WO2024109613A1 - 一种通信方法、装置及存储介质 - Google Patents

一种通信方法、装置及存储介质 Download PDF

Info

Publication number
WO2024109613A1
WO2024109613A1 PCT/CN2023/131890 CN2023131890W WO2024109613A1 WO 2024109613 A1 WO2024109613 A1 WO 2024109613A1 CN 2023131890 W CN2023131890 W CN 2023131890W WO 2024109613 A1 WO2024109613 A1 WO 2024109613A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
rank
downlink
rbs
downlink data
Prior art date
Application number
PCT/CN2023/131890
Other languages
English (en)
French (fr)
Inventor
郭超凡
李丹
郝勇
詹奇聪
金新波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024109613A1 publication Critical patent/WO2024109613A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present application relates to the field of wireless communication technology, and in particular to a communication method, device and storage medium.
  • the maximum number of spatial multiplexing streams that a single terminal device can support in downlink transmission has increased from single stream to 4 streams.
  • the number of spatial multiplexing streams is also called the Rank number.
  • the higher the Rank the better the system throughput performance.
  • the high Rank of a user also means high interference between cells to the physical downlink shared channel (PDSCH) and demodulation reference signal (DMRS) of other users.
  • PDSCH physical downlink shared channel
  • DMRS demodulation reference signal
  • the figure shows the horizontal cross-sectional view of the user's first stream beam and the third stream beam when Rank 3 (i.e., three streams are spatially multiplexed) is used for downlink transmission, where 0 degrees points to the direction in which the antenna is facing the cell, and the larger the beam deflection angle, the more it deflects toward the neighboring cell.
  • the horizontal direction of the user's third stream beam is larger than the expansion angle of the first stream beam, that is, the horizontal direction angle of the third stream beam is obviously deflected toward the neighboring cell, which will cause strong interference to the neighboring cell.
  • Embodiments of the present application provide a communication method, apparatus, and storage medium for reducing interference by lowering the Rank (i.e., the number of spatial multiplexing streams) of a terminal device during downlink transmission.
  • a communication method which can be applied to a network device, such as a base station, and the method includes the following steps: determining a first downlink transmission parameter of the first terminal device according to a state of a downlink channel of the first terminal device, the first downlink transmission parameter including a first Rank; determining a first number of resource blocks (RBs) occupied by downlink data of the first terminal device according to the first downlink transmission parameter; determining a first number of remaining RBs according to the number of allocatable RBs and the first number of RBs; if the first terminal device satisfies at least a first condition, performing downlink data transmission to the first terminal device based on a second downlink transmission parameter, the second downlink transmission parameter including a second Rank, the number of spatial multiplexing streams indicated by the second Rank being less than the number of spatial multiplexing streams indicated by the first Rank; wherein the first condition includes: the first remaining number of RBs satisfies the first terminal device
  • the first remaining RB number satisfies the first terminal device to decrease from the first Rank to the second Rank, including: the first remaining RB number is not less than the difference between the second RB number and the first RB number; wherein, the second RB number is the number of RBs occupied by the downlink data of the first terminal device determined based on the second downlink transmission parameter, and the second RB number is greater than the first RB number.
  • the network device when the network device performs downlink transmission scheduling for the first terminal device, it further considers the RB utilization and the downlink traffic size of the first terminal device (i.e., the amount of downlink data) on the basis of considering the channel state. On the basis of being able to ensure the downlink data transmission of the terminal device, it reduces the interference size and the number of interference sources by lowering the Rank, thereby improving the interference suppression effect of the demodulation of the terminal device in the adjacent cell.
  • the first terminal device is one of at least two terminal devices based on single-user scheduling, and the at least two terminal devices also include a second terminal device.
  • the number of spatial multiplexing streams determined based on the state of the downlink channels of the first terminal device and the second terminal device is greater than 1, and the first remaining RB number of the first terminal device satisfies the first terminal device to be reduced from the first Rank to the second Rank, and the second remaining RB number of the second terminal device satisfies the second terminal device to be reduced from the third Rank to the fourth Rank, but the first RB remaining number does not satisfy the first terminal device to be reduced from the first Rank to the second Rank.
  • the second terminal device While the first Rank is lowered to the second Rank, the second terminal device is lowered from the third Rank to the fourth Rank; wherein the second remaining RB number is determined based on the number of allocatable RBs and the number of RBs occupied by the downlink data of the second terminal device, and the third Rank is determined based on the state of the downlink channel of the second terminal device.
  • the above situation shows that the number of remaining RBs satisfies the Rank reduction of the first terminal device and the Rank reduction of the second terminal device, but does not satisfy the simultaneous Rank reduction of the first terminal device and the second terminal device.
  • downlink data transmission is performed to the first terminal device based on the second downlink transmission parameter, including: selecting the first terminal device from the first terminal device and the second terminal device, and performing downlink data transmission to the first terminal device based on the second downlink transmission parameter.
  • This implementation method can select some terminal devices for Rank reduction processing in the above situation to reduce interference.
  • the selecting the first terminal device from the first terminal device and the second terminal device includes: if the first terminal device also satisfies a second condition, selecting the first terminal device from the first terminal device and the second terminal device; wherein the second condition includes: the interference intensity of the first terminal device to the neighboring area is greater than the interference intensity of the second terminal device to the neighboring area.
  • terminal devices that cause great interference to neighboring cells can be preferentially selected to lower their Ranks, thereby reducing interference to neighboring cells.
  • the first terminal device is a terminal device in a first multi-user group of at least two multi-user groups based on multi-user scheduling
  • the at least two multi-user groups also include a second multi-user group
  • the number of allocatable RBs is the total number of RBs occupied by downlink data of the terminal devices in the second multi-user group
  • the total number of RBs occupied by downlink data of the terminal devices in the second multi-user group is not less than the total number of RBs occupied by downlink data of the terminal devices in each of the at least two multi-user groups.
  • the above implementation method can constrain the number of RBs occupied by the downlink data of the terminal device in each multi-user (MU) group, and can avoid the problem of excessive increase in the number of RBs occupied by the downlink data of the terminal device after the terminal device in the MU group is downgraded.
  • MU multi-user
  • the first multi-user group also includes a second terminal device, and the number of spatial multiplexing streams determined based on the status of the respective downlink channels of the first terminal device and the second terminal device is greater than 1, and the first remaining RB number of the first terminal device satisfies the first terminal device to be reduced from the first Rank to the second Rank, and the second remaining RB number of the second terminal device satisfies the second terminal device to be reduced from the third Rank to the fourth Rank, but the first remaining RB number does not satisfy the requirement that the second terminal device be reduced from the third Rank to the fourth Rank while the first terminal device is reduced from the first Rank to the second Rank; wherein the second remaining RB number of the second terminal device is determined based on the number of allocable RBs and the number of RBs occupied by the downlink data of the second terminal device, and the third Rank is determined based on the status of the downlink channel of the second terminal device.
  • the above situation indicates that the number of remaining RBs in a multi-user group satisfies the first terminal device to reduce its Rank, and also satisfies the second terminal device to reduce its Rank, but does not satisfy the simultaneous reduction of the Rank of the first terminal device and the second terminal device.
  • the first terminal device satisfies at least the first condition
  • downlink data transmission is performed on the first terminal device based on the second downlink transmission parameter, including: selecting the first terminal device from the first terminal device and the second terminal device; and performing downlink data transmission on the first terminal device based on the second downlink transmission parameter.
  • This implementation method can select some terminal devices to perform Rank reduction processing in the above situation to reduce interference.
  • the selecting of the first terminal device from the first terminal device and the second terminal device includes: if the first terminal device also satisfies the third condition, the selecting of the first terminal device from the first terminal device and the second terminal device.
  • the third condition may be that the scheduling priority of the first terminal device is higher than the scheduling priority of the second terminal device, so that the terminal device with the higher scheduling priority is preferentially downgraded.
  • the third condition may also be that the interference intensity of the first terminal device to the neighboring area is greater than the interference intensity of the second terminal device to the neighboring area, so that the terminal device with the higher interference intensity to the neighboring area may be preferentially downgraded.
  • the selecting the first terminal device from the first terminal device and the second terminal device includes: determining a corresponding first transmit power reduction amount according to a first MCS of the first terminal device, and determining a corresponding second transmit power reduction amount according to the first MCS of the second terminal device; if the first transmit power reduction amount is greater than the second transmit power reduction amount, selecting the first terminal device from the first terminal device and the second terminal device; before performing downlink data transmission to the first terminal device based on the second downlink transmission parameter, the method also includes: reducing the transmit power to the first terminal device according to the first transmit power reduction amount.
  • terminal devices with large power reduction can be preferentially selected for Rank reduction processing, thereby reducing interference and further achieving energy saving.
  • the method before performing downlink data transmission to the first terminal device based on the second downlink transmission parameter, the method further includes: reducing the transmission power of the first terminal device, thereby achieving energy saving on the basis of reducing interference.
  • the first downlink transmission parameter further includes a first modulation and coding strategy (MCS)
  • the second downlink transmission parameter further includes a second MCS
  • the first MCS is equal to the second MCS
  • a communication device which may be a network device (such as a base station) or a communication device used in a network device (such as a base station), and the communication device may include: a processing unit and a transceiver unit.
  • the processing unit is used to: determine a first downlink transmission parameter of the first terminal device according to the state of the downlink channel of the first terminal device, the first downlink transmission parameter including a first Rank; determine the number of first resource blocks RB occupied by the downlink data of the first terminal device according to the first downlink transmission parameter; determine the first remaining RB number according to the number of allocable RBs and the first RB number; if the first terminal device satisfies at least the first condition, perform downlink data transmission to the first terminal device through the transceiver unit based on the second downlink transmission parameter, the second downlink transmission parameter including a second Rank, and the number of spatial multiplexing streams indicated by the second Rank is less than the number of spatial multiplexing streams indicated by the first Rank; wherein the first condition includes: the first remaining RB number satisfies the first terminal device to decrease from the first Rank to the second Rank.
  • a communication device comprising: one or more processors; wherein, when instructions of one or more computer programs are executed by the one or more processors, the communication device executes a method as described in any one of the above-mentioned first aspects.
  • a computer-readable storage medium includes a computer program, and when the computer program is executed on a computing device, the computing device executes the method as described in any one of the above-mentioned first aspects.
  • a chip is provided, wherein the chip is coupled to a memory and is used to read and execute program instructions stored in the memory to implement a method as described in any one of the above-mentioned first aspects.
  • a computer program product is provided.
  • the computer program product is called by a computer, the computer executes the method as described in any one of the above-mentioned first aspects.
  • FIG1 shows the horizontal beam patterns of the first and third streams of a user in a Rank3 scenario
  • Figure 2 is a schematic diagram of resource distribution of DMRS port0/1 and port2/3;
  • Figure 3 is a schematic diagram of the simulation results comparing the performance loss of DMRS RM when it is turned on or off under different Rank interferences;
  • FIG4 is a schematic diagram of IRC performance comparison of multiple interference sources
  • FIG5 is a schematic diagram of frequency selective fading of a large traffic packet
  • FIG6 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • FIG7 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of reducing the Rank of a UE to reduce interference in a single-user scheduling scenario in an embodiment of the present application
  • FIG9 is a schematic diagram of selecting a UE to lower a Rank based on interference identification in a SU scheduling scenario in an embodiment of the present application
  • FIG10 is a schematic diagram of decreasing Rank in a MU scheduling scenario in an embodiment of the present application.
  • FIG 11 and 12 are schematic diagrams of the structures of the communication devices provided in the embodiments of the present application.
  • a, b and c can represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a, b and c.
  • a, b and c can be single or multiple.
  • the terms “first”, “second”, etc. are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence.
  • the terms “comprises”, “comprising”, and “having” and any variations thereof are intended to cover a non-exclusive inclusion, for example, comprising a sequence of steps.
  • the methods, systems, products, or apparatus are not necessarily limited to those steps or elements expressly listed but may include other steps or elements not expressly listed or inherent to such processes, methods, products, or apparatus.
  • Rank is the rank of the transmission channel, which can be regarded as the number of independent parallel channels between the transceiver devices, indicating the number of relatively independent data paths supported at the same time. In actual products, the rank number is usually considered to be the number of spatial multiplexing streams.
  • multi-antenna transmission technology can be used to adopt space division multiplexing technology to transmit multiple layers of data streams in parallel on the same time-frequency resources.
  • Rank simply means that the same time-frequency resources are divided into several parts in space and transmitted simultaneously. Codewords are mapped to each stream through layer mapping (number of codewords ⁇ number of streams ⁇ number of antenna ports). When the time-frequency resources remain unchanged, the higher the Rank, the higher the actual throughput.
  • the Rank can be determined according to the channel status. Generally, the better the channel status is, the higher the Rank value is.
  • Rank1 indicates that the rank value is equal to 1 (or the number of spatial multiplexing streams is equal to 1)
  • Rank2 indicates that the rank value is equal to 2 (or the number of spatial multiplexing streams is equal to 2), and so on.
  • first Rank may be understood as the number of first spatial multiplexing streams, for example, the first Rank may be Rank 4
  • second Rank may be understood as the number of second spatial multiplexing streams, for example, the second Rank may be Rank 2.
  • SU scheduling means that one time-frequency resource can only be used by one user, or one time-frequency resource can only be allocated to one terminal device (user equipment, UE, also known as user equipment).
  • UE user equipment
  • MU scheduling means that multiple users can share time-frequency resources, or one time-frequency resource can be allocated to multiple UEs.
  • Multi-user scheduling can use MIMO technology.
  • MIMO technology refers to the use of multiple transmitting antennas and receiving antennas at the transmitting end and receiving end respectively, so that the signal is transmitted and received through multiple antennas at the transmitting end and receiving end, forming multiple channels between the transmitting and receiving ends, thereby improving the communication quality and increasing the channel capacity.
  • the essence of MIMO technology is to provide the system with spatial diversity gain and spatial multiplexing gain.
  • a MU pairing combination can include multiple UEs, and these UEs can share a resource block (RB) resource using spatial division multiplexing, that is, multiple UEs can be spatially multiplexed in the same RB resource at the same time.
  • RB resource block
  • UEs can be divided into different groups according to beam isolation and correlation, which are called MU groups.
  • UEs in the same MU group use different frequency domain resources, and UEs in different MU groups use different spatial domain resources after pairing.
  • DMRS data pilot co-symbol technology (iv) DMRS data pilot co-symbol technology (DMRS Rate Matching, DMRS RM).
  • the DMRS signal occupies only part of the resource elements (RE) on the symbol used to send the DMRS signal, so that the RE not occupied by the DMRS signal can be used to carry downlink data.
  • the DMRS signal and downlink data can be transmitted in one symbol. This situation is called DMRS RM.
  • V Modulation and coding scheme
  • MCS determines the user's modulation mode and code rate. Different MCSs correspond to different modulation modes and code rates.
  • the base station uses MCS to ensure the transmission efficiency and quality of UE services. When the channel quality is good, a higher-order modulation mode and higher coding efficiency are used (fewer protection bits are added); when the channel quality is poor, a lower-order modulation mode and lower coding efficiency are used (more protection bits are added).
  • MCS can be used to determine how many valid bits of data can be transmitted in an RB. The higher the MCS, the more valid data can be transmitted on a single RB, and the higher the quality requirements for the channel.
  • the current PDSCH scheduling is mainly handled in a way that optimizes single-user performance, including the following three steps:
  • Step 1 DMRS pilot allocation.
