WO2024109103A1 - 一种闸门联动控制方法、装置及并联供水发电系统 - Google Patents

一种闸门联动控制方法、装置及并联供水发电系统 Download PDF

Info

Publication number
WO2024109103A1
WO2024109103A1 PCT/CN2023/106647 CN2023106647W WO2024109103A1 WO 2024109103 A1 WO2024109103 A1 WO 2024109103A1 CN 2023106647 W CN2023106647 W CN 2023106647W WO 2024109103 A1 WO2024109103 A1 WO 2024109103A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
power generation
canal
target
trunk
Prior art date
Application number
PCT/CN2023/106647
Other languages
English (en)
French (fr)
Inventor
尚毅梓
梁犁丽
李晓飞
龚家国
冶运涛
刘志武
Original Assignee
中国长江三峡集团有限公司
中国水利水电科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国长江三峡集团有限公司, 中国水利水电科学研究院 filed Critical 中国长江三峡集团有限公司
Publication of WO2024109103A1 publication Critical patent/WO2024109103A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present application relates to the technical field of water diversion engineering, and in particular to a gate linkage control method and device and a parallel water supply and power generation system.
  • a water diversion project is a type of water conservancy project that uses engineering technology to divert water from a water source through water intake buildings and water delivery buildings to a water-demanding area.
  • the comprehensive functions of water conservancy projects have received more and more attention, and water diversion projects must also make corresponding adjustments.
  • Water conservancy projects that are mainly used for power generation are more about the use of hydropower, and the efficiency of water utilization is relatively low, while water conservancy projects that are mainly used for water supply have a higher efficiency in the use of water, but often ignore the use of hydropower.
  • Single-target water diversion or power generation projects can no longer meet the needs of social development, and water conservancy projects that comprehensively utilize water and hydropower are the future development direction.
  • the more functions a water diversion project has the more water diversion gates it involves. Therefore, how to achieve multi-gate linkage control of multi-functional water diversion projects has become a key research topic.
  • the present application provides a gate linkage control method, device and parallel water supply and power generation system to solve the defects of the prior art that the gate opening cannot be accurately controlled when a water diversion project involves multiple gates.
  • the first aspect of the present application provides a gate linkage control method, which is applied to a parallel water supply and power generation system, wherein the parallel water supply and power generation system comprises a reservoir, a first trunk canal, a second trunk canal, an energy dissipation pool and a third trunk canal, wherein the first trunk canal and the second trunk canal are connected in parallel, the reservoir is located upstream of the first trunk canal and the second trunk canal, the energy dissipation pool is located downstream of the first trunk canal and the second trunk canal, a first gate is arranged between the first trunk canal and the reservoir, a power generation hole and a generator set are arranged in sequence along the water flow direction of the second trunk canal, a second gate is arranged between the power generation hole and the generator set, and water flows in the first trunk canal and the second trunk canal flow into the third trunk canal through the energy dissipation pool, and the method comprises:
  • the current gate opening information includes the current first gate opening information and the current second gate opening information
  • the gate opening of the target gate is controlled.
  • determining the target gate linkage control strategy of the parallel water supply and power generation system according to the current gate opening information of the parallel water supply and power generation system and the current water level of the third trunk canal includes:
  • a target gate linkage control strategy with the minimum water level error is selected from the gate linkage control strategy set.
  • the target gate linkage control strategy with the minimum water level error is selected in the gate linkage control strategy set:
  • U * represents the target gate linkage control strategy
  • U represents any gate linkage control strategy in the gate linkage control strategy set
  • x0 represents the initial water level of the third main canal corresponding to the gate linkage control strategy U
  • J(U, x0 ) is the water level error calculation function
  • k is the time step
  • Nh is the prediction interval
  • the prediction interval includes several time steps
  • x(k) is the water level prediction value of the third main canal at time step k
  • Q, R are the constant weighted matrices of the preset quadratic deviation penalty
  • Ql is the constant weighted matrix of the preset linear penalty
  • T is the transpose sign
  • u(k) is the gate opening of each gate represented by the gate linkage control strategy U
  • x( Nh ) is the final error between the water level prediction value and the target water level value in the prediction interval.
  • the third trunk channel is composed of a plurality of sub-trunks connected in series, an energy dissipation pool is provided between each sub-trunk, the third trunk channel is provided with a plurality of water outlet gates, the target gate includes the water outlet gate, and the method further comprises:
  • the differential error of each of the stilling pools is predicted when the gate opening of the target gate is controlled according to the target gate linkage control strategy.
  • the target gate linkage control strategy is optimized.
  • the predicting, based on a preset differential error calculation formula, of the differential errors of the stilling pools when the gate opening of the target gate is controlled according to the target gate linkage control strategy comprises:
  • the differential error of each of the stilling pools is predicted when the gate opening of the target gate is controlled according to the target gate linkage control strategy:
  • Dj is the differential error of stilling pool j
  • ej is the water level error of stilling pool j
  • n is the total number of stilling pools
  • ei is the water level error of stilling pools other than stilling pool j.
  • controlling the gate opening of the target gate according to the target gate linkage control strategy of the parallel water supply power generation system includes:
  • the gate opening of the target gate is controlled according to the target gate linkage control strategy of the parallel water supply and power generation system.
  • the gain parameter of the preset PID controller is optimized based on the following formula:
  • Oh is the gain parameter
  • N1 is the length of the neuron sequence of the first hidden layer of the neural network
  • Nmc is the length of the neuron sequence of the mcth hidden layer of the neural network
  • mc represents the total number of hidden layers of the neural network
  • Hj is the intermediate variable.
  • the method further includes:
  • the target gate opening correction strategy is determined based on the deviation between the current actual opening of each target gate and the target opening of each target gate represented by the target gate linkage control strategy.
  • the second aspect of the present application provides a gate linkage control device, which is applied to a parallel water supply power generation system, wherein the parallel water supply power generation system comprises a reservoir, a first trunk canal, a second trunk canal, an energy dissipation pool and a third trunk canal, wherein the first trunk canal and the second trunk canal are connected in parallel, the reservoir is located upstream of the first trunk canal and the second trunk canal, the energy dissipation pool is located downstream of the first trunk canal and the second trunk canal, a first gate is arranged between the first trunk canal and the reservoir, a power generation hole and a generator set are arranged in sequence along the water flow direction of the second trunk canal, a second gate is arranged between the power generation hole and the generator set, and the water flow in the first trunk canal and the second trunk canal flows into the third trunk canal through the energy dissipation pool, and the device comprises:
  • An acquisition module used to acquire the current gate opening information of the parallel water supply and power generation system and the current water level of the third main canal; wherein the current gate opening information includes the current first gate opening information and the current second gate opening information;
  • a determination module used to determine a target gate linkage control strategy of the parallel water supply and power generation system according to the current gate opening information of the parallel water supply and power generation system and the current water level of the third main canal;
  • the control module is used to control the gate opening of the target gate according to the target gate linkage control strategy of the parallel water supply and power generation system.
  • the third aspect of the present application provides a parallel water supply power generation system, comprising:
  • the first trunk canal and the second trunk canal are connected in parallel, the reservoir is located upstream of the first trunk canal and the second trunk canal, and the stilling pool is located downstream of the first trunk canal and the second trunk canal;
  • a first gate is provided between the first main canal and the reservoir
  • the second main channel is provided with a power generation hole and a generator set in sequence along the water flow direction, and a second gate is provided between the power generation hole and the generator set;
  • the water flow in the first trunk channel and the second trunk channel flows into the third trunk channel through the stilling basin;
  • an electronic device comprising: at least one processor and a memory;
  • the memory stores computer-executable instructions
  • the at least one processor executes the computer-executable instructions stored in the memory, so that the at least one processor performs the method described in the first aspect and various possible designs of the first aspect.
  • the fourth aspect of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores computer-executable instructions.
  • the computer-readable storage medium stores computer-executable instructions.
  • the present application provides a gate linkage control method, device and parallel water supply and power generation system, which are applied to the parallel water supply and power generation system.
  • the parallel water supply and power generation system includes a reservoir, a first trunk channel, a second trunk channel, an energy dissipation pool and a third trunk channel.
  • the first trunk channel and the second trunk channel are connected in parallel.
  • the reservoir is located upstream of the first trunk channel and the second trunk channel, and the energy dissipation pool is located downstream of the first trunk channel and the second trunk channel.
  • a first gate is arranged between the first trunk channel and the reservoir.
  • a power generation hole and a generator set are arranged in sequence along the water flow direction of the second trunk channel.
  • a second gate is arranged between the power generation hole and the generator set.
  • the first trunk channel The water flow in the parallel water supply and power generation system and the water flow in the second main channel are merged into the third main channel through the energy dissipation pool.
  • the method includes: obtaining the current gate opening information of the parallel water supply and power generation system and the current water level of the third main channel; wherein the current gate opening information includes the current first gate opening information and the current second gate opening information; determining the target gate linkage control strategy of the parallel water supply and power generation system according to the current gate opening information of the parallel water supply and power generation system and the current water level of the third main channel; controlling the gate opening of the target gate according to the target gate linkage control strategy of the parallel water supply and power generation system.
  • the method provided by the above scheme improves the control efficiency of the gates while realizing the precise control of the gate linkage of the multi-gate water diversion project.
  • FIG1 is a schematic diagram of a flow chart of a gate linkage control method provided in an embodiment of the present application.
  • FIG2 is a flow chart of an exemplary gate linkage control method provided in an embodiment of the present application.
  • FIG3 is a flow chart of another exemplary gate linkage control method provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of a gate linkage control device provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a parallel water supply power generation system provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
  • Water diversion project is a kind of water conservancy project that uses engineering technology to divert water from the water source through water intake buildings and water delivery buildings to the water-demanding area.
