generated by the signal source 11 to convert the frequency of the input signal. The signal after frequency conversion by the mixer 12 using the first LO signal is output to the filter 13.
 次いで、時刻がt<t≦tの場合において、信号源11は、第2のLO信号を生成する。ここでは、信号源11は、第2のLO信号として、周波数が5GHzであり且つ初期位相が30°である信号、及び、周波数が10GHzであり且つ初期位相が60°である信号を生成する。この信号源11により生成された第2のLO信号は、ミキサ12に出力される。 Next, when the time is t1 <t≦ t2 , the signal source 11 generates a second LO signal. Here, the signal source 11 generates, as the second LO signal, a signal having a frequency of 5 GHz and an initial phase of 30°, and a signal having a frequency of 10 GHz and an initial phase of 60°. The second LO signal generated by the signal source 11 is output to the mixer 12.
 次いで、ミキサ12は、入力信号と信号源11により生成された第2のLO信号とを混合することで当該入力信号を周波数変換する。このミキサ12による第2のLO信号を用いた周波数変換後の信号は、フィルタ13に出力される。 Then, the mixer 12 frequency-converts the input signal by mixing the input signal with the second LO signal generated by the signal source 11. The signal after frequency conversion by the mixer 12 using the second LO signal is output to the filter 13.
 図7は、ミキサ12による第1のLO信号を用いた周波数変換後の信号の周波数スペクトルの一例を示す図である。図7において、横軸は周波数であり、縦軸は電力である。また、符号701は、フィルタ13の通過帯域を示している。また、図7において、先端が三角である信号は、周波数が3GHzであり且つ初期位相が0°である入力信号が周波数変換された信号を示している。また、図7において、先端が丸である信号は、周波数が6GHzであり且つ初期位相が0°である入力信号が周波数変換された信号を示している。
 ミキサ12は、周波数が3GHzであり且つ初期位相が0°である入力信号と、周波数が5GHzであり且つ初期位相0°である信号及び周波数が10GHzであり且つ初期位相が0°である信号を含む第1のLO信号とを混合することで、当該入力信号を周波数変換する。
 同様に、ミキサ12は、周波数が6GHzであり且つ初期位相が0°である入力信号と、周波数が5GHzであり且つ初期位相0°である信号及び周波数が10GHzであり且つ初期位相が0°である信号を含む第1のLO信号とを混合することで、当該入力信号を周波数変換する。
Fig. 7 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using the first LO signal by the mixer 12. In Fig. 7, the horizontal axis is frequency, and the vertical axis is power. Reference numeral 701 indicates the passband of the filter 13. In Fig. 7, a signal with a triangular tip indicates a signal obtained by frequency conversion of an input signal having a frequency of 3 GHz and an initial phase of 0°. In Fig. 7, a signal with a round tip indicates a signal obtained by frequency conversion of an input signal having a frequency of 6 GHz and an initial phase of 0°.
The mixer 12 performs frequency conversion of an input signal having a frequency of 3 GHz and an initial phase of 0° by mixing the input signal with a first LO signal including a signal having a frequency of 5 GHz and an initial phase of 0° and a signal having a frequency of 10 GHz and an initial phase of 0°.
Similarly, mixer 12 frequency-converts an input signal having a frequency of 6 GHz and an initial phase of 0° by mixing the input signal with a first LO signal including a signal having a frequency of 5 GHz and an initial phase of 0° and a signal having a frequency of 10 GHz and an initial phase of 0°.
 ここで、式(1)より、ミキサ12は、周波数が3GHzである入力信号を、第1のLO信号のうちの周波数が5GHzである信号によって、周波数が2GHzである信号に周波数変換する。この場合、α=-1である。
 また、式(2)より、ミキサ12は、周波数が3GHzである入力信号の初期位相は0°であり、第1のLO信号のうちの周波数が5GHzである信号の初期位相は0°であることから、周波数変換後の周波数が2GHzである信号の初期位相は0°である。
 同様に、式(1)より、ミキサ12は、周波数が6GHzである入力信号を、第1のLO信号のうちの周波数が5GHzである信号によって、周波数が1GHzである信号に周波数変換する。この場合、α=+1である。
 また、式(2)より、ミキサ12は、周波数が6GHzである入力信号の初期位相は0°であり、第1のLO信号のうちの周波数が5GHzである信号の初期位相は0°であることから、周波数変換後の周波数が1GHzである信号の初期位相は0°である。
Here, according to equation (1), the mixer 12 frequency-converts an input signal having a frequency of 3 GHz into a signal having a frequency of 2 GHz by using the first LO signal having a frequency of 5 GHz. In this case, α=−1.
Furthermore, from equation (2), in mixer 12, the initial phase of the input signal having a frequency of 3 GHz is 0°, and the initial phase of the first LO signal having a frequency of 5 GHz is 0°, so that the initial phase of the signal having a frequency of 2 GHz after frequency conversion is 0°.
Similarly, from equation (1), the mixer 12 converts the input signal having a frequency of 6 GHz into a signal having a frequency of 1 GHz by using the first LO signal having a frequency of 5 GHz. In this case, α=+1.
Furthermore, from equation (2), in mixer 12, the initial phase of the input signal having a frequency of 6 GHz is 0°, and the initial phase of the first LO signal having a frequency of 5 GHz is 0°, so that the initial phase of the signal having a frequency of 1 GHz after frequency conversion is 0°.
 また、式(1)より、ミキサ12は、周波数が3GHzである入力信号を、第1のLO信号のうちの周波数が10GHzである信号によって、周波数が7GHzである信号に周波数変換する。この場合、α=-1である。
 また、式(2)より、ミキサ12は、周波数が3GHzである入力信号の初期位相は0°であり、第1のLO信号のうちの周波数が10GHzである信号の初期位相は0°であることから、周波数変換後の周波数が7GHzである信号の初期位相は0°である。
 同様に、式(1)より、ミキサ12は、周波数が6GHzである入力信号を、第1のLO信号のうちの周波数が10GHzである信号によって、周波数が4GHzである信号に周波数変換する。この場合、α=-1である。
 また、式(2)より、ミキサ12は、周波数が6GHzである入力信号の初期位相は0°であり、第1のLO信号のうちの周波数が10GHzである信号の初期位相は0°であることから、周波数変換後の周波数が4GHzである信号の初期位相は0°である。
Furthermore, from equation (1), the mixer 12 converts the input signal having a frequency of 3 GHz into a signal having a frequency of 7 GHz by using the first LO signal having a frequency of 10 GHz. In this case, α=−1.
Furthermore, from equation (2), in mixer 12, the initial phase of the input signal having a frequency of 3 GHz is 0°, and the initial phase of the first LO signal having a frequency of 10 GHz is 0°, so that the initial phase of the signal having a frequency of 7 GHz after frequency conversion is 0°.
Similarly, from equation (1), the mixer 12 frequency-converts an input signal having a frequency of 6 GHz into a signal having a frequency of 4 GHz by using the first LO signal having a frequency of 10 GHz. In this case, α=−1.
Furthermore, from equation (2), in mixer 12, the initial phase of the input signal having a frequency of 6 GHz is 0°, and the initial phase of the first LO signal having a frequency of 10 GHz is 0°, so that the initial phase of the signal having a frequency of 4 GHz after frequency conversion is 0°.
 そして、フィルタ13は、ミキサ12による周波数変換後の信号のうち、2.5GHzの通過帯域内にある周波数が2GHzである信号及び1GHzである信号を通過させ、2.5GHzの通過帯域外にある周波数が7GHzである信号及び4GHzである信号を抑圧する。すなわち、この場合、fout1=1GHz、θout1_1=0°、fout2=2GHz、θout1_2=0°となる。なお、ここでは、fout1及びfout2の大小関係等を定義していないので、fout1=2GHz、θout1_1=0°、fout2=1GHz、θout1_2=0°でもよい。 The filter 13 passes signals having frequencies of 2 GHz and 1 GHz that are within the 2.5 GHz pass band among the signals after frequency conversion by the mixer 12, and suppresses signals having frequencies of 7 GHz and 4 GHz that are outside the 2.5 GHz pass band. That is, in this case, f out1 =1 GHz, θ out1_1 =0°, f out2 =2 GHz, and θ out1_2 =0°. Note that, since the magnitude relationship between f out1 and f out2 is not defined here, f out1 =2 GHz, θ out1_1 =0°, f out2 =1 GHz, and θ out1_2 =0° may also be used.
 図8は、ミキサ12による第2のLO信号を用いた周波数変換後の信号の周波数スペクトルの一例を示す図である。図8において、横軸は周波数であり、縦軸は電力である。また、符号801は、フィルタ13の通過帯域を示している。また、図8において、先端が三角である信号は、周波数が3GHzであり且つ初期位相が0°である入力信号が周波数変換された信号を示している。また、図8において、先端が丸である信号は、周波数が6GHzであり且つ初期位相が0°である入力信号が周波数変換された信号を示している。
 ミキサ12は、周波数が3GHzであり且つ初期位相が0°である入力信号と、周波数が5GHzであり且つ初期位相が30°である信号及び周波数が10GHzであり且つ初期位相が60°である信号を含む第2のLO信号とを混合することで、当該入力信号を周波数変換する。
 同様に、ミキサ12は、周波数が6GHzであり且つ初期位相が0°である入力信号と、周波数が5GHzであり且つ初期位相が30°である信号及び周波数が10GHzであり且つ初期位相が60°である信号を含む第2のLO信号とを混合することで、当該入力信号を周波数変換する。
Fig. 8 is a diagram showing an example of a frequency spectrum of a signal after frequency conversion using the second LO signal by the mixer 12. In Fig. 8, the horizontal axis is frequency, and the vertical axis is power. Reference numeral 801 indicates the passband of the filter 13. In Fig. 8, a signal with a triangular tip indicates a signal obtained by frequency conversion of an input signal having a frequency of 3 GHz and an initial phase of 0°. In Fig. 8, a signal with a round tip indicates a signal obtained by frequency conversion of an input signal having a frequency of 6 GHz and an initial phase of 0°.
Mixer 12 performs frequency conversion of an input signal having a frequency of 3 GHz and an initial phase of 0° by mixing the input signal with a second LO signal including a signal having a frequency of 5 GHz and an initial phase of 30° and a signal having a frequency of 10 GHz and an initial phase of 60°.
Similarly, mixer 12 frequency converts an input signal having a frequency of 6 GHz and an initial phase of 0° by mixing the input signal with a second LO signal including a signal having a frequency of 5 GHz and an initial phase of 30° and a signal having a frequency of 10 GHz and an initial phase of 60°.
 ここで、式(1)より、ミキサ12は、周波数が3GHzである入力信号を、第2のLO信号のうちの周波数が5GHzである信号によって、周波数が2GHzである信号に周波数変換する。この場合、α=-1である。
 また、式(3)より、ミキサ12は、周波数が3GHzである入力信号の初期位相は0°であり、第2のLO信号のうちの周波数が5GHzである信号の初期位相は30°であることから、周波数変換後の周波数が2GHzである信号の初期位相は30°である。
 同様に、式(1)より、ミキサ12は、周波数が6GHzである入力信号を、第2のLO信号のうちの周波数が5GHzである信号によって、周波数が1GHzである信号に周波数変換する。この場合、α=+1である。
 また、式(3)より、ミキサ12は、周波数が6GHzである入力信号の初期位相は0°であり、第2のLO信号のうちの周波数が5GHzである信号の初期位相は30°であることから、周波数変換後の周波数が1GHzである信号の初期位相は-30°である。
Here, from equation (1), the mixer 12 converts the input signal having a frequency of 3 GHz into a signal having a frequency of 2 GHz by using the second LO signal having a frequency of 5 GHz. In this case, α=−1.
Furthermore, from equation (3), in mixer 12, the initial phase of the input signal having a frequency of 3 GHz is 0°, and the initial phase of the signal among the second LO signals having a frequency of 5 GHz is 30°, so that the initial phase of the signal having a frequency of 2 GHz after frequency conversion is 30°.
Similarly, from equation (1), the mixer 12 frequency-converts an input signal having a frequency of 6 GHz into a signal having a frequency of 1 GHz by using the second LO signal having a frequency of 5 GHz. In this case, α=+1.
Furthermore, from equation (3), in mixer 12, the initial phase of the input signal having a frequency of 6 GHz is 0°, and the initial phase of the second LO signal having a frequency of 5 GHz is 30°, so that the initial phase of the signal having a frequency of 1 GHz after frequency conversion is -30°.
 また、式(1)より、ミキサ12は、周波数が3GHzである入力信号を、第2のLO信号のうちの周波数が10GHzである信号によって、周波数が7GHzである信号に周波数変換する。この場合、α=-1である。
 また、式(3)より、ミキサ12は、周波数が3GHzである入力信号の初期位相は0°であり、第2のLO信号のうちの周波数が10GHzである信号の初期位相は60°であることから、周波数変換後の周波数が7GHzである信号の初期位相は60°である。
 同様に、式(1)より、ミキサ12は、周波数が6GHzである入力信号を、第2のLO信号のうちの周波数が10GHzである信号によって、周波数が4GHzである信号に周波数変換する。この場合、α=-1である。
 また、式(3)より、ミキサ12は、周波数が6GHzである入力信号の初期位相は0°であり、第2のLO信号のうちの周波数が10GHzである信号の初期位相は60°であることから、周波数変換後の周波数が4GHzである信号の初期位相は60°である。
Furthermore, from equation (1), the mixer 12 converts the input signal having a frequency of 3 GHz into a signal having a frequency of 7 GHz by using the second LO signal having a frequency of 10 GHz. In this case, α=−1.