  • DMRS is a demodulation reference signal, which needs to be distinguished between different UEs and different layers of the same UE (i.e., different spatial multiplexing streams). Each stream needs to be assigned a DMRS port (DMRS Port). For example, when downlink transmission is performed to the UE based on Rank1, only DMRS Port0 or Port1 needs to be occupied; when downlink transmission is performed to the UE based on Rank2, DMRS Port0 and Port1 need to be occupied; when downlink transmission is performed to the UE based on Rank3, not only DMRS Port0 and Port1 need to be occupied, but also Port2 or Port3; when downlink transmission is performed to the UE based on Rank4, DMRS Port0, Port1, Port2, and Port3 need to be occupied.
  • DMRS Port0/1 and Port2/3 The distribution of DMRS Port0/1 and Port2/3 is shown in Figure 2.
  • the DMRS signal and PDSCH will share the same symbol.
  • the DMRS signal occupies the time-frequency resources corresponding to DMRS Port0 and Port1.
  • the REs of DMRS Port2 and/or Port3 are Can be used for PDSCH transmission.
  • Step 2 Neighboring cell PDSCH interference suppression.
  • the primary cell UE uses the interference rejection combining (IRC) technology, the spatial colored characteristics of the interference signal can be used to suppress the same-channel interference, thereby obtaining additional interference elimination gain and achieving the purpose of improving system performance.
  • IRC interference rejection combining
  • Step 3 Pairing of MUs within the cell.
  • the rank selection of the UE is mainly determined by the channel conditions. If the channel conditions of the UE are good, it will tend to use a high rank for downlink data transmission. While using a high rank for downlink data transmission, it will also increase interference, which can be reflected in the following aspects:
  • the Rank When the Rank is high, it will cause greater interference to the neighboring cells. For example, when downlink data transmission is based on Rank 3, the spatial dispersion of the third stream beam is large, and the horizontal beam is directed toward the neighboring cell, which will cause greater interference to the signals on the same frequency resources of the neighboring cell.
  • FIG3 is a schematic diagram showing the simulation results of performance loss comparison when DMRS RM is turned on or not under different Rank interference.
  • Case 1 represents the scenario where DMRS RM is not turned on in both the main cell and the neighboring cell
  • Case 2 represents the scenario where DMRS RM is turned on in the main cell and not in the neighboring cell.
  • Curve 301 is the loss of total user capacity Case 2 in this area relative to Case 1 when the neighboring cell uses Rank 2
  • curve 302 is the loss of total user capacity Case 2 in this area relative to Case 1 when the UE in the neighboring cell uses Rank 4.
  • the performance loss of the UE in this area when DMRS RM is turned on is greater than that when it is not turned on, and the loss can be as high as 30% (without considering RE resource gain).
  • the simulation results show that in the Case 2 scenario, that is, when the UE in the main cell performs downlink data transmission based on a lower Rank (such as Rank 1 or Rank 2), the DMRS signal and the PDSCH share the same symbol, and the UE in the neighboring cell performs downlink data transmission based on a higher Rank (such as Rank 3 or Rank 4), that is, when the neighboring cell DMRS Port is fully occupied, the total capacity loss of the main cell is greater.
  • the UE in the neighboring cell may make inaccurate estimates of the neighboring cell interference, and some transmission parameters (such as MCS) may be inappropriately selected, which will affect the data transmission performance of the UE in the main cell.
  • some transmission parameters such as MCS
  • Figure 4 shows a schematic diagram of IRC performance comparison under multiple interference sources.
  • NLOS non-line-of-sight
  • curves 1 to 4 respectively represent the interference suppression gain of the UE receiver under 1 to 4 interference sources as a function of interference over thermal (IoT). It can be seen that the more interference sources there are, the smaller the interference suppression gain obtained by the UE.
  • IoT interference over thermal
  • UE0, UE1 and UE2 are terminal devices in different MU groups respectively.
  • UE0, UE1 and UE2 are terminal devices in the same MU pairing combination.
  • Part of the frequency domain resources of UE0 overlap with the frequency domain resources of UE1 and UE2. Therefore, UE0, UE1 and UE2 use space division multiplexing.
  • the existence of interference between MU groups causes UE0 to attenuate more in this part of the overlapping frequency domain resources, and less in the non-overlapping frequency domain resources, causing frequency selective fading of UE0.
  • an embodiment of the present application provides a communication method and a related device that can implement the method, so as to reduce interference by reducing the Rank (i.e., the number of spatial multiplexing streams) of the terminal device during downlink transmission.
  • the mobile communication system includes a core network device 110, a wireless access network device 120 and at least one terminal device (such as the terminal device 130 and the terminal device 140 in the figure).
  • the terminal device 130 is connected to the wireless access network device 120 in a wireless manner
  • the wireless access network device 120 is connected to the core network device 110 in a wireless or wired manner.
  • the core network device 110 and the wireless access network device 120 can be independent and different physical devices, or the functions of the core network device and the logical functions of the wireless access network device can be integrated on the same physical device, or part of the functions of the core network device and part of the functions of the wireless access network device can be integrated on one physical device.
  • the terminal device 130 can be fixed or movable.
  • Figure 6 is only a schematic diagram, and the communication system can also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in Figure 6.
  • the embodiment of the present application is for the core network device, wireless access network device and terminal devices included in the mobile communication system. There is no limit on quantity.
  • the wireless access network device 120 is an access device that the terminal device 130 uses to access the mobile communication system wirelessly. It can be a base station NodeB, an evolved base station eNodeB, a base station in an NR mobile communication system, a base station in a future mobile communication system, or an access node in a WiFi system.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device 120.
  • the terminal device 130 may also be referred to as a terminal, user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • the terminal device may be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in self-driving, a wireless terminal in remote medical surgery, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, etc.
  • the wireless access network device 120 and the terminal device 130 can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; can also be deployed on the water surface; can also be deployed on airplanes, balloons and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the wireless access network device 120 and the terminal device 130.
  • the embodiment of the present application may be applicable to downlink transmission.
  • the sending device is the wireless access network device 120
  • the corresponding receiving device is the terminal device 130 .
  • the wireless access network device 120 and the terminal device 130 may communicate through a licensed spectrum, or may communicate through an unlicensed spectrum, or may communicate through both a licensed spectrum and an unlicensed spectrum.
  • the wireless access network device 120 and the terminal device 130 may communicate through a spectrum below 6G, or may communicate through a spectrum above 6G, or may communicate through both a spectrum below 6G and a spectrum above 6G.
  • the embodiments of the present application do not limit the spectrum resources used between the wireless access network device 120 and the terminal device 130.
  • FIG7 shows a communication method implemented on a network device side provided by an embodiment of the present application.
  • the network device may be a base station.
  • the network device may reduce interference by lowering the Rank of the downlink transmission of the scheduled terminal device.
  • the network device scheduling the first terminal device to perform downlink data transmission is used as an example for description.
  • the method may include the following steps:
  • the network device determines a first downlink transmission parameter of the first terminal device according to a state of a downlink channel of the first terminal device, where the first downlink transmission parameter includes a first Rank.
  • the downlink channel is PDSCH.
  • the first downlink transmission parameter may also include the following parameters: MCS, precoding matrix indicator (PMI), etc., which is not limited in the embodiment of the present application.
  • the network device may send a reference signal to the first terminal device, the first terminal device measures the reference signal sent by the network device, determines the state of the downlink channel based on the measurement result of the reference signal, and reports the channel state information to the network device.
  • the network device may obtain the state of the downlink channel of the first terminal device based on the channel state information reported by the first terminal device.
  • the network device determines the number of RBs occupied by the downlink data of the first terminal device based on the first downlink transmission parameter. For the sake of clarity, the number of RBs occupied by the downlink data of the first terminal device determined based on the first downlink transmission parameter is referred to as the first RB number.
  • the network device can estimate the number of RBs occupied by the downlink data, i.e., the first number of RBs, based on the amount of downlink data to be sent to the first terminal device and the first downlink transmission parameters (such as the first Rank, MCS and other parameters).
  • the first number of RBs here refers to the number of RBs occupied by the data carried by the downlink channel of the terminal device in a time slot.
  • the network device can determine the number of first RBs occupied by the downlink data of the first terminal device based on the downlink transmission parameters of the first terminal device and the data volume of the downlink data according to the method provided by the communication protocol or the method provided by the relevant technology.
  • a possible implementation manner of S702 includes the following steps:
  • Step 1 The network device determines the number of REs of the PDSCH allocated to the first terminal device in a time slot.
  • N RE min(156,N' RE ) ⁇ n PRB ....2016................(2)
  • nPRB is the total number of PRBs allocated to the PDSCH of the terminal device.
  • R is the target code rate of PDSCH
  • Qm is the modulation order of PDSCH
  • v is the number of layers.
  • Step 3 Perform quantization table lookup and other operations according to N info to obtain a transport block size (TBS) of data transmitted on the PDSCH of the first terminal device in a time slot.
  • TBS transport block size
  • Step 4 According to the TBS and the amount of downlink data to be sent to the first terminal device, determine the number of RBs occupied by the downlink data carried on the downlink channel of the first terminal device in a time slot.
  • the above method for determining the number of RBs occupied by the downlink data of the first terminal device (ie, the first number of RBs) is merely an example, and the embodiment of the present application does not limit how to determine the number of RBs occupied by the downlink data of the first terminal device.
  • the network device determines the number of remaining RBs based on the number of allocatable RBs and the first number of RBs. For the sake of clarity, the remaining number of RBs is referred to as the first remaining number of RBs, or the remaining number of RBs corresponding to the first terminal device.
  • the number of allocatable RBs is the number of RBs that can be allocated to the first terminal device among the RBs occupied by the downlink channel in a time slot.
  • the scheduled terminal devices only include the first terminal device, and the first Rank determined based on the state of the downlink channel of the first terminal device is greater than 1, then the number of allocatable RBs is the number of RBs occupied by the downlink channel in a time slot; for another example, if there are multiple scheduled terminal devices, such as the first terminal device and at least one other terminal device, for the first terminal device, the Rank determined based on the state of the downlink channel is greater than 1, and for the other terminal devices, the Rank determined based on the state of the downlink channel is equal to 1, then the number of allocatable RBs is the number of RBs occupied by the downlink channel in a time slot excluding the number of RBs occupied by the downlink data of the at least one other terminal device.
  • the Rank determined based on the state of the downlink channel is greater than 1, and for the other terminal device, the Rank determined based on the downlink channel is equal to 1, then the number of allocable RBs is the number of RBs occupied by the downlink channel in a time slot excluding the number of RBs occupied by the downlink data of the second terminal device and the other terminal devices.
  • the downlink transmission parameter based on which the number of RBs occupied by the downlink data of a terminal device is determined is called the first downlink transmission parameter, and the first downlink transmission parameter is determined based on the state of the downlink channel of the terminal device.
  • the total number of RBs occupied by the downlink data of the terminal devices in each MU group can be determined, and then a maximum value is selected therefrom as the number of RBs that can be allocated to each MU group, wherein the number of RBs occupied by the downlink data is determined based on the first downlink transmission parameters such as the number of spatial multiplexing streams before each terminal device is downgraded, and for each terminal device, the first downlink transmission parameter of the terminal device is determined based on the state of the downlink channel of the terminal device.
  • the at least two MU groups also include a second MU group. Since the total number of RBs occupied by the downlink data of the terminal devices in the second MU group is not less than the total number of RBs occupied by the downlink data of the terminal devices in each other MU group, the total number of RBs occupied by the downlink data of the terminal devices in the second MU group is determined as the number of allocatable RBs for each MU group.
  • the number of RBs occupied by the downlink data of the terminal devices in each MU group after the Rank is reduced cannot exceed the total number of RBs occupied by the downlink data of the terminal devices in the second MU group.
  • MU group 1 includes UE0
  • MU group 2 includes UE1
  • MU group 3 includes UE2.
  • UE0 uses Rank 1
  • UE1 and UE2 both use Rank 4.
  • the number of RBs occupied by the downlink data of the UE in each MU group is determined according to the Rank used by each UE and the amount of downlink data of each UE. Among them, the number of RBs occupied by the downlink data of UE0 is the largest. Therefore, the number of RBs occupied by the downlink data of the UE in MU group 1 is determined as the total number of allocatable RBs for the UE in MU group 2.
  • the total number of RBs that can be allocated to UEs in MU group 3, or the total number of RBs that can be allocated to UEs in MU group 2 and the total number of RBs that can be allocated to UEs in MU group 3 are equal to the number of RBs occupied by downlink data of UEs in MU group 1.
  • the embodiment of the present application constrains the number of RBs occupied by the downlink data of the terminal device in each MU group in the above manner, thereby avoiding an excessive increase in the number of RBs occupied by the downlink data of the terminal device after the terminal device in the MU group is downgraded.
  • the network device may subtract the first number of RBs corresponding to the first terminal device from the number of allocatable RBs to obtain the first remaining number of RBs corresponding to the first terminal device.
  • the first terminal device at least meets the first condition, which can be understood as that for the first terminal device, at least the first remaining RB number corresponding to the first terminal device must be guaranteed to satisfy the first terminal device's reduction from the first Rank to the second Rank.
  • the number of spatial multiplexing streams indicated by the second Rank is less than the number of spatial multiplexing streams indicated by the first Rank, for example, the first Rank is Rank4 and the second Rank is Rank2; for another example, the first Rank is Rank4 and the second Rank is Rank1; for another example, the first Rank is Rank2 and the second Rank is Rank1.
  • the first condition can also be expressed as: the first remaining RB number is not less than the difference between the second RB number and the first RB number.
  • the second RB number is the number of RBs occupied by the downlink data of the first terminal device determined based on the second downlink transmission parameter, the second downlink transmission parameter includes a second Rank, the number of spatial multiplexing streams indicated by the second Rank is less than the number of spatial multiplexing streams indicated by the first Rank, and the second RB number is greater than the first RB number.
  • the first downlink transmission parameter of the first terminal device includes a first MCS
  • the second downlink transmission parameter of the first terminal device includes a second MCS
  • the first MCS is equal to the second MCS.
  • the network device can keep the MCS of the terminal device unchanged before and after lowering the Rank of the first terminal device.
  • the embodiment of the present application does not exclude the possibility of lowering the Rank of the first terminal device and adjusting its MCS.
  • the number of RBs occupied by downlink data will increase. For example, if the MCS remains unchanged, after lowering from Rank4 to Rank2, the number of RBs occupied by downlink data may double. If the first number of remaining RBs is not less than the difference between the second number of RBs and the first number of RBs, it means that after lowering the Rank, the incremental value of the number of RBs occupied by downlink data is less than the first number of remaining RBs, that is, the first number of remaining RBs can satisfy the first terminal device to lower from the first Rank to the second Rank.
  • the network device may first determine the second downlink transmission parameter based on the first downlink transmission parameter, for example, some parameters in the first downlink transmission parameter may be adjusted, and the other part of the transmission parameters may remain unchanged, thereby obtaining a new set of downlink transmission parameters, namely, the second downlink transmission parameter.
  • the Rank in the first downlink transmission parameter may be reduced, that is, from the first Rank to the second Rank, and other parameters (such as MCS) may remain unchanged, so as to obtain a new set of downlink transmission parameters, called the second downlink transmission parameter, the rank in the second downlink transmission parameter is the second Rank, and the MCS in the second downlink transmission parameter is the same as the MCS in the first downlink transmission parameter.
  • the network device determines the second RB number occupied by the downlink data of the first terminal device according to the second downlink transmission parameter, and the specific implementation method may refer to the above text. Finally, the network device may determine whether the first terminal device meets the first condition according to the first remaining RB number, the first RB number, and the second RB number corresponding to the determined first terminal device, and then determine whether to perform downlink data transmission to the first terminal device based on the first downlink transmission parameter or based on the second downlink transmission parameter according to the judgment result.
