WO2024110731A1 - Method for purifying chlorotrifluoroethylene by extractive distillation - Google Patents

Method for purifying chlorotrifluoroethylene by extractive distillation Download PDF

Info

Publication number
WO2024110731A1
WO2024110731A1 PCT/FR2023/051836 FR2023051836W WO2024110731A1 WO 2024110731 A1 WO2024110731 A1 WO 2024110731A1 FR 2023051836 W FR2023051836 W FR 2023051836W WO 2024110731 A1 WO2024110731 A1 WO 2024110731A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorotrifluoroethylene
trifluoroethane
temperature
stream
composition
Prior art date
Application number
PCT/FR2023/051836
Other languages
French (fr)
Inventor
Alexandre CAMBRODON
Cédric LAVY
Abdelatif BABA-AHMED
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2024110731A1 publication Critical patent/WO2024110731A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • C07C17/386Separation; Purification; Stabilisation; Use of additives by distillation with auxiliary compounds

Definitions

  • the present invention relates to a process for the production and purification of hydrofluoroolefins.
  • the present invention relates to a process for purifying chlorotrifluoroethylene.
  • the present invention also relates to a process for producing trifluoroethylene (VF 3 ) by hydrogenolysis of chlorotrifluoroethylene.
  • Fluorinated olefins such as VF 3
  • VF 3 Fluorinated olefins
  • Trifluoroethylene is a gas under normal conditions of pressure and temperature.
  • the main risks associated with the use of this product concern its flammability, its propensity for self-polymerization when not stabilized, its explosiveness due to its chemical instability and its supposed sensitivity to peroxidation, by analogy with other halogenated olefins.
  • Trifluoroethylene has the particularity of being extremely flammable, with a lower explosion limit (LEL) of approximately 10% and an upper explosion limit (UEL) of approximately 30%.
  • LEL lower explosion limit
  • UEL upper explosion limit
  • the major danger is associated with the propensity of VF 3 to decompose violently and explosively under certain pressure conditions in the presence of an energy source, even in the absence of oxygen.
  • a known route for preparing trifluoroethylene uses chlorotrifluoroethylene (CTFE) and hydrogen as starting products in the presence of a catalyst and in the gas phase.
  • CTFE chlorotrifluoroethylene
  • WO 2013/128102 a process for producing trifluoroethylene by hydrogenolysis of CTFE in the gas phase and in the presence of a catalyst based on a metal from group VIII at atmospheric pressure and at low temperatures. It is known from application PCT/FR2022/051054 that the reaction generates a reaction stream comprising, in addition to trifluoroethylene and unreacted chlorotrifluoroethylene, 1,1,2-trifluoroethane.
  • Chlorotrifluoroethylene and 1,1,2-trifluoroethane form an azeotrope under certain conditions.
  • the recovery of chlorotrifluoroethylene with high purity for recycling is therefore complex. There is thus a need for a process for purifying chlorotrifluoroethylene. Summary of the invention
  • the present invention provides a process for purifying chlorotrifluoroethylene (CTFE) from a first composition comprising chlorotrifluoroethylene and 1,1,2-trifluoroethane (143), said process comprising the steps of: a) Extractive distillation of said first composition in the presence of at least one organic extractant to form i) a second composition comprising said organic extractant and 1,1,2-trifluoroethane; and ii) a first stream comprising chlorotrifluoroethylene, and b) recovery and separation of said second composition to form a second stream comprising said organic extractant and a third stream comprising 1,1,2-trifluoroethane, preferably said second current is recycled in step a).
  • CFE chlorotrifluoroethylene
  • said organic extractant has a flash point greater than 13°C.
  • said organic extraction agent is a compound comprising from 2 to 12 carbon atoms.
  • said organic extraction agent has a molecular mass of less than 200 g. mol 1 .
  • the first composition is an azeotropic or quasi-azeotropic composition comprising chlorotrifluoroethylene and 1,1,2-trifluoroethane.
  • said organic extractant has a melting point below 0°C.
  • step b) is carried out at a pressure of 1 to 10 bara, preferably 1 to 7 bara.
  • said organic extraction agent is selected from the group consisting of beta-propiolactone, gamma-butyrolactone, l-hydroxy-2-propanone, acetonylacetone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1, 2-ethanedioldiacetate, glycol, ethyloxalat, 3-oxobutanoicacid-l- methylethylester, ethyleneglycolmonomethyletheracetate, dimethylmaleate, triethylphosphate, triethyleneglycol, diethylmalonate, furfural, diethyleneglycol, t-butylacetoacetate, ethylsuccinate,
  • the present invention provides a process for producing trifluoroethylene in a reactor provided with a fixed catalytic bed comprising a catalyst, said process comprising the steps of:
  • CTFE ion process According to a first aspect of the present invention, a process for purifying chlorotrifluoroethylene (CTFE) is provided.
  • CTFE chlorotrifluoroethylene
  • the present invention makes it possible to separate chlorotrifluoroethylene from 1,1,2-trifluoroethane (143). Mixtures of chlorotrifluoroethylene and 1,1,2-trifluoroethane are obtained during the implementation of trifluoroethylene production processes. Chlorotrifluoroethylene and 1,1,2-trifluoroethane are generally obtained in the form of an azeotropic composition depending on the operating conditions. In order to recover the chlorotrifluoroethylene, it is necessary to separate the constituents of this azeotropic composition.
  • organic extraction agents capable of separating chlorotrifluoroethylene and 1,1,2-trifluoroethane by extractive distillation.
  • Said purification process comprises the steps of: a) Extractive distillation of said first composition in the presence of at least one organic extracting agent to form i) a second composition comprising said organic extracting agent and 1,1,2 -trifluoroethane; and ii) a first stream comprising chlorotrifluoroethylene, b) recovery and separation of said second composition to form a second stream comprising said organic extractant and a third stream comprising 1,1,2-trifluoroethane, preferably said second stream is recycled to step a).
  • said first composition comprises at least 50% by weight of chlorotrifluoroethylene, advantageously at least 60% by weight of chlorotrifluoroethylene, preferably at least 70% by weight of chlorotrifluoroethylene, in particular at least 80% by weight of chlorotrifluoroethylene based on the total weight of the first composition.
  • said first composition comprises at most 30% by weight of 1,1,2-trifluoroethane, advantageously at most 25% by weight of 1,1,2-trifluoroethane, preferably at most 20% by weight of 1,1,2-trifluoroethane, in particular at most 15% by weight of 1,1,2-trifluoroethane based on the total weight of the first composition.
  • the first composition is an azeotropic or quasi-azeotropic composition comprising chlorotrifluoroethylene and 1,1,2-trifluoroethane.
  • said first composition is azeotropic and comprises from 80% to 99.99% by weight of chlorotrifluoroethylene based on the total weight of said composition.
  • said first composition is azeotropic and comprises from 85% to 99.99% by weight of chlorotrifluoroethylene based on the total weight of said composition.
  • said first composition is azeotropic and comprises from 90% to 99.99% by weight of chlorotrifluoroethylene based on the total weight of said composition.
  • said first composition is azeotropic and comprises from 0.01% to 20% by weight of 1,1,2-trifluoroethane based on the total weight of said composition.
  • said first composition is azeotropic and comprises from 0.01% to 15% by weight of 1,1,2-trifluoroethane based on the total weight of said composition.
  • said first composition is azeotropic and comprises from 0.01% to 10% by weight of 1,1,2-trifluoroethane based on the total weight of said composition.
  • said first composition is azeotropic and has a boiling point of between -40°C and 40°C, more preferably between -35°C and 25°C.
  • said first composition is azeotropic and has a boiling point of between -40°C and 40°C at a pressure of between 0.5 bara and 8 bara. More particularly, said first composition is azeotropic and has a boiling point of between -35°C and 25°C at a pressure of 1 bara to 6 bara.
  • said first composition is azeotropic and can comprise from 80% to 99.99% by weight of chlorotrifluoroethylene and from 0.01% to 20% by weight of 1,1,2-trifluoroethane based on the total weight of said composition. ; and has a boiling point between -40°C and 40°C at a pressure between 0.5 bara and 8 bara.
  • said first composition is azeotropic and comprises from 85% to 99.99% by weight of chlorotrifluoroethylene and from 0.01% to 15% by weight of 1,1,2-trifluoroethane based on the total weight of said composition; and has a boiling point between -40°C and 40°C at a pressure between 0.5 bara and 8 bara.
  • said first composition is azeotropic and comprises from 90% to 99.99% by weight of chlorotrifluoroethylene and from 0.01 to 10% by weight of 1,1,2-trifluoroethane based on the total weight of said composition; and has a boiling point between -30°C and 25°C at a pressure between 1 bara and 6 bara.
  • said organic extraction agent is a solvent chosen from the group consisting of hydrocarbon, hydrohalocarbon, alcohol, ketone, amine, ester, ether, aldehyde, acid, nitrile, carbonate, thioalkyl, amide, heterocycle, sulfate and phosphate.
  • said organic extraction agent is a solvent selected from the group consisting of alcohol, ketone, phosphate, ester and ether.
  • hydrocarbon refers to linear or branched compounds of C1-C20 alkane, C3-C20 cycloalkane, C5-C20 alkene, C5-C20 cycloalkene, Cg-Cis arene.
  • alkane refers to compounds with the formula C n H2n+2 in which n is included between 1 and 20.
  • C1-C20 alkane includes for example pentane, hexane, heptane, octane, nonane, decane or isomers thereof.
  • C5-C20 alkene refers to hydrocarbon compounds comprising one or more carbon-carbon double bonds and comprising 5 to 20 carbon atoms.
  • C3-C20 cycloalkane refers to a saturated hydrocarbon ring comprising 3 to 20 carbon atoms.
  • C 6 -Cis aryl refers to cyclic and aromatic hydrocarbon compounds comprising 6 to 18 carbon atoms.
  • C5-C20 cycloalkene refers to cyclic hydrocarbon compounds comprising 5 to 20 carbon atoms and comprising one or more carbon-carbon double bonds.
  • alkyl designates a monovalent radical derived from an alkane, linear or branched, comprising from 1 to 20 carbon atoms.
  • cycloalkyl designates a monovalent radical derived from a cycloalkane comprising from 3 to 20 carbon atoms.
  • aryl designates a monovalent radical derived from an arene comprising 6 to 18 carbon atoms.
  • alkenyl designates a monovalent radical of 2 to 20 carbon atoms and at least one carbon-carbon double bond.
  • alkynyl designates a monovalent radical of 2 to 20 carbon atoms and at least one carbon-carbon triple bond.
  • halogen refers to a group -F, -Cl, -Br or -I.
  • cycloalkenyl refers to a monovalent radical derived from a cycloalkene comprising 3 to 20 carbon atoms.
  • the C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, Cg-Cis aryl substituents may or may not be substituted by one or more -OH substituents, halogen, -NR a C(O)R b , -C(O)NR a R b -CN, -NO2, -NR a R b , -OR a , -SR a , -CO 2 R a , -OC( O)OR a , -OC(O)R a , -C(O)H, -C(O)R a , in which R a and R b are independently of each other hydrogen, C1- alkyl Unsubstituted C20, unsubstituted C2-C20 alkenyl, unsubstituted C2-C20 alkyn
  • hydrohalocarbons refers to compounds of formula R a C20, aryl in Cg-Cis and X represents a chlorine, fluorine, bromine or iodine atom.
  • the C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, Cg-Cis aryl substituents may or may not be substituted by one or more -OH substituents, halogen, -NR a C(O)R b , -C(O)NR a R b -CN, -NO 2 , -NR a R b , -OR a , -SR a , -CO 2 R a , - OC (O)OR a , -OC(O)R a , -C(O)H, -C(O)R a , in which R
  • alcohol refers to hydrocarbons or hydrohalocarbons as defined above in which at least one hydrogen atom is replaced by an -OH hydroxyl group.
  • ketone refers to hydrocarbons comprising at least one or more carbonyl functional groups R c -C(O)-R d in which R c and R d are independently of each other a C1- alkyl C20, C2-C20 alkenyl, C2-C20 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, Cg-Cis aryl may or may not be substituted by one or more -OH, halogen, -NR a C substituents (O)R b , -C(O)NR a R b -CN, -NO 2 , -NR a R b , -OR a , -SR a , -CO 2 R a , -OC(O)OR
  • amine refers to hydrocarbons comprising at least one or more amine functional groups -NR c R d in which R c and R d are as defined above, R c and R d being able to be linked together to form with the nitrogen atom to which they are attached an aromatic or non-aromatic heterocycle comprising 4 to 10 members.
  • esters refers to compounds of formula R c -C(O)-OR d in which R c and R d are as defined above, R c and R d being able to be linked together to form with the ester group has a cycle comprising 4 to 20 carbon atoms.
  • ether refers to compounds of formula R c -OR d in which R c and R d are as defined above, R c and R d being able to be linked together to form with the atom of oxygen to which they are attached a heterocycle comprising 4 to 20 carbon atoms.
  • aldehyde refers to compounds comprising at least one or more -C(O)-H functional groups.
  • nitrile refers to compounds comprising at least one or more -CN functional groups.
  • carbonate refers to compounds of formula R c -OC(O)-OR d in which R c and R d are as defined above.
  • thioalkyl relates to compounds of formula R c SR d in which R c and R d are as defined above.
  • phosphate refers to compounds of formula P(OR C )3 in which R c is, independently for each substituent, as defined above.
  • sulfate refers to compounds of formula SO 2 (OR C )2 in which R c is, independently for each substituent, as defined above.
  • the term "acid” refers to compounds of formula R C -CC>2H in which R c is as defined above.
  • the term “amide” relates to compounds of formula R c C(O)NR e R d in which R c and R d are as defined above, R e having the same definition as R c , R c and R d which can be linked together to form, with the amide group -C(O)N- to which they are attached, a cyclic amide comprising from 4 to 10 members, preferably from 4 to 7 members.
  • the cyclic amide may also include one or more carbon-carbon double bonds.
  • the cyclic amide may also be substituted or not by one or more substituents as defined above.
  • heterocycle designates a carbon ring comprising 4 to 10 members of which at least one of the members is a heteroatom selected from the group consisting of O, S, P and N.
  • the heterocycle may comprise one or more carbon-double bonds. carbon or one or more carbon-heteroatom double bonds or one or more heteroatom-heteroatom double bonds.
  • the heterocycle may comprise 1, 2, 3, 4 or 5 heteroatoms as defined above.
  • the heterocycle may comprise 1, 2 or 3 heteroatoms selected from oxygen, nitrogen or sulfur.
  • the heterocycle may be a carbon ring comprising from 4 to 6 members of which 1, 2 or 3 members are heteroatoms selected from O or N.
  • the heterocycle may or may not be substituted by one or more selected substituent(s).
  • azeotropic composition designates a liquid mixture of two or more compounds behaving like a single substance, and which boils at a fixed temperature while keeping a composition in the liquid phase identical to that of the gas phase.
  • quadsi-azeotropic composition means a liquid mixture of two or more compounds having a constant boiling point or which tends not to fractionate when subjected to boiling or evaporation.
  • organic extractant refers to a compound comprising at least one carbon atom.
  • said organic extraction agent is a compound comprising from 2 to 12 carbon atoms, advantageously from 2 to 11 carbon atoms, preferably from 2 to 10 carbon atoms, more preferably from 2 to 9 carbon atoms, in particular 2 to 8 carbon atoms.
  • Said organic extraction agent preferably has a molecular mass of less than 200 g.mol' 1 , advantageously less than 190 g.mol 1 , preferably less than 180 g.mol 1 , more preferably less than 170 g.mol 1 , in particular less than 160 g.mol 1 .
  • said organic extractant has a melting point lower than 50°C, advantageously lower than 40°C, preferably lower than 30°C, more preferably less than 20°C, in particular less than 10°C, more particularly less than 0°C.
  • the separation factor Si, 2 is greater than or equal to 2.1, preferably greater than or equal to 2.2, more preferably greater than or equal to 2.3, in particular greater than or equal to 2.4, more particularly greater than or equal to 2.5.
  • said organic extraction agent is selected from the group consisting of ethylchloroacetate, ethylmercaptoacetate, phenylacetate, n-butylacetate, b-phenylethylacetate, sec-butylacetate, methyldichloroacetate, isoamylacetate, n-pentylacetate, propynol, 3- butyn-l-ol, 2-butyn-l-ol, 3-butyn-2-ol, ethanol, 2-propanol, alpha-methylcyclopropanemethanol, glycidylaldehyde, 2,4-hexadienal, 3-phenyl-2-propenal, benzaldehyde, 4-methylbenzaldehyde, hexanal, heptanal, 3-butenoic acid, propionic acid, 4-pentenoic acid, 5-hexenoic acid, isobutyric acid, butyric acid, 4-
  • said organic extraction agent is selected from the group consisting of phenylacetate, n-butylacetate, b-phenylethylacetate, sec-butylacetate, isoamylacetate, n-pentylacetate, ethanol, 2-propanol, alpha-methylcyclopropanemethanol, dimethylformamide, n,n - dimethylacetamide, methylformamide, n,n-dimethylpropanamide, n,n-dimethylbutanamide, n-butylacetamide, 1,3-dioxane, 4-methyl-l,3-dioxane, beta-propiolactone, gamma-butyrolactone, dimethylmalonate, ethyl acetoacetate, 1,2-ethanedioldiacetate, cyanoacetic acid methyl ester, 3-oxobutanoic acid 2-propenyl ester, pentanedioic acid dimethyl ester, ethyl,
  • 2-oxetanone 1-cyclopropylethanone, l-phenyl-2-propanone, 2,3-pentanedione, isophorone, cyclohexanone, 2-methylcyclopentanone, 4-methyl-3-penten-2-one, cycloheptanone, 3-methylcyclohexanone, 4- methylcyclohexanone, 2,3-hexanedione, 3,4-hexanedione, 4-phenyl-2-butanone, 2-hexanone, l-(3,4-dimethylphenyl)ethanone, 4-methyl-2-pentanone, 3-hexanone, 4 - fluoroacetophenone, 4,4-dimethyl-2-pentanone, 5-methyl-2-hexanone, 2,2-dimethylcyclohexanone, 2-heptanone, 2,4-dimethyl-3-pentanone, 2,2-dimethyl-3-pentanone ,
  • said organic extractant is selected from the group consisting of phenylacetate, n-butylacetate, b-phenylethylacetate, sec-butylacetate, isoamylacetate, n-pentylacetate, ethanol, 2-propanol, alpha-methylcyclopropanemethanol, dimethylformamide, n, n- dimethylacetamide, methylformamide, n,n-dimethylpropanamide, n,n-dimethylbutanamide, n-butylacetamide, 1,3-dioxane, 4-methyl-l,3-dioxane, beta-propiolactone, gamma-butyrolactone, dimethylmalonate, ethyl acetoacetate , 1,2-ethanedioldiacetate, cyanoacetic acid methyl ester, 3-oxobutanoic acid 2-propenyl ester, pentanedioic acid dimethyl ester, e
  • said organic extraction agent is selected from the group consisting of beta-propiolactone, gamma-butyrolactone, l-hydroxy-2-propanone, acetonylacetone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1,2-ethanedioldiacetate, glycol, ethyloxalat, 3-oxobutanoicacid-l- methylethylester, ethyleneglycolmonomethyletheracetate, dimethylmaleate, triethylphosphate, triethyleneglycol, diethylmalonate, furfural, diethylene glycol, t-butylacetoacetate, ethylsuccinate,
  • said organic extractant is selected from the group consisting of trimethylphosphate, ethylacetoacetate, glycol, ethyl oxalate, triethyleneglycol, diethylmalonate, diethyleneglycol, 1,3-propanediol, propylene glycol, 2-methoxyethanol, ethanol and ethylbenzoate.
  • step b) is carried out at a pressure of 1 to 10 bara, preferably 1 to 7 bara.
  • said organic extractant has a melting point lower than 0°C, advantageously lower than -5°C, preferably lower than -10°C, in particular lower than -20°C.
  • step b) when step b) is carried out at a pressure of 3 to 6 bara, said organic extractant has a melting point below 0°C. This makes it possible to avoid the solidification of said extraction agent at the top of the distillation column.
  • said organic extractant is as described above.
  • said organic extractant when step b) is carried out at a pressure of 1 to 3 bara, said organic extractant has a melting point lower than -10°C, preferably -20°C. C, in particular -40°C.
  • said organic extraction agent is preferably selected from the group consisting of beta-propiolactone, gamma-butyrolactone, l-hydroxy-2-propanone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1, 2-ethanedioldiacetate, glycol, ethyloxalate, 3- oxobutanoicacid-l-methylethylester, ethyleneglycolmonomethyletheracetate, dimethylmaleate, triethylphosphate, diethylmalonate, furfural, diethyleneglycol, t-butylacetoacetate, ethylsuccinate,
  • a process for producing trifluoroethylene is provided. Said process is carried out in a reactor equipped with a fixed catalytic bed comprising a catalyst.
  • Said method comprises the steps of:
  • the process is carried out continuously.
  • the hydrogen is in anhydrous form.
  • the chlorotrifluoroethylene is in anhydrous form. Implementing the processes according to the invention in the presence of hydrogen and/or anhydrous chlorotrifluoroethylene makes it possible to effectively increase the life of the catalyst and thus the overall productivity of the process.
  • the term anhydrous refers to a mass water content of less than 1000 ppm, advantageously 500 ppm, preferably less than 200 ppm, in particular less than 100 ppm based on the total weight of the compound considered.
  • the catalyst is based on a metal from columns 8 to 10 of the periodic table of elements.
  • the catalyst is based on a metal selected from the group consisting of Pd, Pt, Rh, and Ru; preferably palladium.
  • the catalyst is supported.
  • the support is preferably selected from the group consisting of activated carbon, an aluminum-based support, calcium carbonate, and graphite.
  • the support is based on aluminum.
  • the support is alumina.
  • the alumina may be alpha alumina.
  • the alumina comprises at least 90% alpha alumina. It was observed that the conversion of the hydrogenolysis reaction was enhanced when the alumina is alpha alumina.
  • the catalyst is more particularly palladium supported on alumina, advantageously palladium supported on alumina comprising at least 90% alpha alumina, preferably palladium supported on alpha alumina.
  • palladium represents from 0.01% to 5% by weight based on the total weight of the catalyst, preferably from 0.1% to 2% by weight based on the total weight of the catalyst.
  • said catalyst comprises from 0.01% to 5% by weight of palladium supported on alumina, preferably the alumina comprises at least 90% alpha alumina, more preferably the alumina is alpha alumina.
  • Said catalyst is preferably activated before its use in step A').
  • the activation of the catalyst is carried out at high temperature and in the presence of a reducing agent, an inert gas or a mixture thereof.
  • the reducing agent is chosen from the group consisting of hydrogen, carbon monoxide, nitrogen monoxide, formaldehyde, Ci-Cg alkanes and Ci-Cio hydrohalocarbons, or a mixture of these; preferably hydrogen or a Ci-Cio hydrohalocarbon, or a mixture thereof; in particular hydrogen, chlorotrifluoroethylene, trifluoroethylene, chlorotrifluoroethane, trifluoroethane or difluoroethane or a mixture thereof.
  • the inert gas can be nitrogen or argon; preferably nitrogen.
  • the activation of the catalyst is carried out at a temperature between 100°C and 400°C, in particular at a temperature between 150°C and 350°C.
  • the activation of the catalyst is carried out at a temperature between 100°C and 400°C, in particular at a temperature between 150°C and 350°C, in the presence of hydrogen as reducing agent.
  • the temperature of the catalytic bed is increased during activation from a temperature Tl to a temperature T2.
  • the temperature of the catalytic bed is increased from a temperature Tl to a temperature T2 greater than Tl with a temperature gradient less than 0.5°C/min.
  • the temperature gradient implemented makes it possible to avoid early degradation of the catalyst and thus to allow better yield or better productivity of the hydrogenolysis reaction.
  • the temperature is increased with a temperature gradient less than 0.45°C/min or less than 0.40°C/min, or less than 0.35°C/min, or less than 0.30° C/min, or less than 0.25°C/min, or less than 0.20°C/min, or less than 0.15°C/min, or less than 0.10°C/min, or less at 0.05°C/min.
  • the temperature Tl represents the initial temperature of the activation step. This temperature Tl can be the ambient temperature.
  • the temperature Tl can be between 0°C and 150°C, advantageously between 0°C and 120°C, preferably between 0°C and 100°C, more preferably between 10°C and 100°C, in particularly between 20°C and 100°C, more particularly between 20°C and 75°C, preferably between 20°C and 50°C.
  • the temperature T2 represents the temperature to be reached during the activation phase.
  • the temperature T2 is advantageously between 150°C and 400°C, preferably between 155°C and 375°C, more preferably between 160°C and 350°C, in particular between 165°C and 325°C, more particularly between 170°C and 320°C, preferably between 175°C and 310°C, more preferably between 180°C and 300°C.
  • the temperature T2 is advantageously between 185°C and 290°C, preferably between 190°C and 280°C, more preferably between 195°C and 270°C, in particular between 200°C and 260°C.
  • the temperature T2 can be maintained from 5 min to 200 h, preferably from 10 min to 100 h, in particular from 15 min to 75 h, more particularly from 30 min to 50 h, preferably from 1 h to 25 h.
  • the temperature T2 can be maintained from 5 min to 24 h, preferably from 10 min to 8 p.m., in particular from 15 min to 3 p.m., more particularly from 30 min to 1 Oh, preferably from 1 h to 1 Oh.
  • the gas flow used during the activation step does not include oxygen.
  • the activation step can be carried out with a quantity of reducing agent greater than 0.01 mol per gram of catalyst, preferably greater than 0.05 per gram of catalyst.
  • the activation step can be carried out with a quantity of reducing agent of between 0.01 and 10 mol per gram of catalyst, preferably between 0.05 and 5 mol per gram of catalyst.
  • the temperature of the catalytic bed is increased from a temperature Tl to a temperature T2 in steps.
  • Activating the catalyst in stages makes the catalyst more efficient.
  • the implementation of bearings makes it possible to avoid degradation of the catalyst.
  • the properties of the catalyst were further improved if the rise in temperature between the levels is progressive and relatively slow compared to the usual conditions for activating a catalyst.
  • the temperature is increased with a temperature gradient of less than 0.5°C/min. The temperature gradient implemented between two levels makes it possible to avoid early degradation of the catalyst and thus to allow better yield or better productivity of the hydrogenolysis reaction.
  • the temperature is increased with a temperature gradient less than 0.45°C/min or less than 0.40°C/min, or less than 0.35°C/min, or less than 0.30°C /min, or less than 0.25°C/min, or less than 0.20°C/min, or less than 0.15°C/min, or less than 0.10°C/min, or less than 0.05°C/min.
  • the temperature Tl represents the initial temperature of the activation step. This temperature Tl can be the ambient temperature.
  • the temperature Tl can be between 0°C and 150°C, advantageously between 0°C and 120°C, preferably between 0°C and 100°C, more preferably between 10°C and 100°C, in particularly between 20°C and 100°C, more particularly between 20°C and 75°C, preferably between 20°C and 50°C.
  • the temperature T2 represents the temperature to be reached during the activation phase.
  • the temperature T2 is advantageously between 150°C and 400°C, preferably between 155°C and 375°C, more preferably between 160°C and 350°C, in particular between 165°C and 325°C, more particularly between 170°C and 320°C, preferably between 175°C and 310°C, more preferably between 180°C and 300°C.
  • the temperature T2 is advantageously between 185°C and 290°C, preferably between 190°C and 280°C, more preferably between 195°C and 270°C, in particular between 200°C and 260°C.
  • the temperature T2 can be maintained from 5 min to 200 h, preferably from 10 min to 100 h, in particular from 15 min to 75 h, more particularly from 30 min to 50 h, preferably from 1 h to 25 h.
  • the temperature T2 can be maintained from 5 min to 24 h, preferably from 10 min to 8 p.m., in particular from 15 min to 3 p.m., more particularly from 30 min to 1 Oh, preferably from 1 h to 1 Oh.
  • Step i') of activating the catalyst contains at least one stage between temperature Tl and temperature T2.
  • Step i') of activating the catalyst may include several stages between temperature Tl and temperature T2.
  • the activation step comprises at least one level at a temperature Tla of between 90 and 120°C.
  • the activation step may also include one or more stages between the temperature Tl and Tla and/or between the temperature Tla and T2.
  • each level between temperature Tl and temperature T2 can last between 5 min and 200 h, preferably between 10 min and 100 h, in particular between 15 min and 75 h, more particularly between 30 min and 50 h.
  • each level between temperature Tl and temperature T2 can last between 5 min and 24 hours, preferably between 10 min and 20 hours, in particular between 15 min and 15 hours, more particularly between 30 min and 1 Oh.
  • the plateau at temperature Tla can last between 5 min and 200 h, preferably between 10 min and 100 h, in particular between 15 min and 75 h, more particularly between 30 min and 50 h.
  • the plateau at temperature Tla can last between 5 min and 24 hours, preferably between 10 min and 20 hours, in particular between 15 min and 15 hours, more particularly between 30 min and 1 Oh.
  • the gas flow used during the activation step may be different over time.
  • the gas flow may comprise an inert gas between two bearings and for example comprise a reducing agent between two other bearings.
  • the gas flow includes an inert gas when the activation step is carried out between the temperature Tl and Tla and the gas flow comprises a reducing agent, preferably hydrogen or Ci-Cio hydrohalocarbons as defined above, when the The activation step is implemented between the temperature Tla and T2.
  • the gas flow used during the activation step is modified during the stage implemented at temperature Tla.
  • the gas flow may comprise a reducing agent such as hydrogen or Ci-Cio hydrohalocarbons as defined above throughout the activation step, optionally in mixture with an inert gas such as 'nitrogen.
  • a reducing agent such as hydrogen or Ci-Cio hydrohalocarbons as defined above, optionally in mixture with an inert gas such as nitrogen, during the rise in temperature between the temperature Tla of said bearing and the temperature T2 represents an additional advantage in terms of productivity.
  • the temperature T2 is maintained for a certain period of time. During this stage at temperature T2, the gas flow can be modified.
  • the gas flow during the stage at temperature T2 may comprise hydrogen or a Ci-Cio hydrohalocarbon as defined above; in particular the gas flow during the stage at temperature T2 may comprise hydrogen, chlorotrifluoroethylene, trifluoroethane, trifluoroethylene, chlorotrifluoroethane or difluoroethane.
  • the activation step can be carried out with a quantity of reducing agent greater than 0.01 per gram of catalyst, preferably greater than 0.05 per gram of catalyst.
  • the activation step can be carried out with a quantity of reducing agent of between 0.01 and 10 mol per gram of catalyst, preferably between 0.05 and 5 mol per gram of catalyst.
  • the activation step comprises bringing said catalyst into contact with a gas flow which comprises chlorotrifluoroethylene, and optionally hydrogen.
  • a gas flow which comprises chlorotrifluoroethylene, and optionally hydrogen.
  • chlorotrifluoroethylene CFE
  • CTFE chlorotrifluoroethylene
  • the activation step is carried out at a temperature T2' lower than 100°C. This temperature T2' can be reached from a temperature Tl' using a low temperature gradient.
  • the temperature of the catalytic bed is increased from a temperature Tl' to a temperature T2' greater than Tl', preferably the temperature of the catalytic bed is increased by a temperature Tl' at a temperature T2' greater than Tl' with a temperature gradient less than 0.5°C/min.
  • the temperature gradient implemented makes it possible to avoid early degradation of the catalyst and thus to allow better yield or better productivity of the hydrogenolysis reaction.
  • the temperature is increased with a temperature gradient less than 0.45°C/min or less than 0.40°C/min, or less than 0.35°C/min, or less than 0.30°C /min, or less than 0.25°C/min, or less than 0.20°C/min, or less than 0.15°C/min, or less than 0.10°C/min, or less than 0.05°C/min.
  • the temperature of the catalytic bed is increased by increasing the contact time calculated as the ratio between the volume, in liters, of catalyst and the total flow rate of said gas flow, in normal liters per second, at the inlet. of the reactor.
  • the contact time is between 1 and 60 seconds, preferably between 5 and 45 seconds, in particular between 10 and 30 seconds, more particularly between 15 and 25 seconds.
  • the temperature Tl' can be between 0°C and 50°C, advantageously between 10°C and 50°C, preferably between 20°C and 50°C.
  • the temperature T2' is lower than the temperature T3 for implementing step A').
  • the temperature T3 is preferably between 100°C and 180°C, more preferably between 100°C and 160°C, in particular between 120°C and 160°C.
  • Said catalyst used in the present process can be regenerated.
  • This regeneration step can be implemented in a temperature range of the catalytic bed between 90°C and 450°C.
  • the regeneration step is carried out in the presence of hydrogen.
  • the implementation of the regeneration step makes it possible to improve the yield of the reaction compared to the initial yield before regeneration.
  • the regeneration step can be carried out at a catalytic bed temperature of 90°C to 300°C, preferably at a catalytic bed temperature of 90°C to 250°C, more preferably from 90°C to 200°C, in particular from 90°C to 175°C, more particularly at a temperature of the catalytic bed of 90°C to 150°C.
  • carrying out the regeneration step at a low temperature for example from 90°C to 200°C or from 90°C to 175°C or from 90°C to 150°C, allows the desorption of compounds harmful to the activity of the catalyst and/or to limit phase transitions modifying the structure of the catalyst.
  • the regeneration step can be carried out at a temperature of the catalytic bed greater than 200°C, advantageously greater than 230°C, preferably greater than 250°C, in particular greater than 300°C. °C.
  • the regeneration step can be implemented periodically depending on the productivity or conversion obtained in the step has).
  • the regeneration step can be carried out advantageously at a temperature of the catalytic bed between 200°C and 300°C, preferably between 205°C and 295°C, more preferably between 210°C and 290°C, in particularly between 215°C and 290°C, more particularly between 220°C and 285°C, preferably between 225°C and 280°C, more preferably between 230°C and 280°C.
  • the regeneration step can be carried out at a temperature between 300°C and 450°C, preferably between 300°C and 400°C.
  • the regenerated catalyst can be reused in step A') of the present process.
  • the process comprises, as mentioned above, a reaction step of hydrogenolysis of chlorotrifluoroethylene with hydrogen to produce a stream comprising trifluoroethylene.
  • the hydrogenolysis step is carried out in the presence of a catalyst and in the gas phase.
  • the hydrogenolysis step is carried out in the presence of a previously activated catalyst and in the gas phase.
  • the hydrogenolysis step consists of simultaneously introducing hydrogen, CTFE and optionally an inert gas, such as nitrogen, in the gas phase and in the presence of said catalyst, preferably activated.
  • said step A') is carried out at a fixed catalytic bed temperature of between 50°C and 250°C.
  • Said step A') can be carried out at a temperature of the fixed catalytic bed of between 50°C and 240°C, advantageously between 50°C and 230°C, preferably between 50°C and 220°C, more preferably between 50°C and 210°C, in particular between 50°C and 200°C.
  • Said step a) can also be implemented at a temperature of the fixed catalytic bed of between 60°C and 250°C, advantageously between 70°C and 250°C, preferably between 80°C and 250°C, more preferably between 90°C and 250°C, in particular between 100°C and 250°C, more particularly between 120°C and 250°C.
  • Said step A') can also be implemented at a temperature of the fixed catalytic bed of between 60°C and 240°C, advantageously between 70°C and 230°C, preferably between 80°C and 220°C, more preferably between 90°C and 210°C, in particular between 100°C and 200°C, more particularly between 100°C and 180°C, preferably between 100°C and 160°C, particularly preferably between 120°C °C and 160°C.
  • the H2/CTFE molar ratio is between 0.5/1 to 2/1 and preferably between 1/1 to 1.2/1. If an inert gas such as nitrogen is present in step A'), the nitrogen/Fh molar ratio is between 0/1 to 2/1 and preferably between 0/1 to 1/1.
  • Step A') is preferably carried out at a pressure of 0.05 MPa to 1.1 MPa, more preferably from 0.05 MPa to 0.5 MPa, in particular at atmospheric pressure.
  • the contact time calculated as the ratio between the volume, in liters, of catalyst and the total flow rate of the gas mixture, in normal liters per second, at the reactor inlet, is between 1 and 60 seconds, preferably between 5 and 45 seconds, particularly between 10 and 30 seconds, more particularly between 15 and 25 seconds.
  • Yi represents the activity coefficient of the first compound 1 in the organic extraction agent considered at infinite dilution
  • Y2,S represents the activity coefficient of the second compound 2 of the binary couple in the organic extraction agent considered at infinite dilution
  • An absorption capacity is also calculated for each of the solvents studied and for a binary couple (1,2) considered.
  • CFE chlorotrifluoroethylene
  • 1,1,2-trifluoroethane 1,1,2-trifluoroethane
  • Organic extraction agents having a separation factor Si, 2 greater than 2 are capable of separating a mixture comprising chlorotrifluoroethylene (CTFE) and 1,1,2-trifluoroethane.
  • the results are confirmed from a mixture comprising 90-95% by weight of chlorotrifluoroethylene and 5-10% by weight of 1,1,2-trifluoroethane based on the total weight of the mixture.
  • This is distilled under 1 bara with one of the following extraction agents: glycol, 1,3-propanediol, propylene glycol or ethanol.
  • the mixture to be separated is introduced into a distillation column at atmospheric pressure.
  • the extractant is introduced continuously at the top of the distillation column.
  • the chlorotrifluoroethylene is recovered at the top of the distillation column.
  • the 1,1,2-trifluoroethane and the extraction agent are recovered at the bottom of the distillation column.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for purifying chlorotrifluoroethylene (CTFE) from a first composition comprising chlorotrifluoroethylene and 1,1,2-trifluoroethane (143), the method comprising the steps of: a) extractive distillation of the first composition in the presence of at least one organic extractant to form i) a second composition comprising the organic extractant and the 1,1,2-trifluoroethane and ii) a first stream comprising the chlorotrifluoroethylene; and b) recovery and separation of the second composition to form a second stream comprising the organic extractant and a third stream comprising the 1,1,2-trifluoroethane; preferably, the second stream is recycled to step a).

