WO2024109170A1 - 一种液滴摩擦纳米发电机及其监测仪与监测方法 - Google Patents

一种液滴摩擦纳米发电机及其监测仪与监测方法 Download PDF

Info

Publication number
WO2024109170A1
WO2024109170A1 PCT/CN2023/112281 CN2023112281W WO2024109170A1 WO 2024109170 A1 WO2024109170 A1 WO 2024109170A1 CN 2023112281 W CN2023112281 W CN 2023112281W WO 2024109170 A1 WO2024109170 A1 WO 2024109170A1
Authority
WO
WIPO (PCT)
Prior art keywords
droplet
insulating polymer
electrode
electrode array
polymer layer
Prior art date
Application number
PCT/CN2023/112281
Other languages
English (en)
French (fr)
Inventor
王中林
张金洋
林世权
Original Assignee
北京纳米能源与系统研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳米能源与系统研究所 filed Critical 北京纳米能源与系统研究所
Publication of WO2024109170A1 publication Critical patent/WO2024109170A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa

Definitions

  • the present invention relates to a friction nanogenerator, in particular to a droplet friction nanogenerator, a real-time monitor for charge transfer during the movement of droplets using the droplet friction nanogenerator, and a high-resolution charge distribution monitoring method for droplets sliding on a hydrophobic interface over a long distance using the real-time monitor for charge transfer.
  • Droplet-triboelectric nanogenerators droplet-triboelectric nanogenerators
  • a Droplet-TENG using only one electrode can only tell us the total charge transfer of the droplet along the entire sliding path, but cannot continuously monitor the amount of charge transfer at the microscopic level.
  • the Droplet-TENG with two parallel electrodes can distinguish the charge transfer in the Y-axis direction to a certain extent, while the charge transfer analysis in the X-axis direction is still unavailable. Therefore, neither the single-electrode nor the dual-electrode Droplet-TENG currently available can achieve microscopic high-resolution charge distribution on the droplet motion trajectory in the X-axis and Y-axis.
  • the present invention provides a droplet friction nanogenerator, a real-time monitor of charge transfer during the entire droplet motion process using the droplet friction nanogenerator, and a high-resolution charge distribution monitoring method of the droplet sliding on the entire hydrophobic interface at a long distance using the real-time monitor of charge transfer.
  • the droplet friction nanogenerator of the present invention can sense the charge transfer amount at the interface area between the droplet and the insulating polymer layer, thereby obtaining the high-resolution charge distribution of the droplet sliding on the entire hydrophobic interface.
  • a droplet friction nanogenerator which includes an electrode array layer and an insulating polymer layer.
  • the electrode array layer includes an electrode array.
  • Each electrode in the electrode array is an independent electrode that outputs to an external circuit separately and is arranged equidistantly.
  • the insulating polymer layer is attached to and covers one side of the electrode array, and the insulating polymer layer is provided for the droplet to slide and rub on the insulating polymer layer, so that the corresponding electrode senses the charge transfer amount in the interface area between the droplet and the insulating polymer layer.
  • the electrode array layer also includes: an insulating polymer substrate, in which the electrode array is embedded and two sides are exposed on opposite sides of the insulating polymer substrate; and an insulating polymer layer is adhered to one side of the insulating polymer substrate where the electrode array is embedded and covers the electrode array.
  • the polymer material of the insulating polymer layer is a thin film material, a solid material or a chemical biological material that has been chemically modified and cell-attached.
  • the polymer material of the insulating polymer layer is a polymer material such as polymethyl methacrylate, or nylon, or vinyl chloride, or polydimethylsiloxane, or polytetrafluoroethylene, or a semiconductor material.
  • the thickness of the insulating polymer layer is 1 ⁇ m-100 ⁇ m.
  • the insulating polymer substrate has a thickness ranging from 1 to 10 mm.
  • the electrode is made of a conductive material.
  • the electrodes are made of conductive polymer and stainless steel.
  • the electrode is made of one of gold, silver, molybdenum, aluminum, nickel, copper, titanium, tin, selenium and their alloys.
  • the shape of the electrode is square or circular.
  • the diameter of the electrode ranges from 0.1 to 10 mm.
  • the spacing between electrodes in the electrode array ranges from 0.1 to 10 mm.
  • the density range of the electrode array is 0.1-1 mm.
  • outer edges of the insulating polymer layer and the electrode array layer are connected by adhesive tape.
  • the insulating polymer layer adopts a rectangular 5cm ⁇ 10cm perfluoroethylene propylene copolymer film with a thickness ranging from 10-50 ⁇ m and a backing adhesive, and is adhered to the polymethyl methacrylate substrate of the polymer insulating layer.
  • the polymer insulating layer is an electrode array layer
  • the polymethyl methacrylate substrate is an insulating polymer substrate with a thickness of 1 mm;
  • the surface of the polymethyl methacrylate substrate is inlaid with a copper electrode array, and the copper electrode array is the electrode array.
  • the density of the electrode array is 144 independent electrodes per square centimeter, and the electrode array is arranged in 12 columns ⁇ 36 rows.
  • the present invention also provides a real-time monitor for charge transfer during the movement of a droplet, comprising a detection device and any of the above-mentioned droplet friction nanogenerators.
  • Each electrode in the droplet friction nanogenerator is independently electrically connected to the detection device.
  • the electrodes sense the amount of charge transfer at the interface between the droplet and the insulating polymer layer, and the electrodes thereby form independent electrical signals through the detection device; the detection device obtains the entire movement trajectory of the droplet on the insulating polymer layer through these independent electrical signals.
  • the detection device is a current detection device, a voltage detection device or a charge detection device, and the corresponding electrical signal is a current signal, a voltage signal or a charge signal.
  • the present invention also provides a method for monitoring charge distribution with high resolution during the sliding of a droplet on a hydrophobic interface over a long distance, which comprises the following steps:
  • the electrodes of the charge transfer real-time monitor form independent electrical signals through the detection device of the charge transfer real-time monitor, and high-resolution charge distribution trajectories of the droplet sliding on the hydrophobic interface over a long distance are obtained through these independent electrical signals.
  • the present invention also provides an application of any of the above-mentioned droplet friction nanogenerators as a probe in real-time microscopic charge transfer monitoring between liquid-solid interfaces.
  • the droplet friction nanogenerator of the present invention is a pixel droplet friction nanogenerator with a high-density electrode array, which has the following beneficial effects:
  • the high-resolution charge distribution of droplets such as water droplets during the sliding process of the entire hydrophobic interface at a long distance can be monitored in real time, and the charge spatial resolution can reach 400 ⁇ m; the charge transfer data obtained by the single-electrode and double-electrode droplet friction nanogenerators are one point or two points, and the microscopic changes of the transferred charge of the droplets during the movement cannot be observed, but the present invention can achieve this.
  • FIG1 is a schematic diagram of the structure of a droplet friction nanogenerator provided in Example 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of an electrode array of a droplet friction nanogenerator provided in Example 2 of the present invention.
  • FIG. 3 is a schematic diagram of the charge transfer process of the droplet friction nanogenerator of FIG. 2 .
  • FIG. 4 is a charge distribution diagram obtained when a water droplet slides over the surface of the FEP film using the droplet friction nanogenerator of FIG. 2 .
  • FIG. 1 is a schematic diagram of the structure of a droplet friction nanogenerator provided in Example 1 of the present invention.
  • the droplet friction nanogenerator is a pixel droplet friction nanogenerator (pixel droplet-TENG) that can be used as a probe to achieve microscopic high-resolution charge distribution on the motion trajectory of a water droplet.
  • pixel droplet-TENG pixel droplet friction nanogenerator
  • the droplet friction nanogenerator includes an insulating polymer layer 2 and an electrode array layer 5.
  • the electrode array layer 5 includes an insulating polymer substrate 4, an electrode array embedded in the insulating polymer substrate 4 and exposed on opposite sides of the insulating polymer substrate 4.
  • Each electrode 3 in the electrode array is an independent electrode that is individually output to an external circuit and is arranged equidistantly.
  • the insulating polymer layer 2 is attached to the side of the insulating polymer substrate 4 where the electrode array is embedded and covers the electrode array.
  • the insulating polymer layer 2 is provided for the droplet 1 to slide and rub on the insulating polymer layer 2, so that the corresponding electrode 3 senses the amount of charge transfer in the interface area between the droplet 1 and the insulating polymer layer 2. Therefore, the droplet friction nanogenerator can be regarded as a three-layer structure, including a first friction layer, a second friction layer and an electrode layer.
  • the first friction layer is a droplet 1, which can be a water droplet or any other liquid droplet. There is no limitation on the concentration, type and size of the droplet.
  • the second friction layer is an insulating polymer layer 2
  • the polymer material can be an insulating polymer material or semiconductor material such as polymethyl methacrylate, nylon, vinyl chloride, polydimethylsiloxane, polytetrafluoroethylene, or other high molecular polymer insulating layer, and the thickness is preferably 1 ⁇ m-100 ⁇ m.
  • the second friction layer can be any insulating film material, solid material or chemical biological material that has been chemically modified and cell-attached.
  • the surface of the insulating polymer layer 2 is preferably a hydrophobic surface.
  • the electrode layer is an electrode array, and the electrode array is arranged on the insulating polymer substrate 4, and the thickness of the insulating polymer substrate 4 is preferably in the range of 0-10 mm.
  • the electrode array can also exist alone under the insulating polymer 2 in any other way without being attached to the insulating polymer 4. Therefore, when the thickness range of the insulating polymer substrate 4 is 0 mm, the electrode array layer 5 is not provided with the insulating polymer substrate 4, but only with the electrode array. At this time, the insulating polymer layer 2 is attached to and covers one side of the electrode array. Therefore, the electrode array layer 5 can be provided with only the electrode array without the insulating polymer substrate 4.
  • Each electrode 3 of the electrode array can be any conductive material, such as conductive polymer, stainless steel, etc.; preferably one of gold, silver, molybdenum, aluminum, nickel, copper, titanium, solder, tin and their alloys.
  • the electrode 3 is a metal electrode, and the corresponding electrode array is a metal electrode array.
  • the shape of each electrode 3 is preferably square or circular.
  • the diameter and spacing of each electrode 3 in the electrode array can be of any size, preferably in the range of 0.1-10 mm in diameter and 0.1-10 mm in spacing.
  • the density of the electrode array can be from 0 to infinity, preferably in the range of 0.1-1 mm.
  • Each electrode 3 in the electrode array is an independent electrode, arranged equidistantly, and not connected in series or in parallel with other electrodes.
  • Each electrode 3 is independently connected to a detection device (not shown), and the amount of charge transfer at the interface between the droplet 1 and the insulating polymer layer 2 is sensed by the electrode 3, and the electrode 3 thus forms an independent electrical signal through the detection device.
  • the detection device obtains the entire motion trajectory of the droplet 1 on the insulating polymer layer 2 through these independent electrical signals.
  • the droplet friction nanogenerator and the detection device can constitute the main components of the charge transfer real-time monitor, which is used for the charge transfer real-time monitor during the movement of the droplet.
  • the detection device can be a current detection device, a voltage detection device or a charge detection device, and the corresponding electrical signal is a current signal, a voltage signal or a charge signal.