  • the network device may lower the Rank of the terminal device to an appropriate size based on the amount of downlink data of the terminal device and the amount of the first remaining RBs, so as to make full use of the remaining RBs and lower the Rank as much as possible. For example, when the MCS remains unchanged, the first terminal device is determined to use Rank 4 based on the state of the downlink channel of the first terminal device. The amount of downlink data to be sent to the first terminal device by the network device is small, and there are still RBs available for allocation in the time slot.
  • the network device can reduce the number of spatial multiplexing streams of the first terminal device from Rank 4 to Rank 1.
  • FIG8 shows a schematic diagram of reducing the rank of a UE to reduce interference in a single-user scheduling scenario.
  • the network device determines that UE0 currently uses Rank 1 and UE1 uses Rank 4 based on the status of the PDSCH of UE0 and UE1.
  • the network device determines the number of RBs occupied by UE1's downlink data based on the current amount of UE1's downlink data and the downlink transmission parameters used (including the number of spatial multiplexing streams used by each), and then determines the number of remaining allocable RBs.
  • the network device determines that the number of remaining RBs can support the reduction of the number of spatial multiplexing streams for UE1 from Rank 4 to Rank 2, thereby reducing the number of spatial multiplexing streams for UE1 to Rank 2.
  • the network device performs downlink data transmission to the first terminal device based on the second downlink transmission parameter.
  • the network device may transmit the data based on the second downlink data transmission parameter of the first terminal device. (including the reduced Rank) performs downlink data transmission to the first terminal device, thereby reducing interference while ensuring data transmission.
  • the network device determines that the first terminal device does not meet the first condition, the following steps are performed:
  • the network device performs downlink data transmission to the first terminal device based on the first downlink transmission parameter of the first terminal device.
  • the RB in the above process can also be replaced by a physical resource block (PRB).
  • PRB physical resource block
  • RB and PRB correspond one to one.
  • the network device when the network device performs downlink transmission scheduling for the terminal device, on the basis of considering the channel state, it further considers the RB utilization (or PRB utilization) and the size of the downlink traffic volume of the terminal device. On the basis of being able to ensure the downlink data transmission of the terminal device, it reduces the interference size and the number of interference sources by lowering the Rank, thereby improving the interference suppression effect of the demodulation of the terminal device in the adjacent cell.
  • the network device may further reduce the transmission power to the first terminal device before performing downlink data transmission to the first terminal device based on the second downlink transmission parameter. Energy saving can be achieved by reducing the transmission power without affecting the downlink transmission quality of the first terminal device.
  • the transmit power reduction amount of a terminal device can be determined based on the principle that the MCS of the terminal device remains unchanged before and after the transmit power is reduced, and the MCS is determined according to the state of the downlink channel of the terminal device.
  • MCS1 is used to represent the MCS determined based on the downlink channel state of the first terminal device, that is, MCS1 is the MCS before the first terminal device is downgraded.
  • the network device can query the mapping table of signal to interference plus noise ratio (signal to interference plus noise ratio, SINR, also referred to as signal to noise ratio) to MCS according to MCS1, and obtain the signal to noise ratio corresponding to MCS1 (for ease of description, the signal to noise ratio is referred to as SINR1 here).
  • SINR1 signal to interference plus noise ratio
  • SINR2 the signal to noise ratio after the rank of the first terminal device is downgraded.
  • the network device can determine the power reduction amount according to the amount of increase in the signal to noise ratio (that is, the difference obtained by subtracting SINR1 from SINR2).
  • the above implementation is only a possible example, and the embodiment of the present application does not limit the method of determining the amount of reduction in transmit power.
  • the transmission power to the terminal device is further lowered, which can further reduce interference and achieve energy saving.
  • Case 1-1 If there is only one terminal device among the scheduled terminal devices, and the number of its spatial multiplexing streams is greater than 1, that is, there is a possibility of lowering the Rank, then for this terminal device, the network device can determine whether the remaining number of RBs is sufficient to lower the Rank of the terminal device according to the process shown in Figure 7. If so, it can be determined that the terminal device meets the first condition, and downlink data transmission can be performed on the terminal device based on the lowered Rank.
  • Case 1-2 If there are multiple terminal devices among the scheduled terminal devices, and the number of their spatial multiplexing streams is greater than 1, that is, there is a possibility of lowering the Rank of these multiple terminal devices, then for each of the multiple terminal devices, the network device determines whether the remaining number of RBs of each terminal device meets the conditions for lowering the Rank based on the process shown in Figure 7. If the remaining number of RBs of each terminal device meets the conditions for lowering the Rank, and the number of RBs of the downlink channel in the time slot can satisfy the simultaneous Rank reduction of these multiple terminal devices, then the network device can lower the Rank of these multiple terminal devices respectively, and perform downlink data transmission to these multiple terminal devices based on the reduced Rank.
  • Case 1-3 If there are multiple terminal devices among the scheduled terminal devices, and the number of their spatial multiplexing streams is greater than 1, that is, there is a possibility of lowering the Rank of these multiple terminal devices, then for each of the multiple terminal devices, the network device determines whether the number of remaining RBs of each terminal device meets the conditions for lowering the Rank based on the process shown in Figure 7.
  • the network device can select one or more terminal devices, and the number of RBs of the downlink channel in the time slot can satisfy the conditions for lowering the Rank of these one or more terminal devices at the same time.
  • the network device lowers the Rank of the selected one or more terminal devices, and performs downlink data transmission to the selected one or more terminal devices based on the lowered Rank.
  • the number of spatial multiplexing streams determined based on the state of the downlink channels of the first terminal device and the second terminal device is greater than 1.
  • the network device determines the first remaining RB number corresponding to the first terminal device according to the process shown in FIG7
  • the network device determines the second remaining RB number corresponding to the second terminal device according to the process shown in FIG7, and the second remaining RB number is based on It is determined based on the number of allocatable RBs and the number of RBs occupied by the downlink data of the second terminal device.
  • the network device selects one terminal device from the first terminal device and the second terminal device, such as the first terminal device, so as to perform downlink data transmission on the first terminal device based on the second downlink transmission parameter of the terminal device.
  • a downlink transmission parameter determined based on the state of the downlink channel of the second terminal device i.e., the first downlink transmission parameter of the second terminal device
  • the Rank in the downlink transmission parameter is not reduced.
  • the selected first terminal device also satisfies the second condition, and the second condition includes: the interference intensity of the first terminal device to the neighboring area is greater than the interference intensity of the second terminal device to the neighboring area.
  • the network device selects multiple terminal devices that can reduce the Rank, the interference intensity of the multiple terminal devices to the neighboring area is greater than the interference intensity of the terminal devices that are not selected to reduce the Rank to the neighboring area.
  • the interference intensity of the terminal device to the neighboring area can be determined, and terminal devices with large interference intensity are preferentially selected for Rank reduction scheduling.
  • the interference intensity of the terminal device to the neighboring cell can be determined according to the measurement report reported by the terminal device, for example, according to the A3 measurement report reported by the terminal device, wherein the A3 measurement report includes parameters such as the reference signal receiving power (RSRP) of the neighboring cell measured by the terminal, which can be used to determine the interference intensity of the neighboring cell.
  • RSRP reference signal receiving power
  • the interference intensity of the terminal device to the neighboring cell can also be determined by other means, which is not limited in the embodiments of the present application.
  • FIG9 shows a schematic diagram of selecting UE to lower Rank based on interference identification in a SU scheduling scenario in an embodiment of the present application.
  • the network device determines that the current UE0 uses Rank1, and UE1 and UE2 use Rank4 according to the status of the PDSCH of UE0, UE1 and UE2.
  • the network device determines the number of RBs occupied by the downlink data of UE1 and UE2 according to the current data volume of the downlink data of UE1 and UE2, and the downlink transmission parameters used by each (including the number of spatial multiplexing streams used by each), and then determines that the remaining number of RBs can satisfy the rank reduction of one of UE1 and UE2, but cannot satisfy the rank reduction of both UEs at the same time. Since UE1's interference to the neighboring area is greater than UE2's interference to the neighboring area, the network device selects UE1 to reduce the rank and reduces UE1 from Rank4 to Rank2.
  • the network device can select these terminal devices to reduce their Rank, and perform downlink data transmission on these terminal devices based on the downlink transmission parameters after the Rank is reduced.
  • the network device can select the terminal device in the following manner so as to reduce the Rank of the selected terminal device:
  • Step 1 The network device determines M combinations (M is an integer greater than or equal to 1) based on the above-mentioned N terminal devices, each combination includes at least one terminal device among the N terminal devices, and for each combination, the number of allocatable RBs corresponding to the MU group can satisfy the requirement of downgrading the terminal devices in the combination at the same time.
  • Step 2 The network device determines the sum of the interference strengths of the terminal devices in each combination to the neighboring cells.
  • Step 3 The network device selects the combination with the largest sum of interference strength from the M combinations according to the sum of the interference strength of the terminal devices in each combination to the neighboring cells.
  • the network device performs rank reduction processing on the terminal devices in the selected combination. For the unselected combinations, the network device does not perform rank reduction processing on the terminal devices in these combinations.
  • a terminal device with high interference intensity to the neighboring area is selected, and its Rank is preferentially downgraded, so that the number of interference sources to the neighboring users can be reduced, and the interference suppression gain of the IRC technology can be obtained.
  • the interference countermeasure scheduling scheme can be flexibly selected based on the PRB load and interference information, which can not only make full use of RB resources, but also reduce interference as much as possible and improve system performance.
  • Case 2-1 According to the number of allocatable RBs corresponding to the MU group, if the terminal devices with a number of spatial multiplexing streams greater than 1 in a MU group can meet the requirements of lowering the Rank at the same time, the network device can lower the Rank of the terminal devices with a number of spatial multiplexing streams greater than 1 in the MU group, and can perform downlink data transmission to these terminal devices based on the lowered Rank.
  • FIG10 shows a schematic diagram of a rank reduction in a MU scheduling scenario in an embodiment of the present application.
  • MU group 1 includes UE0
  • MU group 2 includes UE1
  • MU group 3 includes UE2.
  • the number of RBs occupied by the downlink data of the UE in MU group 1 is the largest, so the number of RBs occupied by the downlink data of the UE in MU group 1 is used as the upper limit of the number of allocatable RBs corresponding to each MU group.
  • the network device determines that UE1 in MU group 2 and UE3 in MU group 2 can meet the conditions for lowering the Rank according to the process shown in Figure 7, and therefore UE1 and UE2 are lowered from Rank2 to Rank1, and UE2 is lowered from Rank2 to Rank1.
  • Case 2-2 According to the number of allocatable RBs corresponding to the MU group, if the terminal devices with a number of spatial multiplexing streams greater than 1 in an MU group cannot meet the requirements of lowering the Rank at the same time, the network device can select one or more terminal devices, and the number of RBs of the downlink channel in the time slot can meet the requirements of lowering the Rank of the one or more terminal devices at the same time. The network device lowers the Rank of the selected one or more terminal devices, and performs downlink data transmission to the selected one or more terminal devices based on the lowered Rank.
  • the network device can determine the first remaining RB number corresponding to the first terminal device in the MU group after the Rank of the first terminal device is lowered, and the second remaining RB number corresponding to the second terminal device in the MU group after the Rank of the second terminal device is lowered according to the process shown in FIG7.
  • the network device selects one terminal device from the first terminal device and the second terminal device, such as selecting the first terminal device, so as to perform downlink data transmission to the first terminal device based on the second downlink transmission parameter of the terminal device.
  • downlink transmission parameters determined based on the state of the downlink channel of the second terminal device are used to perform downlink data transmission on the second terminal device, and the Rank in the downlink transmission parameters is not reduced.
  • the network device determines that some of the terminal devices can be required to lower their Rank at the same time, the network device can select these terminal devices to lower their Rank, and perform downlink data transmission on these terminal devices based on the downlink transmission parameters after the Rank is lowered.
  • the network device when the network device performs downlink transmission scheduling for the terminal device, on the basis of considering the channel state, the RB utilization rate (or PRB utilization rate) and the downlink traffic volume of the terminal device are further considered.
  • the Rank is reduced to reduce the interference size and the number of interference sources, thereby reducing the interference between MU groups and improving the frequency selective attenuation problem of MU groups with large traffic transmission requirements caused by the MU pairing combination.
  • the interference source is reduced for the UE in the neighboring area, which can give full play to the IRC capability of the receiving end of the terminal device and improve the interference suppression performance.
  • the selected first terminal device also satisfies a third condition, and the third condition is that the scheduling priority of the first terminal device is higher than the scheduling priority of the second terminal device.
  • the third condition is that the scheduling priority of the first terminal device is higher than the scheduling priority of the second terminal device.
  • the third condition may also be: the interference intensity of the first terminal device to the neighboring area is greater than the interference intensity of the second terminal device to the neighboring area. It can be understood that if the network device selects multiple terminal devices that can reduce the Rank, the interference intensity of the multiple terminal devices to the neighboring area is not lower than the interference intensity of the terminal devices that are not selected to reduce the Rank to the neighboring area. In other words, in this case, terminal devices with high interference intensity to the neighboring area can be preferentially selected for Rank reduction scheduling to reduce interference to the neighboring area.
  • Case 2-3 Similar to the above case 2-2, when the number of remaining RBs in an MU group cannot satisfy the simultaneous Rank reduction of multiple terminal devices, the network device may select the terminal device with the largest power reduction amount to lower its Rank.
  • the network device can determine the corresponding first transmit power reduction amount based on the first MCS of the first terminal device (i.e., the MCS determined according to the state of the downlink channel of the first terminal device), and determine the corresponding second transmit power reduction amount based on the first MCS of the second terminal device (i.e., the MCS determined according to the state of the downlink channel of the second terminal device).
  • the first terminal device is selected for rank downgrading.
  • the network device uses the downlink transmission parameters determined based on the downlink channel of the second terminal device to perform downlink data transmission (i.e., it does not perform rank downgrading on it), and does not perform power reduction on the second terminal device. Rate processing.
  • the network device can select the terminal device in the following manner so as to perform Rank reduction processing on the selected terminal device:
  • Step 1 The network device determines M combinations (M is an integer greater than or equal to 1) based on the above-mentioned N terminal devices contained in the MU group, each combination includes at least one terminal device among the N terminal devices, and for each combination, the number of allocatable RBs corresponding to the MU group can satisfy the requirement of downgrading the terminal devices in the combination at the same time.
  • M is an integer greater than or equal to 1
  • Step 2 The network device determines the transmit power reduction amount corresponding to each combination.
  • the transmit power reduction amount corresponding to a combination is the sum of the transmit power reduction amounts of all terminal devices in the combination.
  • the method for determining the transmit power reduction amount of a terminal device can be found in the above text.
  • Step 3 According to the transmit power reduction amount, select the combination with the largest transmit power reduction amount from the M combinations.
  • the network device performs a Rank reduction process on the terminal devices in the selected combination, and performs a transmit power reduction process.
  • the network device does not perform a Rank reduction process on the terminal devices in these combinations, and does not perform a transmit power reduction process.
  • Case 2-4 Similar to the scenario of Case 2-2 above, if an MU group can meet multiple Rank reduction schemes, such as the following Rank reduction scheme 1: reducing UE1 in the MU group from Rank 4 to Rank 2, and reducing UE2 in the MU group from Rank 4 to Rank 2, and the following Rank reduction scheme 2: reducing UE1 in the MU group from Rank 4 to Rank 1, the network device can select one of the Rank reduction schemes for Rank reduction processing.