Furthermore, from equation (3), in mixer 12, the initial phase of the input signal having a frequency of 3 GHz is 0°, and the initial phase of the second LO signal having a frequency of 10 GHz is 60°, so that the initial phase of the signal having a frequency of 7 GHz after frequency conversion is 60°.
Similarly, from equation (1), the mixer 12 frequency-converts an input signal having a frequency of 6 GHz into a signal having a frequency of 4 GHz by using the second LO signal having a frequency of 10 GHz. In this case, α=−1.
Furthermore, from equation (3), in mixer 12, the initial phase of the input signal having a frequency of 6 GHz is 0°, and the initial phase of the second LO signal having a frequency of 10 GHz is 60°, so that the initial phase of the signal having a frequency of 4 GHz after frequency conversion is 60°.
 そして、フィルタ13は、ミキサ12による周波数変換後の信号のうち、2.5GHzの通過帯域内にある周波数が2GHzである信号及び1GHzである信号を通過させ、2.5GHzの通過帯域外にある周波数が7GHzである信号及び4GHzである信号を抑圧する。すなわち、この場合、fout1=1GHz、θout2_1=-30°、fout2=2GHz、θout2_2=30°となる。なお、fout1=2GHz、fout2=1GHzとした場合には、fout1=2GHz、θout2_1=30°、fout2=1GHz、θout2_2=-30°とする。 Then, the filter 13 passes signals having frequencies of 2 GHz and 1 GHz that are within the 2.5 GHz pass band among the signals after frequency conversion by the mixer 12, and suppresses signals having frequencies of 7 GHz and 4 GHz that are outside the 2.5 GHz pass band. That is, in this case, f out1 =1 GHz, θ out2_1 =-30°, f out2 =2 GHz, and θ out2_2 =30°. Note that, when f out1 =2 GHz and f out2 =1 GHz, f out1 =2 GHz, θ out2_1 =30°, f out2 =1 GHz, and θ out2_2 =-30°.
 以上のように、フィルタ13は、時刻がt≦t≦tの場合には、第1のLO信号によるミキサ12での周波数変換により、周波数がfout1であり且つ初期位相がθout1_1である信号、及び、周波数がfout2であり且つ初期位相がθout1_2である信号を出力する。
 また、フィルタ13は、時刻がt<t≦tの場合には、第2のLO信号によるミキサ12での周波数変換により、周波数がfout1であり且つ初期位相がθout2_1である信号、及び、周波数がfout2であり且つ初期位相がθout2_2である信号を出力する。
As described above, when the time is t0 ≦t≦ t1 , the filter 13 outputs a signal having a frequency fout1 and an initial phase θout1_1 , and a signal having a frequency fout2 and an initial phase θout1_2 , due to frequency conversion in the mixer 12 using the first LO signal.
In addition, when the time is t1 < t ≦ t2 , the filter 13 outputs a signal whose frequency is f out1 and whose initial phase is θ out2_1 , and a signal whose frequency is f out2 and whose initial phase is θ out2_2 , due to frequency conversion in the mixer 12 using the second LO signal.
 その後、周波数検出回路1(位相差算出回路1405)は、周波数検出回路1への入力信号が1波である場合と同様の動作を行うことで、図9に示すように、フィルタ13を通過した信号間の位相差(θout2_1-θout1_1,θout2_2-θout1_2)を算出することができる。 Thereafter, the frequency detection circuit 1 (phase difference calculation circuit 1405) performs the same operation as when the input signal to the frequency detection circuit 1 is one wave, thereby calculating the phase difference (θ out2_1 - θ out1_1 , θ out2_2 - θ out1_2 ) between the signals that have passed through the filter 13, as shown in Figure 9.
 次いで、位相比較回路1406は、位相差算出回路1405により算出された位相差(θout2_1-θout1_1,θout2_2-θout1_2)の絶対値と、信号源制御回路1404により出力された信号が示す位相差(θLОi_1-θLОi_2)の絶対値とを比較し、第1のLO信号及び第2のLО信号に含まれる複数の周波数成分のうち、入力信号の周波数変換に用いられた周波数成分である変換周波数を特定する。この位相比較回路1406により特定された周波数成分を示す信号は、第2の周波数算出回路1407に出力される。
 ここで、θout2_1-θout1_1=-30°であり、θout2_2-θout1_2=30°であり、θLО1_1-θLО1_2=-0°-30°=-30°であり、θLО2_1-θLО2_2=0°-60°=-60°である。この場合、θout2_1-θout1_1の絶対値及びθout2_2-θout1_2の絶対値とθLО1_1-θLО1_2の絶対値とが一致することから、位相比較回路1406は、第1のLO信号及び第2のLO信号に含まれる複数の周波数成分のうち、θLО1_1,θLО1_2に対応するfLO1(=5GHz)を変換周波数として特定する。
Next, the phase comparison circuit 1406 compares the absolute value of the phase difference (θ out2_1 - θ out1_1 , θ out2_2 - θ out1_2 ) calculated by the phase difference calculation circuit 1405 with the absolute value of the phase difference (θ LOi_1 - θ LOi_2 ) indicated by the signal output by the signal source control circuit 1404, and identifies a conversion frequency which is a frequency component used for frequency conversion of the input signal among multiple frequency components contained in the first LO signal and the second LO signal. The signal indicating the frequency component identified by this phase comparison circuit 1406 is output to the second frequency calculation circuit 1407.
Here, θ out2_1 - θ out1_1 = -30°, θ out2_2 - θ out1_2 = 30°, θ LO1_1 - θ LO1_2 = -0° - 30° = -30°, and θ LO2_1 - θ LO2_2 = 0° - 60° = -60°. In this case, since the absolute values of θ out2_1 - θ out1_1 and θ out2_2 - θ out1_2 match with the absolute value of θ LO1_1 - θ LO1_2 , the phase comparison circuit 1406 identifies f LO1 (= 5 GHz) corresponding to θ LO1_1 and θ LO1_2 as the conversion frequency among the multiple frequency components contained in the first LO signal and the second LO signal.
 また、位相比較回路1406は、位相差算出回路1405により算出された位相差(θout2_1-θout1_1,θout2_2-θout1_2)の符号と、上記変換周波数での位相差の符号とを比較し、入力信号の周波数変換による位相の回転方向を示す符号を特定する。この位相比較回路1406により特定された符号を示す信号は、第2の周波数算出回路1407に出力される。
 ここで、θout2_1-θout1_1の符号とθLО1_1-θLО1_2の符号とが同じことから、位相比較回路1406は、fout1は入力信号の周波数変換により位相が正方向に回転した(fRF1≧5GHzすなわちα=+1)と判定する。また、θout2_2-θout1_2の符号とθLО1_1-θLО1_2の符号とが異なることから、位相比較回路1406は、fout2は入力信号の周波数変換により位相が逆方向に回転した(fRF2<5GHzすなわちα=-1)と判定する。
Furthermore, the phase comparator circuit 1406 compares the sign of the phase difference (θ out2_1 - θ out1_1 , θ out2_2 - θ out1_2 ) calculated by the phase difference calculation circuit 1405 with the sign of the phase difference at the conversion frequency, and specifies the sign indicating the phase rotation direction due to the frequency conversion of the input signal. The signal indicating the sign specified by this phase comparator circuit 1406 is output to the second frequency calculation circuit 1407.
Here, because the signs of θ out2_1out1_1 and θ LO1_1LO1_2 are the same, the phase comparator circuit 1406 determines that the phase of f out1 has rotated in the positive direction (f RF1 ≧5 GHz, i.e., α=+1) due to the frequency conversion of the input signal. Also, because the signs of θ out2_2out1_2 and θ LO1_1LO1_2 are different, the phase comparator circuit 1406 determines that the phase of f out2 has rotated in the negative direction (f RF2 <5 GHz, i.e., α=-1) due to the frequency conversion of the input signal.
 次いで、第2の周波数算出回路1407は、第1の周波数算出回路1402により算出された周波数(fout1,fout2)、及び、位相比較回路1406により特定された周波数成分及び符号に基づいて、式(5)を用いて入力信号の周波数(fRF1,fRF2)を算出する。なお、ここでは説明しないが、第1の周波数算出回路1402では、FFT等の演算を用いることで、フィルタ13を通過した信号が複数波であっても、それらの周波数を算出可能である。この第2の周波数算出回路1407により算出された周波数を示す信号は、周波数検出回路1の外部に出力される。
 ここでは、第1の周波数算出回路1402により算出されたfout1=1GHz、fout2=2GHz、並びに、位相比較回路1406により判定されたfLO1(=5GHz)、fout1に対する符号であるα=+1及びfout2に対する符号であるα=-1に基づいて、式(5)より入力信号の周波数としてfRF1=6GHz,fRF2=3GHzを算出する。
Next, the second frequency calculation circuit 1407 calculates the frequency (f RF1 , f RF2 ) of the input signal using equation (5) based on the frequency (f out1 , f out2 ) calculated by the first frequency calculation circuit 1402 and the frequency component and sign specified by the phase comparison circuit 1406. Although not described here, the first frequency calculation circuit 1402 can calculate the frequencies of the signal that has passed through the filter 13 even if it is a plurality of waves by using an operation such as FFT. The signal indicating the frequency calculated by this second frequency calculation circuit 1407 is output to the outside of the frequency detection circuit 1.
Here, based on f out1 = 1 GHz and f out2 = 2 GHz calculated by the first frequency calculation circuit 1402, and f LO1 (= 5 GHz) determined by the phase comparison circuit 1406, the code for f out1 being α = +1, and the code for f out2 being α = -1, the frequencies of the input signal are calculated as f RF1 = 6 GHz and f RF2 = 3 GHz using equation (5).
 なお、上記では、第1のLO信号及び第2のLO信号の周波数が5GHz及び10GHzである場合について示した。しかしながら、これに限らず、第1のLO信号及び第2のLO信号の周波数はどのような値でもよい。 Note that in the above, the frequencies of the first LO signal and the second LO signal are 5 GHz and 10 GHz. However, this is not limited thereto, and the frequencies of the first LO signal and the second LO signal may be any value.
 また、上記では、第1のLO信号及び第2のLO信号に含まれる周波数成分がそれぞれ2つである場合について示した。しかしながら、これに限らず、第1のLO信号及び第2のLO信号に含まれる周波数成分はそれぞれ1つ又は3つ以上でもよい。
 なお、第1のLO信号及び第2のLO信号に含まれる周波数成分を2つ以上とすることで、入力信号の周波数に関わらず、ミキサ12において、少なくとも何れかの信号がフィルタ13を通過可能な周波数帯域の信号に周波数変換可能とすることが容易になるものと考えられる。
 また、第1のLO信号及び第2のLO信号に含まれる周波数成分を1つとした場合、その周波数成分の周波数がそのまま変換周波数となる。
In the above description, the first LO signal and the second LO signal each include two frequency components, but the present invention is not limited to this. The first LO signal and the second LO signal each may include one frequency component or three or more frequency components.
In addition, by having two or more frequency components contained in the first LO signal and the second LO signal, it is believed that it becomes easier to enable the mixer 12 to frequency convert at least one of the signals into a signal in a frequency band that can pass through the filter 13, regardless of the frequency of the input signal.
Furthermore, if the first LO signal and the second LO signal each contain one frequency component, the frequency of that frequency component becomes the conversion frequency as is.
 また、上記では、位相差算出回路1405が位相差としてθout2-θout1を算出する場合について示した。しかしながら、これに限らず、位相差算出回路1405は位相差としてθout1-θout2を算出してもよい。但し、この場合、位相比較回路1406は、θout1-θout2とθLОi_2-θLОi_1との比較を行う。 In the above description, the phase difference calculation circuit 1405 calculates θ out2 - θ out1 as the phase difference. However, this is not limiting, and the phase difference calculation circuit 1405 may calculate θ out1 - θ out2 as the phase difference. In this case, however, the phase comparison circuit 1406 compares θ out1 - θ out2 with θ LOi_2 - θ LOi_1 .
 また、上記では、フィルタ13が、ミキサ12による周波数変換後の信号のうち、高い周波数である信号を抑圧して、低い周波数である信号を通過させて、周波数算出回路14がその位相差からfRFを算出する場合について示した。しかしながら、これに限らず、フィルタ13が、ミキサ12による周波数変換後の信号のうち、低い周波数である信号を抑圧して、高い周波数である信号を通過させて、周波数算出回路14がその位相差からfRFを算出してもよい。
 また、周波数検出回路1は、両方の周波数成分の信号を通過させて、それぞれの周波数成分についての位相差からfRFを算出してもよい。
In the above description, the filter 13 suppresses high-frequency signals and passes low-frequency signals among the signals after frequency conversion by the mixer 12, and the frequency calculation circuit 14 calculates fRF from the phase difference. However, the present invention is not limited to this, and the filter 13 may suppress low-frequency signals and pass high-frequency signals among the signals after frequency conversion by the mixer 12, and the frequency calculation circuit 14 may calculate fRF from the phase difference.
Moreover, the frequency detection circuit 1 may pass signals of both frequency components and calculate f RF from the phase difference between the respective frequency components.
 また、上記では、入力信号の周波数を変換する周波数変換回路としてミキサ12を用いた場合を示した。しかしながら、これに限らず、周波数変換回路として、ミキサ以外の回路(例えば分周器、逓倍器、又は、S/H(Sample and Hold)回路等)を用いてもよい。 In the above, a case has been shown in which the mixer 12 is used as a frequency conversion circuit that converts the frequency of the input signal. However, this is not limiting, and a circuit other than a mixer (e.g., a frequency divider, a multiplier, or an S/H (Sample and Hold) circuit, etc.) may be used as the frequency conversion circuit.