Description

DESCRIPTION DESCRIPTION
Titre : Procédé de purification du
Figure imgf000002_0001
distillation extractive
Title: Process for purifying
Figure imgf000002_0001
extractive distillation
Domaine
Figure imgf000002_0002
Domain
Figure imgf000002_0002
La présente invention concerne un procédé de production et la purification d'hydrofluorooléfines. En particulier, la présente invention concerne un procédé de purification du chlorotrifluoroéthylène. La présente invention concerne également un procédé de production du trifluoroéthylène (VF3) par hydrogénolyse du chlorotrifluoroéthylène. The present invention relates to a process for the production and purification of hydrofluoroolefins. In particular, the present invention relates to a process for purifying chlorotrifluoroethylene. The present invention also relates to a process for producing trifluoroethylene (VF 3 ) by hydrogenolysis of chlorotrifluoroethylene.
Arrière-plan technologique de l'invention Technological background of the invention
Les oléfines fluorées, comme le VF3, sont connues et sont utilisées comme monomères ou comonomères pour la fabrication de polymères fluorocarbonés présentant des caractéristiques remarquables, en particulier une excellente tenue chimique et une bonne résistance thermique.Fluorinated olefins, such as VF 3 , are known and are used as monomers or comonomers for the manufacture of fluorocarbon polymers having remarkable characteristics, in particular excellent chemical resistance and good thermal resistance.
Le trifluoroéthylène est un gaz dans les conditions normales de pression et de température. Les principaux risques liés à l'utilisation de ce produit concernent son inflammabilité, sa propension à l'auto-polymérisation lorsqu'il n'est pas stabilisé, son explosivité due à son instabilité chimique et sa supposée sensibilité à la peroxydation, par analogie avec d'autres oléfines halogénées. Le trifluoroéthylène présente la particularité d'être extrêmement inflammable, avec une limite inférieure d'explosivité (LIE) d'environ 10% et une limite supérieure d'explosivité (LSE) d'environ 30%. Le danger majeur est cependant associé à la propension du VF3 à se décomposer violemment et de façon explosive dans certaines conditions de pression en présence d'une source d'énergie, même en l'absence d'oxygène. Trifluoroethylene is a gas under normal conditions of pressure and temperature. The main risks associated with the use of this product concern its flammability, its propensity for self-polymerization when not stabilized, its explosiveness due to its chemical instability and its supposed sensitivity to peroxidation, by analogy with other halogenated olefins. Trifluoroethylene has the particularity of being extremely flammable, with a lower explosion limit (LEL) of approximately 10% and an upper explosion limit (UEL) of approximately 30%. The major danger, however, is associated with the propensity of VF 3 to decompose violently and explosively under certain pressure conditions in the presence of an energy source, even in the absence of oxygen.
Compte tenu des principaux risques ci-dessus, la synthèse ainsi que le stockage du VF3 posent des problèmes particuliers et imposent tout au long de ces processus des règles strictes de sécurité. Une voie connue de préparation du trifluoroéthylène utilise comme produits de départ le chlorotrifluoroéthylène (CTFE) et l'hydrogène en présence d'un catalyseur et en phase gazeuse. On connaît par WO 2013/128102 un procédé de production du trifluoroéthylène par hydrogénolyse du CTFE en phase gazeuse et en présence d'un catalyseur à base d'un métal du groupe VIII à pression atmosphérique et à des températures peu élevées. Il est connu de la demande PCT/FR2022/051054 que la réaction génère un flux de réaction comprenant, outre le trifluoroéthylène et du chlorotrifluoroéthylène n'ayant pas réagi, du 1,1,2-trifluoroéthane. Le chlorotrifluoroéthylène et le 1,1,2-trifluoroéthane forme un azéotrope dans certaines conditions. La récupération du chlorotrifluoroéthylène avec une pureté élevée en vue de son recyclage s'avère donc complexe. Il existe ainsi un besoin pour un procédé de purification du chlorotrifluoroéthylène. Résumé de l'invention Given the main risks above, the synthesis and storage of VF 3 pose particular problems and impose strict safety rules throughout these processes. A known route for preparing trifluoroethylene uses chlorotrifluoroethylene (CTFE) and hydrogen as starting products in the presence of a catalyst and in the gas phase. We know from WO 2013/128102 a process for producing trifluoroethylene by hydrogenolysis of CTFE in the gas phase and in the presence of a catalyst based on a metal from group VIII at atmospheric pressure and at low temperatures. It is known from application PCT/FR2022/051054 that the reaction generates a reaction stream comprising, in addition to trifluoroethylene and unreacted chlorotrifluoroethylene, 1,1,2-trifluoroethane. Chlorotrifluoroethylene and 1,1,2-trifluoroethane form an azeotrope under certain conditions. The recovery of chlorotrifluoroethylene with high purity for recycling is therefore complex. There is thus a need for a process for purifying chlorotrifluoroethylene. Summary of the invention
Selon un premier aspect, la présente invention fournit un procédé de purification du chlorotrifluoroéthylène (CTFE) à partir d'une première composition comprenant du chlorotrifluoroéthylène et du 1,1,2-trifluoroéthane (143), ledit procédé comprenant les étapes de : a) Distillation extractive de ladite première composition en présence d'au moins un agent d'extraction organique pour former i) une seconde composition comprenant ledit agent d'extraction organique et le 1,1,2-trifluoroéthane ; et ii) un premier courant comprenant le chlorotrifluoroéthylène, et b) Récupération et séparation de ladite seconde composition pour former un second courant comprenant ledit agent d'extraction organique et un troisième courant comprenant le 1,1,2-trifluoroéthane, de préférence ledit second courant est recyclé à l'étape a). According to a first aspect, the present invention provides a process for purifying chlorotrifluoroethylene (CTFE) from a first composition comprising chlorotrifluoroethylene and 1,1,2-trifluoroethane (143), said process comprising the steps of: a) Extractive distillation of said first composition in the presence of at least one organic extractant to form i) a second composition comprising said organic extractant and 1,1,2-trifluoroethane; and ii) a first stream comprising chlorotrifluoroethylene, and b) recovery and separation of said second composition to form a second stream comprising said organic extractant and a third stream comprising 1,1,2-trifluoroethane, preferably said second current is recycled in step a).
Selon un mode de réalisation préféré, ledit agent d'extraction organique a un point éclair supérieur à 13°C. According to a preferred embodiment, said organic extractant has a flash point greater than 13°C.
Selon un mode de réalisation préféré, ledit agent d'extraction organique est un composé comprenant de 2 à 12 atomes de carbone. According to a preferred embodiment, said organic extraction agent is a compound comprising from 2 to 12 carbon atoms.
Selon un mode de réalisation préféré, ledit agent d'extraction organique a une masse moléculaire inférieure à 200 g. mol 1. According to a preferred embodiment, said organic extraction agent has a molecular mass of less than 200 g. mol 1 .
Selon un mode de réalisation préféré, ledit agent d'extraction organique a un facteur de séparation Si, 2 supérieur ou égal à 2,0, ledit facteur de séparation étant calculé par la formule Si, 2 = (yi,s)/(y2,s) dans laquelle yi,s représente le coefficient d'activité du chlorotrifluoroéthylène dans ledit agent d'extraction organique à dilution infinie, y2,s représente le coefficient d'activité du 1,1,2-trifluoroéthane dans ledit agent d'extraction organique à dilution infinie, avantageusement, le facteur de séparation Si,2 est supérieur ou égal à 2,1, de préférence supérieur ou égal à 2,2, plus préférentiellement supérieur ou égal à 2,3, en particulier supérieur ou égal à 2,4, plus particulièrement supérieur ou égal à 2,5. According to a preferred embodiment, said organic extractant has a separation factor Si, 2 greater than or equal to 2.0, said separation factor being calculated by the formula Si, 2 = (yi,s)/(y2 ,s) in which yi,s represents the activity coefficient of chlorotrifluoroethylene in said organic extractant at infinite dilution, y2,s represents the activity coefficient of 1,1,2-trifluoroethane in said extractant organic with infinite dilution, advantageously, the separation factor Si, 2 is greater than or equal to 2.1, preferably greater than or equal to 2.2, more preferably greater than or equal to 2.3, in particular greater than or equal to 2 .4, more particularly greater than or equal to 2.5.
Selon un mode de réalisation préféré, ledit agent d'extraction organique a une capacité d'absorption C2,s supérieure ou égale à 0,20, ladite capacité d'absorption étant calculé par la formule C2,s = l/(y2,s) dans laquelle y2,s représente le coefficient d'activité du 1,1,2- trifluoroéthane dans ledit agent d'extraction organique à dilution infinie. Selon un mode de réalisation préféré, la première composition est une composition azéotropique ou quasi-azéotropique comprenant du chlorotrifluoroéthylène et du 1,1,2-trifluoroéthane. According to a preferred embodiment, said organic extraction agent has an absorption capacity C 2 ,s greater than or equal to 0.20, said absorption capacity being calculated by the formula C2,s = l/(y2, s) in which y2,s represents the activity coefficient of 1,1,2-trifluoroethane in said organic extractant at infinite dilution. According to a preferred embodiment, the first composition is an azeotropic or quasi-azeotropic composition comprising chlorotrifluoroethylene and 1,1,2-trifluoroethane.
Selon un mode de réalisation préféré, ledit agent d'extraction organique a un point de fusion inférieur à 0°C. According to a preferred embodiment, said organic extractant has a melting point below 0°C.
Selon un mode de réalisation préféré, l'étape b) est mise en oeuvre à une pression comprise de 1 à 10 bara, de préférence de 1 à 7 bara. According to a preferred embodiment, step b) is carried out at a pressure of 1 to 10 bara, preferably 1 to 7 bara.
Selon un mode de réalisation préféré, ledit agent d'extraction organique est sélectionné parmi le groupe consistant en beta-propiolactone, gamma-butyrolactone, l-hydroxy-2-propanone, acetonylacetone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1,2-ethanedioldiacetate, glycol, ethyloxalat, 3-oxobutanoicacid-l- methylethylester, ethyleneglycolmonomethyletheracetate, dimethylmaleate, triethylphosphate, triethyleneglycol, diethylmalonate, furfural, diethyleneglycol, t-butylacetoacetate, ethylsuccinate,According to a preferred embodiment, said organic extraction agent is selected from the group consisting of beta-propiolactone, gamma-butyrolactone, l-hydroxy-2-propanone, acetonylacetone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1, 2-ethanedioldiacetate, glycol, ethyloxalat, 3-oxobutanoicacid-l- methylethylester, ethyleneglycolmonomethyletheracetate, dimethylmaleate, triethylphosphate, triethyleneglycol, diethylmalonate, furfural, diethyleneglycol, t-butylacetoacetate, ethylsuccinate,
1.3-propanediol, cyclopentanone, propyleneglycol, 1-cyclopropylethanone, 2-methoxyethanol,1.3-propanediol, cyclopentanone, propylene glycol, 1-cyclopropylethanone, 2-methoxyethanol,
2.3-pentanedione, tripropyleneglycol, cyclohexanone, diethylcarbonate, 1,3-butanediol, 3- methoxy-l-butanol, 4-methyl-3-penten-2-one, l-methoxy2-propanol, phenylacetate, cycloheptanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 2,3-hexanedione, 3,4- hexanedione, citral, 1,5-pentanediol, diethyleneglycolmonobutylether, 4-phenyl-2-butanone, ethanol, n-butylacetate, 4-methyl-2-pentanone, 3-hexanone, 4,4-dimethyl-2-pentanone, 5-methyl- 2-hexanone, 2,2-dimethylcyclohexanone et éthylbenzoate. 2.3-pentanedione, tripropylene glycol, cyclohexanone, diethylcarbonate, 1,3-butanediol, 3-methoxy-l-butanol, 4-methyl-3-penten-2-one, l-methoxy2-propanol, phenylacetate, cycloheptanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 2,3-hexanedione, 3,4- hexanedione, citral, 1,5-pentanediol, diethyleneglycolmonobutylether, 4-phenyl-2-butanone, ethanol, n-butylacetate, 4-methyl-2-pentanone, 3- hexanone, 4,4-dimethyl-2-pentanone, 5-methyl-2-hexanone, 2,2-dimethylcyclohexanone and ethylbenzoate.
Selon un autre aspect, la présente invention fournit un procédé de production du trifluoroéthylène dans un réacteur muni d'un lit catalytique fixe comprenant un catalyseur, ledit procédé comprenant les étapes de : According to another aspect, the present invention provides a process for producing trifluoroethylene in a reactor provided with a fixed catalytic bed comprising a catalyst, said process comprising the steps of:
A') réaction du chlorotrifluoroéthylène avec de l'hydrogène en présence du catalyseur et en phase gazeuse pour produire un courant A comprenant du trifluoroéthylène, du chlorotrifluoroéthylène n'ayant pas réagi et du 1,1,2-trifluoroéthane ; A') reaction of chlorotrifluoroethylene with hydrogen in the presence of the catalyst and in the gas phase to produce a stream A comprising trifluoroethylene, unreacted chlorotrifluoroethylene and 1,1,2-trifluoroethane;
B') purification dudit courant A pour former un courant B1 comprenant du trifluoroéthylène et un courant B2 comprenant chlorotrifluoroéthylène et 1,1,2- trifluoroéthane, B') purification of said stream A to form a stream B1 comprising trifluoroethylene and a stream B2 comprising chlorotrifluoroethylene and 1,1,2-trifluoroethane,
C') mise en oeuvre du procédé de purification selon la présente invention à partir dudit courant B2. C') implementation of the purification process according to the present invention from said stream B2.
Description détaillée de l'invention Detailed description of the invention
Procédé de ion du CTFE Selon un premier aspect de la présente invention, un procédé de purification du chlorotrifluoroéthylène (CTFE) est fourni. En particulier, la présente invention permet de séparer le chlorotrifluoroéthylène du 1,1,2-trifluoroéthane (143). Des mélanges de chlorotrifluoroéthylène et de 1,1,2-trifluoroéthane sont obtenus lors de la mise en oeuvre des procédés de production du trifluoroéthylène. Le chlorotrifluoroéthylène et le 1,1,2-trifluoroéthane sont généralement obtenus sous la forme d'une composition azéotropique en fonction des conditions opératoires. Afin de récupérer le chlorotrifluoroéthylène, il est nécessaire de séparer les constituants de cette composition azéotropique. Le demandeur a de manière surprenante trouvé des agents d'extraction organique capable de séparer le chlorotrifluoroéthylène et le 1,1,2-trifluoroéthane par distillation extractive. CTFE ion process According to a first aspect of the present invention, a process for purifying chlorotrifluoroethylene (CTFE) is provided. In particular, the present invention makes it possible to separate chlorotrifluoroethylene from 1,1,2-trifluoroethane (143). Mixtures of chlorotrifluoroethylene and 1,1,2-trifluoroethane are obtained during the implementation of trifluoroethylene production processes. Chlorotrifluoroethylene and 1,1,2-trifluoroethane are generally obtained in the form of an azeotropic composition depending on the operating conditions. In order to recover the chlorotrifluoroethylene, it is necessary to separate the constituents of this azeotropic composition. The applicant has surprisingly found organic extraction agents capable of separating chlorotrifluoroethylene and 1,1,2-trifluoroethane by extractive distillation.
Ledit procédé de purification comprend les étapes de : a) Distillation extractive de ladite première composition en présence d'au moins un agent d'extraction organique pour former i) une seconde composition comprenant ledit agent d'extraction organique et le 1,1,2-trifluoroéthane ; et ii) un premier courant comprenant le chlorotrifluoroéthylène, b) Récupération et séparation de ladite seconde composition pour former un second courant comprenant ledit agent d'extraction organique et un troisième courant comprenant le 1,1,2-trifluoroéthane, de préférence ledit second courant est recyclé à l'étape a). Said purification process comprises the steps of: a) Extractive distillation of said first composition in the presence of at least one organic extracting agent to form i) a second composition comprising said organic extracting agent and 1,1,2 -trifluoroethane; and ii) a first stream comprising chlorotrifluoroethylene, b) recovery and separation of said second composition to form a second stream comprising said organic extractant and a third stream comprising 1,1,2-trifluoroethane, preferably said second stream is recycled to step a).
Selon un mode de réalisation préféré, ladite première composition comprend au moins 50% en poids de chlorotrifluoroéthylène, avantageusement au moins 60% en poids de chlorotrifluoroéthylène, de préférence au moins 70% en poids de chlorotrifluoroéthylène, en particulier au moins 80% en poids de chlorotrifluoroéthylène sur base du poids total de la première composition. According to a preferred embodiment, said first composition comprises at least 50% by weight of chlorotrifluoroethylene, advantageously at least 60% by weight of chlorotrifluoroethylene, preferably at least 70% by weight of chlorotrifluoroethylene, in particular at least 80% by weight of chlorotrifluoroethylene based on the total weight of the first composition.
Selon un mode de réalisation préféré, ladite première composition comprend au plus 30% en poids de 1,1,2-trifluoroéthane, avantageusement au plus 25% en poids de 1,1,2-trifluoroéthane, de préférence au plus 20% en poids de 1,1,2-trifluoroéthane, en particulier au plus 15% en poids de 1,1,2-trifluoroéthane sur base du poids total de la première composition. According to a preferred embodiment, said first composition comprises at most 30% by weight of 1,1,2-trifluoroethane, advantageously at most 25% by weight of 1,1,2-trifluoroethane, preferably at most 20% by weight of 1,1,2-trifluoroethane, in particular at most 15% by weight of 1,1,2-trifluoroethane based on the total weight of the first composition.
Selon un mode de réalisation préféré, la première composition est une composition azéotropique ou quasi-azéotropique comprenant du chlorotrifluoroéthylène et du 1,1,2-trifluoroéthane. According to a preferred embodiment, the first composition is an azeotropic or quasi-azeotropic composition comprising chlorotrifluoroethylene and 1,1,2-trifluoroethane.
Avantageusement, ladite première composition est azéotropique et comprend de 80% à 99,99% en poids de chlorotrifluoroéthylène sur base du poids total de ladite composition. De préférence, ladite première composition est azéotropique et comprend de 85% à 99,99% en poids de chlorotrifluoroéthylène sur base du poids total de ladite composition. En particulier, ladite première composition est azéotropique et comprend de 90% à 99,99% en poids de chlorotrifluoroéthylène sur base du poids total de ladite composition. Advantageously, said first composition is azeotropic and comprises from 80% to 99.99% by weight of chlorotrifluoroethylene based on the total weight of said composition. Preferably, said first composition is azeotropic and comprises from 85% to 99.99% by weight of chlorotrifluoroethylene based on the total weight of said composition. In particular, said first composition is azeotropic and comprises from 90% to 99.99% by weight of chlorotrifluoroethylene based on the total weight of said composition.
Avantageusement, ladite première composition est azéotropique et comprend de 0,01% à 20% en poids de 1,1,2-trifluoroéthane sur base du poids total de ladite composition. De préférence, ladite première composition est azéotropique et comprend de 0,01% à 15% en poids de 1,1,2- trifluoroéthane sur base du poids total de ladite composition. En particulier, ladite première composition est azéotropique et comprend de 0,01% à 10% en poids de 1,1,2-trifluoroéthane sur base du poids total de ladite composition. Advantageously, said first composition is azeotropic and comprises from 0.01% to 20% by weight of 1,1,2-trifluoroethane based on the total weight of said composition. Preferably, said first composition is azeotropic and comprises from 0.01% to 15% by weight of 1,1,2-trifluoroethane based on the total weight of said composition. In particular, said first composition is azeotropic and comprises from 0.01% to 10% by weight of 1,1,2-trifluoroethane based on the total weight of said composition.
De préférence, ladite première composition est azéotropique et a un point d'ébullition compris entre -40°C et 40°C, plus préférentiellement entre -35°C et 25°C. En particulier, ladite première composition est azéotropique et a un point d'ébullition compris entre -40°C et 40°C à une pression comprise entre 0,5 bara et 8 bara. Plus particulièrement, ladite première composition est azéotropique et a un point d'ébullition compris entre -35°C et 25°C à une pression comprise de 1 bara à 6 bara. Preferably, said first composition is azeotropic and has a boiling point of between -40°C and 40°C, more preferably between -35°C and 25°C. In particular, said first composition is azeotropic and has a boiling point of between -40°C and 40°C at a pressure of between 0.5 bara and 8 bara. More particularly, said first composition is azeotropic and has a boiling point of between -35°C and 25°C at a pressure of 1 bara to 6 bara.
