WO2024109797A1 - 终端测量方法、用于终端测量的通信方法及装置、计算机可读存储介质 - Google Patents

终端测量方法、用于终端测量的通信方法及装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2024109797A1
WO2024109797A1 PCT/CN2023/133188 CN2023133188W WO2024109797A1 WO 2024109797 A1 WO2024109797 A1 WO 2024109797A1 CN 2023133188 W CN2023133188 W CN 2023133188W WO 2024109797 A1 WO2024109797 A1 WO 2024109797A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
receiver
configuration information
information
terminal
Prior art date
Application number
PCT/CN2023/133188
Other languages
English (en)
French (fr)
Inventor
雷珍珠
周化雨
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2024109797A1 publication Critical patent/WO2024109797A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technology, and in particular to a terminal measurement method, a communication method and device for terminal measurement, and a computer-readable storage medium.
  • the 3rd Generation Partnership Project (3GPP) is currently discussing issues related to low-power wake-up signals.
  • the network can send a low-power wake-up signal to wake up the terminal for related data transmission. That is, the terminal can determine whether it needs to exit sleep mode and enter active mode by receiving a low-power wake-up signal.
  • the terminal receives the low-power wake-up signal through an independent receiving circuit because the main communication circuit (i.e., the main communication receiver) is in deep sleep mode and cannot receive any signal.
  • the terminal's main communication receiver needs to be frequently awakened to perform radio resource management (RRM) measurements.
  • RRM radio resource management
  • the terminal's main communication receiver cannot enter a deep sleep state. This is obviously not conducive to the energy saving gain of the terminal.
  • the technical problem solved by the present invention is how to improve the energy saving gain of the terminal.
  • an embodiment of the present invention provides a terminal measurement method, wherein the terminal includes a first receiver and a second receiver, the first receiver is used to receive a low-power wake-up signal, and the method includes: receiving first information, wherein the first information is at least used to indicate configuration information of a first reference signal; receiving the first reference signal through the first receiver to perform RRM measurement.
  • the first information includes configuration information of a second reference signal
  • the configuration information of the first reference signal is determined at least according to the configuration information of the second reference signal
  • the second receiver receives the second reference signal
  • the configuration of at least some parameters in the configuration information of the first reference signal is consistent with the configuration of corresponding parameters in the configuration information of the second reference signal.
  • an offset of a numerical value of the first parameter in the configuration information of the first reference signal relative to a numerical value of the first parameter in the configuration information of the second reference signal is determined according to a preset offset value.
  • the first information further includes an offset value, used to indicate an offset of a numerical value of a first parameter in the configuration information of the first reference signal relative to a numerical value of the first parameter in the configuration information of the second reference signal.
  • the first parameter includes a starting time position.
  • the configuration information of the first reference signal is determined at least according to the configuration information of the second reference signal, including: determining the configuration information of the first reference signal according to the configuration information of the second reference signal and the offset value.
  • the first information includes configuration information of a first reference signal and configuration information of a second reference signal
  • the second receiver receives the second reference signal
  • the second receiver is in a non-working state.
  • the configuration information of the first reference signal is at least selected from: The time-frequency resource position of the signal, the period of the first reference signal, the starting time position of the first reference signal, the receiving window period of the first reference signal, the starting position of the receiving window of the first reference signal and the receiving window length of the first reference signal.
  • the first information includes SMTC.
  • the method further includes: receiving indication information, where the indication information is used to indicate whether to allow or not to perform RRM measurement through the first receiver.
  • the indication information is carried via system information, and the system information is received by the second receiver; or, the indication information is carried via a low-power wake-up signal.
  • the method further includes: if the serving cell signal quality is less than a first preset threshold, waking up the second receiver to perform serving cell measurement, wherein the serving cell signal quality is measured by the first receiver receiving the first reference signal.
  • the method further includes: if the serving cell signal quality is less than a second preset threshold, waking up the second receiver to perform neighboring cell measurement, wherein the serving cell signal quality is measured by the first receiver receiving the first reference signal.
  • an embodiment of the present invention also provides a terminal measurement device, wherein the terminal includes a first receiver and a second receiver, the first receiver is used to receive a low-power wake-up signal, and the device includes: a first receiving module, used to receive first information, the first information is at least used to indicate configuration information of a first reference signal; a second receiving module, used to receive the first reference signal through the first receiver to perform RRM measurement.
  • an embodiment of the present invention also provides a communication method for terminal measurement, wherein the terminal includes a first receiver and a second receiver, the first receiver is used to receive a low-power wake-up signal, and the method includes: sending first information, wherein the first information is at least used to indicate configuration information of a first reference signal, the first receiver receives the first reference signal for RRM measurement; and sending the first reference signal.
  • the first information includes configuration information of a second reference signal
  • the configuration information of the first reference signal is determined at least according to the configuration information of the second reference signal.
  • the second receiver receives the second reference signal.
  • the configuration of at least some parameters in the configuration information of the first reference signal is consistent with the configuration of corresponding parameters in the configuration information of the second reference signal.
  • an offset of a numerical value of the first parameter in the configuration information of the first reference signal relative to a numerical value of the first parameter in the configuration information of the second reference signal is determined according to a preset offset value.
  • the first information further includes an offset value, used to indicate an offset of a numerical value of a first parameter in the configuration information of the first reference signal relative to a numerical value of the first parameter in the configuration information of the second reference signal.
  • the first parameter includes a starting time position.
  • the configuration information of the first reference signal is determined at least according to the configuration information of the second reference signal, including: determining the configuration information of the first reference signal according to the configuration information of the second reference signal and the offset value.
  • the first information includes configuration information of a first reference signal and configuration information of a second reference signal
  • the second receiver receives the second reference signal
  • the configuration information of the first reference signal is at least selected from: the time-frequency resource position of the first reference signal, the period of the first reference signal, the starting time position of the first reference signal, the receiving window period of the first reference signal, the starting position of the receiving window of the first reference signal, and the receiving window length of the first reference signal.
  • the first information includes SMTC.
  • the method further includes: sending indication information, where the indication information is used to indicate whether to allow or not to perform RRM measurement through the first receiver.
  • the indication information is carried via system information, and the system information is received by the second receiver; or, the indication information is carried via a low-power wake-up signal.
  • the method further includes: sending a second reference signal, and the second receiver is awakened according to the RRM measurement result of the first receiver to receive the second reference signal.
  • an embodiment of the present invention also provides a communication device for terminal measurement, wherein the terminal includes a first receiver and a second receiver, the first receiver is used to receive a low-power wake-up signal, and the device includes: a first sending module, used to send first information, the first information is at least used to indicate configuration information of a first reference signal, the first receiver receives the first reference signal for RRM measurement; and a second sending module, used to send the first reference signal.
  • an embodiment of the present invention further provides a computer-readable storage medium, which is a non-volatile storage medium or a non-transient storage medium, on which a computer program is stored, and when the computer program is run by a processor, the steps of the above method are executed.
  • an embodiment of the present invention further provides a terminal measurement device, including a memory and a processor, wherein the memory stores a computer program executable on the processor, and the processor executes the steps of the above method when running the computer program.
  • an embodiment of the present invention further provides a communication device for terminal measurement, comprising a memory and a processor, wherein the memory stores a computer program executable on the processor, and the processor executes the steps of the above method when running the computer program.
  • an embodiment of the present invention provides a terminal measurement method, wherein the terminal includes a first receiver and a second receiver, the first receiver is used to receive a low-power wake-up signal, and the method includes: receiving first information, wherein the first information is at least used to indicate configuration information of a first reference signal; receiving the first reference signal through the first receiver to perform RRM measurement.
  • this implementation can relax the RRM measurement activity of the second receiver, and even allow the second receiver to enter a deep sleep state when it does not perform RRM measurement activities, thereby greatly improving the energy saving gain of the terminal.
  • the terminal uses a first receiver independent of the second receiver to perform RRM measurements, so that the second receiver does not participate in the RRM measurement activities, and when there is no data transmission, the second receiver can enter a deep sleep state, thereby achieving the purpose of terminal energy saving.
  • the second receiver can enter a deep sleep state or a shutdown state to better achieve terminal energy saving.
  • an embodiment of the present invention also provides a communication method for terminal measurement, wherein the terminal includes a first receiver and a second receiver, the first receiver is used to receive a low-power wake-up signal, and the method includes: sending first information, the first information is at least used to indicate configuration information of a first reference signal, the first receiver receives the first reference signal for RRM measurement; and sending the first reference signal.
  • the network device implementing this embodiment sends a first reference signal for the first receiver to receive, so that the terminal can perform RRM measurement activities through the first receiver. Since it is not necessary to participate in the RRM measurement activity, the second receiver can enter a deep sleep state or a shutdown state, thereby improving the energy saving gain of the terminal.
  • FIG1 is a flow chart of a terminal measurement method according to an embodiment of the present invention.
  • FIG2 is a schematic diagram of a configuration of a first reference signal according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a configuration of a second first reference signal according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of a terminal measurement device according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of a communication method for terminal measurement according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structure of a communication device for terminal measurement according to an embodiment of the present invention.
  • FIG. 7 is a signaling interaction diagram of a typical application scenario of an embodiment of the present invention.
  • the existing terminal introduces a low-power wake-up signal mechanism to improve the energy saving gain of the terminal
  • the terminal's communication main receiver still needs to be frequently awakened to perform RRM measurement, resulting in the terminal's energy saving gain not actually being improved.
  • the network can wake up the terminal by sending a low-power wake-up signal to perform related data transmission. That is, the terminal determines whether to turn on or exit the flight mode to enter the activation state by receiving the low-power wake-up signal.
