WO2024109752A1 - 红光荧光组合物、红光荧光膜和红光led光源 - Google Patents

红光荧光组合物、红光荧光膜和红光led光源 Download PDF

Info

Publication number
WO2024109752A1
WO2024109752A1 PCT/CN2023/133041 CN2023133041W WO2024109752A1 WO 2024109752 A1 WO2024109752 A1 WO 2024109752A1 CN 2023133041 W CN2023133041 W CN 2023133041W WO 2024109752 A1 WO2024109752 A1 WO 2024109752A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
film
fluorescent
red
fluorescent film
Prior art date
Application number
PCT/CN2023/133041
Other languages
English (en)
French (fr)
Inventor
杨小琴
曾胜
曾骄阳
陈华
李刚
陈道蓉
曾小东
Original Assignee
四川世纪和光科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川世纪和光科技发展有限公司 filed Critical 四川世纪和光科技发展有限公司
Publication of WO2024109752A1 publication Critical patent/WO2024109752A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/617Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the present application relates to the technical field of physiotherapy light sources, and in particular to a red fluorescent composition, a red fluorescent film and a red LED light source.
  • Red light therapy is a method of using red light to irradiate the human body to improve the physiological condition of the human body.
  • Red light has a certain penetrating power on the skin and subcutaneous tissue.
  • the warming effect of red light on muscles and subcutaneous tissue can accelerate blood circulation, promote metabolism and cell proliferation, and can have anti-inflammatory, analgesic, massage, promote scar softening, and reduce scar contracture.
  • LED light source has become a widely used artificial light source in the medical and beauty fields due to its advantages such as high efficiency, narrow band, direct current, energy saving and environmental protection.
  • FIG1 is a spectrum diagram of a red LED light source in the prior art.
  • the spectrum diagram of the red LED light source in the prior art has technical problems such as a steep peak, being too narrow, and the red light power before and after the peak rapidly decreasing with wavelength changes.
  • the red LED light source in the prior art is used for physical therapy, only the red light in a narrow band before and after the peak can produce a physical therapy effect, and the effective band for physical therapy is too narrow, and the physical therapy effect of the red light cannot be further improved.
  • the purpose of the present application is to provide a red light fluorescent composition, a red light fluorescent film and a red light LED light source, so as to solve the technical problems that the red light LED light source in the prior art has a steep and narrow peak in the spectrum diagram, and the red light power before and after the peak decreases rapidly with the wavelength, which leads to the effective band of physical therapy being too narrow and the physical therapy effect being poor.
  • the first aspect of the embodiment of the present application provides a red fluorescent composition.
  • the red fluorescent composition of the embodiment of the present application includes a first fluorescent powder, a second fluorescent powder and a third fluorescent powder.
  • the first phosphor includes phosphor A, phosphor B and phosphor D1;
  • the second phosphor includes phosphor C, phosphor D2 and phosphor E1;
  • the third phosphor includes phosphor D3, phosphor E2 and phosphor F;
  • the emission wavelength of phosphor A is 600nm ⁇ 640nm
  • the emission wavelength of phosphor B is 650nm ⁇ 660nm;
  • the emission wavelength of phosphor C is 670nm to 700nm;
  • the emission wavelengths of phosphor D1, phosphor D2 and phosphor D3 are independently 710nm to 730nm;
  • the emission wavelengths of phosphor E1, phosphor E2 and phosphor F are independently greater than 730 nm and less than or equal to 800 nm.
  • the red fluorescent composition of the embodiment of the present application includes different fluorescent powders with luminous wavelengths dispersed in 600nm to 800nm in the first fluorescent powder, the second fluorescent powder and the third fluorescent powder respectively, so that the red fluorescent composition of the embodiment of the present application is excited to produce a wide spectrum of red light, and the spectrum of the red light includes a flat and wide peak in the wavelength range of 600nm to 800nm.
  • the red light in the wide band before and after the peak has similar optical power and energy density.
  • the red light in this band can produce a physical therapy effect, thereby making the effective band of the red light physical therapy produced by the red fluorescent composition of the embodiment of the present application excited wide and having a good physical therapy effect.
  • a red fluorescent film is provided.
  • the red fluorescent film of the embodiment of the present application includes a first fluorescent film, a second fluorescent film and a third fluorescent film.
  • the first fluorescent film comprises a first film-forming material and a first fluorescent powder contained in the red fluorescent composition of the above-mentioned embodiment of the application dispersed in the first film-forming material;
  • the second fluorescent film comprises a second film-forming material and a second fluorescent powder contained in the red fluorescent composition of the above-mentioned embodiment of the application dispersed in the second film-forming material;
  • the third fluorescent film includes a third film-forming material and the third fluorescent powder contained in the red fluorescent composition of the above embodiment of the application dispersed in the third film-forming material.
  • the red fluorescent film of the embodiment of the present application includes the red fluorescent composition of the embodiment of the above-mentioned text application, so that the red fluorescent film of the embodiment of the present application is excited to produce a wide-spectrum red light, the peak of the red light is flat and the band range is wide, the light power of the red light within the band is similar, and during physical therapy, the red light in the band can produce a physical therapy effect. Therefore, the red light physical therapy effect produced by the red fluorescent film of the embodiment of the present application when excited is good.
  • the present application provides a red LED light source, which includes a light-emitting unit, which includes a chip and a red fluorescent film arranged on the optical path of the chip, and the red fluorescent film is the red fluorescent film of the above-mentioned embodiment of the present application.
  • the red LED light source of the embodiment of the present application generates excitation light through the chip, which excites the red fluorescent composition contained in the red fluorescent film to generate red light, and the red light has a wide band and a flat peak, and the peak is an effective band for physical therapy, so that the red light physical therapy effect generated by the red LED light source of the embodiment of the present application is good.
  • the red LED light source of the embodiment of the present application adjusts the red light generated by adjusting the emission wavelength of the red fluorescent composition, so that the red light has the characteristics of a wide spectrum and a flat peak, the operation method is simple, the repeatability is good, and the product yield is high.
  • FIG1 is a spectrum diagram of a red LED light source in the prior art
  • FIG2 is a spectrum diagram of a red LED light source provided in Example C1;
  • FIG3 is a spectrum diagram of a red LED light source provided in Example C2;
  • FIG4 is a spectrum diagram of a red LED light source provided in Example C3;
  • FIG5 is a spectrum diagram of a red LED light source provided in Example C4;
  • FIG6 is a spectrum diagram of a red LED light source provided in Example C5;
  • FIG7 is a spectrum diagram of a red LED light source provided in Example C6;
  • FIG8 is a spectrum diagram of a red LED light source provided in Example C7;
  • FIG9 is a spectrum diagram of a red LED light source provided in Example C8;
  • FIG10 is a spectrum diagram of a red LED light source provided in Example C9;
  • FIG11 is a spectrum diagram of a red LED light source provided by Comparative Example C1;
  • FIG12 is a spectrum diagram of a red LED light source provided by Comparative Example C2;
  • FIG. 13 is a spectrum diagram of the red LED light source provided by comparative example C3.
  • a red fluorescent composition in a first aspect of an embodiment of the present application, comprises a first fluorescent powder, a second fluorescent powder and a third fluorescent powder.
  • the first phosphor includes phosphor A, phosphor B and phosphor D1; wherein the emission wavelength of phosphor A is 600nm-640nm, and may further be 610nm-640nm, the emission wavelength of phosphor B is 650nm-660nm, and the emission wavelength of phosphor D1 is 710nm-730nm.
  • the second phosphor includes phosphor C, phosphor D2 and phosphor E1; wherein the emission wavelength of phosphor C is 670nm-700nm, the emission wavelength of phosphor D2 is 710nm-730nm; the emission wavelength of phosphor E1 is greater than 730nm and less than or equal to 800nm.
  • the third phosphor includes phosphor D3, phosphor E2 and phosphor F.
  • the emission wavelength of phosphor D3 is 710nm-730nm; the emission wavelengths of phosphor E2 and phosphor F are independently greater than 730nm and less than or equal to 800nm.
  • the red fluorescent composition of the embodiment of the present application is excited to produce a wide-spectrum red light by dispersing the first phosphor, the second phosphor and the third phosphor in the range of 600nm to 800nm in the emission wavelength.
  • the spectrum of the red light includes a flat peak in the range of 600nm to 800nm.
  • This band is an effective band for physical therapy.
  • the effective band of red light physical therapy produced by the red fluorescent composition of the embodiment of the present application is wide and has a good physical therapy effect.
  • the wavelength band refers to the wavelength range of red light
  • the effective wavelength band refers to the wavelength range of The wavelength range of red light that can produce therapeutic effects.
  • the light emission wavelength of the phosphor refers to the wavelength at the main peak in the spectrum of the light generated by the phosphor when excited by photons.
  • At least one of the first phosphor, the second phosphor, and the third phosphor contained in the red phosphor composition of the present application is provided separately from the other two phosphors.
  • the first phosphor, the second phosphor, and the third phosphor are provided separately.
  • the emission wavelength of phosphor A can be 630nm
  • the emission wavelength of phosphor B can be 660nm
  • the emission wavelength of phosphor C can be 679nm
  • the emission wavelengths of phosphors D1, D2 and D3 can all be 720nm
  • the emission wavelengths of phosphors E1 and E2 can both be 738nm ⁇ 742nm, specifically 740nm
  • the emission wavelength of phosphor F can be 793nm ⁇ 797nm, specifically 795nm.
  • the first phosphor, the second phosphor, and the third phosphor may each include at least one of nitride red powder and fluoride red powder.
  • phosphor A, phosphor B, phosphor C, phosphor D1, phosphor D2, phosphor D3, phosphor E1, phosphor E2, and phosphor F may each include at least one of nitride red powder and fluoride red powder.