  • the real-time charge transfer monitor of the present invention can be applied to a high-resolution charge distribution monitoring method, such as a high-resolution charge distribution monitoring method during the sliding of a droplet on a hydrophobic interface over a long distance, which includes the following steps: providing a real-time charge transfer monitor during the movement of the droplet; when the droplet 1 slides over a long distance on the hydrophobic interface, the electrode 3 of the real-time charge transfer monitor forms an independent electrical signal through the detection device of the real-time charge transfer monitor, and a high-resolution charge distribution trajectory of the droplet during the sliding of the droplet on the hydrophobic interface over a long distance is obtained through these independent electrical signals.
  • a high-resolution charge distribution monitoring method such as a high-resolution charge distribution monitoring method during the sliding of a droplet on a hydrophobic interface over a long distance
  • the charge transfer at this position can be determined based on the detected electrical signal. Therefore, when the droplet 1 slides over the electrode array, the charge transfer at each independent electrode 3 position is recorded, and the charge distribution diagram on the entire motion trajectory can be obtained.
  • the surface of the second friction layer is in contact with the surface of the electrode array structure, and the electrode array is the voltage and current output electrode of the friction generator.
  • the outer edges of the insulating polymer layer 2 and the electrode array layer 5 can be connected by tape. In this embodiment, the outer edges of the second friction layer and the electrode array can be connected by tape or the like.
  • the current research on charge transfer between liquid and solid interfaces mainly uses atomic force microscopes, single-electrode and double-electrode friction nanogenerators.
  • Single-electrode and double-electrode droplet friction nanogenerators cannot achieve microscopic high-resolution charge distribution on the motion trajectory of water droplets on the X-axis and Y-axis.
  • the atomic force microscope has a very high resolution, it is not suitable for real-time monitoring of charge transfer during the entire motion process of water droplets at the centimeter level or above because of the requirements on the sample scale. Therefore, the pixel droplet friction nanogenerator of the high-density electrode array of the present invention:
  • the high-resolution charge distribution of water droplets sliding on hydrophobic interfaces over long distances can be monitored in real time, with a charge spatial resolution of up to 400 ⁇ m.
  • the charge transfer data obtained by single-electrode and double-electrode droplet friction nanogenerators are one or two points, and the microscopic changes in the transferred charge of the droplets during movement cannot be observed, but the present invention can achieve this.
  • the droplet friction nanogenerator of the present invention can be used as a probe in real-time microscopic charge transfer monitoring between liquid and solid interfaces.
  • the preparation method of the array droplet friction nanogenerator proposed in the present invention is simple in process, can be mass-produced, has excellent process compatibility, is not limited by materials, etc., and the charge space resolution can reach 400 ⁇ m.
  • This is a new probe technology based on novel principles and methods, which is likely to open up new research methods for research and application in the fields of chemistry, physics, materials and biology.
  • the droplet friction nanogenerator is based on the charge transfer generated by the sliding friction of the droplet on the surface of the polymer.
  • a rectangular (5cm ⁇ 10cm) perfluoroethylene propylene copolymer film i.e., insulating polymer layer 2, with a thickness range of 10-50 ⁇ m, with adhesive backing, FEP in Figure 3
  • insulating polymer layer 2 with a thickness range of 10-50 ⁇ m, with adhesive backing, FEP in Figure 3
  • the polymer insulating layer is an electrode array layer 5
  • the polymethyl methacrylate substrate is an insulating polymer substrate 4.
  • the surface of the polymer insulating layer is inlaid with a copper electrode array (Electrode array in Figure 3, the electrode array density is 144 independent electrodes per square centimeter, and the electrode array is arranged in 12 columns ⁇ 36 rows) as an electrode.
  • the role of the electrode array here is to sense the amount of charge transfer in the interface area between the droplet and the polymer.
  • the preparation process of the device is simple and can be mass-produced.
  • a copper electrode array is embedded on the polymethyl methacrylate surface of the high molecular polymer insulating layer.
  • the electrodes 3 of the electrode array penetrate the polymethyl methacrylate substrate.
  • the electrodes 3 at the bottom of the electrode array are connected to a multi-channel ammeter.
  • the electrode array is arranged in 12 columns ⁇ 36 rows.
  • FIG3 is a diagram of the principle of the high-density electrode array pixel droplet friction nanogenerator probe.
  • the droplet 1 slides on the device (i.e., the insulating polymer layer 2 of the insulating polymer layer)
  • the droplet 1 and the perfluoroethylene propylene copolymer film come into contact and friction with each other.
  • the sliding friction causes the electrons to be transferred from the droplet 1 to the surface of the perfluoroethylene propylene copolymer film.
  • a small amount of cations in the droplet are adsorbed onto the surface of the perfluoroethylene propylene copolymer film, resulting in the generation of static charge at the interface.
  • the surface of the droplet 1 is mainly positively charged, while the surface of the perfluoroethylene propylene copolymer film is mainly negatively charged. Since the polymer film itself is insulating, the induced charge will not be quickly conducted away or neutralized. In order to offset the induced charge, the electrode array will induce free charges with opposite electrical properties, and the induced free charges will be neutralized when the external circuit is turned on, and then form an external current through the load. The entire charge transfer process is shown in FIG3.
  • FIG4 is a charge distribution diagram of a water droplet sliding over the surface of an FEP film using the array droplet friction nanogenerator of the present invention.
  • the spatial resolution of the charge can reach 400 ⁇ m, and the charge transfer information at the microscopic level can be observed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种液滴摩擦纳米发电机及其监测仪与监测方法。液滴摩擦纳米发电机包括电极阵列层和绝缘聚合物层。电极阵列层包括电极阵列。所述电极阵列中的每个电极都为独立电极单独输出至一个外电路,且等距排列。绝缘聚合物层贴合且覆盖在所述电极阵列的其中一侧上,绝缘聚合物层供液滴在绝缘聚合物层上滑动摩擦,由此相应电极感应液滴与绝缘聚合物层界面区的电荷转移量,从而获得液滴在疏水界面滑动过程中的高分辨电荷分布,解决目前存在的单电极和双电极Droplet-TENG都不能在两个垂直轴上实现液滴运动轨迹上的微观高分辨电荷分布的技术问题。

