WO2021035783A1 - 促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用 - Google Patents

促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用 Download PDF

Info

Publication number
WO2021035783A1
WO2021035783A1 PCT/CN2019/104473 CN2019104473W WO2021035783A1 WO 2021035783 A1 WO2021035783 A1 WO 2021035783A1 CN 2019104473 W CN2019104473 W CN 2019104473W WO 2021035783 A1 WO2021035783 A1 WO 2021035783A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
led
light
red
far
Prior art date
Application number
PCT/CN2019/104473
Other languages
English (en)
French (fr)
Inventor
陈雷
王家龙
程鹏
郑桂芳
姚刚
蒋正轩
鲍颖超
姜还法
Original Assignee
合肥工业大学智能制造技术研究院
安徽医科大学
青岛魔晶光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥工业大学智能制造技术研究院, 安徽医科大学, 青岛魔晶光电有限公司 filed Critical 合肥工业大学智能制造技术研究院
Publication of WO2021035783A1 publication Critical patent/WO2021035783A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the invention relates to a display light source module, and more particularly to a display light source module, a display screen and applications that promote the growth and repair of retinal cells and optic neurons.
  • the liquid crystal display is the one with the largest number of users and the highest market share, but the liquid crystal cannot actively emit light and needs a backlight.
  • Early liquid crystal displays used cold cathode ray tubes as backlight sources, but cold cathode ray tubes had high voltage and high energy consumption, and were gradually replaced by LEDs (Light Emitting Diodes).
  • LED not only has high energy efficiency and low energy consumption, but also adopts solid package, long life, high reliability, small size, good shock resistance, suitable for making light and thin products.
  • LED not only brings a new light source to the liquid crystal display, but also further makes the liquid crystal display lighter and ultra-thin.
  • all liquid crystal displays use LED as the backlight source, and the utilization rate of LED in the display backlight source has already reached 100%.
  • the free radicals induced by excessive blue light lead to the death of retinal pigment epithelial cells, which in turn leads to the death of cells in the light sensitive area due to lack of nutrients, resulting in irreversible fundus disease, macula, vision loss, and even blindness.
  • the technical solutions disclosed in the patent documents with application numbers CN200710122384.4 and CN201410202702.8 are to reduce the damage of blue light to retinal cells and optic neurons by adjusting the brightness of the display backlight; the application number is CN201410812569.8
  • the technical solution disclosed in the patent document of the patent document is to reduce the blue light hazard by adjusting the emission wavelength of the blue LED to move it from dark blue to light blue.
  • the technical problem to be solved by the present invention is how to provide a display light source module, display screen and application that promote the growth and repair of retinal cells and optic neurons, so as to repair damaged retinal cells and optic neurons.
  • the embodiment of the present invention provides a display light source module that promotes the growth and repair of retinal cells and optic neurons, and the module includes:
  • the emission spectrum wavelength includes a light source with a wavelength of 650-900nm.
  • the light source in the light source module can emit far-red light with a wavelength of 650-900nm, and the far-red light of this wavelength has a good promoting effect on the growth and repair of retinal cells and optic neurons. Therefore, the present invention
  • the embodiments of the invention solve the technical problem that damaged retinal cells and optic neurons cannot be repaired in the prior art.
  • the light source includes: a far-red LED emitting infrared spectrum and a white LED emitting visible light used in an array combination, wherein:
  • the far-red LED is a blue LED encapsulated with a coating material, wherein the wavelength peak range of the emission spectrum of the blue LED is: 450-470nm; wherein, the coating material includes: a red fluorescent material, The wavelength range of the emission spectrum of the red fluorescent material is: 650-900 nm.
  • control process of the light source module includes:
  • the white LED that emits visible light is controlled to be continuously lit.
  • the light source module further includes: a backlight source, wherein the white light LED in the light source is arranged outside the first side of the backlight source, and the far-red light LED in the light source is arranged on the second side of the backlight source.
  • the light source module further includes: a backlight, wherein the white LEDs in the light source and the far-red LEDs in the light source are spaced apart to form a planar array, and the planar array is arranged on the back of the backlight .
  • the light source module includes several LEDs that emit visible light and far-red light, and a backlight source, wherein the preparation process of the LEDs that emit visible light and far-red light includes:
  • the phosphor and the transparent silica gel are uniformly mixed according to a preset ratio to obtain a coating material, wherein the phosphor includes: infrared phosphor, red phosphor and green phosphor; red phosphor includes: K 2 TiF 6 : Mn 4+ , K 2 TiF 6 : Mn 4+ or K 2 (Si,Ti)F 6 : Mn 4+ one or a combination; the green phosphor includes: ⁇ -SIALON: Eu 2+ or Lu 3 Ga 5 O 12 : One or a combination of Ce;
  • the coating material is vacuum-stirred and defoamed and then uniformly coated on the blue LED chip to obtain an LED emitting visible light and far-red light, wherein the peak wavelength range of the emission spectrum of the blue LED is: 450-470nm;
  • the light source module further includes a backlight source, the LEDs emitting visible light and far red light in the light source form a planar array, and the planar array is arranged on the back of the backlight source.
  • the infrared light fluorescent material includes:
  • the red phosphor includes:
  • K 2 TiF 6 Mn 4+ , K 2 TiF 6 : Mn 4+ or K 2 (Si,Ti)F 6 : Mn 4+ or a combination;
  • the green phosphor includes one or a combination of ⁇ -SIALON:Eu 2+ or Lu 3 Ga 5 O 12 :Ce.
  • the coating material further includes:
  • CaAl 1.2 Si 0.8 N 3 :Eu 2+ occupies 1-10% of the total mass of infrared phosphors.
  • the embodiment of the present invention also provides a display screen that promotes the growth and repair of retinal cells and optic neurons.
  • the display screen includes a number of pixels arranged in an array, wherein each pixel is defined by claims 1-10. Any one of the light source, red LED, and green LED is packaged.
  • the light source in the light source module can emit far-red light with a wavelength of 650-900nm, and the far-red light of this wavelength has a good promoting effect on the growth and repair of retinal cells and optic neurons. Therefore, the embodiments of the present invention solve the technical problem that damaged retinal cells and optic neurons cannot be repaired in the prior art.
  • the use of the LED light source provided by the present invention can reduce the damage to human eyesight caused by LCD TVs and various other display screens that use LED active or passive light as the light source, and can also promote the repair and regeneration of retinal cells and optic neurons. Improve eyesight and improve eye fundus health.
  • the embodiment of the present invention integrates far-red LED devices with existing white-light LED devices, or coats far-red phosphors, green phosphors, and red phosphors on blue LEDs to obtain A white LED with far-red light emission function is used. Therefore, the embodiment of the present invention can not only spread the display picture, but also can biologically adjust the eye cells and neurons, and expand the application of the display in vision health and photobiological adjustment. New functions are realized through the integration of technology.
  • Figure 1 is the luminescence spectra of 16 samples provided in Example 1 of the present invention.
  • FIG. 2 is an emission spectrum diagram of a far-red LED packaged in a sample numbered G6 among the 16 samples provided in the first embodiment of the present invention
  • Fig. 3 is a luminescence spectrum diagram of a blue LED chip and a green LED chip in a control experiment in Example 1 of the present invention
  • FIG. 4 is a light emission spectrum diagram of a blue LED combined with a far-red LED and a green LED combined with a far-red LED in Embodiment 1 of the present invention
  • Example 5 is a schematic diagram of a retina section of a mouse in the control experiment in Example 1 of the present invention under the irradiation of blue LED and green LED;
  • FIG. 6 is a schematic diagram of a retina section of a mouse under the irradiation of a blue LED combined with a far-red LED and a green LED combined with a far-red LED in Example 1 of the present invention
  • Fig. 7 is a luminescence spectrum diagram of a blue LED used in embodiment 2 of the present invention.
  • Example 8 is a luminescence spectra of 16 samples provided in Example 2 of the present invention under excitation at 450 nm;
  • Example 9 is a luminescence spectra of 16 samples provided in Example 2 of the present invention under excitation at 620 nm;
  • Example 10 is a comparison diagram of the luminescence spectrum of the packaged far-red LED and the absorption spectrum of HeLa cells in Example 2 of the present invention.
  • Example 11 is a luminescence spectra of 16 samples provided in Example 3 of the present invention under excitation at 450 nm;
  • FIG. 12 is a comparison diagram of the luminescence spectrum of the packaged far-red LED and the absorption spectrum of HeLa cells in Example 3 of the present invention.
  • Example 13 is a luminescence spectrum diagram of Y(Al 1-x Cr x ) 3 (BO 3 ) 4 under excitation at 450 nm in Example 4 of the present invention
  • Example 14 is a luminescence spectrum diagram of (Mg 1-x Cr x ) 4 Nb 2 O 9 under excitation at 450 nm in Example 4 of the present invention.
  • Example 15 is a comparison diagram of the emission spectrum of a far-red LED packaged with YAl 3 B 4 O 12 :Cr 3+ in Example 4 of the present invention and the absorption spectrum of HeLa cells irradiated with 830 nm far-red light;
  • Fig. 16 is the emission spectrum of the far-red LED packaged with YAl 3 B 4 O 12 :Cr 3+ and Mg 4 Nb 2 O 9 :Cr 3+ in Example 4 of the present invention and after irradiated with 830nm far-red light Comparison chart of absorption spectra of HeLa cells;