  • phosphor A, phosphor B, phosphor C, phosphor D1, phosphor D2, phosphor D3, phosphor E1, phosphor E2 and phosphor F can be independently but not limited to (Ca, Sr)AlSiN 3 (calcium strontium aluminum silicon nitrogen, 1113) or K 2 SiF 6 :Mn 4+ (potassium fluorosilicate).
  • phosphors of different luminous wavelengths such as phosphor A, phosphor B, phosphor C, phosphor D1, phosphor D2, phosphor D3, phosphor E1, phosphor E2 and phosphor F can be directly purchased from the market according to the luminous wavelength.
  • any phosphor among phosphor A, phosphor B, phosphor C, phosphor D1, phosphor D2, phosphor D3, phosphor E1, phosphor E2 or phosphor F is not limited, and it may include only a single pure compound or a mixture of multiple compounds.
  • the specific emission wavelengths of the phosphor D1 contained in the first phosphor, the phosphor D2 contained in the second phosphor, and the phosphor D3 contained in the third phosphor can be the same, for example, the emission wavelengths of the phosphors D1, D2, and D3 are all 720 nm.
  • the emission wavelengths of the phosphors D1, D2, and D3 can also be different, for example, the emission wavelengths of the phosphors D1, D2, and D3 are 715 nm, 720 nm, and 725 nm, respectively.
  • phosphors D1, D2 and D3 can be the same substance, for example, phosphors D1, D2 and D3 are all (Ca, Sr) AlSiN 3 .
  • Phosphors D1, D2 and D3 can also be different substances, for example, phosphor D1 is (Ca, Sr) AlSiN 3 , phosphors D2 and D3 are K 2 SiF 6 :Mn 4+ .
  • the specific emission wavelengths of phosphors E1 and E2 can be the same or different.
  • phosphors E1 and E2 can be the same substance or different substances.
  • the mass ratio of phosphor A, phosphor B and phosphor D1 in the first phosphor can be controlled to be (3-25): (3-35): (5-50), further to (5-20): (5-25): (10-40), and further to (5-20): (5-25): (10-40). Further, it is (5 ⁇ 15):(5 ⁇ 20):(10 ⁇ 30).
  • the mass ratio of phosphor C, phosphor D2 and phosphor E1 in the second phosphor can be controlled to be (7-35): (7-40): (10-50), further to (10-30): (10-35): (15-40), and further to (10-25): (10-30): (20-40).
  • the mass ratio of phosphor D3, phosphor E2 and phosphor F in the third phosphor can be controlled to be (10-40): (10-40): (15-50), further to (12-35): (12-35): (15-40), and further to (15-30): (15-30): (15-35).
  • the mass ratio of phosphor A, phosphor B and phosphor D1, the mass ratio of phosphor C, phosphor D2 and phosphor E1, and the mass ratio of phosphor D3, phosphor E2 and phosphor F are controlled within the range, and the light intensity, peak flatness, peak wavelength and peak width of the red light generated by the red light fluorescent composition of the embodiment of the present application can be adjusted, so that the peak in the spectrum of the red light is flatter and wider, so as to further broaden the effective wavelength of the red light and improve the physiotherapy effect of the red light.
  • the ratio of one or more of the phosphors can be adjusted to increase the light power of one or more specific wavelengths in the red light, so that the light power of the wavelength is prominent over other wavelengths, so as to improve the phototherapy effect or function of the red light of the wavelength.
  • the ratio of the phosphors the red light generated by the red light fluorescent combination, the red light at a wavelength of 650nm has a higher light power than the red light at other wavelengths, so that the red light generated by the red light fluorescent composition of the embodiment of the present application is more conducive to the healing of human wound tissue.
  • the particle sizes of the first phosphor, the second phosphor, and the third phosphor can be independently controlled to be less than or equal to 50 ⁇ m, further to be 5 ⁇ m to 50 ⁇ m, and further to be 10 ⁇ m to 50 ⁇ m.
  • the particle sizes of the first phosphor, the second phosphor, and the third phosphor are controlled within this range, so that the particles of the first phosphor, the second phosphor, and the third phosphor have a larger specific surface area, thereby improving the luminous efficiency.
  • the particles of the first phosphor, the second phosphor, and the third phosphor have better compatibility with the film-forming material, thereby making the film thickness thinner.
  • the second aspect of the embodiment of the present application provides a red fluorescent film, which includes a first fluorescent film, a second fluorescent film and a third fluorescent film.
  • the first fluorescent film includes a first film-forming material and a first fluorescent powder contained in the red fluorescent composition of the embodiment of the present application dispersed in the first film-forming material
  • the second fluorescent film includes a second film-forming material and a second fluorescent powder contained in the red fluorescent composition of the embodiment of the present application dispersed in the second film-forming material
  • the third fluorescent film includes a third film-forming material and a third fluorescent powder contained in the red fluorescent composition of the embodiment of the present application dispersed in the third film-forming material.
  • the red fluorescent film of the embodiment of the present application includes the red fluorescent composition of the embodiment of the present application, so that the red fluorescent film of the embodiment of the present application can be excited by photons to produce a wide spectrum of red light, and in the spectrum of the red light, the peak shape is flat in a wide band before and after the peak, and the band is an effective band.
  • the light power and energy density of the red light within the band are similar, and both can produce a therapeutic effect. Therefore, the effective band of the red light therapy produced by the red fluorescent film of the embodiment of the present application is wide, and the therapeutic effect is good.
  • the first fluorescent film, the second fluorescent film, and the third fluorescent film in the embodiments of the present application can be stacked in sequence, or can be separately set.
  • the first fluorescent film, the second fluorescent film, and the third fluorescent film are separately set.
  • the first fluorescent film and the second fluorescent film are stacked to form a fourth fluorescent film containing a double film layer, and are separately set from the third fluorescent film.
  • the first fluorescent film, the second fluorescent film and the third fluorescent film separately include the first fluorescent powder, the second fluorescent powder and the third fluorescent powder
  • the red fluorescent composition when used, it is not necessary to mix the first fluorescent powder, the second fluorescent powder and the third fluorescent powder in proportion, and the proportion of the first fluorescent powder, the second fluorescent powder and the third fluorescent powder can be flexibly adjusted according to demand when preparing the red fluorescent film.
  • the film thickness of the first fluorescent film, the second fluorescent film and the third fluorescent film and the concentration of the fluorescent powder can be adjusted respectively to further optimize the light effect.
  • the first film-forming material, the second film-forming material and the third film-forming material may independently include at least one of silica gel and epoxy resin.
  • silica gel have excellent properties such as good light transmittance, atmospheric aging resistance and ultraviolet aging resistance, so that the red fluorescent film has good light transmittance and is not easy to turn yellow due to aging during use.
  • first film-forming material, the second film-forming material and the third film-forming material may be the same.
  • first film-forming material, the second film-forming material and the third film-forming material are all silicone.
  • the first film-forming material, the second film-forming material and the third film-forming material may also be different.
  • the first film-forming material is silicone, and the second film-forming material and the third film-forming material are all epoxy resin.
  • the mass ratio of the first phosphor in the first fluorescent film, the second phosphor in the second fluorescent film, and the third phosphor in the third fluorescent film can be controlled to be (5-30): (10-40): (15-60), further (7-25): (12-30): (17-50), and further (10-20): (15-25): (20-40).
  • the mass ratio of the first phosphor, the second phosphor, and the third phosphor within this range, the flatness of the peak shape before and after the peak in the spectrum of the red light generated by the red light fluorescent film of the embodiment of the present application is further improved, the effective band of red light therapy is expanded, and the therapeutic effect is improved.
  • any of the first fluorescent film, the second fluorescent film and the third fluorescent film can be a single film, so that the thickness of the first fluorescent film, the second fluorescent film and the third fluorescent film can be thinner.
  • the thickness of the first fluorescent film, the second fluorescent film and the third fluorescent film can be controlled to be sub-millimeter level, such as 0.06mm to 0.60mm, to improve the light effect.
  • the first fluorescent film includes a plurality of single film layers, and the plurality of single film layers are stacked and combined to form a composite film.
  • the first fluorescent film is a composite film formed by a composite of film layer A, film layer B and film layer D1, wherein film layer A contains phosphor A, film layer B contains phosphor B, and film layer D1 contains phosphor D1.
  • film layer A, film layer B and film layer D1 can be prepared separately by a lamination method, and then film layer A, film layer B and film layer D1 are stacked in sequence, and vacuum pressed to form the first fluorescent film.
  • film layer A can be formed by spraying, and film layer B can be sprayed on film layer A, and finally film layer D1 can be sprayed again on the basis of film layer A and film layer B, so that film layer A, film layer B and film layer D1 are composited to form the first fluorescent film.
  • the second fluorescent film includes multiple single film layers, which are stacked and combined to form the second fluorescent film.
  • the combination method between the multiple single film layers in the second fluorescent film can be the same as the combination method of the multiple single film layers of the first fluorescent film.
  • the third fluorescent film includes multiple single film layers, which are stacked and combined to form the third fluorescent film.
  • the combination method between the multiple single film layers in the third fluorescent film can be the same as the combination method of the multiple single film layers of the first fluorescent film.
  • the first fluorescent film, the second fluorescent film and the third fluorescent film are respectively formed by compounding a plurality of single film layers.
  • the mass ratio and concentration of the fluorescent powder can be flexibly controlled to adjust the red light generated by the red fluorescent film of the embodiment of the present application as needed.
  • the mass ratio and concentration of the fluorescent powder A, the fluorescent powder B and the fluorescent powder D1 in the first fluorescent powder can be controlled.
  • the concentration of the first phosphor in the first phosphor film can be controlled to be 40% to 87%, further to 50% to 80%, and further to 60% to 75%.