  • the communication main receiver on the terminal side needs to perform frequent service cell measurements (one service cell measurement is required for each DRX (Discontinuous Reception) cycle) and/or neighbor cell measurements. Therefore, even if a low-power wake-up signal is introduced, the terminal's main receiver still cannot enter a deep sleep state or a shutdown state, and cannot obtain the terminal energy saving gain brought by the low-power wake-up signal.
  • DRX Continuous Reception
  • an embodiment of the present invention provides a terminal measurement method, wherein the terminal includes a first receiver and a second receiver, the first receiver is used to receive a low-power wake-up signal, and the method includes: receiving first information, wherein the first information is at least used to indicate configuration information of a first reference signal; receiving the first reference signal through the first receiver to perform RRM measurement.
  • the terminal side can relax the RRM measurement activity of the second receiver, and even allow the second receiver not to perform RRM measurement activities, so that the second receiver can enter a deep sleep state, thereby greatly improving the energy saving gain of the terminal.
  • the terminal uses a first receiver independent of the second receiver to perform RRM measurement, so that The second receiver may not participate in the RRM measurement activity, and when there is no data transmission, the second receiver may enter a deep sleep state, thereby achieving the purpose of energy saving of the terminal.
  • FIG1 is a flow chart of a terminal measurement method according to an embodiment of the present invention.
  • This implementation scheme can be applied to terminal synchronization/RRM measurement application scenarios. By executing this implementation scheme, the terminal can perform synchronization/RRM measurement activities with a higher energy-saving gain.
  • This embodiment can be executed by a terminal, and the terminal includes a first receiver and a second receiver.
  • the second receiver can be, for example, a main communication receiver of the terminal, that is, a receiver that is mainly responsible for communication between the terminal and the network device and/or other terminals.
  • the first receiver can be a receiver different from the second receiver, such as the first receiver can play an auxiliary role during communication between the terminal and the network device and/or other terminals.
  • the first receiver and the second receiver may differ in performance, software and hardware configuration, etc.
  • the receiving accuracy of the first receiver may be lower than the receiving accuracy of the second receiver.
  • the first receiver may be, for example, a low-power wake-up receiver (LP-WUR for short) for receiving a low-power wake-up signal (LP-WUS for short).
  • LP-WUR low-power wake-up receiver
  • LP-WUS low-power wake-up signal
  • the low-power wake-up signal can be used to wake up the second receiver.
  • the first receiver can directly or indirectly wake up the second receiver to switch the second receiver from a (deep) sleep state or an off state to a working state.
  • the second receiver in the working state can receive data, which can come from the network device or from other terminals.
  • the first receiver and the second receiver may be two independent modules in the terminal. If the first receiver is in working state, the second receiver may be in deep sleep or off state, or vice versa. Alternatively, the first receiver and the second receiver may be in working state at the same time.
  • the terminal measurement method provided in the following steps S101 to S102 may be executed by a chip with an RRM measurement function in the terminal, or may be executed by a baseband chip in the terminal.
  • the terminal measurement method described in this embodiment may include the following steps:
  • Step S101 receiving first information, where the first information is at least used to indicate configuration information of a first reference signal
  • Step S102 Receive the first reference signal through the first receiver to perform RRM measurement.
  • the second receiver is in a non-operating state, which may be, for example, a sleep state, a shutdown state, an inactive state, an idle state, or the like.
  • the first reference signal may be, for example, a primary synchronization signal (PSS), a secondary synchronization signal (S-SSS), or other reference signals used for RRM measurement.
  • PSS primary synchronization signal
  • S-SSS secondary synchronization signal
  • the first reference signal may also be referred to as a low power reference signal (LP-SSS).
  • LP-SSS low power reference signal
  • the configuration information of the first reference signal may include time domain information and frequency domain information of the first reference signal.
  • the configuration information of the first reference signal may be at least selected from: the time-frequency resource position of the first reference signal, the period of the first reference signal, the starting time position of the first reference signal, the receiving window period of the first reference signal, the receiving window starting position of the first reference signal, and the receiving window length of the first reference signal.
  • the first information may be dedicated signaling, dedicated to indicating configuration information of the first reference signal.
  • the dedicated signaling may be, for example, a message different from SMTC (SSB Measurement Timing Configuration), which is used to configure configuration information of the second reference signal received by the second receiver.
  • the time domain positions of the first information and the SMTC may be different.
  • the network device can flexibly send corresponding configuration information to a specific receiver when the receiver is required to perform RRM measurement.
  • the second reference signal and the first reference signal may be the same reference signal, or may be partially the same reference signal, or may be completely different reference signals.
  • the same, partially the same, or completely different may be characterized in terms of the type of reference signal, the generated sequence, the time domain position, and/or the frequency domain position.
  • the first information may be used to simultaneously configure the configuration information of the first reference signal and the configuration information of the second reference signal.
  • the first information may include an SMTC, and this embodiment additionally indicates the first reference signal used to perform service cell/neighboring cell measurement for the first receiver in the SMTC of the second reference signal used to configure the second receiver for service cell/neighboring cell measurement in the prior art, so that a terminal receiving the SMTC generated by this embodiment can simultaneously obtain the configuration information of the first reference signal and the configuration information of the second reference signal.
  • the first information may include configuration information of the second reference signal, and the configuration information of the first reference signal is determined at least according to the configuration information of the second reference signal. That is, in this specific implementation, the first reference signal and the second reference signal are associated in configuration, so that the first information may only include the configuration information of the second reference signal, or the first information may include the configuration information of the second reference signal and the configuration of the first reference signal that is different from the second reference signal, so as to save signaling overhead.
  • the configuration of at least a part of the parameters in the configuration information of the first reference signal may be consistent with the configuration of the corresponding parameters in the configuration information of the second reference signal.
  • the measurement opportunity start position (ie, the start time position) of the first reference signal may be consistent with the SMTC start position (ie, the start time position of the second reference signal).
  • the time length of the measurement opportunity of the first reference signal may be consistent with the time length configuration of the SMTC (ie, the receiving window length of the second reference signal).
  • the first information may also include the first parameter.
  • the receiving window length of the first reference signal may be inconsistent with the receiving window length of the SMTC, then the first information may include the configuration information of the second reference signal and the time length value of the measurement opportunity of the first reference signal.
  • the terminal can directly determine the starting position of the first reference signal measurement opportunity according to the starting position of the SMTC, as shown in Figure 2. Then, when executing step S102, the terminal can determine the time position of the first receiver to perform RRM measurement according to the measurement opportunity of the first reference signal.
  • the starting time position of the first reference signal (marked as LP-SS in the figure) is consistent with the starting time position of the second reference signal (marked as SMTC in the figure), and the receiving window length of the first reference signal is different from the receiving window length of the second reference signal.
  • the offset of the value of the first parameter in the configuration information of the first reference signal relative to the value of the first parameter in the configuration information of the second reference signal can be determined based on a preset offset value.
  • the terminal may determine the configuration information of the first reference signal according to the configuration information of the second reference signal and the offset value.
  • the preset offset value may be pre-configured to the terminal by the network side.
  • the preset offset value may be pre-defined and determined.
  • the first information may include configuration information of the second reference signal and an enable field of the first parameter.
  • the terminal can directly determine the configuration information of the second reference signal as the configuration information of the first reference signal.
  • the enable field of the first parameter is 0, it indicates that the configuration of the first parameter of the first reference signal and the second reference signal is inconsistent.
  • the specific value of the first parameter in the first reference signal is determined as the result of adding the preset offset value.
  • the first parameter may be, for example, a starting time position.
  • the first information may further include an offset value, which is used to indicate an offset of a value of a first parameter in the configuration information of the first reference signal relative to a value of the first parameter in the configuration information of the second reference signal. That is, in this specific implementation, for a first parameter that is inconsistently configured in the configuration information of the first reference signal and the configuration information of the second reference signal, the network side may directly indicate a specific offset value to the terminal through the first information.
  • the first parameter may include a starting time position.
  • the offset is the offset value of the first parameter and is also carried in the first information to indicate to the terminal.
  • the time length of the first reference signal measurement opportunity may be consistent with the SMTC. Accordingly, the parameter for the receiving window length in the first information may only include the specific value of the receiving window length of the second reference signal.
  • the terminal may determine the configuration information of the first reference signal according to the configuration information of the second reference signal and the offset value in the first information.
  • the terminal in response to receiving the first information, can directly determine the starting position of the first reference signal measurement opportunity according to the starting position of the SMTC and the offset value, as shown in Figure 3. Then, when executing step S102, the terminal can determine the time position of the first receiver to perform RRM measurement according to the measurement opportunity of the first reference signal.
  • the starting time position of the first reference signal (marked as LP-SS in the figure) is offset by the distance of the offset value relative to the starting time position of the second reference signal (marked as SMTC in the figure), and the receiving window length of the first reference signal is consistent with the receiving window length of the second reference signal.
  • the first information may include both the offset value and different configurations of the same parameter.
  • the first information may include the SMTC, the start time of the first reference signal, The offset value of the position relative to the starting time position of the SMTC (ie, the time offset), and the time length value of the first reference signal measurement opportunity.
  • the first information may include configuration information of the first reference signal and configuration information of the second reference signal. That is, in this specific implementation, the network side directly allocates two sets of reference signals to the terminal through the first information, which are used for the first receiver and the second receiver of the terminal to perform RRM measurements respectively.
  • the configuration information of the first reference signal and the configuration information of the second reference signal the specific numerical values configured for the same parameter may be the same/different.
  • the first information may indicate the first reference signal and the second reference signal with the same starting time position and receiving window length through two sets of configuration information.
  • the first information may indicate the first reference signal and the second reference signal with the same starting time position and different receiving window lengths through two sets of configuration information.
  • the terminal measurement method described in this embodiment may further include the step of: receiving indication information, where the indication information is used to indicate whether to allow or not to allow RRM measurement through the first receiver.