  • Figure 17 shows the emission spectrum of a white light LED packaged with a blue LED chip with ⁇ -SIALON: Eu 2+ green phosphor and K 2 TiF 6 : Mn 4+ red phosphor in the prior art;
  • Figure 18 is the blue LED chip provided in Example 5 of the present invention with ⁇ -SIALON: Eu 2+ green phosphor, K 2 TiF 6 : Mn 4+ red phosphor and YAl 3 B 4 O 12 : Cr 3+ far red Luminous spectrum of LED encapsulated by optical materials;
  • Figure 19 shows the simultaneous use of far-red light materials YAl 3 B 4 O 12 : Cr 3+ and Mg 4 Nb 2 O 9 : Cr 3+ with blue LED chips, ⁇ -SIALON: Eu 2+ green phosphor and K 2 TiF 6 : Mn 4+ red phosphor packaged LED emission spectrum;
  • FIG. 20 is a schematic diagram of a far-red LED and a white LED provided in Embodiment 7 of the present invention applied to a backlight module in a display;
  • FIG. 21 is a schematic diagram of a cross section of a far-red LED and a white LED provided in Embodiment 7 of the present invention when applied to a display;
  • FIG. 22 is a schematic diagram of the second type of far-external light LED and white light LED provided in Embodiment 8 of the present invention applied to a backlight module in a display;
  • FIG. 23 is a schematic diagram of the third type of far-red LED and white LED provided in Embodiment 9 of the present invention applied to a backlight module in a display;
  • FIG. 24 is a schematic diagram of the fourth far-red LED and white LED provided in Embodiment 9 of the present invention applied to a backlight module in a display;
  • FIG. 25 is a schematic plan view of the fourth far-red LED and white LED provided in Embodiment 9 of the present invention applied to a backlight module in a display
  • FIG. 26 is a schematic cross-sectional view of the fourth far-red LED and white LED provided in Embodiment 9 of the present invention applied to a backlight module in a display;
  • FIG. 27 is a schematic structural diagram of the LED capable of emitting far red light and visible light provided in the embodiment 9 of the present invention applied to a backlight module in a display;
  • FIG. 28 is a schematic structural diagram of the LED capable of emitting far red light provided in Embodiment 9 of the present invention applied to a backlight module in a display.
  • embodiments of the present invention provide a display light source module that promotes the growth and repair of retinal cells and optic neurons.
  • the module includes a light source whose emission spectrum wavelength includes a wavelength of 650-900 nm.
  • the light source includes: a far-red LED emitting infrared spectrum and a white LED emitting visible light that are used in combination in an array, wherein:
  • the far-red LED is a blue LED encapsulated with a coating material, wherein the wavelength peak range of the emission spectrum of the blue LED is: 450-470nm; wherein, the coating material includes: a red fluorescent material, The wavelength range of the emission spectrum of the red fluorescent material is: 650-900 nm.
  • the white light LED can be realized by using a blue LED chip with a peak emission wavelength of about 450 nm and green and red phosphors. The specific implementation process is the prior art and will not be repeated here. Or white light LEDs can be implemented by using existing white light LEDs.
  • the far-red phosphor can be uniformly coated on the blue LED after vacuum stirring and degassing.
  • the control process of the light source module includes:
  • the far-red LED emitting infrared spectrum is controlled to emit light according to a preset emitting period, wherein the emitting period is 5-60 minutes; and/or, the white LED emitting visible light is controlled to be continuously lit.
  • the light source module further includes: a backlight, in which the white LED is arranged outside the first side of the backlight, and the far-red LED in the light source is arranged on the second side of the backlight.
  • the light source module further includes a backlight source, the white light LEDs in the light source and the far red light LEDs in the light source are spaced apart to form a planar array, and the planar array is arranged on the back of the backlight source.
  • the light source includes several LEDs emitting visible light and far-red light, wherein the manufacturing process of the LED includes:
  • the phosphor and the transparent silica gel are uniformly mixed according to a preset ratio to obtain a coating material, wherein the phosphor includes: an infrared light phosphor, a red light phosphor, and a green light phosphor;
  • the coating material is uniformly coated on the blue LED chip after vacuum stirring and degassing to obtain an LED emitting visible light and far-red light, wherein the peak wavelength range of the emission spectrum of the blue LED is: 450-470 nm.
  • the light source module further includes a backlight source, the LEDs emitting visible light and far red light in the light source form a planar array, and the planar array is arranged on the back of the backlight source.
  • the infrared fluorescent material includes: YAl 3 B 4 O 12 :Cr 3+ , (Y,Gd) 3 (Al,Ga) 5 O 12 :Cr 3+ , (Y,Gd) 3 (Al, Sc) 5 O 12 : Cr 3+ (Y,Gd) 3 (Ga,Sc) 5 O 12 : Cr 3+ , K 3 AlF 6 : Cr 3+ , Y 3 (Al,Sc) 5 O 12 : Cr 3 + , YAl 3 B 4 O 12 : Cr 3+ , Mg 4 Nb 2 O 9 : One or a combination of Cr 3+ and LiScSi 2 O 6 : Cr 3+ ; the red phosphor includes: K 2 TiF 6 : Mn 4+ , K 2 TiF 6 : Mn 4+ or K 2 (Si,Ti)F 6 : Mn 4+ one or a combination; the green phosphor includes: ⁇ -SIALON: Eu 2+ or Lu 3
  • Y 3 (Al,Sc) 5 O 12 : Cr 3+ , YAl 3 B 4 O 12 : Cr 3+ , Mg 4 Nb 2 O 9 : Cr 3+ and LiScSi 2 O 6 : Cr 3+ are all existing Phosphors, in which Y 3 (Al,Sc) 5 O 12 :Cr 3+ is the abbreviation of Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 1 ; YAl 3 B 4 O 12 :Cr 3+ is Y(Al 0.96 Cr 0.04 ) 3 (BO 3 ) 4 is the abbreviation; Mg 4 Nb 2 O 9 : Cr 3+ is the abbreviation of (Mg 0.97 Cr 0.03 ) 4 Nb 2 O 8.98 ; LiScSi 2 O 6 : Cr 3+ is Li (Sc 0.96 Cr 0.04 ) is an abbreviation of Si 2 O 6.
  • the coating material also includes: 1% of the total mass of infrared light phosphor -10% CaAl 1.2 Si 0.8 N 3 :Eu 2+ .
  • the red light emitted by CaAl 1.2 Si 0.8 N 3 :Eu 2+ has a certain effect on improving cell DNA activity.
  • the embodiment of the present invention also provides the application of the display light source module for promoting the growth and repair of retinal cells and optic neurons based on any one of the above in the treatment of ocular diseases.
  • the embodiment of the present invention also provides a display screen that promotes the growth and repair of retinal cells and optic neurons.
  • the display screen includes a plurality of pixels arranged in an array, wherein each pixel is any one of the above
  • the light source, red light LED, green light LED are packaged.
  • Table 1 shows the far-red fluorescent material (Y 1-x Gd x ) 3 [(Ga 1-t Sct) 1-z Crz] 5 O 12 chemical formula and synthesis process conditions, produced according to the chemical formula corresponding to Table 1.
  • the LED bracket and the LED chip titrated with silica gel were moved into a DZF-6020 vacuum oven produced by Shanghai Boxun Medical Bio-Instrument Co., Ltd., and cured at 150°C for 4 hours under vacuum conditions to obtain far-red LED lamp beads.
  • Figure 1 is the luminescence spectra of 16 samples provided in Example 1 of the present invention. As shown in Figure 1, the emission wavelength range of the 16 phosphor samples under 450nm excitation is 675-850nm, and the strongest luminescence is numbered Sample of G6.
  • Figure 2 is a luminescence spectrum diagram of the far-red LED packaged by the sample numbered G6 among the 16 samples provided in Example 1 of the present invention. As shown in Figure 2, the far-red light LED packaged by the sample numbered G6 is at 300mA Emission spectrum driven by current.
  • the device generates a broadband spectrum composed of multiple peaks, the peak emission wavelength is 715-756nm, and the emission wavelength range is 675-850nm.
  • Figure 2 also includes the absorption spectra of HeLa cells.
  • Figure 2 compares the emission spectrum of the LED far-red light device with the absorption spectrum of HeLa, showing that the far-red LED packaged with (Y,Gd) 3 (Ga,Sc) 5 O 12 :Cr phosphor can absorb biological HeLa The spectrum matches, and then can better adjust the needs of photobiology.
  • the G6 sample prepared in step 4) to encapsulate the far-red LED, and then separate the blue LED and the green LED to test with and without the far-red LED, and select the weight as SD male rats of 200-220g were randomly divided into four groups.
  • the first group was irradiated with blue LEDs
  • the second group was irradiated with blue LEDs and far-red LEDs at the same time
  • the third group was irradiated with green LEDs
  • the fourth group Adopt green LED and far-red LED to illuminate at the same time.
  • the four groups of mice were exposed to light for 4 hours a day, and the rest of the time maintained normal daylight changes for four consecutive weeks. Two days after the light was stopped, the retina of the mouse eyeball was taken for HE staining, and the changes in the structure of the retina of each group of mice were observed.
  • Figure 3 is the luminescence spectra of the blue LED chip and the green LED chip in the control experiment in Example 1 of the present invention.
  • Figure 4 is the blue LED combined with the far-red LED and the far-red LED combined in the first embodiment of the present invention.
  • the emission spectrum of the green LED as shown in Figure 3 and Figure 4.
  • the emission spectrum of the blue LED and the green LED are both in the visible light spectrum, and the blue LED and the green LED are combined with the far red LED.
  • the infrared spectrum is the spectrum of the G6 sample.
  • Figure 5 is a schematic diagram of the retina section of the mouse in the control experiment in Example 1 of the invention under the irradiation of blue LED and green LED;
  • Figure 6 is the blue LED and combination of the mouse in Example 1 of the invention in combination with far-red LED
  • INL repaired inner cell
  • the difference between embodiment 2 of the present invention and embodiment 1 is only that the far-red fluorescent material is different: the infrared phosphor used in embodiment 2 is (Y 1-x Gd x ) 3 [(Al 1-t Ga t ) 1-z Cr z ] 5 O 12 , where 0 ⁇ x ⁇ 1, 0 ⁇ t ⁇ 1, 0 ⁇ x ⁇ 0.1, referred to as (Y,Gd) 3 (Al,Ga) 5 O 12 :Cr 3+ .