  • the concentration of the first phosphor is the ratio of the mass of the first phosphor to the total mass of the first phosphor and the first film-forming material.
  • the concentration of the second phosphor in the second phosphor film can be controlled to be 30% to 87%, further to 40% to 80%, and further to 60% to 75%.
  • the concentration of the second phosphor is the proportion of the mass of the second phosphor in the total mass of the second phosphor and the second film-forming material.
  • the concentration of the third phosphor in the third phosphor film can be controlled to be 30% to 87%, further to 45% to 80%, and further to 60% to 75%.
  • the concentration of the third phosphor is the proportion of the mass of the third phosphor in the total mass of the third phosphor and the third film-forming material.
  • the concentrations of the first phosphor, the second phosphor, and the third phosphor have a significant effect on the red light power generated by the red light fluorescent film of the embodiment of the present application.
  • the greater the concentration the greater the red light power generated.
  • the red fluorescent film in the embodiment of the present application can be formed by a lamination method and/or a spraying method.
  • the red fluorescent film of the embodiment of the present application is formed by a lamination method, and the film thickness of any one of the first fluorescent film, the second fluorescent film and the third fluorescent film can be controlled to be 0.06 mm to 0.6 mm.
  • the red fluorescent film of the embodiment of the present application is formed by a spray film method, and the film thickness of any one of the first fluorescent film, the second fluorescent film and the third fluorescent film can be controlled to be 0.001mm ⁇ 0.01mm, further to 0.002mm ⁇ 0.006mm, and further to 0.002mm ⁇ 0.003mm.
  • the thickness of the red fluorescent film in the embodiment of the present application is controlled within this range, which is almost close to the particle size of the red fluorescent composition particles, so that after the red fluorescent film and the chip are made into a light source, the refraction of the excitation light generated by the chip in the red fluorescent film can be further reduced, so that the excitation light can reach the surface of the red fluorescent composition particles to the maximum extent, so as to promote the red fluorescent composition to be excited to generate red light to the greatest extent, thereby improving the light effect.
  • the thickness of the first fluorescent film, the second fluorescent film and the third fluorescent film in the red fluorescent film can be the same or different, and those skilled in the art can adjust the film thickness as needed or according to the light effect.
  • a red LED light source in a third aspect of the embodiment of the present application, includes a light-emitting unit, and the light-emitting unit includes a chip and a red fluorescent film arranged on the optical path of the chip.
  • the red fluorescent film is the red fluorescent film of the embodiment of the present application described above. To save space, the red fluorescent film will not be described in detail here.
  • the red LED light source provided in the embodiment of the present application generates excitation light through the chip, which excites the red light fluorescent film arranged in the light output path of the chip to generate a wide spectrum of red light.
  • the peak shape is flat in a wide band before and after the peak.
  • the light power and energy density of the red light in this band are similar, and both can produce a therapeutic effect.
  • This band is an effective band for physical therapy.
  • the red LED light source in the embodiment of the present application excites the red light fluorescent film through the chip, and the red light generated has a wide effective band and a therapeutic effect. good.
  • the red LED light source of the embodiment of the present application includes a plurality of light-emitting units, which may specifically include three light-emitting units, namely, a first light-emitting unit, a second light-emitting unit, and a third light-emitting unit.
  • the first light-emitting unit includes a first chip and the first fluorescent film described above arranged on the optical path of the first chip
  • the second light-emitting unit includes a second chip and the second fluorescent film described above arranged on the optical path of the second chip
  • the third light-emitting unit includes a third chip and the third fluorescent film described above arranged on the optical path of the third chip.
  • the red LED light source of the embodiment of the present application may specifically include two light-emitting units, namely, a fourth light-emitting unit and a fifth light-emitting unit, wherein the fourth light-emitting unit includes a fourth chip and the fourth fluorescent film described above, and the fifth light-emitting unit includes a fifth chip and the third fluorescent film described above.
  • the red light generated by the different light-emitting units is compounded to form red light with a wide effective band and good physical therapy effect.
  • the wavelength range and flatness of the peak of the red light generated by the red light LED light source can be flexibly adjusted, so that the peak shape in the band before and after the peak is flatter, and the light power and energy density of the red light in this band are closer.
  • any of the first fluorescent film, the second fluorescent film, and the third fluorescent film is formed by a composite of multiple single film layers, and the multiple single film layers are arranged in order of refractive index from small to large, that is, the smaller the refractive index of the single film layer, the closer it is to the chip, and the larger the refractive index of the single film layer, the farther it is from the chip.
  • the propagation of light in the light source is from the optically sparse medium to the optically dense medium, which avoids the problem that when the light propagates, the light is reflected from the optically dense medium to the optically sparse medium because the incident angle of the light is greater than the critical angle of total reflection, resulting in the light being unable to be emitted, thereby causing the red LED light source to have low brightness.
  • the light emitting wavelength of any one of the first chip, the second chip, and the third chip can be controlled to be 440nm to 475nm, further 440nm to 460nm, and further 452nm to 455nm.
  • the optical power of 435nm to 440nm blue light can be reduced to reduce the damage of 435nm to 440nm blue light to the retina.
  • the light emitting wavelengths of the first chip, the second chip, and the third chip can be the same, for example, the light emitting wavelengths of the first chip, the second chip, and the third chip are all 452nm, and the light emitting wavelengths of the first chip, the second chip, and the third chip can also be different, for example, the light emitting wavelengths of the first chip, the second chip, and the third chip are 452nm, 455nm, and 458nm, respectively.
  • Those skilled in the art can set it according to the needs.
  • the light emission wavelength of a chip refers to the wavelength at the main peak in the spectrum of light generated when the chip is excited by electric current.
  • the red fluorescent film in the red LED light source of the embodiment of the present application is prepared by a film pressing method, and the film thickness of any one of the first fluorescent film, the second fluorescent film and the third fluorescent film can be controlled to be 0.06mm to 0.6mm, and the emission wavelength of any one of the first chip, the second chip and the third chip is 440nm to 475nm.
  • the concentration of the first phosphor is 40% to 87%, and in the first phosphor, the mass ratio of phosphor A, phosphor B and phosphor D1 is (3 to 25): (3 to 35): (5 to 50).
  • the concentration of the second phosphor is 40% to 87%, and the mass ratio of phosphor C, phosphor D2 and phosphor E1 in the second phosphor is (7 to 35): (7 to 40): (10 to 50).
  • the concentration of the third phosphor in the third phosphor film is 40% to 87%.
  • the mass ratio of phosphor D3, phosphor E2 and phosphor F is (10 to 40): (10 to 40): (15 to 50).
  • the light emission wavelengths of the first chip, the second chip and the third chip can be controlled to be 440nm ⁇ 460nm.
  • the concentration of the first phosphor in the first phosphor film is 50% ⁇ 80%, and the mass ratio of phosphor A, phosphor B and phosphor D1 in the first phosphor is (5 ⁇ 20):(5 ⁇ 25):(10 ⁇ 40).
  • the concentration of the second phosphor in the second phosphor film is 50% ⁇ 80%, and the mass ratio of phosphor C, phosphor D2 and phosphor E1 in the second phosphor is (10 ⁇ 30):(10 ⁇ 35):(15 ⁇ 40).
  • the concentration of the third phosphor in the third phosphor film is 50% ⁇ 80%, and the mass ratio of phosphor D3, phosphor E2 and phosphor F in the third phosphor is (12 ⁇ 35):(12 ⁇ 35):(15 ⁇ 40).
  • the emission wavelengths of the first chip, the second chip, and the third chip can be controlled to be 452nm to 455nm.
  • the concentration of the first phosphor in the first phosphor film is 60% to 75%, and the mass ratio of phosphor A, phosphor B, and phosphor D1 in the first phosphor is (5 to 15): (5 to 20): (10 to 30).
  • the concentration of the second phosphor in the second phosphor film is 60% to 75%, and the mass ratio of phosphor C, phosphor D2, and phosphor E1 in the second phosphor is (10 to 25): (10 to 30): (20 to 40).
  • the concentration of the third phosphor in the third phosphor film is 60% to 75%, and the mass ratio of phosphor D3, phosphor E2, and phosphor F in the third phosphor is (15 to 30): (15 to 30): (15 to 35).
  • the red fluorescent film of the red LED light source of the embodiment of the present application is prepared by a film spraying method, and the film thickness of any one of the first fluorescent film, the second fluorescent film and the third fluorescent film can be controlled to be 0.001mm to 0.01mm, and the emission wavelength of any one of the first chip, the second chip and the third chip is 440nm to 475nm.
  • the concentration of the first phosphor in the first fluorescent film is 40% to 87%, and the mass ratio of phosphor A, phosphor B and phosphor D1 in the first phosphor is (3 to 25): (3 to 35): (5 to 50).
  • the concentration of the second phosphor in the second fluorescent film is 30% to 85%, and the mass ratio of phosphor C, phosphor D2 and phosphor E1 in the second phosphor is (7 to 35): (7 to 40): (10 to 50).
  • the concentration of the third phosphor in the third phosphor film is 30% to 85%.
  • the mass ratio of phosphor D3, phosphor E2 and phosphor F is (10 to 40): (10 to 40): (15 to 50).
  • the thickness of the first fluorescent film, the second fluorescent film and the third fluorescent film can be controlled to be 0.002 mm to 0.006 mm, and the emission wavelengths of the first chip, the second chip and the third chip are all 440 nm to 460 nm.
  • the concentration of the first fluorescent powder in the first fluorescent film is 50% to 80%, and the mass ratio of the fluorescent powder A, the fluorescent powder B and the fluorescent powder D1 in the first fluorescent powder is (5 to 20): (5 to 25): (10 to 40).