  • the indication information may be sent from the network side to the terminal.
  • the indication information may be carried by system information.
  • the network may carry the indication information by a system information block (System Information Block, SIB for short) (for example, adding 1 bit as indication information in the SIB) to indicate whether the terminal can use the first receiver to measure the first reference signal to implement RRM measurement of the serving cell and/or neighboring cell.
  • SIB System Information Block
  • the terminal can determine, by receiving the SIB, whether the first receiver can be used to measure the first reference signal to implement RRM measurement of the serving cell and/or the neighboring cell.
  • the system information may be received by the second receiver.
  • the second receiver in a non-working state may be awakened periodically to receive the SIB, and if the received SIB carries indication information, the second receiver sends the received indication information to the first receiver.
  • the period for the second receiver to receive the SIB may be longer than the period for the second receiver to perform RRM measurement as specified in the existing protocol.
  • the second receiver may convey the indication information to the first receiver.
  • the indication information may be carried by a low power wake-up signal.
  • the network may carry the indication information by LP-WUS (for example, adding 1 bit in LP-WUS or using the reserved 1 bit as indication information), indicating whether the terminal may use the first receiver to measure the first reference signal to implement RRM measurement of the serving cell and/or the neighboring cell.
  • the terminal can determine, by receiving the LP-WUS, whether the first receiver can be used to measure the first reference signal to implement RRM measurement of the serving cell and/or the neighboring cell.
  • the LP-WUS may be received by the first receiver, so that the first receiver may directly obtain the indication information to determine whether the first receiver is allowed to perform RRM measurement.
  • the LP-WUS may be used to wake up the second receiver to receive data. Based on this, this embodiment carries additional indication information in the LP-WUS to indicate whether the first receiver can receive the first reference signal to perform RRM measurement activities.
  • LP-WUS may be used only to indicate whether to allow or not allow RRM measurement by the first receiver. That is, in response to receiving LP-WUS, the first receiver may not wake up the second receiver, but perform or not perform RRM measurement according to the indication of the indication information.
  • the first receiver can obtain an RRM measurement result by receiving the first reference signal. Based on the RRM measurement result of the first receiver, the timing for the first receiver to trigger the second receiver to perform serving cell and/or neighbor cell measurement can be set.
  • the RRM measurement result may include serving cell signal quality.
  • the terminal measurement method described in this embodiment may further include the step of: if the serving cell signal quality is less than a first preset threshold, waking up the second receiver to perform serving cell measurement.
  • the network side may pre-set a first preset threshold for the first receiver to trigger the second receiver to perform service cell measurement.
  • the terminal determines whether to trigger the second receiver to perform service cell measurement based on the service cell signal quality result measured by the first receiver.
  • the first receiver obtains the service cell signal quality by measuring the first reference signal sent by the base station corresponding to the service cell.
  • the first receiver triggers the second receiver to wake up from a sleep state (or a shutdown state) to perform serving cell measurement.
  • the terminal measurement method described in this embodiment may further include the step of: if the serving cell signal quality is less than a second preset threshold, waking up the second receiver to perform neighboring cell (neighboring cell for short) measurement.
  • the network side may pre-set a second preset threshold for the first receiver to trigger the second receiver to perform neighboring cell measurement.
  • the terminal determines whether to trigger the second receiver to perform neighboring cell measurement based on the service cell signal quality result measured by the first receiver.
  • the first receiver obtains the service cell signal quality by measuring the first reference signal sent by the base station corresponding to the service cell.
  • the first receiver triggers the second receiver to wake up from a sleep state (or a shutdown state) to perform neighbor cell measurement.
  • the awakened second receiver may receive the second reference signal to perform intra-frequency cell measurement, or perform inter-frequency cell measurement.
  • the second preset threshold may further include a first value and a second value, and if the signal quality of the serving cell measured by the terminal based on the first receiver is less than the first value, the first receiver triggers the second receiver to wake up from a sleep state (or a closed state) to perform intra-frequency cell measurement. If the signal quality of the serving cell measured by the terminal based on the first receiver is less than the second value, the first receiver triggers the second receiver to wake up from a sleep state (or a closed state) to perform inter-frequency cell measurement.
  • the first preset threshold and the second preset threshold can be configured by the network through high-layer signaling.
  • the specific values of the first preset threshold, the second preset threshold, the first value and the second value can be set and adjusted as needed in actual applications.
  • the signal quality of the serving cell can be characterized based on the reference signal received power (Reference Signal Received Power, RSRP for short) or the reference signal received quality (Reference Signal Received Quality, RSRQ for short).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the RRM measurement result may also include neighboring cell signal quality.
  • the RRM measurement activity of the second receiver can be relaxed on the terminal side, and even the second receiver is allowed not to perform the RRM measurement activity, thereby greatly improving the energy saving gain of the terminal.
  • the terminal uses a first receiver independent of the second receiver to perform RRM measurement, so that the second receiver can not participate in the RRM measurement activity.
  • Fig. 4 is a schematic diagram of the structure of a terminal measurement device 2 according to an embodiment of the present invention. Those skilled in the art will appreciate that the terminal measurement device 2 described in this embodiment can be used to implement the method and technical solutions described in the embodiments described in Figs. 1 to 3 above.
  • the terminal may include a first receiver and a second receiver, wherein the first receiver is used to receive a low power consumption wake-up signal.
  • the terminal measurement device 2 described in this embodiment may include: a first receiving module 21, used to receive first information, where the first information is at least used to indicate configuration information of a first reference signal; a second receiving module 22, used to receive the first reference signal through the first receiver to perform RRM measurement.
  • the above-mentioned terminal measurement device 2 may correspond to a chip with an RRM measurement function in the terminal, or to a chip with a data processing function, such as a system-on-a-chip (SOC for short), a baseband chip, etc.; or to a chip module in the terminal including a chip with an RRM measurement function; or to a chip module with a chip with a data processing function, or to a terminal.
  • a chip with an RRM measurement function such as a system-on-a-chip (SOC for short), a baseband chip, etc.
  • SOC system-on-a-chip
  • FIG5 is a flow chart of a communication method for terminal measurement according to an embodiment of the present invention.
  • This implementation scheme can be applied to terminal synchronization/RRM measurement application scenarios.
  • the network side can configure a suitable reference signal for the terminal so that the terminal can perform synchronization/RRM measurement activities with a higher energy saving gain.
  • This embodiment can be executed by the network side, such as by a network device on the network side, and the network device can be, for example, a base station.
  • the other end with which the network device communicates using this embodiment can be, for example, the terminal described in the embodiments shown in Figures 1 to 3 above.
  • the communication method for terminal measurement provided by the following steps S301 to S302 may be executed by a chip with an RRM measurement function in a network device, or may be executed by a baseband chip in the network device.
  • the communication method for terminal measurement described in this embodiment may include the following steps:
  • Step S301 sending first information, where the first information is at least used to indicate configuration information of a first reference signal, and the first receiver receives the first reference signal to perform RRM measurement;
  • Step S302 Send the first reference signal.
  • steps S301 to S302 can be regarded as the execution steps corresponding to the steps S101 to S102 in the embodiment shown in FIG1 , and the two are complementary in specific implementation principles and logic. Therefore, the explanation of the terms involved in this embodiment can refer to the relevant description of the embodiment shown in FIG1 , and will not be repeated here.
  • the method described in this embodiment may further include the step of: sending indication information, where the indication information is used to indicate whether to allow or not to allow RRM measurement through the first receiver.
  • the network device executes step S302 to send a first reference signal.
  • the network device A second reference signal may also be sent. Accordingly, if the indication information indicates that the terminal is not allowed to perform RRM measurement through the first receiver, and/or if the terminal triggers the second receiver to switch to a working state according to the serving cell signal quality measured by the first receiver, the terminal may receive the second reference signal through the second receiver to perform RRM measurement with higher accuracy.
  • the network device sends a first reference signal for the first receiver to receive, so that the terminal can perform RRM measurement activities through the first receiver. Since the second receiver does not need to participate in the RRM measurement activities, it can enter a deep sleep state or a shutdown state, thereby improving the energy saving gain of the terminal.
  • Fig. 6 is a schematic diagram of the structure of a communication device 4 for terminal measurement according to an embodiment of the present invention.
  • the communication device 4 for terminal measurement described in this embodiment can be used to implement the method and technical solution described in the embodiment described in Fig. 5 above.
  • the terminal may include a first receiver and a second receiver, wherein the first receiver is used to receive a low power consumption wake-up signal.
  • the communication device 4 for terminal measurement described in this embodiment may include: a first sending module 41, used to send first information, the first information is at least used to indicate configuration information of a first reference signal, and the first receiver receives the first reference signal to perform RRM measurement; a second sending module 42, used to send the first reference signal.
  • the above-mentioned communication device 4 for terminal measurement may correspond to a chip with an RRM measurement function in a network device, or to a chip with a data processing function, such as a system-on-a-chip (SOC for short), a baseband chip, etc.; or to a chip module in a network device that includes a chip with an RRM measurement function; or to a chip module with a chip with a data processing function, or to a network device.
  • SOC system-on-a-chip
  • each module/unit included in each device or product described in the above embodiments may be a software module/unit or a hardware module/unit. Alternatively, it may be partially a software module/unit and partially a hardware module/unit.
  • each module/unit contained therein may be implemented in the form of hardware such as circuits, or at least some of the modules/units may be implemented in the form of software programs, which run on a processor integrated inside the chip, and the remaining (if any) modules/units may be implemented in the form of hardware such as circuits; for each device or product applied to or integrated in a chip module, each module/unit contained therein may be implemented in the form of hardware such as circuits, and different modules/units may be located in the same component (such as a chip, circuit module, etc.) or different components of the chip module, or at least some of the modules/units may be implemented in the form of software programs.