  • Rank reduction scheme 1 reducing UE1 in the MU group from Rank 4 to Rank 2
  • the network device can select one of the Rank reduction schemes for Rank reduction processing.
  • the embodiment of the present application also provides a communication device, which can implement the functions implemented by the network device in the aforementioned embodiment.
  • the communication device can be a network device (such as a base station) or a communication module applied to a network device (such as a base station).
  • the communication device can be implemented by software or hardware or a combination of software and hardware.
  • the communication device 1100 may include a processing unit 1101 and a transceiver unit 1102.
  • the processing unit 1101 is used to: determine a first downlink transmission parameter of the first terminal device according to a state of a downlink channel of the first terminal device, the first downlink transmission parameter including a first Rank; determine a first number of RBs occupied by downlink data of the first terminal device according to the first downlink transmission parameter; determine a first number of remaining RBs according to the number of allocatable RBs and the first number of RBs; if the first terminal device satisfies at least the first condition, perform downlink data transmission to the first terminal device through the transceiver unit 1102 based on a second downlink transmission parameter, the second downlink transmission parameter including a second Rank, the number of spatial multiplexing streams indicated by the second Rank being less than the number of spatial multiplexing streams indicated by the first Rank; wherein the first condition includes: the first remaining number of RBs satisfies the first terminal device to decrease from the first Rank to the second Rank.
  • the first terminal device is one of at least two terminal devices based on single-user scheduling, and the at least two terminal devices also include a second terminal device.
  • the number of spatial multiplexing streams determined based on the state of the downlink channels of the first terminal device and the second terminal device is greater than 1, and the first remaining RB number of the first terminal device satisfies the first terminal device to be reduced from the first Rank to the second Rank, and the second remaining RB number of the second terminal device satisfies the second terminal device to be reduced from the third Rank to the fourth Rank, but the first remaining RB number does not satisfy the first terminal device to be reduced from the first Rank to the second Rank while the second terminal device is reduced from the third Rank to the fourth Rank; wherein the second remaining RB number is determined according to the number of allocable RBs and the number of RBs occupied by the downlink data of the second terminal device, and the third Rank is determined based on the state of the downlink channel of the second terminal device.
  • the processing unit 1101 is specifically used to: if the first terminal device also satisfies a second condition, select the first terminal device from the first terminal device and the second terminal device; wherein the second condition includes: the interference intensity of the first terminal device to the neighboring area is greater than the interference intensity of the second terminal device to the neighboring area.
  • the first terminal device is a terminal device in a first multi-user group of at least two multi-user groups based on multi-user scheduling
  • the at least two multi-user groups also include a second multi-user group
  • the number of allocatable RBs is the total number of RBs occupied by downlink data of the terminal devices in the second multi-user group
  • the total number of RBs occupied by downlink data of the terminal devices in the second multi-user group is not less than the total number of RBs occupied by downlink data of the terminal devices in each of the at least two multi-user groups.
  • the first multi-user group also includes a second terminal device, based on the first terminal device and The number of spatial multiplexing streams determined by the state of the downlink channels of each of the second terminal devices is greater than 1, and the first remaining RB number of the first terminal device satisfies the first terminal device to be reduced from the first Rank to the second Rank, and the second remaining RB number of the second terminal device satisfies the second terminal device to be reduced from the third Rank to the fourth Rank, but the first remaining RB number does not satisfy the requirement that the second terminal device is reduced from the third Rank to the fourth Rank while the first terminal device is reduced from the first Rank to the second Rank; wherein the second remaining RB number of the second terminal device is determined based on the number of allocatable RBs and the number of RBs occupied by the downlink data of the second terminal device, and the third Rank is determined based on the state of the downlink channel of the second terminal device.
  • the processing unit 1101 is specifically used to:
  • the processing unit 1101 is specifically used to: if the first terminal device also satisfies a third condition, select the first terminal device from the first terminal device and the second terminal device; wherein the third condition includes: the scheduling priority of the first terminal device is higher than the scheduling priority of the second terminal device, or the interference intensity of the first terminal device to the neighboring area is greater than the interference intensity of the second terminal device to the neighboring area.
  • the processing unit 1101 is specifically used to: determine a corresponding first transmit power reduction amount according to a first MCS of the first terminal device, and determine a corresponding second transmit power reduction amount according to the first MCS of the second terminal device; if the first transmit power reduction amount is greater than the second transmit power reduction amount, selecting the first terminal device from the first terminal device and the second terminal device; the processing unit 1101 is also used to: before performing downlink data transmission to the first terminal device based on the second downlink transmission parameter, reduce the transmit power of the transceiver unit 1102 to the first terminal device according to the first transmit power reduction amount.
  • the processing unit 1101 is further used to: before performing downlink data transmission to the first terminal device based on the second downlink transmission parameter, reduce the transmission power of the transceiver unit 1102 to the first terminal device.
  • the first downlink transmission parameter further includes a first modulation and coding strategy MCS
  • the second downlink transmission parameter further includes a second MCS
  • the first MCS is equal to the second MCS
  • the above-mentioned communication device provided in the embodiment of the present application can implement all the method steps implemented by the network device in the above-mentioned method embodiment, and can achieve the same technical effect.
  • the parts and beneficial effects that are the same as the method embodiment in this embodiment will not be described in detail here.
  • FIG12 only shows the structure required for the communication device 1200 to execute the method shown in the present application, and the present application does not limit the communication device to have more components.
  • the communication device 1200 can be used to execute the steps executed by the relevant device in the above method embodiment, for example, the relevant device can be a terminal device or a network device.
  • the communication device 1200 may include a transceiver 1201, a memory 1203, and a processor 1202, and the transceiver 1201, the memory 1203, and the processor 1202 may be connected via a bus 1204.
  • the transceiver 1201 may be used for the communication device to communicate, such as for sending or receiving signals.
  • the memory 1203 is coupled to the processor 1202 and may be used to store programs and data necessary for the communication device 1200 to implement various functions.
  • the above memory 1203 and the processor 1202 may be integrated or independent of each other.
  • the transceiver 1201 may be a communication port, such as a communication port (or interface) used for communication between network elements.
  • the transceiver 1201 may also be referred to as a transceiver unit or a communication unit.
  • the processor 1202 may be implemented by a processing chip or a processing circuit.
  • the transceiver 1201 may receive or send information wirelessly or by wire.
  • the communication device may include a processor, and the processor calls an external transceiver and/or memory to implement the above functions or steps or operations.