  • the concentration of the second fluorescent powder in the second fluorescent film is 40% to 75%, and the mass ratio of the fluorescent powder C, the fluorescent powder D2 and the fluorescent powder E1 in the second fluorescent powder is (10 to 30): (10 to 35): (15 to 40).
  • the concentration of the third fluorescent powder in the third fluorescent film is 45% to 75%, and the mass ratio of the fluorescent powder D3, the fluorescent powder E2 and the fluorescent powder F in the third fluorescent powder is (12 to 35): (12 to 35): (15 to 40).
  • the thickness of the first fluorescent film, the second fluorescent film and the third fluorescent film can be controlled to be 0.002 mm to 0.003 mm, and the emission wavelengths of the first chip, the second chip and the third chip are all 452 nm to 455 nm.
  • the concentration of the first fluorescent powder in the first fluorescent film is 60% to 75%, and the mass ratio of the fluorescent powder A, the fluorescent powder B and the fluorescent powder D1 in the first fluorescent powder is (5 to 15): (5 to 20): (10 to 30).
  • the concentration of the second fluorescent powder in the second fluorescent film is 60% to 75%, and the mass ratio of the fluorescent powder C, the fluorescent powder D2 and the fluorescent powder E1 in the second fluorescent powder is (10 to 25): (10 to 30): (20 to 40).
  • the concentration of the third fluorescent powder in the third fluorescent film is 60% to 69%, and the mass ratio of the fluorescent powder D3, the fluorescent powder E2 and the fluorescent powder F in the third fluorescent powder is (15 to 30): (15 to 30): (15 to 35).
  • Embodiments A1 to A9 provide a red fluorescent composition respectively.
  • the red fluorescent composition of Embodiments A1 to A9 comprises a first fluorescent powder, a second fluorescent powder and a third fluorescent powder which are separately provided, and the particle size of the first fluorescent powder, the second fluorescent powder and the third fluorescent powder is 10 ⁇ m to 25 ⁇ m.
  • the first phosphor includes phosphor A, phosphor B and phosphor D1.
  • Phosphor A emits (Ca, Sr) AlSiN 3 with a wavelength of 630 nm
  • phosphor B emits (Ca, Sr) AlSiN 3 with a wavelength of 660 nm
  • phosphor D1 emits (Ca, Sr) AlSiN 3 with a wavelength of 720 nm.
  • the second phosphor includes phosphor C, phosphor D2 and phosphor E1.
  • Phosphor C emits (Ca, Sr) AlSiN 3 with a wavelength of 679 nm
  • phosphor D2 emits (Ca, Sr) AlSiN 3 with a wavelength of 720 nm
  • phosphor E1 emits (Ca, Sr) AlSiN 3 with a wavelength of 740 nm.
  • the third phosphor includes phosphor D3, phosphor E2 and phosphor F.
  • Phosphor D3 has a light emission wavelength of 720 nm (Ca, Sr)AlSiN 3
  • phosphor E2 has a light emission wavelength of 740 nm (Ca, Sr)AlSiN 3
  • phosphor F has a light emission wavelength of 795 nm (Ca, Sr)AlSiN 3 .
  • the mass ratios of phosphor A, phosphor B and phosphor D1 in the first phosphor, the mass ratios of phosphor C, phosphor D2 and phosphor E1 in the second phosphor, and the mass ratios of phosphor D3, phosphor E2 and phosphor F in the third phosphor contained in the red light fluorescent compositions of Examples A1 to A9 are detailed in Table 1 below.
  • This comparative example provides a red light fluorescent composition, including phosphor A, phosphor B and phosphor D1.
  • the phosphor A, phosphor B and phosphor D1 in this comparative example are the same as the phosphor A, phosphor B and phosphor D1 in Example A5.
  • the mass ratio of phosphor A, phosphor B and phosphor D1 in this comparative example is shown in Table 1 below.
  • This comparative example provides a red fluorescent composition, including phosphor C, phosphor D2 and phosphor E1.
  • the phosphor C, phosphor D2 and phosphor E1 in this comparative example are the same as the phosphor C, phosphor D2 and phosphor E1 in Example A5.
  • the mass ratio of phosphor C, phosphor D2 and phosphor E1 in this comparative example is shown in Table 1.
  • This comparative example provides a red fluorescent composition, including phosphor D3, phosphor E2 and phosphor F.
  • the phosphor D3, phosphor E2 and phosphor F in this comparative example are the same as the phosphor D3, phosphor E2 and phosphor F in Example A5.
  • the mass ratio of phosphor D3, phosphor E2 and phosphor F is shown in Table 1.
  • Embodiments B1 to B9 provide a red fluorescent film respectively.
  • the red fluorescent films of Embodiments B1 to B9 include a first fluorescent film, a second fluorescent film and a third fluorescent film, the first fluorescent film includes a film-forming material silica gel and a first fluorescent powder, the second fluorescent film includes a film-forming material silica gel and a second fluorescent powder, and the third fluorescent film includes a film-forming material silica gel and a third fluorescent powder.
  • Example B1 the first phosphor contained in the first fluorescent film is the first phosphor in Example A1, the second phosphor contained in the second fluorescent film is the second phosphor in Example A1, and the third phosphor contained in the third fluorescent film is the third phosphor in Example A1; in Example B2, the first phosphor contained in the first fluorescent film is the first phosphor in Example A2, the second phosphor contained in the second fluorescent film is the second phosphor in Example A2, and the third phosphor contained in the third fluorescent film is the third phosphor in Example A2; and so on, in Example B9, the first phosphor contained in the first fluorescent film is the first phosphor in Example A9, the second phosphor contained in the second fluorescent film is the second phosphor in Example A9, and the third phosphor contained in the third fluorescent film is the third phosphor in Example A9.
  • the film thicknesses of the first fluorescent film, the second fluorescent film and the third fluorescent film, the concentration of the first fluorescent powder in the first fluorescent film, the concentration of the second fluorescent powder in the second fluorescent film, and the concentration of the third fluorescent powder in the third fluorescent film are detailed in Table 2.
  • This comparative example provides a red fluorescent film.
  • the red fluorescent film of this comparative example is prepared by a film pressing method, has a film thickness of 0.20 mm, comprises silica gel and a red fluorescent composition, and the concentration of the red fluorescent composition is 50%.
  • the red fluorescent composition is the red fluorescent composition provided in comparative example A1.
  • This comparative example provides a red fluorescent film.
  • the red fluorescent film of this comparative example is substantially the same as the red fluorescent film of comparative example B1, except that the red fluorescent composition in this comparative example is the red fluorescent composition provided by comparative example A2.
  • This comparative example provides a red fluorescent film.
  • the red fluorescent film of this comparative example is substantially the same as the red fluorescent film of comparative example B1, except that the red fluorescent composition in this comparative example is the red fluorescent composition provided in comparative example A3.
  • Embodiments C1 to C9 provide a red LED light source, which includes a first light emitting unit, a second light emitting unit, and a third light emitting unit.
  • the first light-emitting unit includes a first chip and a first fluorescent film
  • the second light-emitting unit includes a second chip and a second fluorescent film
  • the third light-emitting unit includes a third light-emitting chip and a third fluorescent film.
  • the light-emitting wavelengths of the first chip, the second chip, and the third chip are shown in Table 3 below.
  • Example C1 the first fluorescent film is the first fluorescent film in Example B1, the second fluorescent film is the second fluorescent film in Example B1, and the third fluorescent film is the third fluorescent film in Example B1; in Example C2, the first fluorescent film is the first fluorescent film in Example B2, the second fluorescent film is the second fluorescent film in Example B2, and the third fluorescent film is the third fluorescent film in Example B2; and so on, in Example C9, the first fluorescent film is the first fluorescent film in Example B9, the second fluorescent film is the second fluorescent film in Example B9, and the third fluorescent film is the third fluorescent film in Example B9.
  • This comparative example provides a red LED light source, which includes a light-emitting unit, which includes a chip and a red fluorescent film arranged in the light-emitting path of the chip, the red fluorescent film is the red fluorescent film provided in comparative example B1, and the light-emitting wavelength of the chip is 452nm.
  • This comparative example provides a red LED light source, which is substantially the same as the red LED light source of comparative example C1, except that the red fluorescent film of this comparative example is the red fluorescent film provided by comparative example B2.
  • This comparative example provides a red LED light source, which is substantially the same as the red LED light source of comparative example C1, except that the red fluorescent film of this comparative example is the red fluorescent film provided by comparative example B3.
  • the red LED light sources provided in the above-mentioned Examples C1 to C9 and Comparative Examples C1 to C3 were subjected to spectral tests respectively.
  • test results are shown in Figures 2 to 13, wherein the spectra of the light sources in Examples C1 to C9 are shown in Figures 2 to 10, and the spectra of the light sources in Comparative Example C1 to Comparative Example C3 are shown in Figures 11 to 13.
  • the red light generated by the red light LED light sources provided in Examples C1 to C9 of the present application has a flat peak shape in a wide band before and after the peak, and the absolute spectrum of the red light in this band is close to the maximum absolute spectrum value of the red light (such as the light power or absolute relative spectrum value of this band is greater than or equal to 80% of the maximum light power or the maximum absolute relative spectrum value).
  • the red light in this band can produce a physical therapy effect, and this band is an effective band.
  • the effective band of red light therapy produced by the red light LED light sources provided in Examples C1 to C9 is wide and has a good physical therapy effect.
  • the red light generated by the red LED light sources of Comparative Examples C1 to C3 has a steep peak shape before and after the wave crest, and the wave crest is narrow and sharp.
  • the absolute spectral value or optical power of the red light increases rapidly, and the absolute spectral value or optical power decreases rapidly after reaching the maximum value.
  • the maximum absolute spectral value or optical power of the red light is greatly different from the absolute spectral value or optical power at other wavelengths. Only the spectral value or optical power within a very narrow band before and after the wave crest is similar to the maximum absolute spectral value or optical power.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请涉及理疗光源技术领域,本申请实施例提供了一种红光荧光组合物、红光荧光膜和红光LED光源。该红光荧光组合物包括第一荧光粉、第二荧光粉和第三荧光粉;其中,第一荧光粉包括发光波长不同的荧光粉A、荧光粉B和荧光粉D1;第二荧光粉包括发光波长不同的荧光粉C、荧光粉D2和荧光粉E1;第三荧光粉包括发光波长不同的荧光粉D3、荧光粉E2和荧光粉F。通过发光波长不同的荧光粉之间相配合,使得本申请的红光荧光组合物所发出的红光的光谱图中,波峰平缓,在波峰前后的波段范围内的红光光功率与波峰相近,均具有理疗作用,提高了理疗效果。