  • the element can be implemented in the form of a software program, which runs on a processor integrated inside the chip module, and the remaining (if any) modules/units can be implemented in the form of hardware such as circuits; for various devices and products applied to or integrated in the terminal, the various modules/units contained therein can be implemented in the form of hardware such as circuits, and different modules/units can be located in the same component (for example, chip, circuit module, etc.) or in different components in the terminal, or, at least some modules/units can be implemented in the form of a software program, which runs on a processor integrated inside the terminal, and the remaining (if any) modules/units can be implemented in the form of hardware such as circuits.
  • the base station 52 corresponding to the serving cell where the terminal 51 is currently located may perform operation s501 to send SMTC to the terminal 51 through high-level signaling.
  • the SMTC may specifically include the period, starting time position, and length of the SMTC.
  • the SMTC may be received by the first receiver (such as LP-WUR 511) of the terminal 51, or by the second receiver (communication main receiver 512) of the terminal 51.
  • the LP-WUR 511 may perform operation s502 to determine configuration information of the LP-SS according to the SMTC. For example, the LP-WUR 511 may determine a measurement timing of the LP-SS for synchronization/RRM measurement according to the SMTC configuration, wherein the measurement timing of the LP-SS may be consistent with the SMTC configuration or there may be a time offset.
  • the base station 52 may perform operation s503 to send an LP-WUS, and the LP-WUS includes indication information, where the indication information indicates that the terminal 51 is allowed to perform RRM measurement through the LP-WUR 511 .
  • the LP-WUR 511 of the terminal 51 performs operation s504 to perform measurement of the serving cell and/or neighboring cell at the measurement timing determined in operation s502. Accordingly, the base station 52 sends the LP-SS for the LP-WUR 511 to measure. During this period, the communication main receiver 512 is in a non-operating state.
  • the base station 52 may also send a first preset threshold and/or a second preset threshold through high-level signaling to establish a LP-WUR 511 to trigger the communication main receiver 512 to perform an RRM measurement mechanism.
  • the serving cell signal quality may be obtained. If the serving cell signal quality determined by the LP-WUR 511 is less than the first preset threshold, the LP-WUR 511 may perform operation s505 to send a trigger signal to trigger the communication main receiver 512 to perform serving cell measurement.
  • the communication main receiver 512 switches from the non-operating state to the operating state, and performs operation s506 to perform RRM measurement on the serving cell. Accordingly, the base station 52 sends the SMTC for the communication main receiver 512 to measure.
  • the serving cell signal quality may be obtained. If the serving cell signal quality determined by the LP-WUR 511 is less than the second preset threshold, the trigger signal sent by the LP-WUR 511 when performing operation s506 may be used to trigger the communication main receiver 512 to perform neighboring cell measurement.
  • the communication main receiver 512 switches from the non-operating state to the operating state, and performs operation s506 to perform RRM measurement on the neighboring cell. Accordingly, the base station 52 sends the SMTC for the communication main receiver 512 to measure.
  • the SMTC in operation s501 may also include part or all of the configuration information of the LP-SS.
  • operation s503 may be performed before/after/simultaneously with operation s501 and/or operation s502 .
  • the carrier of the indication information may be different, and the recipient may also be different.
  • the indication information may be sent to the terminal 51 via the SIB, and correspondingly, the communication main receiver 512 may receive the SIB and forward the indication information to the LP-WUR 511 .
  • the sending of SMTC in operation s506 may be continuous.
  • the base station 52 may always send LP-SS and SMTC periodically so that the terminal 51 can receive one of them as needed to perform RRM measurement.
  • An embodiment of the present invention further provides a computer-readable storage medium, which is a non-volatile storage medium or a non-transitory storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the terminal measurement method provided in the embodiments shown in Figures 1 to 3 are executed, or the steps of the communication method for terminal measurement provided in the embodiment shown in Figure 5 are executed.
  • the storage medium may include a computer-readable storage medium such as a non-volatile memory or a non-transitory memory.
  • the storage medium may include a ROM, a RAM, a magnetic disk, or an optical disk.
  • An embodiment of the present invention further provides another terminal measurement device, including a memory and a processor, wherein the memory stores a computer program that can be run on the processor, and when the processor runs the computer program, the steps of the terminal measurement method provided in the embodiments corresponding to Figures 1 to 3 are executed.