  • the development of water diversion project can be roughly divided into three stages.
  • the first stage of water diversion is to dig channels directly in the natural water system to divert water. This water diversion method cannot effectively control the amount of water diverted.
  • dam diversion was developed. Dam diversion improves the ability of artificial control of water volume. This water diversion method is widely used, but dam diversion may cause damage to the ecological environment.
  • the third stage is that with the construction of intelligent water network, the comprehensive functions of water conservancy projects are increasingly valued, and water diversion projects must also make corresponding adjustments.
  • Water conservancy projects mainly for power generation are more about the use of hydropower, and the efficiency of water utilization is relatively low, while water conservancy projects with water supply as the main purpose have a higher efficiency of water utilization and often ignore the use of hydropower.
  • Single-target water diversion or power generation projects can no longer meet the needs of social development.
  • Water conservancy projects that comprehensively utilize water volume and hydropower are the future development direction.
  • the goal of the river-lake water system connection project is to maintain the water conservancy connection and material circulation between different water bodies.
  • it maintains, reshapes or constructs water flow connection channels that meet specific functions and goals through natural and artificial driving.
  • Traditional water diversion projects have a certain ability to connect water systems.
  • Water diversion projects are an important way to solve the serious water shortage problem in some areas caused by the uneven temporal and spatial distribution of water resources.
  • the number of water diversion projects is increasing, which has brought economic benefits but also led to many problems. From the current stage of development, water resources have an extremely important impact on people's production and life.
  • the water volume of the branch canal was controlled by the water volume of the main canal, and the regulation of the water volume of the main canal was difficult to do well.
  • the dam-based water diversion method can obtain a relatively stable water flow, but the construction of the dam is time-consuming and labor-intensive, and may have an impact on the environment. Therefore, when designing a water diversion project, dam-based water diversion and dam-free water diversion are combined, and the terrain characteristics and hydrological characteristics are combined to reasonably design the water diversion plan, and generator sets are added during the water diversion process to realize the utilization of water energy.
  • the dam-based water diversion method requires a large investment, and the utilization of water volume and hydropower cannot be taken into account at the same time. It is difficult to build a hydropower station for small water volume.
  • the water supply of the hydropower station is to divert water from the upstream of the reservoir area. It is a water diversion process mainly for power generation. This method is only suitable for large rivers. When the water volume is particularly sufficient and the redundancy is high, the water volume can be stably regulated.
  • the control system needs to have a clear perception of the overall situation of the water diversion project. Therefore, it is necessary to deploy sensors in the project to obtain data and monitor the operating status. After the control system obtains the water level data, it controls the gate.
  • Monitoring indicators are a scientific criterion for judging whether the operation status of the project is normal. Using the project monitoring data to formulate the effect quantity operation safety monitoring indicators can effectively identify the safety status of the project and timely discover the potential safety hazards of the project, thereby realizing the health diagnosis and safety warning of the project. Monitoring indicators are also the basis for judging the reasonable adjustment of the project.
  • monitoring indicators includes quantitative values and qualitative criteria. Quantitative values are mainly the safety limit values specified for the numerical size and change trend of the monitoring effect quantity of a single measuring point. Qualitative criteria are several qualitative evaluation criteria or models formed by integrating the monitoring information of multiple measuring points and multiple effect quantities.
  • Quantitative monitoring indicators are intuitive and clear, easy to use, but they are targeted at a single measuring point and monitor local conditions.
  • the water diversion project has a long canal and embankment line, a large project scale, and complex construction and operation conditions. It is difficult to fully monitor the project safety by relying on quantitative numerical indicators of a single measuring point. It is necessary to comprehensively consider the monitoring information of multiple measuring points and multiple monitoring effect quantities to implement the overall safety monitoring of the project.
  • project safety itself is an uncertain concept with fuzzy attributes, and it is difficult to define it with an accurate and absolute value on the boundary.
  • not all indicators that characterize project safety can be measured by quantitative values, and some need to be expressed in a qualitative way. Therefore, while studying quantitative numerical monitoring indicators, qualitative safety evaluation criteria should also be studied.
  • the most intuitive manifestation of abnormal project operation status is the abnormality of the measured value of the monitoring effect quantity.
  • the abnormal measurement of a single measuring point is mainly manifested in four basic forms: abnormal value size, abnormal change process, abnormal change trend and abnormal change law. Studying the abnormal manifestation of measured values can provide a scientific basis for identifying engineering abnormalities and safety hazards, and provide a classification basis for establishing a multi-index fusion evaluation criterion. When the same or multiple types of abnormal phenomena occur at multiple measuring points and multiple effect quantities at the same time, a comprehensive judgment of the project operation status can be achieved by analyzing the intrinsic correlation between these abnormal phenomena at different measuring points and different effect quantities.
  • the existing water volume control methods mostly use gate regulation to distribute water volume, and the gate control is often controlled manually.
  • Some studies have made some progress in gate automation control and online control, such technology only solves the problem of manual control and is of limited help to the multi-gate control involved in the water supply system.
  • the parallel linkage control method of water supply and power generation is a multi-objective nonlinear system. It is necessary to regard it as a whole to ensure the overall stability, and to accurately adjust the multiple nodes in it, and each node is linked and controlled to work together.
  • engineering systems and natural systems also need to coordinate with each other. Only in this way can the needs of the project itself be met and it can continue to develop without causing catastrophic damage to the surrounding environment.
  • the integrated gate of measurement and control integrates gate, opening and closing equipment, flow measurement equipment, control equipment, power supply equipment, gate opening and closing, flow calculation, remote control, and communication functions. It combines the calculation of gate opening, channel water level, instantaneous flow and water volume in a period, and remotely measures and controls the gate of the canal system through computers and communication network systems, or realizes automatic adjustment of gate water distribution under a given flow water level or opening, and realizes the automation of flow measurement and control of channel water measurement section or straight opening.
  • the types of equipment and flow measurement control methods are becoming more and more diverse, and the product quality and technical requirements are uneven.
  • problems such as poor flow measurement accuracy, obstacles in signal transmission, and many gate automatic opening and closing failures have emerged.
  • the application of integrated gate of measurement and control can accelerate the modernization of irrigation areas and realize the automation and intelligence of water distribution in irrigation areas.
  • this technology solves more water diversion control problems in irrigation channels, and is less helpful for the linkage control between the inlet gate and the outlet gate of the channel.
  • the inflow and outflow should reach a dynamic balance, and reasonable control is also required when the water volume changes. If the two gates are controlled separately, it is possible to cause excess water, insufficient water supply or water level fluctuations.
  • the open channel flow measurement method in irrigation areas is mostly based on the use of standard water measuring weirs, hydraulic structures or artificial control sections built on the open channel.
  • the hydraulic method for measuring flow is the main one, and there are still technical difficulties in data extraction, data transmission, data analysis, etc. in terms of the means, methods and equipment selection for water intake metering and detection.
  • Controlling the water level upstream of the canal gate is the most commonly used canal automation method in practice. If the correct flow (i.e. the sum of downstream demands) enters the head gate, the method will correctly distribute the flow to all gates downstream. Errors in canal inflow will result in errors in the flow available in the last pool, either causing canal leakage or insufficient flow at the outlet of the irrigation area.
  • Adjusting the flow in a free-surface flow channel to meet the needs of farmers at a specific diversion point requires a certain control capability and study of flow transients, especially when the demand varies greatly in time and space.
  • operators can only make water depth measurements at a few places in the canal, and it is necessary to know the water depth and velocity at all discrete points in order to determine the initial conditions of the model.
  • the main goal of irrigation canal control is to supply water to users in an equitable manner.
  • One reason why the control goal is not fully achieved is the difficulty in measuring flow.
  • flow measurement is an old problem, it is still being studied.
  • gate models as a way to indirectly measure local flow, these structures can both regulate flow and distribute water in the irrigation area and have flow measurement functions. The procedure is still not completely accurate under certain flooding conditions.
  • flow measurement has additional problems in the presence of multiple gates working in parallel. If one gate is free-flowing and another gate is in the transition zone, cross-flow occurs and flow estimation based only on gate openings and upstream and downstream water levels can become a
  • the embodiments of the present application provide a gate linkage control method, device and parallel water supply and power generation system, which are applied to the parallel water supply and power generation system.
  • the parallel water supply and power generation system includes a reservoir, a first trunk canal, a second trunk canal, an energy dissipation pool and a third trunk canal.
  • the first trunk canal and the second trunk canal are connected in parallel.
  • the reservoir is located upstream of the first trunk canal and the second trunk canal, and the energy dissipation pool is located downstream of the first trunk canal and the second trunk canal.
  • a first gate is arranged between the first trunk canal and the reservoir, and a power generation cave and a generator set are arranged in sequence along the water flow direction of the second trunk canal.
  • a second gate is arranged between the power generation cave and the generator set. , the water flows in the first trunk channel and the second trunk channel flow into the third trunk channel through the energy dissipation pool, and the method includes: obtaining the current gate opening information of the parallel water supply and power generation system and the current water level of the third trunk channel; wherein the current gate opening information includes the current first gate opening information and the current second gate opening information; according to the current gate opening information of the parallel water supply and power generation system and the current water level of the third trunk channel, determining the target gate linkage control strategy of the parallel water supply and power generation system; according to the target gate linkage control strategy of the parallel water supply and power generation system, controlling the gate opening of the target gate.
  • the method provided by the above scheme improves the control efficiency of the gates while realizing the precise control of the gate linkage of the multi-gate water diversion project by determining the target gate linkage control strategy of the parallel water supply and power generation system according to the current gate opening information of the parallel water supply and power generation system and the current water level of the third trunk channel.