Description

红光荧光组合物、红光荧光膜和红光LED光源
本申请要求于2022年11月21日在中国专利局提交的、申请号为202211456736.0、发明名称为“红光荧光组合物、红光荧光膜和红光LED光源”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及理疗光源技术领域,尤其涉及一种红光荧光组合物、红光荧光膜和红光LED光源。
背景技术
红光理疗是采用红光照射人体,改善人体生理状况的方法。红光对于皮肤、皮下组织具有一定穿透力,红光对肌肉、皮下组织等产生的温热效应,可加速血液循环,促进新陈代谢和细胞增生,能够起到消炎、镇痛、按摩、促进瘢痕软化、减轻瘢痕挛缩等效果。
传统的红光治疗仪多采用滤光的方法获得红光,存在滤光液寿命有限、发光效率低、照射面积小、有频闪、结构复杂和光强、频率不可调制等缺陷。LED光源以其高效、窄带、直流、节能、环保等优点,成为在医疗和美容领域具有广泛的应用人工光源。
图1为现有技术红光LED光源的光谱图,如图1所示,现有技术的红光LED光源的光谱图存在峰形陡峭、过窄,且波峰前后的红光光功率随波长变化迅速减小的技术问题,使得现有技术红光LED光源的用于理疗时,仅有波峰前后较窄的波段内的红光能够产生理疗效果,理疗的有效波段过窄,红光的理疗效果无法进一步提高。
技术问题
本申请的目的在于提供一种红光荧光组合物、红光荧光膜和红光LED光源,以解决现有技术的红光LED光源存在的光谱图中峰形陡峭、过窄,且波峰前后的红光光功率随波长变化迅速减小,进而导致理疗的有效波段过窄,理疗效果不佳的技术问题。
技术解决方案
为了实现上述申请目的,本申请实施例第一方面,提供了一种红光荧光组合物。本申请实施例红光荧光组合物包括第一荧光粉、第二荧光粉和第三荧光粉。
其中,第一荧光粉包括荧光粉A、荧光粉B和荧光粉D1;
第二荧光粉包括荧光粉C、荧光粉D2和荧光粉E1;
第三荧光粉包括荧光粉D3、荧光粉E2和荧光粉F;
荧光粉A的发光波长为600nm~640nm;
荧光粉B的发光波长为650nm~660nm;
荧光粉C的发光波长为670nm~700nm;
荧光粉D1、荧光粉D2、荧光粉D3的发光波长独立的为710nm~730nm;
荧光粉E1、荧光粉E2和荧光粉F的发光波长独立的大于730nm,且小于或等于800nm。
本申请实施例红光荧光组合物通过第一荧光粉、第二荧光粉和第三荧光粉中分别包含发光波长分散分布于600nm~800nm的不同荧光粉,使得本申请实施例红光荧光组合物被激发产生宽谱的红光,该红光的光谱图在600nm~800nm波长范围内,包括平坦的且较宽的波峰。波峰前后较宽的波段内的红光具有相似的光功率和能量密度,理疗时,该波段内的红光均能产生理疗效果,进而使得本申请实施例的红光荧光组合物被激发所产生的红光理疗的有效波段宽,理疗效果好。
本申请实施例第二方面,提供了一种红光荧光膜,本申请实施例的红光荧光膜包括第一荧光膜、第二荧光膜和第三荧光膜。
其中,第一荧光膜包括第一成膜材料和分散在第一成膜材料中的上文本申请实施例红光荧光组合物所含的第一荧光粉;
第二荧光膜包括第二成膜材料和分散在第二成膜材料中的上文本申请实施例红光荧光组合物所含的第二荧光粉;
第三荧光膜包括第三成膜材料和分散在第三成膜材料中的上文本申请实施例红光荧光组合物所含的第三荧光粉。
本申请实施例红光荧光膜包括上文本申请实施例红光荧光组合物,使得本申请实施例红光荧光膜被激发产生宽谱的红光,该红光的波峰平坦且波段范围宽,该波段范围内的红光光功率相近,理疗时,该波段的红光均能产生理疗效果,因此本申请实施例的红光荧光膜被激发所产生的红光理疗效果好。
本申请实施例第三方面,提供了一种红光LED光源。本申请实施例的红光LED光源包括发光单元,该发光单元包括芯片和设置于芯片光路上的红光荧光膜,该红光荧光膜为上文本申请实施例红光荧光膜。
本申请实施例红光LED光源通过芯片产生激发光,激发红光荧光膜中所含的红光荧光组合物产生红光,该红光的具有波段宽且平坦的波峰,该波峰的波段为理疗的有效波段,使得本申请实施例红光LED光源所产生的红光理疗效果好。另外,本申请实施例的红光LED光源通过调节红光荧光组合物的发光波长来调整所产生的红光,使该红光具有宽谱、波峰平坦的特点,操作方法简单,可重复性好,产品良品率高。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术红光LED光源光谱图;
图2为实施例C1所提供的红光LED光源光谱图;
图3为实施例C2所提供的红光LED光源光谱图;
图4为实施例C3所提供的红光LED光源光谱图;
图5为实施例C4所提供的红光LED光源光谱图;
图6为实施例C5所提供的红光LED光源光谱图;
图7为实施例C6所提供的红光LED光源光谱图;
图8为实施例C7所提供的红光LED光源光谱图;
图9为实施例C8所提供的红光LED光源光谱图;
图10为实施例C9所提供的红光LED光源光谱图;
图11为对比例C1所提供的红光LED光源光谱图;
图12为对比例C2所提供的红光LED光源光谱图;
图13为对比例C3所提供的红光LED光源光谱图。
本发明的实施方式
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例第一方面,提供了一种红光荧光组合物。本申请实施例红光荧光组合物包括的第一荧光粉、第二荧光粉和第三荧光粉。
第一荧光粉包括荧光粉A、荧光粉B和荧光粉D1;其中,荧光粉A的发光波长为600nm~640nm,进一步可以是610nm~640nm,荧光粉B的发光波长为650nm~660nm,荧光粉D1的发光波长为710nm~730nm。
第二荧光粉包括荧光粉C、荧光粉D2和荧光粉E1;其中,荧光粉C的发光波长为670nm~700nm,荧光粉D2的发光波长为710nm~730nm;荧光粉E1的发光波长大于730nm,且小于或等于800nm。
第三荧光粉包括荧光粉D3、荧光粉E2和荧光粉F。其中,荧光粉D3的发光波长为710nm~730nm;荧光粉E2和荧光粉F的发光波长独立的大于730nm,且小于或等于800nm。
本申请实施例红光荧光组合物通过发光波长分散分布在600nm~800nm范围内的第一荧光粉、第二荧光粉和第三荧光粉,使得本申请实施例红光荧光组合物被激发产生宽谱的红光,该红光的光谱图在600nm~800nm包括峰形平坦的波峰,在该波峰前后较宽的波段内,红光的光功率和能量密度相近,理疗时均能产生理疗效果,该波段为理疗的有效波段。进而使得本申请实施例的红光荧光组合物所产生的红光理疗有效波段宽,理疗效果好。
需要说明的是,本申请实施例中,波段指的是红光的波长范围,而有效波段指的是能 够产生理疗效果的红光的波长范围。
可以理解的是,荧光粉的发光波长指的是荧光粉被光子激发所产生的光的光谱图中主峰峰值处的波长。
在一些实施例中,本申请实施例红光荧光组合物所含的第一荧光粉、第二荧光粉和第三荧光粉中的至少一荧光粉与另两荧光粉是分开设置,示范例中,第一荧光粉、第二荧光粉和第三荧光粉分开设置。通过将第一荧光粉、第二荧光粉和第三荧光粉中的至少一荧光粉与另两荧光粉是分开设置,使得第一荧光粉、第二荧光粉和第三荧光粉的质量比能够根据发光效果进行灵活调整。
在进一步实施例中,荧光粉A的发光波长可以为630nm,荧光粉B的发光波长可以为660nm,荧光粉C的发光波长可以为679nm,荧光粉D1、荧光粉D2和荧光粉D3的发光波长均可以为720nm,荧光粉E1和荧光粉E2的发光波长均可以为738nm~742nm,具体可以为740nm,荧光粉F的发光波长可以为793nm~797nm,具体可以为795nm。
在一些实施例中,第一荧光粉、第二荧光粉和第三荧光粉均可以包括氮化物红粉和氟化物红粉中至少一种。具体的,荧光粉A、荧光粉B、荧光粉C、荧光粉D1、荧光粉D2、荧光粉D3、荧光粉E1、荧光粉E2和荧光粉F分别可以包括氮化物红粉和氟化物红粉中至少一种。
示范例中,荧光粉A、荧光粉B、荧光粉C、荧光粉D1、荧光粉D2、荧光粉D3、荧光粉E1、荧光粉E2和荧光粉F独立的可以是但不限于(Ca,Sr)AlSiN3(钙锶铝硅氮三,1113)或K2SiF6:Mn4+(氟硅酸钾)。另外,各发光波长的荧光粉如荧光粉A、荧光粉B、荧光粉C、荧光粉D1、荧光粉D2、荧光粉D3、荧光粉E1、荧光粉E2和荧光粉F可以根据发光波长直接市购获得。
需要说明的是,荧光粉A、荧光粉B、荧光粉C、荧光粉D1、荧光粉D2、荧光粉D3、荧光粉E1、荧光粉E2或荧光粉F中的任一荧光粉具体包括几种化合物并不限定,其可以是仅包括一种单一化合物纯净物,也可以是包括多种化合物混合物。
当然了,第一荧光粉所含的荧光粉D1、第二荧光粉所含的荧光粉D2和第三荧光粉所含的荧光粉D3的具体发光波长可以相同,例如荧光粉D1、荧光粉D2和荧光粉D3的发光波长均为720nm。荧光粉D1、荧光粉D2和荧光粉D3的发光波长也可以不相同,例如荧光粉D1、荧光粉D2和荧光粉D3的发光波长分别为715nm、720nm、和725nm。当荧光粉D1、荧光粉D2和荧光粉D3的发光波长相同时,荧光粉D1、荧光粉D2和荧光粉D3可以为相同的物质,例如荧光粉D1、荧光粉D2和荧光粉D3都是(Ca,Sr)AlSiN3,荧光粉D1、荧光粉D2和荧光粉D3也可以为不相同的物质,例如荧光粉D1为(Ca,Sr)AlSiN3,荧光粉D2和荧光粉D3为K2SiF6:Mn4+。同理,荧光粉E1和荧光粉E2的具体发光波长可以相同,也可以不同,当荧光粉E1和荧光粉E2的发光波长相同时,荧光粉E1和荧光粉E2可以是相同物质,也可以是不同的物质。
在一些实施例中,可以控制第一荧光粉中荧光粉A、荧光粉B和荧光粉D1之间的质量比为(3~25):(3~35):(5~50),进一步为(5~20):(5~25):(10~40),更 进一步为(5~15):(5~20):(10~30)。
在一些实施例中,可以控制第二荧光粉中荧光粉C、荧光粉D2和荧光粉E1之间的质量比为(7~35):(7~40):(10~50),进一步为(10~30):(10~35):(15~40),更进一步为(10~25):(10~30):(20~40)。
在一些实施例中,可以控制第三荧光粉中荧光粉D3、荧光粉E2和荧光粉F之间的质量比为(10~40):(10~40):(15~50),进一步为(12~35):(12~35):(15~40),更进一步为(15~30):(15~30):(15~35)。
将荧光粉A、荧光粉B和荧光粉D1的质量比,荧光粉C、荧光粉D2和荧光粉E1的质量比,以及荧光粉D3、荧光粉E2和荧光粉F的质量比控制在该范围内,能够对本申请实施例红光荧光组合物所产生的红光的光强、波峰平坦程度、波峰的波长和的波峰的宽窄程度进行调整,使得该红光的光谱中波峰更为平坦,波峰更宽,以进一步扩宽红光的有效波长,提高红光的理疗效果。同时,在该范围内,还可以通过调节其中一种或几种一荧光粉的比例,以提高红光中具体的一个或几个波长的光功率,使该波长的光功率凸出于其他波长,以提高该波长的红光的光疗效果或作用,例如,通过调节荧光粉的比例,令红光荧光组合所产生的红光中,波长为650nm处的红光具有比其他波长下的红光更高的光功率,使得本申请实施例红光荧光组合物所产生的红光更有利于人体创伤组织的愈合。