  • Table 2 shows the chemical formula and synthesis process conditions of the far-red fluorescent material (Y 1-x Gd x ) 3 [(Al 1-t Ga t ) 1-z Cr z ] 5 O 12 , and 16 is produced according to the chemical formula corresponding to Table 2.
  • Table 2 shows the chemical formula of 16 phosphor samples, (Y 1-x Gd x ) 3 [(Al 1-t Ga t ) 1-z Cr z ] 5 O 12 , where 0 ⁇ x ⁇ 1, 0 ⁇ t ⁇ 1, 0 ⁇ x ⁇ 0.1, and its synthesis process conditions.
  • Fig. 7 is a luminescence spectrum diagram of a blue LED used in embodiment 2 of the present invention
  • Fig. 8 is a luminescence spectrum diagram of 16 samples provided in embodiment 2 of the present invention under excitation at 450 nm
  • FIG. 9 is a diagram provided by embodiment 2 of the present invention
  • FIG. 10 is a comparison diagram of the emission spectrum of the packaged far-red LED in Example 2 of the present invention and the absorption spectrum of HeLa cells.
  • the far-red LED packaged with sample A6 is driven by 70mA current
  • the emission spectrum is shown in Figure 10.
  • Figure 10 also shows the absorption spectrum of HeLa cells.
  • the overlapping spectral regions of the two indicate that the far red LED can meet the needs of photobiological regulation, (TIKaru, et a., IEEE J.Sel. Top.Quantum Electron,2001,7,982).
  • the infrared phosphor used in embodiment 3 is (Y 1-x Gd x ) 3 [(Al 1-t Sc t ) 1-z Cr z ] 5 O 12 , where 0 ⁇ x ⁇ 1, 0 ⁇ t ⁇ 1, 0 ⁇ x ⁇ 0.1, referred to as (Y,Gd) 3 (Al,Sc) 5 O 12 :Cr.
  • Table 3 shows the chemical formula and synthesis process conditions of the far-red fluorescent material (Y 1-x Gd x ) 3 [(Al 1-t Sc t ) 1-z Cr z ] 5 O 12 , and 16 is produced according to the chemical formula corresponding to Table 3.
  • Figure 11 is the luminescence spectra of 16 samples provided by Example 3 of the present invention under 450nm excitation light. As shown in Figure 11, it can be found from Figure 11 that the emission of phosphor can be controlled by changing the composition of the phosphor. Wavelength, the emission wavelength range of the phosphor is 675-850nm, and the strongest luminescence is the sample numbered S6. 12 is a comparison diagram of the emission spectrum of the S6 packaged far-red LED and the absorption spectrum of HeLa cells in Example 3 of the present invention. As shown in FIG. 12, the emission spectrum of the far-red LED is composed of two peaks. The main peak of the emission wavelength is 758nm, the secondary peak wavelength is 711nm, and the emission wavelength range is 675-850nm. The comparison with the HeLa cell absorption spectrum shows that the emission spectrum of the far-red LED can well meet the needs of human vision health.
  • the existing phosphor YAl 3 B 4 O 12 :Cr 3+ and the existing Mg 4 Nb 2 O 9 :Cr 3+ are used to encapsulate the far-red LED, and the packaging process is the same as that in Example 1.
  • the packaging process is the same.
  • Fig. 13 is a luminescence spectrum diagram of Y(Al 1-x Cr x ) 3 (BO 3 ) 4 under excitation at 450 nm in Example 4 of the present invention; as shown in Fig. 13, Fig. 13 corresponds to different values of x Spectrogram; Figure 14 is the luminescence spectrum of (Mg 1-x Cr x ) 4 Nb 2 O 9 under 450nm excitation in Example 4 of the present invention; as shown in Figure 14, Figure 14 corresponds to different values of x Spectrogram.
  • FIG. 15 is a comparison diagram of the emission spectrum of a far-red LED packaged with YAl 3 B 4 O 12 :Cr 3+ in Example 4 of the present invention and the absorption spectrum of HeLa cells irradiated with 830 nm far-red light; FIG. 15 As shown, the emission spectrum of a far-red LED packaged with YAl 3 B 4 O 12 :Cr 3+ phosphor alone can cover a partial region of the absorption spectrum of HeLa cells irradiated with 830 nm far-red light.
  • FIG. 16 shows the emission spectrum of a far red LED packaged with a mass ratio of 1:1 using YAl 3 B 4 O 12 :Cr 3+ and Mg 4 Nb 2 O 9 :Cr 3+ in Example 4 of the present invention and the distance at 830nm
  • the shortcomings of HeLa cells irradiated by red light in all regions of the absorption spectrum.
  • the phosphors YAl 3 B 4 O 12 :Cr 3+ and Mg 4 Nb 2 O 9 :Cr 3+ are packaged with blue LEDs to cover HeLa The cell absorbs the entire region of the spectrum.
  • Figure 17 shows the emission spectrum of a white LED packaged with blue LED chips in the prior art-SIALON: Eu 2+ green phosphor and K2TiF6: Mn4 + red phosphor.
  • Figure 18 shows the blue LED chip configuration provided in Embodiment 5 of the present invention- SIALON: Eu 2+ green phosphor, K2TiF6: Mn4+ red phosphor and YAl 3 B 4 O 12 : Cr 3+ far-red material packaged LED luminescence spectra; as shown in Figure 17 and Figure 18, the comparison of the two spectra Approximately, it can meet the display requirements of the display. In addition, infrared light can pass through the short-wavelength cut-off filter of the display, and all waves with a wavelength higher than 650nm can pass. Therefore, the application of the present invention does not need to modify the display. The light source of the display needs to be changed.
  • the ratio of green phosphor and red phosphor can be adjusted according to actual needs to adjust the emitted light intensity of the packaged white LED, but the wavelength distribution of the emission spectrum will not be changed.
  • red light material encapsulates the new LED according to the mass ratio of 1:1:1.
  • the device can not only emit white light but also emit far red light.
  • Figure 19 shows the simultaneous use of far-red light materials YAl 3 B 4 O 12 : Cr 3+ and Mg 4 Nb 2 O 9 : Cr 3+ with blue LED chips, ⁇ -SIALON: Eu 2+ green phosphor and K 2 TiF 6 : Mn 4+ red phosphor packaged LED emission spectrum.
  • the side-light mode is used to fabricate a liquid crystal display backlight using the LED prepared in any one of the embodiments 1-4.
  • 20 is a schematic diagram of a far-red LED and white-light LED applied to a backlight module in a display provided in Embodiment 7 of the present invention. As shown in FIG. 20, the white-light LEDs and the far-red-near-infrared LEDs are alternately arranged in sequence On the PCB substrate, an LED light source array as shown in the left picture of Figure 20 is formed, and then the LED array is fixed on one side of the backlight source of the liquid crystal display.
  • the backlight is composed of an LED light source array, a PCB substrate, a reflective film, and a light guide plate. , Diffusion film and shading film.
  • the white light LED and far-red light and near-infrared LED one can use constant current series control; the other can print two circuits on the PCB substrate, and connect the white light LED in series to one of the circuits to connect the far red light
  • the LED is connected in series on another circuit; the white LED and the far-red LED adopt a separate control mode.
  • the red near-infrared LED can be controlled by a timer to start every 5-30 minutes, and the duration after each lighting is a light-emitting period, and the light-emitting period is 5-60 minutes; in order to save energy, it can also be combined with
  • the outdoor brightness meter is connected to start the far-red near-infrared LED to work when the sunlight intensity is insufficient.
  • the far-red LED emission light can pass through the red light filter of the existing display backlight source, which is compatible with the existing technology and does not increase the existing technical problems.
  • Fig. 22 is a schematic diagram of another far-red LED and white LED provided in the embodiment 8 of the present invention applied to the backlight module in the display; as shown in Fig. 22, the difference between the embodiment 8 and the embodiment 7 is only:
  • the white LEDs are made into a linear array and placed on the left side of the backlight, and the far-red LEDs are made into a linear array and placed on the right side of the backlight, and the two are parallel to each other.
  • Figure 23 is a schematic diagram of the third type of far-red LED and white LED provided in Embodiment 8 of the present invention applied to the backlight module in the display.
  • the white LED is formed into a linear array and placed in the backlight source.
  • the far-red LEDs are arranged in a linear array on the underside of the backlight, and the two are perpendicular to each other.
  • FIG. 24 is a schematic diagram of the fourth far-red LED and white LED provided in the embodiment 9 of the present invention applied to the backlight module in the display;
  • FIG. 25 is the fourth far-red LED provided in the embodiment 9 of the present invention And a schematic plan view of a white light LED applied to a backlight module in a display;
  • FIG. 26 is a cross-sectional schematic view of a fourth far-red LED and white light LED applied to a backlight module in a display provided in Embodiment 9 of the present invention, as shown in FIG.
  • the difference between Embodiment 9 and Embodiment 7 is only that the white LED is made into a linear array, and the far-red LED is made into another linear array.
  • the linear array of white LEDs is parallel to the linear array of far-red LEDs, and the two are arranged coplanar at intervals to form a light source surface, which is arranged behind the backlight source.
  • FIG. 27 is a schematic structural diagram of the LED capable of emitting far red light and visible light provided in the embodiment 9 of the present invention applied to the backlight module in the display; as shown in FIG. 27, the embodiment 5 or the embodiment 6 can be prepared
  • the LED that emits visible light and infrared light, that is, the far red light-visible light LED array in FIG. 27, is arranged as a light source surface, and the light source surface is arranged behind the backlight source.
  • FIG. 28 is a schematic diagram of the structure of the LED capable of emitting far red light provided in the embodiment 9 of the present invention applied to the backlight module in the display.
  • any of the embodiments 1-4 can be used
  • the far-red LEDs, the existing red LEDs, and the existing green LEDs prepared in the embodiment are packaged together as a pixel; then, a plurality of pixel arrays are arranged as a display screen.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用,模组包括:发射光谱波长包括波长为400-700nm可见光以及波长为650-900nm远红光的光源。光源模组中的光源可以发射波长为650-900nm的远红光,该波长的远红光对视网膜细胞与视神经元生长与修复具有促进作用。解决了现有技术中不能对受损害的视网膜细胞以及视神经元进行修复的技术问题。可以减轻以LED为背光源的液晶电视和其它以LED主动或被动发光为光源的电子显示屏对人眼视力健康的损害,提高视力改善眼底健康。为开发视力健康液晶电视和显示屏提供了解决方案。