  • the embodiment of the present application provides a gate linkage control method, which is applied to a parallel water supply and power generation system, wherein the parallel water supply and power generation system includes a reservoir, a first trunk canal, a second trunk canal, an energy dissipation pool and a third trunk canal, wherein the first trunk canal and the second trunk canal are connected in parallel, the reservoir is located upstream of the first trunk canal and the second trunk canal, the energy dissipation pool is located downstream of the first trunk canal and the second trunk canal, a first gate is arranged between the first trunk canal and the reservoir, a power generation hole and a generator set are arranged in sequence along the water flow direction of the second trunk canal, a second gate is arranged between the power generation hole and the generator set, and a gate in the first trunk canal and the second trunk canal is arranged between the power generation hole and the generator set.
  • the water flows into the third main canal through the stilling pool.
  • the method is used to control the multi-gate linkage of the parallel water supply and power generation system.
  • the execution subject of the embodiment of the present application is an electronic device, such as a server, a desktop computer, a laptop computer, a tablet computer and other electronic devices that can be used to control the multi-gate linkage of the parallel water supply and power generation system.
  • FIG1 it is a flow chart of a gate linkage control method provided in an embodiment of the present application, and the method includes:
  • Step 101 obtaining the current gate opening information of the parallel water supply and power generation system and the current water level of the third main canal.
  • the current gate opening information includes the current first gate opening information and the current second gate opening information.
  • Step 102 determining a target gate linkage control strategy of the parallel water supply and power generation system according to the current gate opening information of the parallel water supply and power generation system and the current water level of the third main canal.
  • a hydrodynamic model of the parallel water supply and power generation system can be constructed in advance based on the hydrodynamic information of the parallel water supply and power generation system, the gate opening information can be used as the input of the hydrodynamic model, and the water level of the third main canal can be used as the output of the hydrodynamic model.
  • the change of the water level of the third main canal can be adjusted by controlling the change of the gate opening until the water level of the third main canal reaches the target water level.
  • the parallel water supply and power generation system is to add a generator set on the basis of traditional single-channel water delivery, and effectively utilize the potential energy of falling water.
  • the water delivery capacity of the channel will be reduced to a certain extent due to the influence of the unit, and it is possible that the unit fails and cannot deliver water.
  • another main canal is laid on one side of the original main canal, and the two main canals cooperate in water delivery.
  • the main canal of the generator set is mainly responsible for water supply, and the side main canal assists in regulation.
  • the side main canal is responsible for water supply.
  • the construction standards of the two channels are consistent, so both are capable of meeting the downstream water demand requirements.
  • the number of gates also increases accordingly, and the control method of the gates must also be adjusted accordingly.
  • Monitoring equipment is deployed at the reservoir location to monitor the gate opening, monitoring equipment is deployed at the generator set to monitor the flow change of the unit, and water level monitoring equipment is deployed along the downstream main canal.
  • the water level information is fed back to the control system in real time.
  • the control algorithm integrates the three aspects of data to find the optimal gate control strategy, and the results are sent to the actuator to control the gate for adjustment to complete the water distribution requirements.
  • the operating condition information of the generator set and the flow rate of the generator set can also be obtained, so as to judge whether the second trunk canal where the generator set is located is supplying water normally based on the operating condition information of the generator set, and obtain the operating condition detection result of the second trunk canal.
  • the current gate opening information of the parallel water supply and power generation system, the current water level of the third trunk canal, the operating condition detection result of the second trunk canal and the flow rate of the generator set can be comprehensively considered to determine the target gate linkage control strategy of the parallel water supply and power generation system.
  • Step 103 controlling the gate opening of the target gate according to the target gate linkage control strategy of the parallel water supply and power generation system.
  • the target gate opening can be adjusted according to the target gate opening of each target gate represented by the target gate linkage control strategy of the parallel water supply and power generation system; wherein the target gate includes the first gate and/or the second gate.
  • the overall project becomes more complicated. While meeting the water supply requirements, power generation must also be taken into account.
  • the two projects have different requirements for water volume, so the two projects need to be controlled in a coordinated manner.
  • the way to achieve water volume control is to control the gates.
  • the control algorithm is used to collect the water level and flow changes of the main channel and the unit. The control algorithm calculates and outputs the gate opening, and the water diversion gate is adjusted in a coordinated manner.
  • the water level information is mainly collected by setting up a monitoring station fifty meters downstream of the gate for monitoring. Since the channels are all artificial channels, the water level is relatively stable when there is no water inflow or outflow, and no monitoring station is required.
  • the monitoring of the gate opening requires Monitoring equipment is installed at the gate position to feed back the gate opening to the control subsystem to ensure that the control requirements are met.
  • the target gate linkage control strategy of the parallel water supply power generation system is determined, including:
  • Step 1021 obtaining the target water level of the third main canal
  • Step 1022 based on a preset hydrodynamic model, according to the difference between the current water level and the target water level and the current gate opening information, determine a gate linkage control strategy set of the parallel water supply and power generation system;
  • Step 1023 based on the preset water level error optimization objective function, select the target gate linkage control strategy with the smallest water level error from the gate linkage control strategy set.
  • the target water level of the third main canal can be determined according to the water demand of the third main canal.
  • the gate linkage control strategy set determined based on the preset hydrodynamic model includes multiple gate linkage control strategies, and the simulation results of the preset hydrodynamic model indicate that these multiple gate linkage control strategies can make the water level of the third main canal reach the target water level.
  • the water flow state of the channel can be simulated based on the hydrodynamic model to obtain the changes in the water level of the third main canal.
  • the input and output water volumes of the channel can be changed, thereby further determining the gate opening.
  • the target gate linkage control strategy with the smallest water level error can be selected from the gate linkage control strategy set based on the following preset water level error optimization objective function:
  • U * represents the target gate linkage control strategy
  • U represents any gate linkage control strategy in the gate linkage control strategy set
  • x0 represents the initial water level of the third main canal corresponding to the gate linkage control strategy U
  • J(U, x0 ) is the water level error calculation function
  • k is the time step
  • Nh is the prediction interval
  • the prediction interval includes several time steps
  • x(k) is the predicted water level of the third main canal at time step k
  • Q,R are the constant weighted matrices of the preset quadratic deviation penalty
  • Ql is the constant weighted matrix of the preset linear penalty
  • T is the transpose sign
  • u(k) is the gate opening of each gate represented by the gate linkage control strategy U
  • x( Nh ) is the final error between the predicted water level value and the target water level value in the prediction interval.
  • the Q and R parameter values can be determined according to the current water level of the third main canal, and the preset time step, prediction cycle and differential error threshold
  • the third main channel is composed of multiple sub-main channels connected in series, an energy dissipation pool is provided between each sub-main channel, and the third main channel is provided with multiple water outlet gates, and the target gate includes the water outlet gate. Since both lowering the water level of the third main channel and raising the water level of the third main channel require a certain adjustment time, in order to avoid a sharp increase or decrease in the water level, which affects the safety of the parallel water supply and power generation system, the differential error of each energy dissipation pool can be predicted based on a preset differential error calculation formula when the gate opening of the target gate is controlled according to the target gate linkage control strategy. When the differential error of any energy dissipation pool is not less than the preset differential error threshold, the target gate linkage control strategy is optimized.
  • the differential error of each stilling pool when the gate opening of the target gate is controlled according to the target gate linkage control strategy can be predicted based on the following preset differential error calculation formula:
  • Dj is the differential error of stilling pool j
  • ej is the water level error of stilling pool j
  • n is the total number of stilling pools
  • ei is the water level error of stilling pools other than stilling pool j.
  • the differential error of any stilling basin is not less than a preset differential error threshold, it can be determined that the water level change speed of the third main channel is relatively large, and the opening adjustment speed of the target gate can be reduced to reduce the water level change speed of the third main channel, ensure channel safety, and meet water supply needs.
  • the water level error model predictive control (DE-MPC) method is used to observe the changes in the water level of the channel while simulating with the hydrodynamic model.
  • MPC is a control strategy based on the continuous replanning of the sequence of control actions that must be implemented over a certain horizon.
  • an MPC controller solves an optimization problem at each time step.
  • a mathematical model of the system is used to predict its behavior over the prediction horizon as a function of the sequence of applied inputs.
  • x is the error value
  • u is the gate opening value
  • d is the vector of known measurable disturbance at time step k
  • A is the state transfer matrix
  • Bu is the input to the state matrix
  • Bd is the interference to the state matrix
  • x(k+1) is the error value at the next time step.
  • a cost function that measures its performance against the control objective. Assume that there is a problem of regulating the balanced distribution of water in the control channel, i.e. the controller must steer the system state towards a given reference value. For simplicity, and without loss of generality, it can be assumed that the source is the state reference. Therefore, the control objective can be defined mathematically as the following function:
  • Nh is the predicted water level value
  • Q and R are constant weighted matrices that penalize quadratic deviations relative to the state and manipulated variable vectors
  • Ql is also a constant weighted matrix that linearly penalizes deviations from the state.
  • the behavior of the controller changes depending on the relationship between Q and R. If R is relatively greater than Q, the controller will focus on minimizing the use of the manipulated variable at the expense of a larger deviation in the state vector. Vice versa, i.e., if R is relatively lower than Q, the optimization will result in important changes in the control actions to reduce the deviation in the state vector.
  • the sequence of control actions applied in the system can be calculated to minimize the objective function. Therefore, at each time step, the MPC controller solves the following optimization problem:
  • the control of channel flow can also be equivalent to the control of water level, and its goal is to adjust the water level difference error and keep the water level of the pool at a given reference level.
  • MPC requires a model of the control system to predict its behavior within the prediction range.
  • an integrator delay (ID) model is used for the canal pool.