  • the terminal measurement device can be integrated into a terminal, or the terminal measurement device can be, for example, a terminal.
  • An embodiment of the present invention further provides another communication device for terminal measurement, including a memory and a processor, wherein the memory stores a computer program that can be run on the processor, and when the processor runs the computer program, the steps of the communication method for terminal measurement provided in the embodiment corresponding to FIG. 5 are executed.
  • the communication device for terminal measurement can be integrated into a network device, or the communication device for terminal measurement can be, for example, a network device, such as a base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种终端测量方法、用于终端测量的通信方法及装置、计算机可读存储介质,其中,所述终端包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号,所述终端测量方法包括:接收第一信息,所述第一信息至少用于指示第一参考信号的配置信息;通过所述第一接收机接收所述第一参考信号,以进行RRM测量。通过本公开方案能够提高终端的节能增益。

Description

终端测量方法、用于终端测量的通信方法及装置、计算机可读存储介质
本申请要求2022年11月25日提交中国专利局、申请号为202211491509.1、发明名称为“终端测量方法、用于终端测量的通信方法及装置、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体地涉及一种终端测量方法、用于终端测量的通信方法及装置、计算机可读存储介质。
背景技术
为了延长终端(也称用户设备,User Equipment,简称UE)的电池寿命,目前第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)正在讨论低功耗唤醒信号相关的内容。
终端处于深度休眠状态时,网络可以通过发送低功耗唤醒信号来唤醒终端进行相关的数据传输。也即,终端可以通过接收低功耗唤醒信号来确定是否需要退出休眠模式并进入激活状态。终端是通过一个独立的接收电路进行低功耗唤醒信号的接收,因为通信的主电路(即通信主接收机)正处于深度睡眠模式无法接收任何信号。
但是,根据现有协议的规定,为了保证终端的移动性,终端的通信主接收机需要频繁唤醒以进行无线资源管理(Radio Resource Management,简称RRM)测量,这种情况下终端的通信主接收机无法进入深度睡眠状态。这显然不利于终端的节能增益。
发明内容
本发明解决的技术问题是如果提高终端的节能增益。
为解决上述技术问题,本发明实施例提供一种终端测量方法,所述终端包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号,所述方法包括:接收第一信息,所述第一信息至少用于指示第一参考信号的配置信息;通过所述第一接收机接收所述第一参考信号,以进行RRM测量。
可选的,所述第一信息包括第二参考信号的配置信息,所述第一参考信号的配置信息至少根据所述第二参考信号的配置信息确定,所述第二接收机接收所述第二参考信号。
可选的,所述第一参考信号的配置信息中至少一部分参数的配置,与所述第二参考信号的配置信息中相应参数的配置保持一致。
可选的,对于所述第一参考信号的配置信息和第二参考信号的配置信息中配置不一致的第一参数,根据预设的偏移值确定第一参考信号的配置信息中所述第一参数的数值相对于所述第二参考信号的配置信息中所述第一参数的数值的偏移量。
可选的,所述第一信息还包括偏移值,用于指示所述第一参考信号的配置信息中第一参数的数值相对于所述第二参考信号的配置信息中第一参数的数值的偏移量。
可选的,所述第一参数包括起始时间位置。
可选的,所述第一参考信号的配置信息至少根据所述第二参考信号的配置信息确定包括:根据所述第二参考信号的配置信息和所述偏移值确定所述第一参考信号的配置信息。
可选的,所述第一信息包括第一参考信号的配置信息以及第二参考信号的配置信息,所述第二接收机接收所述第二参考信号。
可选的,至少在通过所述第一接收机接收所述第一参考信号期间,所述第二接收机处于非工作状态。
可选的,所述第一参考信号的配置信息至少选自:所述第一参考 信号的时频资源位置、第一参考信号的周期、第一参考信号的起始时间位置、第一参考信号的接收窗周期、第一参考信号的接收窗起始位置和第一参考信号的接收窗长度。
可选的,所述第一信息包括SMTC。
可选的,所述方法还包括:接收指示信息,所述指示信息用于指示允许或不允许通过所述第一接收机进行RRM测量。
可选的,所述指示信息通过系统信息承载,所述系统信息由所述第二接收机接收;或者,所述指示信息通过低功耗唤醒信号承载。
可选的,所述方法还包括:若服务小区信号质量小于第一预设阈值,唤醒所述第二接收机进行服务小区测量,其中,所述服务小区信号质量通过所述第一接收机接收所述第一参考信号测量得到。
可选的,所述方法还包括:若服务小区信号质量小于第二预设阈值,唤醒所述第二接收机进行邻小区测量,其中,所述服务小区信号质量通过所述第一接收机接收所述第一参考信号测量得到。
为解决上述技术问题,本发明实施例还提供一种终端测量装置,所述终端包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号,所述装置包括:第一接收模块,用于接收第一信息,所述第一信息至少用于指示第一参考信号的配置信息;第二接收模块,用于通过所述第一接收机接收所述第一参考信号,以进行RRM测量。
为解决上述技术问题,本发明实施例还提供一种用于终端测量的通信方法,所述终端包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号,所述方法包括:发送第一信息,所述第一信息至少用于指示第一参考信号的配置信息,所述第一接收机接收所述第一参考信号以进行RRM测量;发送所述第一参考信号。
可选的,所述第一信息包括第二参考信号的配置信息,所述第一参考信号的配置信息至少根据所述第二参考信号的配置信息确定,所 述第二接收机接收所述第二参考信号。
可选的,所述第一参考信号的配置信息中至少一部分参数的配置,与所述第二参考信号的配置信息中相应参数的配置保持一致。
可选的,对于所述第一参考信号的配置信息和第二参考信号的配置信息中配置不一致的第一参数,根据预设的偏移值确定第一参考信号的配置信息中所述第一参数的数值相对于所述第二参考信号的配置信息中所述第一参数的数值的偏移量。
可选的,所述第一信息还包括偏移值,用于指示所述第一参考信号的配置信息中第一参数的数值相对于所述第二参考信号的配置信息中第一参数的数值的偏移量。
可选的,所述第一参数包括起始时间位置。
可选的,所述第一参考信号的配置信息至少根据所述第二参考信号的配置信息确定包括:根据所述第二参考信号的配置信息和所述偏移值确定所述第一参考信号的配置信息。
可选的,所述第一信息包括第一参考信号的配置信息以及第二参考信号的配置信息,所述第二接收机接收所述第二参考信号。
可选的,所述第一参考信号的配置信息至少选自:所述第一参考信号的时频资源位置、第一参考信号的周期、第一参考信号的起始时间位置、第一参考信号的接收窗周期、第一参考信号的接收窗起始位置和第一参考信号的接收窗长度。
可选的,所述第一信息包括SMTC。
可选的,所述方法还包括:发送指示信息,所述指示信息用于指示允许或不允许通过所述第一接收机进行RRM测量。
可选的,所述指示信息通过系统信息承载,所述系统信息由所述第二接收机接收;或者,所述指示信息通过低功耗唤醒信号承载。
可选的,所述方法还包括:发送第二参考信号,所述第二接收机根据所述第一接收机的RRM测量结果被唤醒以接收所述第二参考信号。
为解决上述技术问题,本发明实施例还提供一种用于终端测量的通信装置,所述终端包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号,所述装置包括:第一发送模块,用于发送第一信息,所述第一信息至少用于指示第一参考信号的配置信息,所述第一接收机接收所述第一参考信号以进行RRM测量;第二发送模块,用于发送所述第一参考信号。
为解决上述技术问题,本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述方法的步骤。
为解决上述技术问题,本发明实施例还提供一种终端测量装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述方法的步骤。
为解决上述技术问题,本发明实施例还提供一种用于终端测量的通信装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
在终端侧,本发明实施例提供一种终端测量方法,所述终端包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号,所述方法包括:接收第一信息,所述第一信息至少用于指示第一参考信号的配置信息;通过所述第一接收机接收所述第一参考信号,以进行RRM测量。
较之现有技术中第二接收机需要频繁唤醒以进行RRM测量,导致终端的节能增益无法提高,本实施方案能够放松第二接收机的RRM测量活动,甚至允许第二接收机不进行RRM测量活动的情况下,第二接收机能够进入深度睡眠状态,从而极大地提高终端的节能增益。具体而言,终端采用独立于第二接收机的第一接收机执行RRM测量,使得第二接收机可以不参与RRM测量活动,在没有数据传输的时候,第二接收机可以进入深度睡眠状态,从而达到终端节能的目的。
进一步,由于无需频繁唤醒以进行RRM测量,第二接收机能够进入深度睡眠状态或者关闭状态,以更好地实现终端节能。
在网络侧,本发明实施例还提供一种用于终端测量的通信方法,所述终端包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号,所述方法包括:发送第一信息,所述第一信息至少用于指示第一参考信号的配置信息,所述第一接收机接收所述第一参考信号以进行RRM测量;发送所述第一参考信号。
较之现有技术仅发送供第二接收机接收的参考信号,导致第二接收机需要频繁唤醒以进行RRM测量,执行本实施方案的网络设备通过发送供第一接收机接收的第一参考信号,使得终端通过第一接收机即可进行RRM测量活动。由于可以不参与RRM测量活动,第二接收机能够进入深度睡眠状态或者关闭状态,从而终端的节能增益得以提高。
附图说明
图1是本发明实施例一种终端测量方法的流程图;
图2是本发明实施例第一种第一参考信号的配置示意图;
图3是本发明实施例第二种第一参考信号的配置示意图;
图4是本发明实施例一种终端测量装置的结构示意图。
图5是本发明实施例一种用于终端测量的通信方法的流程图;
图6是本发明实施例一种用于终端测量的通信装置的结构示意图;
图7是本发明实施例一个典型应用场景的信令交互图。
具体实施方式
如背景技术所言,现有的终端虽然引入了低功耗唤醒信号机制以期改善终端的节能增益。但由于终端的通信主接收机仍然需要频繁唤醒以进行RRM测量,导致终端的节能增益实际上并没有得到改善。
具体而言,终端处于关机状态或者飞行模式时,网络可以通过发送低功耗唤醒信号来唤醒终端进行相关的数据传输。也即,终端通过接收低功耗唤醒信号来确定是否需要开机或者退出飞行模式进入激活状态。