  • the communication device may also include a memory, and the processor calls and executes the program stored in the memory to implement the above functions or steps or operations.
  • the communication device may also include a processor and a transceiver (or a communication interface), and the processor calls and executes the program stored in the external memory to implement the above functions or steps or operations.
  • the communication device may also include a processor, a memory, and a transceiver.
  • a computer-readable storage medium is also provided in the embodiment of the present application, on which program instructions (or computer programs, instructions) are stored.
  • program instructions or computer programs, instructions
  • the computer executes the operations performed by or by a network device in the above-mentioned method embodiment or any possible implementation of the method embodiment.
  • the present application also provides a computer program product, including program instructions.
  • the computer program product When the computer program product is called and executed by a computer, it can enable the computer to implement the operations performed by the network device in the above-mentioned method embodiment and any possible implementation method of the method embodiment.
  • the present application also provides a chip or chip system, which is coupled to a transceiver and is used to implement the operations performed by a terminal device or a network device in the above method embodiment or any possible implementation of the method embodiment.
  • the chip system may include the chip, as well as components such as a memory and a communication interface.
  • the present application embodiment further provides a communication system.
  • the communication system includes a terminal device and a network device, and the network device can perform the operations of the network device in the above method embodiment.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、装置及存储介质,涉及通信技术领域。该方法可以由网络设备执行。该方法包括:根据第一终端设备的下行信道的状态确定第一终端设备的第一下行传输参数,其中包括第一Rank;根据第一下行传输参数确定第一终端设备的下行数据占用的第一RB数量;根据可分配RB数量以及第一RB数量,确定第一剩余RB数量;若第一终端设备至少满足第一条件,则基于第二下行传输参数对第一终端设备进行下行数据传输,所述第二下行传输参数包括第二Rank,第二Rank指示的空间复用流数量小于第一Rank指示的空间复用流数量;其中,第一条件包括:所述第一剩余RB数量满足第一终端设备从第一Rank降低到第二Rank。

Description

一种通信方法、装置及存储介质
相关申请的交叉引用
本申请要求在2022年11月23日提交中国专利局、申请号为202211478466.3、申请名称为“一种通信方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法、装置及存储介质。
背景技术
随着无线通信系统中天线技术由单入单出(single-input single-output,SISO)到大规模多入多出(massive MIMO,MIMO是multi-input multi-output的英文简称)的应用,以及由3G至第五代移动通信技术(5th generation mobile communication technology,简称5G)新无线(new radio,NR)的系统演进,下行传输中单个终端设备所能支持的最大空间复用流数由单流增加到4流。空间复用流数又称为Rank数,理论上Rank越高,系统吞吐率性能越好,但对于连片组网来说,用户的高Rank也意味着小区之间对其他用户的物理下行共享信道(physical downlink shared channel,PDSCH)以及解调参考信号(demodulation reference signal,DMRS)的高干扰。
例如,如图1所示,该图示出了在下行传输采用Rank3(即3个流进行空间复用)的情况下,用户的第1流波束和第3流波束的水平截面图,其中0度指向为天线正对着小区的方向,波束偏转角度越大越偏向邻区。用户的第3流波束的水平指向相对于第1流波束扩展角度大,也就是说第3流波束其水平方向角指向明显向邻区偏转,会对邻区造成较强的干扰。
因此,如何在保证用户数据传输的情况下降低对其他用户的干扰,是目前需要解决的技术问题。
发明内容
本申请实施例提供一种通信方法、装置及存储介质,用以通过降低终端设备进行下行传输时的Rank(即空间复用流数)以降低干扰。
第一方面,提供一种通信方法,该方法可以应用于网络设备,比如基站,所述方法包括以下步骤:根据第一终端设备的下行信道的状态,确定所述第一终端设备的第一下行传输参数,所述第一下行传输参数包括第一Rank;根据所述第一下行传输参数确定所述第一终端设备的下行数据占用的第一资源块RB数量;根据可分配RB数量以及所述第一RB数量,确定第一剩余RB数量;若所述第一终端设备至少满足第一条件,则基于第二下行传输参数对所述第一终端设备进行下行数据传输,所述第二下行传输参数包括第二Rank,所述第二Rank指示的空间复用流数量小于所述第一Rank指示的空间复用流数量;其中,所述第一条件包括:所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank。
可选的,所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank,包括:所述第一剩余RB数量不小于第二RB数量与所述第一RB数量的差值;其中,所述第二RB数量是基于所述第二下行传输参数确定出的所述第一终端设备的下行数据占用的RB数量,所述第二RB数量大于所述第一RB数量。
上述实现方式中,网络设备在对第一终端设备进行下行传输调度时,在考虑信道状态的基础上,进一步考虑RB利用率与第一终端设备的下行业务量大小(即下行数据的数据量),在能够保证终端设备的下行数据传输的基础上,通过降低Rank以降低干扰大小和干扰源的数量,从而可以提升相邻小区终端设备解调的干扰抑制效果。
在一种可能的实现方式中,所述第一终端设备为基于单用户调度的至少两个终端设备中的一个,所述至少两个终端设备中还包括第二终端设备,基于所述第一终端设备和所述第二终端设备各自的下行信道的状态确定出的空间复用流数量均大于1,并且所述第一终端设备的所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank,所述第二终端设备的第二剩余RB数量满足所述第二终端设备从第三Rank降低到第四Rank,但所述第一RB剩余数量不满足在将所述第一终端设备从 所述第一Rank降低到所述第二Rank的同时,将所述第二终端设备从所述第三Rank降低到所述第四Rank;其中,所述第二剩余RB数量是根据可分配的RB数量以及所述第二终端设备的下行数据占用的RB数量确定的,所述第三Rank是基于所述第二终端设备的下行信道的状态确定的。上述情形表明剩余RB数量满足第一终端设备降低Rank,也满足第二终端设备降低Rank,但不满足第一终端设备和第二终端设备同时降低Rank。在该情形下,所述若所述第一终端设备至少满足第一条件,则基于第二下行传输参数对所述第一终端设备进行下行数据传输,包括:从所述第一终端设备和所述第二终端设备中选取所述第一终端设备,基于所述第二下行传输参数对所述第一终端设备进行下行数据传输。该实现方式可以在上述情形下选取部分终端设备进行降Rank处理,用以降低干扰。
在一种可能的实现方式中,所述从所述第一终端设备和所述第二终端设备中选取所述第一终端设备,包括:若所述第一终端设备还满足第二条件,则所述第一终端设备和所述第二终端设备中选取所述第一终端设备;其中,所述第二条件包括:所述第一终端设备对邻区的干扰强度大于所述第二终端设备对邻区的干扰强度。
采用上述实现方式可以优先选择对邻区干扰大的终端设备降低其Rank,从而可以降低对邻区的干扰。
在一种可能的实现方式中,所述第一终端设备为基于多用户调度的至少两个多用户分组中第一多用户分组中的一个终端设备,所述至少两个多用户分组中还包括第二多用户分组,所述可分配RB数量是所述第二多用户分组中的终端设备的下行数据占用的RB总数量,所述第二多用户分组中的终端设备的下行数据占用的总RB数量不少于所述至少两个多用户分组中每个多用户分组中的终端设备的下行数据占用的总RB数量。
采用上述实现方式可以约束各多用户(MU)分组中终端设备的下行数据占用的RB数量,可以避免MU分组中的终端设备降Rank后,导致终端设备的下行数据占用的RB数量增加过多的问题。
在一种可能的实现方式中,所述第一多用户分组中还包括第二终端设备,基于所述第一终端设备和所述第二终端设备各自的下行信道的状态确定出的空间复用流数量均大于1,并且所述第一终端设备的所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank,所述第二终端设备的第二剩余RB数量满足所述第二终端设备从第三Rank降低到第四Rank,但所述第一RB剩余数量不满足在将所述第一终端设备从所述第一Rank降低到所述第二Rank的同时,将所述第二终端设备从所述第三Rank降低到所述第四Rank;其中,所述第二终端设备的第二剩余RB数量是根据可分配的RB数量以及所述第二终端设备的下行数据占用的RB数量确定的,所述第三Rank是基于所述第二终端设备的下行信道的状态确定的。上述情形表明一个多用户分组内剩余RB数量满足第一终端设备降低Rank,也满足第二终端设备降低Rank,但不满足第一终端设备和第二终端设备同时降低Rank。在该情形下,所述若所述第一终端设备至少满足第一条件,则基于第二下行传输参数对所述第一终端设备进行下行数据传输,包括:从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;基于所述第二下行传输参数对所述第一终端设备进行下行数据传输。该实现方式可以在上述情形下选取部分终端设备进行降Rank处理,用以降低干扰。
载一种可能的实现方式中,所述从所述第一终端设备和所述第二终端设备中选取所述第一终端设备,包括:若所述第一终端设备还满足第三条件,则从所述第一终端设备和所述第二终端设备中选取所述第一终端设备。其中,所述第三条件可以是所述第一终端设备的调度优先级高于所述第二终端设备的调度优先级,从而优先对调度优先级高的终端设备进行降Rank处理。所述第三条件还可以是所述第一终端设备对邻区的干扰强度大于所述第二终端设备对邻区的干扰强度,从而可以优先选择对邻区干扰强度大的终端设备进行降Rank处理。
在一种可能的实现方式中,所述从所述第一终端设备和所述第二终端设备中选取所述第一终端设备,包括:根据所述第一终端设备的第一MCS确定对应的第一发射功率降低量,根据所述第二终端设备的第一MCS确定对应的第二发射功率降低量;若所述第一发射功率降低量大于所述第二发射功率降低量,则从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;所述基于第二下行传输参数对所述第一终端设备进行下行数据传输之前,所述方法还包括:根据所述第一发射功率降低量,降低对所述第一终端设备的发射功率。
通过上述实现方式可以优先选择功率降低量大的终端设备进行降Rank处理,从而降低干扰,进一步还可以实现节能。
在一种可能的实现方式中,所述基于第二下行传输参数对所述第一终端设备进行下行数据传输之前,所述方法还包括:降低对所述第一终端设备的发射功率,从而可以在降低干扰的基础上,进一步可以实现节能。
在一种可能的实现方式中,所述第一下行传输参数还包括第一调制与编码策略(MCS),所述第二下行传输参数还包括第二MCS,所述第一MCS与所述第二MCS相等。
第二方面,提供一种通信装置,该通信装置可以是网络设备(比如基站),也可以是应用于网络设备(比如基站)中的通信装置,该通信装置可以包括:处理单元和收发单元。所述处理单元,用于:根据第一终端设备的下行信道的状态,确定所述第一终端设备的第一下行传输参数,所述第一下行传输参数包括第一Rank;根据所述第一下行传输参数确定所述第一终端设备的下行数据占用的第一资源块RB数量;根据可分配RB数量以及所述第一RB数量,确定第一剩余RB数量;若所述第一终端设备至少满足第一条件,则基于第二下行传输参数通过所述收发单元对所述第一终端设备进行下行数据传输,所述第二下行传输参数包括第二Rank,所述第二Rank指示的空间复用流数量小于所述第一Rank指示的空间复用流数量;其中,所述第一条件包括:所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank。
第三方面,提供一种通信装置,包括:一个或多个处理器;其中,当一个或多个计算机程序的指令被所述一个或多个处理器执行时,使得所述通信装置执行如上述第一方面中任一项所述的方法。
第四方面,提供一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序,当计算机程序在计算设备上运行时,使得所述计算设备执行如上述第一方面中任一项所述的方法。
第五方面,提供一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如上述第一方面中任一项所述的方法。
第六方面,提供一种计算机程序产品,所述计算机程序产品在被计算机调用时,使得所述计算机执行如上述第一方面中任一项所述的方法。
以上第二方面到第六方面的有益效果,请参见第一方面的有益效果,不重复赘述。
附图说明
图1为在Rank3场景下用户的第1流和第3流的水平波束方向图;
图2为DMRS port0/1与port2/3的资源分布示意图;
图3为不同Rank干扰下DMRS RM打开与否性能损失对比仿真结果示意图;
图4为多干扰源IRC性能对比示意图;
图5为大业务量分组的频率选择性衰落示意图;
图6为本申请实施例适用的网络架构示意图;
图7为本申请实施例提供的通信方法的流程示意图;
图8为本申请实施例中在单用户调度场景下降低UE的Rank以降低干扰的示意图;
图9为本申请实施例中的一种在SU调度场景下基于干扰识别选择UE降低Rank的示意图;
图10为本申请实施例中一种在MU调度场景下降Rank的示意图;
图11、图12分别为本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步的详细描述。
应理解,本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤 或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面先对本申请实施例中涉及的相关技术进行说明。
(一)Rank。
Rank是传输信道的秩,可以看作收发设备间独立的并行信道的数目,表示同时支持相对独立的数据通路的数量。在实际产品中通常认为Rank数是空间复用流数。
在无线通信系统中,通过多天线传输技术,可以采用空分复用技术,在相同的时频资源上并行传输多层的数据流。Rank简单理解就是相同的时频资源,在空间中分成几份同时传输。码字通过层映射被映射到各个流上(码字数≤流数≤天线端口数)。在时频资源不变的情况下,Rank越高,实际吞吐率越高。
Rank可以根据信道状态确定,通常情况下,信道状态好,则Rank值较高。
本文中,Rank1表示秩的值等于1(或者说空间复用流数等于1),Rank2表示秩的值等于2(或者说空间复用流数等于2),以此类推。
本文中,“第一Rank”可以理解为第一空间复用流数量,比如第一Rank可以是Rank4,“第二Rank”可以理解为第二空间复用流数量,比如第二Rank可以是Rank2。
(二)单用户(single user,SU)调度。
SU调度是指一个时频资源只能给一个用户使用,或者说一个时频资源只能分配给一个终端设备(user equipment,UE,也称用户设备)。
(三)多用户(multiple user,MU)调度。
MU调度是指多个用户可以共享时频资源,或者说一个时频资源可以分配给多个UE。多用户调度可以采用MIMO技术。
MIMO技术指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,在收发之间构成多个信道,从而改善通信质量,提高信道容量。MIMO技术的实质是为系统提供空间分集增益与空间复用增益。
在采用MU调度时,可以将两个或两个以上UE进行配对,称为MU配对组合或称MU配对。一个MU配对组合中可以包括多个UE,这些UE可以采用空分复用共享一个资源块(reasource block,RB)资源,也就是说,同一个RB资源中有多个UE同时空分复用。
进一步的,在采用MU调度时,可以根据波束隔离度以及相关性将UE分为不同组,称为MU分组,同一个MU分组内的UE使用不同的频域资源,不同MU分组内的UE配对后使用不同的空域资源。
(四)DMRS数据导频共符号技术(DMRS RateMatching,DMRS RM)。
对于一个被调度UE,在用于发送DMRS信号的符号上,DMRS信号仅占用了部分资源单元(reasource element,RE),这样未被DMRS信号占用的RE可以用来承载下行数据,也就是说,DMRS信号与下行数据可以在一个符号中传输,这种情况称为DMRS RM。
(五)调制与编码策略(modulation and coding scheme,MCS)。
MCS决定用户的调制方式和码率,不同MCS对应不同的调制方式与码率。基站通过MCS保障UE业务的传输效率和传输质量。当信道质量好时,采用更高阶的调制方式和更高的编码效率(添加更少的保护比特);当信道质量差时,采用更低阶的调制方式和更低的编码效率(添加更多的保护比特)。根据MCS可以确定一个RB可以传输多少有效比特的数据,MCS越高,单个RB上传输的有效数据就越多,对信道的质量要求也越高。
对于下行数据传输,当前PDSCH调度主要按单用户性能最优的方式处理,包括以下三个步骤:
步骤1:DMRS导频分配。
DMRS是解调参考信号,需要在不同UE以及同一个UE的不同层(即不同空间复用流)间进行区分,每一流都需要分配一个DMRS端口(DMRS Port)。举例来说,当基于Rank1对UE进行下行传输时,只需要占用DMRS Port0或Port1;当基于Rank2对UE进行下行传输时,需要占用DMRS Port0和Port1,当基于Rank3对UE进行下行传输时,不仅需要占用DMRS Port0、Port1,还需要占用Port2或Port3;当基于Rank4对UE进行下行传输时,需要占用DMRS Port0、Port1、Port2、Port3。