  • the ID model divides the canal pool into a uniform fluid with a delay time attribute and a backwater section with a storage area attribute.
  • the water level h at the downstream end of the pool is a function of the control outflow (q out (k)), the inflow of the backwater section considering k d water flow delay time steps (q in (kk d )) and the discharge outflow (q off-take (k)).
  • the disturbed flow originates from the water intake plan of the water user.
  • the discrete time-invariant canal pool model used in the embodiment of the present application is defined as:
  • h(k+1) is the water level at time step k+1
  • h(k) is the water level at time step k
  • As is the average storage area
  • Tc is the control time step.
  • Dj is, ej is the water level error at j, ej+1 is the water level error at j+1, SPj is the predefined target water level at j, yj +1 is the downstream (or far downstream) water level of j+1, SPj +1 is the predefined target water level at j+1, yj is the downstream (or far downstream) water level of canal pool j, SP is the predefined target water level, and e is the water level error.
  • the differential error variable is determined by the following formula:
  • e i is the water level error except j
  • n is the total number of stilling pools.
  • the DE-MPC method When using the DE-MPC method to predict and adjust the channel water level, first measure the water level data of the channel at the current moment or estimate the water level data of the channel at the start of control to obtain the current or certain system state. After obtaining the water level information, select the appropriate Q and R parameter values according to the need for faster control action or smoother control process. Select the time step, prediction interval and differential error threshold to be predicted, and input the gate opening as the control variable.
  • the system will formulate the corresponding control plan according to the range of the prediction interval, namely u(k), u(k+1),..., u(k+N h -1), and obtain the control results and water level error values d(k), d(k+1),..., d(k+N h ) of the prediction interval, select u(k) for control, and after the control ends, take the k+1 moment as the control starting point according to the actual water level error value, and repeat the above steps until the optimal is reached.
  • the above MPC control process can all be completed in the hydrodynamic model.
  • the hydrodynamic model first reads the actual water level and the gate opening of each gate, takes the gate opening of each section of the channel as the input variable, and the water level as the output variable. By controlling the change of the gate opening, the change of the channel water level is affected, and the change of the channel water level is simulated.
  • the gate of the channel is controlled according to the control strategy formulated by the DE-MPC control method, the gate opening is changed, and the hydrodynamic model is used for simulation.
  • the water level value obtained from the simulation result is input into the DE-MPC for subsequent control. After completing the entire predictive control process, the optimized target gate linkage control strategy is obtained.
  • hydrodynamic model there is no mandatory regulation for the hydrodynamic model, and it can be selected according to the actual situation of the channel, such as SMS, WMS, etc., as long as the water level and flow simulation can be achieved.
  • the method provided in the embodiment of the present application can quickly obtain the control opening of the channel gate, and this method uses the water level error as the expected value, and can effectively judge whether there is a problem with the channel water level change according to the size of the error value, and whether it affects the channel safety and the normal water supply of upstream and downstream water users.
  • the judgment result adjusts the auxiliary control system on the one hand to maintain the water level stable.
  • the gate opening of the target gate is controlled, including:
  • Step 1031 based on a preset PID controller, the gate opening of the target gate is controlled according to the target gate linkage control strategy of the parallel water supply and power generation system.
  • a gate linkage controller can be constructed using a preset PID controller, a multi-input multi-output Fourier series neural network, a multi-input single-output Fourier series neural network and a system controller.
  • the PID controller establishes an optimal objective function based on the difference between the input current gate opening value (current gate opening information) and the target gate opening value (target opening represented by the target gate linkage control strategy), and outputs the gate opening value adjusted by the PID to the system controller in combination with the gain parameter output by the multi-input multi-output Fourier series neural network; the system controller controls the water diversion gate according to the gate opening value adjusted by the PID, and outputs the current gate opening value of the system.
  • the multi-input multi-output Fourier series neural network calculates the approximate value of the Jacobian matrix system according to the neural network connection weights, and then calculates the neural network bias and neural network connection weights after adaptive adjustment according to the neural network adaptive equation, and finally calculates the gain parameters of the PID controller according to the neural network bias and neural network connection weights after adaptive adjustment, and outputs them to the PID controller to optimize the PID controller.
  • E(k) is the optimal objective function
  • e(k) is the difference between the current gate opening value and the target gate opening value
  • R(k) is the current gate opening value
  • y(k) is the target gate opening value.
  • the neural network adaptive equation is specifically:
  • connection weights for the original neural network is the bias of the neural network after adaptive adjustment, is the original neural network bias, ⁇ is, e(k) is the difference between the current gate opening value and the target gate opening value, y(k) is the target gate opening value, u(k) is the gate opening value after PID adjustment, Oh (k) is the gain parameter of the PID controller, is the adaptively adjusted neural network connection weight, The connection weights for the original neural network.
  • the gain parameter of the preset PID controller can be optimized according to the preset period based on the following formula:
  • Oh is the gain parameter
  • N1 is the length of the neuron sequence of the first hidden layer of the neural network
  • Nmc is the length of the neuron sequence of the mcth hidden layer of the neural network
  • mc represents the total number of hidden layers of the neural network
  • Hj is the intermediate variable.
  • h 1, 2, 3 and the gain parameters include Kp , Ki , and Kd .
  • the current actual opening of each target gate can be monitored; based on the deviation between the current actual opening of each target gate and the target opening of each target gate represented by the target gate linkage control strategy, the target gate opening correction strategy can be determined.
  • FIG. 2 it is a flow chart of an exemplary gate linkage control method provided in an embodiment of the present application.
  • the control subsystem receives the gate opening uploaded by the simulation subsystem, obtains the preset value of the gate opening, and the controller performs linkage control on the target gate involved.
  • the monitoring equipment uploads the current actual gate opening to the control subsystem in real time to realize real-time feedback.
  • the feedback system is to place monitoring equipment at various locations in the channel to obtain data such as gate opening, channel water depth, and flow through the gate.
  • the feedback system has two main data feedback directions. One is that when the control subsystem controls the gate, the feedback system monitors the changes in the gate opening in real time and uploads the data to the control subsystem. The controller adjusts the control strategy in a timely manner based on this data, that is, determines the target gate opening correction strategy. On the other hand, after the control subsystem completes the control process, the actual gate opening and water level conditions are uploaded to the simulation subsystem.
  • the hydrodynamic model is used for simulation to intuitively display the control results. As shown in FIG3 , it is a flow chart of another exemplary gate linkage control method provided in an embodiment of the present application.
  • control result water level after control
  • expected requirement target water level
  • the embodiment of the present application uses an adaptive Fourier series neural network PID (AFSNNPID) control method, which can realize both parameter adjustment and control functions.
  • AFSNNPID adaptive Fourier series neural network PID
  • u(k) is the gate opening value
  • k is the time step
  • e(k) is the gate opening error
  • Kp , Ki , Kd are PID gain parameters that affect the control efficiency of the gate
  • Ts is the sampling period.
  • the embodiment of the present application uses two Fourier series neural networks (FSNNs) to implement a gate linkage controller.
  • the FSNN on the right is a simulator FSNN, which is a multiple-input single-output (MISO) FSNN that allows simulation of the dynamic behavior of the system.
  • MISO multiple-input single-output
  • Emulator The output is given by:
  • n 1 is the sequence length
  • nm is the sequence length
  • e h (k) is the error of the h-th output at time step k.
  • the FSNN on the left is a multiple-input multiple-output (MIMO) FSNN with three outputs (o 1 , o 2 and o 3 ).
  • MIMO multiple-input multiple-output
  • K p , Ki , K d are the three parameters of the PID controller
  • b c is the number of e
  • a c is the number of u.
  • H 1 cos(n 1 ⁇ 1 x 1 )cos(n 2 ⁇ 2 x 2 )...cos(n mc-1 ⁇ mc-1 x mc-1 )cos(n mc ⁇ mc x mc )
  • H 2 cos(n 1 ⁇ 1 x 1 )cos(n 2 ⁇ 2 x 2 )...cos(n mc-1 ⁇ mc-1 x mc-1 )sin(n mc ⁇ mc x mc ) ...
  • connection weights and the bias of the h-th MISO FSNN are the connection weights and the bias of the h-th MISO FSNN, respectively.
  • Ti is the range of input xi ( xi ⁇ [ 0Ti ])
  • W0 is the network bias
  • Ni is the sequence length. Depend on, Given.
  • y(k) is the system output, that is, the gate opening
  • R(k) is the reference value, that is, the target gate opening value
  • the calculation method is as follows:
  • the FSNN model In order to obtain fast convergence and good control performance of the control algorithm, the FSNN model must have sufficient accuracy. Large estimation errors will lead to convergence or divergence of the control algorithm.
  • the obtained Jacobian matrix system is as follows:
  • the controller first obtains the initial gate opening (current gate opening information) and control parameters during operation, and then the system outputs the difference between the current gate opening and the desired opening (target opening), first calculates the approximate value of the Jacobian matrix system, and then calculates the new value, and then calculate the new Value, and finally calculate and determine the control law of the PID controller to control the channel gate.
  • the use of AFSNNPID controller to control the gates in the channel can solve the problem that the traditional PID controller cannot handle the multi-objective nonlinearity of the channel, realize the automatic adjustment of parameters, speed up the adjustment speed of the gate, and regard the channel and the gate as an organic whole.
  • the control system can realize the intelligent control of the gate, reduce the labor cost, improve the safety factor of the gate adjustment work, and provide more options for the adjustment method of the channel gate, and improve the risk response ability of the channel.