Description

一种液滴摩擦纳米发电机及其监测仪与监测方法 技术领域
本发明涉及一种摩擦纳米发电机,特别是涉及一种液滴摩擦纳米发电机,采用所述液滴摩擦纳米发电机在液滴的运动过程中的电荷转移实时监测仪,采用所述电荷转移实时监测仪的长距离下液滴在疏水界面滑动过程中的高分辨电荷分布监测方法。
背景技术
近年来,多项研究致力于利用液固界面间的接触起电,从液滴的运动中来获取能量,即液滴-摩擦纳米发电机(Droplet-TENG)。目前大多数研究集中在单电极液滴Droplet-TENG,或者将多电极串联或者并联以提高摩擦纳米发电机的性能,然而这些类型的摩擦纳米发电机对于提供液固界面间电荷转移信息非常有限。比如,仅使用一个电极的Droplet-TENG只能告诉我们液滴沿整个滑动路径的总电荷转移,而无法在微观水平上持续监测电荷转移量。而具有两个平行电极的Droplet-TENG可以在一定程度上区分Y轴方向的电荷转移,而X轴方向的电荷转移分析仍然无法实现。因此,目前存在的单电极和双电极Droplet-TENG都不能在X轴和Y轴上实现液滴运动轨迹上的微观高分辨电荷分布。
发明内容
为了解决目前存在的单电极和双电极Droplet-TENG都不能在X轴和Y轴上实现液滴运动轨迹上的微观高分辨电荷分布的技术问题,本发明提供一种液滴摩擦纳米发电机,采用所述液滴摩擦纳米发电机在整个液滴的运动过程中的电荷转移实时监测仪,采用所述电荷转移实时监测仪的长程距离下液滴在整个疏水界面滑动过程中的高分辨电荷分布监测方法。通过本发明的液滴摩擦纳米发电机能感应液滴与绝缘聚合物层界面区的电荷转移量,从而获得液滴在整个疏水界面滑动过程中的高分辨电荷分布。
为达到上述目的,本发明采用以下技术方案实现:一种液滴摩擦纳米发电机,其包括电极阵列层和绝缘聚合物层。电极阵列层包括电极阵列。所述电极阵列中的每个电极都为独立电极单独输出至一个外电路,且等距排列。绝缘聚合物层贴合且覆盖在所述电极阵列的其中一侧上,绝缘聚合物层供液滴在绝缘聚合物层上滑动摩擦,由此相应电极感应液滴与绝缘聚合物层界面区的电荷转移量。
作为上述方案的进一步改进,电极阵列层还包括:绝缘聚合物基板,电极阵列镶嵌在绝缘聚合物基板中且两侧裸露在绝缘聚合物基板的相对两侧上;绝缘聚合物层贴合在绝缘聚合物基板镶嵌有所述电极阵列的其中一侧上且覆盖所述电极阵列。
作为上述方案的进一步改进,绝缘聚合物层的聚合物材料为薄膜材料,固体材料或经过化学修饰和细胞附着的化学生物材料。
进一步地,绝缘聚合物层的聚合物材料为聚甲基丙烯酸甲酯,或尼龙,或氯乙烯,或聚二甲基硅氧烷,或聚四氟乙烯等聚合物材料,或半导体材料。
进一步地,绝缘聚合物层的厚度为1µm-100µm。
进一步地,绝缘聚合物基板的厚度范围为1-10 mm。
作为上述方案的进一步改进,电极采用一种导电的材料。
进一步地,电极采用导电高分子、不锈刚。
再进一步地,电极采用金、银、钼、铝、镍、铜、钛、烙、硒及其合金中的一种。
作为上述方案的进一步改进,电极的形状为正方形或者圆形。
作为上述方案的进一步改进,电极的直径范围为0.1-10 mm。
作为上述方案的进一步改进,所述电极阵列中的电极的间距范围为0.1-10 mm。
作为上述方案的进一步改进,所述电极阵列的密度范围为0.1-1 mm。
作为上述方案的进一步改进,绝缘聚合物层和电极阵列层的外侧边缘通过胶带连接。
作为上述方案的进一步改进,绝缘聚合物层采用一个矩形的5cm×10cm的全氟乙烯丙烯共聚物薄膜,厚度范围为10-50 µm,带背胶,粘贴在高分子聚合物绝缘层的聚甲基丙烯酸甲酯基底上,所述高分子聚合物绝缘层为电极阵列层,所述聚甲基丙烯酸甲酯基底为绝缘聚合物基板且厚度1mm;所述聚甲基丙烯酸甲酯基底的表面镶嵌有铜电极阵列,所述铜电极阵列为所述电极阵列,所述电极阵列的密度为每平方厘米排布有144个独立电极,电极阵列按12列×36排的方式排布。
本发明还提供一种在液滴的运动过程中的电荷转移实时监测仪,包括检测装置和上述任意液滴摩擦纳米发电机。液滴摩擦纳米发电机中的每个电极都独立与所述检测装置电性连接。通过电极感应液滴与绝缘聚合物层界面区的电荷转移量,电极由此通过所述检测装置形成独立的电信号;所述检测装置通过这些独立的电信号得到液滴在绝缘聚合物层上的整个运动轨迹。
作为上述方案的进一步改进,所述检测装置为电流检测装置,电压检测装置或电荷检测装置,相应的电信号对应为电流信号,电压信号或电荷信号。
本发明还提供一种长距离下液滴在疏水界面滑动过程中的高分辨电荷分布监测方法,其包括以下步骤:
提供上述在液滴的运动过程中的电荷转移实时监测仪;
当液滴在疏水界面长程距离滑动时,所述电荷转移实时监测仪的电极通过所述电荷转移实时监测仪的检测装置形成独立的电信号,通过这些独立的电信号得到长程距离下液滴在疏水界面滑动过程中的高分辨电荷分布轨迹。
本发明还提供一种将上述任意液滴摩擦纳米发电机作为探针在液固界面间实时微观电荷转移监测中的应用。
与现有技术相比,本发明的液滴摩擦纳米发电机为一种高密度电极阵列的像素液滴摩擦纳米发电机,具备如下有益效果:
1.可以实时监测长程距离下液滴如水滴在整个疏水界面滑动过程中的高分辨电荷分布,电荷空间分辨率可达400 µm;单电极和双电极的液滴摩擦纳米发电机得到的电荷转移数据为一个点或两个点,无法观察到液滴在运动过程中的转移电荷的微观变化,而本发明可以实现这一点。
2.应用场景广泛。可以应用于材料表面物理,化学性质的微观快速检测,液体化学和物理性质的检测,也可以用于生物薄膜表面性质的微观检测,细胞和病毒等性质的快速检测等。比如固体材料的疏水性,粗糙度,液滴的接触角和酸碱性,细胞和病毒的微观运动等的测定。而这些微观尺度的性能测定目前所存在的摩擦纳米发电机都无法实现。
附图说明
图1为本发明实施例1提供的液滴摩擦纳米发电机的结构示意图。
图2为本发明实施例2提供的液滴摩擦纳米发电机的电极阵列的结构示意图。
图3为图2的液滴摩擦纳米发电机所的电荷转移过程的示意图。
图4为采用图2的液滴摩擦纳米发电机得到的水滴滑过FEP膜表面时的电荷分布图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步地详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
请参阅图1,其为本发明实施例1提供的液滴摩擦纳米发电机的结构示意图。液滴摩擦纳米发电机属于像素液滴摩擦纳米发电机(pixel droplet-TENG)可以作为探针实现水滴运动轨迹上的微观高分辨电荷分布。
液滴摩擦纳米发电机包括绝缘聚合物层2、电极阵列层5。电极阵列层5包括绝缘聚合物基板4、镶嵌在绝缘聚合物基板4中且两侧裸露在绝缘聚合物基板4的相对两侧上的电极阵列。所述电极阵列中的每个电极3都为独立电极单独输出至一个外电路,且等距排列。绝缘聚合物层2贴合在绝缘聚合物基板4镶嵌有所述电极阵列的一侧上且覆盖所述电极阵列,绝缘聚合物层2供液滴1在绝缘聚合物层2上滑动摩擦,由此相应电极3感应液滴1与绝缘聚合物层2界面区的电荷转移量。由此,液滴摩擦纳米发电机可视为三层结构,包括第一摩擦层,第二摩擦层和电极层。
第一摩擦层为液滴1,可以为水滴或其他任意液态液滴,液滴浓度,种类和液滴尺寸没有限制。
第二摩擦层为绝缘聚合物层2,聚合物材料可以为聚甲基丙烯酸甲酯、尼龙、氯乙烯、聚二甲基硅氧烷、聚四氟乙烯等绝缘聚合物材料或者半导体材料,或者其他高分子聚合物绝缘层,厚度优选为1µm-100µm。第二摩擦层能够是任意绝缘的薄膜材料,固体材料或经过化学修饰和细胞附着的化学生物材料。绝缘聚合物层2的表面优选为疏水表面。
电极层为电极阵列,电极阵列设置在绝缘聚合物基板4上,绝缘聚合物基板4厚度优选范围为0-10 mm。电极阵列也可通过其他任意方式单独存在于绝缘聚合物2下面,而不依附于绝缘聚合物4。因此,当绝缘聚合物基板4的厚度范围为0mm时,电极阵列层5就没有设置绝缘聚合物基板4,而只有电极阵列。此时,绝缘聚合物层2贴合且覆盖在所述电极阵列的其中一侧上。故,电极阵列层5可以不设置绝缘聚合物基板4,而只有电极阵列。
电极阵列的每个电极3能够是任何一种导电的材料,如导电高分子、不锈刚等;优选为金、银、钼、铝、镍、铜、钛、烙、锡及其合金中的一种。在本实施例中,电极3采用金属电极,相应的电极阵列为金属电极阵列。每个电极3的形状优选为正方形或者圆形。电极阵列中每个电极3直径和间距可为任意尺寸,优选范围为直径0.1-10 mm,间距为0.1-10 mm。电极阵列的密度可为0到无穷大,优选范围为0.1-1 mm。电极阵列中每个电极3都为独立电极,等距排列,不与其他电极串联或者并联。每个电极3都独立与检测装置(图未示)相连,通过电极3感应液滴1与绝缘聚合物层2界面区的电荷转移量,电极3由此通过所述检测装置形成独立的电信号。所述检测装置通过这些独立的电信号得到液滴1在绝缘聚合物层2上的整个运动轨迹。液滴摩擦纳米发电机和检测装置可以构成电荷转移实时监测仪的主要器件,电荷转移实时监测仪用于液滴的运动过程中的电荷转移实时监测仪。检测装置可为电流检测装置,电压检测装置或电荷检测装置,对应的电信号为电流信号,电压信号或电荷信号。