Ainsi, ladite première composition est azéotropique et peut comprendre de 80% à 99,99% en poids de chlorotrifluoroéthylène et de de 0,01% à 20% en poids de 1,1,2-trifluoroéthane sur base du poids total de ladite composition ; et a un point d'ébullition compris entre -40°C et 40°C à une pression comprise entre 0,5 bara et 8 bara. Avantageusement, ladite première composition est azéotropique et comprend de 85% à 99,99% en poids de chlorotrifluoroéthylène et de 0,01% à 15% en poids de 1,1,2-trifluoroéthane sur base du poids total de ladite composition ; et a un point d'ébullition compris entre -40°C et 40°C à une pression comprise entre 0,5 bara et 8 bara. Plus particulièrement, ladite première composition est azéotropique et comprend de 90% à 99,99% en poids de chlorotrifluoroéthylène et de 0,01 à 10% en poids de 1,1,2-trifluoroéthane sur base du poids total de ladite composition ; et a un point d'ébullition compris entre -30°C et 25°C à une pression comprise de 1 bara à 6 bara. Thus, said first composition is azeotropic and can comprise from 80% to 99.99% by weight of chlorotrifluoroethylene and from 0.01% to 20% by weight of 1,1,2-trifluoroethane based on the total weight of said composition. ; and has a boiling point between -40°C and 40°C at a pressure between 0.5 bara and 8 bara. Advantageously, said first composition is azeotropic and comprises from 85% to 99.99% by weight of chlorotrifluoroethylene and from 0.01% to 15% by weight of 1,1,2-trifluoroethane based on the total weight of said composition; and has a boiling point between -40°C and 40°C at a pressure between 0.5 bara and 8 bara. More particularly, said first composition is azeotropic and comprises from 90% to 99.99% by weight of chlorotrifluoroethylene and from 0.01 to 10% by weight of 1,1,2-trifluoroethane based on the total weight of said composition; and has a boiling point between -30°C and 25°C at a pressure between 1 bara and 6 bara.
Selon un mode de réalisation préféré, ledit agent d'extraction organique est un solvant choisi parmi le groupe consistant en hydrocarbure, hydrohalocarbure, alcool, cétone, amine, ester, éther, aldéhyde, acide, nitrile, carbonate, thioalkyle, amide, hétérocycle, sulfate et phosphate. Avantageusement, ledit agent d'extraction organique est un solvant sélectionné parmi le groupe consistant en alcool, cétone, phosphate, ester et éther. According to a preferred embodiment, said organic extraction agent is a solvent chosen from the group consisting of hydrocarbon, hydrohalocarbon, alcohol, ketone, amine, ester, ether, aldehyde, acid, nitrile, carbonate, thioalkyl, amide, heterocycle, sulfate and phosphate. Advantageously, said organic extraction agent is a solvent selected from the group consisting of alcohol, ketone, phosphate, ester and ether.
Le terme « hydrocarbure » tel qu'utilisé ici se réfère à des composés linéaires ou branchés d'alcane en C1-C20, cycloalcane en C3-C20, alcène en C5-C20, cycloalcène en C5-C20, arène en Cg-Cis. Par exemple, le terme alcane se réfère à des composés de formule CnH2n+2 dans lequel n est compris entre 1 et 20. Le terme alcane en C1-C20 englobe par exemple le pentane, hexane, heptane, octane, nonane, décane ou des isomères de ceux-ci. Le terme alcène en C5-C20 se réfère à des composés hydrocarbonés comprenant une ou plusieurs doubles liaisons carbone-carbone et comprenant de 5 à 20 atomes de carbone. Le terme cycloalcane en C3-C20 se réfère à un cycle hydrocarboné saturé comprenant de 3 à 20 atomes de carbone. Le terme aryle en C6-Cis se réfère à des composés hydrocarbonés cycliques et aromatiques comprenant de 6 à 18 atomes de carbone. Le terme cycloalcène en C5-C20 se réfère à des composés hydrocarbonés cycliques comprenant de 5 à 20 atomes de carbone et comprenant une ou plusieurs doubles liaisons carbone-carbone. The term "hydrocarbon" as used herein refers to linear or branched compounds of C1-C20 alkane, C3-C20 cycloalkane, C5-C20 alkene, C5-C20 cycloalkene, Cg-Cis arene. For example, the term alkane refers to compounds with the formula C n H2n+2 in which n is included between 1 and 20. The term C1-C20 alkane includes for example pentane, hexane, heptane, octane, nonane, decane or isomers thereof. The term C5-C20 alkene refers to hydrocarbon compounds comprising one or more carbon-carbon double bonds and comprising 5 to 20 carbon atoms. The term C3-C20 cycloalkane refers to a saturated hydrocarbon ring comprising 3 to 20 carbon atoms. The term C 6 -Cis aryl refers to cyclic and aromatic hydrocarbon compounds comprising 6 to 18 carbon atoms. The term C5-C20 cycloalkene refers to cyclic hydrocarbon compounds comprising 5 to 20 carbon atoms and comprising one or more carbon-carbon double bonds.
Le terme « alkyle » désigne un radical monovalent issu d'un alcane, linéaire ou branché, comprenant de 1 à 20 atomes de carbone. Le terme « cycloalkyle » désigne un radical monovalent issu d'un cycloalcane comprenant de 3 à 20 atomes de carbone. Le terme « aryle » désigne un radical monovalent issu d'un arène comprenant de 6 à 18 atomes de carbone. Le terme « alkényle » désigne un radical monovalent de 2 à 20 atomes de carbone et au moins une double liaison carbone-carbone. Le terme « alkynyle » désigne un radical monovalent de 2 à 20 atomes de carbone et au moins une triple liaison carbone-carbone. Le terme « halogène » se réfère à un groupement -F, -Cl, -Br ou -I. Le terme « cycloalkényle » se réfère à un radical monovalent issu d'un cycloalcène comprenant de 3 à 20 atomes de carbone. Les substituants alkyle en C1-C20, alkényle en C2-C20, alkynyle en C2-C20, cycloalkyle en C3-C20, cycloalkényle en C3-C20, aryle en Cg-Cis peuvent être substitués ou non par un ou plusieurs substituants -OH, halogène, -NRaC(O)Rb, -C(O)NRaRb -CN, -NO2, -NRaRb, -ORa, -SRa, -CO2Ra, -OC(O)ORa, -OC(O)Ra, -C(O)H, -C(O)Ra, dans lequel Ra et Rb sont indépendamment l'un de l'autre hydrogène, alkyle en C1-C20 non substitué, alkényle en C2-C20 non substitué, alkynyle en C2-C20 non substitué, cycloalkyle en C3-C20 non substitué, cycloalkényle en C3- C20 non substitué, aryle en Cg-Cis non substitué. Dans les substituants -NRaRb, Ra et Rb peuvent former avec l'atome d'azote auquel ils sont rattachés un hétérocycle saturé ou insaturé, aromatique ou non, comprenant de 5 à 10 chaînons. The term “alkyl” designates a monovalent radical derived from an alkane, linear or branched, comprising from 1 to 20 carbon atoms. The term “cycloalkyl” designates a monovalent radical derived from a cycloalkane comprising from 3 to 20 carbon atoms. The term “aryl” designates a monovalent radical derived from an arene comprising 6 to 18 carbon atoms. The term “alkenyl” designates a monovalent radical of 2 to 20 carbon atoms and at least one carbon-carbon double bond. The term “alkynyl” designates a monovalent radical of 2 to 20 carbon atoms and at least one carbon-carbon triple bond. The term “halogen” refers to a group -F, -Cl, -Br or -I. The term “cycloalkenyl” refers to a monovalent radical derived from a cycloalkene comprising 3 to 20 carbon atoms. The C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, Cg-Cis aryl substituents may or may not be substituted by one or more -OH substituents, halogen, -NR a C(O)R b , -C(O)NR a R b -CN, -NO2, -NR a R b , -OR a , -SR a , -CO 2 R a , -OC( O)OR a , -OC(O)R a , -C(O)H, -C(O)R a , in which R a and R b are independently of each other hydrogen, C1- alkyl Unsubstituted C20, unsubstituted C2-C20 alkenyl, unsubstituted C2-C20 alkynyl, unsubstituted C3-C20 cycloalkyl, unsubstituted C3-C20 cycloalkenyl, unsubstituted Cg-Cis aryl. In the -NR a R b substituents, R a and R b can form with the nitrogen atom to which they are attached a saturated or unsaturated heterocycle, aromatic or not, comprising 5 to 10 members.
Le terme « hydrohalocarbures » se réfère à des composés de formule RaX dans laquelle Ra est sélectionné parmi alkyle en C1-C20, alkényle en C2-C20, alkynyle en C2-C20, cycloalkyle en C3-C20, cycloalkényle en C3-C20, aryle en Cg-Cis et X représente un atome de chlore, de fluor, de brome ou d'iode. Les substituants alkyle en C1-C20, alkényle en C2-C20, alkynyle en C2-C20, cycloalkyle en C3-C20, cycloalkényle en C3-C20, aryle en Cg-Cis peuvent être substitués ou non par un ou plusieurs substituants -OH, halogène, -NRaC(O)Rb, -C(O)NRaRb -CN, -NO2, -NRaRb, -ORa, -SRa, -CO2Ra, - OC(O)ORa, -OC(O)Ra, -C(O)H, -C(O)Ra, dans lequel Ra et Rb sont tels que définis ci-dessus. The term "hydrohalocarbons " refers to compounds of formula R a C20, aryl in Cg-Cis and X represents a chlorine, fluorine, bromine or iodine atom. The C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, Cg-Cis aryl substituents may or may not be substituted by one or more -OH substituents, halogen, -NR a C(O)R b , -C(O)NR a R b -CN, -NO 2 , -NR a R b , -OR a , -SR a , -CO 2 R a , - OC (O)OR a , -OC(O)R a , -C(O)H, -C(O)R a , in which R a and R b are as defined above.
Le terme « alcool » se réfère à des hydrocarbures ou hydrohalocarbures tels que définis ci-dessus dans lequel au moins un atome d'hydrogène est remplacé par un groupement hydroxyle -OH. Le terme « cétone » se réfère à des hydrocarbures comprenant au moins un ou plusieurs groupements fonctionnels carbonyle Rc-C(O)-Rd dans lequel Rc et Rd sont indépendamment l'un de l'autre un alkyle en C1-C20, alkényle en C2-C20, alkynyle en C2-C20, cycloalkyle en C3-C20, cycloalkényle en C3-C20, aryle en Cg-Cis peuvent être substitués ou non par un ou plusieurs substituants -OH, halogène, -NRaC(O)Rb, -C(O)NRaRb -CN, -NO2, -NRaRb, -ORa, -SRa, -CO2Ra, -OC(O)ORa, -OC(O)Ra, - C(O)H, -C(O)Ra, dans lequel Ra et Rb sont tels que définis ci-dessus, Rc et Rd pouvant être liés entre eux pour former avec le groupement carbonyle auquel ils sont rattachés une cétone cyclique comprenant de 4 à 10 chaînons, de préférence de 4 à 7 chaînons. La cétone cyclique peut également comprendre une ou plusieurs doubles liaisons carbone-carbone. La cétone cyclique peut également être substituée ou non par un ou plusieurs substituants tels que définis ci-dessus. The term "alcohol" refers to hydrocarbons or hydrohalocarbons as defined above in which at least one hydrogen atom is replaced by an -OH hydroxyl group. The term "ketone" refers to hydrocarbons comprising at least one or more carbonyl functional groups R c -C(O)-R d in which R c and R d are independently of each other a C1- alkyl C20, C2-C20 alkenyl, C2-C20 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, Cg-Cis aryl may or may not be substituted by one or more -OH, halogen, -NR a C substituents (O)R b , -C(O)NR a R b -CN, -NO 2 , -NR a R b , -OR a , -SR a , -CO 2 R a , -OC(O)OR a , -OC(O)R a , - C(O)H, -C(O)R a , in which R a and R b are as defined above, R c and R d being able to be linked together to form with the carbonyl group to which they are attached a cyclic ketone comprising from 4 to 10 members, preferably from 4 to 7 members. The cyclic ketone may also include one or more carbon-carbon double bonds. The cyclic ketone may also be substituted or not by one or more substituents as defined above.
Le terme « amine » se réfère à des hydrocarbures comprenant au moins un ou plusieurs groupements fonctionnels amine -NRcRd dans lequel Rc et Rd sont tels que définis ci-dessus, Rc et Rd pouvant être liés entre eux pour former avec l'atome d'azote auquel ils sont rattachés un hétérocycle aromatique ou non comprenant de 4 à 10 chaînons. The term "amine" refers to hydrocarbons comprising at least one or more amine functional groups -NR c R d in which R c and R d are as defined above, R c and R d being able to be linked together to form with the nitrogen atom to which they are attached an aromatic or non-aromatic heterocycle comprising 4 to 10 members.
Le terme « esters » se réfère à des composés de formule Rc-C(O)-O-Rd dans lequel Rc et Rd sont tels que définis ci-dessus, Rc et Rd pouvant être liés entre eux pour former avec le groupement ester un cycle comprenant de 4 à 20 atomes de carbone. The term "esters" refers to compounds of formula R c -C(O)-OR d in which R c and R d are as defined above, R c and R d being able to be linked together to form with the ester group has a cycle comprising 4 to 20 carbon atoms.
Le terme « éther » se réfère à des composés de formule Rc-O-Rd dans lequel Rc et Rd sont tels que définis ci-dessus, Rc et Rd pouvant être liés entre eux pour former avec l'atome d'oxygène auquel ils sont rattachés un hétérocycle comprenant de 4 à 20 atomes de carbone. The term "ether" refers to compounds of formula R c -OR d in which R c and R d are as defined above, R c and R d being able to be linked together to form with the atom of oxygen to which they are attached a heterocycle comprising 4 to 20 carbon atoms.
Le terme « aldéhyde » se réfère à des composés comprenant au moins un ou plusieurs groupements fonctionnels -C(O)-H. The term "aldehyde" refers to compounds comprising at least one or more -C(O)-H functional groups.
Le terme « nitrile » se réfère à des composés comprenant au moins un ou plusieurs groupements fonctionnels -CN. The term “nitrile” refers to compounds comprising at least one or more -CN functional groups.
Le terme « carbonate » se réfère à des composés de formule Rc-O-C(O)-O-Rd dans lequel Rc et Rd sont tels que définis ci-dessus. The term “carbonate” refers to compounds of formula R c -OC(O)-OR d in which R c and R d are as defined above.
Le terme « thioalkyle » concerne des composés de formule RcSRd dans laquelle Rc et Rd sont tels que définis ci-dessus. The term “thioalkyl” relates to compounds of formula R c SR d in which R c and R d are as defined above.
Le terme « phosphate » se réfère à des composés de formule P(ORC)3 dans laquelle Rc est, indépendamment pour chaque substituant, tel que défini ci-dessus. The term "phosphate" refers to compounds of formula P(OR C )3 in which R c is, independently for each substituent, as defined above.
Le terme « sulfate » se réfère à des composés de formule SO2(ORC)2 dans laquelle Rc est, indépendamment pour chaque substituant, tel que défini ci-dessus. The term "sulfate" refers to compounds of formula SO 2 (OR C )2 in which R c is, independently for each substituent, as defined above.
Le terme « acide » se réfère à des composés de formule RC-CC>2H dans laquelle Rc est tel que défini ci-dessus. Le terme « amide » concerne des composés de formule RcC(O)NReRd dans laquelle Rc et Rd sont tels que définis ci-dessus, Re ayant la même définition que Rc, Rc et Rd pouvant être liés entre eux pour former avec le groupement amide -C(O)N- auquel ils sont rattachés une amide cyclique comprenant de 4 à 10 chaînons, de préférence de 4 à 7 chaînons. L'amide cyclique peut également comprendre une ou plusieurs doubles liaisons carbone-carbone. L'amide cyclique peut également être substituée ou non par un ou plusieurs substituants tels que définis ci-dessus. The term "acid" refers to compounds of formula R C -CC>2H in which R c is as defined above. The term “amide” relates to compounds of formula R c C(O)NR e R d in which R c and R d are as defined above, R e having the same definition as R c , R c and R d which can be linked together to form, with the amide group -C(O)N- to which they are attached, a cyclic amide comprising from 4 to 10 members, preferably from 4 to 7 members. The cyclic amide may also include one or more carbon-carbon double bonds. The cyclic amide may also be substituted or not by one or more substituents as defined above.
Le terme « hétérocycle » désigne un cycle carboné comprenant de 4 à 10 chaînons dont au moins un des chaînons est un hétéroatome sélectionné parmi le groupe consistant en O, S, P et N. L'hétérocycle peut comprendre un ou plusieurs double liaison carbone-carbone ou une ou plusieurs double liaison carbone-hétéroatome ou une ou plusieurs double liaison hétéroatome- hétéroatome. De préférence, l'hétérocycle peut comprendre 1, 2, 3, 4 ou 5 hétéroatomes tel que défini ci-dessus. En particulier, l'hétérocycle peut comprendre 1, 2 ou 3 hétéroatomes sélectionné parmi l'oxygène, l'azote ou le soufre. De préférence, l'hétérocycle peut être un cycle carboné comprenant de 4 à 6 chaînons dont 1, 2 ou 3 chaînons sont des hétéroatomes sélectionnés parmi O ou N. L'hétérocycle peut être ou non substitué par un ou plusieurs substituant(s) choisi(s) parmi -OH, halogène, -NRaC(O)Rb, -C(O)NRaRb -CN, -NO2, -NRaRb, -ORa, -SRa, -CO2Ra, -OC(O)ORa, -OC(O)Ra, -C(O)H, -C(O)Ra dans lequel Ra et Rb sont tels que définis ci-dessus. The term “heterocycle” designates a carbon ring comprising 4 to 10 members of which at least one of the members is a heteroatom selected from the group consisting of O, S, P and N. The heterocycle may comprise one or more carbon-double bonds. carbon or one or more carbon-heteroatom double bonds or one or more heteroatom-heteroatom double bonds. Preferably, the heterocycle may comprise 1, 2, 3, 4 or 5 heteroatoms as defined above. In particular, the heterocycle may comprise 1, 2 or 3 heteroatoms selected from oxygen, nitrogen or sulfur. Preferably, the heterocycle may be a carbon ring comprising from 4 to 6 members of which 1, 2 or 3 members are heteroatoms selected from O or N. The heterocycle may or may not be substituted by one or more selected substituent(s). (s) among -OH, halogen, -NR a C(O)R b , -C(O)NR a R b -CN, -NO 2 , -NR a R b , -OR a , -SR a , - CO 2 R a , -OC(O)OR a , -OC(O)R a , -C(O)H, -C(O)R a in which R a and R b are as defined above.
Le terme « composition azéotropique » désigne un mélange liquide de deux ou plusieurs composés se comportant comme une substance unique, et qui bout à température fixe en gardant une composition en phase liquide identique à celle de la phase gaz. Le terme « composition quasi- azéotropique » désigne un mélange liquide de deux ou plusieurs composés ayant un point d'ébullition constant ou qui a tendance à ne pas se fractionner lorsqu'il est soumis à l'ébullition ou l'évaporation. The term “azeotropic composition” designates a liquid mixture of two or more compounds behaving like a single substance, and which boils at a fixed temperature while keeping a composition in the liquid phase identical to that of the gas phase. The term "quasi-azeotropic composition" means a liquid mixture of two or more compounds having a constant boiling point or which tends not to fractionate when subjected to boiling or evaporation.
Le terme « agent d'extraction organique » se réfère à un composé comprenant au moins un atome de carbone. The term “organic extractant” refers to a compound comprising at least one carbon atom.
Selon un mode de réalisation préféré, ledit agent d'extraction organique est un composé comprenant de 2 à 12 atomes de carbone, avantageusement de 2 à 11 atomes de carbone, de préférence de 2 à 10 atomes de carbone, plus préférentiellement de 2 à 9 atomes de carbone, en particulier de 2 à 8 atomes de carbone. According to a preferred embodiment, said organic extraction agent is a compound comprising from 2 to 12 carbon atoms, advantageously from 2 to 11 carbon atoms, preferably from 2 to 10 carbon atoms, more preferably from 2 to 9 carbon atoms, in particular 2 to 8 carbon atoms.
Ledit agent d'extraction organique a de préférence une masse moléculaire inférieure à 200 g.mol’ 1, avantageusement inférieure à 190 g.mol 1, de préférence inférieure à 180 g.mol 1, plus préférentiellement inférieure à 170 g.mol 1, en particulier inférieure à 160 g.mol 1. Said organic extraction agent preferably has a molecular mass of less than 200 g.mol' 1 , advantageously less than 190 g.mol 1 , preferably less than 180 g.mol 1 , more preferably less than 170 g.mol 1 , in particular less than 160 g.mol 1 .
Selon un mode de réalisation préféré, ledit agent d'extraction organique a un point de fusion inférieur à 50°C, avantageusement inférieur à 40°C, de préférence inférieur à 30°C, plus préférentiellement inférieur à 20°C, en particulier inférieur à 10°C, plus particulièrement inférieur à 0°C. According to a preferred embodiment, said organic extractant has a melting point lower than 50°C, advantageously lower than 40°C, preferably lower than 30°C, more preferably less than 20°C, in particular less than 10°C, more particularly less than 0°C.
Selon un mode de réalisation préféré, ledit agent d'extraction organique a un facteur de séparation Si, 2 supérieur ou égal à 2,0, ledit facteur de séparation étant calculé par la formule Si, 2 = (yi,s)/(y2,s) dans laquelle yi,s représente le coefficient d'activité du chlorotrifluoroéthylène dans ledit agent d'extraction organique à dilution infinie, 72, s représente le coefficient d'activité du 1,1,2-trifluoroéthane dans ledit agent d'extraction organique à dilution infinie, According to a preferred embodiment, said organic extractant has a separation factor Si, 2 greater than or equal to 2.0, said separation factor being calculated by the formula Si, 2 = (yi,s)/(y2 ,s) in which yi,s represents the activity coefficient of chlorotrifluoroethylene in said organic extractant at infinite dilution, 72, s represents the activity coefficient of 1,1,2-trifluoroethane in said extractant organic at infinite dilution,