Description

促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用 技术领域
本发明涉及一种显示器光源模组,更具体涉及一种促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用。
背景技术
进入互联网+时代以来,智能手机、车载显示屏、液晶电视、大屏幕显示等各类电子屏幕所传递的资讯和信息给我们的生活带来了极大的便利,显著地提升了我们的生活品质。目前,在各类电子屏幕中,目前使用人数最多、市场占有率最高的是液晶显示器,但液晶无法主动发光,需要背光源。早期的液晶显示器采用冷阴极射线管作为背光源,但是冷阴极射线管电压高、能耗高,后来逐渐被LED(Light Emitting Diode,发光二极管)取代。LED不仅能效高、能耗低,而且LED采用固体封装,寿命长、可靠性高、体积小、抗震性好,适于制作轻、薄类产品。LED不仅给液晶显示器带来了新光源,而且进一步使液晶显示器轻便化和超薄化。目前液晶显示器都是采用LED作为背光源,LED在显示器背光源的使用率早已达到100%。
然而,随着LED在液晶显示器背光源渗透率的增加,特别是随着智能手机的普及,长时间盯着电子屏幕会导致视力下降,看不清物体。一种观点[戴锦晖,蓝光与眼健康,中国眼镜科技杂志,2017,94-96]认为视力下降与眼底健康损害应当归咎于蓝光危害,该观点认为LED富含蓝光,蓝光光子能量较高,蓝光照射使得视网膜产生自由基,过量蓝光诱发的自由基导致视网膜色素上皮细胞衰亡,进而导致光敏感区细胞因缺少养分而死亡,产生不可逆转的眼底病变、黄斑,出现视力下降、甚至失明。基于这种观点,申请号为CN200710122384.4以及CN201410202702.8的专利文献公开的技术方案是通过对显示器背光源采用调控亮度的手段降低蓝光对视网膜细胞以及视神经元的损害;申请号为CN201410812569.8的专利文献公开的技术方案是通过调控蓝光LED发射波长使其从深蓝色向浅蓝色移动以减少蓝光危害。
发明人发现,现有技术均集中在降低电子屏幕对视网膜细胞以及视神经元的损害,也就是说现有技术虽然降低了电子屏幕对视网膜细胞以及视神经元的损害,但是并不能对受损害的视网膜细胞以及视神经元进行修复。
发明内容
本发明所要解决的技术问题在于如何提供一种促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用,以对受损害的视网膜细胞以及视神经元进行修复。
本发明通过以下技术手段实现解决上述技术问题的:
本发明实施例提供了一种促进视网膜细胞与视神经元生长与修复的显示器光源模组,所述模组包括:
发射光谱波长包括650-900nm波长的光源。
应用本发明实施例,光源模组中的光源可以发射波长为650-900nm的远红光,而该波长的远红光对视网膜细胞与视神经元生长与修复具有很好的促进作用,因此,本发明实施例解决了现有技术中不能对受损害的视网膜细胞以及视神经元进行修复的技术问题。
可选的,所述光源包括:阵列组合使用的发射红外光谱的远红光LED以及发射可见光的白光LED,其中,
所述远红光LED为由封装了涂覆料的蓝光LED,其中,所述蓝光LED的发射光谱的波长峰值范围为:450-470nm;其中,所述涂覆料包括:红光荧光材料,所述红光荧光材料的发射光谱的波长范围为:650-900nm。
可选的,所述光源模组的控制过程包括:
控制所述发射红外光谱的远红光LED按照预设的发光周期发光,其中,所述发光周期为5-60分钟;
和/或,
控制所述发射可见光的白光LED持续点亮。
可选的,所述光源模组还包括:背光源,所述光源中的其中白光LED设置在背光源的第一侧边的外侧,所述光源中的远红光LED设置在背光源的第二侧边的外侧,其中,所述第一侧边与第二侧边具有共同的端点。
可选的,所述光源模组还包括:背光源,所述光源中的其中白光LED与所述光源中的远红光LED间隔组成平面阵列,所述平面阵列设置在所述背光源的背面。
可选的,所述光源模组包括若干个发射可见光与远红光的LED、以及背光源,其中,所述发射可见光与远红光的LED的制备过程包括:
按照预设比例将荧光粉与透明硅胶混合均匀,得到涂覆料,其中,所述荧光粉包括: 红外光荧光粉、红色光荧光粉以及绿色光荧光粉;红色光荧光粉包括:K 2TiF 6:Mn 4+、K 2TiF 6:Mn 4+或K 2(Si,Ti)F 6:Mn 4+中的一种或组合;绿色光荧光粉包括:β-SIALON:Eu 2+或Lu 3Ga 5O 12:Ce中的一种或组合;
将涂覆料真空搅拌、脱泡后均匀涂覆在蓝光LED芯片上,得到发射可见光与远红光的LED,其中,所述蓝光LED的发射光谱的波长峰值范围为:450-470nm;
所述光源模组还包括:背光源,所述光源中的发射可见光与远红光的LED组成平面阵列,所述平面阵列设置在所述背光源的背面。
可选的,所述红外光荧光材料包括:
YAl 3B 4O 12:Cr 3+、(Y,Gd) 3(Al,Ga) 5O 12:Cr 3+、(Y,Gd) 3(Al,Sc) 5O 12:Cr 3+(Y,Gd) 3(Ga,Sc) 5O 12:Cr 3+、K 3AlF 6:Cr 3+、Y 3(Al,Sc) 5O 12:Cr 3+、YAl 3B 4O 12:Cr 3+、Mg 4Nb 2O 9:Cr 3+和LiScSi 2O 6:Cr 3+中的一种或组合;
红色光荧光粉包括:
K 2TiF 6:Mn 4+、K 2TiF 6:Mn 4+或K 2(Si,Ti)F 6:Mn 4+中的一种或组合;
绿色光荧光粉包括:β-SIALON:Eu 2+或Lu 3Ga 5O 12:Ce中的一种或组合。
可选的,所述涂覆料中还包括:
占红外光荧光粉总质量为1-10%的CaAl 1.2Si 0.8N 3:Eu 2+
可选的,本发明实施例还提供了促进视网膜细胞与视神经元生长与修复的显示屏,所述显示屏包括若干个阵列设置的像素点,其中,每一个像素点是由权利要求1-10任一项所述的光源、红光LED、绿光LED封装得到。
本发明的优点在于:
(1)应用本发明实施例,光源模组中的光源可以发射波长为650-900nm的远红光,而该波长的远红光对视网膜细胞与视神经元生长与修复具有很好的促进作用,因此,本发明实施例解决了现有技术中不能对受损害的视网膜细胞以及视神经元进行修复的技术问题。
(2)采用本发明提供的LED光源,可以减轻液晶电视和其它各种以LED主动或被动发光为光源的显示屏对人眼视力健康的损害,还能够促进视网膜细胞和视神经元修复与再生,提高视力,改善眼底健康。
(3)另外,本发明实施例将远红光LED器件与已有白光LED器进行集成使用,或者将远红光荧光粉、绿光荧光粉、红光荧光粉涂覆于蓝光LED上进而得到了具有远红光发射功能的白光LED,因此,本发明实施例不仅可以传播显示画面,而且能够对眼部 细胞与神经元进行生物调节,拓展了显示器在视力健康与光生物调节方面的应用,通过技术的集成实现了新功能。
附图说明
图1为本发明实施1例提供的16种样品的发光光谱图;
图2为本发明实施1例提供的16种样品中编号为G6的样品所封装的远红光LED的发光光谱图;
图3为本发明实施1例中对照试验的蓝光LED芯片和绿光LED芯片的发光光谱图;
图4为本发明实施1例中组合了远红光LED的蓝光LED和组合了远红光LED的绿光LED的发光光谱图;
图5为本发明实施例1中对照实验的小鼠在蓝光LED和绿光LED的照射下的视网膜切片示意图;
图6为本发明实施例1中小鼠在组合远红光LED的蓝光LED和组合了远红光LED的绿光LED的照射下的视网膜切片示意图;
图7为本发明实施2例中使用的蓝光LED的发光光谱图;
图8为本发明实施2例提供的16种样品在450nm激发下的发光光谱图;
图9为本发明实施2例提供的16种样品在620nm激发下的发光光谱图;
图10为本发明实施2例中封装的远红光LED的发光光谱图与HeLa细胞的吸收光谱的对比图;
图11为本发明实施3例提供的16种样品在450nm激发下的发光光谱图;
图12为本发明实施3例中封装的远红光LED的发光光谱图与HeLa细胞的吸收光谱的对比图;
图13为本发明实施例4中Y(Al 1-xCr x) 3(BO 3) 4在450nm激发下的发光光谱图;
图14为本发明实施例4中(Mg 1-xCr x) 4Nb 2O 9在450nm激发下的发光光谱图;
图15为本发明实施例4中使用YAl 3B 4O 12:Cr 3+封装的远红光LED的发射光谱与经830nm远红光辐照后的HeLa细胞吸收光谱的对比图;
图16为本发明实施例4中使用YAl 3B 4O 12:Cr 3+和Mg 4Nb 2O 9:Cr 3+封装的远红光LED的发射光谱与经830nm远红光辐照后的HeLa细胞吸收光谱的对比图;
图17为现有技术中蓝光LED芯片搭配β-SIALON:Eu 2+绿色荧光粉和K 2TiF 6:Mn 4+红色荧光粉封装的白光LED发射光谱;
图18为本发明实施例5中提供的蓝光LED芯片搭配β-SIALON:Eu 2+绿色荧光粉、 K 2TiF 6:Mn 4+红色荧光粉和YAl 3B 4O 12:Cr 3+远红光材料封装的LED的发光光谱;
图19为同时采用远红光材料YAl 3B 4O 12:Cr 3+和Mg 4Nb 2O 9:Cr 3+搭配蓝光LED芯片、β-SIALON:Eu 2+绿色荧光粉和K 2TiF 6:Mn 4+红色荧光粉封装的LED发射光谱;
图20为本发明实施例7中提供的一种远红光LED与白光LED应用于显示器中的背光模组的示意图;
图21为本发明实施例7中提供的一种远红光LED与白光LED应用于显示器中的截面的示意图;
图22为本发明实施例8中提供的第二种远外光LED与白光LED应用于显示器中的背光模组的示意图;
图23为本发明实施例9中提供的第三种远红光LED与白光LED应用于显示器中的背光模组的示意图;
图24为本发明实施例9中提供的第四种远红光LED与白光LED应用于显示器中的背光模组的示意图;