在一些实施例中,可以控制第一荧光粉、第二荧光粉和第三荧光粉的粒径独立的小于或等于50μm,进一步可以为5μm~50μm,更进一步可以为10μm~50μm。控制第一荧光粉、第二荧光粉和第三荧光粉的粒径在该范围内,使得第一荧光粉、第二荧光粉和第三荧光粉的颗粒具有更大的比表面积,进而提高发光效率。同时在第一荧光粉、第二荧光粉和第三荧光粉与成膜材料成膜时,第一荧光粉、第二荧光粉和第三荧光粉的颗粒与成膜材料具有更好的相容性,进而使得膜厚更薄。
本申请实施例第二方面提供一种红光荧光膜,本申请实施例红光荧光膜包括第一荧光膜、第二荧光膜和第三荧光膜。其中,第一荧光膜包括第一成膜材料和分散在第一成膜材料中的上文本申请实施例红光荧光组合物所含的第一荧光粉,第二荧光膜包括第二成膜材料和分散在第二成膜材料中的上文本申请实施例红光荧光组合物所含的第二荧光粉,第三荧光膜包括第三成膜材料和分散在第三成膜材料中的上文本申请实施例红光荧光组合物所含的第三荧光粉。
本申请实施例红光荧光膜包括上述本申请实施例的红光荧光组合物,使得本申请实施例的红光荧光膜能够被光子激发产生宽谱的红光,且该红光的光谱图中,波峰前后较宽的波段内峰形平坦,该波段是有效波段,该波段范围内的红光的光功率和能量密度相近,均能产生理疗效果。进而使得本申请实施例的红光荧光膜所产生的红光理疗的有效波段宽,理疗效果好。
在一些实施例中,本申请实施例中第一荧光膜、第二荧光膜和第三荧光膜可以依次层叠设置,也可以分开单独设置。例如一些具体示范例中,第一荧光膜、第二荧光膜和第三荧光膜分别单独设置。另一些示范例中,第一荧光膜和第二荧光膜层叠设置形成含有双层膜层的第四荧光膜,并与第三荧光膜分开设置。
通过第一荧光膜、第二荧光膜和第三荧光膜单独分别包括第一荧光粉、第二荧光粉和第三荧光粉,使得红光荧光组合物在使用时,无需将第一荧光粉、第二荧光粉和第三荧光粉按比例进行混合,而使得第一荧光粉、第二荧光粉和第三荧光粉的比例可以在红光荧光膜的制备时根据需求进行灵活的调整。同时还可以分别对第一荧光膜、第二荧光膜和第三荧光膜的膜厚以及荧光粉的浓度进行调整,以进一步优化光效。
在一些实施例中,第一成膜材料、第二成膜材料和第三成膜材料独立的可以包括硅胶和环氧树脂中至少一种。该些材料如硅胶具有良好的透光性、抗大气老化和抗紫外老化等优异性能,使得红光荧光膜具有良好的透光性且不易因使用过程中的老化而变黄。
另外,第一成膜材料、第二成膜材料和第三成膜材料可以相同,例如,具体示范例中,第一成膜材料、第二成膜材料和第三成膜材料都是硅胶;第一成膜材料、第二成膜材料和第三成膜材料也可以不相同,例如,在另一些具体示范例中,第一成膜材料为硅胶,第二成膜材料和第三成膜材料均为环氧树脂。
在一些实施例中,可以控制第一荧光膜中的第一荧光粉、第二荧光膜中的第二荧光粉和第三荧光膜中第三荧光粉的质量比为(5~30):(10~40):(15~60),进一步为(7~25):(12~30):(17~50),更进一步为(10~20):(15~25):(20~40)。通过控制第一荧光粉、第二荧光粉和第三荧光粉的质量比在该范围内,进一步提高本申请实施例红光荧光膜所产生红光的光谱图中波峰前后峰形的平坦性,扩大红光理疗的有效波段,提高理疗效果。
在一些实施例中,第一荧光膜、第二荧光膜和第三荧光膜中任一荧光膜可以为一层单膜,这样,可以使得第一荧光膜、第二荧光膜和第三荧光膜的膜厚更薄。在进一步实施例中,还可以控制第一荧光膜、第二荧光膜和第三荧光膜膜厚为亚毫米级别,如0.06mm~0.60mm,以提高光效。
在一些实施例中,第一荧光膜包括多个单膜层,多个单膜层层叠结合形成复合膜。如在示范例中,第一荧光膜是由膜层A、膜层B和膜层D1复合形成的复合膜,其中,膜层A包含荧光粉A,膜层B包含荧光粉B,膜层D1包含荧光粉D1。制备时,可以通过压膜法分别单独制备膜层A、膜层B和膜层D1,再将膜层A、膜层B和膜层D1依次层叠,真空压合形成第一荧光膜,也可以通过喷膜形成膜层A,在膜层A上再进行喷膜形成膜层B,最后在膜层A和膜层B的基础上再次喷膜形成膜层D1,使得膜层A、膜层B和膜层D1复合形成第一荧光膜。
在一些实施例中,第二荧光膜包括多个单膜层,多个单膜层之间层叠结合,复合形成第二荧光膜,其中,第二荧光膜中多个单膜层之间的结合方式可以与第一荧光膜的多个单膜层结合方式相同。
在一些实施例中,第三荧光膜包括多个单膜层,多个单膜层之间层叠结合,复合形成第三荧光膜,其中,第三荧光膜中多个单膜层之间的结合方式可以与第一荧光膜的多个单膜层结合方式相同。
通过多个单膜层分别复合形成第一荧光膜、第二荧光膜和第三荧光膜,能够在第一荧 光膜、第二荧光膜和第三荧光膜的制备时,灵活控制荧光粉的质量比和浓度,进而根据需要调整本申请实施例红光荧光膜所产生的红光,例如,可以控制第一荧光粉中荧光粉A、荧光粉B和荧光粉D1的质量比和浓度。
在一些实施例中,可以控制第一荧光膜中第一荧光粉的浓度为40%~87%,进一步为50%~80%,更进一步为60%~75%。其中,第一荧光粉的浓度为第一荧光粉的质量在第一荧光粉和第一成膜材料总质量中的占比。
在一些实施例中,可以控制第二荧光膜中第二荧光粉的浓度为30%~87%,进一步为40%~80%,更进一步为60%~75%。其中,第二荧光粉的浓度为第二荧光粉的质量在第二荧光粉和第二成膜材料总质量中的占比。
在一些实施例中,可以控制第三荧光膜中第三荧光粉的浓度为30%~87%,进一步为45%~80%,更进一步为60%~75%。其中,第三荧光粉的浓度为第三荧光粉的质量在第三荧光粉和第三成膜材料总质量中的占比。
第一荧光粉、第二荧光粉和第三荧光粉的浓度对本申请实施例红光荧光膜所产生的红光光功率产生明显的影响,浓度越大,所产生的红光光功率越大。控制第一荧光粉、第二荧光粉和第三荧光粉的浓度在该范围内,能够调整红光荧光膜所发出的红光的光功率,以提高了红光的理疗效果。
可以理解的是,本申请实施例红光荧光膜可以采用压膜法和/或喷膜法成膜。
在一些实施例中,本申请实施例红光荧光膜采用压膜法成膜,可以控制第一荧光膜、第二荧光膜和第三荧光膜中任一荧光膜的膜厚为0.06mm~0.6mm。
在一些实施例中,本申请实施例红光荧光膜采用喷膜法成膜,可以控制第一荧光膜、第二荧光膜和第三荧光膜中任一荧光膜的膜厚为0.001mm~0.01mm,进一步为0.002mm~0.006mm,更进一步为0.002mm~0.003mm。
将本申请实施例红光荧光膜的膜厚控制在该范围,几乎接近于红光荧光组合物颗粒的粒径,使得该红光荧光膜与芯片制成光源后,能够进一步降低芯片产生的激发光在该红光荧光膜中的折射,使得激发光能够最大限度的达到红光荧光组合物颗粒的表面,以最大程度的促进红光荧光组合物被激发产生红光,从而提高光效。需要说明的是,红光荧光膜中的第一荧光膜、第二荧光膜和第三荧光膜的膜厚可以相同,也可以不相同,本领域技术人员可以根据需要或根据光效对膜厚进行调整。
本申请实施例第三方面,提供了一种红光LED光源。本申请实施例的红光LED光源包括发光单元,发光单元包括芯片和设置与芯片光路上的红光荧光膜。其中,该红光荧光膜为上述本申请实施例红光荧光膜,为节约篇幅,在此不再对红光荧光膜进行赘述。
本申请实施例提供的红光LED光源,通过芯片产生激发光,激发设于芯片出光通路的红光荧光膜,以产生宽谱的红光。在该红光的光谱图中,波峰前后较宽的波段内峰形平坦,该波段红光的光功率和能量密度相近,均能产生理疗效果,该波段为理疗有效波段。本申请实施例的红光LED光源,通过芯片激发红光荧光膜,产生的红光有效波段宽,理疗效果 好。
在一些实施例中,本申请实施例的红光LED光源包括多个发光单元,具体可以包括第一发光单元、第二发光单元和第三发光单元三个发光单元。其中,第一发光单元包括第一芯片和设置在第一芯片光路上的上文所述的第一荧光膜,第二发光单元包括第二芯片和设置在第二芯片光路上的上文所述的第二荧光膜,第三发光单元包括第三芯片和设置在第三芯片光路上的上文所述的第三荧光膜。或在另一些实施例中,本申请实施例红光LED光源具体也可以包括第四发光单元和第五发光单元两个发光单元,第四发光单元包括第四芯片和上文所述的第四荧光膜,第五发光单元包括第五芯片和上文所述的第三荧光膜。
通过将第一荧光膜、第二荧光膜和第三荧光膜单独制成不同的发光单元,使得不同发光单元所产生的红光复合形成有效波段宽、理疗效果好的红光。同时能够通过调整不同发光单元所产生的红光的波峰来灵活的调整红光LED光源所产生红光波峰的波长范围和峰形的平坦程度,使得波峰前后波段内的峰形更为平坦,且使该波段下的红光的光功率和能量密度更为接近。
在一些实施例中,第一荧光膜、第二荧光膜和第三荧光膜中任一荧光膜是由多个单膜层复合形成,该多个单膜层按照折射率的从小到大的顺序,依次远离芯片排列,即单膜层的折射率越小,越靠近芯片,单膜层的折射率越大,越远离芯片。通过设置折射率小的膜层靠近芯片,使得光线在光源中的传播为由光疏介质射向光密介质,避免了光线传播时因光线是由光密介质射向光疏介质,光线入射角大于全反射临界角而被反射导致光线无法射出,进而导致红光LED光源亮度低的问题。
在一些实施例中,可以控制第一芯片、第二芯片和第三芯片中任一芯片的发光波长为440nm~475nm,进一步为440nm~460nm,更进一步为452nm~455nm。通过控制芯片的发光波长在该范围内,能够降低435nm~440nm蓝光的光功率,以减少435nm~440nm蓝光对视网膜的伤害。可以理解的是,第一芯片、第二芯片和第三芯片的发光波长可以相同,例如第一芯片、第二芯片和第三芯片的发光波长都是452nm,第一芯片、第二芯片和第三芯片的发光波长也可以不相同,例如第一芯片、第二芯片和第三芯片的发光波长分别为452nm、455nm和458nm,本领域技术人员根据可以根据需求进行设置。
可以理解的是,芯片的发光波长指的是芯片被电流激发,所产生的光的光谱图中,主峰峰值处的波长。
在一些实施例中,本申请实施例红光LED光源中的红光荧光膜采用压膜法制备,可以控制第一荧光膜、第二荧光膜和第三荧光膜中任一荧光膜的膜厚为0.06mm~0.6mm,第一芯片、第二芯片和第三芯片中任一芯片的发光波长均为440nm~475nm。第一荧光膜中,第一荧光粉的浓度为40%~87%,第一荧光粉中,荧光粉A、荧光粉B和荧光粉D1的质量比为(3~25):(3~35):(5~50)。第二荧光膜中,第二荧光粉的浓度为40%~87%,第二荧光粉中荧光粉C、荧光粉D2和荧光粉E1的质量比为(7~35):(7~40):(10~50)。第三荧光膜中第三荧光粉的浓度为40%~87%,第三荧光粉中,荧光粉D3、荧光粉E2和荧光粉F的质量比为(10~40):(10~40):(15~50)。