Avantageusement, le facteur de séparation Si, 2 est supérieur ou égal à 2,1, de préférence supérieur ou égal à 2,2, plus préférentiellement supérieur ou égal à 2,3, en particulier supérieur ou égal à 2,4, plus particulièrement supérieur ou égal à 2,5. Advantageously, the separation factor Si, 2 is greater than or equal to 2.1, preferably greater than or equal to 2.2, more preferably greater than or equal to 2.3, in particular greater than or equal to 2.4, more particularly greater than or equal to 2.5.
Selon un mode de réalisation préféré, ledit agent d'extraction organique est sélectionné parmi le groupe consistant en ethylchloroacetate, ethylmercaptoacetate, phenylacetate, n-butylacetate, b- phenylethylacetate, sec-butylacetate, methyldichloroacetate, isoamylacetate, n-pentylacetate, propynol, 3-butyn-l-ol, 2-butyn-l-ol, 3-butyn-2-ol, ethanol, 2-propanol, alpha- methylcyclopropanemethanol, glycidylaldehyde, 2,4-hexadienal, 3-phenyl-2-propenal, benzaldehyde, 4-methylbenzaldehyde, hexanal, heptanal, acide 3-butenoique, acide propionique, acide 4-penténoique, acide 5-hexenoique, acide isobutyrique, acide butyrique, 4- ethylnitrobenzene, l,4-dimethyl-2-nitrobenzene, dimethylformamide, n,n-dimethylacetamide, methylformamide, n,n-dimethylpropanamide, n,n-dimethylbutanamide, n-butylacetamide, n- nitrosodimethylamine, 1-methylimidazol, n-(2-aminoethyl)-l,2-ethanediamine, tetramethylurea, 3,3’-iminodipropylamine, 2,2-diethoxyethanamine, tetraethylenepentamine, furfurylamine, n,n- dimethyl-l,3-benzenediamine, 4-morpholinepropanamine, 3-chlorobenzeneamine, anhydride de l'acide acétique, anhydride de l'acide propanoique, anhydride de l'acide isobutyrique, anhydride de l'acide butanoïque, nitromethane, nitroethane, 1,3-dioxane, 4-methyl-l,3-dioxane, beta- propiolactone, gamma-butyrolactone, dimethylmalonate, ethyl acetoacetate, 1,2- ethanedioldiacetate, ester méthylique de l'acide cyanoacetique, ester 2-propenyl de l'acide 3- oxobutanoic, ester diméthylique de l'acide pentanedioique, ethyloxalate, méthyle éthyle ester de l'acide 3-oxobutanoique, éthylène glycol monomethylether acétate, dimethylmaléate, ester éthylique de l'acide cyanoacetique, éthyle méthyle ester de l'acide butanedioïque, diethylmalonate, l'acide méthylique de l'acide 2-hydroxy-propanoique, t-butylacetoacetate, ethylsuccinate, ester éthylique de l'acide chloroacétique, allylidene diacetate, ester diéthylique de l'acide adipique, phenylacétate d'éthyle, phényle méthyle ester de l'acide acétique, ester dibutylique de l'acide (z)-2-butenedioique, 2-methylpropyl ester de l'acide acétique, ester 2- propenylique de l'acide butanoique, benzoate de méthyle, ester tetramethylique de l'acide silicique, ester butylique de l'acide 2-propenoique, 2-methylpropyl ester de l'acide propénoïque, ester pentylique de l'acide formique, ester cyclohexylique de l'acide acétique, ester éthylique de l'acide 3-methylbutanoique, benzoate d'éthyle, hexanoate de méthyle, diglyme, bis(2- chloroethyl)ether, crotyl glycol ether, éthylène glycol monobenzylether, diethyleneglycol monobutylether, 2-chloroethylethylether, diethylene glycol dibutylether, benzylmethylether, isoamylformate, 2,5,8,11-tetraoxadodecane, methylthiocyanate, ethylthiocyanate, ethylisothiocyanate, l-hydroxy-2-propanone, acetonylacetone, acetylacetone, 2-oxepanone, chloroacetone, n-methyl-2-pyrrolidinone, 5-ethyldihydro-2(3h)-furanone, l-bromo-2-propanone, 5-methyl-2(3h)-furanone, 2-cyclohexen-l-one, l-(4-methoxyphenyl)-2-propanone, cyclopentanone, 4-oh-4-me-2-pentanone, 4-methylene-2-oxetanone, 1-cyclopropylethanone, 1- phenyl-2-propanone, 2,3-pentanedione, isophorone, cyclohexanone, 2-methylcyclopentanone, 4- methyl-3-penten-2-one, cycloheptanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 2,3- hexanedione, 3,4-hexanedione, 4-phenyl-2-butanone, 2-hexanone, l-(3,4- dimethylphenyl)ethanone, 4-methyl-2-pentanone, 3-hexanone, 4-fluoroacetophenone, 4,4- dimethyl-2-pentanone, 5-methyl-2-hexanone, 2,2-dimethylcyclohexanone, 2-heptanone, 2,4- dimethyl-3-pentanone, 2,2-dimethyl-3-pentanone, 3-heptanone, 4-heptanone, 2-octanone, 2- methyl-l-phenyl-l-propanone, (ethylthio) acetic acid, 1,3-propanedithiol, 1,2-ethanedithiol, 1,3- dithiolane, 1,4-butanedithiol, pentanedinitrile, 2-methylpentanedinitrile, hydroxyacetonitrile, 3- chloropropanenitrile, 2-hydroxypropanenitrile, dimethylaminopropionitrile, (e)-2-butenenitrile, 3- butenenitrile, butyronitrile, 2-hydroxy-2-methylpropanenitrile, valeronitrile, phenylacetonitrile, hexanenitrile, benzenepropanenitrile, benzonitrile, heptanenitrile, 3-methylbenzonitrile, 2- methylbenzonitrile, octanenitrile, 3-fluorobenzonitrile, nonanonitrile, trimethylphosphate, propylene carbonate, tetramethylorthocarbonate, triethylphosphate, dimethylsulfate, tris(2- butoxyethyl)phosphate, diethylsulfate, diethylcarbonate, 2-(2-ethoxyethoxy)ethanolacetate, 2- ethoxyethanolacetate, 2-(2-butoxyethoxy)ethanolacetate, 2-butoxyethanolacetate, furfural, diethyleneglycolmonoethylether, 2-methoxyethanol, 2-2-(2-butoxyethoxy)ethoxyethanol, 3- methoxy-l-butanol, l-methoxy2-propanol, ethoxyethanol, 2-furanmethanol, tetrahydro-2h-pyran- 2-methanol, 3-methoxyphenol, l-propoxy-2-propanol, acide difluoroacétique, 2-fluoroethanol, 2- bromoethanolacetate, 2-chloroethanol, acide chlorosulfonique, 2,2-difluoroethanol, 2, 2,3,3- tetraflouro-l-propanol, acide 2-chloropropionique, l-chloro-2-methyl-2-propanol, 2,2’-oxybis(2,l- ethanediyloxy)bisethanol, 2,2’-(methylimino)bis-ethanol, 2-(2-methoxyethoxy)ethanol, 2- bromoethanol, 3-chloro-l-propanol, l,3-dichloro-2-propanol, ethylenecyanohydrin, 2- nitroethanol, 2-nitro-l-butanol, 2-amino-l-butanol, 3-pyridinemethanol, 2-(ethylamino)ethanol, 2- (dimethylamino)-ethanol, 3-(dimethylamino)-l-propanol, l-(dimethylamino)-2-propanol, divinylsulfone, 2,2'-thiobisethanol, 2-(ethylthio)-ethanol, glycol, triethyleneglycol, diethyleneglycol, 1,3-propanediol, propyleneglycol, tripropyleneglycol, 1,5-pentanediol, 2-methyl- 2,4-pentanediol, 2-ethoxyethylacrylate, ethyl butyrate, propyl propionate, ethylvalerate, n- butylpropionate, n-propylbutyrate, isobutylpropionate, isopropylbutyrate, diacetoxydimethylsilane, (3-chloropropyl)trimethoxy-silane, triethoxysilane, methylhydrazine, pyridazine, 2-methylpyridinel-oxide, 1-piperidinecarboxaldehyde, (chloromethyl)-oxirane, dimethylcarbamoylchloride, 4-pyridinecarboxaldehyde, 2-nitropropane, 1-acetylpiperidine, 1- nitropropane, 4-methoxybenzaldehyde, l,l'-oxybis-2-ethoxy-ethane, trimethylphosphite, tetrahydrofurfurylalcohol, 4-(2-hydroxyethyl)morpholine, 1,3-butanediol, 1,2-ethanedioldinitrate, 3-oxiranyl-7-oxabicyclo[4,l,0]heptane, dibutyloxalate, morpholine, ((1,1- dimethylethoxy)methyl)oxirane, 1,4-oxathiane, dimethoxytetrahydrofuran, triethylorthoformate,According to a preferred embodiment, said organic extraction agent is selected from the group consisting of ethylchloroacetate, ethylmercaptoacetate, phenylacetate, n-butylacetate, b-phenylethylacetate, sec-butylacetate, methyldichloroacetate, isoamylacetate, n-pentylacetate, propynol, 3- butyn-l-ol, 2-butyn-l-ol, 3-butyn-2-ol, ethanol, 2-propanol, alpha-methylcyclopropanemethanol, glycidylaldehyde, 2,4-hexadienal, 3-phenyl-2-propenal, benzaldehyde, 4-methylbenzaldehyde, hexanal, heptanal, 3-butenoic acid, propionic acid, 4-pentenoic acid, 5-hexenoic acid, isobutyric acid, butyric acid, 4- ethylnitrobenzene, l,4-dimethyl-2-nitrobenzene, dimethylformamide, n, n-dimethylacetamide, methylformamide, n,n-dimethylpropanamide, n,n-dimethylbutanamide, n-butylacetamide, n-nitrosodimethylamine, 1-methylimidazol, n-(2-aminoethyl)-l,2-ethanediamine, tetramethylurea, 3,3' -iminodipropylamine, 2,2-diethoxyethanamine, tetraethylenepentamine, furfurylamine, n,n-dimethyl-l,3-benzenediamine, 4-morpholinepropanamine, 3-chlorobenzeneamine, acetic acid anhydride, propanoic acid anhydride, l isobutyric acid, butanoic acid anhydride, nitromethane, nitroethane, 1,3-dioxane, 4-methyl-l,3-dioxane, beta- propiolactone, gamma-butyrolactone, dimethylmalonate, ethyl acetoacetate, 1,2- ethanedioldiacetate, cyanoacetic acid methyl ester, 3-oxobutanoic acid 2-propenyl ester, pentanedioic acid dimethyl ester, ethyloxalate, 3-oxobutanoic acid methyl ethyl ester, ethylene glycol monomethylether acetate, dimethylmaleate, ethyl ester cyanoacetic acid, ethyl methyl ester of butanedioic acid, diethylmalonate, methyl 2-hydroxy-propanoic acid, t-butylacetoacetate, ethylsuccinate, ethyl ester of chloroacetic acid, allylidene diacetate, diethyl ester adipic acid, ethyl phenylacetate, phenyl methyl ester, acetic acid ester (z)-2-butenedioic acid dibutyl, acetic acid 2-methylpropyl ester, butanoic acid 2-propenyl ester, methyl benzoate, silicic acid tetramethyl ester, butanoic acid butyl ester 2-propenoic acid, 2-methylpropyl ester of propenoic acid, pentyl ester of formic acid, cyclohexyl ester of acetic acid, ethyl ester of 3-methylbutanoic acid, ethyl benzoate, methyl hexanoate, diglyme, bis(2- chloroethyl)ether, crotyl glycol ether, ethylene glycol monobenzylether, diethylene glycol monobutylether, 2-chloroethylethylether, diethylene glycol dibutylether, benzylmethylether, isoamylformate, 2,5,8,11-tetraoxadodecane, methylthiocyanate, ethylthiocyanate, ethylisothiocyanate, l -hydroxy-2-propanone, acetonylacetone, acetylacetone, 2-oxepanone, chloroacetone, n-methyl-2-pyrrolidinone, 5-ethyldihydro-2(3h)-furanone, l-bromo-2-propanone, 5-methyl-2( 3h)-furanone, 2-cyclohexen-l-one, l-(4-methoxyphenyl)-2-propanone, cyclopentanone, 4-oh-4-me-2-pentanone, 4-methylene-2-oxetanone, 1-cyclopropylethanone , 1- phenyl-2-propanone, 2,3-pentanedione, isophorone, cyclohexanone, 2-methylcyclopentanone, 4- methyl-3-penten-2-one, cycloheptanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 2,3- hexanedione , 3,4-hexanedione, 4-phenyl-2-butanone, 2-hexanone, l-(3,4-dimethylphenyl)ethanone, 4-methyl-2-pentanone, 3-hexanone, 4-fluoroacetophenone, 4,4- dimethyl-2-pentanone, 5-methyl-2-hexanone, 2,2-dimethylcyclohexanone, 2-heptanone, 2,4- dimethyl-3-pentanone, 2,2-dimethyl-3-pentanone, 3-heptanone, 4- heptanone, 2-octanone, 2- methyl-l-phenyl-l-propanone, (ethylthio) acetic acid, 1,3-propanedithiol, 1,2-ethanedithiol, 1,3- dithiolane, 1,4-butanedithiol, pentanedinitrile, 2-methylpentanedinitrile, hydroxyacetonitrile, 3- chloropropanenitrile, 2-hydroxypropanenitrile, dimethylaminopropionitrile, (e)-2-butenenitrile, 3- butenenitrile, butyronitrile, 2-hydroxy-2-methylpropanenitrile, valeronitrile, phenylacetonitrile, hexanenitrile, benzenepropanenitrile, benzonitrile, heptanenitrile, 3-methylbenzonitrile, 2- methylbenzonitrile, octanenitrile, 3-fluorobenzonitrile, nonanonitrile, trimethylphosphate, propylene carbonate, tetramethylorthocarbonate, triethylphosphate, dimethylsulfate, tris(2- butoxyethyl)phosphate, diethylsulfate, diethylcarbonate, 2-(2-ethoxyethoxy)ethanolacetate, 2- ethoxyethanolacetate, 2-(2-butoxyethoxy)ethanolacetate, 2-butoxyethanolacetate, furfural, diethyleneglycolmonoethylether, 2-methoxyethanol, 2-2-(2-butoxyethoxy)ethoxyethanol, 3- methoxy-l-butanol, l-methoxy2-propanol, ethoxyethanol, 2-furanmethanol, tetrahydro-2h-pyran-2-methanol, 3-methoxyphenol, l-propoxy-2-propanol, difluoroacetic acid, 2-fluoroethanol, 2-bromoethanolacetate, 2-chloroethanol, chlorosulfonic acid, 2,2-difluoroethanol, 2, 2,3,3- tetraflouro-l-propanol, 2-chloropropionic acid, l-chloro-2-methyl-2-propanol, 2,2'-oxybis(2,l-ethanediyloxy)bisethanol, 2,2' -(methylimino)bis-ethanol, 2-(2-methoxyethoxy)ethanol, 2- bromoethanol, 3-chloro-l-propanol, 1,3-dichloro-2-propanol, ethylenecyanohydrin, 2- nitroethanol, 2-nitro-l-butanol, 2-amino-l-butanol, 3-pyridinemethanol, 2-(ethylamino)ethanol, 2-(dimethylamino)-ethanol, 3-(dimethylamino)-l-propanol, l-( dimethylamino)-2-propanol, divinylsulfone, 2,2'-thiobisethanol, 2-(ethylthio)-ethanol, glycol, triethyleneglycol, diethyleneglycol, 1,3-propanediol, propyleneglycol, tripropyleneglycol, 1,5-pentanediol, 2-methyl- 2,4-pentanediol, 2-ethoxyethylacrylate, ethyl butyrate, propyl propionate, ethylvalerate, n-butylpropionate, n-propylbutyrate, isobutylpropionate, isopropylbutyrate, diacetoxydimethylsilane, (3-chloropropyl)trimethoxy-silane, triethoxysilane, methylhydrazine, pyridazine, 2-methylpyridinel -oxide, 1-piperidinecarboxaldehyde, (chloromethyl)-oxirane, dimethylcarbamoylchloride, 4-pyridinecarboxaldehyde, 2-nitropropane, 1-acetylpiperidine, 1-nitropropane, 4-methoxybenzaldehyde, l,l'-oxybis-2-ethoxy-ethane, trimethylphosphite, tetrahydrofurfurylalcohol, 4-(2-hydroxyethyl)morpholine, 1,3-butanediol, 1,2-ethanedioldinitrate, 3-oxiranyl-7-oxabicyclo[4,l,0]heptane, dibutyloxalate, morpholine, ((1,1-dimethylethoxy )methyl)oxirane, 1,4-oxathiane, dimethoxytetrahydrofuran, triethylorthoformate,
3-chloropropanoylchloride, citral, pyrrole, allylacrylate, 3-methoxyaniline, 2-methylpyrazine, methylaminoacetaldehydedimethylacetal, (c-chloroethoxy)ethane, butyllactate, nitrocyclohexane,3-chloropropanoylchloride, citral, pyrrole, allylacrylate, 3-methoxyaniline, 2-methylpyrazine, methylaminoacetaldehydedimethylacetal, (c-chloroethoxy)ethane, butyllactate, nitrocyclohexane,
4-fluorobenzaldehyde, methoxyacetylchloride, 2-propen-l-ol, 2-ethylbutyraldehyde, 2- fluorobenzaldehyde, 1,6-heptadiyne, 2-nitrotoluene, methyl-2-chloroacrylate, 2- furancarbonylchloride, salicylicaldehyde, 4,5-dihydro-2-methylthiazole, l,4-difluoro-2- nitrobenzene, benzisoxazole, thiazole, m-fluoroaniline, l,4-dichloro-2-butyne, aniline, p- fluoroaniline, 1-methyl-lh-pyrrole, pyridine, 2,4-dimethylbenzaldehyde, methacrylalcohol, 2,3- dichlorobutane, chloroacetylchloride, 1,3-dichloropropane, 1,5-dichloro-pentane, 2,6- dimethylmorpholine, myristicin, 2,3-dimethylpyrazine, 2-butanoneoxime, 2-ethylnitrobenzene. Avantageusement, ledit agent d'extraction organique est sélectionné parmi le groupe consistant en phenylacetate, n-butylacetate, b-phenylethylacetate, sec-butylacetate, isoamylacetate, n- pentylacetate, ethanol, 2-propanol, alpha-methylcyclopropanemethanol, dimethylformamide, n,n- dimethylacetamide, methylformamide, n,n-dimethylpropanamide, n,n-dimethylbutanamide, n- butylacetamide, 1,3-dioxane, 4-methyl-l,3-dioxane, beta-propiolactone, gamma-butyrolactone, dimethylmalonate, ethyl acetoacetate, 1,2-ethanedioldiacetate, ester méthylique de l'acide cyanoacetique, ester 2-propenyl de l'acide 3-oxobutanoic, ester diméthylique de l'acide pentanedioique, ethyloxalate, méthyle éthyle ester de l'acide 3-oxobutanoique, éthylène glycol monomethylether acétate, dimethylmaléate, ester éthylique de l'acide cyanoacetique, éthyle méthyle ester de l'acide butanedioïque, diethylmalonate, l'acide méthylique de l'acide 2-hydroxy- propanoique, t-butylacetoacetate, ethylsuccinate, ester éthylique de l'acide chloroacétique, allylidene diacetate, ester diéthylique de l'acide adipique, phenylacétate d'éthyle, phényle méthyle ester de l'acide acétique, ester dibutylique de l'acide (z)-2-butenedioique, 2-methylpropyl ester de l'acide acétique, ester 2-propenylique de l'acide butanoique, benzoate de méthyle, ester tetramethylique de l'acide silicique, ester butylique de l'acide 2-propenoique, 2-methylpropyl ester de l'acide propénoïque, ester pentylique de l'acide formique, ester cyclohexylique de l'acide acétique, ester éthylique de l'acide 3-methylbutanoique, benzoate d'éthyle, hexanoate de méthyle, diglyme, bis(2-chloroethyl)ether, crotyl glycol ether, ethylene glycol monobenzylether, diethyleneglycol monobutylether, 2-chloroethylethylether, diethyleneglycol dibutylether, benzylmethylether, isoamylformate, 2,5,8,11-tetraoxadodecane, l-hydroxy-2-propanone, acetonylacetone, acetylacetone, 2-oxepanone, chloroacetone, n-methyl-2-pyrrolidinone, 5- ethyldihydro-2(3h)-furanone, l-bromo-2-propanone, 5-methyl-2(3h)-furanone, 2-cyclohexen-l- one, l-(4-methoxyphenyl)-2-propanone, cyclopentanone, 4-oh-4-me-2-pentanone, 4-methylene-4-fluorobenzaldehyde, methoxyacetylchloride, 2-propen-l-ol, 2-ethylbutyraldehyde, 2- fluorobenzaldehyde, 1,6-heptadiyne, 2-nitrotoluene, methyl-2-chloroacrylate, 2- furancarbonylchloride, salicylicaldehyde, 4,5-dihydro- 2-methylthiazole, l,4-difluoro-2-nitrobenzene, benzisoxazole, thiazole, m-fluoroaniline, l,4-dichloro-2-butyne, aniline, p-fluoroaniline, 1-methyl-lh-pyrrole, pyridine, 2, 4-dimethylbenzaldehyde, methacrylalcohol, 2,3- dichlorobutane, chloroacetylchloride, 1,3-dichloropropane, 1,5-dichloro-pentane, 2,6- dimethylmorpholine, myristicin, 2,3-dimethylpyrazine, 2-butanoneoxime, 2-ethylnitrobenzene. Advantageously, said organic extraction agent is selected from the group consisting of phenylacetate, n-butylacetate, b-phenylethylacetate, sec-butylacetate, isoamylacetate, n-pentylacetate, ethanol, 2-propanol, alpha-methylcyclopropanemethanol, dimethylformamide, n,n - dimethylacetamide, methylformamide, n,n-dimethylpropanamide, n,n-dimethylbutanamide, n-butylacetamide, 1,3-dioxane, 4-methyl-l,3-dioxane, beta-propiolactone, gamma-butyrolactone, dimethylmalonate, ethyl acetoacetate, 1,2-ethanedioldiacetate, cyanoacetic acid methyl ester, 3-oxobutanoic acid 2-propenyl ester, pentanedioic acid dimethyl ester, ethyloxalate, 3-oxobutanoic acid methyl ethyl ester, ethylene glycol monomethylether acetate, dimethylmaleate, cyanoacetic acid ethyl ester, butanedioic acid ethyl methyl ester, diethylmalonate, 2-hydroxy-propanoic acid methyl ester, t-butylacetoacetate, ethylsuccinate, chloroacetic acid ethyl ester , allylidene diacetate, adipic acid diethyl ester, ethyl phenylacetate, methyl phenyl acetic acid ester, (z)-2-butenedioic acid dibutyl ester, acetic acid 2-methylpropyl ester, butanoic acid 2-propenyl ester, methyl benzoate, acetic acid tetramethyl ester silicic acid, 2-propenoic acid butyl ester, 2-methylpropyl ester of propenoic acid, pentyl ester of formic acid, cyclohexyl ester of acetic acid, ethyl ester of 3-methylbutanoic acid, benzoate ethyl, methyl hexanoate, diglyme, bis(2-chloroethyl)ether, crotyl glycol ether, ethylene glycol monobenzylether, diethyleneglycol monobutylether, 2-chloroethylethylether, diethyleneglycol dibutylether, benzylmethylether, isoamylformate, 2,5,8,11-tetraoxadodecane, l-hydroxy-2-propanone, acetonylacetone, acetylacetone, 2-oxepanone, chloroacetone, n-methyl-2-pyrrolidinone, 5-ethyldihydro-2(3h)-furanone, l-bromo-2-propanone, 5-methyl-2 (3h)-furanone, 2-cyclohexen-l- one, l-(4-methoxyphenyl)-2-propanone, cyclopentanone, 4-oh-4-me-2-pentanone, 4-methylene-
2-oxetanone, 1-cyclopropylethanone, l-phenyl-2-propanone, 2,3-pentanedione, isophorone, cyclohexanone, 2-methylcyclopentanone, 4-methyl-3-penten-2-one, cycloheptanone, 3- methylcyclohexanone, 4-methylcyclohexanone, 2,3-hexanedione, 3,4-hexanedione, 4-phenyl-2- butanone, 2-hexanone, l-(3,4-dimethylphenyl)ethanone, 4-methyl-2-pentanone, 3-hexanone, 4- fluoroacetophenone, 4,4-dimethyl-2-pentanone, 5-methyl-2-hexanone, 2,2- dimethylcyclohexanone, 2-heptanone, 2,4-dimethyl-3-pentanone, 2,2-dimethyl-3-pentanone,2-oxetanone, 1-cyclopropylethanone, l-phenyl-2-propanone, 2,3-pentanedione, isophorone, cyclohexanone, 2-methylcyclopentanone, 4-methyl-3-penten-2-one, cycloheptanone, 3-methylcyclohexanone, 4- methylcyclohexanone, 2,3-hexanedione, 3,4-hexanedione, 4-phenyl-2-butanone, 2-hexanone, l-(3,4-dimethylphenyl)ethanone, 4-methyl-2-pentanone, 3-hexanone, 4 - fluoroacetophenone, 4,4-dimethyl-2-pentanone, 5-methyl-2-hexanone, 2,2-dimethylcyclohexanone, 2-heptanone, 2,4-dimethyl-3-pentanone, 2,2-dimethyl-3-pentanone ,