图25为本发明实施例9中提供的第四种远红光LED与白光LED应用于显示器中的背光模组的平面示意图
图26为本发明实施例9中提供的第四种远红光LED与白光LED应用于显示器中的背光模组的截面示意图;
图27为本发明实施例9中提供的能发射远红光和可见光的LED应用于显示器中的背光模组的结构示意图;
图28为本发明实施例9中提供的能发射远红光的LED应用于显示器中的背光模组的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了解决现有技术中存在的问题,本发明实施例提供了一种促进视网膜细胞与视神经元生长与修复的显示器光源模组,所述模组包括:发射光谱波长包括650-900nm波长的光源。
具体的,所述光源包括:阵列组合使用的发射红外光谱的远红光LED以及发射可见光的白光LED,其中,
所述远红光LED为由封装了涂覆料的蓝光LED,其中,所述蓝光LED的发射光谱的波长峰值范围为:450-470nm;其中,所述涂覆料包括:红光荧光材料,所述红光荧光材料的发射光谱的波长范围为:650-900nm。白光LED可以是由采用发射波长峰值为450nm左右的蓝光LED芯片搭配绿色与红色荧光粉实现的,具体实现过程为现有技术这里不再赘述。或者白光LED可以采用现有的白光LED实现。
在实际应用中,可以将远红光荧光粉经过真空搅拌、脱泡后均匀涂覆在蓝光LED上。具体的,所述光源模组的控制过程包括:
控制所述发射红外光谱的远红光LED按照预设的发光周期发光,其中,所述发光周期为5-60分钟;和/或,控制所述发射可见光的白光LED持续点亮。
具体的,所述光源模组还包括:背光源,所述光源中的其中白光LED设置在背光源的第一侧边的外侧,所述光源中的远红光LED设置在背光源的第二侧边的外侧,其中,所述第一侧边与第二侧边具有共同的端点。
具体的,所述光源模组还包括:背光源,所述光源中的其中白光LED与所述光源中的远红光LED间隔组成平面阵列,所述平面阵列设置在所述背光源的背面。
具体的,所述光源包括若干个发射可见光与远红光的LED,其中,所述LED的制备过程包括:
按照预设比例将荧光粉与透明硅胶混合均匀,得到涂覆料,其中,所述荧光粉包括:红外光荧光粉、红色光荧光粉以及绿色光荧光粉;
将涂覆料真空搅拌、脱泡后均匀涂覆在蓝光LED芯片上,得到发射可见光与远红光的LED,其中,所述蓝光LED的发射光谱的波长峰值范围为:450-470nm。
具体的,所述光源模组还包括:背光源,所述光源中的发射可见光与远红光的LED组成平面阵列,所述平面阵列设置在所述背光源的背面。
具体的,所述红外光荧光材料包括:YAl 3B 4O 12:Cr 3+、(Y,Gd) 3(Al,Ga) 5O 12:Cr 3+、(Y,Gd) 3(Al,Sc) 5O 12:Cr 3+(Y,Gd) 3(Ga,Sc) 5O 12:Cr 3+、K 3AlF 6:Cr 3+、Y 3(Al,Sc) 5O 12:Cr 3+、YAl 3B 4O 12:Cr 3+、Mg 4Nb 2O 9:Cr 3+和LiScSi 2O 6:Cr 3+中的一种或组合;红色光荧光粉包括:K 2TiF 6:Mn 4+、K 2TiF 6:Mn 4+或K 2(Si,Ti)F 6:Mn 4+中的一种或组合;绿色光荧光粉包括:β-SIALON:Eu 2+或Lu 3Ga 5O 12:Ce 3+中的一种或组合。
Y 3(Al,Sc) 5O 12:Cr 3+、YAl 3B 4O 12:Cr 3+、Mg 4Nb 2O 9:Cr 3+和LiScSi 2O 6:Cr 3+均为现有的荧 光粉,其中,Y 3(Al,Sc) 5O 12:Cr 3+为Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 1的简称;YAl 3B 4O 12:Cr 3+为Y(Al 0.96Cr 0.04) 3(BO 3) 4的简称;Mg 4Nb 2O 9:Cr 3+为(Mg 0.97Cr 0.03) 4Nb 2O 8.98的简称;LiScSi 2O 6:Cr 3+为Li(Sc 0.96Cr 0.04)Si 2O 6的简称。
具体的,由于人眼视觉对远红光响应很弱,远红光器件点亮后人眼几乎无法察觉,为了便于识别,所述涂覆料中还包括:占红外光荧光粉总质量为1-10%的CaAl 1.2Si 0.8N 3:Eu 2+。另外,CaAl 1.2Si 0.8N 3:Eu 2+发射的红光对提高细胞DNA活性有一定作用。
另一方面,本发明实施例还提供了了基于上述任一项所述的促进视网膜细胞与视神经元生长与修复的显示器光源模组在眼部疾病治疗中的应用。
另一方面,本发明实施例还提供了促进视网膜细胞与视神经元生长与修复的显示屏,所述显示屏包括若干个阵列设置的像素点,其中,每一个像素点是上述任一项所述的光源、红光LED、绿光LED封装得到。
实施例1
1)、将江西绿泰科技公司生产的型号为Y550A和Y500B的硅胶按照质量比1:1的比例混合均匀得到透明硅胶。
2)、表1为远红光荧光材料(Y 1-xGd x) 3[(Ga 1-tSct) 1-zCrz] 5O 12化学式与合成工艺条件,按照表1对应的化学式生产出16种(Y,Gd) 3(Ga,Sc) 5O 12:Cr 3+荧光粉,如表1所示,
表1
样品编号 化学式 合成条件
G1 Y 3(Ga 0.94Cr 0.06) 5O 12 1350℃煅烧4h
G2 Y 3[(Ga 0.75Sc 0.25) 0.92Cr 0.08] 5O 12 1400℃煅烧6h
G3 Y 3[(Ga 0.5Sc 0.5) 0.9Cr 0.1] 5O 12 1450℃煅烧8h
G4 Y 3((Ga 0.25Sc 0.75) 0.88Cr 0.12) 5O 12 1500℃煅烧10
G5 (Y 0.75Gd 0.25) 3(Ga 0.92Cr 0.08) 5O 12 1450℃煅烧10h
G6 (Y 0.75Gd 0.25) 3[(Ga 0.75Sc 0.25) 0.94Cr 0.06] 5O 12 1500℃煅烧8h
G7 (Y 0.75Gd 0.25) 3[(Ga 0.5Sc 0.5) 0.88Cr 0.12] 5O 12 1350℃煅烧6h
G8 (Y 0.75Gd 0.25) 3[(Ga 0.25Sc 0.75) 0.9Cr 0.1] 5O 12 1400℃煅烧4h
G9 (Y 0.5Gd 0.5) 3(Ga 0.9Cr 0.1) 5O 12 1500℃煅烧10h
G10 (Y 0.5Gd 0.5) 3[(Ga 0.75Sc 0.25) 0.88Cr 0.12] 5O 12 1450℃煅烧8h
G11 (Y 0.5Gd 0.5) 3[(Ga 0.5Sc 0.5) 0.94Cr 0.06] 5O 12 1400℃煅烧8h
G12 (Y 0.5Gd 0.5) 3((Ga 0.25Sc 0.75) 0.92Cr 0.08) 5O 12 1350℃煅烧10h
G13 (Y 0.25Gd 0.75) 3(Ga 0.88Cr 0.12) 5O 12 1400℃煅烧8h
G14 (Y 0.25Gd 0.75) 3[(Ga 0.75Sc 0.25) 0.9Cr 0.1] 5O 12 1350℃煅烧10h
G15 (Y 0.25Gd 0.75) 3[(Ga 0.5Sc 0.5) 0.92Cr 0.08] 5O 12 1450℃煅烧4h
G16 (Y 0.25Gd 0.75) 3[(Ga 0.25Sc 0.75) 0.94Cr 0.06] 5O 12 1400℃煅烧6h
3)、然后,按照(Y,Gd) 3(Ga,Sc) 5O 12:Cr 3+荧光粉与透明硅胶按照质量比为1:1的比例进行混合,使用深圳麦力西科技有限公司生产的型号为MT-1000真空脱泡机对荧光粉和硅胶进行真空搅拌、脱泡。然后,使用深圳市轴心自控技术有限公司生产的D-260型点胶机把脱泡后的荧光粉以及透明硅胶的混合物滴定广东晶科电子有限公司生产的5730型蓝光LED芯片上,然后把LED支架连同滴定了硅胶的LED芯片移入上海博迅医疗生物仪器股份有限公司生产的DZF-6020型真空烘箱中,在150℃真空条件下固化4小时,得到远红光LED灯珠。
4)、将远红光LED灯珠点亮,采用海洋光学公司生产的USB4000光纤光谱仪测试远红光LED灯珠的发射光谱。图1为本发明实施1例提供的16种样品的发光光谱图,如图1所示,该16个荧光粉样品在450nm激发下的发射波长范围为675-850nm,发光最强的是编号为G6的样品。图2为本发明实施1例提供的16种样品中编号为G6的样品所封装的远红光LED的发光光谱图,如图2所示,编号为G6的样品封装的远红光LED在300mA电流驱动下的发射光谱。该器件发生光谱由多个峰组成的宽带谱,发射波长峰值为715-756nm,发射波长范围为675-850nm。图2中还包括了给出HeLa细胞的吸收光谱。图2通过LED远红光器件发射光谱与HeLa吸收光谱的对比,说明利用(Y,Gd) 3(Ga,Sc) 5O 12:Cr荧光粉封装的远红光LED能够与生物的HeLa的吸收谱相匹配,进而能够较好地光生物调节需要。
5)、选用步骤4)中制备的G6样品封装成远红光LED,然后分用蓝光LED和绿光LED在添加远红光LED和不添加远红光LED的条件下进行试验,选取体重为200-220g的SD雄鼠,随机平均分为四组,其中第一组采用蓝光LED照射,第二组采用蓝光LED和远红光LED同时照射,第三组采用绿光LED照射,第四组采用绿光LED和远红光LED同时照射。在其他条件完全相同的情况下,对四组小鼠每天光照4小时,其余时间保持正常的白昼变化,连续进行四周。停止光照后两天取小鼠眼球视网膜进行HE染色, 观察各组小鼠视网膜结构的变化。