 また、上記では、周波数変換回路(図1及び図6ではミキサ12)が1段設けられた場合を示した。しかしながら、これに限らず、周波数変換回路が複数段設けられていてもよい。
 例えば、図10に示すように、周波数検出回路1は、ミキサ12の前段に、更に周波数変換回路が追加されていてもよい。この場合、ミキサ12に入力されるRF信号の周波数及び位相が同じで、且つ、フィルタ13を通過する信号の周波数が同じである必要がある。
In the above, the frequency conversion circuit (the mixer 12 in FIG. 1 and FIG. 6) is provided in one stage, but the present invention is not limited to this and multiple stages of frequency conversion circuits may be provided.
10, the frequency detection circuit 1 may further include a frequency conversion circuit in front of the mixer 12. In this case, the frequency and phase of the RF signal input to the mixer 12 must be the same, and the frequency of the signal passing through the filter 13 must be the same.
 なお、図10では、周波数検出回路1に、上記周波数変換回路として第2のミキサ16が設けられた場合を示している。また、図10では、周波数検出回路1に第2の信号源15が設けられている。
 この図10に示す周波数検出回路1では、周波数算出回路14が、第2の信号源15により生成されるLO信号の周波数及び初期位相を示す信号を第2の信号源15に出力している。そして、第2の信号源15が、周波数算出回路14により出力された信号が示す周波数及び初期位相に応じ、当該周波数と同一(略同一の意味を含む)の周波数であり且つ当該初期位相と同一(略同一の意味を含む)の初期位相であるLO信号を生成している。そして、第2のミキサ16が、入力信号と第2の信号源15により出力されたLO信号とを混合することにより当該入力信号を周波数変換している。
10 shows a case where a second mixer 16 is provided as the frequency conversion circuit in the frequency detection circuit 1. Also, in FIG. 10, a second signal source 15 is provided in the frequency detection circuit 1.
10, a frequency calculation circuit 14 outputs a signal indicating the frequency and initial phase of an LO signal generated by a second signal source 15 to the second signal source 15. Then, the second signal source 15 generates an LO signal having the same frequency (including substantially the same meaning) as the frequency and initial phase (including substantially the same meaning) as the initial phase according to the frequency and initial phase indicated by the signal output by the frequency calculation circuit 14. Then, a second mixer 16 mixes an input signal with the LO signal output by the second signal source 15 to frequency convert the input signal.
 また、この場合、周波数算出回路14は、フィルタ13を通過した第1のLO信号に基づく信号と第2のLO信号に基づく信号との位相差、信号源11により生成される第1のLO信号と第2のLO信号との位相差、及び、上記ミキサ12に前段に設けられた周波数変換回路(図10では第2のミキサ16)で用いられるLO信号の周波数に基づいて、入力信号の周波数(fRF)を算出する。
 すなわち、まず、周波数算出回路14は、上記と同様に、フィルタ13を通過した第1のLO信号に基づく信号と第2のLO信号に基づく信号との位相差、及び、信号源11により生成される第1のLO信号と第2のLO信号との位相差に基づいて、ミキサ12への入力信号の周波数(fRF’)を算出する。これにより、周波数算出回路14は、ミキサ12への入力信号の周波数(fRF’)を算出することができる。一方、この信号の周波数(fRF’)は、ミキサ12の前段に設けられた周波数変換回路(図10では第2のミキサ16)による周波数変換後の信号の周波数である。
 そこで、周波数算出回路14は、上記算出した信号の周波数(fRF’)、及び、ミキサ12の前段に設けられた周波数変換回路(図10では第2のミキサ16)で用いられるLO信号の周波数(fLO)に基づいて、当該算出した信号の周波数に対して周波数の逆変換を行う。これにより、周波数算出回路14は、上記周波数変換回路(周波数検出回路1)への入力信号の周波数(fRF)を算出することができる。
In this case, the frequency calculation circuit 14 calculates the frequency (f RF ) of the input signal based on the phase difference between the signal based on the first LO signal that has passed through the filter 13 and the signal based on the second LO signal, the phase difference between the first LO signal and the second LO signal generated by the signal source 11 , and the frequency of the LO signal used in the frequency conversion circuit (the second mixer 16 in Figure 10) provided in the preceding stage of the mixer 12.
That is, first, in the same manner as described above, frequency calculation circuit 14 calculates the frequency (f RF ') of the input signal to mixer 12 based on the phase difference between the signal based on the first LO signal passed through filter 13 and the signal based on the second LO signal, and the phase difference between the first LO signal and the second LO signal generated by signal source 11. In this way, frequency calculation circuit 14 can calculate the frequency (f RF ') of the input signal to mixer 12. Meanwhile, the frequency (f RF ') of this signal is the frequency of the signal after frequency conversion by a frequency conversion circuit (second mixer 16 in FIG. 10 ) provided in the stage preceding mixer 12.
Therefore, the frequency calculation circuit 14 performs an inverse frequency conversion on the calculated frequency of the signal based on the calculated frequency of the signal (f RF ') and the frequency (f LO ) of an LO signal used in a frequency conversion circuit (second mixer 16 in FIG. 10 ) provided in front of the mixer 12. This allows the frequency calculation circuit 14 to calculate the frequency (f RF ) of the signal input to the frequency conversion circuit (frequency detection circuit 1).
 また、上記では、周波数算出回路14は、量子化器1401がフィルタ13を通過した信号の量子化を行い、その後にディジタル回路でθout2-θout1の算出を行う場合を示した。しかしながら、これに限らず、例えば図11に示すように、周波数算出回路14は、θout2-θout1をアナログ回路で抽出した後に量子化を行ってもよい。 In the above description, the frequency calculation circuit 14 has the quantizer 1401 quantizing the signal that has passed through the filter 13, and then the digital circuit calculates θ out2 - θ out1 . However, the present invention is not limited to this, and the frequency calculation circuit 14 may extract θ out2 - θ out1 using an analog circuit and then quantize it, as shown in FIG.
 図11は、実施の形態1における周波数算出回路14の他の構成例を示すブロック図である。
 図11に示す周波数算出回路14では、図2に示す周波数算出回路14に対し、量子化器1401及び第1の周波数算出回路1402が第1の周波数算出回路1408に変更され、位相算出回路1403及び位相差算出回路1405が位相差算出回路1409に変更されている。
FIG. 11 is a block diagram showing another example of the configuration of the frequency calculation circuit 14 according to the first embodiment.
In the frequency calculation circuit 14 shown in FIG. 11 , compared to the frequency calculation circuit 14 shown in FIG. 2 , the quantizer 1401 and the first frequency calculation circuit 1402 are changed to a first frequency calculation circuit 1408, and the phase calculation circuit 1403 and the phase difference calculation circuit 1405 are changed to a phase difference calculation circuit 1409.
 第1の周波数算出回路1408は、第1の量子化器1410及び第1の演算器1411を有している。 The first frequency calculation circuit 1408 has a first quantizer 1410 and a first calculator 1411.
 第1の量子化器1410は、フィルタ13を通過した信号を量子化する。この第1の量子化器1410による量子化後の信号は、第1の演算器1411に出力される。 The first quantizer 1410 quantizes the signal that has passed through the filter 13. The signal quantized by the first quantizer 1410 is output to the first calculator 1411.
 第1の演算器1411は、第1の量子化器1410による量子化後の信号に対してFFT等の演算処理を行うことで、当該量子化後の信号の周波数(fout)を算出する。この第1の演算器1411により算出された周波数を示す信号は、第2の周波数算出回路1407に出力される。なお、第1の演算器1411としては、例えば、FPGA等が用いられる。 The first calculator 1411 performs arithmetic processing such as FFT on the signal quantized by the first quantizer 1410 to calculate the frequency (f out ) of the quantized signal. A signal indicating the frequency calculated by the first calculator 1411 is output to the second frequency calculation circuit 1407. Note that, for example, an FPGA or the like is used as the first calculator 1411.
 位相差算出回路1409は、遅延回路1412、ミキサ1413、第2の量子化器1414、メモリ1415、及び、第2の演算器1416を有している。 The phase difference calculation circuit 1409 has a delay circuit 1412, a mixer 1413, a second quantizer 1414, a memory 1415, and a second calculator 1416.
 遅延回路1412は、フィルタ13を通過した信号を遅延させる。この遅延回路1412による遅延後の信号は、ミキサ1413に出力される。 The delay circuit 1412 delays the signal that has passed through the filter 13. The signal delayed by the delay circuit 1412 is output to the mixer 1413.
 ミキサ1413は、フィルタ13を通過した信号と遅延回路1412による遅延後の信号とを混合することで、両信号の位相差を算出する。このミキサ1413により算出された位相差を示す信号であるアナログ信号は、第2の量子化器1414に出力される。 The mixer 1413 calculates the phase difference between the signal that has passed through the filter 13 and the signal that has been delayed by the delay circuit 1412 by mixing the two signals. The analog signal indicating the phase difference calculated by the mixer 1413 is output to the second quantizer 1414.
 第2の量子化器1414は、ミキサ1413により算出された位相差を示す信号を量子化する。この第2の量子化器1414による量子化後の信号であるディジタル信号は、第2の演算器1416に出力される。ここで、ミキサ1413により算出された位相差は、θout2-θout1そのものの値ではないが、θout2-θout1と一意に対応する値である。 The second quantizer 1414 quantizes the signal indicating the phase difference calculated by the mixer 1413. The digital signal, which is the signal after quantization by the second quantizer 1414, is output to the second calculator 1416. Here, the phase difference calculated by the mixer 1413 is not the value of θ out2 - θ out1 itself, but is a value that uniquely corresponds to θ out2 - θ out1 .
 メモリ1415は、ミキサ1413により算出される位相差とθout2-θout1との対応関係を示す情報を予め記憶する。 The memory 1415 pre-stores information indicating the correspondence between the phase difference calculated by the mixer 1413 and θ out2 −θ out1 .
 第2の演算器1416は、第2の量子化器1414による量子化後の信号に対し、メモリ1415から対応するθout2-θout1を読み出す。この第2の演算器1416により読み出されたθout2-θout1を示す信号は、位相比較回路1406に出力される。なお、第2の演算器1416としては、例えば、FPGA等が用いられる。 The second calculator 1416 reads out θ out2 - θ out1 corresponding to the signal quantized by the second quantizer 1414 from the memory 1415. The signal indicating θ out2 - θ out1 read out by the second calculator 1416 is output to the phase comparison circuit 1406. Note that, for example, an FPGA or the like is used as the second calculator 1416.
 また、図12は、実施の形態1における周波数算出回路14の他の構成例を示すブロック図である。
 図12に示す周波数算出回路14では、図2に示す周波数算出回路14に対し、位相算出回路1403及び位相差算出回路1405が位相差算出回路1417に変更されている。
FIG. 12 is a block diagram showing another example of the configuration of the frequency calculation circuit 14 in the first embodiment.
In the frequency calculation circuit 14 shown in FIG. 12, the phase calculation circuit 1403 and the phase difference calculation circuit 1405 are changed to a phase difference calculation circuit 1417 in comparison with the frequency calculation circuit 14 shown in FIG.
 位相差算出回路1417は、遅延回路1418、ミキサ1419、メモリ1420、及び、演算器1421を有している。 The phase difference calculation circuit 1417 includes a delay circuit 1418, a mixer 1419, a memory 1420, and a calculator 1421.
 遅延回路1418は、量子化器1401による量子化後の信号を遅延させる。この遅延回路1418による遅延後の信号は、ミキサ1419に出力される。 The delay circuit 1418 delays the signal quantized by the quantizer 1401. The signal delayed by the delay circuit 1418 is output to the mixer 1419.
 ミキサ1419は、量子化器1401による量子化後の信号と遅延回路1418による遅延後の信号とを混合することで、両信号の位相差を算出する。このミキサ1419により算出された位相差を示す信号であるアナログ信号は、演算器1421に出力される。ここで、ミキサ1419により算出された位相差は、θout2-θout1そのものの値ではないが、θout2-θout1と一意に対応する値である。 Mixer 1419 calculates the phase difference between the signal quantized by quantizer 1401 and the signal delayed by delay circuit 1418 by mixing them. An analog signal indicating the phase difference calculated by mixer 1419 is output to calculator 1421. Here, the phase difference calculated by mixer 1419 is not the value of θ out2 - θ out1 itself, but is a value that uniquely corresponds to θ out2 - θ out1 .
 メモリ1420は、ミキサ1419により算出された位相差とθout2-θout1との対応関係を示す情報を予め記憶する。 The memory 1420 pre-stores information indicating the correspondence between the phase difference calculated by the mixer 1419 and θ out2 −θ out1 .
 演算器1421は、ミキサ1419により算出された位相差に対し、メモリ1420から対応するθout2-θout1を読み出す。この演算器1421により読み出されたθout2-θout1を示す信号は、位相比較回路1406に出力される。なお、演算器1421としては、例えば、FPGA等が用いられる。 The calculator 1421 reads out θ out2 - θ out1 corresponding to the phase difference calculated by the mixer 1419 from the memory 1420. A signal indicating θ out2 - θ out1 read out by the calculator 1421 is output to the phase comparison circuit 1406. Note that, for example, an FPGA or the like is used as the calculator 1421.