在进一步实施例中,可以控制第一芯片、第二芯片和第三芯片的发光波长均为 440nm~460nm。第一荧光膜中第一荧光粉的浓度为50%~80%,第一荧光粉中,荧光粉A、荧光粉B和荧光粉D1的质量比为(5~20):(5~25):(10~40)。第二荧光膜中第二荧光粉的浓度为50%~80%,第二荧光粉中荧光粉C、荧光粉D2和荧光粉E1的质量比为(10~30):(10~35):(15~40)。第三荧光膜中第三荧光粉的浓度为50%~80%,第三荧光粉中,荧光粉D3、荧光粉E2和荧光粉F的质量比为(12~35):(12~35):(15~40)。
在更一步实施例中,可以控制第一芯片、第二芯片和第三芯片的发光波长均为452nm~455nm。第一荧光膜中第一荧光粉的浓度为60%~75%,第一荧光粉中,荧光粉A、荧光粉B和荧光粉D1的质量比为(5~15):(5~20):(10~30)。第二荧光膜中第二荧光粉的浓度为60%~75%,第二荧光粉中荧光粉C、荧光粉D2和荧光粉E1的质量比为(10~25):(10~30):(20~40)。第三荧光膜中第三荧光粉的浓度为60%~75%,第三荧光粉中,荧光粉D3、荧光粉E2和荧光粉F的质量比为(15~30):(15~30):(15~35)。
在一些实施例中,本申请实施例红光LED光源的红光荧光膜采用喷膜法制备,可以控制第一荧光膜、第二荧光膜和第三荧光膜中任一荧光膜的膜厚为0.001mm~0.01mm,第一芯片、第二芯片和第三芯片中任一芯片的发光波长为440nm~475nm。第一荧光膜中第一荧光粉的浓度为40%~87%,第一荧光粉中,荧光粉A、荧光粉B和荧光粉D1的质量比为(3~25):(3~35):(5~50)。第二荧光膜中第二荧光粉的浓度为30%~85%,第二荧光粉中荧光粉C、荧光粉D2和荧光粉E1的质量比为(7~35):(7~40):(10~50)。第三荧光膜中第三荧光粉的浓度为30%~85%,第三荧光粉中,荧光粉D3、荧光粉E2和荧光粉F的质量比为(10~40):(10~40):(15~50)。
在进一步实施例中,可以控制第一荧光膜、第二荧光膜和第三荧光膜的膜厚均为0.002mm~0.006mm,第一芯片、第二芯片和第三芯片的发光波长均为440nm~460nm。第一荧光膜中第一荧光粉的浓度为50%~80%,第一荧光粉中,荧光粉A、荧光粉B和荧光粉D1的质量比为(5~20):(5~25):(10~40)。第二荧光膜中第二荧光粉的浓度为40%~75%,第二荧光粉中荧光粉C、荧光粉D2和荧光粉E1的质量比为(10~30):(10~35):(15~40)。第三荧光膜中第三荧光粉的浓度为45%~75%,第三荧光粉中,荧光粉D3、荧光粉E2和荧光粉F的质量比为(12~35):(12~35):(15~40)。
在更进一步实施例中,可以控制第一荧光膜、第二荧光膜和第三荧光膜的膜厚均为0.002mm~0.003mm,第一芯片、第二芯片和第三芯片的发光波长均为452nm~455nm。第一荧光膜中第一荧光粉的浓度为60%~75%,第一荧光粉中,荧光粉A、荧光粉B和荧光粉D1的质量比为(5~15):(5~20):(10~30)。第二荧光膜中第二荧光粉的浓度为60%~75%,第二荧光粉中荧光粉C、荧光粉D2和荧光粉E1的质量比为(10~25):(10~30):(20~40)。第三荧光膜中第三荧光粉的浓度为60%~69%,第三荧光粉中,荧光粉D3、荧光粉E2和荧光粉F的质量比为(15~30):(15~30):(15~35)。
为使本申请上述实施例细节和操作能清楚地被本领域技术人员理解,以及本申请实施例中红光荧光组合物、红光荧光膜和红光LED光源的进步性能显著的体现,通过以下多个实施例来举例说明上述技术方案。
1.红光荧光组合物实施例
实施例A1至实施例A9
实施例A1至实施例A9分别提供一种红光荧光组合物。实施例A1至实施例A9的红光荧光组合物包括单独设置的第一荧光粉、第二荧光粉和第三荧光粉,第一荧光粉、第二荧光粉和第三荧光粉的粒径为10μm~25μm。
其中,第一荧光粉包括荧光粉A、荧光粉B和荧光粉D1。荧光粉A的发光波长为630nm的(Ca,Sr)AlSiN3,荧光粉B的发光波长为660nm的(Ca,Sr)AlSiN3,荧光粉D1的发光波长为720nm的(Ca,Sr)AlSiN3
第二荧光粉包括荧光粉C、荧光粉D2和荧光粉E1。荧光粉C的发光波长为679nm的(Ca,Sr)AlSiN3,荧光粉D2的发光波长为720nm的(Ca,Sr)AlSiN3,荧光粉E1的发光波长为740nm的(Ca,Sr)AlSiN3
第三荧光粉包括荧光粉D3、荧光粉E2和荧光粉F。荧光粉D3的发光波长为720nm的(Ca,Sr)AlSiN3,荧光粉E2的发光波长为740nm的(Ca,Sr)AlSiN3,荧光粉F的发光波长为795nm的(Ca,Sr)AlSiN3
实施例A1至实施例A9的红光荧光组合物所含的第一荧光粉中荧光粉A、荧光粉B和荧光粉D1的质量比,第二荧光粉中荧光粉C、荧光粉D2和荧光粉E1的质量比,以及第三荧光粉中荧光粉D3、荧光粉E2和荧光粉F的质量比详见下文表1。
对比例A1
本对比例提供一种红光荧光组合物,包括荧光粉A、荧光粉B和荧光粉D1。本对比例的荧光粉A、荧光粉B和荧光粉D1同实施例A5的荧光粉A、荧光粉B和荧光粉D1。本对比例中荧光粉A、荧光粉B和荧光粉D1的质量比详见下文表1。
对比例A2
本对比例提供一种红光荧光组合物,包括荧光粉C、荧光粉D2和荧光粉E1。本对比例的荧光粉C、荧光粉D2和荧光粉E1同实施例A5的荧光粉C、荧光粉D2和荧光粉E1。本对比例中荧光粉C、荧光粉D2和荧光粉E1的质量比详见表1。
对比例A3
本对比例提供一种红光荧光组合物,包括荧光粉D3、荧光粉E2和荧光粉F。本对比例中的荧光粉D3、荧光粉E2和荧光粉F同实施例A5中的荧光粉D3、荧光粉E2和荧光粉F。本对比例中,荧光粉D3、荧光粉E2和荧光粉F的质量比详见表1。
表1红光荧光组合物组分配比
2.红光荧光膜实施例
实施例B1至实施例B9
实施例B1至实施例B9分别提供一种红光荧光膜。实施例B1至实施例B9的红光荧光膜包括第一荧光膜、第二荧光膜和第三荧光膜,第一荧光膜包括成膜材料硅胶和第一荧光粉,第二荧光膜包括成膜材料硅胶和第二荧光粉,第三荧光膜包括成膜材料硅胶和第三荧光粉。
实施例B1中,第一荧光膜所含的第一荧光粉为实施例A1中的第一荧光粉,第二荧光膜所含的第二荧光粉为实施例A1中的第二荧光粉,第三荧光膜所含的第三荧光粉为实施例A1中的第三荧光粉;实施例B2中,第一荧光膜所含的第一荧光粉为实施例A2中的第一荧光粉,第二荧光膜所含的第二荧光粉为实施例A2中的第二荧光粉,第三荧光膜所含的第三荧光粉为实施例A2中的第三荧光粉;依此类推,实施例B9中,第一荧光膜所含的第一荧光粉为实施例A9中的第一荧光粉,第二荧光膜所含的第二荧光粉为实施例A9中的第二荧光粉,第三荧光膜所含的第三荧光粉为实施例A9中的第三荧光粉。
实施例B1至实施例B9的红光荧光膜中,第一荧光膜、第二荧光膜和第三荧光膜的膜厚,第一荧光膜中第一荧光粉的浓度,第二荧光膜中第二荧光粉的浓度,以及第三荧光膜中第三荧光粉的浓度详见表2。
对比例B1
本对比例提供一种红光荧光膜。本对比例的红光荧光膜采用压膜法制备,膜厚为0.20mm,包括硅胶和红光荧光组合物,红光荧光组合物的浓度为50%,该红光荧光组合物为对比例A1提供的红光荧光组合物。
对比例B2
本对比例提供一种红光荧光膜。本对比例的红光荧光膜与对比例B1的红光荧光膜基本相同,区别在于,本对比例中的红光荧光组合物为对比例A2提供的红光荧光组合物。
对比例B3
本对比例提供一种红光荧光膜。本对比例的红光荧光膜与对比例B1的红光荧光膜基本相同,区别在于,本对比例中的红光荧光组合物为对比例A3提供的红光荧光组合物。
表2红光荧光膜膜厚和荧光粉浓度参数
3.红光LED光源实施例
实施例C1至实施例C9
实施例C1至实施例C9提供一种红光LED光源,该红光LED光源包括第一发光单元、第二发光单元和第三发光单元。
其中,第一发光单元包括第一芯片和第一荧光膜,第二发光单元包括第二芯片和第二荧光膜,第三发光单元包括第三发光芯片和第三荧光膜。其中,第一芯片、第二芯片和第三芯片的发光波长如下文表3所示。
实施例C1中,第一荧光膜为实施例B1中的第一荧光膜,第二荧光膜为实施例B1的第二荧光膜,第三荧光膜为实施例B1的第三荧光膜;实施例C2中,第一荧光膜为实施例B2中的第一荧光膜,第二荧光膜为实施例B2中的第二荧光膜,第三荧光膜为实施例B2中的第三荧光膜;依此类推,实施例C9中,第一荧光膜为实施例B9中的第一荧光膜,第二荧光膜为实施例B9中的第二荧光膜,第三荧光膜为实施例B9中的第三荧光膜。
对比例C1
本对比例提供一种红光LED光源。本对比例的红光LED光源包括发光单元,该发光单元包括芯片和设置在芯片出光通路的红光荧光膜,该红光荧光膜为对比例B1提供的红光荧光膜,芯片的发光波长为452nm。
对比例C2
本对比例提供一种红光LED光源。本对比例的红光LED光源与对比例C1的红光LED光源基本相同,区别在于,本对比例的红光荧光膜为对比例B2提供的红光荧光膜。
对比例C3
本对比例提供一种红光LED光源。本对比例的红光LED光源与对比例C1的红光LED光源基本相同,区别在于,本对比例的红光荧光膜为对比例B3提供的红光荧光膜。
表3第一芯片、第二芯片和第三芯片的发光波长
各光源的光谱测试:
将上述实施例C1至实施例C9和对比例C1至对比例C3提供的红光LED光源分别进行光谱测试。
测试结果为如图2至图13所示,其中,实施例C1至实施例C9中光源的光谱图如图2至图10所示,比例C1至对比例C3中光源的光谱图如图11至图13所示。
由图2至图10可知,本申请实施例C1至实施例C9提供的红光LED光源所产生的红光,在波峰前后较宽的波段内峰形平坦,该波段内红光的绝对光谱与红光的最大绝对光谱值相近(如该波段的光功率或绝对相对光谱值大于或等于最大光功率或最大绝对相对光谱值的80%),理疗时,该波段的红光能产生理疗效果,该波段是有效波段,实施例C1至实施例C9提供的红光LED光源所产的红光理疗的有效波段宽,理疗效果好。
由图11至图13可知,对比例C1至对比例C3的红光LED光源所产生的红光,波峰前后的峰形陡峭,波峰窄且尖锐,随着波长的增大,红光的绝对光谱值或光功率迅速增大,绝对光谱值或光功率达到最大值后又迅速减小,红光的最大绝对光谱值或光功率与其他波长下的绝对光谱值或光功率存在较大差异,仅有波峰前后很窄的波段范围内的光谱值或光功率与最大绝对光谱值或光功率相近,理疗时,仅有波峰前后很窄的波段下的红光能够产生理疗效果,理疗效果不好。对比例C1至对比例C3提供的红光LED光源所产生的红光理疗的有效波段窄,理疗效果不佳。