本发明的电荷转移实时监测仪可以应用在高分辨电荷分布监测方法中,如一种长程距离下液滴在疏水界面滑动过程中的高分辨电荷分布监测方法,其包括以下步骤:提供所述液滴的运动过程中的电荷转移实时监测仪;当液滴1在疏水界面长程距离滑动时,所述电荷转移实时监测仪的电极3通过所述电荷转移实时监测仪的检测装置形成独立的电信号,通过这些独立的电信号得到长距离下液滴在疏水界面滑动过程中的高分辨电荷分布轨迹。
当液滴1滑过第二摩擦层时,根据检测到的电信号能够确定此位置的电荷转移,因此当液滴1滑过电极阵列时,每个独立电极3位置上的电荷转移就被记录,就可以得到整个运动轨迹上的电荷分布图。第二摩擦层的表面与电极阵列结构的表面贴合,电极阵列为摩擦发电机的电压和电流输出电极。绝缘聚合物层2和电极阵列层5的外侧边缘可通过胶带连接,在本实施例中,第二摩擦层与电极阵列的外侧边缘能够通过胶带等方式连接。
与现有技术相比,目前对液固界面间电荷转移的研究主要采用原子力显微镜,单电极和双电极摩擦纳米发电机。单电极和双电极液滴摩擦纳米发电机不能在X轴和Y轴上实现水滴运动轨迹上的微观高分辨电荷分布。而原子力显微镜虽然分辨率非常高,但是因为对样品尺度有要求,并不适用于在厘米以上级别的整个水滴的运动过程中的电荷转移实时监测。因此本发明的高密度电极阵列的像素液滴摩擦纳米发电机:
1.可以实时监测长程距离下水滴在疏水界面滑动过程中的高分辨电荷分布,电荷空间分辨率可达400 µm;单电极和双电极的液滴摩擦纳米发电机得到的电荷转移数据为一个点或两个点,无法观察到液滴在运动过程中的转移电荷的微观变化,而本发明可以实现这一点。
2.应用场景广泛。可以应用于材料表面物理,化学性质的微观快速检测,也可以用于生物薄膜表面性质的微观检测。比如固体材料的疏水性,粗糙度,液滴的接触角和酸碱性,细胞的微观运动等的测定。而这些微观尺度的性能测定目前所存在的摩擦纳米发电机都无法实现。
3.可以将本发明的液滴摩擦纳米发电机作为探针在液固界面间实时微观电荷转移监测中进行应用。
综上,本发明提出的一种阵列液滴摩擦纳米发电机的制备方法工艺简单、可批量生产,且工艺兼容性优异,不受材料等限制,电荷空间分辨率可达400µm。这是一种以新颖的原理和方法为基础的新型探针技术,它很可能会为化学,物理,材料和生物等领域的研究和应用开辟新的研究方法。
实施例2
液滴摩擦纳米发电机以液滴在高分子聚合物表面滑动摩擦产生电荷转移为基础。如图2所示,一个矩形的(5cm×10cm) 全氟乙烯丙烯共聚物薄膜(即绝缘聚合物层2,厚度范围为10-50 µm,带背胶,附图3中的FEP),粘贴在高分子聚合物绝缘层的聚甲基丙烯酸甲酯基底(厚度1mm)上。所述高分子聚合物绝缘层为电极阵列层5,所述聚甲基丙烯酸甲酯基底为绝缘聚合物基板4。高分子聚合物绝缘层的表面镶嵌有铜电极阵列 (附图3中Electrode array,电极阵列密度为每平方厘米排布有144个独立电极,电极阵列按12列×36排的方式排布)作电极。电极阵列在这里的作用为感应液滴与高聚物界面区的电荷转移量。该器件的制备工艺简单,能够大规模生产。
如图2所示,高分子聚合物绝缘层的聚甲基丙烯酸甲酯表面镶嵌有铜电极阵列,该电极阵列的电极3贯穿聚甲基丙烯酸甲酯基底,电极阵列底部的电极3与多通道电流计相连接,电极阵列按12列×36排的方式排布。
图3是高密度电极阵列像素液滴摩擦纳米发电机探针原理的图解。当液滴1在器件(即绝缘聚合物层的绝缘聚合物层2)上滑动时,液滴1与全氟乙烯丙烯共聚物薄膜发生互相接触和摩擦。滑动摩擦导致电子由液滴1转移到全氟乙烯丙烯共聚物薄膜表面,在这个过程中还存在液滴中的阳离子少量吸附到全氟乙烯丙烯共聚物薄膜表面,导致静电荷在界面处生成,液滴1表面主要带正电荷,而全氟乙烯丙烯共聚物薄膜表面主要带负电荷,由于聚合物膜本身是绝缘的,所以感应电荷不会被迅速导走或中和。为了抵消感应电荷,电极阵列将感应出电性相反的自由电荷,而感应到的自由电荷在外电路导通的情况下将发生中和,通过负载进而形成外电流。整个电荷转移过程参见附图3。
图4即为采用本发明的阵列液滴摩擦纳米发电机得到的水滴滑过FEP膜表面时的电荷分布图,电荷空间分辨率可达400 µm,可以观察微观下的电荷转移信息。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种液滴摩擦纳米发电机,其特征在于,