3-heptanone, 4-heptanone, 2-octanone, 2-methyl-l-phenyl-l-propanone, pentanedinitrile, 2- methylpentanedinitrile, hydroxyacetonitrile, 2-hydroxypropanenitrile, dimethylaminopropionitrile, (e)-2-butenenitrile, 3-butenenitrile, butyronitrile, 2-hydroxy-2-methylpropanenitrile, valeronitrile, phenylacetonitrile, hexanenitrile, heptanenitrile, octanenitrile, 3-fluorobenzonitrile, nonanonitrile, trimethylphosphate, propylene carbonate, tetramethylorthocarbonate, triethylphosphate, dimethylsulfate, tris(2-butoxyethyl)phosphate, diethylsulfate, diethylcarbonate, 2-(2- ethoxyethoxy)ethanolacetate, 2-ethoxyethanolacetate, 2-(2-butoxyethoxy)ethanolacetate, 2- butoxyethanolacetate, furfural, diethyleneglycolmonoethylether, 2-methoxyethanol, 2-2-(2- butoxyethoxy)ethoxyethanol, 3-methoxy-l-butanol, l-methoxy2-propanol, ethoxyethanol, 2- furanmethanol, tetrahydro-2h-pyran-2-methanol, 3-methoxyphenol, l-propoxy-2-propanol, 2,2’- oxybis(2,l-ethanediyloxy)bisethanol, 2,2’-(methylimino)bis-ethanol, 2-(2-methoxyethoxy)ethanol, glycol, triethyleneglycol, diethyleneglycol, 1,3-propanediol, propyleneglycol, tripropyleneglycol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 2-ethoxyethylacrylate, ethyl butyrate, propylpropionate, ethylvalerate, n-butylpropionate, n-propylbutyrate, isobutylpropionate, isopropyl butyrate, l,l’-oxybis-2-ethoxy-ethane, trimethylphosphite, tetrahydrofurfurylalcohol, 4- (2-hydroxyethyl)morpholine, 1,3-butanediol, 1,2-ethanedioldinitrate, 3-oxiranyl-7- oxabicyclo[4,l,0]heptane, dibutyloxalate, morpholine, ((l,l-dimethylethoxy)methyl)oxirane, dimethoxytetrahydrofuran, triethylorthoformate, citral, allylacrylate, butyllactate, nitrocyclohexane, 2-propen-l-ol, methacrylalcohol, 2,6-dimethylmorpholine, 2-butanoneoxime. De préférence, ledit agent d'extraction organique est sélectionné parmi le groupe consistant en phenylacetate, n-butylacetate, b-phenylethylacetate, sec-butylacetate, isoamylacetate, n- pentylacetate, ethanol, 2-propanol, alpha-methylcyclopropanemethanol, dimethylformamide, n,n- dimethylacetamide, methylformamide, n,n-dimethylpropanamide, n,n-dimethylbutanamide, n- butylacetamide, 1,3-dioxane, 4-methyl-l,3-dioxane, beta-propiolactone, gamma-butyrolactone, dimethylmalonate, ethyl acetoacetate, 1,2-ethanedioldiacetate, ester méthylique de l'acide cyanoacetique, ester 2-propenyl de l'acide 3-oxobutanoic, ester diméthylique de l'acide pentanedioique, ethyloxalate, méthyle éthyle ester de l'acide 3-oxobutanoique, éthylène glycol monomethylether acétate, dimethylmaléate, ester éthylique de l'acide cyanoacetique, éthyle méthyle ester de l'acide butanedioïque, diethylmalonate, l'acide méthylique de l'acide 2-hydroxy- propanoique, t-butylacetoacetate, ethylsuccinate, allylidene diacetate, ester diéthylique de l'acide adipique, phenylacétate d'éthyle, phényle méthyle ester de l'acide acétique, ester dibutylique de l'acide (z)-2-butenedioique, 2-methylpropyl ester de l'acide acétique, ester tetramethylique de l'acide silicique, ester butylique de l'acide 2-propenoique, 2-methylpropyl ester de l'acide propénoïque, ester pentylique de l'acide formique, ester cyclohexylique de l'acide acétique, ester éthylique de l'acide 3-methylbutanoique, hexanoate de méthyle, diglyme, crotyl glycol ether, diethyleneglycol monobutylether, diethyleneglycol dibutylether, isoamylformate, 2,5,8,11- tetraoxadodecane, l-hydroxy-2-propanone, acetonylacetone, acetylacetone, 2-oxepanone, n- methyl-2-pyrrolidinone, 5-ethyldihydro-2(3h)-furanone, 5-methyl-2(3h)-furanone, 2-cyclohexen-l- one, l-(4-methoxyphenyl)-2-propanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, 4- methylene-2-oxetanone, 1-cyclopropylethanone, 2,3-pentanedione, isophorone, cyclohexanone, 2-methylcyclopentanone, 4-methyl-3-penten-2-one, cycloheptanone, 3-methylcyclohexanone, 4- methylcyclohexanone, 2,3-hexanedione, 3,4-hexanedione, 4-phenyl-2-butanone, 2-hexanone, 4- methyl-2-pentanone, 3-hexanone, 4-fluoroacetophenone, 4,4-dimethyl-2-pentanone, 5-methyl-2- hexanone, 2,2-dimethylcyclohexanone, 2-heptanone, 2,4-dimethyl-3-pentanone, 2,2-dimethyl-3- pentanone, 3-heptanone, 4-heptanone, 2-octanone, 2-methyl-l-phenyl-l-propanone, pentanedinitrile, 2-methylpentanedinitrile, hydroxyacetonitrile, 2-hydroxypropanenitrile, dimethylaminopropionitrile, (e)-2-butenenitrile, 3-butenenitrile, butyronitrile, 2-hydroxy-2- methylpropanenitrile, valeronitrile, phenylacetonitrile, hexanenitrile, heptanenitrile, octanenitrile, nonanonitrile, trimethylphosphate, propylene carbonate, tetramethylorthocarbonate, triethylphosphate, tris(2-butoxyethyl)phosphate, diethylcarbonate, 2-(2- ethoxyethoxy)ethanolacetate, 2-ethoxyethanolacetate, 2-(2-butoxyethoxy)ethanolacetate, 2- butoxyethanolacetate, furfural, diethyleneglycolmonoethylether, 2-methoxyethanol, 2-2-(2- butoxyethoxy)ethoxyethanol, 3-methoxy-l-butanol, l-methoxy2-propanol, ethoxyethanol, 2- furanmethanol, tetrahydro-2h-pyran-2-methanol, 3-methoxyphenol, l-propoxy-2-propanol, 2,2'- oxybis(2,l-ethanediyloxy)bisethanol, 2-(2-methoxyethoxy)ethanol, glycol, triethyleneglycol, diethyleneglycol, 1,3-propanediol, propyleneglycol, tripropyleneglycol, 1,5-pentanediol, 2-methyl- 2,4-pentanediol, 2-ethoxyethylacrylate, ethyl butyrate, propyl propionate, ethylvalerate, n- butylpropionate, n-propylbutyrate, isobutylpropionate, isopropylbutyrate, l,l'-oxybis-2-ethoxy- ethane, tetrahydrofurfurylalcohol, 4-(2-hydroxyethyl)morpholine, 1,3-butanediol, 1,2- ethanedioldinitrate, 3-oxiranyl-7-oxabicyclo[4,l,0]heptane, dibutyloxalate, ((1,1- dimethylethoxy)methyl)oxirane, dimethoxytetrahydrofuran, triethylorthoformate, citral, allylacrylate, butyllactate, 2-propen-l-ol, methacrylalcohol, 2-butanoneoxime. 3-heptanone, 4-heptanone, 2-octanone, 2-methyl-l-phenyl-l-propanone, pentanedinitrile, 2- methylpentanedinitrile, hydroxyacetonitrile, 2-hydroxypropanenitrile, dimethylaminopropionitrile, (e)-2-butenenitrile, 3-butenenitrile, butyronitrile, 2-hydroxy-2-methylpropanenitrile, valeronitrile, phenylacetonitrile, hexanenitrile, heptanenitrile, octanenitrile, 3-fluorobenzonitrile, nonanonitrile, trimethylphosphate, propylene carbonate, tetramethylorthocarbonate, triethylphosphate, dimethyl sulfate, tris(2-butoxyethyl)phosphate, diethyl sulfate, diethylcarbonate, 2 -(2- ethoxyethoxy)ethanolacetate, 2-ethoxyethanolacetate, 2-(2-butoxyethoxy)ethanolacetate, 2- butoxyethanolacetate, furfural, diethyleneglycolmonoethylether, 2-methoxyethanol, 2-2-(2- butoxyethoxy)ethoxyethanol, 3-methoxy-l- butanol, l-methoxy2-propanol, ethoxyethanol, 2- furanmethanol, tetrahydro-2h-pyran-2-methanol, 3-methoxyphenol, l-propoxy-2-propanol, 2,2'- oxybis(2,l-ethanediyloxy)bisethanol , 2,2'-(methylimino)bis-ethanol, 2-(2-methoxyethoxy)ethanol, glycol, triethyleneglycol, diethyleneglycol, 1,3-propanediol, propyleneglycol, tripropyleneglycol, 1,5-pentanediol, 2-methyl-2, 4-pentanediol, 2-ethoxyethylacrylate, ethyl butyrate, propylpropionate, ethylvalerate, n-butylpropionate, n-propylbutyrate, isobutylpropionate, isopropyl butyrate, l,l'-oxybis-2-ethoxy-ethane, trimethylphosphite, tetrahydrofurfurylalcohol, 4- (2- hydroxyethyl)morpholine, 1,3-butanediol, 1,2-ethanedioldinitrate, 3-oxiranyl-7-oxabicyclo[4,l,0]heptane, dibutyloxalate, morpholine, ((l,l-dimethylethoxy)methyl)oxirane, dimethoxytetrahydrofuran, triethylorthoformate, citral, allylacrylate, butyllactate, nitrocyclohexane, 2-propen-l-ol, methacrylalcohol, 2,6-dimethylmorpholine, 2-butanoneoxime. Preferably, said organic extractant is selected from the group consisting of phenylacetate, n-butylacetate, b-phenylethylacetate, sec-butylacetate, isoamylacetate, n-pentylacetate, ethanol, 2-propanol, alpha-methylcyclopropanemethanol, dimethylformamide, n, n- dimethylacetamide, methylformamide, n,n-dimethylpropanamide, n,n-dimethylbutanamide, n-butylacetamide, 1,3-dioxane, 4-methyl-l,3-dioxane, beta-propiolactone, gamma-butyrolactone, dimethylmalonate, ethyl acetoacetate , 1,2-ethanedioldiacetate, cyanoacetic acid methyl ester, 3-oxobutanoic acid 2-propenyl ester, pentanedioic acid dimethyl ester, ethyloxalate, 3-oxobutanoic acid methyl ethyl ester, ethylene glycol monomethylether acetate, dimethylmaleate, cyanoacetic acid ethyl ester, butanedioic acid ethyl methyl ester, diethylmalonate, 2-hydroxy-propanoic acid methyl ester, t-butylacetoacetate, ethylsuccinate, allylidene diacetate, diethyl ester adipic acid, ethyl phenylacetate, phenyl methyl acetic acid ester, (z)-2-butenedioic acid dibutyl ester, 2-methylpropyl acetic acid ester, silicic acid tetramethyl ester , 2-propenoic acid butyl ester, 2-methylpropyl ester of propenoic acid, pentyl ester of formic acid, cyclohexyl ester of acetic acid, ethyl ester of 3-methylbutanoic acid, methyl hexanoate , diglyme, crotyl glycol ether, diethyleneglycol monobutylether, diethyleneglycol dibutylether, isoamylformate, 2,5,8,11- tetraoxadodecane, l-hydroxy-2-propanone, acetonylacetone, acetylacetone, 2-oxepanone, n- methyl-2-pyrrolidinone, 5 -ethyldihydro-2(3h)-furanone, 5-methyl-2(3h)-furanone, 2-cyclohexen-l-one, l-(4-methoxyphenyl)-2-propanone, cyclopentanone, 4-hydroxy-4-methyl -2-pentanone, 4- methylene-2-oxetanone, 1-cyclopropylethanone, 2,3-pentanedione, isophorone, cyclohexanone, 2-methylcyclopentanone, 4-methyl-3-penten-2-one, cycloheptanone, 3-methylcyclohexanone, 4 - methylcyclohexanone, 2,3-hexanedione, 3,4-hexanedione, 4-phenyl-2-butanone, 2-hexanone, 4-methyl-2-pentanone, 3-hexanone, 4-fluoroacetophenone, 4,4-dimethyl-2 -pentanone, 5-methyl-2- hexanone, 2,2-dimethylcyclohexanone, 2-heptanone, 2,4-dimethyl-3-pentanone, 2,2-dimethyl-3- pentanone, 3-heptanone, 4-heptanone, 2 -octanone, 2-methyl-l-phenyl-l-propanone, pentanedinitrile, 2-methylpentanedinitrile, hydroxyacetonitrile, 2-hydroxypropanenitrile, dimethylaminopropionitrile, (e)-2-butenenitrile, 3-butenenitrile, butyronitrile, 2-hydroxy-2-methylpropanenitrile , valeronitrile, phenylacetonitrile, hexanenitrile, heptanenitrile, octanenitrile, nonanonitrile, trimethylphosphate, propylene carbonate, tetramethylorthocarbonate, triethylphosphate, tris(2-butoxyethyl)phosphate, diethylcarbonate, 2-(2- ethoxyethoxy)ethanolacetate, 2-ethoxyethanolacetate, 2-(2- butoxyethoxy)ethanolacetate, 2- butoxyethanolacetate, furfural, diethyleneglycolmonoethylether, 2-methoxyethanol, 2-2-(2-butoxyethoxy)ethoxyethanol, 3-methoxy-l-butanol, l-methoxy2-propanol, ethoxyethanol, 2-furanmethanol, tetrahydro-2h-pyran-2-methanol , 3-methoxyphenol, l-propoxy-2-propanol, 2,2'- oxybis(2,l-ethanediyloxy)bisethanol, 2-(2-methoxyethoxy)ethanol, glycol, triethyleneglycol, diethyleneglycol, 1,3-propanediol, propyleneglycol , tripropylene glycol, 1,5-pentanediol, 2-methyl- 2,4-pentanediol, 2-ethoxyethylacrylate, ethyl butyrate, propyl propionate, ethylvalerate, n- butylpropionate, n-propylbutyrate, isobutylpropionate, isopropylbutyrate, l,l'-oxybis- 2-ethoxy-ethane, tetrahydrofurfurylalcohol, 4-(2-hydroxyethyl)morpholine, 1,3-butanediol, 1,2-ethanedioldinitrate, 3-oxiranyl-7-oxabicyclo[4,l,0]heptane, dibutyloxalate, ((1 ,1- dimethylethoxy)methyl)oxirane, dimethoxytetrahydrofuran, triethylorthoformate, citral, allylacrylate, butyllactate, 2-propen-l-ol, methacrylalcohol, 2-butanoneoxime.
Plus préférentiellement, ledit agent d'extraction organique est sélectionné parmi le groupe consistant en beta-propiolactone, gamma-butyrolactone, l-hydroxy-2-propanone, acetonylacetone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1,2-ethanedioldiacetate, glycol, ethyloxalat, 3-oxobutanoicacid-l- methylethylester, ethyleneglycolmonomethyletheracetate, dimethylmaleate, triethylphosphate, triethyleneglycol, diethylmalonate, furfural, diethylene glycol, t-butylacetoacetate, ethylsuccinate,More preferably, said organic extraction agent is selected from the group consisting of beta-propiolactone, gamma-butyrolactone, l-hydroxy-2-propanone, acetonylacetone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1,2-ethanedioldiacetate, glycol, ethyloxalat, 3-oxobutanoicacid-l- methylethylester, ethyleneglycolmonomethyletheracetate, dimethylmaleate, triethylphosphate, triethyleneglycol, diethylmalonate, furfural, diethylene glycol, t-butylacetoacetate, ethylsuccinate,
1.3-propanediol, cyclopentanone, propylene glycol, 1-cyclopropylethanone, 2-methoxyethanol,1.3-propanediol, cyclopentanone, propylene glycol, 1-cyclopropylethanone, 2-methoxyethanol,
2.3-pentanedione, tripropylene glycol, cyclohexanone, diethylcarbonate, 1,3-butanediol, 3- methoxy-l-butanol, 4-methyl-3-penten-2-one, l-methoxy2-propanol, phenylacetate, cycloheptanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 2,3-hexanedione, 3,4- hexanedione, citral, 1,5-pentanediol, diethylene glycol monobutylether, 4-phenyl-2-butanone, ethanol, n-butylacetate, 4-methyl-2-pentanone, 3-hexanone, 4,4-dimethyl-2-pentanone, 5-methyl- 2-hexanone, 2,2-dimethylcyclohexanone et ethyl benzoate. 2.3-pentanedione, tripropylene glycol, cyclohexanone, diethylcarbonate, 1,3-butanediol, 3-methoxy-l-butanol, 4-methyl-3-penten-2-one, l-methoxy2-propanol, phenylacetate, cycloheptanone, 3-methylcyclohexanone , 4-methylcyclohexanone, 2,3-hexanedione, 3,4-hexanedione, citral, 1,5-pentanediol, diethylene glycol monobutylether, 4-phenyl-2-butanone, ethanol, n-butylacetate, 4-methyl-2-pentanone , 3-hexanone, 4,4-dimethyl-2-pentanone, 5-methyl-2-hexanone, 2,2-dimethylcyclohexanone and ethyl benzoate.
En particulier, ledit agent d'extraction organique est sélectionné parmi le groupe consistant en trimethylphosphate, ethylacetoacetate, glycol, ethyl oxalate, triethyleneglycol, diethylmalonate, diethyleneglycol, 1,3-propanediol, propylene glycol, 2-methoxyethanol, ethanol et ethylbenzoate. Selon un mode de réalisation préféré, l'étape b) est mise en oeuvre à une pression comprise de 1 à 10 bara, de préférence de 1 à 7 bara. In particular, said organic extractant is selected from the group consisting of trimethylphosphate, ethylacetoacetate, glycol, ethyl oxalate, triethyleneglycol, diethylmalonate, diethyleneglycol, 1,3-propanediol, propylene glycol, 2-methoxyethanol, ethanol and ethylbenzoate. According to a preferred embodiment, step b) is carried out at a pressure of 1 to 10 bara, preferably 1 to 7 bara.
Selon un mode de réalisation préféré, ledit agent d'extraction organique a un point de fusion inférieur à 0°C, avantageusement inférieur à -5°C, de préférence inférieur à -10°C, en particulier inférieur à -20°C. According to a preferred embodiment, said organic extractant has a melting point lower than 0°C, advantageously lower than -5°C, preferably lower than -10°C, in particular lower than -20°C.
Selon un mode de réalisation préféré, lorsque l'étape b) est mise en oeuvre à une pression de 3 à 6 bara, ledit agent d'extraction organique a un point de fusion inférieur à 0°C. Ceci permet d'éviter la solidification dudit agent d'extraction en tête de colonne de distillation. Dans ce mode de réalisation préféré, ledit agent d'extraction organique est tel que décrit ci-dessus. According to a preferred embodiment, when step b) is carried out at a pressure of 3 to 6 bara, said organic extractant has a melting point below 0°C. This makes it possible to avoid the solidification of said extraction agent at the top of the distillation column. In this preferred embodiment, said organic extractant is as described above.
Selon un autre mode de réalisation préféré, lorsque l'étape b) est mise en oeuvre à une pression de 1 à 3 bara, ledit agent d'extraction organique a un point de fusion inférieur à -10°C, de préférence -20°C, en particulier -40°C. Selon cet autre mode de réalisation, ledit agent d'extraction organique est de préférence sélectionné parmi le groupe consistant en beta-propiolactone, gamma- butyrolactone, l-hydroxy-2-propanone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1,2-ethanedioldiacetate, glycol, ethyloxalate, 3- oxobutanoicacid-l-methylethylester, ethyleneglycolmonomethyletheracetate, dimethylmaleate, triethylphosphate, diethylmalonate, furfural, diethyleneglycol, t-butylacetoacetate, ethylsuccinate,According to another preferred embodiment, when step b) is carried out at a pressure of 1 to 3 bara, said organic extractant has a melting point lower than -10°C, preferably -20°C. C, in particular -40°C. According to this other embodiment, said organic extraction agent is preferably selected from the group consisting of beta-propiolactone, gamma-butyrolactone, l-hydroxy-2-propanone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1, 2-ethanedioldiacetate, glycol, ethyloxalate, 3- oxobutanoicacid-l-methylethylester, ethyleneglycolmonomethyletheracetate, dimethylmaleate, triethylphosphate, diethylmalonate, furfural, diethyleneglycol, t-butylacetoacetate, ethylsuccinate,
1.3-propanediol, cyclopentanone, propyleneglycol, 1-cyclopropylethanone, 2-methoxyethanol,1.3-propanediol, cyclopentanone, propylene glycol, 1-cyclopropylethanone, 2-methoxyethanol,
2.3-pentanedione, tripropyleneglycol, cyclohexanone, diethylcarbonate, 1,3-butanediol, 3- methoxy-l-butanol, 4-methyl-3-penten-2-one, l-methoxy-2-propanol, phenylacetate, cycloheptanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 2,3-hexanedione, 3,4- hexanedione, citral, 1,5-pentanediol, diethyleneglycolmonobutylether, 4-phenyl-2-butanone, ethanol, n-butylacetate, 4-methyl-2-pentanone, 3-hexanone, 4,4-dimethyl-2-pentanone, 5-methyl- 2-hexanone, 2,2-dimethylcyclohexanone et ethylbenzoate ; de préférence ledit agent d'extraction organique est sélectionné parmi le groupe consistant en beta-propiolactone, gamma- butyrolactone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1,2-ethanedioldiacetate, ethyloxalate, 3-oxobutanoicacid-l-methylethylester, ethyleneglycolmonomethyletheracetate, triethylphosphate, diethylmalonate, furfural, t- butylacetoacetate, ethylsuccinate, 1,3-propanediol, cyclopentanone, propyleneglycol, 1- cyclopropylethanone, 2-methoxyethanol, 2,3-pentanedione, tripropyleneglycol, cyclohexanone, diethylcarbonate, 1,3-butanediol, 3-methoxy-l-butanol, 4-methyl-3-penten-2-one, l-methoxy2- propanol, phenylacetate, cycloheptanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 2,3- hexanedione, diethyleneglycolmonobutylether, ethanol, n-butylacetate, 4-methyl-2-pentanone, 3- hexanone, 4,4-dimethyl-2-pentanone, 5-methyl-2-hexanone, 2,2-dimethylcyclohexanone et ethylbenzoate ; en particulier ledit agent d'extraction organique est sélectionné parmi le groupe consistant en gamma-butyrolactone, trimethylphosphate, propylene carbonate, dimethylmalonate, ethylacetoacetate, ethyloxalate, ethylene glycol monomethylether acetate, triethylphosphate, diethylmalonate, cyclopentanone, propylene glycol, 1-cyclopropylethanone, 2- methoxyethanol, 2,3-pentanedione, diethylcarbonate, 1,3-butanediol, 3-methoxy-l-butanol, 4- methyl-3-penten-2-one, l-methoxy2-propanol, 3-methylcyclohexanone, 4-methylcyclohexanone, diethylene glycol monobutylether, ethanol, n-butylacetate, 4-methyl-2-pentanone, 3-hexanone, 4,4-dimethyl-2-pentanone et 5-methyl-2-hexanone. 2.3-pentanedione, tripropylene glycol, cyclohexanone, diethylcarbonate, 1,3-butanediol, 3- methoxy-l-butanol, 4-methyl-3-penten-2-one, l-methoxy-2-propanol, phenylacetate, cycloheptanone, 3- methylcyclohexanone, 4-methylcyclohexanone, 2,3-hexanedione, 3,4-hexanedione, citral, 1,5-pentanediol, diethyleneglycolmonobutylether, 4-phenyl-2-butanone, ethanol, n-butylacetate, 4-methyl-2-pentanone, 3-hexanone, 4,4-dimethyl-2-pentanone, 5-methyl-2-hexanone, 2,2-dimethylcyclohexanone and ethylbenzoate; preferably said organic extraction agent is selected from the group consisting of beta-propiolactone, gamma-butyrolactone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1,2-ethanedioldiacetate, ethyloxalate, 3-oxobutanoicacid-l-methylethylester, ethyleneglycolmonomethyletheracetate , triethylphosphate, diethylmalonate, furfural, t-butylacetoacetate, ethylsuccinate, 1,3-propanediol, cyclopentanone, propyleneglycol, 1-cyclopropylethanone, 2-methoxyethanol, 2,3-pentanedione, tripropyleneglycol, cyclohexanone, diethylcarbonate, 1,3-butanediol, 3 -methoxy-l-butanol, 4-methyl-3-penten-2-one, l-methoxy2- propanol, phenylacetate, cycloheptanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 2,3- hexanedione, diethyleneglycolmonobutylether, ethanol, n-butylacetate , 4-methyl-2-pentanone, 3-hexanone, 4,4-dimethyl-2-pentanone, 5-methyl-2-hexanone, 2,2-dimethylcyclohexanone and ethylbenzoate; in particular said organic extraction agent is selected from the group consisting of gamma-butyrolactone, trimethylphosphate, propylene carbonate, dimethylmalonate, ethylacetoacetate, ethyloxalate, ethylene glycol monomethylether acetate, triethylphosphate, diethylmalonate, cyclopentanone, propylene glycol, 1-cyclopropylethanone, 2- methoxyethanol, 2,3-pentanedione, diethylcarbonate, 1,3-butanediol, 3-methoxy-l-butanol, 4-methyl-3-penten-2-one, l-methoxy2-propanol, 3-methylcyclohexanone, 4-methylcyclohexanone, diethylene glycol monobutylether, ethanol, n-butylacetate, 4-methyl-2-pentanone, 3-hexanone, 4,4-dimethyl-2-pentanone and 5-methyl-2-hexanone.
Procédé de production du trifluoroéthylène Trifluoroethylene production process
Selon un second aspect de la présente invention, un procédé de production du trifluoroéthylène est fourni. Ledit procédé est mis en oeuvre dans un réacteur muni d'un lit catalytique fixe comprenant un catalyseur. According to a second aspect of the present invention, a process for producing trifluoroethylene is provided. Said process is carried out in a reactor equipped with a fixed catalytic bed comprising a catalyst.
Ledit procédé comprend les étapes de : Said method comprises the steps of:
A') réaction du chlorotrifluoroéthylène avec de l'hydrogène en présence du catalyseur et en phase gazeuse pour produire un courant A comprenant du trifluoroéthylène, du chlorotrifluoroéthylène n'ayant pas réagi et du 1,1,2-trifluoroéthane ; A') reaction of chlorotrifluoroethylene with hydrogen in the presence of the catalyst and in the gas phase to produce a stream A comprising trifluoroethylene, unreacted chlorotrifluoroethylene and 1,1,2-trifluoroethane;
B') purification dudit courant A pour former un courant B1 comprenant du trifluoroéthylène et un courant B2 comprenant chlorotrifluoroéthylène et 1,1,2-trifluoroéthane, B') purification of said stream A to form a stream B1 comprising trifluoroethylene and a stream B2 comprising chlorotrifluoroethylene and 1,1,2-trifluoroethane,