Claims (9)

  1. 一种红光荧光组合物,其特征在于:
    所述红光荧光组合物包括第一荧光粉、第二荧光粉和第三荧光粉;
    其中,所述第一荧光粉包括荧光粉A、荧光粉B和荧光粉D1;
    所述第二荧光粉包括荧光粉C、荧光粉D2和荧光粉E1;
    所述第三荧光粉包括荧光粉D3、荧光粉E2和荧光粉F;
    所述荧光粉A的发光波长为600~640nm;
    所述荧光粉B的发光波长为650~660nm;
    所述荧光粉C的发光波长为670~700nm;
    所述荧光粉D1、所述荧光粉D2、所述荧光粉D3的发光波长独立的为710~730nm;
    所述荧光粉E1、所述荧光粉E2和荧光粉F的发光波长独立的大于730nm,且小于或等于800nm;
    所述第一荧光粉中,所述荧光粉A、所述荧光粉B和所述荧光粉D1的质量比为3~25:3~35:5~50;
    所述第二荧光粉中,所述荧光粉C、所述荧光粉D2和所述荧光粉E1的质量比为7~35:7~40:10~50;
    所述第三荧光粉中,所述荧光粉D3、所述荧光粉E2和所述荧光粉F的质量比为10~40:10~40:15~50;
    所述第一荧光粉、所述第二荧光粉和所述第三荧光粉的粒径独立的小于或等于50μm;和/或
    所述第一荧光粉、所述第二荧光粉和所述第三荧光粉中的至少一荧光粉与另两荧光粉是分开设置。
  2. 一种红光荧光膜,其特征在于,所述红光荧光膜包括第一荧光膜、第二荧光膜和第三荧光膜;其中:
    所述第一荧光膜的材料包括第一成膜材料和分散在所述第一成膜材料中的权利要求1所述的红光荧光组合物所含的第一荧光粉;
    所述第二荧光膜的材料包括第二成膜材料和分散在所述第二成膜材料中的权利要求1所述的红光荧光组合物所含的第二荧光粉;
    所述第三荧光膜的材料包括第三成膜材料和分散在所述第三成膜材料中的权利要求1所述的红光荧光组合物所含的第三荧光粉。
  3. 如权利要求2所述的红光荧光膜,其特征在于:所述第一荧光膜中,所述第一荧光粉占所述第一荧光粉和第一成膜材料总质量的40~87%;和/或
    所述第二荧光膜中,所述第二荧光粉占所述第二荧光粉和第二成膜材料总质量的30~87%;和/或
    所述第三荧光膜中,所述第三荧光粉占所述第三荧光粉和第三成膜材料总质量的30~87%;和/或
    所述第一荧光膜、第二荧光膜和第三荧光膜中的至少一荧光膜与另两荧光膜是分开设置。
  4. 如权利要求2或3所述的红光荧光膜,其特征在于:
    所述第一荧光膜、所述第二荧光膜和所述第三荧光膜中任一荧光膜采用压膜法制备;和/或
    所述第一荧光膜、所述第二荧光膜和所述第三荧光膜中任一荧光膜的膜厚为0.06~0.6mm。
  5. 如权利要求2或3所述的红光荧光膜,其特征在于:
    所述第一荧光膜、所述第二荧光膜和所述第三荧光膜中任一荧光膜采用喷膜法制备;和/或
    所述第一荧光膜、所述第二荧光膜和所述第三荧光膜中任一荧光膜的膜厚为0.001~0.01mm。
  6. 一种红光LED光源,其特征在于,包括发光单元,所述发光单元包括芯片和设置于所述芯片光路上的红光荧光膜,所述红光荧光膜为权利要求2-5任一项所述的红光荧光膜。
  7. 如权利要求6所述的红光LED光源,其特征在于,所述红光LED光源包括如下三个发光单元:
    第一发光单元,所述第一发光单元包括第一芯片和设置在所述第一芯片光路上的所述第一荧光膜;
    第二发光单元,所述第二发光单元包括第二芯片和设置在所述第二芯片光路上的所述第二荧光膜;
    第三发光单元,所述第三发光单元包括第三芯片和设置在所述第三芯片光路上的所述第三荧光膜。
  8. 如权利要求7所述的红光LED光源,其特征在于,所述第一芯片、所述第二芯片和所述第三芯片中任一芯片的发光波长为440~475nm。
  9. 如权利要求8所述的红光LED光源,其特征在于:
    所述第一发光单元中,所述第一芯片的发光波长为440~460nm,且所述第一荧光膜所含的所述第一荧光粉中所述荧光粉A、所述荧光粉B和所述荧光粉D1的质量比为5~25:5~25:10~40,所述第一荧光粉占所述第一荧光粉和所述第一成膜材料总质量的50~80%;和/或
    所述第二发光单元中,所述第二芯片的发光波长为440~460nm,且所述第二荧光膜所含的所述第二荧光粉中所述荧光粉C、所述荧光粉D2和所述荧光粉E1的质量比为10~30:10~35:15~40,所述第二荧光粉占所述第二荧光粉和所述第二成膜材料总质量的50~80%;和/或
    所述第三发光单元中,所述第三芯片的发光波长为440~460nm,且所述第三荧光膜所含的所述第三荧光粉中所述荧光粉D3、所述荧光粉E2和所述荧光粉F的质量比为12~35:12~35:15~40,所述第二荧光粉占所述第三荧光粉和所述第三成膜材料总质量的50~80%。
PCT/CN2023/133041 2022-11-21 2023-11-21 红光荧光组合物、红光荧光膜和红光led光源 WO2024109752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211456736.0 2022-11-21
CN202211456736.0A CN115491196B (zh) 2022-11-21 2022-11-21 红光荧光组合物、红光荧光膜和红光led光源

Publications (1)

Publication Number Publication Date
WO2024109752A1 true WO2024109752A1 (zh) 2024-05-30

Family

ID=85116306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/133041 WO2024109752A1 (zh) 2022-11-21 2023-11-21 红光荧光组合物、红光荧光膜和红光led光源

Country Status (2)

Country Link
CN (1) CN115491196B (zh)
WO (1) WO2024109752A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491196B (zh) * 2022-11-21 2023-03-24 四川世纪和光科技发展有限公司 红光荧光组合物、红光荧光膜和红光led光源
CN115779279A (zh) * 2022-11-24 2023-03-14 四川世纪和光科技发展有限公司 头部保健装置
CN115799433A (zh) * 2023-01-09 2023-03-14 四川世纪和光科技发展有限公司 一种红光封装结构、红光led光源及封装方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204613A (ja) * 2015-04-28 2016-12-08 デンカ株式会社 赤色蛍光体及び発光装置
US20170331012A1 (en) * 2014-10-31 2017-11-16 Koninklijke Philips N.V. Phosphor converted led with temperature stable flux and saturated red color point
CN108048079A (zh) * 2017-11-27 2018-05-18 广东晶科电子股份有限公司 一种红色荧光粉、白光发光二极管及背光模组
CN112038468A (zh) * 2020-09-17 2020-12-04 有研稀土新材料股份有限公司 一种红色led光学装置
CN115491196A (zh) * 2022-11-21 2022-12-20 四川世纪和光科技发展有限公司 红光荧光组合物、红光荧光膜和红光led光源
CN115799433A (zh) * 2023-01-09 2023-03-14 四川世纪和光科技发展有限公司 一种红光封装结构、红光led光源及封装方法
CN115779279A (zh) * 2022-11-24 2023-03-14 四川世纪和光科技发展有限公司 头部保健装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082252A (zh) * 1993-06-29 1994-02-16 上海真空电子器件股份有限公司电子管二厂 红波段发光体及其光能治疗仪
TWI432555B (zh) * 2011-08-12 2014-04-01 Unity Opto Technology Co Ltd 鋁酸鹽類化合物螢光粉
CN102911668A (zh) * 2012-10-15 2013-02-06 深圳市聚飞光电股份有限公司 混合荧光粉、荧光胶、琥珀色led及车灯
CN105087002A (zh) * 2015-08-12 2015-11-25 中国计量学院 一种激光医疗照明用红色荧光粉及其制备方法和应用
CN109011171A (zh) * 2018-06-27 2018-12-18 朗昭创新控股(深圳)有限公司 一种理疗灯
CN109370593B (zh) * 2018-11-29 2022-04-05 江苏博睿光电有限公司 一种荧光体混合物及其发光装置
CN114395394B (zh) * 2021-12-15 2023-04-11 有研稀土新材料股份有限公司 一种近红外荧光粉及包含该荧光粉的光学装置
CN114921249A (zh) * 2022-07-08 2022-08-19 中国计量大学 一种Mn4+掺杂的深红光荧光粉及其制备方法与应用
CN115353885B (zh) * 2022-10-07 2024-02-06 湖南师范大学 一种近紫外光和绿光激发的远红光荧光粉及其应用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170331012A1 (en) * 2014-10-31 2017-11-16 Koninklijke Philips N.V. Phosphor converted led with temperature stable flux and saturated red color point
JP2016204613A (ja) * 2015-04-28 2016-12-08 デンカ株式会社 赤色蛍光体及び発光装置
CN108048079A (zh) * 2017-11-27 2018-05-18 广东晶科电子股份有限公司 一种红色荧光粉、白光发光二极管及背光模组
CN112038468A (zh) * 2020-09-17 2020-12-04 有研稀土新材料股份有限公司 一种红色led光学装置
CN115491196A (zh) * 2022-11-21 2022-12-20 四川世纪和光科技发展有限公司 红光荧光组合物、红光荧光膜和红光led光源
CN115779279A (zh) * 2022-11-24 2023-03-14 四川世纪和光科技发展有限公司 头部保健装置
CN115799433A (zh) * 2023-01-09 2023-03-14 四川世纪和光科技发展有限公司 一种红光封装结构、红光led光源及封装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI JUNHAO, YAN JING; WEN DAWEI; KHAN WASIM ULLAH; SHI JIANXIN; WU MINGMEI; SU QIANG; TANNER PETER A.: "Advanced red phosphors for white light-emitting diodes", JOURNAL OF MATERIALS CHEMISTRY C, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 4, no. 37, 1 January 2016 (2016-01-01), GB , pages 8611 - 8623, XP093174941, ISSN: 2050-7526, DOI: 10.1039/C6TC02695H *

Also Published As

Publication number Publication date
CN115491196B (zh) 2023-03-24
CN115491196A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2024109752A1 (zh) 红光荧光组合物、红光荧光膜和红光led光源
WO2020034390A1 (zh) Led白光器件及其制备方法、led背光模组
WO2024109769A1 (zh) 荧光组合物、荧光膜和光源
CN111162153B (zh) 节律照明用的led光源
WO2024109894A1 (zh) 头部保健装置
CN106098900B (zh) 高密度led光源结构及其制备方法
CN108458323B (zh) 一种降低蓝光危害的led灯珠荧光粉、led灯珠及其制备方法
CN104848093B (zh) 具蓝光伤害改善设计的背光模块及使用其的显示模块
CN104638092A (zh) 一种降低蓝光危害的led封装结构
CN111795307A (zh) 一种实现低蓝光危害、高显色的led装置
WO2024109761A1 (zh) 全色仿生荧光组合物、全色仿生荧光膜和全色仿生光源
CN111073644A (zh) 近红外荧光粉、制备与应用方法、近红外光源及近红外白光光源制备方法
CN115831947A (zh) 近自然光led光源及照明装置
CN108878624A (zh) 一种白光led光源及照明装置
CN109285937B (zh) Led白光器件及其制备方法、led背光模组
CN109817790B (zh) 一种仿太阳光谱led灯
WO2021035783A1 (zh) 促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用
CN115799433A (zh) 一种红光封装结构、红光led光源及封装方法
WO2020000519A1 (zh) 荧光胶、荧光膜及其制备方法
CN207834348U (zh) 一种封装结构、白光发光二极管及背光模组
CN208352338U (zh) 一种封装结构、白光发光二极管及背光模组
CN113594145B (zh) 一种光源的制备方法
CN109786538B (zh) 一种仿自然光led照明器件及其制备方法
CN112029380A (zh) 一种去蓝光涂层
CN208172455U (zh) 一种蓝光波长红移的滤蓝光显示器