 なお、上記では、位相比較回路1406が、θout2-θout1の絶対値とθLОi_1-θLОi_2の絶対値とが一致するかを判定することで変換周波数を特定する場合について示した。これに対し、回路の性能のばらつき、又は、回路で発生する雑音等によって、θout2-θout1の絶対値とθLОi_1-θLОi_2の絶対値とが一致しない場合もあり得る。そこで、このような場合、位相比較回路1406は、θout2-θout1の絶対値に絶対値が最も近いθLОi_1-θLОi_2を選定して、これに対応する周波数成分を変換周波数として特定してもよい。 In the above description, the phase comparator circuit 1406 determines whether the absolute value of θ out2out1 matches the absolute value of θ LOi_1LOi_2 to specify the conversion frequency. However, due to variations in circuit performance or noise generated in the circuit, the absolute value of θ out2out1 may not match the absolute value of θ LOi_1LOi_2 . In such a case, the phase comparator circuit 1406 may select θ LOi_1LOi_2 whose absolute value is closest to the absolute value of θ out2out1 , and specify the corresponding frequency component as the conversion frequency.
 また、周波数検出回路1への入力信号の周波数が、第1のLO信号及び第2のLO信号における任意の2つの周波数成分の周波数のちょうど中間になる場合(以降、事象Aと呼ぶ)を考える。この事象Aの場合、2つの周波数成分それぞれで入力信号が周波数変換された信号が同じ周波数となる。例えば、上記では、第1のLO信号及び第2のLO信号の周波数を5GHz,10GHzとしたので、fRFが7.5GHzである場合、5GHzで周波数変換された信号と10GHzで周波数変換された信号はともに2.5GHzとなる。この場合、位相関係が式(2)及び式(3)で表せないため、θout2-θout1とθLОi_1-θLОi_2とが大きく異なる値となる。よって、この場合、周波数検出回路1は、正しく周波数を検出できない。 Also, consider the case where the frequency of the input signal to the frequency detection circuit 1 is exactly in the middle of the frequencies of any two frequency components in the first LO signal and the second LO signal (hereinafter referred to as event A). In the case of this event A, the signals obtained by frequency-converting the input signal in each of the two frequency components have the same frequency. For example, in the above, the frequencies of the first LO signal and the second LO signal are 5 GHz and 10 GHz, so that when f RF is 7.5 GHz, the signals obtained by frequency-converting at 5 GHz and at 10 GHz are both 2.5 GHz. In this case, since the phase relationship cannot be expressed by equations (2) and (3), θ out2out1 and θ LOi_1LOi_2 are significantly different values. Therefore, in this case, the frequency detection circuit 1 cannot detect the frequency correctly.
 これに対し、図には記載していないが、周波数検出回路1に対し、位相比較回路1406による判定結果をモニタする回路を設けてもよい。この回路は、位相比較回路1406により、θout2-θout1とθLОi_1-θLОi_2とが大きく異なる値であると判定された場合、その旨を外部に通知する。
 更に、位相比較回路1406によりθout2-θout1とθLОi_1-θLОi_2とが大きく異なる値であると判定された場合、手動又は周波数検出回路1が自動で、LO信号の周波数のうちの少なくとも1つの周波数を任意の値に変更し、事象Aの周波数関係を避けるように制御を掛けてもよい。
Although not shown in the figure, a circuit for monitoring the result of the determination by the phase comparison circuit 1406 may be provided in the frequency detection circuit 1. When the phase comparison circuit 1406 determines that θ out2 - θ out1 and θ LOi_1 - θ LOi_2 are significantly different values, this circuit notifies the outside.
Furthermore, if the phase comparison circuit 1406 determines that θ out2 - θ out1 and θ LOi_1 - θ LOi_2 are significantly different values, at least one of the frequencies of the LO signals may be changed to an arbitrary value, either manually or automatically by the frequency detection circuit 1, and control may be applied to avoid the frequency relationship of event A.
 また、周波数検出回路1への入力信号の周波数が、第1のLO信号及び第2のLO信号の周波数と同じになる場合(以降、事象Bと呼ぶ)を考える。この事象Bの場合、foutがDC(Direct Current)となる。この場合、位相情報が存在しなくなるため、周波数検出回路1は、fRFを検出できない。 Also, consider a case where the frequency of the input signal to the frequency detection circuit 1 becomes the same as the frequencies of the first LO signal and the second LO signal (hereinafter referred to as event B). In the case of event B, f out becomes DC (Direct Current). In this case, since there is no phase information, the frequency detection circuit 1 cannot detect f RF .
 これに対し、図には記載していないが、周波数検出回路1に対し、第1の周波数算出回路1402,1408による算出結果をモニタする回路を設けてもよい。この回路は、第1の周波数算出回路1402,1408により算出されたfoutがDCであると判定した場合、その旨を外部に通知する。
 更に、上記回路により第1の周波数算出回路1402,1408により算出されたfoutがDCであると判定された場合、手動又は周波数検出回路1が自動で、LO信号の周波数のうちの少なくとも1つの周波数を任意の値に変更し、事象Bの周波数関係を避けるように制御を掛けてもよい。
In response to this, although not shown in the figure, a circuit for monitoring the calculation results by the first frequency calculation circuits 1402 and 1408 may be provided in the frequency detection circuit 1. When this circuit determines that the f out calculated by the first frequency calculation circuits 1402 and 1408 is DC, it notifies the outside to that effect.
Furthermore, when the above circuit determines that the f out calculated by the first frequency calculation circuits 1402, 1408 is DC, at least one of the frequencies of the LO signals may be changed to an arbitrary value manually or automatically by the frequency detection circuit 1, and control may be applied to avoid the frequency relationship of event B.
 以上のように、この実施の形態1によれば、周波数検出回路1は、時間によって切り替えられる2つのLO信号である、第1のLO信号、及び、当該第1のLO信号に対して周波数が同じで位相が異なる第2のLO信号をそれぞれ用い、入力信号を周波数変換する周波数変換回路と、周波数変換回路による第1のLO信号を用いた周波数変換後の信号と第2のLO信号を用いた周波数変換後の信号との位相差、及び、第1のLO信号と第2のLO信号との位相差に基づいて、入力信号の周波数を算出する周波数算出回路14とを備えた。これにより、実施の形態1に係る周波数検出回路1は、入力信号の周波数に関わらず回路規模を増大することなく周波数を検出可能となる。 As described above, according to the first embodiment, the frequency detection circuit 1 includes a frequency conversion circuit that converts the frequency of an input signal using two LO signals that are switched over time, a first LO signal and a second LO signal that has the same frequency but a different phase from the first LO signal, and a frequency calculation circuit 14 that calculates the frequency of the input signal based on the phase difference between the signal after frequency conversion using the first LO signal by the frequency conversion circuit and the signal after frequency conversion using the second LO signal, and the phase difference between the first LO signal and the second LO signal. This makes it possible for the frequency detection circuit 1 according to the first embodiment to detect the frequency without increasing the circuit size, regardless of the frequency of the input signal.
実施の形態2.
 実施の形態1に係る周波数検出回路1では、事象Aとなる周波数関係の場合、正しくfRFを検出できない、又は、fRFを検出できないことがわかった後に事象Aとなる周波数関係を避けるようにfLOiを変更するため、正しいfRFの検出に時間が掛かる。これに対し、実施の形態2に係る周波数検出回路1では、ミキサを直交ミキサとし、イメージ成分を抑圧することによって、事象Aとなっても正しいfRFを検出可能とする場合について示す。
Embodiment 2.
In the frequency detection circuit 1 according to the first embodiment, in the case of a frequency relationship that results in event A, it takes time to detect the correct f RF because it cannot detect f RF correctly, or after it is determined that f RF cannot be detected, f LOi is changed so as to avoid the frequency relationship that results in event A. In contrast, in the frequency detection circuit 1 according to the second embodiment, a quadrature mixer is used as the mixer, and an image component is suppressed, so that the correct f RF can be detected even if event A occurs.
 図13は、実施の形態2に係る周波数検出回路1の構成例を示すブロック図である。この図13に示す実施の形態2に係る周波数検出回路1では、図1に示す実施の形態1に係る周波数検出回路1に対し、ミキサ12が直交ミキサ17に変更されている。図13に示す実施の形態2に係る周波数検出回路1におけるその他の構成例は、図1に示す実施の形態1に係る周波数検出回路1の構成例と同様であり、同一の符号を付し、その説明を省略する。 FIG. 13 is a block diagram showing a configuration example of a frequency detection circuit 1 according to embodiment 2. In the frequency detection circuit 1 according to embodiment 2 shown in FIG. 13, the mixer 12 in the frequency detection circuit 1 according to embodiment 1 shown in FIG. 1 is changed to a quadrature mixer 17. The other configuration examples of the frequency detection circuit 1 according to embodiment 2 shown in FIG. 13 are similar to the configuration example of the frequency detection circuit 1 according to embodiment 1 shown in FIG. 1, so the same reference numerals are used and the description thereof is omitted.
 直交ミキサ17は、入力された2つの信号を混合することにより周波数を変換しつつ、イメージ成分を抑圧する混合器である。この混合器は、イメージ抑圧ミキサ、又は、IRM(Image Rejectiоn Mixer)ともいう。実施の形態2における直交ミキサ17は、入力信号と信号源11により出力されたLO信号(第1のLO信号又は第2のLO信号)とを混合することにより当該入力信号を周波数変換しつつ、当該LO信号(第1のLO信号又は第2のLO信号)に含まれる周波数成分の周波数よりも高い周波数又は低い周波数のどちらか一方に存在する入力信号を抑圧する。この直交ミキサ17による周波数変換後の信号は、フィルタ13に出力される。 The orthogonal mixer 17 is a mixer that converts the frequency by mixing two input signals while suppressing the image component. This mixer is also called an image rejection mixer or IRM (Image Rejection Mixer). The orthogonal mixer 17 in the second embodiment converts the frequency of the input signal by mixing the input signal with the LO signal (first LO signal or second LO signal) output by the signal source 11, while suppressing the input signal that exists at either a higher or lower frequency than the frequency of the frequency component contained in the LO signal (first LO signal or second LO signal). The signal after frequency conversion by the orthogonal mixer 17 is output to the filter 13.
 この直交ミキサ17は、RF端子に入力信号が入力され、LO端子が信号源11の出力端子に接続され、IF端子がフィルタ13の入力端子に接続される。なお、この接続において、直交ミキサ17のRF端子とLO端子が逆に接続されてもよい。 This quadrature mixer 17 has an RF terminal to which an input signal is input, an LO terminal connected to the output terminal of the signal source 11, and an IF terminal connected to the input terminal of the filter 13. Note that in this connection, the RF terminal and the LO terminal of the quadrature mixer 17 may be connected in reverse.
 この直交ミキサ17としては、例えば、ダイオードの非線形性を利用して混合を行うダイオードミクサ、及び、90°移相器等を組み合わせて用いることができる。 This quadrature mixer 17 can be, for example, a combination of a diode mixer that uses the nonlinearity of diodes to perform mixing, and a 90° phase shifter.
 なお、直交ミキサ17は、入力された2つの信号を混合することにより周波数を変換しつつ、イメージ成分を抑圧することが可能な構成であれば、どのような構成が用いられてもよい。 The quadrature mixer 17 may have any configuration as long as it can convert the frequency by mixing the two input signals while suppressing the image component.
 次に、図13に示す実施の形態2に係る周波数検出回路1の動作例について説明する。
 なお、ここでは、事象Aとなる周波数関係の場合の動作のみ説明する。また、実施の形態2に係る周波数検出回路1の動作例のうち、直交ミキサ17以外の動作例は、実施の形態1に係る周波数検出回路1の動作例と同様であるため、説明を省略する。
 ここでは、説明を簡単にするため、周波数検出回路1への入力信号は1波(周波数成分は1つ)とし、fRF=7.5GHz、θRF=0°とする。また、第1のLO信号及び第2のLО信号に含まれる周波数成分はそれぞれ2つ(m=2)とする。また、信号源11として、2つのPLL回路及び当該PLL回路が出力した信号を合成する合成器を用いる。また、fLO1=5GHz、fLO2=10GHz、θLO1_1=0°、θLO2_1=0°、θLO1_2=30°、θLO2_2=60°とする。また、フィルタ13として、通過帯域が3GHzであるLPFを用いる。また、ここでは、直交ミキサ17は、入力信号を周波数変換しつつ、第1のLO信号及び第2のLO信号の周波数よりも低い周波数に存在する入力信号を抑圧するものとする。
Next, an example of the operation of the frequency detection circuit 1 according to the second embodiment shown in FIG. 13 will be described.
Here, only the operation in the case of the frequency relationship resulting in event A will be described. In addition, among the operation examples of the frequency detection circuit 1 according to the second embodiment, the operation examples other than the quadrature mixer 17 are similar to the operation examples of the frequency detection circuit 1 according to the first embodiment, and therefore the description thereof will be omitted.
Here, for the sake of simplicity, the input signal to the frequency detection circuit 1 is one wave (one frequency component), f RF = 7.5 GHz, and θ RF = 0°. The first LO signal and the second LO signal each contain two frequency components (m = 2). As the signal source 11, two PLL circuits and a synthesizer that synthesizes the signals output by the PLL circuits are used. As the filter 13, f LO1 = 5 GHz, f LO2 = 10 GHz, θ LO1_1 = 0°, θ LO2_1 = 0°, θ LO1_2 = 30°, and θ LO2_2 = 60° are used. As the filter 13, an LPF with a passband of 3 GHz is used. Here, the quadrature mixer 17 converts the frequency of the input signal while suppressing the input signal that exists at a frequency lower than the frequencies of the first LO signal and the second LO signal.