DMRS Port0/1与Port2/3的分布如图2所示。在使用DMRS RM技术的情况下,若DMRS Port对应的资源没有占满,则会存DMRS信号与PDSCH共符号的情况。例如,在基于Rank2对UE进行下行传输时,DMRS信号占用DMRS Port0和Port1对应的时频资源,此时DMRS Port2和/或Port3的RE 可用于PDSCH传输。
步骤2:邻区PDSCH干扰抑制。
对于主小区UE来说,干扰UE的Rank越高意味着干扰源越多。当主小区UE使用干扰消除合并(interference rejection combining,IRC)技术时,可以利用干扰信号的空间有色特性抑制同频干扰,从而获得额外的干扰消除增益,达到提高系统性能的目的。
步骤3:小区内MU配对组合。
MU配对组合内的UE的Rank越高,意味着配对的总空间复用层数越高,MU分组间的干扰也会越大。
目前,UE的Rank选择主要是由所处的信道条件决定。如果UE所处的信道条件较好,会倾向于使用高Rank进行下行数据传输。使用高Rank进行下行数据传输的同时,也会增加干扰,具体可以体现在以下几个方面:
(1)Rank较高的情况下,会对邻区产生较大干扰。比如,基于Rank3进行下行数据传输时,第3流波束空间弥散大,水平波束指向偏向邻区,会对邻区同频资源上的信号造成较大干扰。
(2)进一步的,在针对主小区UE开启DMRS RM,针对邻小区不开启DMRS RM的情况下,邻小区中的UE基于高Rank进行下行数据传输,会造成主小区中的UE对干扰估计不准确。
图3示出了不同Rank干扰下DMRS RM打开与否性能损失对比仿真结果示意图。其中,Case1表示主小区和邻区均不开启DMRS RM的场景,Case2表示主小区开启DMRS RM、邻区不开启DMRS RM的场景。曲线301是当邻区使用Rank2时,本区总用户容量Case2相对于Case1的损失,曲线302是当邻区中的UE使用Rank4时,本区总用户容量Case2相对于Case1的损失。可见,邻区UE使用Rank4时,本区UE DMRS RM开启相对于不开启性能损失更大,最高可到30%的损失(没有考虑RE资源增益)。该仿真结果表明在Case2场景下,即当主小区中的UE基于较低Rank(比如Rank1或Rank2)进行下行数据传输,DMRS信号与PDSCH共符号,邻区中的UE基于较高Rank(比如Rank3或Rank4)进行下行数据传输,也即邻区DMRS Port占满时,主小区的总容量损失更大,也就是说,如果邻区中的UE基于Rank4进行下行数据传输,可能会使主小区中的UE对邻区干扰估计不准,一些传输参数(比如MCS)可能选择的不合适,这样会影响主小区UE的数据传输性能。
(3)进一步的,在使用IRC技术的情况下,在相同干扰强度下,干扰源越多对使用IRC技术接收机的性能影响越大。图4示出了多干扰源情况下IRC性能对比示意图。图4所示的仿真结果的场景为非视距(non-line-of-sight,NLOS)传输,UE带宽为12个RB,UE采用4根接收天线,下行传输参数中的MCS等于16(MCS=16),在该场景下,曲线1~4分别表示1~4个干扰源下UE接收机的干扰抑制增益随干扰比热(interference over thermal,IoT)的变化曲线。可以看出,干扰源越多,UE获得的干扰抑制增益越小。
(4)进一步的,对于MU调度来说,各MU分组内UE的Rank越高意味着MU分组之间的干扰越大,同时小业务量MU分组的存在会引起大业务量MU分组的频率选择性衰落。如图5所示,UE0、UE1和UE2分别为不同的MU分组内的终端设备,UE0、UE1和UE2为同一MU配对组合中的终端设备,UE0的部分频域资源与UE1和UE2的频域资源重叠,因此UE0、UE1和UE2采用空分复用,MU分组间干扰的存在造成UE0在这一部分重叠频域资源衰减较大,在不重叠的频域资源衰减小,引起UE0的频率选择性衰落。
为此,本申请实施例提供了一种通信方法以及可以实现该方法的相关装置,用以通过降低终端设备进行下行传输时的Rank(即空间复用流数)以降低干扰。
下面结合附图对本申请实施例进行详细描述。
参见图6,为本申请实施例应用的移动通信系统的架构示意图。该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图中的终端设备130和终端设备140)。终端设备130通过无线的方式与无线接入网设备120相连,无线接入网设备120通过无线或有线方式与核心网设备110连接。核心网设备110与无线接入网设备120可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备130可以是固定位置的,也可以是可移动的。图6只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图6中未画出。本申请实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的 数量不做限定。
无线接入网设备120是终端设备130通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、NR移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,本申请的实施例对无线接入网设备120所采用的具体技术和具体设备形态不做限定。
终端设备130也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
无线接入网设备120和终端设备130可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例对无线接入网设备120和终端设备130的应用场景不做限定。
本申请实施例可以适用于下行传输。对于下行传输,发送设备是无线接入网设备120,对应的接收设备是终端设备130。
无线接入网设备120和终端设备130之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备120和终端设备130之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对无线接入网设备120和终端设备130之间所使用的频谱资源不做限定。
基于图6所示的系统架构,图7示出了本申请实施例提供的一种在网络设备侧实现的通信方法。所述网络设备可以是基站。该方法中,网络设备可以通过降低被调度终端设备的下行传输的Rank以降低干扰。图7所示的流程中,以网络设备调度第一终端设备进行下行数据传输为例进行描述。
参见图7,该方法可以包括以下步骤:
S701:网络设备根据第一终端设备的下行信道的状态,确定第一终端设备的第一下行传输参数,所述第一下行传输参数包括第一Rank。
一种可能的实现方式中,所述下行信道为PDSCH。所述第一下行传输参数除了包括第一Rank以外,还可以包括以下参数:MCS、预编码矩阵指示符(precoding matrix indicator,PMI)等,本申请实施例对此不作限制。
一种可能的实现方式中,网络设备可以向第一终端设备发送参考信号,第一终端设备对网络设备发送的参考信号进行测量,基于对参考信号的测量结果可以确定下行信道的状态,并向网络设备上报信道状态信息。网络设备可以根据第一终端设备上报的信道状态信息,获得第一终端设备的下行信道的状态。
S702:网络设备根据第一下行传输参数确定第一终端设备的下行数据占用的RB数量,这里为清楚起见,将基于第一下行传输参数确定出的第一终端设备的下行数据占用的RB数量称为第一RB数量。
一种可能的实现方式中,网络设备可以根据待向第一终端设备发送的下行数据的数据量,以及第一下行传输参数(比如包括第一Rank,MCS等参数),预估这些下行数据占用的RB数量,也即第一RB数量。这里的第一RB数量是指一个时隙中该终端设备的下行信道承载的数据占用的RB数量。
网络设备可以根据通信协议提供的方法或者相关技术提供的方法,基于第一终端设备的下行传输参数以及下行数据的数据量大小,确定第一终端设备的下行数据占用的第一RB数量。
示例性的,以下行信道为PDSCH为例,S702的一种可能的实现方式包括以下步骤:
步骤1:网络设备确定一个时隙内分配给第一终端设备的PDSCH的RE个数。
首先,确定分配给PDSCH的一个物理资源块(physical resource block,PRB)内的RE个数N'RE
其中,是频域一个PRB内的子载波个数, 是一个时隙(slot)中的PDSCH分配到的符号(symbol)个数;是根据高层参数或者物理层参数确定的在分配的持续时间 (duration)上每个PRB的DMRS开销,即,DMRS占用的RE个数;是高层信息单元PDSCH服务小区配置(IE PDSCH-ServingCellConfig)中的参数xOverhead的开销,如果没配置为0。
然后,根据一个PRB中的RE数以及PRB个数,确定分配给PDSCH的总RE数NRE
NRE=min(156,N'RE)·nPRB………………………………(2)
其中,nPRB是分配给终端设备的PDSCH的PRB总数。
步骤2:确定第一信息比特数Ninfo
Ninfo=NRE·R·Qm·υ………………………………(3)
其中,R是PDSCH的目标码率,Qm是PDSCH的调制阶数,v是层数。
步骤3:根据Ninfo进行量化查表等操作,得到一个时隙中第一终端设备的PDSCH上传输的数据的传输块大小(transport block size,TBS)。
步骤4:根据该TBS以及待发送给第一终端设备的下行数据的数据量,确定在一个时隙内第一终端设备的下行信道上承载的该下行数据占用的RB数量。
以上确定第一终端设备的下行数据占用的RB数量(即第一RB数量)的方法仅为一种示例,本申请实施例对如何确定第一终端设备的下行数据占用的RB数量不做限制。
S703:网络设备根据可分配RB数量以及第一RB数量,确定剩余RB数量,这里为清楚起见,将该剩余RB数量称为第一剩余RB数量,或称为第一终端设备对应的剩余RB数量。
可选的,对于单用户调度,所述可分配RB数量是一个时隙内下行信道占用的RB中可以分配给第一终端设备的RB的个数。比如,如果被调度终端设备仅包含第一终端设备,基于第一终端设备的下行信道的状态确定的第一Rank大于1,则所述可分配RB数量是一个时隙内下行信道占用的RB数量;再比如,如果被调度终端设备为多个,比如包括第一终端设备和至少一个其他终端设备,对于第一终端设备,基于下行信道的状态确定的Rank大于1,对于所述其他终端设备,基于下行信道的状态确定的Rank等于1,则所述可分配RB数量是一个时隙内下行信道占用的RB数量中除去所述至少一个其他终端设备的下行数据占用的RB数量之外的RB数量。再比如,如果被调度终端设备为多个,比如包括第一终端设备和第二终端设备以及至少一个其他终端设备,对于第一终端设备和第二终端设备,基于下行信道的状态确定的Rank大于1,对于所述其他终端设备,基于下行信道确定的Rank等于1,则所述可分配RB数量是一个时隙内下行信道占用的RB数量中除去第二终端设备以及所述其他终端设备的下行数据占用的RB数量之外的RB数量。此步骤中,确定一个终端设备的下行数据占用的RB数量时所依据的下行传输参数称为第一下行传输参数,所述第一下行传输参数是根据该终端设备的下行信道的状态确定的。
可选的,对于多用户调度,可以确定每个MU分组中的终端设备的下行数据占用的RB总数量,然后从中选择一个最大值作为每个MU分组可分配RB数量,其中,下行数据占用的RB数量是基于对各终端设备进行降Rank之前的空间复用流数等第一下行传输参数确定出的,对于其中每个终端设备来说,该终端设备的第一下行传输参数是根据该终端设备的下行信道的状态确定的。
以第一终端设备为基于多用户调度的至少两个MU分组中第一MU分组中的一个终端设备为例,所述至少两个MU分组中还包括第二MU分组,由于第二MU分组中的终端设备的下行数据占用的总RB数量不少于其他每个MU分组中的终端设备的下行数据占用的总RB数量,因此将第二MU分组中的终端设备的下行数据占用的RB总数量确定为每个MU分组的可分配RB数量。也就是说,对于除第二MU分组以外的其他MU分组来说,每个MU分组中的终端设备降低Rank后下行数据占用的RB数量不能超过第二MU分组中的终端设备的下行数据占用的RB总数量。
比如,MU分组1中包括UE0,MU分组2中包括UE1,MU分组3中包括UE2,根据下行信道的状态,UE0使用Rank1,UE1和UE2均使用Rank4,根据各UE使用的Rank以及各自UE的下行数据的数据量确定各MU分组中UE的下行数据占用的RB数量,其中,UE0的下行数据占用的RB数量最多,因此将MU分组1中UE的下行数据占用的RB数量确定为MU分组2中UE的可分配RB总数 量,以及MU分组3中UE的可分配RB总数量,或者说MU分组2中UE的可分配RB总数量以及MU分组3中UE的可分配RB总数量,分别与MU分组1中UE的下行数据占用的RB数量相等。
本申请实施例通过上述方式约束各MU分组中终端设备的下行数据占用的RB数量,可以避免MU分组中的终端设备降Rank后,导致终端设备的下行数据占用的RB数量增加过多。
网络设备可以从可分配RB数量中减去第一终端设备对应的第一RB数量,得到第一终端设备对应的第一剩余RB数量。
S704:若第一终端设备至少满足第一条件,则转入S705。
第一终端设备至少满足第一条件,可以理解为对于第一终端设备来说,至少要保证第一终端设备对应的第一剩余RB数量可以满足第一终端设备从第一Rank降低到第二Rank。其中,第二Rank指示的空间复用流数量小于第一Rank指示的空间复用流数量,比如,第一Rank为Rank4,第二Rank为Rank2;再比如,第一Rank为Rank4,第二Rank为Rank1;再比如,第一Rank为Rank2,第二Rank为Rank1。
换言之,所述第一条件也可以表述为:第一剩余RB数量不小于第二RB数量与第一RB数量的差值。其中,所述第二RB数量是基于第二下行传输参数确定的第一终端设备的下行数据占用的RB数量,所述第二下行传输参数包括第二Rank,所述第二Rank指示的空间复用流数量小于所述第一Rank指示的空间复用流数量,所述第二RB数量大于所述第一RB数量。
可选的,第一终端设备的第一下行传输参数中包括第一MCS,第一终端设备的第二下行传输参数中包括第二MCS,所述第一MCS与所述第二MCS相等。换言之,网络设备在对第一终端设备降低其Rank前后,可以保持该终端设备的MCS不变。当然,本申请实施例也不排除可以对该第一终端设备降低其Rank并且调整其MCS。
可以理解,在降低Rank后,下行数据占用的RB数量将会增加。比如,在MCS保持不变的情况下,在从Rank4降低到Rank2后,下行数据占用的RB数量可能会增加一倍。若第一剩余RB数量不小于第二RB数量与第一RB数量的差值,则表明降低Rank后,由此导致的下行数据占用的RB数量的增量值小于第一剩余RB数量,也就是说,第一剩余RB数量可以满足第一终端设备从第一Rank降低到第二Rank。
一种可能的实现方式中,网络设备可以首先根据第一下行传输参数确定第二下行传输参数,比如可以对第一下行传输参数中的部分参数进行调整,对另一部分传输参数保持不变,从而得到新的一组下行传输参数,即第二下行传输参数。举例来说,可以将第一下行传输参数中的Rank降低,即从第一Rank降低到第二Rank,其他参数(比如MCS)保持不变,这样得到一组新的下行传输参数,称为第二下行传输参数,该第二下行传输参数中的秩为所述第二Rank,第二下行传输参数中的MCS与第一下行传输参数中的MCS相同。然后,网络设备根据第二下行传输参数确定第一终端设备的下行数据占用的第二RB数量,具体实现方式可以参见前文。最后,网络设备可以根据确定出的第一终端设备所对应的第一剩余RB数量、第一RB数量、第二RB数量,判断第一终端设备是否满足第一条件,进而根据判断结果确定是基于第一下行传输参数对第一终端设备进行下行数据传输,还是基于第二下行传输参数对第一终端设备进行下行数据传输。
可选的,网络设备在降低第一终端设备的Rank时,可以根据该终端设备的下行数据的数据量大小、第一剩余RB数量大小,将该终端设备的Rank降低到合适的大小,以充分利用剩余RB数量,尽可能降低Rank。比如,在MCS保持不变的情况下,根据第一终端设备的下行信道的状态确定第一终端设备使用Rank4,网络设备待发送给第一终端设备的下行数据的数据量较小,且时隙内仍存在RB可分配,如果网络设备确定出的第一剩余RB数量可以满足第一终端设备从Rank4降为Rank2,也可以满足第一终端设备从Rank4降为Rank1,则网络设备可以将第一终端设备的空间复用流数从Rank4降为Rank1。
示例性的,图8示出了在单用户调度场景下降低UE的Rank以降低干扰的示意图。如图所示,网络设备根据UE0和UE1的PDSCH的状态,确定当前UE0使用Rank1、UE1使用Rank4,网络设备根据当前UE1的下行数据的数据量,以及使用的下行传输参数(其中包括各自使用的空间复用流数),确定UE1的下行数据占用的RB数量,进而可以确定出剩余的可分配的RB数量。网络设备确定剩余RB数量可以支持针对UE1将其空间复用流数量从Rank4降低为Rank2,因此将UE1的空间复用流数量降低为Rank2。
S705:网络设备基于第二下行传输参数对第一终端设备进行下行数据传输。
在第一终端设备满足第一条件的情况下,网络设备可以基于第一终端设备的第二下行数据传输参数 (其中包括降低后的Rank)对第一终端设备进行下行数据传输,从而可以在保证数据传输的基础上减少干扰的产生。
进一步的,若在S704中,网络设备确定第一终端设备不满足第一条件,则执行以下步骤:
S706:网络设备基于第一终端设备的第一下行传输参数对第一终端设备进行下行数据传输。
可以理解,上述流程中的RB也可以替换为物理资源块(physical reasource block,PRB)。其中,RB与PRB存在对应关系,RB被映射到物理层后可以得到对应的PRB。在一些场景下,RB与PRB一一对应。
本申请的上述实施例中,网络设备在对终端设备进行下行传输调度时,在考虑信道状态的基础上,进一步考虑RB利用率(或PRB利用率)与终端设备的下行业务量大小,在能够保证终端设备的下行数据传输的基础上,通过降低Rank以降低干扰大小和干扰源的数量,从而可以提升相邻小区终端设备解调的干扰抑制效果。
在一种可能的实现方式中,在上述一个或多个实施例的基础上,网络设备在基于第二下行传输参数对第一终端设备进行下行数据传输之前,还可以降低对第一终端设备的发射功率。在不影响第一终端设备的下行传输质量的前提下,降低发射功率,可以实现节能。
可选的,可以以发射功率降低前后,终端设备的MCS保持不变作为原则,确定终端设备(比如上述第一终端设备)的发射功率降低量,该MCS是根据终端设备的下行信道的状态确定的。一种可能的实现方式中,用MCS1表示基于第一终端设备的下行信道状态确定出的MCS,即MCS1是对第一终端设备进行降Rank处理前的MCS,网络设备可以根据MCS1查询信号与干扰加噪声比(signal to interference plus noise ratio,SINR,也可以简称为信干噪比)到MCS的映射表,得到与MCS1对应的信干噪比(为便于描述,这里将该信干比称为SINR1)。网络设备对第一终端设备降低Rank后,由于空间复用流数减少等原因,第一终端设备的下行信道的信干噪比会提高(为便于描述,这里将对第一终端设备降Rank后的信干噪比称为SINR2)。网络设备可以根据信干噪比提高量(即SINR2减去SINR1得到的差值)来确定功率降低量。当然,上述实现方式仅为一种可能的示例,本申请实施例对如何确定发射功率降低量的方法不做限制。
本申请的上述实施例中,在降低终端设备的Rank的同时,进一步降低对该终端设备的发射功率,可以进一步减小干扰,还可以实现节能。
基于图7所述的流程,在单用户调度场景下,可能存在以下情况:
情况1-1:如果被调度的终端设备中仅有一个终端设备,其空间复用流数量大于1,即存在降低Rank的可能性,则对于该终端设备,网络设备可以按照图7所示的流程,确定剩余RB数量是否可以满足对该终端设备进行降Rank,如果满足,则可以确定该终端设备满足第一条件,从而可以基于降低后的Rank对该终端设备进行下行数据传输。
情况1-2:如果被调度的终端设备中有多个终端设备,其空间复用流数量均大于1,即该多个终端设备均存在降低Rank的可能性,则对于该多个终端设备中的每个终端设备,网络设备基于图7所示的流程,分别确定每个终端设备的剩余RB数量是否满足降低Rank的条件,如果每个终端设备的剩余RB数量均满足降低Rank的条件,并且时隙内下行信道的RB数量可以满足该多个终端设备同时降低Rank,则网络设备可以分别对该多个终端设备降低Rank,并基于降低后的Rank对该多个终端设备进行下行数据传输。