C') mise en oeuvre du procédé de purification selon la présente invention à partir dudit courant B2. Selon un mode de réalisation préféré, le procédé est mis en oeuvre en continu. Selon un mode de réalisation préféré, l'hydrogène est sous forme anhydre. Selon un mode de réalisation préféré, le chlorotrifluoroéthylène est sous forme anhydre. La mise en oeuvre des procédés selon l'invention en présence d'hydrogène et/ou du chlorotrifluoroéthylène anhydre permet d'augmenter efficacement la durée de vie du catalyseur et ainsi la productivité globale du procédé. Le terme anhydre se réfère à une teneur massique en eau inférieure à 1000 ppm, avantageusement 500 ppm, de préférence inférieure à 200 ppm, en particulier inférieure à 100 ppm sur base du poids total du composé considéré. C') implementation of the purification process according to the present invention from said stream B2. According to a preferred embodiment, the process is carried out continuously. According to a preferred embodiment, the hydrogen is in anhydrous form. According to a preferred embodiment, the chlorotrifluoroethylene is in anhydrous form. Implementing the processes according to the invention in the presence of hydrogen and/or anhydrous chlorotrifluoroethylene makes it possible to effectively increase the life of the catalyst and thus the overall productivity of the process. The term anhydrous refers to a mass water content of less than 1000 ppm, advantageously 500 ppm, preferably less than 200 ppm, in particular less than 100 ppm based on the total weight of the compound considered.
Catalyseur Catalyst
De préférence, le catalyseur est à base d'un métal des colonnes 8 à 10 du tableau périodique des éléments. En particulier, le catalyseur est à base d'un métal sélectionné parmi le groupe consistant en Pd, Pt, Rh, et Ru ; de préférence palladium. Preferably, the catalyst is based on a metal from columns 8 to 10 of the periodic table of elements. In particular, the catalyst is based on a metal selected from the group consisting of Pd, Pt, Rh, and Ru; preferably palladium.
De préférence, le catalyseur est supporté. Le support est de préférence sélectionné parmi le groupe consistant en le charbon actif, un support à base d'aluminium, le carbonate de calcium, et le graphite. De préférence, le support est à base d'aluminium. En particulier, le support est de l'alumine. L'alumine peut être de l'alumine alpha. De préférence, l'alumine comprend au moins 90% d'alumine alpha. Il a été observé que la conversion de la réaction d'hydrogénolyse était améliorée lorsque l'alumine est une alumine alpha. Ainsi, le catalyseur est plus particulièrement du palladium supporté sur alumine, avantageusement du palladium supporté sur une alumine comprenant au moins 90% d'alumine alpha, de préférence du palladium supporté sur une alumine alpha. Preferably, the catalyst is supported. The support is preferably selected from the group consisting of activated carbon, an aluminum-based support, calcium carbonate, and graphite. Preferably, the support is based on aluminum. In particular, the support is alumina. The alumina may be alpha alumina. Preferably, the alumina comprises at least 90% alpha alumina. It was observed that the conversion of the hydrogenolysis reaction was enhanced when the alumina is alpha alumina. Thus, the catalyst is more particularly palladium supported on alumina, advantageously palladium supported on alumina comprising at least 90% alpha alumina, preferably palladium supported on alpha alumina.
De préférence, le palladium représente de 0,01% à 5% en poids sur base du poids total du catalyseur, de préférence de 0,1% à 2% en poids sur base du poids total du catalyseur. Preferably, palladium represents from 0.01% to 5% by weight based on the total weight of the catalyst, preferably from 0.1% to 2% by weight based on the total weight of the catalyst.
En particulier, ledit catalyseur comprend de 0,01% à 5% en poids de palladium supporté sur alumine, de préférence l'alumine comprend au moins 90% d'alumine alpha, plus préférentiellement l'alumine est une alumine alpha. In particular, said catalyst comprises from 0.01% to 5% by weight of palladium supported on alumina, preferably the alumina comprises at least 90% alpha alumina, more preferably the alumina is alpha alumina.
Activation du catalyseur Catalyst activation
Ledit catalyseur est de préférence activé avant son utilisation à l'étape A'). De préférence, l'activation du catalyseur est mise en oeuvre à haute température et en présence d'un agent réducteur, un gaz inerte ou un mélange de ceux-ci. Said catalyst is preferably activated before its use in step A'). Preferably, the activation of the catalyst is carried out at high temperature and in the presence of a reducing agent, an inert gas or a mixture thereof.
Selon un mode de réalisation particulier, l'agent réducteur est choisi dans le groupe constitué par l'hydrogène, le monoxyde de carbone, le monoxyde d'azote, le formaldéhyde, les alcanes en Ci-Cg et les hydrohalocarbures en Ci-Cio, ou un mélange de ceux-ci ; de préférence l'hydrogène ou un hydrohalocarbure en Ci-Cio, ou un mélange de ceux-ci ; en particulier l'hydrogène, chlorotrifluoroéthylène, trifluoroéthylène, chlorotrifluoroéthane, trifluoroéthane ou difluoroéthane ou un mélange de ceux-ci. According to a particular embodiment, the reducing agent is chosen from the group consisting of hydrogen, carbon monoxide, nitrogen monoxide, formaldehyde, Ci-Cg alkanes and Ci-Cio hydrohalocarbons, or a mixture of these; preferably hydrogen or a Ci-Cio hydrohalocarbon, or a mixture thereof; in particular hydrogen, chlorotrifluoroethylene, trifluoroethylene, chlorotrifluoroethane, trifluoroethane or difluoroethane or a mixture thereof.
Le gaz inerte peut être de l'azote ou de l'argon ; de préférence de l'azote. The inert gas can be nitrogen or argon; preferably nitrogen.
De préférence, l'activation du catalyseur est mise en oeuvre à une température comprise entre 100°C et 400°C, en particulier à une température comprise entre 150°C et 350°C. En particulier, l'activation du catalyseur est mise en oeuvre à une température comprise entre 100°C et 400°C, en particulier à une température comprise entre 150°C et 350°C, en présence d'hydrogène comme agent réducteur. Preferably, the activation of the catalyst is carried out at a temperature between 100°C and 400°C, in particular at a temperature between 150°C and 350°C. In particular, the activation of the catalyst is carried out at a temperature between 100°C and 400°C, in particular at a temperature between 150°C and 350°C, in the presence of hydrogen as reducing agent.
De préférence, la température du lit catalytique est augmentée au cours de l'activation d'une température Tl à une température T2. En particulier, la température du lit catalytique est augmentée d'une température Tl à une température T2 supérieure à Tl avec un gradient de température inférieure à 0,5°C/min. Le gradient de température mis en oeuvre permet d'éviter une dégradation précoce du catalyseur et ainsi de permettre un meilleur rendement ou une meilleure productivité de la réaction d'hydrogénolyse. En particulier, la température est augmentée avec un gradient de température inférieur à 0,45°C/min ou inférieur à 0,40°C/min, ou inférieur à 0,35°C/min, ou inférieur à 0,30°C/min, ou inférieur à 0,25°C/min, ou inférieur à 0,20°C/min, ou inférieur à 0,15°C/min, ou inférieur à 0,10°C/min, ou inférieur à 0,05°C/min. La température Tl représente la température initiale de l'étape d'activation. Cette température Tl peut être la température ambiante. Alternativement, la température Tl peut être comprise entre 0°C et 150°C, avantageusement entre 0°C et 120°C, de préférence entre 0°C et 100°C, plus préférentiellement entre 10°C et 100°C, en particulier entre 20°C et 100°C, plus particulièrement entre 20°C et 75°C, de manière privilégiée entre 20°C et 50°C. La température T2 représente la température à atteindre lors de la phase d'activation. La température T2 est avantageusement comprise entre 150°C et 400°C, de préférence entre 155°C et 375°C, plus préférentiellement entre 160°C et 350°C, en particulier entre 165°C et 325°C, plus particulièrement entre 170°C et 320°C, de manière privilégiée entre 175°C et 310°C, de manière plus privilégiée entre 180°C et 300°C. Selon un mode de réalisation préféré, le température T2 est avantageusement comprise entre 185°C et 290°C, de préférence entre 190°C et 280°C, plus préférentiellement entre 195°C et 270°C, en particulier entre 200°C et 260°C. La température T2 peut être maintenue de 5 min à 200h, de préférence de 10 min à lOOh, en particulier de 15 min à 75h, plus particulièrement de 30 min à 50h, de manière privilégiée de lh à 25h. La température T2 peut être maintenue de 5 min à 24h, de préférence de 10 min à 20h, en particulier de 15 min à 15h, plus particulièrement de 30 min à lOh, de manière privilégiée de lh à lOh. Preferably, the temperature of the catalytic bed is increased during activation from a temperature Tl to a temperature T2. In particular, the temperature of the catalytic bed is increased from a temperature Tl to a temperature T2 greater than Tl with a temperature gradient less than 0.5°C/min. The temperature gradient implemented makes it possible to avoid early degradation of the catalyst and thus to allow better yield or better productivity of the hydrogenolysis reaction. In particular, the temperature is increased with a temperature gradient less than 0.45°C/min or less than 0.40°C/min, or less than 0.35°C/min, or less than 0.30° C/min, or less than 0.25°C/min, or less than 0.20°C/min, or less than 0.15°C/min, or less than 0.10°C/min, or less at 0.05°C/min. The temperature Tl represents the initial temperature of the activation step. This temperature Tl can be the ambient temperature. Alternatively, the temperature Tl can be between 0°C and 150°C, advantageously between 0°C and 120°C, preferably between 0°C and 100°C, more preferably between 10°C and 100°C, in particularly between 20°C and 100°C, more particularly between 20°C and 75°C, preferably between 20°C and 50°C. The temperature T2 represents the temperature to be reached during the activation phase. The temperature T2 is advantageously between 150°C and 400°C, preferably between 155°C and 375°C, more preferably between 160°C and 350°C, in particular between 165°C and 325°C, more particularly between 170°C and 320°C, preferably between 175°C and 310°C, more preferably between 180°C and 300°C. According to a preferred embodiment, the temperature T2 is advantageously between 185°C and 290°C, preferably between 190°C and 280°C, more preferably between 195°C and 270°C, in particular between 200°C and 260°C. The temperature T2 can be maintained from 5 min to 200 h, preferably from 10 min to 100 h, in particular from 15 min to 75 h, more particularly from 30 min to 50 h, preferably from 1 h to 25 h. The temperature T2 can be maintained from 5 min to 24 h, preferably from 10 min to 8 p.m., in particular from 15 min to 3 p.m., more particularly from 30 min to 1 Oh, preferably from 1 h to 1 Oh.
De préférence, le flux gazeux utilisé pendant l'étape d'activation ne comprend pas d'oxygène. De préférence, l'étape d'activation peut être mise en oeuvre avec une quantité d'agent réducteur supérieure à 0,01 mol par gramme de catalyseur, de préférence supérieure à 0,05 par gramme de catalyseur. En particulier, l'étape d'activation peut être mise en oeuvre avec une quantité d'agent réducteur comprise entre 0,01 et 10 mol par gramme de catalyseur, de préférence entre 0,05 et 5 mol par gramme de catalyseur. Preferably, the gas flow used during the activation step does not include oxygen. Preferably, the activation step can be carried out with a quantity of reducing agent greater than 0.01 mol per gram of catalyst, preferably greater than 0.05 per gram of catalyst. In particular, the activation step can be carried out with a quantity of reducing agent of between 0.01 and 10 mol per gram of catalyst, preferably between 0.05 and 5 mol per gram of catalyst.
Selon un autre mode de réalisation, au cours de l'étape d'activation, la température du lit catalytique est augmentée d'une température Tl à une température T2 par paliers. L'activation du catalyseur par paliers permet de rendre le catalyseur plus performant. La mise en oeuvre de paliers permet d'éviter une dégradation du catalyseur. Il a également été observé que les propriétés du catalyseur étaient en outre d'autant plus améliorées si la montée en température entre les paliers est progressive et relativement lente par rapport aux conditions usuelles d'activation d'un catalyseur. Ainsi, de préférence, à l'étape d'activation, entre deux paliers, la température est augmentée avec un gradient de température inférieur à 0,5°C/min. Le gradient de température mis en oeuvre entre deux paliers permet d'éviter une dégradation précoce du catalyseur et ainsi de permettre un meilleur rendement ou une meilleure productivité de la réaction d'hydrogénolyse. En particulier, la température est augmentée avec un gradient de température inférieur 0,45°C/min ou inférieur à 0,40°C/min, ou inférieur à 0,35°C/min, ou inférieur à 0,30°C/min, ou inférieur à 0,25°C/min, ou inférieur à 0,20°C/min, ou inférieur à 0,15°C/min, ou inférieur à 0,10°C/min, ou inférieur à 0,05°C/min. La température Tl représente la température initiale de l'étape d'activation. Cette température Tl peut être la température ambiante. Alternativement, la température Tl peut être comprise entre 0°C et 150°C, avantageusement entre 0°C et 120°C, de préférence entre 0°C et 100°C, plus préférentiellement entre 10°C et 100°C, en particulier entre 20°C et 100°C, plus particulièrement entre 20°C et 75°C, de manière privilégiée entre 20°C et 50°C. La température T2 représente la température à atteindre lors de la phase d'activation. La température T2 est avantageusement comprise entre 150°C et 400°C, de préférence entre 155°C et 375°C, plus préférentiellement entre 160°C et 350°C, en particulier entre 165°C et 325°C, plus particulièrement entre 170°C et 320°C, de manière privilégiée entre 175°C et 310°C, de manière plus privilégiée entre 180°C et 300°C. Selon un mode de réalisation préféré, le température T2 est avantageusement comprise entre 185°C et 290°C, de préférence entre 190°C et 280°C, plus préférentiellement entre 195°C et 270°C, en particulier entre 200°C et 260°C. La température T2 peut être maintenue de 5min à 200h, de préférence de 10 min à lOOh, en particulier de 15 min à 75h, plus particulièrement de 30 min à 50h, de manière privilégiée de lh à 25h. La température T2 peut être maintenue de 5 min à 24h, de préférence de 10 min à 20h, en particulier de 15 min à 15h, plus particulièrement de 30 min à lOh, de manière privilégiée de lh à lOh. L'étape i') d'activation du catalyseur contient au moins un palier entre la température Tl et la température T2. L'étape i') d'activation du catalyseur peut comprendre plusieurs paliers entre la température Tl et la température T2. De préférence, l'étape d'activation comprend au moins un palier à une température Tla comprise entre 90 et 120°C. La présence d'un palier entre 90°C et 120°C est à privilégier pour augmenter la durée de vie du catalyseur. L'étape d'activation peut également comprendre un ou plusieurs paliers entre la température Tl et Tla et/ou entre la température Tla et T2. De préférence, chaque palier entre la température Tl et la température T2 peut durer entre 5 min et 200 h, de préférence entre 10 min et 100 h, en particulier entre 15 min et 75h, plus particulièrement entre 30 min et 50h. En particulier, chaque palier entre la température Tl et la température T2 peut durer entre 5 min et 24h, de préférence entre 10 min et 20h, en particulier entre 15 min et 15h, plus particulièrement entre 30 min et lOh. En particulier, le palier à la température Tla peut durer entre 5 min et 200 h, de préférence entre 10 min et 100 h, en particulier entre 15 min et 75h, plus particulièrement entre 30 min et 50h. De manière privilégiée, le palier à la température Tla peut durer entre 5 min et 24h, de préférence entre 10 min et 20h, en particulier entre 15 min et 15h, plus particulièrement entre 30 min et lOh. According to another embodiment, during the activation step, the temperature of the catalytic bed is increased from a temperature Tl to a temperature T2 in steps. Activating the catalyst in stages makes the catalyst more efficient. The implementation of bearings makes it possible to avoid degradation of the catalyst. It was also observed that the properties of the catalyst were further improved if the rise in temperature between the levels is progressive and relatively slow compared to the usual conditions for activating a catalyst. Thus, preferably, at the activation step, between two levels, the temperature is increased with a temperature gradient of less than 0.5°C/min. The temperature gradient implemented between two levels makes it possible to avoid early degradation of the catalyst and thus to allow better yield or better productivity of the hydrogenolysis reaction. In particular, the temperature is increased with a temperature gradient less than 0.45°C/min or less than 0.40°C/min, or less than 0.35°C/min, or less than 0.30°C /min, or less than 0.25°C/min, or less than 0.20°C/min, or less than 0.15°C/min, or less than 0.10°C/min, or less than 0.05°C/min. The temperature Tl represents the initial temperature of the activation step. This temperature Tl can be the ambient temperature. Alternatively, the temperature Tl can be between 0°C and 150°C, advantageously between 0°C and 120°C, preferably between 0°C and 100°C, more preferably between 10°C and 100°C, in particularly between 20°C and 100°C, more particularly between 20°C and 75°C, preferably between 20°C and 50°C. The temperature T2 represents the temperature to be reached during the activation phase. The temperature T2 is advantageously between 150°C and 400°C, preferably between 155°C and 375°C, more preferably between 160°C and 350°C, in particular between 165°C and 325°C, more particularly between 170°C and 320°C, preferably between 175°C and 310°C, more preferably between 180°C and 300°C. According to a preferred embodiment, the temperature T2 is advantageously between 185°C and 290°C, preferably between 190°C and 280°C, more preferably between 195°C and 270°C, in particular between 200°C and 260°C. The temperature T2 can be maintained from 5 min to 200 h, preferably from 10 min to 100 h, in particular from 15 min to 75 h, more particularly from 30 min to 50 h, preferably from 1 h to 25 h. The temperature T2 can be maintained from 5 min to 24 h, preferably from 10 min to 8 p.m., in particular from 15 min to 3 p.m., more particularly from 30 min to 1 Oh, preferably from 1 h to 1 Oh. Step i') of activating the catalyst contains at least one stage between temperature Tl and temperature T2. Step i') of activating the catalyst may include several stages between temperature Tl and temperature T2. Preferably, the activation step comprises at least one level at a temperature Tla of between 90 and 120°C. The presence of a level between 90°C and 120°C is preferred to increase the lifespan of the catalyst. The activation step may also include one or more stages between the temperature Tl and Tla and/or between the temperature Tla and T2. Preferably, each level between temperature Tl and temperature T2 can last between 5 min and 200 h, preferably between 10 min and 100 h, in particular between 15 min and 75 h, more particularly between 30 min and 50 h. In particular, each level between temperature Tl and temperature T2 can last between 5 min and 24 hours, preferably between 10 min and 20 hours, in particular between 15 min and 15 hours, more particularly between 30 min and 1 Oh. In particular, the plateau at temperature Tla can last between 5 min and 200 h, preferably between 10 min and 100 h, in particular between 15 min and 75 h, more particularly between 30 min and 50 h. Preferably, the plateau at temperature Tla can last between 5 min and 24 hours, preferably between 10 min and 20 hours, in particular between 15 min and 15 hours, more particularly between 30 min and 1 Oh.