图3为本发明实施1例中对照试验的蓝光LED芯片和绿光LED芯片的发光光谱图,图4为本发明实施1例中组合了远红光LED的蓝光LED和组合了远红光LED的绿光LED的发光光谱图,如图3和图4所示,蓝光LED和绿光LED的发光光谱图均位于可见光光谱范围内,组合了远红光LED的蓝光LED以及绿光LED发射的红外光谱为G6样品的光谱。图5为本发明实施例1中对照实验的小鼠在蓝光LED和绿光LED的照射下的视网膜切片示意图;图6为本发明实施例1中小鼠在组合远红光LED的蓝光LED和组合了远红光LED的绿光LED的照射下的视网膜切片示意图;如图5中的(a)图所示,视网膜细胞比较稀疏,如图5中的(b)图所示,通过添加远红光,可以增加小鼠视网膜内层细胞密度,损伤得到明显修复;但是可以看到,修复后的小鼠视网膜内层细胞(INL)依然稀疏。如图6中的(a)图所示,通过添加远红光,可以增加小鼠视网膜内层细胞密度,损伤得到明显修复。比较图5中的(a)图,图6中的(a)图,可以发现,尽管在绿光照射下小鼠视网膜内层细胞稀疏,厚度变薄,说明小鼠视网膜单独在绿光照射下依然后一定的损伤,但是,在绿光的照射下损伤较小;比较图5中的(b)图,图6中的(b)图,可以发现,图6中的(b)图中小鼠视网膜内外侧细胞更加致密、发育更加完整,进一步证实远红光对促进视网膜细胞的修复与再生起到积极作用。
细胞的生长与凋亡往往是快速进行的,但是神经元细胞一旦受损,除了采用光生物调节之外,没有其它办法能够促使其修复与生长。利用远红光光对细胞进行光生物调节的有效方式之一。
需要强调的是,在远红光荧光粉的制备过程中,除合成条件为本发明申请人设计之外,其他的工序流程可以采用现有的工艺流程及参数实现,而且申请人所用金属氧化物均采购自国药集团化学试剂有限公司。
实施例2
本发明实施例2与实施例1的区别仅在于,远红光荧光材料的不同:实施例2中使用的红外荧光粉为(Y 1-xGd x) 3[(Al 1-tGa t) 1-zCr z] 5O 12,其中0≤x≤1,0≤t≤1,0<x≤0.1,简称(Y,Gd) 3(Al,Ga) 5O 12:Cr 3+
表2为远红光荧光材料(Y 1-xGd x) 3[(Al 1-tGa t) 1-zCr z] 5O 12化学式与合成工艺条件,按照表2对应的化学式生产出16种(Y,Gd) 3(Al,Ga) 5O 12:Cr 3+荧光粉,如表2所示,
表2
样品编号 化学式 合成条件
A1 Y 3(Al 0.94Cr 0.06) 5O 12 1350℃煅烧4h
A2 Y 3[(Al 0.75Ga 0.25) 0.92Cr 0.08] 5O 12 1400℃煅烧6h
A3 Y 3[(Al 0.25Ga 0.75) 0.9Cr 0.1] 5O 12 1450℃煅烧8h
A4 Y 3(Ga 0.88Cr 0.12) 5O 12 1500℃煅烧10
A5 (Y 0.75Gd 0.25) 3(Al 0.92Cr 0.08) 5O 12 1450℃煅烧10h
A6 (Y 0.75Gd 0.25) 3[(Al 0.75Ga 0.25) 0.94Cr 0.06] 5O 12 1500℃煅烧8h
A7 (Y 0.75Gd 0.25) 3[(Al 0.25Ga 0.75) 0.88Cr 0.12] 5O 12 1350℃煅烧6h
A8 (Y 0.75Gd 0.25) 3[Ga 0.9Cr 0.1] 5O 12 1400℃煅烧4h
A9 (Y 0.5Gd 0.5) 3(Al 0.9Cr 0.1) 5O 12 1500℃煅烧10h
A10 (Y 0.5Gd 0.5) 3[(Al 0.75Ga 0.25) 0.88Cr 0.12] 5O 12 1450℃煅烧8h
A11 (Y 0.5Gd 0.5) 3[(Al 0.25Ga 0.75) 0.94Cr 0.06] 5O 12 1400℃煅烧8h
A12 (Y 0.5Gd 0.5) 3(Ga 0.92Cr 0.08) 5O 12 1350℃煅烧10h
A13 (Y 0.25Gd 0.75) 3(Al 0.88Cr 0.12) 5O 12 1400℃煅烧8h
A14 (Y 0.25Gd 0.75) 3[(Al 0.75Ga 0.25) 0.9Cr 0.1] 5O 12 1350℃煅烧10h
A15 (Y 0.25Gd 0.75) 3[(Al 0.25Ga 0.75) 0.92Cr 0.08] 5O 12 1450℃煅烧4h
A16 (Y 0.25Gd 0.75) 3(Ga 0.94Cr 0.06) 5O 12 1400℃煅烧6h
表2给出采用16个荧光粉样品的化学式,(Y 1-xGd x) 3[(Al 1-tGa t) 1-zCr z] 5O 12,其中0≤x≤1,0≤t≤1,0<x≤0.1,及其合成工艺条件。图7为本发明实施2例中使用的蓝光LED的发光光谱图;图8为本发明实施2例提供的16种样品在450nm激发下的发光光谱图;图9为本发明实施2例提供的16种样品在620nm激发下的发光光谱图;如图7-9所示,通过改变荧光粉的组分可以调控荧光粉的发射波长;在不同波长激发下,荧光粉的发射光谱构型略有差异;编号为A6的样品发光最强。
图10为本发明实施2例中封装的远红光LED的发光光谱图与HeLa细胞的吸收光谱对比图,如图10所示,利用A6号样品封装的远红光LED在70mA电流驱动下的发射光谱如图10所示。图10同时给出HeLa细胞的吸收光谱。通过图10中远红光LED发射光谱和HeLa细胞吸收光谱的对比,两者的重叠光谱区域说明该该远红光LED能够满足光生物调节需要,(T.I.Karu,et a.,IEEE J.Sel.Top.Quantum Electron,2001,7,982)。
实施例3
本发明实施例3与实施例1的区别仅在于,远红光荧光材料的不同:实施例3中使用的红外荧光粉为(Y 1-xGd x) 3[(Al 1-tSc t) 1-zCr z] 5O 12,其中0≤x≤1,0≤t≤1,0<x≤0.1,简称(Y,Gd) 3(Al,Sc) 5O 12:Cr。
表3为远红光荧光材料(Y 1-xGd x) 3[(Al 1-tSc t) 1-zCr z] 5O 12化学式与合成工艺条件,按照表3对应的化学式生产出16种(Y,Gd) 3(Al,Sc) 5O 12:Cr 3+荧光粉,如表3所示,
表3
样品编号 化学式 合成条件
S1 Y 3(Al 0.94Cr 0.06) 5O 12 1350℃煅烧4h
S2 Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12 1400℃煅烧6h
S3 Y 3[(Al 0.5Sc 0.5) 0.9Cr 0.1] 5O 12 1450℃煅烧8h
S4 Y 3[(Al 0.25Sc 0.75) 0.88Cr 0.12] 5O 12 1500℃煅烧10
S5 (Y 0.75Gd 0.25) 3(Al 0.92Cr 0.08) 5O 12 1450℃煅烧10h
S6 (Y 0.75Gd 0.25) 3[(Al 0.75Sc 0.25) 0.94Cr 0.06] 5O 12 1500℃煅烧8h
S7 (Y 0.75Gd 0.25) 3[(Al 0.5Sc 0.5) 0.88Cr 0.12] 5O 12 1350℃煅烧6h
S8 (Y 0.75Gd 0.25) 3[(Al 0.25Sc 0.75) 0.9Cr 0.1] 5O 12 1400℃煅烧4h
S9 (Y 0.5Gd 0.5) 3(Al 0.9Cr 0.1) 5O 12 1500℃煅烧10h
S10 (Y 0.5Gd 0.5) 3[(Al 0.75Sc 0.25) 0.88Cr 0.12] 5O 12 1450℃煅烧8h
S11 (Y 0.5Gd 0.5) 3[(Al 0.5Sc 0.5) 0.94Cr 0.06] 5O 12 1400℃煅烧8h
S12 (Y 0.5Gd 0.5) 3[(Al 0.25Sc 0.75) 0.92Cr 0.08] 5O 12 1350℃煅烧10h
S13 (Y 0.25Gd 0.75) 3(Al 0.88Cr 0.12) 5O 12 1400℃煅烧8h
S14 (Y 0.25Gd 0.75) 3[(Al 0.75Sc 0.25) 0.9Cr 0.1] 5O 12 1350℃煅烧10h
S15 (Y 0.25Gd 0.75) 3[(Al 0.5Sc 0.5) 0.92Cr 0.08] 5O 12 1450℃煅烧4h
S16 (Y 0.25Gd 0.75) 3[(Al 0.25Sc 0.75) 0.94Cr 0.06] 5O 12 1400℃煅烧6h
图11为本发明实施3例提供的16种样品在450nm的激发光时的发光光谱图,如图11所示,从图11中可以发现,通过改变荧光粉的组分可以调控荧光粉的发射波长,荧光粉的发射波长范围为675-850nm,发光最强的是编号为S6的样品。图12为本发明实施3例中S6封装的远红光LED的发光光谱图与HeLa细胞的吸收光谱对比图,如图12所示,该远红光LED的发射光谱由两个峰组成的宽带谱,发射波长主峰为758nm,次峰波长为711nm,发射波长范围为675-850nm,通过与HeLa细胞吸收光谱对比表明,该远红光LED的发射光谱能够很好地满足人眼视力健康需要。
实施例4
本实施例中分别采用现有的荧光粉YAl 3B 4O 12:Cr 3+以及现有的Mg 4Nb 2O 9:Cr 3+封装远红光LED,采用封装工艺与实施例1中的封装工艺相同。
图13为本发明实施例4中Y(Al 1-xCr x) 3(BO 3) 4在450nm激发下的发光光谱图;如图13所示,图13对应了不同的x值时对应的光谱图;图14为本发明实施例4中(Mg 1-xCr x) 4Nb 2O 9在450nm激发下的发光光谱图;如图14所示,图14对应了不同的x值时对应的光谱图。
图15为本发明实施例4中使用YAl 3B 4O 12:Cr 3+封装的远红光LED的发射光谱与经830nm远红光辐照后的HeLa细胞吸收光谱的对比图;如图15所示,单独利用YAl 3B 4O 12:Cr 3+荧光粉封装的远红光LED的发射光谱可以覆盖经830nm远红光辐照后的HeLa细胞吸收光谱的部分区域区域。