情况1-3:如果被调度的终端设备中有多个终端设备,其空间复用流数量均大于1,即该多个终端设备均存在降低Rank的可能性,则对于该多个终端设备中的每个终端设备,网络设备基于图7所示的流程,分别确定每个终端设备的剩余RB数量是否满足降低Rank的条件,如果每个终端设备的剩余RB数量均满足降低Rank的条件,但时隙内下行信道的RB数量不能满足该多个终端设备同时降低Rank,则网络设备可以选取其中的一个或多个终端设备,时隙内下行信道的RB数量能够满足该一个或多个终端设备同时降低Rank,网络设备对选取出的一个或多个终端设备降低Rank,并基于降低后的Rank对选取出的一个或多个终端设备进行下行数据传输。
示例性的,以基于单用户调度的至少两个终端设备中包括第一终端设备和第二终端设备为例,基于第一终端设备和第二终端设备各自的下行信道的状态确定出的空间复用流数量均大于1。对于第一终端设备,网络设备按照图7所示的流程确定第一终端设备对应的第一剩余RB数量,对于第二终端设备,网络设备按照图7所示的流程确定第二终端设备对应的第二剩余RB数量,所述第二剩余RB数量是根 据可分配的RB数量以及第二终端设备的下行数据占用的RB数量确定的。
如果第一终端设备的第一剩余RB数量满足第一终端设备从第一Rank降低到第二Rank,第二终端设备的第二剩余RB数量满足第二终端设备从第三Rank(第三Rank是基于第二终端设备的下行信道的状态确定的)降低到第四Rank,但第一RB剩余数量不满足在将第一终端设备从第一Rank降低到第二Rank的同时,将第二终端设备从第三Rank降低到第四Rank(或者说,第二RB剩余数量不满足在将第一终端设备从第一Rank降低到第二Rank的同时,将第二终端设备从第三Rank降低到第四Rank),则网络设备从第一终端设备和第二终端设备中选取一个终端设备,比如选取第一终端设备,从而针对第一终端设备,基于该终端设备的第二下行传输参数对该第一终端设备进行下行数据传输。
进一步的,对于第二终端设备,则使用基于该第二终端设备的下行信道的状态确定的下行传输参数(即第二终端设备的第一下行传输参数)对第二终端设备进行下行数据传输,该下行传输参数中的Rank没有经过降低处理。
可选的,选取出的第一终端设备还满足第二条件,所述第二条件包括:第一终端设备对邻区的干扰强度大于第二终端设备对邻区的干扰强度。可以理解,如果网络设备选取出的可以降低Rank的终端设备为多个,则该多个终端设备对邻区的干扰强度,大于未被选中降低Rank的终端设备对邻区的干扰强度。换言之,在此种情况下,可以确定终端设备对邻区的干扰强度,优先选择干扰强度大的终端设备进行降Rank调度。
可选的,终端设备对邻区的干扰强度可以根据终端设备上报的测量报告来确定,比如可以根据终端设备上报的A3测量报告来确定,所述A3测量报告中包括终端测量到的邻区的参考信号接收功率(reference signal receiving power,RSRP)等参数,可以用于确定邻区的干扰强度。当然,也可以通过其他方式确定终端设备对邻区的干扰强度,本申请实施例对此不做限制。
示例性的,图9示出了本申请实施例中的一种在SU调度场景下基于干扰识别选择UE降低Rank的示意图。如图所示,网络设备根据UE0、UE1和UE2的PDSCH的状态,确定当前UE0使用Rank1、UE1和UE2使用Rank4,网络设备根据当前UE1和UE2各自的下行数据的数据量,以及各自使用的下行传输参数(其中包括各自使用的空间复用流数),确定UE1和UE2各自的下行数据占用的RB数量,进而确定出剩余RB数量可以满足UE1和UE2中的一个降低Rank,但无法满足同时对这两个UE降低Rank。由于UE1对邻区的干扰大于UE2对邻区的干扰,因此网络设备选择UE1进行降Rank,将UE1从Rank4降低到Rank2。
这里虽然仅以第一终端设备和第二终端设备为例进行说明,但可以理解,在N个(N为大于1的整数)终端设备分别满足降低Rank的第一条件,但无法满足同时对该N个终端设备降低Rank的情况下,若网络设备确定可以满足其中部分终端设备同时降低Rank,则网络设备可以选取该部分终端设备降低其Rank,并基于降低Rank后的下行传输参数对该部分终端设备进行下行数据传输。示例性的,网络设备可以采用以下方式选取终端设备,以便对选取的终端设备进行降Rank处理:
步骤1:网络设备根据上述N个终端设备确定M个组合(M为大于或等于1的整数),每个组合包括所述N个终端设备中的至少一个终端设备,且针对每个组合,该MU分组对应的可分配RB数量能够满足同时对该组合中的终端设备进行降Rank。
步骤2:网络设备确定每个组合中的终端设备对邻区干扰强度的总和。
步骤3:网络设备根据每个组合中的终端设备对邻区干扰强度的总和,从该M个组合中选择干扰强度的总和最大的组合。网络设备对被选择的该组合中的终端设备执行降低Rank的处理。对于未被选中的组合,网络设备对这些组合中的终端设备不执行降Rank处理。
本申请实施例中选择对邻区干扰强度大的终端设备,优先对其降Rank调度,这样可以降低对邻区用户的干扰源数量,获得IRC技术的干扰抑制增益。通过上述方法,可以基于PRB负载以及干扰信息灵活选择干扰对抗调度方案,不仅可以充分利用RB资源,还可以尽最大可能降低干扰,提升系统性能。
基于图7所述的流程,在多用户调度场景下,可能存在以下情况:
情况2-1:根据MU分组对应的可分配RB数量,如果一个MU分组内所有空间复用流数量大于1的终端设备能够满足同时降低Rank,则网络设备可以对该MU分组内所有空间复用流数量大于1的终端设备降低其Rank,并可以基于降低后的Rank对这些终端设备进行下行数据传输。
示例性的,图10示出了本申请实施例中一种在MU调度场景下降Rank的示意图。如图所示,如图所示,MU分组1中包括UE0,MU分组2中包括UE1,MU分组3中包括UE2,由于MU分组1 中的UE的下行数据占用的RB数量最多,因此将MU分组1中的UE的下行数据占用的RB数量作为各MU分组对应的可分配RB数量的上限,网络设备按照图7所示的流程,确定MU分组2中的UE1和MU分组2中的UE3可以满足降低Rank的条件,因此对UE1和UE2进行降Rank处理,将UE2从Rank2降低为Rank1,将UE2从Rank2降低为Rank1。
情况2-2:根据MU分组对应的可分配RB数量,如果一个MU分组内所有空间复用流数量大于1的终端设备无法满足同时降低Rank,则网络设备可以选取其中的一个或多个终端设备,且时隙内下行信道的RB数量能够满足该一个或多个终端设备同时降低Rank,网络设备对选取出的一个或多个终端设备降低Rank,并基于降低后的Rank对选取出的一个或多个终端设备进行下行数据传输。
示例性的,以基于多用户调度的第一MU分组中包括第一终端设备和第二终端设备为例,网络设备可以按照图7所示的流程分别确定对第一终端设备降低Rank后该MU分组内第一终端设备对应的第一剩余RB数量,以及对第二终端设备降低Rank后该MU分组内第二终端设备对应的第二剩余RB数量。如果第一终端设备对应的第一剩余RB数量满足第一终端设备从第一Rank降低到第二Rank,第二终端设备对应的第二剩余RB数量满足第二终端设备从第三Rank(第三Rank是基于第二终端设备的下行信道的状态确定的)降低到第四Rank,但第一RB剩余数量不满足在将第一终端设备从第一Rank降低到第二Rank的同时,将第二终端设备从第三Rank降低到第四Rank(或者说,第二RB剩余数量不满足在将第一终端设备从第一Rank降低到第二Rank的同时,将第二终端设备从第三Rank降低到第四Rank),则网络设备从第一终端设备和第二终端设备中选取一个终端设备,比如选取第一终端设备,从而针对第一终端设备,基于该终端设备的第二下行传输参数对该第一终端设备进行下行数据传输。
进一步的,对于第二终端设备,则使用基于该第二终端设备的下行信道的状态确定的下行传输参数对第二终端设备进行下行数据传输,该下行传输参数中的Rank没有经过降低处理。
这里虽然仅以第一终端设备和第二终端设备为例进行说明,但可以理解,在多个终端设备分别满足降低Rank的第一条件,但无法满足同时对该多个终端设备降低Rank的情况下,若网络设备确定可以满足其中部分终端设备同时降低Rank,则网络设备可以选取该部分终端设备降低其Rank,并基于降低Rank后的下行传输参数对该部分终端设备进行下行数据传输。
本申请的上述实施例中,在MU调度场景下,网络设备对终端设备进行下行传输调度时,在考虑信道状态的基础上,进一步考虑RB利用率(或PRB利用率)与终端设备的下行业务量大小,在能够保证终端设备的下行数据传输的基础上,通过降低Rank以降低干扰大小和干扰源的数量,从而降低MU分组间的干扰,改善MU配对组合导致的具有大业务量传输需求的MU分组的频率选择性衰减问题。进一步的,MU配对组合层数降低后,对于邻区的UE来说干扰源降低了,这样可以充分发挥终端设备接收端的IRC能力,提升干扰抑制性能。
可选的,选取出的第一终端设备还满足第三条件,所述第三条件为:第一终端设备的调度优先级高于第二终端设备的调度优先级。可以理解,如果网络设备选取出的可以降低Rank的终端设备为多个,则该多个终端设备的调度优先级,不低于未被选中降低Rank的终端设备的调度优先级。换言之,在此种情况下,可以优先选择调度优先级高的终端设备进行降Rank调度,以降低调度优先级高的终端设备的干扰。
可选的,所述第三条件也可以是:第一终端设备对邻区的干扰强度大于第二终端设备对邻区的干扰强度。可以理解,如果网络设备选取出的可以降低Rank的终端设备为多个,则该多个终端设备对邻区的干扰强度,不低于未被选中降低Rank的终端设备对邻区的干扰强度。换言之,在此种情况下,可以优先选对邻区的干扰强度大的终端设备进行降Rank调度,以降低对邻区的干扰。
情况2-3:与上述情况2-2类似,在一个MU分组内的剩余RB数量不能满足多个终端设备同时降低Rank的情况下,网络设备可以选择其中功率降低量大的终端设备降低其Rank。
以MU分组内的第一终端设备和第二终端设备均满足降Rank处理的条件,但该MU分组对应的可分配RB无法满足同时对第一终端设备和第二终端设备降Rank处理为例,此种情况下,网络设备可以根据第一终端设备的第一MCS(即根据第一终端设备的下行信道的状态确定的MCS)确定对应的第一发射功率降低量,根据第二终端设备的第一MCS(即根据第二终端设备的下行信道的状态确定的MCS)确定对应的第二发射功率降低量,若第一发射功率降低量大于第二发射功率降低量,则选取第一终端设备进行降Rank处理。对于第二终端设备,网络设备使用基于该第二终端设备的下行信道确定的下行传输参数进行下行数据传输(即不对其进行降Rank处理),并且也不对第二终端设备执行降功率发射功 率的处理。
这里虽然仅以MU分组中包括第一终端设备和第二终端设备为例进行说明,但可以理解,若MU分组中包括多个(比如N个,N为大于1的整数)空间复用流数大于1的终端设备,且该N个终端设备分别满足降低Rank的第一条件,但无法满足同时对该N个终端设备降低Rank的情况下,网络设备可以采用以下方式选取终端设备,以便对选取的终端设备进行降Rank处理:
步骤1:网络设备根据该MU分组中包含的上述N个终端设备确定M个组合(M为大于或等于1的整数),每个组合包括所述N个终端设备中的至少一个终端设备,且针对每个组合,该MU分组对应的可分配RB数量能够满足同时对该组合中的终端设备进行降Rank。
步骤2:网络设备确定每个组合对应的发射功率降低量。其中,一个组合对应的发射功率降低量为该组合中的所有终端设备的发射功率降低量的总和。一个终端设备的发射功率降低量的确定方法可参见前文。
步骤3:根据发射功率降低量,从该M个组合中选择发射功率降低量最大的组合。网络设备对被选择的该组合中的终端设备执行降低Rank的处理,并且执行降发射功率的处理。对于未被选中的组合,网络设备对这些组合中的终端设备不执行降Rank处理,并且也不执行降低发射功率的处理。
情况2-4:与上述情况2-2的场景类似,如果一个MU分组可以满足多种降Rank方案,比如可以满足以下降Rank方案1:将该MU分组中的UE1从Rank4降低到Rank2,以及将该MU分组中的UE2从Rank4降低到Rank2,还可以满足以下降Rank方案2:将该MU分组中的UE1从Rank4降低到Rank1,则网络设备可以选择其中一种降Rank方案进行降Rank处理。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可以实现前述实施例中网络设备实现的功能。该通信装置可以是网络设备(比如基站),也可以是应用于网络设备(比如基站)中的通信模块。该通信装置可以通过软件或硬件或软硬件结合的方式实现。如图11所示,该通信装置1100可以包括处理单元1101和收发单元1102。
处理单元1101用于:根据第一终端设备的下行信道的状态,确定所述第一终端设备的第一下行传输参数,所述第一下行传输参数包括第一Rank;根据所述第一下行传输参数确定所述第一终端设备的下行数据占用的第一RB数量;根据可分配RB数量以及所述第一RB数量,确定第一剩余RB数量;若所述第一终端设备至少满足第一条件,则基于第二下行传输参数通过收发单元1102对所述第一终端设备进行下行数据传输,所述第二下行传输参数包括第二Rank,所述第二Rank指示的空间复用流数量小于所述第一Rank指示的空间复用流数量;其中,所述第一条件包括:所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank。
在一种可能的实现方式中,所述第一终端设备为基于单用户调度的至少两个终端设备中的一个,所述至少两个终端设备中还包括第二终端设备,基于所述第一终端设备和所述第二终端设备各自的下行信道的状态确定出的空间复用流数量均大于1,并且所述第一终端设备的所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank,所述第二终端设备的第二剩余RB数量满足所述第二终端设备从第三Rank降低到第四Rank,但所述第一RB剩余数量不满足在将所述第一终端设备从所述第一Rank降低到所述第二Rank的同时,将所述第二终端设备从所述第三Rank降低到所述第四Rank;其中,所述第二剩余RB数量是根据可分配的RB数量以及所述第二终端设备的下行数据占用的RB数量确定的,所述第三Rank是基于所述第二终端设备的下行信道的状态确定的。处理单元1101具体用于:从所述第一终端设备和所述第二终端设备中选取所述第一终端设备,基于所述第二下行传输参数通过收发单元1102对所述第一终端设备进行下行数据传输。
在一种可能的实现方式中,处理单元1101具体用于:若所述第一终端设备还满足第二条件,则所述第一终端设备和所述第二终端设备中选取所述第一终端设备;其中,所述第二条件包括:所述第一终端设备对邻区的干扰强度大于所述第二终端设备对邻区的干扰强度。
在一种可能的实现方式中,所述第一终端设备为基于多用户调度的至少两个多用户分组中第一多用户分组中的一个终端设备,所述至少两个多用户分组中还包括第二多用户分组,所述可分配RB数量是所述第二多用户分组中的终端设备的下行数据占用的RB总数量,所述第二多用户分组中的终端设备的下行数据占用的总RB数量不少于所述至少两个多用户分组中每个多用户分组中的终端设备的下行数据占用的总RB数量。
在一种可能的实现方式中,所述第一多用户分组中还包括第二终端设备,基于所述第一终端设备和 所述第二终端设备各自的下行信道的状态确定出的空间复用流数量均大于1,并且所述第一终端设备的所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank,所述第二终端设备的第二剩余RB数量满足所述第二终端设备从第三Rank降低到第四Rank,但所述第一RB剩余数量不满足在将所述第一终端设备从所述第一Rank降低到所述第二Rank的同时,将所述第二终端设备从所述第三Rank降低到所述第四Rank;其中,所述第二终端设备的第二剩余RB数量是根据可分配的RB数量以及所述第二终端设备的下行数据占用的RB数量确定的,所述第三Rank是基于所述第二终端设备的下行信道的状态确定的。处理单元1101具体用于:从所述第一终端设备和所述第二终端设备中选取所述第一终端设备,基于所述第二下行传输参数通过收发单元1102对所述第一终端设备进行下行数据传输。
在一种可能的实现方式中,处理单元1101具体用于:若所述第一终端设备还满足第三条件,则从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;其中,所述第三条件包括:所述第一终端设备的调度优先级高于所述第二终端设备的调度优先级,或者所述第一终端设备对邻区的干扰强度大于所述第二终端设备对邻区的干扰强度。
在一种可能的实现方式中,处理单元1101具体用于:根据所述第一终端设备的第一MCS确定对应的第一发射功率降低量,根据所述第二终端设备的第一MCS确定对应的第二发射功率降低量;若所述第一发射功率降低量大于所述第二发射功率降低量,则从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;处理单元1101还用于:在基于第二下行传输参数对所述第一终端设备进行下行数据传输之前,根据所述第一发射功率降低量,降低收发单元1102对所述第一终端设备的发射功率。
在一种可能的实现方式中,处理单元1101还用于:在基于所述第二下行传输参数对所述第一终端设备进行下行数据传输之前,降低收发单元1102对所述第一终端设备的发射功率。
在一种可能的实现方式中,所述第一下行传输参数还包括第一调制与编码策略MCS,所述第二下行传输参数还包括第二MCS,所述第一MCS与所述第二MCS相等。
可以理解,本申请实施例提供的上述通信装置,能够实现上述方法实施例中网络设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
为便于理解,图12中仅示出了通信装置1200执行本申请所示方法所需的结构,本申请并不限制通信装置可具备更多组件。该通信装置1200可用于执行上述方法实施例中相关设备执行的步骤,比如所述相关设备可以是终端设备或网络设备。
该通信装置1200可包括收发器1201、存储器1203以及处理器1202,收发器1201、存储器1203以及处理器1202可以通过总线1204连接。该收发器1201可以用于通信装置进行通信,如用于发送或接收信号。该存储器1203与所述处理器1202耦合,可用于保存通信装置1200实现各功能所必要的程序和数据。以上存储器1203以及处理器1202可集成于一体也可相互独立。
示例性的,该收发器1201可以是通信端口,如网元之间用于通信的通信端口(或称接口)。收发器1201也可被称为收发单元或通信单元。该处理器1202可通过处理芯片或处理电路实现。收发器1201可采用无线方式或有线方式进行信息接收或发送。
另外,根据实际使用的需要,本申请实施例提供的通信装置可包括处理器,由该处理器调用外接的收发器和/或存储器以实现上述功能或步骤或操作。通信装置也可包括存储器,由处理器调用并执行存储器中存储的程序实现上述功能或步骤或操作。或者,通信装置也可包括处理器及收发器(或通信接口),由处理器调用并执行外接的存储器中存储的程序实现上述功能或步骤或操作。或者,通信装置也可包括处理器、存储器以及收发器。
基于与上述方法实施例相同构思,本申请实施例中还提供一种计算机可读存储介质,其上存储有程序指令(或称计算机程序、指令),该程序指令被处理器执行时,使该计算机执行上述方法实施例、方法实施例的任意一种可能的实现方式中由或网络设备执行的操作。
基于与上述方法实施例相同构思,本申请还提供一种计算机程序产品,包括程序指令,该计算机程序产品在被计算机调用执行时,可以使得计算机实现上述方法实施例、方法实施例的任意一种可能的实现方式中由网络设备执行的操作。
基于与上述方法实施例相同构思,本申请还提供一种芯片或芯片系统,该芯片与收发器耦合,用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端设备或网络设备执行的操作。该 芯片系统可包括该芯片,以及包括存储器、通信接口等组件。
基于与上述方法实施例相同构思,本申请实施例还提供一种通信系统。可选的,所述通信系统包括终端设备和网络设备,所述网络设备可以执行上述方法实施例中网络设备的操作。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种通信方法,其特征在于,所述方法包括:
    根据第一终端设备的下行信道的状态,确定所述第一终端设备的第一下行传输参数,所述第一下行传输参数包括第一Rank;
    根据所述第一下行传输参数确定所述第一终端设备的下行数据占用的第一资源块RB数量;
    根据可分配RB数量以及所述第一RB数量,确定第一剩余RB数量;
    若所述第一终端设备至少满足第一条件,则基于第二下行传输参数对所述第一终端设备进行下行数据传输,所述第二下行传输参数包括第二Rank,所述第二Rank指示的空间复用流数量小于所述第一Rank指示的空间复用流数量;其中,所述第一条件包括:所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank。