但是,按照目前空闲态/非激活态下的RRM测量要求,终端侧的通信主接收机需要执行频繁的服务小区测量(每个DRX(非连续接收,Discontinuous Reception)周期(DRX Cycle)需要测量一次服务小区)和/或邻区测量。因此,即使引入低功耗唤醒信号,终端的主接收机仍无法进入深度睡眠状态或者关闭状态,无法获取低功耗唤醒信号带来的终端节能增益。
为解决上述技术问题,本发明实施例提供一种终端测量方法,所述终端包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号,所述方法包括:接收第一信息,所述第一信息至少用于指示第一参考信号的配置信息;通过所述第一接收机接收所述第一参考信号,以进行RRM测量。
采用本实施方案,在终端侧能够放松第二接收机的RRM测量活动,甚至允许第二接收机不进行RRM测量活动的情况下,第二接收机能够进入深度睡眠状态,从而极大地提高终端的节能增益。具体而言,终端采用独立于第二接收机的第一接收机执行RRM测量,使得 第二接收机可以不参与RRM测量活动,在没有数据传输的时候,第二接收机可以进入深度睡眠状态,从而达到终端节能的目的。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明实施例一种终端测量方法的流程图。
本实施方案可以应用于终端同步/RRM测量应用场景,通过执行本实施方案,终端能够以更高的节能增益进行同步/RRM测量活动。
本实施方案可以由终端执行,所述终端包括第一接收机和第二接收机。具体而言,第二接收机可以例如是终端的通信主接收机,也即主要负责终端和网络设备和/或其他终端之间通信的接收机。进一步,第一接收机可以是区别于第二接收机的接收机,如第一接收机可以在终端和网络设备和/或其他终端通信期间起到辅助作用。
在一些实施例中,第一接收机和第二接收机在性能、软硬件配置等方面可以存在差异。例如,第一接收机的接收精度可以低于第二接收机的接收精度。
在一些实施例中,第一接收机可以例如是低功耗唤醒接收机(low-power wake-up receiver,简称LP-WUR),用于接收低功耗唤醒信号(low power wake-up signal,简称LP-WUS)。
低功耗唤醒信号可以用于唤醒第二接收机。响应于接收到低功耗唤醒信号,第一接收机可以直接或间接唤醒第二接收机,以使第二接收机从(深度)睡眠状态或关闭状态切换至工作状态。处于工作状态的第二接收机可以接收数据,所述数据可以来自网络设备也可以来自其他终端。
在一些实施例中,第一接收机和第二接收机可以为终端中两个相独立的模块。若第一接收机处于工作状态,第二接收机可以处于深度睡眠或关闭状态,反之亦可。或者,第一接收机和第二接收机可以同时处于工作状态。
在具体实施中,下述步骤S101~步骤S102所提供的终端测量方法可以由终端中的具有RRM测量功能的芯片执行,也可以由终端中的基带芯片执行。
具体地,参考图1,本实施例所述终端测量方法可以包括如下步骤:
步骤S101,接收第一信息,所述第一信息至少用于指示第一参考信号的配置信息;
步骤S102,通过所述第一接收机接收所述第一参考信号,以进行RRM测量。
进一步,至少在执行步骤S102以通过第一接收机接收第一参考信号期间,第二接收机处于非工作状态。非工作状态可以例如是睡眠状态、关闭状态,还可以例如是非激活态、空闲态等。
进一步,第一参考信号可以例如是主同步信号(Primary Synchronization Signal,简称PSS)、辅同步信号(Secondary Synchronization Signal,简称S-SSS)或其他用于RRM测量的参考信号。在一些实施例中,第一参考信号也可称为低功耗参考信号(LP-SS)。
第一参考信号的配置信息可以包括第一参考信号的时域信息和频域信息。例如,第一参考信号的配置信息至少可以选自:所述第一参考信号的时频资源位置、第一参考信号的周期、第一参考信号的起始时间位置、第一参考信号的接收窗周期、第一参考信号的接收窗起始位置和第一参考信号的接收窗长度。
在一个具体实施中,第一信息可以是专用信令,专用于指示第一参考信号的配置信息。具体而言,所述专用信令可以例如是区别于SMTC(SSB测量定时配置,SSB Measurement Timing Configuration)的消息,SMTC用于配置第二接收机接收的第二参考信号的配置信息。
例如,第一信息和SMTC的时域位置可以不同。由此,网络设备可以灵活的在需要特定接收机进行RRM测量时发送相应的配置信息给该接收机。
在一些实施例中,第二参考信号和第一参考信号可以是相同的参考信号,也可以是部分相同的参考信号,还可以是完全不同的不同参考。其中,相同、部分相同、完全不同可以在参考信号的类型、生成序列,时域位置和/或频域位置的维度上表征。
在一个具体实施中,第一信息可以用于同时配置第一参考信号的配置信息和第二参考信号的配置信息。例如,第一信息可以包括SMTC,本实施方案通过在现有技术用于给第二接收机配置进行服务小区/邻小区测量的第二参考信号的SMTC中,额外指示用于给第一接收机进行服务小区/邻小区测量的第一参考信号,使得接收到采用本实施方案生成的SMTC的终端能够同时得到第一参考信号的配置信息和第二参考信号的配置信息。
在一个具体实施中,第一信息可以包括第二参考信号的配置信息,第一参考信号的配置信息至少根据第二参考信号的配置信息确定。也就是说,本具体实施中,第一参考信号和第二参考信号在配置上存在关联,从而第一信息可以仅包括第二参考信号的配置信息,或者第一信息可以包括第二参考信号的配置信息和第一参考信号区别于第二参考信号的那部分配置,以节省信令开销。
具体而言,第一参考信号的配置信息中至少一部分参数的配置,可以与所述第二参考信号的配置信息中相应参数的配置保持一致。
例如,第一参考信号的测量时机起始位置(即起始时间位置)可以与SMTC起始位置(即第二参考信号的起始时间位置)保持一致。
又例如,第一参考信号的测量时机的时间长度(即接收窗长度)可以与SMTC的时间长度配置(即第二参考信号的接收窗长度)保持一致。
进一步,对于第一参考信号的配置信息和第二参考信号的配置信息中配置不一致的第一参数,第一信息还可以包括所述第一参数。例如,第一参考信号的接收窗长度可以与SMTC的接收窗长度不一致,则第一信息可以包括第二参考信号的配置信息以及第一参考信号的测量时机的时间长度值。
响应于接收到第一信息,终端可以直接根据SMTC的起始位置确定第一参考信号测量时机的起始位置,如图2所示。然后,执行步骤S102时,终端可以根据第一参考信号的测量时机确定第一接收机进行RRM测量的时间位置。图2中,第一参考信号(图中标识为LP-SS)的起始时间位置和第二参考信号(图中标识为SMTC)的起始时间位置保持一致,第一参考信号的接收窗长度不同于第二参考信号的接收窗长度。
在一个具体实施中,对于第一参考信号的配置信息和第二参考信号的配置信息中配置不一致的第一参数,可以根据预设的偏移值确定第一参考信号的配置信息中第一参数的数值相对于第二参考信号的配置信息中第一参数的数值的偏移量。
相应的,终端在接收到第一信息后,可以根据所述第二参考信号的配置信息和所述偏移值确定所述第一参考信号的配置信息。
具体地,预设的偏移值可以由网络侧预先配置给终端。或者,预设的偏移值可以预定义确定。
在一些实施例中,第一信息可以包括第二参考信号的配置信息,以及第一参数的使能字段。
若第一参数的使能字段为0,表明第一参考信号和第二参考信号对第一参数的配置一致。相应的,终端可以直接将第二参考信号的配置信息确定为第一参考信号的配置信息。
若第一参数的使能字段为0,表明第一参考信号和第二参考信号对第一参数的配置不一致。相应的,终端可以将第一信息中第一参数 的具体数值加上预设的偏移值的结果,确定为第一参考信号中第一参数的具体数值。
第一参数可以例如是起始时间位置。
在一个具体实施中,第一信息还可以包括偏移值,用于指示所述第一参考信号的配置信息中第一参数的数值相对于所述第二参考信号的配置信息中第一参数的数值的偏移量。也就是说,本具体实施中,对于第一参考信号的配置信息和第二参考信号的配置信息中配置不一致的第一参数,可以由网络侧通过第一信息直接将具体的偏移值指示给终端。
第一参数可以包括起始时间位置。
在一些实施例中,第一参考信号的测量时机起始位置与SMTC的可以存在一个时间偏移量(offset),该偏移量即为第一参数的偏移值同样携带于第一信息中指示给终端。
进一步,第一参考信号测量时机的时间长度可以与SMTC一致。相应的,第一信息中针对接收窗长度的参数可以仅包含第二参考信号的接收窗长度的具体数值。
响应于接收到第一信息,终端可以根据第一信息中第二参考信号的配置信息以及偏移值确定第一参考信号的配置信息。
例如,响应于接收到第一信息,终端可以直接根据SMTC的起始位置以及偏移值确定第一参考信号测量时机的起始位置,如图3所示。然后,执行步骤S102时,终端可以根据第一参考信号的测量时机确定第一接收机进行RRM测量的时间位置。图3中,第一参考信号(图中标识为LP-SS)的起始时间位置相对于第二参考信号(图中标识为SMTC)的起始时间位置偏移所述偏移值的距离,第一参考信号的接收窗长度和第二参考信号的接收窗长度保持一致。
在一些实施例中,第一信息可以同时包含偏移值和相同参数的不同配置。例如,第一信息可以包括SMTC、第一参考信号的起始时间 位置相对于SMTC的起始时间位置的偏移值(即时间偏移量),以及第一参考信号测量时机的时间长度值。
在一个具体实施中,第一信息可以包括第一参考信号的配置信息以及第二参考信号的配置信息。也就是说,本具体实施中,网络侧通过第一信息直接配两套参考信号给终端,分别用于终端的第一接收机和第二接收机进行RRM测量。进一步,第一参考信号的配置信息和第二参考信号的配置信息中,针对同一参数配置的具体数值可以相同/不同。例如,第一信息可以通过两套配置信息指示相同起始时间位置和接收窗长度的第一参考信号和第二参考信号。又例如,第一信息可以通过两套配置信息指示相同起始时间位置、不同接收窗长度的第一参考信号和第二参考信号。
在一个具体实施中,在执行步骤S101之前/之后/同时,本实施例所述终端测量方法还可以包括步骤:接收指示信息,所述指示信息用于指示允许或不允许通过所述第一接收机进行RRM测量。
具体而言,指示信息可以由网络侧发送给终端。
在一些实施例中,指示信息可以通过系统信息承载。例如,网络可以通过系统信息块(System Information Block,简称SIB)携带指示信息(例如在SIB中增加1比特作为指示信息),指示终端是否可以利用第一接收机测量第一参考信号以实现服务小区和/或邻区的RRM测量。
相应的,终端可以通过接收SIB确定是否可以利用第一接收机测量第一参考信号以实现服务小区和/或邻区的RRM测量。
进一步,系统信息可以由第二接收机接收。例如,处于非工作状态的第二接收机可以周期性唤醒以接收SIB,若接收到的SIB中携带有指示信息,则第二接收机将接收到的指示信息发送给第一接收机。其中,第二接收机接收SIB的周期可以长于现有协议规定的第二接收机进行RRM测量的周期。
在一些实施例中,第二接收机可以在SIB中的指示信息指示允许第一接收机接收第一参考信号以进行RRM测量时,将指示信息转告给第一接收机。
在一个变化例中,指示信息可以通过低功耗唤醒信号承载。例如,网络可以通过LP-WUS携带指示信息(例如在LP-WUS中增加1比特或利用预留的1比特作为指示信息),指示终端是否可以利用第一接收机测量第一参考信号以实现服务小区和/或邻区的RRM测量。
相应的,终端可以通过接收LP-WUS确定是否可以利用第一接收机测量第一参考信号以实现服务小区和/或邻区的RRM测量。
进一步,LP-WUS可以由第一接收机接收,从而第一接收机可以直接获得指示信息以确定自身是否被允许进行RRM测量。
在一些实施例中,LP-WUS可以用于唤醒第二接收机接收数据。本实施方案在此基础上,在LP-WUS中额外携带指示信息,以指示第一接收机是否可以接收第一参考信号以进行RRM测量活动。
在一些实施例中,LP-WUS可以仅用于指示允许或不允许通过所述第一接收机进行RRM测量。也就是说,响应于接收到LP-WUS,第一接收机可以不唤醒第二接收机,而是根据指示信息的指示执行或不执行RRM测量。
在一个具体实施中,在执行步骤S102后,第一接收机通过接收第一参考信号可以得到RRM测量结果。基于第一接收机的RRM测量结果,可以设定第一接收机触发第二接收机进行服务小区和/或邻区测量的时机。
具体地,RRM测量结果可以包括服务小区信号质量。
在一些实施例中,在步骤S102之后,本实施方案所述终端测量方法还可以包括步骤:若服务小区信号质量小于第一预设阈值,唤醒第二接收机进行服务小区测量。