  • the gate linkage control method provided in the embodiment of the present application obtains the current gate opening information of the parallel water supply and power generation system and the current water level of the third trunk canal; wherein the current gate opening information includes the current first gate opening information and the current second gate opening information; according to the current gate opening information of the parallel water supply and power generation system and the current water level of the third trunk canal, the target gate linkage control strategy of the parallel water supply and power generation system is determined; according to the target gate linkage control strategy of the parallel water supply and power generation system, the gate opening of the target gate is controlled.
  • the method provided by the above scheme determines the target gate linkage control strategy of the parallel water supply and power generation system according to the current gate opening information of the parallel water supply and power generation system and the current water level of the third trunk canal, thereby improving the control efficiency of the gate while realizing the precise control of the gate linkage of the multi-gate water diversion project.
  • the channel water level is efficiently and automatically controlled through the sequence of simulation-control-feedback-regulation, thereby improving the risk response capability and flexibility of the channel.
  • This method can comprehensively perceive and efficiently regulate the water status of various types of channels, such as single channels, multiple channels, and water supply-power generation channels, thereby improving the risk response capabilities of the channels and the stability of water supply, reducing labor costs, and improving economic benefits.
  • An embodiment of the present application provides a gate linkage control device, which is applied to a parallel water supply and power generation system.
  • the parallel water supply and power generation system includes a reservoir, a first trunk canal, a second trunk canal, an energy dissipation pool and a third trunk canal.
  • the first trunk canal and the second trunk canal are connected in parallel.
  • the reservoir is located upstream of the first trunk canal and the second trunk canal, and the energy dissipation pool is located downstream of the first trunk canal and the second trunk canal.
  • a first gate is arranged between the first trunk canal and the reservoir, and a power generation hole and a generator set are arranged in sequence on the second trunk canal along the water flow direction.
  • a second gate is arranged between the power generation hole and the generator set. The water flow in the first trunk canal and the second trunk canal is merged into the third trunk canal through the energy dissipation pool, which is used to execute the gate linkage control method provided in the above embodiment.
  • FIG4 it is a schematic diagram of the structure of a gate linkage control device provided in an embodiment of the present application.
  • the gate linkage control device 40 comprises: an acquisition module 401 , a determination module 402 and a control module 403 .
  • the acquisition module is used to obtain the current gate opening information of the parallel water supply and power generation system and the current water level of the third trunk canal; wherein the current gate opening information includes the current first gate opening information and the current second gate opening information; the determination module is used to determine the target gate linkage control strategy of the parallel water supply and power generation system according to the current gate opening information of the parallel water supply and power generation system and the current water level of the third trunk canal; The control module is used to control the gate opening of the target gate according to the target gate linkage control strategy of the parallel water supply and power generation system.
  • the gate linkage control device provided in the embodiment of the present application is used to execute the gate linkage control method provided in the above embodiment. Its implementation method and principle are the same and will not be repeated here.
  • the embodiment of the present application provides a parallel water supply power generation system for executing the gate linkage control method provided in the above embodiment.
  • FIG5 it is a structural schematic diagram of the parallel water supply power generation system provided in the embodiment of the present application, and the system includes:
  • the parallel water supply and power generation system provided in the embodiment of the present application has three levels of improvement.
  • the first is the improvement in engineering design.
  • a generator set is added to a simple water delivery channel, and in order to ensure the safety of the project, the previous single-channel water delivery is changed to multi-channel parallel water delivery, which improves the capacity and adjustment space of the water delivery system, has a smaller requirement for water volume, and has a wider application range than a simple power generation project. It can be applied to small and medium-sized rivers, and can take into account the utilization of water volume and hydropower in the utilization of water resources.
  • the generated electricity is used to start the control device of the gate. At the same time, it cooperates with the power generation of light energy and wind energy to achieve automatic operation all year round.