  2. 如权利要求1所述的方法,其特征在于,所述第一终端设备为基于单用户调度的至少两个终端设备中的一个,所述至少两个终端设备中还包括第二终端设备,基于所述第一终端设备和所述第二终端设备各自的下行信道的状态确定出的空间复用流数量均大于1,并且所述第一终端设备的所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank,所述第二终端设备的第二剩余RB数量满足所述第二终端设备从第三Rank降低到第四Rank,但所述第一RB剩余数量不满足在将所述第一终端设备从所述第一Rank降低到所述第二Rank的同时,将所述第二终端设备从所述第三Rank降低到所述第四Rank;其中,所述第二剩余RB数量是根据可分配的RB数量以及所述第二终端设备的下行数据占用的RB数量确定的,所述第三Rank是基于所述第二终端设备的下行信道的状态确定的;
    所述若所述第一终端设备至少满足第一条件,则基于第二下行传输参数对所述第一终端设备进行下行数据传输,包括:
    从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;
    基于所述第二下行传输参数对所述第一终端设备进行下行数据传输。
  3. 如权利要求2所述的方法,其特征在于,所述从所述第一终端设备和所述第二终端设备中选取所述第一终端设备,包括:
    若所述第一终端设备还满足第二条件,则从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;
    其中,所述第二条件包括:所述第一终端设备对邻区的干扰强度大于所述第二终端设备对邻区的干扰强度。
  4. 如权利要求1所述的方法,其特征在于,所述第一终端设备为基于多用户调度的至少两个多用户分组中第一多用户分组中的一个终端设备,所述至少两个多用户分组中还包括第二多用户分组,所述可分配RB数量是所述第二多用户分组中的终端设备的下行数据占用的RB总数量,所述第二多用户分组中的终端设备的下行数据占用的总RB数量不少于所述至少两个多用户分组中每个多用户分组中的终端设备的下行数据占用的总RB数量。
  5. 如权利要求4所述的方法,其特征在于,所述第一多用户分组中还包括第二终端设备,基于所述第一终端设备和所述第二终端设备各自的下行信道的状态确定出的空间复用流数量均大于1,并且所述第一终端设备的所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank,所述第二终端设备的第二剩余RB数量满足所述第二终端设备从第三Rank降低到第四Rank,但所述第一RB剩余数量不满足在将所述第一终端设备从所述第一Rank降低到所述第二Rank的同时,将所述第二终端设备从所述第三Rank降低到所述第四Rank;其中,所述第二终端设备的第二剩余RB数量是根据可分配的RB数量以及所述第二终端设备的下行数据占用的RB数量确定的,所述第三Rank是基于所述第二终端设备的下行信道的状态确定的;
    所述若所述第一终端设备至少满足第一条件,则基于第二下行传输参数对所述第一终端设备进行下行数据传输,包括:
    从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;
    基于所述第二下行传输参数对所述第一终端设备进行下行数据传输。
  6. 如权利要求5所述的方法,其特征在于,所述从所述第一终端设备和所述第二终端设备中选取所述第一终端设备,包括:
    若所述第一终端设备还满足第三条件,则从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;
    其中,所述第三条件包括:
    所述第一终端设备的调度优先级高于所述第二终端设备的调度优先级;或者
    所述第一终端设备对邻区的干扰强度大于所述第二终端设备对邻区的干扰强度。
  7. 如权利要求5所述的方法,其特征在于,所述从所述第一终端设备和所述第二终端设备中选取所述第一终端设备,包括:
    根据所述第一终端设备的第一MCS确定对应的第一发射功率降低量,根据所述第二终端设备的第一MCS确定对应的第二发射功率降低量;
    若所述第一发射功率降低量大于所述第二发射功率降低量,则从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;
    所述基于第二下行传输参数对所述第一终端设备进行下行数据传输之前,所述方法还包括:
    根据所述第一发射功率降低量,降低对所述第一终端设备的发射功率。
  8. 如权利要求1-6任一项所述的方法,其特征在于,所述基于第二下行传输参数对所述第一终端设备进行下行数据传输之前,所述方法还包括:
    降低对所述第一终端设备的发射功率。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述第一下行传输参数还包括第一调制与编码策略MCS,所述第二下行传输参数还包括第二MCS,所述第一MCS与所述第二MCS相等。
  10. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述处理单元,用于:
    根据第一终端设备的下行信道的状态,确定所述第一终端设备的第一下行传输参数,所述第一下行传输参数包括第一Rank;
    根据所述第一下行传输参数确定所述第一终端设备的下行数据占用的第一资源块RB数量;
    根据可分配RB数量以及所述第一RB数量,确定第一剩余RB数量;
    若所述第一终端设备至少满足第一条件,则基于第二下行传输参数通过所述收发单元对所述第一终端设备进行下行数据传输,所述第二下行传输参数包括第二Rank,所述第二Rank指示的空间复用流数量小于所述第一Rank指示的空间复用流数量;其中,所述第一条件包括:所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank。
  11. 如权利要求10所述的通信装置,其特征在于,所述第一终端设备为基于单用户调度的至少两个终端设备中的一个,所述至少两个终端设备中还包括第二终端设备,基于所述第一终端设备和所述第二终端设备各自的下行信道的状态确定出的空间复用流数量均大于1,并且所述第一终端设备的所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank,所述第二终端设备的第二剩余RB数量满足所述第二终端设备从第三Rank降低到第四Rank,但所述第一RB剩余数量不满足在将所述第一终端设备从所述第一Rank降低到所述第二Rank的同时,将所述第二终端设备从所述第三Rank降低到所述第四Rank;其中,所述第二剩余RB数量是根据可分配的RB数量以及所述第二终端设备的下行数据占用的RB数量确定的,所述第三Rank是基于所述第二终端设备的下行信道的状态确定的;
    所述处理单元具体用于:
    从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;
    基于所述第二下行传输参数通过所述收发单元对所述第一终端设备进行下行数据传输。
  12. 如权利要求11所述的通信装置,其特征在于,所述处理单元具体用于:
    若所述第一终端设备还满足第二条件,则所述第一终端设备和所述第二终端设备中选取所述第一终端设备;
    其中,所述第二条件包括:所述第一终端设备对邻区的干扰强度大于所述第二终端设备对邻区的干扰强度。
  13. 如权利要求10所述的通信装置,其特征在于,所述第一终端设备为基于多用户调度的至少两个多用户分组中第一多用户分组中的一个终端设备,所述至少两个多用户分组中还包括第二多用户分组,所述可分配RB数量是所述第二多用户分组中的终端设备的下行数据占用的RB总数量,所述第二多用 户分组中的终端设备的下行数据占用的总RB数量不少于所述至少两个多用户分组中每个多用户分组中的终端设备的下行数据占用的总RB数量。
  14. 如权利要求13所述的通信装置,其特征在于,所述第一多用户分组中还包括第二终端设备,基于所述第一终端设备和所述第二终端设备各自的下行信道的状态确定出的空间复用流数量均大于1,并且所述第一终端设备的所述第一剩余RB数量满足所述第一终端设备从所述第一Rank降低到所述第二Rank,所述第二终端设备的第二剩余RB数量满足所述第二终端设备从第三Rank降低到第四Rank,但所述第一RB剩余数量不满足在将所述第一终端设备从所述第一Rank降低到所述第二Rank的同时,将所述第二终端设备从所述第三Rank降低到所述第四Rank;其中,所述第二终端设备的第二剩余RB数量是根据可分配的RB数量以及所述第二终端设备的下行数据占用的RB数量确定的,所述第三Rank是基于所述第二终端设备的下行信道的状态确定的;
    所述处理单元具体用于:
    从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;
    基于所述第二下行传输参数通过所述收发单元对所述第一终端设备进行下行数据传输。
  15. 如权利要求14所述的通信装置,其特征在于,所述处理单元具体用于:
    若所述第一终端设备还满足第三条件,则从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;
    其中,所述第三条件包括:所述第一终端设备的调度优先级高于所述第二终端设备的调度优先级,或者所述第一终端设备对邻区的干扰强度大于所述第二终端设备对邻区的干扰强度。
  16. 如权利要求14所述的通信装置,其特征在于,所述处理单元具体用于:
    根据所述第一终端设备的第一MCS确定对应的第一发射功率降低量,根据所述第二终端设备的第一MCS确定对应的第二发射功率降低量;
    若所述第一发射功率降低量大于所述第二发射功率降低量,则从所述第一终端设备和所述第二终端设备中选取所述第一终端设备;
    所述处理单元还用于:
    在基于第二下行传输参数对所述第一终端设备进行下行数据传输之前,根据所述第一发射功率降低量,降低所述收发单元对所述第一终端设备的发射功率。
  17. 如权利要求10-15任一项所述的通信装置,其特征在于,所述处理单元还用于:
    在基于所述第二下行传输参数对所述第一终端设备进行下行数据传输之前,降低所述收发单元对所述第一终端设备的发射功率。
  18. 如权利要求10-17任一项所述的通信装置,其特征在于,所述第一下行传输参数还包括第一调制与编码策略MCS,所述第二下行传输参数还包括第二MCS,所述第一MCS与所述第二MCS相等。
  19. 一种通信装置,其特征在于,包括:一个或多个处理器;其中,当一个或多个计算机程序的指令被所述一个或多个处理器执行时,使得所述通信装置执行如权利要求1-9任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当计算机程序在计算设备上运行时,使得所述计算设备执行如权利要求1-9任一项所述的方法。
  21. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-9任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,所述计算机程序产品在被计算机调用时,使得所述计算机执行如权利要求1-9任一项所述的方法。
PCT/CN2023/131890 2022-11-23 2023-11-15 一种通信方法、装置及存储介质 WO2024109613A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211478466.3 2022-11-23
CN202211478466.3A CN118075875A (zh) 2022-11-23 2022-11-23 一种通信方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2024109613A1 true WO2024109613A1 (zh) 2024-05-30

Family

ID=91094276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131890 WO2024109613A1 (zh) 2022-11-23 2023-11-15 一种通信方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN118075875A (zh)
WO (1) WO2024109613A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110182256A1 (en) * 2010-01-27 2011-07-28 Telefonaktiebolaget L M Ericsson (Publ) Method and Arrangement in a Wireless Communication System
US20130033989A1 (en) * 2011-08-03 2013-02-07 Qualcomm Incorporated Enhanced downlink rate adaptation for lte heterogeneous network base stations
US20150092722A1 (en) * 2009-11-20 2015-04-02 Sharp Kabushiki Kaisha Method of notifying resource allocation for demodulation reference signals
US20170093474A1 (en) * 2014-05-28 2017-03-30 Lg Electronics Inc. Method for mimo receiver determining parameter for communication with mimo transmitter
WO2022067649A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种dci传输方法、装置、芯片及系统
CN114339846A (zh) * 2020-09-30 2022-04-12 中国移动通信有限公司研究院 一种通道校正方法、基站及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150092722A1 (en) * 2009-11-20 2015-04-02 Sharp Kabushiki Kaisha Method of notifying resource allocation for demodulation reference signals
US20110182256A1 (en) * 2010-01-27 2011-07-28 Telefonaktiebolaget L M Ericsson (Publ) Method and Arrangement in a Wireless Communication System
US20130033989A1 (en) * 2011-08-03 2013-02-07 Qualcomm Incorporated Enhanced downlink rate adaptation for lte heterogeneous network base stations
US20170093474A1 (en) * 2014-05-28 2017-03-30 Lg Electronics Inc. Method for mimo receiver determining parameter for communication with mimo transmitter
WO2022067649A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种dci传输方法、装置、芯片及系统
CN114339846A (zh) * 2020-09-30 2022-04-12 中国移动通信有限公司研究院 一种通道校正方法、基站及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "EPDCCH ICIC in Small Cell Environment", 3GPP DRAFT; R1-132935_EPDCCH_ICIC R1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Barcelona, Spain; 20130819 - 20130823, 10 August 2013 (2013-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050716174 *

Also Published As

Publication number Publication date
CN118075875A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
US10476654B2 (en) Methods and apparatus for operating wireless devices
US10362504B2 (en) Periodic channel status information (CSI) reporting for enhanced interference management and traffic adaptation (EIMTA) systems with CSI subframe sets
JP5436237B2 (ja) Ofdmaネットワークにおいてリソースを割り当てる方法
US9237562B2 (en) Method for downlink channel state information feedback in multi-antenna multi-carrier multi-cell environment
KR101674958B1 (ko) 셀 간 간섭을 제어하기 위한 장치 및 방법
KR101752921B1 (ko) 다중 셀 협력 송신 방법 및 장치
JP5469250B2 (ja) 分散アンテナシステム、および同システムにおける無線通信方法
US10548113B2 (en) Method of resource allocation for channel state information feedback and method of channel state information feedback
KR101498048B1 (ko) 협력적 mimo를 사용하는 셀 경계 사용자를 위한 자원할당 방법
WO2011083774A1 (ja) 通信装置及び通信方法
KR20100046338A (ko) 이동통신 시스템의 공조 빔 형성 장치 및 방법
KR20060123283A (ko) Mimo 기반 통신 시스템에서의 방법 및 장치
CN102611536A (zh) 信道状态信息反馈方法和用户设备
CN104144449B (zh) 一种资源配置方法、系统及相关装置
Cui et al. Capacity analysis and optimal power allocation for coordinated transmission in MIMO-OFDM systems
RU2594749C1 (ru) Режимы координированной многоточечной передачи
US10374763B2 (en) Parameter transmission method and device for interference coordination, and interference coordination method and device
CN103024821B (zh) 一种多用户协作多点传输的方法和装置
WO2024109613A1 (zh) 一种通信方法、装置及存储介质
JP5433020B2 (ja) 基地局装置及び通信方法
Falconetti et al. Codebook based inter-cell interference coordination for LTE
Vijayarani et al. Dynamic cooperative base station selection scheme for downlink CoMP in LTE-advanced networks
US9232530B2 (en) Managing a radio transmission between a base station and a user equipment
KR20110086449A (ko) 부분공간 간섭 정렬 방법
KR20180057516A (ko) 다중 안테나 시스템에서 다중 사용자 스케줄링 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893703

Country of ref document: EP

Kind code of ref document: A1