 図13に示す実施の形態2に係る周波数検出回路1の動作例では、直交ミキサ17は、入力信号と信号源11により出力されたLO信号(第1のLO信号又は第2のLO信号)とを混合することにより当該入力信号を周波数変換しつつ、当該LO信号(第1のLO信号又は第2のLO信号)に含まれる周波数成分の周波数よりも低い周波数に存在する入力信号を抑圧する。この直交ミキサ17による周波数変換後の信号は、フィルタ13に出力される。
 なお、直交ミキサ17の詳細な回路構成又は抑圧の動作原理については、当業者にとってよく知られており、また本開示とは直接関係しないので、その詳細な説明は省略する。
13, the quadrature mixer 17 mixes an input signal with an LO signal (first LO signal or second LO signal) output by the signal source 11 to convert the frequency of the input signal, while suppressing an input signal that exists at a frequency lower than the frequency of the frequency component contained in the LO signal (first LO signal or second LO signal). The signal after frequency conversion by the quadrature mixer 17 is output to the filter 13.
The detailed circuit configuration of the quadrature mixer 17 and the operation principle of suppression are well known to those skilled in the art and are not directly related to the present disclosure, so a detailed description thereof will be omitted.
 図14は、直交ミキサ17によるfLO1に関わる周波数変換のふるまいの一例を示す図である。図14において、横軸は周波数であり、縦軸は電力である。また、符号1401は、フィルタ13の通過帯域を示している。
 図14において、直交ミキサ17は、周波数が7.5GHzであり且つ初期位相が0°である入力信号と、第1のLO信号に含まれる周波数成分のうちの周波数が5GHzであり且つ初期位相が0°である信号とを混合することで、当該入力信号を周波数変換する。ここで、fRF(7.5GHz)はfLO1(5GHz)よりも周波数が高いため、fLO1による周波数変換では、直交ミキサ17は周波数変換後の信号を抑圧せずに出力する。この場合、式(2)より、周波数変換後の2.5GHzである信号の初期位相は0°である。
14 is a diagram showing an example of the behavior of frequency conversion related to f LO1 by the quadrature mixer 17. In FIG. 14, the horizontal axis represents frequency and the vertical axis represents power. Also, reference numeral 1401 denotes the passband of the filter 13.
In Fig. 14, the quadrature mixer 17 mixes an input signal having a frequency of 7.5 GHz and an initial phase of 0° with a signal having a frequency of 5 GHz and an initial phase of 0° among the frequency components contained in the first LO signal, thereby converting the frequency of the input signal. Here, since f RF (7.5 GHz) is a higher frequency than f LO1 (5 GHz), in the frequency conversion by f LO1 , the quadrature mixer 17 outputs the signal after frequency conversion without suppressing it. In this case, according to the formula (2), the initial phase of the signal having a frequency of 2.5 GHz after frequency conversion is 0°.
 図15は、直交ミキサ17によるfLO2に関わる周波数変換のふるまいの一例を示す図である。図15において、横軸は周波数であり、縦軸は電力である。また、符号1501は、フィルタ13の通過帯域を示している。
 図15において、直交ミキサ17は、周波数が7.5GHzであり且つ初期位相が0°である入力信号と、第1のLO信号に含まれる周波数成分のうちの周波数が10GHzであり且つ初期位相が0°である信号とを混合することで、当該入力信号を周波数変換する。ここで、fRF(7.5GHz)はfLO2(10GHz)よりも周波数が低いため、fLO2による周波数変換では、直交ミキサ17は周波数変換後の信号を抑圧して出力する。
15 is a diagram showing an example of the behavior of frequency conversion related to f LO2 by the quadrature mixer 17. In FIG. 15, the horizontal axis represents frequency, and the vertical axis represents power. Also, reference numeral 1501 represents the passband of the filter 13.
15 , quadrature mixer 17 mixes an input signal having a frequency of 7.5 GHz and an initial phase of 0° with a signal having a frequency of 10 GHz and an initial phase of 0° among frequency components contained in the first LO signal, thereby converting the frequency of the input signal. Here, since f RF (7.5 GHz) is a lower frequency than f LO2 (10 GHz), in frequency conversion using f LO2 , quadrature mixer 17 suppresses and outputs the signal after frequency conversion.
 図14及び図15より、直交ミキサ17による周波数変換後の周波数が2.5GHzである信号は、第1のLO信号に含まれる周波数成分のうち、周波数がfLO1(5GHz)である信号によって入力信号が周波数変換されたものである。 14 and 15, the signal having a frequency of 2.5 GHz after frequency conversion by the quadrature mixer 17 is the input signal frequency-converted by a signal having a frequency f LO1 (5 GHz) among the frequency components contained in the first LO signal.
 図16は、直交ミキサ17によるfLO1に関わる周波数変換のふるまいの一例を示す図である。図16において、横軸は周波数であり、縦軸は電力である。また、符号1601は、フィルタ13の通過帯域を示している。
 図16において、直交ミキサ17は、周波数が7.5GHzであり且つ初期位相が0°である入力信号と、第2のLO信号に含まれる周波数成分のうちの周波数が5GHzであり且つ初期位相が30°である信号とを混合することで、当該入力信号を周波数変換する。ここで、fRF(7.5GHz)はfLO1(5GHz)よりも周波数が高いため、fLO1による周波数変換では、直交ミキサ17は周波数変換後の信号を抑圧せずに出力する。この場合、式(3)より、周波数変換後の2.5GHzである信号の初期位相は-30°である。
16 is a diagram showing an example of the behavior of frequency conversion related to f LO1 by the quadrature mixer 17. In FIG. 16, the horizontal axis represents frequency, and the vertical axis represents power. Also, reference numeral 1601 represents the passband of the filter 13.
16, the quadrature mixer 17 mixes an input signal having a frequency of 7.5 GHz and an initial phase of 0° with a signal having a frequency of 5 GHz and an initial phase of 30° among frequency components contained in the second LO signal, thereby converting the frequency of the input signal. Here, since f RF (7.5 GHz) is a higher frequency than f LO1 (5 GHz), in the frequency conversion by f LO1 , the quadrature mixer 17 outputs the signal after frequency conversion without suppressing it. In this case, according to the formula (3), the initial phase of the signal having a frequency of 2.5 GHz after frequency conversion is −30°.
 図17は、直交ミキサ17によるfLO2に関わる周波数変換のふるまいの一例を示す図である。図17において、横軸は周波数であり、縦軸は電力である。また、符号1701は、フィルタ13の通過帯域を示している。
 図17において、直交ミキサ17は、周波数が7.5GHzであり且つ初期位相が0°である入力信号と、第2のLO信号に含まれる周波数成分のうちの周波数が10GHzであり且つ初期位相が60°である信号とを混合することで、当該入力信号を周波数変換する。ここで、fRF(7.5GHz)はfLO2(10GHz)よりも周波数が低いため、fLO2による周波数変換では、直交ミキサ17は周波数変換後の信号を抑圧して出力する。
17 is a diagram showing an example of the behavior of frequency conversion related to f LO2 by the quadrature mixer 17. In FIG. 17, the horizontal axis represents frequency, and the vertical axis represents power. Also, reference numeral 1701 represents the passband of the filter 13.
17 , quadrature mixer 17 mixes an input signal having a frequency of 7.5 GHz and an initial phase of 0° with a signal having a frequency of 10 GHz and an initial phase of 60° among frequency components contained in the second LO signal, thereby converting the frequency of the input signal. Here, since f RF (7.5 GHz) is a lower frequency than f LO2 (10 GHz), in frequency conversion using f LO2 , quadrature mixer 17 suppresses and outputs the signal after frequency conversion.
 図16及び図17より、直交ミキサ17による周波数変換後の周波数が2.5GHzである信号は、第2のLO信号に含まれる周波数成分のうち、周波数がfLO1(5GHz)である信号によって入力信号が周波数変換されたものである。 16 and 17, the signal having a frequency of 2.5 GHz after frequency conversion by the quadrature mixer 17 is the input signal frequency-converted by a signal having a frequency f LO1 (5 GHz) among the frequency components contained in the second LO signal.
 また、フィルタ13を通過した信号は、周波数が同じであり、初期位相が異なる。
 ここでは、フィルタ13を通過した第1のLO信号に基づく信号は、周波数が2.5GHzであり且つ初期位相が0°である。また、フィルタ13を通過した第2のLO信号に基づく信号は、周波数は2.5GHzであり且つ初期位相が-30°である。
 そして、周波数算出回路14は、実施の形態1で説明した動作と同様の動作を行うことで、入力信号の周波数としてfRF=7.5GHzを算出する。
Furthermore, the signals that have passed through the filter 13 have the same frequency but different initial phases.
Here, the signal based on the first LO signal that has passed through the filter 13 has a frequency of 2.5 GHz and an initial phase of 0°. Also, the signal based on the second LO signal that has passed through the filter 13 has a frequency of 2.5 GHz and an initial phase of −30°.
Then, the frequency calculation circuit 14 performs the same operation as that described in the first embodiment to calculate f RF =7.5 GHz as the frequency of the input signal.
 なお、上記では、直交ミキサ17は、入力信号を周波数変換しつつ、第1のLO信号及び第2のLO信号よりも低い周波数に存在する入力信号を抑圧する場合について示した。しかしながら、これに限らず、直交ミキサ17は、入力信号を周波数変換しつつ、第1のLO信号及び第2のLO信号よりも高い周波数に存在する入力信号を抑圧してもよい。 In the above, the quadrature mixer 17 has been described as suppressing an input signal that exists at a lower frequency than the first LO signal and the second LO signal while converting the frequency of the input signal. However, this is not limited thereto, and the quadrature mixer 17 may suppress an input signal that exists at a higher frequency than the first LO signal and the second LO signal while converting the frequency of the input signal.
 以上のように、実施の形態2によれば、周波数変換回路は、第1のLO信号及び第2のLO信号をそれぞれ用いて入力信号を周波数変換するとともに、当該周波数変換後の信号のイメージ成分を抑圧する直交ミキサ17である。これにより、実施の形態2に係る周波数検出回路1は、実施の形態1に係る周波数検出回路1と同様の効果を得ることができる。加えて、実施の形態2に係る周波数検出回路1は、ミキサを直交ミキサとし、イメージ成分を抑圧することによって、事象Aの周波数関係となっても、正しくfRFを検出可能となる。その結果、実施の形態2に係る周波数検出回路1は、周波数検出の信頼性を向上させることができる。 As described above, according to the second embodiment, the frequency conversion circuit is a quadrature mixer 17 that converts the frequency of an input signal by using the first LO signal and the second LO signal, and suppresses the image component of the signal after the frequency conversion. As a result, the frequency detection circuit 1 according to the second embodiment can obtain the same effect as the frequency detection circuit 1 according to the first embodiment. In addition, the frequency detection circuit 1 according to the second embodiment can correctly detect f RF even when the frequency relationship of the event A occurs by using a quadrature mixer as the mixer and suppressing the image component. As a result, the frequency detection circuit 1 according to the second embodiment can improve the reliability of frequency detection.
実施の形態3.
 実施の形態1に係る周波数検出回路1では、事象A及び事象Bとなる周波数関係の場合、正しくfRFを検出できない、又は、fRFを検出できないことがわかった後に事象A及び事象Bとなる周波数関係を避けるようにfLOiを変更するため、正しいfRFの検出に時間が掛かる。これに対し、実施の形態3に係る周波数検出システムでは、2つの周波数検出回路1を用いて、それぞれの周波数検出回路1で用いられるLO信号を互いに異なる周波数とすることによって、少なくともどちらか一方の周波数検出回路1で事象A及び事象Bを避けて正しいfRFを検出可能とする場合について示す。
Embodiment 3.
In the frequency detection circuit 1 according to the first embodiment, in the case of a frequency relationship resulting in events A and B, it takes time to detect the correct f RF because it cannot detect f RF correctly, or after it is determined that f RF cannot be detected, f LOi is changed so as to avoid the frequency relationship resulting in events A and B. In contrast, in the frequency detection system according to the third embodiment, two frequency detection circuits 1 are used, and the LO signals used in the respective frequency detection circuits 1 are set to different frequencies, thereby making it possible to detect the correct f RF by avoiding events A and B in at least one of the frequency detection circuits 1.
 図18は、実施の形態3に係る周波数検出システムの構成例を示すブロック図である。
 周波数検出システムは、第1の周波数検出回路1-1、第2の周波数検出回路1-2、判定回路2、及び、演算回路3を備えている。
FIG. 18 is a block diagram illustrating a configuration example of a frequency detection system according to the third embodiment.
The frequency detection system includes a first frequency detection circuit 1 - 1 , a second frequency detection circuit 1 - 2 , a determination circuit 2 , and an arithmetic circuit 3 .
 図18において、f2LOiは信号源11-2により生成される第1のLO信号及び第2のLO信号の周波数を示し、θ2LOi_1は信号源11-2により生成される第1のLO信号に含まれる周波数成分毎の初期位相を示し、θ2LOi_2は信号源11-2により生成される第2のLO信号に含まれる周波数成分毎の初期位相を示している。
 また、図18において、f2outはフィルタ13-2を通過する信号の周波数を示し、θ2out1はフィルタ13-2を通過する第1のLO信号に基づく信号の初期位相を示し、θ2out2はフィルタ13-2を通過する第2のLO信号に基づく信号の初期位相を示している。
In FIG. 18, f 2LOi indicates the frequencies of the first LO signal and the second LO signal generated by the signal source 11-2, θ 2LOi_1 indicates the initial phase of each frequency component contained in the first LO signal generated by the signal source 11-2, and θ 2LOi_2 indicates the initial phase of each frequency component contained in the second LO signal generated by the signal source 11-2.