  • the gate control is only required when there is water for power generation. When there is no water, the gate does not need to be controlled, and the power generation of the unit will not be affected. Then, a multi-gate control method is adopted for the parallel channel, and gates and monitoring equipment are set at the key nodes of the channel to ensure that professionals can see the operating status of the channel in real time. At the same time, the control system is used to collect channel water level flow data, analyze and output the gate opening, and adjust the channel water volume by adjusting the gate. In addition, the setting of multiple gates can effectively improve the water distribution flexibility and risk response capabilities of the channel.
  • the power generation system is combined with the control system to realize unmanned and autonomous operation of the project.
  • the gate opening of the main canal water inlet gate can be adjusted in time to ensure the power generation of the power station and the safety of water delivery in the channel.
  • the elements of automation are added to realize the linkage control of water supply and power generation, automatically adjust the gate opening, improve the response speed, save some labor costs, reduce the labor intensity of transportation and management personnel, and provide a powerful technical means for scientific scheduling and daily operation.
  • the system further includes an electronic device, as shown in FIG6 , which is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
  • the electronic device 60 includes: at least one processor 61 and a memory 62 .
  • the memory stores computer-executable instructions; at least one processor executes the computer-executable instructions stored in the memory, so that the at least one processor executes the gate linkage control method provided in the above embodiment.
  • a parallel water supply and power generation system provided in an embodiment of the present application is used to execute the gate linkage control method provided in the above embodiment. Its implementation method and principle are the same and will not be repeated here.
  • gate control under two different conditions is designed, one is the response speed of the gate control when the channel is dry, and the other is the response speed of the gate control when the channel has water, and compared with ANNPDI (artificial neural network PID).
  • ANNPDI artificial neural network PID
  • the gate linkage control method proposed in the present invention has good control performance in terms of tracking accuracy, robustness to external interference and dynamic system changes, and can effectively handle nonlinear problems such as gate linkage control.
  • the calculation time of the control system is It is very short and has great application prospects in real-time control.
  • An embodiment of the present application provides a computer-readable storage medium, in which computer-executable instructions are stored.
  • a processor executes the computer-executable instructions, the gate linkage control method provided in any of the above embodiments is implemented.
  • the storage medium containing computer executable instructions in the embodiment of the present application can be used to store the computer executable instructions of the gate linkage control method provided in the aforementioned embodiment.
  • the implementation method and principle are the same and will not be repeated here.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-mentioned integrated unit implemented in the form of a software functional unit can be stored in a computer-readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute some steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

本申请提供一种闸门联动控制方法、装置及并联供水发电系统,应用于并联供水发电系统,该方法包括:获取并联供水发电系统的当前闸门开度信息和第三干渠的当前水位;其中,当前闸门开度信息包括当前第一闸门开度信息和当前第二闸门开度信息;根据并联供水发电系统的当前闸门开度信息和第三干渠的当前水位,确定并联供水发电系统的目标闸门联动控制策略;按照并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。上述方案提供的方法,通过根据并联供水发电系统的当前闸门开度信息和第三干渠的当前水位,确定并联供水发电系统的目标闸门联动控制策略,在实现多闸门引水工程的闸门联动精确控制的同时,提高了闸门的控制效率。

Description

一种闸门联动控制方法、装置及并联供水发电系统 技术领域
本申请涉及引水工程技术领域,尤其涉及一种闸门联动控制方法、装置及并联供水发电系统。
背景技术
引水工程是采用工程技术从水源地通过取水建筑物和输水建筑物引水至需水地的一种水利工程。随着智能水网的建设,水利工程的综合功能越来越得到重视,引水工程也要做出相应的调整。以发电为主的水利工程其更多的是对水能的利用,对水量的利用效率相对较低,而以供水为主要目的水利工程其对水量的利用效率较高,往往忽略了水能的利用。单目标的引水或发电工程已经无法适应社会发展的需要,水量、水能综合利用的水利工程是未来的发展方向。然而,引水工程的功能越过,其涉及的引水闸门就越多,因此,如何实现多功能引水工程的多闸门联动控制成为了重点研究内容。
在现有技术中,通常是采用人工控制的方式进行闸门控制,但人工控制的方式仅适用于单闸门场景,当引水工程涉及多个闸门时,现有技术将无法实现精确控制。
发明内容
本申请提供一种闸门联动控制方法、装置及并联供水发电系统,以解决现有技术在引水工程涉及多个闸门情况下无法实现闸门开度精确控制等缺陷。
本申请第一个方面提供一种闸门联动控制方法,应用于并联供水发电系统,所述并联供水发电系统包括水库、第一干渠、第二干渠、消力池和第三干渠,所述第一干渠和第二干渠并联,所述水库位于所述第一干渠和第二干渠的上游,所述消力池位于所述第一干渠和第二干渠的下游,所述第一干渠和水库之间设有第一闸门,所述第二干渠沿水流方向依次设有发电洞和发电机组,所述发电洞和发电机组之间设有第二闸门,所述第一干渠和第二干渠中的水流通过所述消力池汇入所述第三干渠,所述方法包括:
获取所述并联供水发电系统的当前闸门开度信息和所述第三干渠的当前水位;其中,所述当前闸门开度信息包括当前第一闸门开度信息和当前第二闸门开度信息;
根据所述并联供水发电系统的当前闸门开度信息和所述第三干渠的当前水位,确定所述并联供水发电系统的目标闸门联动控制策略;
按照所述并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。
可选的,所述根据所述并联供水发电系统的当前闸门开度信息和所述第三干渠的当前水位,确定所述并联供水发电系统的目标闸门联动控制策略,包括:
获取所述第三干渠的目标水位;
基于预设水动力模型,根据所述当前水位和所述目标水位之间的差值以及所述当前闸门开度信息,确定所述并联供水发电系统的闸门联动控制策略集;
基于预设水位误差优化目标函数,在所述闸门联动控制策略集中筛选水位误差最小的目标闸门联动控制策略。
可选的,所述基于预设水位误差优化目标函数,在所述闸门联动控制策略集中筛选水位误差最小的闸门联动控制策略,包括:
基于如下预设水位误差优化目标函数,在所述闸门联动控制策略集中筛选水位误差最小的目标闸门联动控制策略:

其中,U*表示目标闸门联动控制策略,U表示所述闸门联动控制策略集中的任一闸门联动控制策略,x0表示闸门联动控制策略U对应的第三干渠的初始水位,J(U,x0)为水位误差计算函数,k为时间步长,Nh为预测区间,所述预测区间包括若干个时间步长,x(k)为第三干渠在时间步长k下的水位预测值,Q,R为预设二次偏差惩罚的常数加权矩阵,Ql为预设线性惩罚的常数加权矩阵,T为转置符号,u(k)为闸门联动控制策略U表征的各闸门的闸门开度,x(Nh)为预测区间内水位预测值与目标水位值之间的最终误差。
可选的,所述第三干渠由多段串联的子干渠组成,每个子干渠之间都设有消力池,所述第三干渠设有多个出水闸门,所述目标闸门包括所述出水闸门,所述方法还包括:
基于预设差分误差计算公式,预测在按照所述目标闸门联动控制策略控制目标闸门的闸门开度情况下各所述消力池的差分误差,