图16为本发明实施例4中使用YAl 3B 4O 12:Cr 3+和Mg 4Nb 2O 9:Cr 3+按照质量比1:1封装的远红光LED的发射光谱与经830nm远红光辐照后的HeLa细胞吸收光谱的对比图;如图16所示,为了弥补单独利用YAl 3B 4O 12:Cr 3+荧光粉封装的远红光LED的发射光谱无法覆盖经830nm远红光辐照后的HeLa细胞吸收光谱的全部区域的缺点,同时采用荧光粉YAl 3B 4O 12:Cr 3+和Mg 4Nb 2O 9:Cr 3+封装搭配蓝光LED,进而覆盖了HeLa细胞吸收光谱的全部区域。
实施例5
图17为现有技术中蓝光LED芯片搭配-SIALON:Eu 2+绿色荧光粉和K2TiF6:Mn4+红色荧光粉封装的白光LED发射光谱,图18为本发明实施例5中提供的蓝光LED芯片搭配-SIALON:Eu 2+绿色荧光粉、K2TiF6:Mn4+红色荧光粉和YAl 3B 4O 12:Cr 3+远红光材料封装的LED的发光光谱;如图17和图18所示,二者光谱比较近似,可以符合显示器的显示要求,而且,红外光可以通过显示器你的短波截止滤光片,波长高于650nm的波均可以通过,因此,应用本发明实施例可以不用对显示器的进行改动,仅需改变显示器的光源即可。
需要强调的是,可以根据实际需求调节绿色荧光粉、红色荧光粉的比例以调节封装后的白光LED的发射光强,但是,并不会改变发射光谱的波长分布。
实施例6
采用蓝光LED芯片搭配β-SIALON:Eu 2+绿色荧光粉、K 2TiF 6:Mn 4+红色荧光粉、YAl 3B 4O 12:Cr 3+和Mg 4Nb 2O 9:Cr 3+远红光材料按照1:1:1的质量比封装新型LED,该器件 不仅能够发射白光,而且能够发射远红光。图19为同时采用远红光材料YAl 3B 4O 12:Cr 3+和Mg 4Nb 2O 9:Cr 3+搭配蓝光LED芯片、β-SIALON:Eu 2+绿色荧光粉和K 2TiF 6:Mn 4+红色荧光粉封装的LED发射光谱。
需要强调的是,上述三种材料的比例可以根据实际需求进行调整,本发明实施例在此并不对其作出限定。
实施例7
本实施例采用侧入光模式利用实施例1-4任一实施例中制备的LED制作液晶显示器背光源。图20为本发明实施例7中提供的一种远红光LED与白光LED应用于显示器中的背光模组的示意图,如图20所示,白光LED与远红光-近红外LED依次交替布置在PCB基版上,形成如图20左图所示的LED光源阵列,然后把该LED阵列固定在液晶显示器背光源的一侧。图21为本发明实施例7中提供的一种远红光LED与白光LED应用于显示器中的截面的示意图,如图21所示,背光源由LED光源阵列、PCB基板、反射膜、导光板、扩散膜和遮光膜组成。针对白光LED与远红光近红外LED的驱动控制,一种可以采用恒流串联控制;另一种可以在PCB基板上印刷两条电路,把白光LED串联在其中一条电路上,将远红光LED串联在另一条电路上;白光LED与远红光LED采用分立控制模式。
进一步的,可以把由定时器控制红光近红外LED,每隔5-30分钟启动一次,每次点亮后持续时长为一个发光周期,发光周期为5-60分钟;为了节能,也可以与户外亮度计相连接,在太阳光强度不足情况下启动远红光近红外LED工作。
远红光LED发射光能够透过现有显示器背光源的红光滤光片,与已有技术相兼容,不增加已有技术难题。
实施例8
图22为本发明实施例8中提供的另一种远红光LED与白光LED应用于显示器中的背光模组的示意图;如图22所示,实施例8与实施例7的区别仅在于,把白光LED做成一个直线阵列置于背光源的左侧,将远红光LED做成一个直线阵列设置于背光源右侧,二者相互平行。
图23为本发明实施例8中提供的第三种远红光LED与白光LED应用于显示器中的背光模组的示意图,如图23所示,把白光LED做成一个直线阵列置于背光源的左侧,将远红光LED做成一个直线阵列设置于背光源下侧,二者相互垂直。
实施例9
图24为本发明实施例9中提供的第四种远红光LED与白光LED应用于显示器中的背光模组的示意图;图25为本发明实施例9中提供的第四种远红光LED与白光LED应用于显示器中的背光模组的平面示意图;图26为本发明实施例9中提供的第四种远红光LED与白光LED应用于显示器中的背光模组的截面示意图,如图24-26所示,实施例9与实施例7的区别仅在于,把白光LED做成一个直线阵,将远红光LED做成另一个直线阵列。白光LED的直线阵列平行于远红光LED的直线阵列,且二者间隔共面设置形成光源面,光源面设置在背光源的背后。
实施例10
图27为本发明实施例9中提供的能发射远红光和可见光的LED应用于显示器中的背光模组的结构示意图;如图27所示,将实施例5或者实施例6中制备的可以发射可见光以及元红外光的LED,即图27中的远红光-可见光LED阵列设置成光源面,并将光源面设置在背光源的背后。
实施例11
图28为本发明实施例9中提供的能发射远红光的LED应用于显示器中的背光模组的结构示意图,如图28所示,在实际应用中,可以将实施例1-4任一个实施例中制备的远红光LED、现有的红光LED、现有的绿光LED、封装在一起作为一个像素点;然后将若干个像素点阵列设置成显示屏。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 促进视网膜细胞与视神经元生长与修复的显示器光源模组,其特征在于,所述模组包括:
    发射光谱波长包括650-900nm波长的光源。
  2. 根据权利要求1所述的促进视网膜细胞与视神经元生长与修复的显示器光源模组,其特征在于,所述光源包括:阵列组合使用的发射红外光谱的远红光LED以及发射可见光的白光LED,其中,
    所述远红光LED为由封装了涂覆料的蓝光LED,其中,所述蓝光LED的发射光谱的波长峰值范围为:450-470nm;其中,所述涂覆料包括:红光荧光材料,所述红光荧光材料的发射光谱的波长范围为:650-900nm。
  3. 根据权利要求2所述的促进视网膜细胞与视神经元生长与修复的显示器光源模组,其特征在于,所述光源模组的控制过程包括:
    控制所述发射红外光谱的远红光LED按照预设的发光周期发光,其中,所述发光周期为5-60分钟;
    和/或,
    控制所述发射可见光的白光LED持续点亮。
  4. 根据权利要求2所述的促进视网膜细胞与视神经元生长与修复的显示器光源模组,其特征在于,所述光源模组还包括:背光源,所述光源中的其中白光LED设置在背光源的第一侧边的外侧,所述光源中的远红光LED设置在背光源的第二侧边的外侧,其中,所述第一侧边与第二侧边具有共同的端点。
  5. 根据权利要求2所述的促进视网膜细胞与视神经元生长与修复的显示器光源模组,其特征在于,所述光源模组还包括:背光源,所述光源中 的其中白光LED与所述光源中的远红光LED间隔组成平面阵列,所述平面阵列设置在所述背光源的背面。
  6. 根据权利要求1所述的促进视网膜细胞与视神经元生长与修复的显示器光源模组,其特征在于,所述光源模组包括若干个发射可见光与远红光的LED、以及背光源,其中,所述发射可见光与远红光的LED的制备过程包括:
    按照预设比例将荧光粉与透明硅胶混合均匀,得到涂覆料,其中,所述荧光粉包括:红外光荧光粉、红色光荧光粉以及绿色光荧光粉;红色光荧光粉包括:K 2TiF 6:Mn 4+、K 2TiF 6:Mn 4+或K 2(Si,Ti)F 6:Mn 4+中的一种或组合;绿色光荧光粉包括:β-SIALON:Eu 2+或Lu 3Ga 5O 12:Ce中的一种或组合;
    将涂覆料真空搅拌、脱泡后均匀涂覆在蓝光LED芯片上,得到发射可见光与远红光的LED,其中,所述蓝光LED的发射光谱的波长峰值范围为:450-470nm;
    所述光源模组还包括:背光源,所述光源中的发射可见光与远红光的LED组成平面阵列,所述平面阵列设置在所述背光源的背面。
  7. 根据权利要求2-6任一项所述的促进视网膜细胞与视神经元生长与修复的显示器光源模组,其特征在于,所述红外光荧光材料包括:
    YAl 3B 4O 12:Cr 3+、(Y,Gd) 3(Al,Ga) 5O 12:Cr 3+、(Y,Gd) 3(Al,Sc) 5O 12:Cr 3+(Y,Gd) 3(Ga,Sc) 5O 12:Cr 3+、K 3AlF 6:Cr 3+、Y 3(Al,Sc) 5O 12:Cr 3+、YAl 3B 4O 12:Cr 3+、Mg 4Nb 2O 9:Cr 3+和LiScSi 2O 6:Cr 3+中的一种或组合。
  8. 根据权利要求7所述的促进视网膜细胞与视神经元生长与修复的显示器光源模组,其特征在于,所述涂覆料中还包括:
    占红外光荧光粉总质量为1-10%的CaAl 1.2Si 0.8N 3:Eu 2+
  9. 根据权利要求1-8任一项所述的促进视网膜细胞与视神经元生长与修复的显示器光源模组在眼部疾病治疗中的应用。
  10. 促进视网膜细胞与视神经元生长与修复的显示屏,其特征在于,所述显示屏包括若干个阵列设置的像素点,其中,每一个像素点是由权利要求1-8任一项所述的光源、红光LED、绿光LED封装得到。
PCT/CN2019/104473 2019-08-29 2019-09-05 促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用 WO2021035783A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910808423.9A CN110531554A (zh) 2019-08-29 2019-08-29 促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用
CN201910808423.9 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021035783A1 true WO2021035783A1 (zh) 2021-03-04