Also, in FIG. 18, f 2out indicates the frequency of the signal passing through filter 13-2, θ 2out1 indicates the initial phase of the signal based on the first LO signal passing through filter 13-2, and θ 2out2 indicates the initial phase of the signal based on the second LO signal passing through filter 13-2.
 第1の周波数検出回路1-1は、入力信号の周波数を検出する回路である。この第1の周波数検出回路1-1により検出された周波数を示す信号は、判定回路2に出力される。 The first frequency detection circuit 1-1 is a circuit that detects the frequency of the input signal. A signal indicating the frequency detected by this first frequency detection circuit 1-1 is output to the judgment circuit 2.
 この第1の周波数検出回路1-1(周波数算出回路14-1)は、制御端子が演算回路3の第1の出力端子に接続され、出力端子が判定回路2の第1の入力端子に接続される。 This first frequency detection circuit 1-1 (frequency calculation circuit 14-1) has a control terminal connected to the first output terminal of the calculation circuit 3, and an output terminal connected to the first input terminal of the judgment circuit 2.
 この第1の周波数検出回路1-1としては、実施の形態1に係る周波数検出回路1を用いることができる。
 すなわち、第1の周波数検出回路1-1において、信号源11-1は信号源11と同一であり、ミキサ12-1はミキサ12と同一であり、フィルタ13-1はフィルタ13と同一であり、周波数算出回路14-1は周波数算出回路14と同一である。
The frequency detection circuit 1 according to the first embodiment can be used as this first frequency detection circuit 1-1.
That is, in the first frequency detection circuit 1-1, the signal source 11-1 is the same as the signal source 11, the mixer 12-1 is the same as the mixer 12, the filter 13-1 is the same as the filter 13, and the frequency calculation circuit 14-1 is the same as the frequency calculation circuit .
 第2の周波数検出回路1-2は、入力信号の周波数を検出する回路である。なお、第2の周波数検出回路1-2で用いられる第1のLO信号及び第2のLO信号の周波数は、第1の周波数検出回路1-1で用いられる第1のLO信号及び第2のLO信号の周波数とは異なる周波数である。この第2の周波数検出回路1-2により検出された周波数を示す信号は、判定回路2に出力される。 The second frequency detection circuit 1-2 is a circuit that detects the frequency of the input signal. The frequencies of the first LO signal and the second LO signal used in the second frequency detection circuit 1-2 are different from the frequencies of the first LO signal and the second LO signal used in the first frequency detection circuit 1-1. A signal indicating the frequency detected by this second frequency detection circuit 1-2 is output to the determination circuit 2.
 この第2の周波数検出回路1-2(周波数算出回路14-2)は、制御端子が演算回路3の第2の出力端子に接続され、出力端子が判定回路2の第2の入力端子に接続される。 This second frequency detection circuit 1-2 (frequency calculation circuit 14-2) has a control terminal connected to the second output terminal of the calculation circuit 3, and an output terminal connected to the second input terminal of the judgment circuit 2.
 この第2の周波数検出回路1-2としては、実施の形態1に係る周波数検出回路1を用いることができる。
 すなわち、第2の周波数検出回路1-2において、信号源11-2は信号源11と同一であり、ミキサ12-2はミキサ12と同一であり、フィルタ13-2はフィルタ13と同一であり、周波数算出回路14-2は周波数算出回路14と同一である。
The frequency detection circuit 1 according to the first embodiment can be used as the second frequency detection circuit 1-2.
That is, in the second frequency detection circuit 1-2, the signal source 11-2 is the same as the signal source 11, the mixer 12-2 is the same as the mixer 12, the filter 13-2 is the same as the filter 13, and the frequency calculation circuit 14-2 is the same as the frequency calculation circuit 14.
 判定回路2は、第1の周波数検出回路1-1により検出された周波数及び第2の周波数検出回路1-2により検出された周波数のうち、正しい周波数を特定する回路である。 The determination circuit 2 is a circuit that identifies the correct frequency from among the frequencies detected by the first frequency detection circuit 1-1 and the second frequency detection circuit 1-2.
 この判定回路2は、第1の入力端子が第1の周波数検出回路1-1(周波数算出回路14-1)の出力端子に接続され、第2の入力端子が第2の周波数検出回路1-2(周波数算出回路14-2)の出力端子に接続される。
 この判定回路2としては、例えば、FPGAを用いることができる。
This determination circuit 2 has a first input terminal connected to the output terminal of the first frequency detection circuit 1-1 (frequency calculation circuit 14-1) and a second input terminal connected to the output terminal of the second frequency detection circuit 1-2 (frequency calculation circuit 14-2).
The determination circuit 2 may be, for example, an FPGA.
 演算回路3は、事象A及び事象Bとなる周波数関係を避けるようなfLOi及びf2LOiを演算する。この演算回路3により演算されたfLOiを示す信号は、周波数算出回路14-1を介して信号源11-1に出力される。また、演算回路3により演算されたf2LOiを示す信号は、周波数算出回路14-2を介して信号源11-2に出力される。 The arithmetic circuit 3 calculates f LOi and f 2LOi so as to avoid the frequency relationship resulting in event A and event B. A signal indicating f LOi calculated by this arithmetic circuit 3 is output to the signal source 11-1 via a frequency calculation circuit 14-1. In addition, a signal indicating f 2LOi calculated by the arithmetic circuit 3 is output to the signal source 11-2 via a frequency calculation circuit 14-2.
 この演算回路3は、第1の出力端子が第1の周波数検出回路1-1(周波数算出回路14-1)の制御端子に接続され、第2の出力端子が第2の周波数検出回路1-2(周波数算出回路14-2)の制御端子に接続される。 The first output terminal of this calculation circuit 3 is connected to the control terminal of the first frequency detection circuit 1-1 (frequency calculation circuit 14-1), and the second output terminal is connected to the control terminal of the second frequency detection circuit 1-2 (frequency calculation circuit 14-2).
 この演算回路3としては、例えば、CPU(Central Processing Unit)及びメモリから成るコンピュータ、マイコン、或いは、FPGA等を用いることができる。 The arithmetic circuit 3 can be, for example, a computer consisting of a CPU (Central Processing Unit) and memory, a microcomputer, or an FPGA.
 なお、演算回路3は、以下に示すfLOi及びf2LOiの決定フローを実行できる構成であれば、どのような演算回路が用いられてもよい。 Any type of arithmetic circuit may be used as the arithmetic circuit 3 as long as it is configured to execute the determination flow of f LOi and f 2LOi shown below.
 なお、図18では、演算回路3が周波数検出システムの内部に設けられた場合を示した。しかしながら、これに限らず、演算回路3は周波数検出システムの外部に設けられていてもよい。 Note that FIG. 18 shows a case where the arithmetic circuit 3 is provided inside the frequency detection system. However, this is not limiting, and the arithmetic circuit 3 may be provided outside the frequency detection system.
 次に、図18に示す実施の形態3に係る周波数検出システムの動作例について説明する。
 なお、ここでは、事象A及び事象Bとなる周波数関係の場合の動作のみ説明する。
 また、周波数算出回路14-1及び周波数算出回路14-2として、図2に示す構成を用いる。
Next, an operation example of the frequency detection system according to the third embodiment shown in FIG. 18 will be described.
Here, only the operation in the case of the frequency relationship resulting in the events A and B will be described.
Moreover, the frequency calculation circuit 14-1 and the frequency calculation circuit 14-2 have the configuration shown in FIG.
 ここで、第1の周波数検出回路1-1及び第2の周波数検出回路1-2のうちの一方の周波数検出回路1において、事象A及び事象Bの周波数関係となる場合、当該一方の周波数検出回路1ではfRFを正しく検出できない。これに対し、他方の周波数検出回路1では、周波数変換に用いる第1のLO信号及び第2のLO信号の周波数が、fRFを正しく検出できない上記一方の周波数検出回路1で用いられる第1のLO信号及び第2のLO信号の周波数と異なる。そのため、上記他方の周波数検出回路1では、事象A又は事象Bの周波数関係を避けることができ、fRFを正しく検出できる。
 事象A及び事象Bは、入力信号の周波数と第1のLO信号及び第2のLO信号の周波数とがある組み合わせのときに生じる。これに対し、上記2つの周波数検出回路1では、入力信号の周波数は変わらず且つ第1のLO信号及び第2のLO信号の周波数が異なる。そのため、一方の周波数検出回路1で上記関係を満たした場合、他方の周波数検出回路1では上記関係を満たさなくなる。
Here, in one of the first frequency detection circuit 1-1 and the second frequency detection circuit 1-2, when the frequency relationship of event A and event B occurs, the one frequency detection circuit 1 cannot correctly detect f RF . In contrast, in the other frequency detection circuit 1, the frequencies of the first LO signal and the second LO signal used for frequency conversion are different from the frequencies of the first LO signal and the second LO signal used in the one frequency detection circuit 1 that cannot correctly detect f RF . Therefore, the other frequency detection circuit 1 can avoid the frequency relationship of event A or event B and can correctly detect f RF .
Events A and B occur when there is a certain combination of the frequency of the input signal and the frequencies of the first LO signal and the second LO signal. In contrast, in the two frequency detection circuits 1, the frequency of the input signal does not change and the frequencies of the first LO signal and the second LO signal are different. Therefore, when the above relationship is satisfied in one frequency detection circuit 1, the above relationship is not satisfied in the other frequency detection circuit 1.
 そこで、判定回路2は、第1の周波数検出回路1-1により検出された周波数及び第2の周波数検出回路1-2により検出された周波数から、正しい周波数(fRF)を特定する。
 この際、例えば、まず、判定回路2は、第1の周波数検出回路1-1により検出された周波数と第2の周波数検出回路1-2により検出された周波数とを比較する。そして、判定回路2は、両周波数が同一(略同一の意味を含む)であれば、両周波数が共に正しい周波数であると判定する。一方、判定回路2は、両周波数が異なっていれば、正しい周波数範囲の周波数であるかどうかを判定し、正しい方の周波数を選択する。
Therefore, the determination circuit 2 identifies the correct frequency (f RF ) from the frequency detected by the first frequency detection circuit 1-1 and the frequency detected by the second frequency detection circuit 1-2.
At this time, for example, the judgment circuit 2 first compares the frequency detected by the first frequency detection circuit 1-1 with the frequency detected by the second frequency detection circuit 1-2. If the two frequencies are the same (including the meaning of approximately the same), the judgment circuit 2 judges that both frequencies are correct. On the other hand, if the two frequencies are different, the judgment circuit 2 judges whether the frequency is within the correct frequency range and selects the correct frequency.
 なお、第1の周波数検出回路1-1及び第2の周波数検出回路1-2のうちの一方が、事象A又は事象Bの場合の周波数関係となる場合であっても、検出した周波数が正しい場合もある。
 これに対し、判定回路2は、第1の周波数検出回路1-1により算出された位相差(θout2-θout1)及び特定された変換周波数での位相差(θLОi_1-θLОi_2)、並びに、第2の周波数検出回路1-2により算出された位相差(θ2out2-θ2out1)及び特定された変換周波数での位相差(θ2LОi_1-θ2LОi_2)を用いて、第1の周波数検出回路1-1により検出された周波数(fRF)及び第2の周波数検出回路1-2により検出された周波数(fRF)の正当性を判定してもよい。この際、例えば、判定回路2は、第1の周波数検出回路1-1により算出された位相差(θout2-θout1)と特定された変換周波数での位相差(θLОi_1-θLОi_2)との差が閾値以下であると判定した場合には第1の周波数検出回路1-1により算出された周波数は正しいと判定し、当該差が閾値より大きいと判定した場合には第1の周波数検出回路1-1により算出された周波数は誤りであると判定する。同様に、判定回路2は、第2の周波数検出回路1-2により算出された位相差(θ2out2-θ2out1)と特定された変換周波数での位相差(θ2LОi_1-θ2LОi_2)との差が閾値以下であると判定した場合には第2の周波数検出回路1-2により算出された周波数は正しいと判定し、当該差が閾値より大きいと判定した場合には第2の周波数検出回路1-2により算出された周波数は誤りであると判定する。そして、判定回路2は、上記の判定結果から、正しいと判定した周波数のみを選択する。
Even if one of the first frequency detection circuit 1-1 and the second frequency detection circuit 1-2 has a frequency relationship corresponding to the event A or the event B, the detected frequency may be correct.
In response to this, the judgment circuit 2 may use the phase difference (θ out2 - θ out1 ) calculated by the first frequency detection circuit 1-1 and the phase difference (θ LOi_1 - θ LOi_2 ) at the specified conversion frequency, as well as the phase difference (θ 2out2 - θ 2out1 ) calculated by the second frequency detection circuit 1-2 and the phase difference (θ 2LOi_1 - θ 2LOi_2 ) at the specified conversion frequency, to judge the validity of the frequency (f RF ) detected by the first frequency detection circuit 1-1 and the frequency (f RF ) detected by the second frequency detection circuit 1-2. In this case, for example, if the judgment circuit 2 determines that the difference between the phase difference (θ out2 - θ out1 ) calculated by the first frequency detection circuit 1-1 and the phase difference (θ LOi_1 - θ LOi_2 ) at the identified conversion frequency is less than or equal to a threshold value, it determines that the frequency calculated by the first frequency detection circuit 1-1 is correct, and if it determines that the difference is greater than the threshold value, it determines that the frequency calculated by the first frequency detection circuit 1-1 is incorrect. Similarly, if the judgment circuit 2 determines that the difference between the phase difference (θ 2out2 - θ 2out1 ) calculated by the second frequency detection circuit 1-2 and the phase difference (θ 2LOi_1 - θ 2LOi_2 ) at the specified conversion frequency is equal to or smaller than a threshold value, it determines that the frequency calculated by the second frequency detection circuit 1-2 is correct, and if it determines that the difference is greater than the threshold value, it determines that the frequency calculated by the second frequency detection circuit 1-2 is incorrect. Then, the judgment circuit 2 selects only the frequencies that it has determined to be correct based on the above judgment results.