当任一所述消力池的差分误差不小于预设差分误差阈值时,优化所述目标闸门联动控制策略。
可选的,所述基于预设差分误差计算公式,预测在按照所述目标闸门联动控制策略控制目标闸门的闸门开度情况下各所述消力池的差分误差,包括:
基于如下预设差分误差计算公式,预测在按照所述目标闸门联动控制策略控制目标闸门的闸门开度情况下各所述消力池的差分误差:
其中,Dj为消力池j的差分误差,ej为消力池j的水位误差,n为消力池总数,ei为除消力池j外其他消力池的水位误差。
可选的,所述按照所述并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度,包括:
基于预设PID控制器,按照所述并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。
可选的,还包括:
按照预设周期,基于如下公式优化所述预设PID控制器的增益参数:
其中,Oh为增益参数,为自适应调节后的神经网络偏置,N1为神经网络第1层隐藏层的神经元序列长度,Nmc为神经网络第mc层隐藏层的神经元序列长度,mc表示神经网络的隐藏层总数,l=3,为自适应调节后的神经网络连接权重,Hj为中间变量。
可选的,在按照所述并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度之后,所述方法还包括:
监测各所述目标闸门的当前实际开度;
根据各所述目标闸门的当前实际开度与所述目标闸门联动控制策略表征的各目标闸门的目标开度之间的偏差,确定目标闸门开度修正策略。
本申请第二个方面提供一种闸门联动控制装置,应用于并联供水发电系统,所述并联供水发电系统包括水库、第一干渠、第二干渠、消力池和第三干渠,所述第一干渠和第二干渠并联,所述水库位于所述第一干渠和第二干渠的上游,所述消力池位于所述第一干渠和第二干渠的下游,所述第一干渠和水库之间设有第一闸门,所述第二干渠沿水流方向依次设有发电洞和发电机组,所述发电洞和发电机组之间设有第二闸门,所述第一干渠和第二干渠中的水流通过所述消力池汇入所述第三干渠,所述装置包括:
获取模块,用于获取所述并联供水发电系统的当前闸门开度信息和所述第三干渠的当前水位;其中,所述当前闸门开度信息包括当前第一闸门开度信息和当前第二闸门开度信息;
确定模块,用于根据所述并联供水发电系统的当前闸门开度信息和所述第三干渠的当前水位,确定所述并联供水发电系统的目标闸门联动控制策略;
控制模块,用于按照所述并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。
本申请第三个方面提供一种并联供水发电系统,包括:
水库、第一干渠、第二干渠、消力池和第三干渠;
所述第一干渠和第二干渠并联,所述水库位于所述第一干渠和第二干渠的上游,所述消力池位于所述第一干渠和第二干渠的下游;
所述第一干渠和水库之间设有第一闸门;
所述第二干渠沿水流方向依次设有发电洞和发电机组,所述发电洞和发电机组之间设有第二闸门;
所述第一干渠和第二干渠中的水流通过所述消力池汇入所述第三干渠;
还包括电子设备,所述电子设备包括:至少一个处理器和存储器;
所述存储器存储计算机执行指令;
所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述至少一个处理器执行如上第一个方面以及第一个方面各种可能的设计所述的方法。
本申请第四个方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如上第一个方面以及第一个方面各种可能的设计所述的 方法。
本申请技术方案,具有如下优点:
本申请提供一种闸门联动控制方法、装置及并联供水发电系统,应用于并联供水发电系统,并联供水发电系统包括水库、第一干渠、第二干渠、消力池和第三干渠,第一干渠和第二干渠并联,水库位于第一干渠和第二干渠的上游,消力池位于第一干渠和第二干渠的下游,第一干渠和水库之间设有第一闸门,第二干渠沿水流方向依次设有发电洞和发电机组,发电洞和发电机组之间设有第二闸门,第一干渠和第二干渠中的水流通过消力池汇入第三干渠,该方法包括:获取并联供水发电系统的当前闸门开度信息和第三干渠的当前水位;其中,当前闸门开度信息包括当前第一闸门开度信息和当前第二闸门开度信息;根据并联供水发电系统的当前闸门开度信息和第三干渠的当前水位,确定并联供水发电系统的目标闸门联动控制策略;按照并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。上述方案提供的方法,通过根据并联供水发电系统的当前闸门开度信息和第三干渠的当前水位,确定并联供水发电系统的目标闸门联动控制策略,在实现多闸门引水工程的闸门联动精确控制的同时,提高了闸门的控制效率。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1为本申请实施例提供的闸门联动控制方法的流程示意图;
图2为本申请实施例提供的一种示例性的闸门联动控制方法的流程示意图;
图3为本申请实施例提供的另一种示例性的闸门联动控制方法的流程示意图;
图4为本申请实施例提供的闸门联动控制装置的结构示意图;
图5为本申请实施例提供的并联供水发电系统的结构示意图;
图6为本申请实施例提供的电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
引水工程是采用工程技术从水源地通过取水建筑物和输水建筑物引水至需水地的一种水利工程。引水工程的发展大致可分为三个阶段,第一个阶段的引水方式是直接在天然水系中开挖渠道进行引水,这种引水方式无法对引水量进行有效的控制。第二个阶段发展出了有坝引水,有坝引水提高了人工对水量的控制能力,这种引水方式应用较为广泛,但有坝引水的方式可能对生态环境造成破坏。第三个阶段是随着智能水网的建设,水利工程的综合功能越来越得到重视,引水工程也要做出相应的调整。以发电为主的水利工程其更多的是对水能的利用,对水量的利用效率相对较低,而以供水为主要目的水利工程其对水量的利用效率较高,往往忽略了水能的利用。单目标的引水或发电工程已经无法适应社会发展的需要,水量、水能综合利用的水利工程是未来的发展方向。
河湖水系连通工程是以维系不同水体间的水利联系与物质循环为目标,在自然水系的基础上通过自然和人为驱动作用,维持、重塑或构建满足特定功能与目标的水流连接通道。传统的引水工程便具有一定的水系连通能力,引水工程是解决水资源时空分布不均造成部分地区水资源严重短缺问题的重要途径。现如今引水工程项目的数量越来越多,带来了经济效益的同时也引出了许多问题。从现阶段发展而言,水资源对于人们的生产生活有着极为重要的影响,为了提高引水工程的经济效益,需要对工程的设计、运行、管理等方面进行升级改造,满足社会发展需求,实现科学调度。小到流域内各个灌区之间的配水,灌溉渠供水的不可靠性往往导致灌溉渠上游水量过多而下游水量不足,下游地区水资源短缺便会影响下游居民的生活,大到流域间的调水。如今,随着河湖水系连通工程的推进传统的引水工程已基本无法满足新时代的发展需要,单目标的引水工程将遭到淘汰,多目标多功能的水利工程是未来的发展方向。
由于输水需要建设的供水渠道在功能上以供水为主,这种类型的渠道在建设时未能充分利用水的落水能量,在水资源利用效率上还有提高的空间。随着智能水网的推进,水利工程往往需要承担更多的功能,同时还要尽可能提高工程的智能化程度。此外,在河湖水系连通方面,水利工程在满足建设需求时还要尽可能地提高水量调节能力。首先从工程结构的角度考虑,以往的引水工程是从天然河流里面进行取水利用,只取水量不取水能,并且这种取水方式不能很好的控制水量,支渠水量受到干渠水量的控制,而干渠水量的调节又很难做好。有坝引水的方式能够获得较为稳定的水流,但是建造水坝耗时耗力,有可能会对环境造成影响。因此,在设计引水工程时,将有坝引水和无坝引水相结合,结合地形特点与水文特征,合理设计引水方案,并且在引水过程中加入发电机组,实现水能的利用。有坝引水的方式投入较大,水量和水能的利用不能兼顾,而针对小水量的情况很难建造水电站。水电站的供水是在库区上游进行引水的,是以发电为主进行的引水过程,这种方式只适用于大型河流,在水量特别充足冗余量高的情况下,对水量能够进行稳定的调节。
要实现供水发电并联联动控制就需要有完整的控制系统,控制系统需要对引水工程的整体情况有清晰的感知。因此,需要在工程中布设传感器,用于获取数据以及监测运行状态,控制系统获取水位数据后,对闸门进行控制。监控指标是判断工程运行状态是否正常的一种科学判据,利用工程监测资料拟定效应量运行安全监控指标,可以有效识别工程所处的安全状态,及时发现工程潜在的安全隐患,从而实现对工程的健康诊断和安全预警。监控指标也是工程进行合理调节的判断依据,其不止限于监测设备对工程状态的监测,还包含工程各处的用水信息,由于渠道水量的调节具有滞后性的特点,这些信息需要提前获取以便专业人员进行预先调节。监控指标的表现形式包括定量数值和定性准则。定量数值主要是针对单个测点监测效应量的数值大小及其变化趋势所规定的安全界限值,定性准则是融合多测点多效应量监测信息而形成的若干定性评判准则或模型。
定量监控指标直观明确,应用方便,但针对的是单个测点,监控的是局部状态。引水工程渠堤线路长,工程规模大,建造条件和运行条件复杂,仅靠单个测点的定量数值指标难以全面监控工程安全,需要综合考虑多个测点、多种监测效应量的监测信息来实施工程的整体安全监控。同时,工程安全本身是一个具有模糊属性的不确定性概念,在边界上难以采用一个精确的、绝对的数值来界定。此外,表征工程安全的指标并不是都可以采用定量数值来衡量的,有些需要采用定性的方式来表达。因此,在研究定量数值监控指标的同时,也应研究定性安全评判准则。
工程运行状态异常最直观的表现就是监测效应量实测值出现异常。对单个测点测值异常主要表现为数值大小异常、变化过程异常、变化趋势异常和变化规律异常4中基本形式。研究测值的异常表现形式可为识别工程异常现象和安全隐患提供科学依据,为建立基于多指标融合评判准则提供分类基础。当多个测点、多种效应量同时出现同一类型或多个类型的异常现象时,通过分析这些异常现象在不同测点、不同效应量之间的内在关联性,可实现对工程运行状态的综合判断。
现有的水量控制方式多采用闸门调节进行水量的分配,闸门的控制又往往采用人工控制的方式,虽然已有部分研究对闸门自动化控制和在线控制取得了一些进展,但此类技术也只是解决了人工控制的问题,对涉及到输水系统的多闸门控制来说帮助较为有限。供水发电并联联动控制方法是一个多目标的非线性系统,既要将其看成一个整体,保证整体的稳定,又要对其中的多个节点进行准确的调节,各节点进行联动控制,共同发挥作用。同样,工程系统和自然系统也需要相互协调,只有这样才能既满足工程本身的需求而不断发展,又不至于对周围的环境造成灾难性的破坏。
随着物联网技术的发展,其在渠道闸门控制的应用也在逐渐开发。采用物联网技术设计闸门智能控制系统能够实现灌区调水的远程控制、实时监控,提高了灌区调水灌溉的管理水平,提高灌区水资源利用率。但此系统仍存在一些不足,一方面,操作指令的下达还是通过人工操作的方式;另一方面,闸门的控制依赖人工知识经验的判断,在闸门控制的科学合理方面还有欠缺。
测控一体化闸门集闸门、启闭设备、测流设备、控制设备、供电设备于一体,闸门启闭、流量计算、远程控制、通信功能于一体,结合对闸门开度、渠道水位、瞬时流量和时段水量的计算,并通过计算机和通信网络系统,远程进行渠系闸门的测控,或在给定流量水位或开度下实现闸门输配水量自动调节,实现渠道测水断面或直开口测控流量的自动化。随着技术的推广,设备的种类和测流控制方式越来越多样,产品质量和技术要求参差不齐,在闸门实际应用过程中出现了测流精度差,信号传输存在障碍、闸门自动化启闭故障多等问题。测控一体化闸门的应用能够加速灌区现代化建设,实现灌区输配水的自动化与智能化。但此技术解决的更多的是灌区渠道的引水控制问题,对渠道进口闸与出口闸之间的联动控制帮助较小,对于干渠来说,进水量与出水量之间应该达到动态平衡的状态,在水量发生变化时也需要进行合理的控制。两个闸门单独控制就有可能造成水量过剩、供水不足或水位波动的情况。
在灌溉渠的现代化建设中,广泛的自动控制技术已经被提出、设计、测试和实施。分散的局部控制器,使用单输入-单输出(SISO)行为,仅使用在门附近进行的测量值来计算控制动作。在这方面,许多学者对水机械闸门的使用进行了不同的研究,得到了局部经典控制器的不同方案的应用。由于主要灌溉渠的大规模性质,以及迫切需要利用现代操作战略(如按需供水、在线水库、地表和地下水的联合运行),集中控制器已被广泛应用于主要灌溉渠的水位控制。目前,许多灌溉渠仍在人工运行,大多数情况下,这不仅是自动化系统实施的昂贵的问题,还因为现场控制设备经常遭到破坏,维护成本也很高。因此,研究渠道自动化管理的一种新方法是应用智能方法来实现用水管理,将现代控制作为可靠的决策支持系统来改善人工渠道控制。然而,由于空间多样性,为主渠道和次级渠道选择合适的控制方法一直存在争议。一方面,渠道和灌区之间的联动关系难以通过简单的方法来调节;另一方面,灌区内部的用水存在不统一的情况,导致灌区用水量变化多样,这对于带有滞后性质的水流控制来说是一个难点。