Family

ID=68665444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104473 WO2021035783A1 (zh) 2019-08-29 2019-09-05 促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用

Country Status (2)

Country Link
CN (1) CN110531554A (zh)
WO (1) WO2021035783A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186087B (zh) * 2020-08-28 2021-09-28 合肥工业大学 一种远红光-近红外光led器件制备方法及led器件
CN113193100A (zh) * 2021-05-25 2021-07-30 鸿利智汇集团股份有限公司 一种促进hela细胞生长的红外LED封装
CN115216295B (zh) * 2022-07-01 2024-02-27 旭宇光电(深圳)股份有限公司 近红外发光材料及其制备方法、发光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573228A (zh) * 2011-12-27 2012-07-11 杭州浙大三色仪器有限公司 一种健康led照明灯
CN106328795A (zh) * 2016-10-21 2017-01-11 电子科技大学 一种医用光疗的pc‑LEDs灯
CN107706282A (zh) * 2017-07-04 2018-02-16 区峰 能同时满足植物生长和人眼需求的led生态光源的生成方法
CN108288615A (zh) * 2018-03-11 2018-07-17 哈尔滨医大眼科医疗科技开发有限公司 一种学生专用护眼灯
US10121935B2 (en) * 2012-02-03 2018-11-06 Vi Systems Gmbh Three-dimensional semiconductor nanoheterostructure and method of making same
CN109192844A (zh) * 2018-08-30 2019-01-11 合肥工业大学智能制造技术研究院 一种用于视网膜细胞修复与再生的led发光器件及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936810B2 (ja) * 2009-09-11 2016-06-22 ローム株式会社 発光装置
WO2014103671A1 (ja) * 2012-12-28 2014-07-03 シャープ株式会社 発光装置
CN109097041B (zh) * 2018-08-30 2021-03-16 合肥工业大学智能制造技术研究院 锰掺杂的红色荧光粉的制备方法、产物、器件及背光模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573228A (zh) * 2011-12-27 2012-07-11 杭州浙大三色仪器有限公司 一种健康led照明灯
US10121935B2 (en) * 2012-02-03 2018-11-06 Vi Systems Gmbh Three-dimensional semiconductor nanoheterostructure and method of making same
CN106328795A (zh) * 2016-10-21 2017-01-11 电子科技大学 一种医用光疗的pc‑LEDs灯
CN107706282A (zh) * 2017-07-04 2018-02-16 区峰 能同时满足植物生长和人眼需求的led生态光源的生成方法
CN108288615A (zh) * 2018-03-11 2018-07-17 哈尔滨医大眼科医疗科技开发有限公司 一种学生专用护眼灯
CN109192844A (zh) * 2018-08-30 2019-01-11 合肥工业大学智能制造技术研究院 一种用于视网膜细胞修复与再生的led发光器件及应用

Also Published As

Publication number Publication date
CN110531554A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021035783A1 (zh) 促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用
CN107565006B (zh) 一种具有日光可见光部分光谱结构的led光源及灯具
US9082939B2 (en) White light source and white light source system including the same
EP3848985B1 (en) White light equipment
EP4044264B1 (en) White light source and white light source system using white light source
EP2674662B1 (en) White light source and white light source system using same
TWI564630B (zh) 具發光模式切換設計之背光模組及使用其之顯示模組
US11444223B2 (en) Light emitting device
CN105182612A (zh) 用于背光模组的光源组件、背光模组以及液晶显示器
CN104993037B (zh) 一种发光二极管及其封装结构、封装方法和显示装置
CN104638092A (zh) 一种降低蓝光危害的led封装结构
WO2020248748A1 (zh) 节律照明用的led光源
WO2020200327A1 (zh) 白光 led 和健康照明用灯具
US11667836B2 (en) Light emitting device
CN109856860B (zh) 一种液晶显示模组及显示装置
CN207096637U (zh) 一种led液晶显示器的背光模组
WO2020034391A1 (zh) Led白光器件及其制备方法、led背光模组
CN111720758A (zh) 光源模组、灯具
CN106784236A (zh) 发光二极管光源及其制造方法、显示面板
CN113594145B (zh) 一种光源的制备方法
AU2021100694A4 (en) Display Light Source Module, Display Screen and Their Application for Promoting the Growth and Repairing of Retinal Cells and Optic Neure
KR20190085694A (ko) 발광소자 패키지
US11887973B2 (en) Full spectrum white light emitting devices
CN210073904U (zh) 一种垂直结构的金黄光led芯片及其护眼灯
CN208569251U (zh) 一种背光模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942706

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19942706

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.09.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19942706

Country of ref document: EP

Kind code of ref document: A1