 また、第1の周波数検出回路1-1及び第2の周波数検出回路1-2の両方において、事象A又は事象Bの周波数関係となる場合は、fRFを正しく検出できない。このため、実施の形態3においては、事象A又は事象Bの周波数関係を避けるように、fLOi及びf2LOiを設定する必要がある。 In addition, in both the first frequency detection circuit 1-1 and the second frequency detection circuit 1-2, f RF cannot be detected correctly when the frequency relationship of event A or event B occurs. For this reason, in the third embodiment, it is necessary to set f LOi and f 2LOi so as to avoid the frequency relationship of event A or event B.
 図19は、図18に示す実施の形態3における演算回路3によるfLOi及びf2LOiの設定手順の一例を示すフローチャートである。
 ここでは、第1の周波数検出回路1-1における周波数の検出範囲及び第2の周波数検出回路1-2における周波数の検出範囲は、fminからfmaxとする。
FIG. 19 is a flowchart showing an example of a procedure for setting f LOi and f 2LOi by the arithmetic circuit 3 according to the third embodiment shown in FIG.
Here, the frequency detection range in the first frequency detection circuit 1-1 and the frequency detection range in the second frequency detection circuit 1-2 are from fmin to fmax .
 図18に示す実施の形態3における演算回路3によるfLOi及びf2LOiの設定手順では、例えば図19に示すように、まず、演算回路3は、fLOiを設定する(ステップST1901)。 In the procedure for setting f LOi and f 2LOi by the arithmetic circuit 3 in the third embodiment shown in FIG. 18, first, as shown in FIG. 19, for example, the arithmetic circuit 3 sets f LOi (step ST1901).
 次いで、演算回路3は、ステップST1901において設定したfLOiから、fminからfmaxの範囲でfoutがDCとなるfRFを算出する(ステップST1902)。なお、fRFの値は複数存在する。 Next, the arithmetic circuit 3 calculates f RF where f out becomes DC in the range from f min to f max from f LOi set in step ST1901 (step ST1902). Note that there are a plurality of values of f RF .
 次いで、演算回路3は、f2LOiを設定する(ステップST1903)。 Next, arithmetic circuit 3 sets f 2LOi (step ST1903).
 次いで、演算回路3は、ステップST1903において設定したf2LOiから、fminからfmaxの範囲でf2outがDCとなるfRFを算出する(ステップST1904)。なお、fRFの値は複数存在する。 Next, the arithmetic circuit 3 calculates fRF from f2LOi set in step ST1903, at which f2out becomes DC in the range from fmin to fmax (step ST1904). Note that there are a plurality of values of fRF .
 次いで、演算回路3は、ステップST1902において算出したfRFとステップST1904において算出したfRFとを比較し、同じ値があるかを判定する(ステップST1905)。
 このステップST1905において、演算回路3が同じ値のfRFがないと判定した場合、シーケンスはステップST1906に進む。
 一方、ステップST1905において、演算回路3が同じ値のfRFがあると判定した場合、シーケンスはステップST1903に戻り、演算回路3は先にステップST1903において設定した値とは別の値にf2LOiを設定する。
Next, arithmetic circuit 3 compares f RF calculated in step ST1902 with f RF calculated in step ST1904 to determine whether or not they have the same value (step ST1905).
If it is determined in step ST1905 that there is no fRF with the same value, the sequence proceeds to step ST1906.
On the other hand, if in step ST1905 arithmetic circuit 3 determines that there is f RF with the same value, the sequence returns to step ST1903, and arithmetic circuit 3 sets f 2LOi to a value other than the value previously set in step ST1903.
 次いで、演算回路3は、ステップST1901において設定したfLOiを用いて、任意の2つのfLOiのちょうど中間となるfRFの組み合わせを算出する(ステップST1906)。例えば、m=3で、fLO1=3GHz、fLO2=7GHz、fLO3=9GHzの場合、fRF=5GHz、fRF=6GHz、fRF=8GHzは、任意の2つのfLOiのちょうど中間となる。 Next, the arithmetic circuit 3 calculates a combination of f RF that is exactly in the middle between any two f LOi using the f LOi set in step ST1901 (step ST1906). For example, when m=3, f LO1 =3 GHz, f LO2 =7 GHz, and f LO3 =9 GHz, f RF =5 GHz, f RF =6 GHz, and f RF =8 GHz are exactly in the middle between any two f LOi .
 次いで、演算回路3は、ステップST1903において設定したf2LOiを用いて、任意の2つのf2LOiのちょうど中間となるfRFの組み合わせを算出する(ステップST1907)。例えば、n=3で、f2LO1=4GHz、f2LO2=8GHz、f2LO3=10GHzの場合、fRF=6GHz、fRF=7GHz、fRF=9GHzは、任意の2つのf2LOiのちょうど中間となる。 Next, the arithmetic circuit 3 calculates a combination of f RF that is exactly in the middle between any two f 2 LO i using the f 2 LO i set in step ST1903 (step ST1907). For example, when n=3, f 2 LO i =4 GHz, f 2 LO i =8 GHz, and f 2 LO i =10 GHz, f RF =6 GHz, f RF =7 GHz, and f RF =9 GHz are exactly in the middle between any two f 2 LO i .
 次いで、演算回路3は、ステップST1906における算出結果とステップST1907における算出結果とを比較し、同じfRFの組み合わせがあるかを判定する(ステップST1908)。
 このステップST1908において、演算回路3は、同じ組み合わせがないと判定した場合、シーケンスは終了する。その後、演算回路3は、fLOiを示す信号を第1の周波数検出回路1-1(周波数算出回路14-1)に出力するとともに、f2LOiを示す信号を第2の周波数検出回路1-2(周波数算出回路14-2)に出力する。
 その後、周波数算出回路14-1は、信号源11-1にfLOiを出力し、信号源11-1は生成するLO信号の周波数をfLOiに設定する。
 同様に、周波数算出回路14-2は、信号源11-2にf2LOiを出力し、信号源11-2は生成するLO信号をf2LOiに設定する。
Next, the arithmetic circuit 3 compares the calculation result in step ST1906 with the calculation result in step ST1907, and judges whether or not there is the same combination of fRF (step ST1908).
In step ST1908, if the arithmetic circuit 3 determines that there is no identical combination, the sequence ends. After that, the arithmetic circuit 3 outputs a signal indicating f LOi to the first frequency detection circuit 1-1 (frequency calculation circuit 14-1) and outputs a signal indicating f 2LOi to the second frequency detection circuit 1-2 (frequency calculation circuit 14-2).
Thereafter, frequency calculation circuit 14-1 outputs f LOi to signal source 11-1, and signal source 11-1 sets the frequency of the LO signal it generates to f LOi .
Similarly, frequency calculation circuit 14-2 outputs f 2LOi to signal source 11-2, and signal source 11-2 sets the LO signal it generates to f 2LOi .
 一方、ステップST1908において、演算回路3が同じ組み合わせがあると判定した場合、シーケンスはステップST1909に進む。
 次いで、演算回路3は、これまでのフローで設定したf2LOi以外の値にf2LOiを設定できるか否かを判定する(ステップST1909)。この際、演算回路3は、これまでのフローで定めたf2LOi、並びに、信号源11-2の周波数設定範囲を考慮して上記判定を行う。
 このステップST1909において、演算回路3が周波数設定範囲内においてf2LOiを他の値に設定できると判定した場合、シーケンスはステップST1903に戻り、演算回路3はf2LOiを別の値に設定する。
 一方、ステップST1909において、演算回路3が周波数設定範囲内においてf2LOiを他の値に設定できないと判定した場合、シーケンスはステップST1901に戻り、演算回路3は先に設定した値と別の値にfLOiを設定する。
On the other hand, if the arithmetic circuit 3 determines in step ST1908 that the same combination exists, the sequence proceeds to step ST1909.
Next, the arithmetic circuit 3 judges whether or not f 2LOi can be set to a value other than the f 2LOi set in the previous flow (step ST1909). At this time, the arithmetic circuit 3 makes the above judgment while taking into consideration the f 2LOi set in the previous flow and the frequency setting range of the signal source 11-2.
If the arithmetic circuit 3 determines in step ST1909 that f2LOi can be set to another value within the frequency setting range, the sequence returns to step ST1903, and the arithmetic circuit 3 sets f2LOi to another value.
On the other hand, if in step ST1909 the arithmetic circuit 3 determines that f 2LOi cannot be set to another value within the frequency setting range, the sequence returns to step ST1901, and the arithmetic circuit 3 sets f LOi to a value other than the previously set value.
 なお、上記では、第1の周波数検出回路1-1がミキサ12-1を用い、第2の周波数検出回路1-2がミキサ12-2を用いた場合を示した。
 しかしながら、これに限らず、実施の形態3に実施の形態2を適用し、第1の周波数検出回路1-1が直交ミキサ17-1を用い、第2の周波数検出回路1-2が直交ミキサ17-2を用いてもよい。なお、この場合、図19に示すフローチャートのうち、ステップST1906~ST1909の処理は不要となる。
In the above, the first frequency detection circuit 1-1 uses the mixer 12-1, and the second frequency detection circuit 1-2 uses the mixer 12-2.
However, the present invention is not limited to this, and the second embodiment may be applied to the third embodiment, so that the first frequency detection circuit 1-1 uses the quadrature mixer 17-1, and the second frequency detection circuit 1-2 uses the quadrature mixer 17-2. In this case, the processes in steps ST1906 to ST1909 in the flowchart shown in FIG. 19 are not required.
 以上のように、実施の形態3によれば、周波数検出システムは、周波数検出回路1と同一構成であり、入力信号の周波数を検出する第1の周波数検出回路1-1と、周波数検出回路1と同一構成であり、第1の周波数検出回路1-1で用いられる第1のLO信号及び第2のLO信号の周波数とは異なる周波数である第1のLO信号及び第2のLO信号を用い、入力信号の周波数を検出する第2の周波数検出回路1-2と、第1の周波数検出回路1-1により検出された入力信号の周波数及び第2の周波数検出回路1-2により検出された入力信号の周波数に基づいて、正しい入力信号の周波数を特定する判定回路2とを備えた。これにより、実施の形態3に係る周波数検出システムでは、実施の形態1の周波数検出回路1と同様の効果を得ることができる。加えて、実施の形態3に係る周波数検出システムでは、2つの周波数検出回路1を用い、それぞれの周波数検出回路1内の周波数変換回路に入力するLO信号を異なる周波数とすることによって、片方の周波数検出回路1が事象A又は事象Bの周波数関係となっても、もう片方の周波数検出回路1において正しくfRFを検出可能となる。その結果、実施の形態3に係る周波数検出システムでは、周波数検出の信頼性を向上させることができる。 As described above, according to the third embodiment, the frequency detection system includes a first frequency detection circuit 1-1 that has the same configuration as the frequency detection circuit 1 and detects the frequency of an input signal, a second frequency detection circuit 1-2 that has the same configuration as the frequency detection circuit 1 and detects the frequency of an input signal using a first LO signal and a second LO signal that are different in frequency from the frequencies of the first LO signal and the second LO signal used in the first frequency detection circuit 1-1, and a determination circuit 2 that specifies the correct frequency of the input signal based on the frequency of the input signal detected by the first frequency detection circuit 1-1 and the frequency of the input signal detected by the second frequency detection circuit 1-2. As a result, the frequency detection system according to the third embodiment can obtain the same effect as the frequency detection circuit 1 of the first embodiment. In addition, in the frequency detection system according to the third embodiment, two frequency detection circuits 1 are used, and the LO signals input to the frequency conversion circuits in the respective frequency detection circuits 1 are set to different frequencies, so that even if one of the frequency detection circuits 1 has a frequency relationship of event A or event B, the other frequency detection circuit 1 can correctly detect f RF . As a result, in the frequency detection system according to the third embodiment, the reliability of frequency detection can be improved.
 なお、各実施の形態の自由な組合わせ、或いは各実施の形態の任意の構成要素の変形、若しくは各実施の形態において任意の構成要素の省略が可能である。 Furthermore, it is possible to freely combine the embodiments, modify any of the components in each embodiment, or omit any of the components in each embodiment.
 本開示に係る周波数検出回路は、入力信号の周波数に関わらず回路規模を増大することなく周波数を検出可能となり、入力信号の周波数を検出する周波数検出回路等に用いるのに適している。 The frequency detection circuit disclosed herein is capable of detecting the frequency of an input signal without increasing the circuit size, regardless of the frequency of the input signal, and is suitable for use in frequency detection circuits that detect the frequency of an input signal.