Le flux gazeux utilisé au cours de l'étape d'activation peut être différent au cours du temps. Par exemple, le flux gazeux peut comprendre un gaz inerte entre deux paliers et par exemple comprendre un agent réducteur entre deux autres paliers. En particulier, le flux gazeux comprend un gaz inerte lorsque l'étape d'activation est mise en oeuvre entre la température Tl et Tla et le flux gazeux comprend un agent réducteur, de préférence l'hydrogène ou des hydrohalocarbures en Ci-Cio tels que définis ci-dessus, lorsque l'étape d'activation est mise en oeuvre entre la température Tla et T2. Ainsi, le flux gazeux utilisé pendant l'étape d'activation est modifié pendant le palier mis en oeuvre à la température Tla. Alternativement, le flux gazeux peut comprendre un agent réducteur tel que l'hydrogène ou des hydrohalocarbures en Ci-Cio tels que définis ci-dessus tout au long de l'étape d'activation, optionnellement en mélange avec un gaz inerte tel que de l'azote. Il a été observé que l'utilisation d'un agent réducteur tel que l'hydrogène ou des hydrohalocarbures en Ci-Cio tels que définis ci-dessus, optionnellement en mélange avec un gaz inerte tel que de l'azote, lors de la montée en température entre la température Tla dudit palier et la température T2 représente un avantage supplémentaire en terme de productivité. Comme mentionné ci-dessus, la température T2 est maintenue pendant une certaine durée. Au cours de ce palier à la température T2, le flux gazeux peut être modifié. Ainsi, le flux gazeux au cours du palier à la température T2 peut comprendre de l'hydrogène ou un hydrohalocarbure en Ci-Cio tels que définis ci-dessus ; en particulier le flux gazeux au cours du palier à la température T2 peut comprendre de l'hydrogène, du chlorotrifluoroéthylène, trifluoroéthane, trifluoroéthylène, chlorotrifluoroéthane ou du difluoroéthane. De préférence, l'étape d'activation peut être mise en oeuvre avec une quantité d'agent réducteur supérieure à 0,01 par gramme de catalyseur, de préférence supérieure à 0,05 par gramme de catalyseur. En particulier, l'étape d'activation peut être mise en oeuvre avec une quantité d'agent réducteur comprise entre 0,01 et 10 mol par gramme de catalyseur, de préférence entre 0,05 et 5 mol par gramme de catalyseur. The gas flow used during the activation step may be different over time. For example, the gas flow may comprise an inert gas between two bearings and for example comprise a reducing agent between two other bearings. In particular, the gas flow includes an inert gas when the activation step is carried out between the temperature Tl and Tla and the gas flow comprises a reducing agent, preferably hydrogen or Ci-Cio hydrohalocarbons as defined above, when the The activation step is implemented between the temperature Tla and T2. Thus, the gas flow used during the activation step is modified during the stage implemented at temperature Tla. Alternatively, the gas flow may comprise a reducing agent such as hydrogen or Ci-Cio hydrohalocarbons as defined above throughout the activation step, optionally in mixture with an inert gas such as 'nitrogen. It has been observed that the use of a reducing agent such as hydrogen or Ci-Cio hydrohalocarbons as defined above, optionally in mixture with an inert gas such as nitrogen, during the rise in temperature between the temperature Tla of said bearing and the temperature T2 represents an additional advantage in terms of productivity. As mentioned above, the temperature T2 is maintained for a certain period of time. During this stage at temperature T2, the gas flow can be modified. Thus, the gas flow during the stage at temperature T2 may comprise hydrogen or a Ci-Cio hydrohalocarbon as defined above; in particular the gas flow during the stage at temperature T2 may comprise hydrogen, chlorotrifluoroethylene, trifluoroethane, trifluoroethylene, chlorotrifluoroethane or difluoroethane. Preferably, the activation step can be carried out with a quantity of reducing agent greater than 0.01 per gram of catalyst, preferably greater than 0.05 per gram of catalyst. In particular, the activation step can be carried out with a quantity of reducing agent of between 0.01 and 10 mol per gram of catalyst, preferably between 0.05 and 5 mol per gram of catalyst.
Selon un autre mode de réalisation, l'étape d'activation comprend la mise en contact dudit catalyseur avec un flux gazeux qui comprend du chlorotrifluoroéthylène, et optionnellement de l'hydrogène. Il a été remarqué que le chlorotrifluoroéthylène (CTFE) permettait d'activer le catalyseur, en particulier lorsque que de l'hydrogène est également présent. Ceci permet une amélioration du procédé de production du trifluoroéthylène. L'activation en présence de CTFE permet d'activer le catalyseur à plus basse température et fournit donc un procédé moins consommateur en énergie. Le procédé est en outre simplifié puisque l'agent réducteur pendant l'activation est aussi un des réactifs pour la réaction ultérieure. De préférence, dans ce mode de réalisation, l'étape d'activation est mise en oeuvre à une température T2' inférieure à 100°C. Cette température T2' peut être atteinte à partir d'une température Tl' en utilisant un gradient de température faible. Ainsi, au cours de l'étape d'activation, la température du lit catalytique est augmentée d'une température Tl' à une température T2' supérieure à Tl', de préférence la température du lit catalytique est augmentée d'une température Tl' à une température T2' supérieure à Tl' avec un gradient de température inférieure à 0,5°C/min. Le gradient de température mis en œuvre permet d'éviter une dégradation précoce du catalyseur et ainsi de permettre un meilleur rendement ou une meilleure productivité de la réaction d'hydrogénolyse. En particulier, la température est augmentée avec un gradient de température inférieur 0,45°C/min ou inférieur à 0,40°C/min, ou inférieur à 0,35°C/min, ou inférieur à 0,30°C/min, ou inférieur à 0,25°C/min, ou inférieur à 0,20°C/min, ou inférieur à 0,15°C/min, ou inférieur à 0,10°C/min, ou inférieur à 0,05°C/min. According to another embodiment, the activation step comprises bringing said catalyst into contact with a gas flow which comprises chlorotrifluoroethylene, and optionally hydrogen. It was noted that chlorotrifluoroethylene (CTFE) enabled the catalyst to be activated, particularly when hydrogen was also present. This allows an improvement in the trifluoroethylene production process. Activation in the presence of CTFE makes it possible to activate the catalyst at a lower temperature and therefore provides a process that consumes less energy. The process is further simplified since the reducing agent during activation is also one of the reactants for the subsequent reaction. Preferably, in this embodiment, the activation step is carried out at a temperature T2' lower than 100°C. This temperature T2' can be reached from a temperature Tl' using a low temperature gradient. Thus, during the activation step, the temperature of the catalytic bed is increased from a temperature Tl' to a temperature T2' greater than Tl', preferably the temperature of the catalytic bed is increased by a temperature Tl' at a temperature T2' greater than Tl' with a temperature gradient less than 0.5°C/min. The temperature gradient implemented makes it possible to avoid early degradation of the catalyst and thus to allow better yield or better productivity of the hydrogenolysis reaction. In particular, the temperature is increased with a temperature gradient less than 0.45°C/min or less than 0.40°C/min, or less than 0.35°C/min, or less than 0.30°C /min, or less than 0.25°C/min, or less than 0.20°C/min, or less than 0.15°C/min, or less than 0.10°C/min, or less than 0.05°C/min.
De préférence, la température du lit catalytique est augmentée par l'augmentation du temps de contact calculé comme étant le rapport entre le volume, en litre, de catalyseur et le débit total dudit flux gazeux, en normaux litres par seconde, à l'entrée du réacteur. Le temps de contact est compris entre 1 et 60 secondes, de préférence entre 5 et 45 secondes, en particulier entre 10 et 30 secondes, plus particulièrement entre 15 et 25 secondes. La température Tl' peut être comprise entre 0°C et 50°C, avantageusement entre 10°C et 50°C, de préférence entre 20°C et 50°C. De préférence, la température T2' est inférieure à la température T3 de mise en œuvre de l'étape A'). La température T3 est de préférence comprise entre 100°C et 180°C, plus préférentiellement entre 100°C et 160°C, en particulier entre 120°C et 160°C. Preferably, the temperature of the catalytic bed is increased by increasing the contact time calculated as the ratio between the volume, in liters, of catalyst and the total flow rate of said gas flow, in normal liters per second, at the inlet. of the reactor. The contact time is between 1 and 60 seconds, preferably between 5 and 45 seconds, in particular between 10 and 30 seconds, more particularly between 15 and 25 seconds. The temperature Tl' can be between 0°C and 50°C, advantageously between 10°C and 50°C, preferably between 20°C and 50°C. Preferably, the temperature T2' is lower than the temperature T3 for implementing step A'). The temperature T3 is preferably between 100°C and 180°C, more preferably between 100°C and 160°C, in particular between 120°C and 160°C.
Régénération du catalyseur Catalyst regeneration
Ledit catalyseur utilisé dans le présent procédé peut être régénéré. Cette étape de régénération peut être mise en œuvre dans une gamme de température du lit catalytique comprise entre 90°C et 450°C. De préférence, l'étape de régénération est mise en œuvre en présence d'hydrogène. La mise en œuvre de l'étape de régénération permet d'améliorer le rendement de la réaction par rapport au rendement initial avant régénération. Said catalyst used in the present process can be regenerated. This regeneration step can be implemented in a temperature range of the catalytic bed between 90°C and 450°C. Preferably, the regeneration step is carried out in the presence of hydrogen. The implementation of the regeneration step makes it possible to improve the yield of the reaction compared to the initial yield before regeneration.
Selon un mode de réalisation préféré, l'étape de régénération peut être mise en œuvre à une température du lit catalytique de 90°C à 300°C, de préférence à une température du lit catalytique de 90°C à 250°C, plus préférentiellement de 90°C à 200°C, en particulier de 90°C à 175°C, plus particulièrement à une température du lit catalytique de 90°C à 150°C. En particulier, la mise en œuvre de l'étape de régénération à une température basse, par exemple de 90°C à 200°C ou de 90°C à 175°C ou de 90°C à 150°C permet la désorption de composés néfastes à l'activité du catalyseur et/ou de limiter des transitions de phase modifiant la structure du catalyseur. According to a preferred embodiment, the regeneration step can be carried out at a catalytic bed temperature of 90°C to 300°C, preferably at a catalytic bed temperature of 90°C to 250°C, more preferably from 90°C to 200°C, in particular from 90°C to 175°C, more particularly at a temperature of the catalytic bed of 90°C to 150°C. In particular, carrying out the regeneration step at a low temperature, for example from 90°C to 200°C or from 90°C to 175°C or from 90°C to 150°C, allows the desorption of compounds harmful to the activity of the catalyst and/or to limit phase transitions modifying the structure of the catalyst.
Selon un autre mode de réalisation préféré, l'étape de régénération peut être mise en œuvre à une température du lit catalytique supérieure à 200°C, avantageusement supérieure à 230°C, de préférence supérieure à 250°C, en particulier supérieure à 300°C. L'étape de régénération peut être mise en œuvre périodiquement en fonction de la productivité ou de la conversion obtenue à l'étape a). L'étape de régénération peut être mise en œuvre avantageusement à une température du lit catalytique comprise entre 200°C et 300°C, de préférence entre 205°C et 295°C, plus préférentiellement entre 210°C et 290°C, en particulier entre 215°C et 290°C, plus particulièrement entre 220°C et 285°C, de manière privilégiée entre 225°C et 280°C, de manière plus privilégiée entre 230°C et 280°C. Alternativement, l'étape de régénération peut être mise en œuvre à une température comprise entre 300°C et 450°C, de préférence entre 300°C et 400°C. Le catalyseur régénéré peut être réutilisé à l'étape A') du présent procédé. According to another preferred embodiment, the regeneration step can be carried out at a temperature of the catalytic bed greater than 200°C, advantageously greater than 230°C, preferably greater than 250°C, in particular greater than 300°C. °C. The regeneration step can be implemented periodically depending on the productivity or conversion obtained in the step has). The regeneration step can be carried out advantageously at a temperature of the catalytic bed between 200°C and 300°C, preferably between 205°C and 295°C, more preferably between 210°C and 290°C, in particularly between 215°C and 290°C, more particularly between 220°C and 285°C, preferably between 225°C and 280°C, more preferably between 230°C and 280°C. Alternatively, the regeneration step can be carried out at a temperature between 300°C and 450°C, preferably between 300°C and 400°C. The regenerated catalyst can be reused in step A') of the present process.
Réaction d'hydrogénolyse Hydrogenolysis reaction
Le procédé comprend, comme mentionné ci-dessus, une étape de réaction d'hydrogénolyse du chlorotrifluoroéthylène avec de l'hydrogène pour produire un courant comprenant du trifluoroéthylène. L'étape d'hydrogénolyse est mise en œuvre en présence d'un catalyseur et en phase gazeuse. De préférence, l'étape d'hydrogénolyse est mise en œuvre en présence d'un catalyseur préalablement activé et en phase gazeuse. L'étape d'hydrogénolyse consiste à introduire simultanément de l'hydrogène, le CTFE et optionnellement un gaz inerte, comme l'azote, en phase gazeuse et en présence dudit catalyseur, de préférence activé. The process comprises, as mentioned above, a reaction step of hydrogenolysis of chlorotrifluoroethylene with hydrogen to produce a stream comprising trifluoroethylene. The hydrogenolysis step is carried out in the presence of a catalyst and in the gas phase. Preferably, the hydrogenolysis step is carried out in the presence of a previously activated catalyst and in the gas phase. The hydrogenolysis step consists of simultaneously introducing hydrogen, CTFE and optionally an inert gas, such as nitrogen, in the gas phase and in the presence of said catalyst, preferably activated.
De préférence, ladite étape A') est mise en œuvre à une température du lit catalytique fixe comprise entre 50°C et 250°C. Ladite étape A') peut être mise en œuvre à une température du lit catalytique fixe comprise entre 50°C et 240°C, avantageusement entre 50°C et 230°C, de préférence entre 50°C et 220°C, plus préférentiellement entre 50°C et 210°C, en particulier entre 50°C et 200°C. Ladite étape a) peut également être mise en œuvre à une température du lit catalytique fixe comprise entre 60°C et 250°C, avantageusement entre 70°C et 250°C, de préférence entre 80°C et 250°C, plus préférentiellement entre 90°C et 250°C, en particulier entre 100°C et 250°C, plus particulièrement entre 120°C et 250°C. Ladite étape A') peut également être mise en œuvre à une température du lit catalytique fixe comprise entre 60°C et 240°C, avantageusement entre 70°C et 230°C, de préférence entre 80°C et 220°C, plus préférentiellement entre 90°C et 210°C, en particulier entre 100°C et 200°C, plus particulièrement entre 100°C et 180°C, de manière privilégiée entre 100°C et 160°C, de manière particulièrement préférée entre 120°C et 160°C. Preferably, said step A') is carried out at a fixed catalytic bed temperature of between 50°C and 250°C. Said step A') can be carried out at a temperature of the fixed catalytic bed of between 50°C and 240°C, advantageously between 50°C and 230°C, preferably between 50°C and 220°C, more preferably between 50°C and 210°C, in particular between 50°C and 200°C. Said step a) can also be implemented at a temperature of the fixed catalytic bed of between 60°C and 250°C, advantageously between 70°C and 250°C, preferably between 80°C and 250°C, more preferably between 90°C and 250°C, in particular between 100°C and 250°C, more particularly between 120°C and 250°C. Said step A') can also be implemented at a temperature of the fixed catalytic bed of between 60°C and 240°C, advantageously between 70°C and 230°C, preferably between 80°C and 220°C, more preferably between 90°C and 210°C, in particular between 100°C and 200°C, more particularly between 100°C and 180°C, preferably between 100°C and 160°C, particularly preferably between 120°C °C and 160°C.
Le rapport molaire H2/CTFE est compris entre 0,5/1 à 2/1 et de préférence compris entre 1/1 à 1,2/1. Si un gaz inerte comme de l'azote est présent à l'étape A'), le rapport molaire azote/Fh est compris entre 0/1 à 2/1 et de préférence compris entre 0/1 à 1/1. The H2/CTFE molar ratio is between 0.5/1 to 2/1 and preferably between 1/1 to 1.2/1. If an inert gas such as nitrogen is present in step A'), the nitrogen/Fh molar ratio is between 0/1 to 2/1 and preferably between 0/1 to 1/1.
L'étape A') est de préférence mise en œuvre à une pression de 0,05 MPa à 1,1 MPa, plus préférentiellement de 0,05 MPa à 0,5 MPa, en particulier à pression atmosphérique. Le temps de contact calculé comme étant le rapport entre le volume, en litre, de catalyseur et le débit total du mélange gazeux, en normaux litres par seconde, à l'entrée du réacteur, est compris entre 1 et 60 secondes, de préférence entre 5 et 45 secondes, en particulier entre 10 et 30 secondes, plus particulièrement entre 15 et 25 secondes. Step A') is preferably carried out at a pressure of 0.05 MPa to 1.1 MPa, more preferably from 0.05 MPa to 0.5 MPa, in particular at atmospheric pressure. The contact time calculated as the ratio between the volume, in liters, of catalyst and the total flow rate of the gas mixture, in normal liters per second, at the reactor inlet, is between 1 and 60 seconds, preferably between 5 and 45 seconds, particularly between 10 and 30 seconds, more particularly between 15 and 25 seconds.
Exemples Examples
Méthode de sélection de l'agent d'extraction organique Method for selection of organic extractant
La sélection de l'agent d'extraction organique est déterminée par l'utilisation du modèle Cosmo-RS implémenté dans le logiciel COSMOTHERM. Pour ce couple binaire sélectionné, un facteur de séparation est calculé pour chacun des solvants étudiés par l'équation suivante : The selection of the organic extraction agent is determined by the use of the Cosmo-RS model implemented in the COSMOTHERM software. For this selected binary pair, a separation factor is calculated for each of the solvents studied by the following equation:
Si, 2 = (YI,S)/(Y2,S) dans laquelle If, 2 = (YI,S)/(Y2,S) in which
Yi,s représente le coefficient d'activité du premier composé 1 dans l'agent d'extraction organique considéré à dilution infinie, Yi,s represents the activity coefficient of the first compound 1 in the organic extraction agent considered at infinite dilution,
Y2,S représente le coefficient d'activité du second composé 2 du couple binaire dans l'agent d'extraction organique considéré à dilution infinie, Y2,S represents the activity coefficient of the second compound 2 of the binary couple in the organic extraction agent considered at infinite dilution,
Une capacité d'absorption est également calculée pour chacun des solvants étudiés et pour un couple binaire (1,2) considéré. La capacité d'absorption est calculée par la formule C2,s = l/(Y2,s) dans laquelle Y2,s représente le coefficient d'activité du second composé du couple binaire considéré dans ledit agent d'extraction organique étudié à dilution infinie. An absorption capacity is also calculated for each of the solvents studied and for a binary couple (1,2) considered. The absorption capacity is calculated by the formula C2,s = l/(Y2,s) in which Y2,s represents the activity coefficient of the second compound of the binary couple considered in said organic extraction agent studied at infinite dilution .
Les calculs sont répétés pour chaque agent d'extraction organique étudié. Des valeurs minimales de facteur de séparation et de capacité d'absorption sont identifiées afin de permettre une séparation suffisante entre le premier composé et le second composé du couple binaire (1,2) considéré. The calculations are repeated for each organic extractant studied. Minimum separation factor and absorption capacity values are identified in order to allow sufficient separation between the first compound and the second compound of the binary pair (1,2) considered.
Exemple 1 Example 1
Dans cet exemple, la séparation entre le chlorotrifluoroéthylène (CTFE) et le 1,1,2-trifluoroéthane est considéré. Les agents d'extraction organique ayant un facteur de séparation Si,2 supérieur à 2 sont aptes à séparer un mélange comprenant le chlorotrifluoroéthylène (CTFE) et le 1,1,2- trifluoroéthane. In this example, the separation between chlorotrifluoroethylene (CTFE) and 1,1,2-trifluoroethane is considered. Organic extraction agents having a separation factor Si, 2 greater than 2 are capable of separating a mixture comprising chlorotrifluoroethylene (CTFE) and 1,1,2-trifluoroethane.
[Tableau 1] [Table 1]
Tableau 1 - Capacité et Facteur de séparation de l'agent d'extraction organique
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Table 1 - Capacity and Separation Factor of the organic extractant
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Les résultats sont confirmés à partir d'un mélange comprenant 90-95% en poids de chlorotrifluoroéthylène et 5-10% en poids de 1,1,2-trifluoroéthane sur base du poids total du mélange. Celui-ci est distillé sous 1 bara avec l'un des agents d'extraction suivants : glycol, 1,3- propanediol, propylène glycol ou éthanol. Le mélange à séparer est introduit dans une colonne de distillation à pression atmosphérique. L'agent d'extraction est introduit en continu en tête de la colonne de distillation. Le chlorotrifluoroéthylène est récupéré en tête de colonne de distillation. Le 1,1,2-trifluoroéthane et l'agent d'extraction sont récupérés en pied de colonne de distillation. The results are confirmed from a mixture comprising 90-95% by weight of chlorotrifluoroethylene and 5-10% by weight of 1,1,2-trifluoroethane based on the total weight of the mixture. This is distilled under 1 bara with one of the following extraction agents: glycol, 1,3-propanediol, propylene glycol or ethanol. The mixture to be separated is introduced into a distillation column at atmospheric pressure. The extractant is introduced continuously at the top of the distillation column. The chlorotrifluoroethylene is recovered at the top of the distillation column. The 1,1,2-trifluoroethane and the extraction agent are recovered at the bottom of the distillation column.