    电极阵列层(5),其包括电极阵列;所述电极阵列中的每个电极(3)都为独立电极单独输出至一个外电路,且等距排列;
    绝缘聚合物层(2),其贴合且覆盖在所述电极阵列的其中一侧上,绝缘聚合物层(2)供液滴(1)在绝缘聚合物层(2)上滑动摩擦,由此相应电极(3)感应液滴(1)与绝缘聚合物层(2)界面区的电荷转移量。
  2. 如权利要求1所述的液滴摩擦纳米发电机,其特征在于,电极阵列层(5)还包括:
    绝缘聚合物基板(4),电极阵列镶嵌在绝缘聚合物基板(4)中且两侧裸露在绝缘聚合物基板(4)的相对两侧上;绝缘聚合物层(2)贴合在绝缘聚合物基板(4)镶嵌有所述电极阵列的其中一侧上且覆盖所述电极阵列。
  3. 如权利要求1所述的液滴摩擦纳米发电机,其特征在于,绝缘聚合物层(2)的聚合物材料为薄膜材料,固体材料或经过化学修饰和细胞附着的化学生物材料;
    和/或,绝缘聚合物层(2)的表面为疏水表面。
  4. 如权利要求3所述的液滴摩擦纳米发电机,其特征在于,绝缘聚合物层(2)的聚合物材料为聚甲基丙烯酸甲酯,或尼龙,或氯乙烯,或聚二甲基硅氧烷,或聚四氟乙烯,或半导体材料。
  5. 如权利要求3所述的液滴摩擦纳米发电机,其特征在于,绝缘聚合物层(2)的厚度为1µm-100µm。
  6. 如权利要求1所述的液滴摩擦纳米发电机,其特征在于,电极(3)采用导电高分子材料或不锈刚材料制成,或采用金、银、钼、铝、镍、铜、钛、烙、锡及其合金中的一种材料制成。
  7. 如权利要求1所述的液滴摩擦纳米发电机,其特征在于,电极(3)的形状为正方形或者圆形。
  8. 如权利要求1所述的液滴摩擦纳米发电机,其特征在于,电极(3)的直径范围为0.1-10 mm。
  9. 如权利要求1所述的液滴摩擦纳米发电机,其特征在于,所述电极阵列中的电极(3)的间距范围为0.1-10 mm。
  10. 如权利要求1所述的液滴摩擦纳米发电机,其特征在于,所述电极阵列的密度范围为0.1-1 mm。
  11. 如权利要求2所述的液滴摩擦纳米发电机,其特征在于,绝缘聚合物层(2)和电极阵列层(5)的外侧边缘通过胶带连接。
  12. 如权利要求2所述的液滴摩擦纳米发电机,其特征在于,绝缘聚合物基板(4)的厚度范围为1-10 mm。
  13. 如权利要求2所述的液滴摩擦纳米发电机,其特征在于,所述绝缘聚合物层(2)采用全氟乙烯丙烯共聚物薄膜,厚度范围为10-50 µm;
    所述绝缘聚合物基板为聚甲基丙烯酸甲酯基底。
  14. 一种在液滴的运动过程中的电荷转移实时监测仪,其特征在于,其包括:
    如权利要求1至13中任意一项所述的液滴摩擦纳米发电机;
    检测装置,所述液滴摩擦纳米发电机中的每个电极(3)都独立与所述检测装置电性连接;通过电极(3)感应液滴(1)与绝缘聚合物层(2)界面区的电荷转移量,电极(3)由此通过所述检测装置形成独立的电信号;所述检测装置通过这些独立的电信号得到液滴(1)在绝缘聚合物层(2)上的整个运动轨迹。
  15. 如权利要求14所述的在液滴的运动过程中的电荷转移实时监测仪,其特征在于,所述检测装置为电流检测装置、电压检测装置或电荷检测装置,相应的电信号对应为电流信号、电压信号或电荷信号。
  16. 一种长距离下液滴在疏水界面滑动过程中的高分辨电荷分布监测方法,其特征在于,其包括以下步骤:
    提供如权利要求8或9所述的在液滴的运动过程中的电荷转移实时监测仪;
    当液滴(1)在疏水界面长距离滑动时,所述电荷转移实时监测仪的电极(3)通过所述电荷转移实时监测仪的检测装置形成独立的电信号,通过这些独立的电信号得到长距离下液滴在疏水界面滑动过程中的高分辨电荷分布轨迹。
  17. 将如权利要求1至13中任意一项所述的液滴摩擦纳米发电机作为探针在液固界面间实时微观电荷转移监测中的应用,或在材料表面物理、化学性质的微观快速检测中的应用,或在液体化学和物理性质的检测中的应用,或在生物薄膜表面性质的微观检测中的应用,或在细胞和病毒的快速检测中的应用。
PCT/CN2023/112281 2022-11-25 2023-08-10 一种液滴摩擦纳米发电机及其监测仪与监测方法 WO2024109170A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211492597.7 2022-11-25
CN202211492597.7A CN115800804A (zh) 2022-11-25 2022-11-25 一种液滴摩擦纳米发电机及其监测仪与监测方法