例如,网络侧可以预先设定第一接收机触发第二接收机进行服务小区测量的第一预设阈值。终端基于第一接收机测量的服务小区信号质量结果确定是否触发第二接收机执行服务小区的测量。具体而言,第一接收机通过测量服务小区对应基站下发的第一参考信号获取服务小区信号质量。
若终端基于第一接收机测量得到的服务小区信号质量小于第一预设阈值,则第一接收机触发第二接收机从睡眠状态(或者关闭状态)醒来执行服务小区测量。
在一些实施例中,在步骤S102之后,本实施例所述终端测量方法还可以包括步骤:若服务小区信号质量小于第二预设阈值,唤醒所述第二接收机进行邻小区(简称邻区)测量。
例如,网络侧可以预先设定第一接收机触发第二接收机进行邻小区测量的第二预设阈值。终端基于第一接收机测量的服务小区信号质量结果确定是否触发第二接收机执行邻小区的测量。具体而言,第一接收机通过测量服务小区对应基站下发的第一参考信号获取服务小区信号质量。
若终端基于第一接收机测量得到的服务小区信号质量小于第二预设阈值,则第一接收机触发第二接收机从睡眠状态(或者关闭状态)醒来执行邻小区测量。
进一步,被唤醒的第二接收机可以接收第二参考信号以进行同频小区测量,或者,进行异频小区测量。
例如,第二预设阈值可以进一步包括第一数值和第二数值,若终端基于第一接收机测量得到的服务小区信号质量小于第一数值,则第一接收机触发第二接收机从睡眠状态(或者关闭状态)醒来执行同频小区测量。若终端基于第一接收机测量得到的服务小区信号质量小于第二数值,则第一接收机触发第二接收机从睡眠状态(或者关闭状态)醒来执行异频小区测量。
在一些实施例中,第一预设阈值和第二预设阈值均可以由网络通过高层信令配置。第一预设阈值、第二预设阈值、第一数值和第二数值的具体数值,可以在实际应用中根据需要设定和调整。
在一些实施例中,服务小区信号质量可以基于参考信号接收功率(Reference Signal Received Power,简称RSRP)或者参考信号接收质量(Reference Signal Received Quality,简称RSRQ)表征。
进一步,RRM测量结果还可以包括邻小区信号质量。
由上,采用本实施方案,在终端侧能够放松第二接收机的RRM测量活动,甚至允许第二接收机不进行RRM测量活动,从而极大地提高终端的节能增益。具体而言,终端采用独立于第二接收机的第一接收机执行RRM测量,使得第二接收机可以不参与RRM测量活动。
图4是本发明实施例一种终端测量装置2的结构示意图。本领域技术人员理解,本实施例所述终端测量装置2可以用于实施上述图1至图3所述实施例中所述的方法技术方案。
具体地,终端可以包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号。
进一步,参考图4,本实施例所述终端测量装置2,可以包括:第一接收模块21,用于接收第一信息,所述第一信息至少用于指示第一参考信号的配置信息;第二接收模块22,用于通过所述第一接收机接收所述第一参考信号,以进行RRM测量。
关于所述终端测量装置2的工作原理、工作方式的更多内容,可以参照上述图1至图3中的相关描述,这里不再赘述。
在具体实施中,上述的终端测量装置2可以对应于终端中具有RRM测量功能的芯片,或者对应于具有数据处理功能的芯片,例如片上系统(System-On-a-Chip,简称SOC)、基带芯片等;或者对应于终端中包括具有RRM测量功能芯片的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于终端。
图5是本发明实施例一种用于终端测量的通信方法的流程图。
本实施方案可以应用于终端同步/RRM测量应用场景。通过执行本实施方案,网络侧能够为终端配置合适的参考信号,以便终端以更高的节能增益进行同步/RRM测量活动。
本实施方案可以由网络侧执行,如由网络侧的网络设备执行,网络设备可以例如是基站。网络设备采用本实施方案通信的对端可以例如是上述图1至图3所示实施例中所述的终端。
在具体实施中,下述步骤S301~步骤S302所提供的用于终端测量的通信方法可以由网络设备中的具有RRM测量功能的芯片执行,也可以由网络设备中的基带芯片执行。
具体地,参考图5,本实施例所述用于终端测量的通信方法可以包括如下步骤:
步骤S301,发送第一信息,所述第一信息至少用于指示第一参考信号的配置信息,所述第一接收机接收所述第一参考信号以进行RRM测量;
步骤S302,发送所述第一参考信号。
本领域技术人员理解,所述步骤S301至步骤S302可以视为与上述图1所示实施例所述步骤S101至步骤S102相呼应的执行步骤,两者在具体的实现原理和逻辑上是相辅相成的。因而,本实施例中涉及名词的解释可以参考图1所示实施例的相关描述,这里不再赘述。
在一个具体实施中,在执行步骤S301之前/同时/之后,本实施例所述方法还可以包括步骤:发送指示信息,所述指示信息用于指示允许或不允许通过所述第一接收机进行RRM测量。
进一步,若指示信息指示允许终端通过第一接收机进行RRM测量,网络设备执行步骤S302以发送第一参考信号。
在一个具体实施中,在执行步骤S302之前/之后/同时,网络设备 还可以发送第二参考信号。相应的,若指示信息指示不允许终端通过第一接收机进行RRM测量,和/或,若终端根据第一接收机测量得到的服务小区信号质量触发第二接收机切换至工作状态,终端可以通过第二接收机接收到第二参考信号,以进行精度更高的RRM测量。
由上,采用本实施方案,网络设备通过发送供第一接收机接收的第一参考信号,使得终端通过第一接收机即可进行RRM测量活动。由于可以不参与RRM测量活动,第二接收机能够进入深度睡眠状态或者关闭状态,从而终端的节能增益得以提高。
图6是本发明实施例一种用于终端测量的通信装置4的结构示意图。本领域技术人员理解,本实施例所述用于终端测量的通信装置4可以用于实施上述图5所述实施例中所述的方法技术方案。
具体地,终端可以包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号。
进一步,本实施例所述用于终端测量的通信装置4可以包括:第一发送模块41,用于发送第一信息,所述第一信息至少用于指示第一参考信号的配置信息,所述第一接收机接收所述第一参考信号以进行RRM测量;第二发送模块42,用于发送所述第一参考信号。
关于所述用于终端测量的通信装置4的工作原理、工作方式的更多内容,可以参照上述图5中的相关描述,这里不再赘述。
在具体实施中,上述的用于终端测量的通信装置4可以对应于网络设备中具有RRM测量功能的芯片,或者对应于具有数据处理功能的芯片,例如片上系统(System-On-a-Chip,简称SOC)、基带芯片等;或者对应于网络设备中包括具有RRM测量功能芯片的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于网络设备。
在具体实施中,关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元, 或者也可以部分是软件模块/单元,部分是硬件模块/单元。
例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
在一个典型的应用场景中,参考图7,终端51当前所处服务小区对应的基站52可以执行操作s501,以通过高层信令向终端51发送SMTC。SMTC具体可以包括SMTC的周期、起始时间位置以及SMTC长度。SMTC可以由终端51的第一接收机(如LP-WUR 511)接收,或者由终端51的第二接收机(通信主接收机512)接收。
响应于接收到SMTC,LP-WUR 511可以执行操作s502,以根据SMTC确定LP-SS的配置信息。例如,LP-WUR 511可以根据SMTC配置,确定用于同步/RRM测量的LP-SS的测量时机,其中,LP-SS的测量时机可以和SMTC配置保持一致或者存在一个时间偏移量。
进一步,基站52可以执行操作s503,以发送LP-WUS,并且LP-WUS包含指示信息,所述指示信息指示允许终端51通过LP-WUR 511进行RRM测量。
响应于接收到允许通过LP-WUR 511进行RRM测量的LP-WUS,终端51的LP-WUR 511执行操作s504,以在操作s502中确定的测量时机上执行服务小区和/或邻区的测量。相应的,基站52发送LP-SS以供LP-WUR 511测量。在此期间,通信主接收机512处于非工作状态。
进一步,基站52在执行操作s501时,还可以通过高层信令发送第一预设阈值和/或第二预设阈值,以建立LP-WUR 511触发通信主接收机512执行RRM测量机制。
例如,随着LP-WUR 511执行操作s504,可以获得服务小区信号质量。若LP-WUR 511确定的服务小区信号质量小于第一预设阈值,LP-WUR 511可以执行操作s505,以发送触发信号,触发通信主接收机512执行服务小区测量。
响应于接收到触发信号,通信主接收机512从非工作状态切换至工作状态,执行操作s506,以对服务小区进行RRM测量。相应的,基站52发送SMTC供通信主接收机512测量。
又例如,随着LP-WUR 511执行操作s504,可以获得服务小区信号质量。若LP-WUR 511确定的服务小区信号质量小于第二预设阈值,LP-WUR 511在执行操作s506时发送的触发信号可以用于触发通信主接收机512执行邻区测量。
响应于接收到触发信号,通信主接收机512从非工作状态切换至工作状态,执行操作s506,以对邻小区进行RRM测量。相应的,基站52发送SMTC供通信主接收机512测量。
在一个变化例中,操作s501中的SMTC还可以包括LP-SS的部分或全部配置信息。
在一个变化例中,操作s503可以在操作s501和/或操作s502的之前/之后/同时执行。
进一步,指示信息的携带主体可以不同,接收对象也可以不同。 例如,指示信息可以通过SIB发送给终端51,相应的,可以由通信主接收机512接收SIB,并将指示信息转发给LP-WUR 511。
在一个变化例中,操作s506中SMTC的发送可以是持续进行的。例如,基站52可以始终保持周期性地发送LP-SS和SMTC,以便终端51按需接收其中之一进行RRM测量。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述图1至图3所示实施例提供的终端测量方法的步骤,或者,执行上述图5所示实施例提供的用于终端测量的通信方法的步骤。优选地,所述存储介质可以包括诸如非挥发性(non-volatile)存储器或者非瞬态(non-transitory)存储器等计算机可读存储介质。所述存储介质可以包括ROM、RAM、磁盘或光盘等。
本发明实施例还提供了另一种终端测量装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述图1至图3对应实施例所提供的终端测量方法的步骤。终端测量装置可以集成于终端,或者,终端测量装置可以例如是终端。
本发明实施例还提供了另一种用于终端测量的通信装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述图5对应实施例所提供的用于终端测量的通信方法的步骤。用于终端测量的通信装置可以集成于网络设备,或者,用于终端测量的通信装置可以例如是网络设备,如基站。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (33)

  1. 一种终端测量方法,其特征在于,所述终端包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号,所述方法包括:
    接收第一信息,所述第一信息至少用于指示第一参考信号的配置信息;
    通过所述第一接收机接收所述第一参考信号,以进行RRM测量。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括第二参考信号的配置信息,所述第一参考信号的配置信息至少根据所述第二参考信号的配置信息确定,所述第二接收机接收所述第二参考信号。
  3. 根据权利要求2所述的方法,其特征在于,所述第一参考信号的配置信息中至少一部分参数的配置,与所述第二参考信号的配置信息中相应参数的配置保持一致。
  4. 根据权利要求3所述的方法,其特征在于,对于所述第一参考信号的配置信息和第二参考信号的配置信息中配置不一致的第一参数,根据预设的偏移值确定第一参考信号的配置信息中所述第一参数的数值相对于所述第二参考信号的配置信息中所述第一参数的数值的偏移量。