 1 周波数検出回路、1-1 第1の第1の周波数検出回路、1-2 第2の周波数検出回路、2 判定回路、3 演算回路、11 信号源、12 ミキサ、13 フィルタ、14 周波数算出回路、15 第2の信号源、16 第2のミキサ、17 直交ミキサ、1401 量子化器、1402 第1の周波数算出回路、1403 位相算出回路、1404 信号源制御回路、1405 位相差算出回路、1406 位相比較回路、1407 第2の周波数算出回路、1408 第1の周波数算出回路、1409 位相差算出回路、1410 第1の量子化器、1411 第1の演算器、1412 遅延回路、1413 ミキサ、1414 第2の量子化器、1415 メモリ、1416 第2の演算器、1417 位相差算出回路、1418 遅延回路、1419 ミキサ、1420 メモリ、1421 演算器。 1 Frequency detection circuit, 1-1 First frequency detection circuit, 1-2 Second frequency detection circuit, 2 Judgment circuit, 3 Arithmetic circuit, 11 Signal source, 12 Mixer, 13 Filter, 14 Frequency calculation circuit, 15 Second signal source, 16 Second mixer, 17 Quadrature mixer, 1401 Quantizer, 1402 First frequency calculation circuit, 1403 Phase calculation circuit, 1404 Signal source control circuit, 1405 Phase difference calculation circuit, 1406 phase comparison circuit, 1407 second frequency calculation circuit, 1408 first frequency calculation circuit, 1409 phase difference calculation circuit, 1410 first quantizer, 1411 first calculator, 1412 delay circuit, 1413 mixer, 1414 second quantizer, 1415 memory, 1416 second calculator, 1417 phase difference calculation circuit, 1418 delay circuit, 1419 mixer, 1420 memory, 1421 calculator.

Claims (8)

  1.  時間によって切り替えられる2つのLO信号である、第1のLO信号、及び、当該第1のLO信号に対して周波数が同じで位相が異なる第2のLO信号をそれぞれ用い、入力信号を周波数変換する周波数変換回路と、
     前記周波数変換回路による第1のLO信号を用いた周波数変換後の信号と第2のLO信号を用いた周波数変換後の信号との位相差、及び、第1のLO信号と第2のLO信号との位相差に基づいて、前記入力信号の周波数を算出する周波数算出回路とを備えた
     ことを特徴とする周波数検出回路。
    a frequency conversion circuit that converts the frequency of an input signal by using two LO signals that are switched over with time, a first LO signal and a second LO signal that has the same frequency as the first LO signal but a different phase from the first LO signal;
    a frequency calculation circuit that calculates a frequency of the input signal based on a phase difference between a signal after frequency conversion using a first LO signal by the frequency conversion circuit and a signal after frequency conversion using a second LO signal, and a phase difference between the first LO signal and the second LO signal.
  2.  第1のLO信号及び第2のLO信号に含まれる周波数成分は複数であり、
     前記周波数算出回路は、前記周波数変換回路による第1のLO信号を用いた周波数変換後の信号と第2のLO信号を用いた周波数変換後の信号との位相差、及び、第1のLO信号と第2のLO信号との位相差に基づいて、第1のLO信号及び第2のLO信号に含まれる周波数成分のうちの前記入力信号の周波数変換に用いられた周波数成分である変換周波数、及び、当該入力信号の周波数変換による位相の回転方向を示す符号を特定するとともに、前記周波数変換回路による周波数変換後の信号の周波数を算出し、当該変換周波数、当該符号及び当該周波数に基づいて前記入力信号の周波数を算出する
     ことを特徴とする請求項1記載の周波数検出回路。
    the first LO signal and the second LO signal each include a plurality of frequency components;
    2. The frequency detection circuit according to claim 1, wherein the frequency calculation circuit identifies a conversion frequency, which is a frequency component used in the frequency conversion of the input signal among frequency components contained in the first LO signal and the second LO signal, and a sign indicating a phase rotation direction due to the frequency conversion of the input signal, based on a phase difference between a signal after frequency conversion using a first LO signal by the frequency conversion circuit and a signal after frequency conversion using a second LO signal, and a phase difference between the first LO signal and the second LO signal, calculates a frequency of the signal after frequency conversion by the frequency conversion circuit, and calculates the frequency of the input signal based on the conversion frequency, the sign, and the frequency.
  3.  前記周波数算出回路は、第1のLO信号及び第2のLO信号に含まれる周波数成分のうち、前記周波数変換回路による第1のLO信号を用いた周波数変換後の信号と第2のLO信号を用いた周波数変換後の信号との位相差の絶対値と、第1のLO信号と第2のLO信号との位相差の絶対値とが一致する周波数成分を、変換周波数として特定する
     ことを特徴とする請求項2記載の周波数検出回路。
    3. The frequency detection circuit according to claim 2, wherein the frequency calculation circuit identifies, as the conversion frequency, a frequency component among the frequency components contained in the first LO signal and the second LO signal, where an absolute value of a phase difference between a signal after frequency conversion using the first LO signal by the frequency conversion circuit and a signal after frequency conversion using the second LO signal matches an absolute value of a phase difference between the first LO signal and the second LO signal.
  4.  前記周波数算出回路は、変換周波数をfLOiとし、及び、前記周波数変換回路による周波数変換後の信号の周波数をfoutとした場合、前記周波数変換回路による第1のLO信号を用いた周波数変換後の信号と第2のLO信号を用いた周波数変換後の信号との位相差の符号と前記変換周波数での位相差の符号が一致していればα=+1とし、前記周波数変換回路による第1のLO信号を用いた周波数変換後の信号と第2のLO信号を用いた周波数変換後の信号との位相差の符号と前記変換周波数での位相差の符号が一致していなければα=-1とし、以下の式(1)から、前記入力信号の周波数であるfRFを算出する
     ことを特徴とする請求項3記載の周波数検出回路。
    out=α(fRF±fLOi)      (1)
    The frequency calculation circuit calculates f RF, which is the frequency of the input signal, from the following equation (1): where a conversion frequency is f LOi and a frequency of a signal after frequency conversion by the frequency conversion circuit is f out , if a sign of a phase difference between a signal after frequency conversion using a first LO signal by the frequency conversion circuit and a signal after frequency conversion using a second LO signal matches a sign of the phase difference at the conversion frequency, and if a sign of a phase difference between a signal after frequency conversion using a first LO signal by the frequency conversion circuit and a signal after frequency conversion using a second LO signal does not match a sign of the phase difference at the conversion frequency, the frequency calculation circuit calculates f RF , which is the frequency of the input signal, from the following equation (1):
    f out =α(f RF ±f LOi ) (1)
  5.  前記周波数算出回路により出力された信号に応じて、第1のLO信号及び第2のLO信号を生成する信号源を備え、
     前記周波数算出回路は、前記信号源に対して第1のLO信号の周波数及び初期位相を示す信号、並びに、第2のLO信号の周波数及び初期位相を示す信号を出力し、
     前記周波数変換回路は、前記信号源により生成された第1のLO信号及び第2のLO信号をそれぞれ用いる
     ことを特徴とする請求項1記載の周波数検出回路。
    a signal source that generates a first LO signal and a second LO signal in response to the signal output by the frequency calculation circuit;
    the frequency calculation circuit outputs to the signal source a signal indicating a frequency and an initial phase of a first LO signal and a signal indicating a frequency and an initial phase of a second LO signal;
    2. The frequency detection circuit according to claim 1, wherein the frequency conversion circuit uses a first LO signal and a second LO signal generated by the signal source.
  6.  前記周波数変換回路は、第1のLO信号及び第2のLO信号をそれぞれ用いて前記入力信号を周波数変換するとともに、当該周波数変換後の信号のイメージ成分を抑圧する直交ミキサである
     ことを特徴とする請求項1から請求項5のうちの何れか1項記載の周波数検出回路。
    6. The frequency detection circuit according to claim 1, wherein the frequency conversion circuit is a quadrature mixer that converts the frequency of the input signal by using a first LO signal and a second LO signal, respectively, and suppresses an image component of the signal after the frequency conversion.
  7.  請求項1から請求項6のうちの何れか1項記載の周波数検出回路と同一構成であり、入力信号の周波数を検出する第1の周波数検出回路と、
     請求項1から請求項6のうちの何れか1項記載の周波数検出回路と同一構成であり、前記第1の周波数検出回路で用いられる第1のLO信号及び第2のLO信号の周波数とは異なる周波数である第1のLO信号及び第2のLO信号を用い、前記入力信号の周波数を検出する第2の周波数検出回路と、
     前記第1の周波数検出回路により検出された前記入力信号の周波数及び前記第2の周波数検出回路により検出された前記入力信号の周波数に基づいて、正しい前記入力信号の周波数を特定する判定回路と
     を備えた周波数検出システム。
    A first frequency detection circuit having the same configuration as the frequency detection circuit according to any one of claims 1 to 6, which detects a frequency of an input signal;
    a second frequency detection circuit having the same configuration as the frequency detection circuit according to any one of claims 1 to 6, and configured to detect a frequency of the input signal by using a first LO signal and a second LO signal having frequencies different from those of a first LO signal and a second LO signal used in the first frequency detection circuit;
    a determination circuit that identifies a correct frequency of the input signal based on the frequency of the input signal detected by the first frequency detection circuit and the frequency of the input signal detected by the second frequency detection circuit.
  8.  前記判定回路は、前記第1の周波数検出回路により特定された変換周波数での位相差及び前記第2の周波数検出回路により特定された変換周波数での位相差に基づいて、正しい前記入力信号の周波数を特定する
     ことを特徴とする請求項7記載の周波数検出システム。
    8. The frequency detection system according to claim 7, wherein the determination circuit determines a correct frequency of the input signal based on a phase difference at a conversion frequency determined by the first frequency detection circuit and a phase difference at a conversion frequency determined by the second frequency detection circuit.
PCT/JP2022/043084 2022-11-22 2022-11-22 Frequency detection circuit and frequency detection system WO2024111034A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043084 WO2024111034A1 (en) 2022-11-22 2022-11-22 Frequency detection circuit and frequency detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043084 WO2024111034A1 (en) 2022-11-22 2022-11-22 Frequency detection circuit and frequency detection system

Publications (1)

Publication Number Publication Date
WO2024111034A1 true WO2024111034A1 (en) 2024-05-30

Family

ID=91195784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043084 WO2024111034A1 (en) 2022-11-22 2022-11-22 Frequency detection circuit and frequency detection system

Country Status (1)

Country Link
WO (1) WO2024111034A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264370A (en) * 2000-03-15 2001-09-26 Anritsu Corp Frequency measuring apparatus
JP2002243778A (en) * 2001-02-21 2002-08-28 Seiko Epson Corp Device and method for inspecting frequency stability
JP2003249905A (en) * 2002-02-22 2003-09-05 Nippon Hoso Kyokai <Nhk> Frequency measuring instrument
JP2013007616A (en) * 2011-06-23 2013-01-10 Advantest Corp Signal measurement device, signal measurement method, program and recording medium
WO2017090116A1 (en) * 2015-11-25 2017-06-01 三菱電機株式会社 Frequency detection circuit
JP2021173590A (en) * 2020-04-22 2021-11-01 株式会社アドバンテスト Calibration device, conversion device, calibration method, and calibration program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264370A (en) * 2000-03-15 2001-09-26 Anritsu Corp Frequency measuring apparatus
JP2002243778A (en) * 2001-02-21 2002-08-28 Seiko Epson Corp Device and method for inspecting frequency stability
JP2003249905A (en) * 2002-02-22 2003-09-05 Nippon Hoso Kyokai <Nhk> Frequency measuring instrument
JP2013007616A (en) * 2011-06-23 2013-01-10 Advantest Corp Signal measurement device, signal measurement method, program and recording medium
WO2017090116A1 (en) * 2015-11-25 2017-06-01 三菱電機株式会社 Frequency detection circuit
JP2021173590A (en) * 2020-04-22 2021-11-01 株式会社アドバンテスト Calibration device, conversion device, calibration method, and calibration program

Similar Documents

Publication Publication Date Title
US8615064B2 (en) Phase locked loop circuit and receiver using the same
US4791577A (en) Frequency shift for removing spurious spectral components from spectrum analyzer output
US6396313B1 (en) Noise-shaped digital frequency synthesis
TW201001925A (en) Dynamic reference frequency for fractional-N phase-locked loop
KR20160101974A (en) Local oscillator signal generation using delay locked loops
CN113676178A (en) Phase-locked loop circuit and digital time converter error elimination method
US11726118B2 (en) Frequency detection circuit
WO2024111034A1 (en) Frequency detection circuit and frequency detection system
WO2024111033A1 (en) Frequency detection circuit and frequency detection system
JPH0923158A (en) Frequency synthesizer
WO2019009997A1 (en) Delay locked loop (dll) employing pulse to digital converter (pdc) for calibration
WO2012093424A1 (en) Delta-sigma modulating fractional-n pll frequency synthesizer and wireless communication device equipped with same
US20100112973A1 (en) Generation of a composite mitigation signalwith a desired spectral energy distrubution
KR20200052183A (en) Low noise local oscillator for millimeter wave communication system
US10868548B2 (en) PLL device
US7853419B2 (en) Signal processing circuit and method for processing an HF input signal
JPH08256058A (en) Signal generator
US9203384B2 (en) Clock adjustment circuit and digital to analog converting device
WO2017090116A1 (en) Frequency detection circuit
JP6428498B2 (en) Signal generator
US8866523B2 (en) Method and associated apparatus for clock-data edge alignment
JP2005064764A (en) Direct conversion tuner
US7916813B2 (en) Receiver device
KR20160090601A (en) Phase lock detector and detection method
CN110838846B (en) Debugging method of clock source and arbitrary waveform generator board card