Publications (1)

Publication Number Publication Date
WO2024109170A1 true WO2024109170A1 (zh) 2024-05-30

Family

ID=85441610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112281 WO2024109170A1 (zh) 2022-11-25 2023-08-10 一种液滴摩擦纳米发电机及其监测仪与监测方法

Country Status (2)

Country Link
CN (1) CN115800804A (zh)
WO (1) WO2024109170A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115800804A (zh) * 2022-11-25 2023-03-14 北京纳米能源与系统研究所 一种液滴摩擦纳米发电机及其监测仪与监测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684546A (zh) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 一种摩擦发电机
CN103684035A (zh) * 2012-09-20 2014-03-26 纳米新能源(唐山)有限责任公司 多层高功率纳米摩擦发电机
CN104167950A (zh) * 2013-05-16 2014-11-26 纳米新能源(唐山)有限责任公司 摩擦发电机
CN104980060A (zh) * 2014-04-09 2015-10-14 北京纳米能源与系统研究所 采集液体机械能的摩擦电纳米发电机以及发电方法
KR20210055462A (ko) * 2019-11-07 2021-05-17 울산대학교 산학협력단 액체-액체 기반 마찰 나노 발전기
CN113037126A (zh) * 2021-03-09 2021-06-25 中国科学院兰州化学物理研究所 一种复合式水滴固-液摩擦纳米发电机及其使用方法
CN115800804A (zh) * 2022-11-25 2023-03-14 北京纳米能源与系统研究所 一种液滴摩擦纳米发电机及其监测仪与监测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684546A (zh) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 一种摩擦发电机
CN103684035A (zh) * 2012-09-20 2014-03-26 纳米新能源(唐山)有限责任公司 多层高功率纳米摩擦发电机
CN104167950A (zh) * 2013-05-16 2014-11-26 纳米新能源(唐山)有限责任公司 摩擦发电机
CN104980060A (zh) * 2014-04-09 2015-10-14 北京纳米能源与系统研究所 采集液体机械能的摩擦电纳米发电机以及发电方法
KR20210055462A (ko) * 2019-11-07 2021-05-17 울산대학교 산학협력단 액체-액체 기반 마찰 나노 발전기
CN113037126A (zh) * 2021-03-09 2021-06-25 中国科学院兰州化学物理研究所 一种复合式水滴固-液摩擦纳米发电机及其使用方法
CN115800804A (zh) * 2022-11-25 2023-03-14 北京纳米能源与系统研究所 一种液滴摩擦纳米发电机及其监测仪与监测方法

Also Published As

Publication number Publication date
CN115800804A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
Xu et al. Contact-electrification between two identical materials: curvature effect
KR101804416B1 (ko) 슬라이드 마찰식 발전기, 발전 방법 및 벡터 변위 센서
JP6356791B2 (ja) スライド摩擦式発電機、発電方法及びベクトル変位センサ
WO2024109170A1 (zh) 一种液滴摩擦纳米发电机及其监测仪与监测方法
Helseth A water droplet-powered sensor based on charge transfer to a flow-through front surface electrode
Zhang et al. Triboelectric nanogenerator array as a probe for in situ dynamic mapping of interface charge transfer at a liquid–solid contacting
Xu et al. A leaf-mimic rain energy harvester by liquid-solid contact electrification and piezoelectricity
Ding et al. Ultrasensitive, low‐voltage operational, and asymmetric ionic sensing hydrogel for multipurpose applications
KR102533531B1 (ko) 전기화학 감지, 정전용량 감지 및 전계 방출 감지를 위한 나노구조 어레이 기반의 센서들
US7718950B2 (en) High resolution thin film tactile device to detect distribution of stimuli on by touch
CN106840476A (zh) 三维碳纳米材料场效应柔性力敏传感元件及制备方法
US20140145709A1 (en) Nanowire electrode sensor
Wu et al. A Self‐Powered Triboelectric Nanosensor for PH Detection
CN110596476A (zh) 一种快速测量表面束缚电荷密度的方法
Lu et al. Electronic view of triboelectric nanogenerator for energy harvesting: Mechanisms and applications
US11696709B2 (en) Liquid information sensor and method of driving the same
Flachs et al. Transparent poly (3, 4-ethylenedioxythiophene)-based microelectrodes for extracellular recording
Kolmakov et al. Scanning Electron Microscopy to Study the Nucleation and Growth Phenomena in Liquid Electrolytes under Operando Conditions
Tencer et al. Electrochemistry of au-sam-protein stacks
Wijewardhana et al. Novel electrode design for energy harvesting devices based on liquid–solid contact and enhancement of effective interface area
US20040060820A1 (en) Characterization of particles by position in an electric field
US20030209438A1 (en) Particle characterization using gravity in opposition to an induced force
Wan Salim et al. Ion-selective electrode biochip for applications in a liquid environment
Huynh et al. Effect of Thin Film Platinum Microelectrode Granularity on Corrosion under Electrical Stimulation
JP3760681B2 (ja) 電荷移動力検出装置