  5. 根据权利要求2或3所述的方法,其特征在于,所述第一信息还包括偏移值,用于指示所述第一参考信号的配置信息中第一参数的数值相对于所述第二参考信号的配置信息中第一参数的数值的偏移量。
  6. 根据权利要求5所述的方法,其特征在于,所述第一参数包括起始时间位置。
  7. 根据权利要求5所述的方法,其特征在于,所述第一参考信号的 配置信息至少根据所述第二参考信号的配置信息确定包括:根据所述第二参考信号的配置信息和所述偏移值确定所述第一参考信号的配置信息。
  8. 根据权利要求1所述的方法,其特征在于,所述第一信息包括第一参考信号的配置信息以及第二参考信号的配置信息,所述第二接收机接收所述第二参考信号。
  9. 根据权利要求1所述的方法,其特征在于,至少在通过所述第一接收机接收所述第一参考信号期间,所述第二接收机处于非工作状态。
  10. 根据权利要求1所述的方法,其特征在于,所述第一参考信号的配置信息至少选自:所述第一参考信号的时频资源位置、第一参考信号的周期、第一参考信号的起始时间位置、第一参考信号的接收窗周期、第一参考信号的接收窗起始位置和第一参考信号的接收窗长度。
  11. 根据权利要求1所述的方法,其特征在于,所述第一信息包括SMTC。
  12. 根据权利要求1所述的方法,其特征在于,还包括:
    接收指示信息,所述指示信息用于指示允许或不允许通过所述第一接收机进行RRM测量。
  13. 根据权利要求12所述的方法,其特征在于,所述指示信息通过系统信息承载,所述系统信息由所述第二接收机接收;或者,所述指示信息通过低功耗唤醒信号承载。
  14. 根据权利要求1所述的方法,其特征在于,还包括:
    若服务小区信号质量小于第一预设阈值,唤醒所述第二接收机进行服务小区测量,其中,所述服务小区信号质量通过所述第一接收机接收所述第一参考信号测量得到。
  15. 根据权利要求1所述的方法,其特征在于,还包括:
    若服务小区信号质量小于第二预设阈值,唤醒所述第二接收机进行邻小区测量,其中,所述服务小区信号质量通过所述第一接收机接收所述第一参考信号测量得到。
  16. 一种终端测量装置,其特征在于,所述终端包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号,所述装置包括:
    第一接收模块,用于接收第一信息,所述第一信息至少用于指示第一参考信号的配置信息;
    第二接收模块,用于通过所述第一接收机接收所述第一参考信号,以进行RRM测量。
  17. 一种用于终端测量的通信方法,其特征在于,所述终端包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号,所述方法包括:
    发送第一信息,所述第一信息至少用于指示第一参考信号的配置信息,所述第一接收机接收所述第一参考信号以进行RRM测量;
    发送所述第一参考信号。
  18. 根据权利要求17所述的方法,其特征在于,所述第一信息包括第二参考信号的配置信息,所述第一参考信号的配置信息至少根据所述第二参考信号的配置信息确定,所述第二接收机接收所述第二参考信号。
  19. 根据权利要求18所述的方法,其特征在于,所述第一参考信号的配置信息中至少一部分参数的配置,与所述第二参考信号的配置信息中相应参数的配置保持一致。
  20. 根据权利要求19所述的方法,其特征在于,对于所述第一参考信号的配置信息和第二参考信号的配置信息中配置不一致的第一参 数,根据预设的偏移值确定第一参考信号的配置信息中所述第一参数的数值相对于所述第二参考信号的配置信息中所述第一参数的数值的偏移量。
  21. 根据权利要求18或19所述的方法,其特征在于,所述第一信息还包括偏移值,用于指示所述第一参考信号的配置信息中第一参数的数值相对于所述第二参考信号的配置信息中第一参数的数值的偏移量。
  22. 根据权利要求21所述的方法,其特征在于,所述第一参数包括起始时间位置。
  23. 根据权利要求21所述的方法,其特征在于,所述第一参考信号的配置信息至少根据所述第二参考信号的配置信息确定包括:根据所述第二参考信号的配置信息和所述偏移值确定所述第一参考信号的配置信息。
  24. 根据权利要求17所述的方法,其特征在于,所述第一信息包括第一参考信号的配置信息以及第二参考信号的配置信息,所述第二接收机接收所述第二参考信号。
  25. 根据权利要求17所述的方法,其特征在于,所述第一参考信号的配置信息至少选自:所述第一参考信号的配置信息至少选自:所述第一参考信号的时频资源位置、第一参考信号的周期、第一参考信号的起始时间位置、第一参考信号的接收窗周期、第一参考信号的接收窗起始位置和第一参考信号的接收窗长度。
  26. 根据权利要求17所述的方法,其特征在于,所述第一信息包括SMTC。
  27. 根据权利要求17所述的方法,其特征在于,还包括:
    发送指示信息,所述指示信息用于指示允许或不允许通过所述第一接收机进行RRM测量。
  28. 根据权利要求27所述的方法,其特征在于,所述指示信息通过系统信息承载,所述系统信息由所述第二接收机接收;或者,所述指示信息通过低功耗唤醒信号承载。
  29. 根据权利要求17所述的方法,其特征在于,还包括:
    发送第二参考信号,所述第二接收机根据所述第一接收机的RRM测量结果被唤醒以接收所述第二参考信号。
  30. 一种用于终端测量的通信装置,其特征在于,所述终端包括第一接收机和第二接收机,所述第一接收机用于接收低功耗唤醒信号,所述装置包括:
    第一发送模块,用于发送第一信息,所述第一信息至少用于指示第一参考信号的配置信息,所述第一接收机接收所述第一参考信号以进行RRM测量;
    第二发送模块,用于发送所述第一参考信号。
  31. 一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行权利要求1至15中任一项或17至29中任一项所述方法的步骤。
  32. 一种终端测量装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1至15中任一项所述方法的步骤。
  33. 一种用于终端测量的通信装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求17至29中任一项所述方法的步骤。
PCT/CN2023/133188 2022-11-25 2023-11-22 终端测量方法、用于终端测量的通信方法及装置、计算机可读存储介质 WO2024109797A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211491509.1 2022-11-25
CN202211491509.1A CN118102362A (zh) 2022-11-25 2022-11-25 终端测量方法、用于终端测量的通信方法及装置、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2024109797A1 true WO2024109797A1 (zh) 2024-05-30

Family

ID=91158008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/133188 WO2024109797A1 (zh) 2022-11-25 2023-11-22 终端测量方法、用于终端测量的通信方法及装置、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN118102362A (zh)
WO (1) WO2024109797A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678508B1 (en) * 2000-02-07 2004-01-13 Ericsson Inc. Power conservation method for mobile communications device with two receivers
CN113728696A (zh) * 2021-07-23 2021-11-30 北京小米移动软件有限公司 一种寻呼监测方法、寻呼监测装置及存储介质
US11272454B1 (en) * 2019-02-28 2022-03-08 Verily Life Sciences Llc Systems and methods for waking up a transceiver for wireless communications
CN114980280A (zh) * 2021-02-22 2022-08-30 维沃移动通信有限公司 终端状态的转换方法、装置及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678508B1 (en) * 2000-02-07 2004-01-13 Ericsson Inc. Power conservation method for mobile communications device with two receivers
US11272454B1 (en) * 2019-02-28 2022-03-08 Verily Life Sciences Llc Systems and methods for waking up a transceiver for wireless communications
CN114980280A (zh) * 2021-02-22 2022-08-30 维沃移动通信有限公司 终端状态的转换方法、装置及终端
CN113728696A (zh) * 2021-07-23 2021-11-30 北京小米移动软件有限公司 一种寻呼监测方法、寻呼监测装置及存储介质

Also Published As

Publication number Publication date
CN118102362A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
US20210378000A1 (en) Communication method, apparatus, and device
TWI676368B (zh) 一種資訊發送、通道監聽處理方法及裝置
JP5342452B2 (ja) イベントトリガ型のdrxサイクルの調整のための方法及び配置
CN109429318B (zh) 一种唤醒终端设备的方法及装置
TWI672965B (zh) 優化喚醒和相鄰小區測量方法及其使用者設備
CN107852631A (zh) Lte系统的测量增强
KR102450067B1 (ko) 단말 상태 전환 방법, 네트워크 기기 및 단말
KR101102349B1 (ko) 무선 통신망에서 수면모드를 제어하는 방법 및 장치
TW202005448A (zh) 信號傳輸方法及裝置
WO2019233172A1 (zh) 一种唤醒区域更新方法及装置
US12003995B2 (en) Event-based adaption of UE measurements
Keshav et al. Energy efficient scheduling in 4G smart phones for mobile hotspot application
TW201943226A (zh) 信號傳輸的方法和設備
AU2016432553A1 (en) Discontinuous reception method and device
WO2021223711A1 (zh) 用于无线电链路测量的电子设备、方法和存储介质
WO2022174800A1 (zh) 终端状态的转换方法、装置及终端
CN114980281A (zh) 终端状态的控制方法、装置及终端
WO2024109797A1 (zh) 终端测量方法、用于终端测量的通信方法及装置、计算机可读存储介质
CN113163516A (zh) 信号传输方法及装置
CN111148144A (zh) 一种rrm测量方法及装置
GB2541009A (en) Power saving for cellular internet of things devices
CN112788654B (zh) 信息上报方法、终端及基站
CN115915352A (zh) 信息交互方法、装置及通信设备
WO2020082368A1 (zh) 小区的测量方法、设备和存储介质
WO2024140569A1 (zh) 通信操作执行方法、装置及终端