Claims

Revendications Claims
1. Procédé de purification du chlorotrifluoroéthylène (CTFE) à partir d'une première composition comprenant du chlorotrifluoroéthylène et du 1,1,2-trifluoroéthane (143), ledit procédé comprenant les étapes de : a) Distillation extractive de ladite première composition en présence d'au moins un agent d'extraction organique pour former i) une seconde composition comprenant ledit agent d'extraction organique et le 1,1,2-trifluoroéthane ; et ii) un premier courant comprenant le chlorotrifluoroéthylène, b) Récupération et séparation de ladite seconde composition pour former un second courant comprenant ledit agent d'extraction organique et un troisième courant comprenant le 1,1,2-trifluoroéthane, de préférence ledit second courant est recyclé à l'étape a). 1. Process for purifying chlorotrifluoroethylene (CTFE) from a first composition comprising chlorotrifluoroethylene and 1,1,2-trifluoroethane (143), said process comprising the steps of: a) Extractive distillation of said first composition in the presence at least one organic extractant to form i) a second composition comprising said organic extractant and 1,1,2-trifluoroethane; and ii) a first stream comprising chlorotrifluoroethylene, b) recovery and separation of said second composition to form a second stream comprising said organic extractant and a third stream comprising 1,1,2-trifluoroethane, preferably said second stream is recycled to step a).
2. Procédé selon la revendication précédente caractérisé en ce que ledit agent d'extraction organique a un point éclair supérieur à 13°C. 2. Method according to the preceding claim characterized in that said organic extraction agent has a flash point greater than 13°C.
3. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit agent d'extraction organique est un composé comprenant de 2 à 12 atomes de carbone. 3. Method according to any one of the preceding claims characterized in that said organic extraction agent is a compound comprising from 2 to 12 carbon atoms.
4. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit agent d'extraction organique a une masse moléculaire inférieure à 200 g. mol 1. 4. Method according to any one of the preceding claims, characterized in that said organic extraction agent has a molecular mass of less than 200 g. mol 1 .
5. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit agent d'extraction organique a un facteur de séparation Si, 2 supérieur ou égal à 2,0, ledit facteur de séparation étant calculé par la formule Si,2 = (yi,s)/(y2,s) dans laquelle yi,s représente le coefficient d'activité du chlorotrifluoroéthylène dans ledit agent d'extraction organique à dilution infinie, y2,s représente le coefficient d'activité du 1,1,2-trifluoroéthane dans ledit agent d'extraction organique à dilution infinie, avantageusement le facteur de séparation Sli2 est supérieur ou égal à 2,1, de préférence supérieur ou égal à 2,2, plus préférentiellement supérieur ou égal à 2,3, en particulier supérieur ou égal à 2,4, plus particulièrement supérieur ou égal à 2,5. Tl 5. Method according to any one of the preceding claims characterized in that said organic extraction agent has a separation factor Si, 2 greater than or equal to 2.0, said separation factor being calculated by the formula Si, 2 = (yi,s)/(y2,s) in which yi,s represents the activity coefficient of chlorotrifluoroethylene in said organic extractant at infinite dilution, y 2 ,s represents the activity coefficient of 1.1, 2-trifluoroethane in said organic extraction agent at infinite dilution, advantageously the separation factor S li2 is greater than or equal to 2.1, preferably greater than or equal to 2.2, more preferably greater than or equal to 2.3, in particular greater than or equal to 2.4, more particularly greater than or equal to 2.5. Tl
6. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit agent d'extraction organique a une capacité d'absorption C2,s supérieure ou égale à 0,20, ladite capacité d'absorption étant calculé par la formule C2,s = l/(y2,s) dans laquelle y2,s représente le coefficient d'activité du 1,1,2-trifluoroéthane dans ledit agent d'extraction organique à dilution infinie. 6. Method according to any one of the preceding claims characterized in that said organic extraction agent has an absorption capacity C2,s greater than or equal to 0.20, said absorption capacity being calculated by the formula C 2 , s = l/(y2,s) in which y 2 ,s represents the activity coefficient of 1,1,2-trifluoroethane in said organic extractant at infinite dilution.
7. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la première composition est une composition azéotropique ou quasi-azéotropique comprenant du chlorotrifluoroéthylène et du 1,1,2-trifluoroéthane. 7. Method according to any one of the preceding claims, characterized in that the first composition is an azeotropic or quasi-azeotropic composition comprising chlorotrifluoroethylene and 1,1,2-trifluoroethane.
8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit agent d'extraction organique a un point de fusion inférieur à 0°C. 8. Method according to any one of the preceding claims characterized in that said organic extractant has a melting point below 0°C.
9. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape b) est mise en oeuvre à une pression comprise de 1 à 10 bara, de préférence de 1 à 7 bara. 9. Method according to any one of the preceding claims, characterized in that step b) is carried out at a pressure of 1 to 10 bara, preferably 1 to 7 bara.
10. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit agent d'extraction organique est sélectionné parmi le groupe consistant en H2O, beta- propiolactone, gamma-butyrolactone, l-hydroxy-2-propanone, acetonylacetone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1,2-ethanedioldiacetate, glycol, ethyloxalat, 3-oxobutanoicacid-l- methylethylester, ethyleneglycolmonomethyletheracetate, dimethylmaleate, triethylphosphate, triethyleneglycol, diethylmalonate, furfural, diethyleneglycol, t- butylacetoacetate, ethylsuccinate, 1,3-propanediol, cyclopentanone, propyleneglycol, 1- cyclopropylethanone, 2-methoxyethanol, 2,3-pentanedione, tripropyleneglycol, cyclohexanone, diethylcarbonate, 1,3-butanediol, 3-methoxy-l-butanol, 4-methyl-3- penten-2-one, l-methoxy2-propanol, phenylacetate, cycloheptanone, 3- methylcyclohexanone, 4-methylcyclohexanone, 2,3-hexanedione, 3,4-hexanedione, citral, 1,5-pentanediol, diethyleneglycolmonobutylether, 4-phenyl-2-butanone, ethanol, n- butylacetate, 4-methyl-2-pentanone, 3-hexanone, 4,4-dimethyl-2-pentanone, 5-methyl-2- hexanone, 2,2-dimethylcyclohexanone et éthyl benzoate. Procédé de production du trifluoroéthylène dans un réacteur muni d'un lit catalytique fixe comprenant un catalyseur, ledit procédé comprenant les étapes de : 10. Method according to any one of the preceding claims characterized in that said organic extraction agent is selected from the group consisting of H 2 O, beta-propiolactone, gamma-butyrolactone, l-hydroxy-2-propanone, acetonylacetone, trimethylphosphate, acetylacetone, propylenecarbonate, dimethylmalonate, ethylacetoacetate, 1,2-ethanedioldiacetate, glycol, ethyloxalat, 3-oxobutanoicacid-l- methylethylester, ethyleneglycolmonomethyletheracetate, dimethylmaleate, triethylphosphate, triethyleneglycol, diethylmalonate, furfural, diethyleneglycol, t-butylacetoacetate, ethylsuccinate, 1, 3-propanediol, cyclopentanone, propylene glycol, 1- cyclopropylethanone, 2-methoxyethanol, 2,3-pentanedione, tripropylene glycol, cyclohexanone, diethylcarbonate, 1,3-butanediol, 3-methoxy-l-butanol, 4-methyl-3- penten- 2-one, l-methoxy2-propanol, phenylacetate, cycloheptanone, 3- methylcyclohexanone, 4-methylcyclohexanone, 2,3-hexanedione, 3,4-hexanedione, citral, 1,5-pentanediol, diethyleneglycolmonobutylether, 4-phenyl-2- butanone, ethanol, n-butylacetate, 4-methyl-2-pentanone, 3-hexanone, 4,4-dimethyl-2-pentanone, 5-methyl-2-hexanone, 2,2-dimethylcyclohexanone and ethyl benzoate. Process for producing trifluoroethylene in a reactor provided with a fixed catalytic bed comprising a catalyst, said process comprising the steps of:
A') réaction du chlorotrifluoroéthylène avec de l'hydrogène en présence du catalyseur et en phase gazeuse pour produire un courant A comprenant du trifluoroéthylène, du chlorotrifluoroéthylène n'ayant pas réagi et du 1,1,2-trifluoroéthane ; A') reaction of chlorotrifluoroethylene with hydrogen in the presence of the catalyst and in the gas phase to produce a stream A comprising trifluoroethylene, unreacted chlorotrifluoroethylene and 1,1,2-trifluoroethane;
B') purification dudit courant A pour former un courant B1 comprenant du trifluoroéthylène et un courant B2 comprenant du chlorotrifluoroéthylène et du 1,1,2- trifluoroéthane, B') purification of said stream A to form a stream B1 comprising trifluoroethylene and a stream B2 comprising chlorotrifluoroethylene and 1,1,2-trifluoroethane,
C') mise en oeuvre du procédé de purification selon l'une quelconque des revendications précédentes 1 à 10 à partir dudit courant B2. C') implementation of the purification process according to any one of preceding claims 1 to 10 from said current B2.
PCT/FR2023/051836 2022-11-23 2023-11-22 Method for purifying chlorotrifluoroethylene by extractive distillation WO2024110731A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2212199A FR3142187A1 (en) 2022-11-23 2022-11-23 Process for purifying chlorotrifluoroethylene by extractive distillation
FR2212199 2022-11-23

Publications (1)

Publication Number Publication Date
WO2024110731A1 true WO2024110731A1 (en) 2024-05-30

Family

ID=85037138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051836 WO2024110731A1 (en) 2022-11-23 2023-11-22 Method for purifying chlorotrifluoroethylene by extractive distillation

Country Status (2)

Country Link
FR (1) FR3142187A1 (en)
WO (1) WO2024110731A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128102A1 (en) 2012-02-28 2013-09-06 Arkema France Method for synthesising trifluoroethylene from chlorotrifluoroethylene
JP2016130236A (en) * 2015-01-07 2016-07-21 旭硝子株式会社 Azeotrope-like composition and method for producing purified fluorine-containing compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128102A1 (en) 2012-02-28 2013-09-06 Arkema France Method for synthesising trifluoroethylene from chlorotrifluoroethylene
JP2016130236A (en) * 2015-01-07 2016-07-21 旭硝子株式会社 Azeotrope-like composition and method for producing purified fluorine-containing compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KNUNYANTS I L ET AL: "REACTIONS OF FLUORO OLEFINS. COMMUNICATION 13. CATALYTIC HYDROGENATION OF PERFLUORO OLEFINS", BULLETIN OF THE ACADEMY OF SCIENCES OF THE USSR, DIVISION OF CHEMICAL SCIENCES, SPRINGER NEW YORK LLC, US, 1 January 1960 (1960-01-01), pages 1312 - 1317, XP000578879, ISSN: 0568-5230, DOI: 10.1007/BF00907661 *
TAHA MAHDI ET AL: "State-of-the-Art Technologies for Separation of Azeotropic Mixtures", SEPARATION AND PURIFICATION REVIEWS, vol. 44, no. 4, 2 October 2015 (2015-10-02), US, pages 308 - 330, XP055398685, ISSN: 1542-2119, DOI: 10.1080/15422119.2014.963607 *

Also Published As

Publication number Publication date
FR3142187A1 (en) 2024-05-24

Similar Documents

Publication Publication Date Title
EP1890990B1 (en) Method for making carboxylic acids
EP3359520B1 (en) Improved process for producing polymer-grade acrylic acid
FR2846651A1 (en) Manufacture of carboxylic acids by oxidation of hydrocarbons with gaseous oxygen including a stage of hydrolysis of esters formed, particularly oxidation of cyclohexane to adipic acid
WO2024110731A1 (en) Method for purifying chlorotrifluoroethylene by extractive distillation
EP1165481B1 (en) Process for the oxidation of cycloalkanes, cycloalcohols and/or cycloketones
FR2761984A1 (en) PROCESS FOR THE OXIDATION OF HYDROCARBONS, ALCOHOLS AND / OR KETONES
WO2012034905A1 (en) Process for producing dioxolane
FR3057263A1 (en) COMPOSITION COMPRISING 1-CHLORO-2,2-DIFLUOROETHANE AND 1,1-DICHLOROETHYLENE
EP0169141B1 (en) Process for the synthesis of trifluoro-2,2,2 ethanol and hexafluoro-1,1,1,3,3,3 isopropanol
EP0449693A1 (en) Catalyst and process for the preparation of esters of saturated carboxylic acids
WO2003099755A1 (en) Hydrocarbon, alcohol and/or ketone oxidation method
EP0805136A1 (en) Process for the preparation of difluoromethane
EP3283454B1 (en) Method for purifying pentafluoroethane
FR2530621A1 (en) PROCESS FOR THE PRODUCTION OF TRICYCLO (5.2.1.02,6) DECANE-2-CARBOXYLIC ACID
FR2540862A1 (en) PROCESS FOR THE CATALYTIC PREPARATION OF A CARBOXYLIC ACID ANHYDRIDE BY CARBONYLATION
EP0200621B1 (en) Process for the synthesis of trifluoro-2,2,2-ethanol
FR3135266A1 (en) Trifluoroethylene production process
EP4240713A1 (en) Process for the production of trifluoroethylene
EP4025358A1 (en) Method for recovering and separating unsaturated fluorinated hydrocarbons
CA2158634C (en) Process and catalyst for the dehalogenation of carboxylic alpha-halogenated acids
WO2023047056A1 (en) Method for producing and purifying trifluoroethylene, and composition obtained therefrom
WO2023118697A1 (en) Process for the production and purification of trifluoroethylene
EP4352032A1 (en) Method for producing trifluoroethylene and recycling the chlorotrifluoroethylene stream
WO2023118698A1 (en) Process for the production and purification of trifluoroethylene
WO2023118694A1 (en) Process for the preparation and purification of trifluoroethylene