目前,灌区明渠流量测量方法多以利用修建在明渠上的标准量水堰槽、水工建筑物或人工控制断面 测量流量的水力学法为主,在取水计量检测的手段、方法及设备选型方面仍然存在数据提取、数据传输、数据分析等方面的技术难题。控制运河闸门上游的水位是实践中最常用的运河自动化方法。如果正确的流量(即下游需求之和)进入渠首闸门,该方法将把流量正确地分配到下游的所有闸门。运河流入的误差将导致最后一个池内可用的流量错误,要么导致运河泄漏,要么导致灌区出口的流量不足。然后,操作人员需要改变管道流入,以纠正这种流量误差。在大多数情况下,这种控制是手动完成的,尽管自动控制正变得越来越普遍。通过自动控制,如果单个闸门的控制器没有适当调谐,可能会产生扰动干扰放大,即闸门的位置和水位在下游方向随着振幅的增加而振荡。如果对所有运河池的控制器同时进行调整,就可以避免这个问题。实现上游自动控制的通常做法是建立运河的模拟模型,通过模拟试验确定运河的响应,利用优化开发控制参数,然后通过仿真测试控制器的适宜性。当适应真实的管道时,参数将通过测试进一步调整。这可能是一个耗时且因此代价昂贵的过程。
调整自由表面流动渠道的流量以满足特定分流点农民的需求,需要一定的控制能力,并研究流动瞬变,特别是在时间和空间的需求变化非常大的情况下。通常,操作员只能在运河的几个地方进行水深测量,为了确定模型的初始条件,有必要了解所有离散点的水深和速度。灌溉渠控制的主要目标是以公平的方式向用户供水。控制目标没有完全实现的一个原因是测量流量的困难。虽然流量计量是一个老问题,但它仍在研究中。利用门模型作为一种间接测量局部流量的方法,这些结构既可以调节流量,又可以将水分布在灌溉区,又具有流量测量功能。在某些淹没条件下,程序仍然不完全准确。此外,在存在多个闸门并行工作的情况下,流量测量有额外的问题。如果一个闸门是自由流动的,而另一个闸门在过渡区,则出现横向流动,仅基于闸门开口和上下游水位的流量估计可能成为一个棘手的问题。
针对上述问题,本申请实施例提供一种闸门联动控制方法、装置及并联供水发电系统,应用于并联供水发电系统,并联供水发电系统包括水库、第一干渠、第二干渠、消力池和第三干渠,第一干渠和第二干渠并联,水库位于第一干渠和第二干渠的上游,消力池位于第一干渠和第二干渠的下游,第一干渠和水库之间设有第一闸门,第二干渠沿水流方向依次设有发电洞和发电机组,发电洞和发电机组之间设有第二闸门,第一干渠和第二干渠中的水流通过消力池汇入第三干渠,该方法包括:获取并联供水发电系统的当前闸门开度信息和第三干渠的当前水位;其中,当前闸门开度信息包括当前第一闸门开度信息和当前第二闸门开度信息;根据并联供水发电系统的当前闸门开度信息和第三干渠的当前水位,确定并联供水发电系统的目标闸门联动控制策略;按照并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。上述方案提供的方法,通过根据并联供水发电系统的当前闸门开度信息和第三干渠的当前水位,确定并联供水发电系统的目标闸门联动控制策略,在实现多闸门引水工程的闸门联动精确控制的同时,提高了闸门的控制效率。
下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本发明实施例进行描述。
本申请实施例提供了一种闸门联动控制方法,应用于并联供水发电系统,该并联供水发电系统包括水库、第一干渠、第二干渠、消力池和第三干渠,第一干渠和第二干渠并联,水库位于第一干渠和第二干渠的上游,消力池位于第一干渠和第二干渠的下游,第一干渠和水库之间设有第一闸门,第二干渠沿水流方向依次设有发电洞和发电机组,发电洞和发电机组之间设有第二闸门,第一干渠和第二干渠中的 水流通过消力池汇入第三干渠,该方法用于对并联供水发电系统进行多闸门联动控制。本申请实施例的执行主体为电子设备,比如服务器、台式电脑、笔记本电脑、平板电脑及其他可用于对并联供水发电系统进行多闸门联动控制的电子设备。
如图1所示,为本申请实施例提供的闸门联动控制方法的流程示意图,该方法包括:
步骤101,获取并联供水发电系统的当前闸门开度信息和第三干渠的当前水位。
其中,当前闸门开度信息包括当前第一闸门开度信息和当前第二闸门开度信息。
步骤102,根据并联供水发电系统的当前闸门开度信息和第三干渠的当前水位,确定并联供水发电系统的目标闸门联动控制策略。
具体地,可以预先根据并联供水发电系统的水动力信息,构建该并联供水发电系统的水动力模型,将闸门开度信息作为水动力模型的输入,第三干渠的水位作为水动力模型的输出,通过控制闸门开度的变化调节第三干渠水位的变化,直至第三干渠水位达到目标水位。
需要说明的是,本实施例提供的并联供水发电系统是在传统单渠道输水的基础上加入发电机组,有效利用落水势能。加入发电机组后,渠道的输水能力受到机组的影响会有一定程度的减小,并且有可能出现机组故障无法输水的情况。为此,在原有干渠的一侧另外铺设一条干渠,两条干渠配合输水,正常情况下由发电机组干渠主要负责供水,旁侧干渠辅助调节。特殊情况下由旁侧干渠负责供水,两条渠道的建设标准一致,因此均有能力满足下游需水要求。增加发电机组和干渠后,闸门数量也相应增加,闸门的控制方式也要做相应的调整。在水库位置布设监测设备监测闸门开度,在发电机组处布设监测设备监测机组流量变化,在下游干渠沿途布设水位监测设备,将水位信息实时反馈至控制系统中,由控制算法综合三方面数据,寻找最优的闸门控制策略,将结果发送至执行机构,控制闸门进行调节,完成配水要求。
具体地,在一实施例中,在获取并联供水发电系统的当前闸门开度信息和第三干渠的当前水位,还可以获取发电机组的工况信息及发电机组流量,以根据发电机组的工况信息,判断发电机组所在的第二干渠是否正常供水,得到第二干渠的工况检测结果,具体可以综合并联供水发电系统的当前闸门开度信息、第三干渠的当前水位、第二干渠的工况检测结果及发电机组流量,确定并联供水发电系统的目标闸门联动控制策略。
步骤103,按照并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。
具体地,可以按照并联供水发电系统的目标闸门联动控制策略表征的各目标闸门的目标闸门开度,对目标闸门进行闸门开度调节;其中,目标闸门包括第一闸门和/或第二闸门。
具体地,供水渠道中加入发电系统后,工程整体变得更加复杂,在满足供水要求的同时还要兼顾发电,两个工程对水量的要求不同,因此需要对两个工程进行联动控制。实现水量控制的方式是对闸门进行控制,加入发电机组后工程整体的闸门数量将增加。并且,由于工程结构变得更加复杂,通常使用的人工调节闸门的方式应用起来较为困难,各闸门之间很难通过人工控制进行联动,因此,对控制系统进行改进,使用控制算法收集干渠、机组的水位流量变化情况,由控制算法进行计算并输出闸门开度,对引水闸门进行联动调节。水位信息的收集主要在闸门下游五十米处设置监测站点进行监测,由于渠道均为人工渠道,在无水量流入流出的情况下水位情况较为稳定,可不设至监测站点。闸门开度的监测则要 在闸门位置设置监测设备,将闸门开度反馈至控制子系统,确保达到控制要求。
在上述实施例的基础上,作为一种可实施的方式,在一实施例中,根据并联供水发电系统的当前闸门开度信息和第三干渠的当前水位,确定并联供水发电系统的目标闸门联动控制策略,包括:
步骤1021,获取第三干渠的目标水位;
步骤1022,基于预设水动力模型,根据当前水位和目标水位之间的差值以及当前闸门开度信息,确定并联供水发电系统的闸门联动控制策略集;
步骤1023,基于预设水位误差优化目标函数,在闸门联动控制策略集中筛选水位误差最小的目标闸门联动控制策略。
需要说明的是,可以根据第三干渠的用水需求,确定第三干渠的目标水位。基于预设水动力模型确定的闸门联动控制策略集包括多种闸门联动控制策略,预设水动力模型的模拟结果表征这多种闸门联动控制策略均可以使第三干渠的水位达到目标水位。
具体地,可以基于水动力学模型对渠道水流状态进行模拟,得到第三干渠水位的变化情况,通过改变渠道的输入水量和输出水量,观察水位波动状态,找到满足渠道安全运行前提下的输入和输出水量,由此进一步确定闸门开度。
具体地,在一实施例中,为确保采用的目标闸门联动控制策略的可靠性,可以基于如下预设水位误差优化目标函数,在闸门联动控制策略集中筛选水位误差最小的目标闸门联动控制策略:

其中,U*表示目标闸门联动控制策略,U表示闸门联动控制策略集中的任一闸门联动控制策略,x0表示闸门联动控制策略U对应的第三干渠的初始水位,J(U,x0)为水位误差计算函数,k为时间步长,Nh为预测区间,预测区间包括若干个时间步长,x(k)为第三干渠在时间步长k下的水位预测值,Q,R为预设二次偏差惩罚的常数加权矩阵,Ql为预设线性惩罚的常数加权矩阵,T为转置符号,u(k)为闸门联动控制策略U表征的各闸门的闸门开度,x(Nh)为预测区间内水位预测值与目标水位值之间的最终误差。
其中,Q、R参数值可以根据第三干渠的当前水位确定,预设时间步长和预测周期及差分误差阈值
进一步地,在一实施例中,第三干渠由多段串联的子干渠组成,每个子干渠之间都设有消力池,第三干渠设有多个出水闸门,目标闸门包括出水闸门,由于无论是降低第三干渠的水位还是升高第三干渠的水位,均需要一定的调节时间,为避免出现水位急剧升高或急剧降低,影响并联供水发电系统的安全性,可以基于预设差分误差计算公式,预测在按照目标闸门联动控制策略控制目标闸门的闸门开度情况下各消力池的差分误差,当任一消力池的差分误差不小于预设差分误差阈值时,优化目标闸门联动控制策略。
具体地,在一实施例中,可以基于如下预设差分误差计算公式,预测在按照目标闸门联动控制策略控制目标闸门的闸门开度情况下各消力池的差分误差:
其中,Dj为消力池j的差分误差,ej为消力池j的水位误差,n为消力池总数,ei为除消力池j外其他消力池的水位误差。
具体地,可以在任一消力池的差分误差不小于预设差分误差阈值时,确定第三干渠的水位变化速度较大,降低目标闸门的开度调节速度,以降低第三干渠的水位变化速度,保证渠道安全,且满足供水需求。
为了能够及时观测到渠道(第三干渠)水位的变化情况,在利用水动力学模型进行模拟的同时利用水位误差模型预测控制(DE-MPC)方法,观测渠道水位的变化情况。
MPC是一种控制策略,它基于必须在一定范围内实施的控制操作序列的连续重新规划。为此,一个MPC控制器在每个时间步长中都解决了一个优化问题。在这个问题中,系统的一个数学模型被用来预测其在预测范围上的行为,作为所应用的输入序列的函数。通过以下线性时不变状态空间模型,可以以足够的精度表示大型系统的行为,例如具有多个水池的灌溉渠:
x(k+1)=Ax(k)+Buu(k)+Bdd(k)
其中,x为误差值;u为闸门开度值;d为在时间步长k处已知可测扰动的矢量,A为状态转移矩阵,Bu为对状态矩阵的输入,Bd为对状态矩阵的干扰,x(k+1)为下一时间步长处的误差值。
为了优化系统的行为,定义一个成本函数,该函数根据控制目标衡量其性能。假设存在调节控制渠道中的水量均衡分配问题,即控制器必须将系统状态转向给定的参考值。为了简单起见,在不损失一般性的情况下,可以假设源是状态引用。因此,可以在数学上将控制目标定义为以下函数:
其中,Nh为预测水位值,Q和R为常数加权矩阵,惩罚相对于状态和被操纵的变量向量的二次偏差,Ql也是一个常数加权矩阵,它对状态的偏差进行线性惩罚。
函数取决于当前状态x0,它是系统根据所应用的动作序列演化的初始状态,由U=(u(k),u(k+1),...,u(k+Nh-1)),以及误差的期望值D=(d(k),d(k+1),...,d(k+Nh))表示。否则,将无法预测系统状态的演变。
控制器的行为根据Q和R之间的关系而变化。如果R相对大于Q,控制器将专注于最小化操纵变量的使用,代价是在状态向量上的偏差更大。反之亦然,即如果R相对低于Q,则优化将导致控制动作发生重要变化,以减少状态向量的偏差。
系统中应用的控制动作序列可计算为最小化目标函数。因此,在每个时间步,MPC控制器都会解决以下优化问题:
受制于系统模型,以及对状态和操纵变量的考虑约束。只应用计算的第一个动作,即实际应用控制动作序列U*=(u*(k),u*(k+1),...,u*(k+Nh-1))中的u*(0)。序列的其余部分提供了关于控制序列的预期演化的信息,但它没有被实现。在下一个时间步中,MPC控制器根据最新的信息再次解决同样的优化问题,并应用相应的控制动作。这个过程在每个时间步长中都以所谓的后退水平的方式重复。
渠道流量的控制也可等效于水位的控制,其目标是调节水位差误差,并使水池的水位保持在给定的参考水平。MPC需要一个控制系统的模型来预测其在预测范围内的行为。为了控制目的,对运河池使用积分器延迟(ID)模型。ID模型将运河池划分为具有属性延迟时间的均匀流体和具有属性存储区域的回水段。水池下游端的水位h是控制流出(qout(k))、考虑kd水流延迟时间步长的回水段的流入量(qin(k-kd))和排放流出量(qoff-take(k))的函数。扰动流量源于用水者的取水计划。本申请实施例中应用的离散时不变运河池模型定义为:
其中,h(k+1)为时间步长k+1处的水位,h(k)为时间步长k处的水位,As为平均存储面积,Tc为控制时间步长。
从控制的角度来看,通常关注调节误差而不是水位。这使能够惩罚相对于零的偏差。出于这个原因,有必要引入变量的变化并对方程进行改写为:
除了与目标水位相关的误差外,在本申请实施例中,对水位微分误差的处理方式进行进一步的改进,得到水位的微分误差为:
Dj=ej-ej+1=(yj-SPj)-(yj+1-SPj+1)
其中,Dj为,ej为j处水位误差,ej+1为j+1处水位误差,SPj为j处预定义的目标水位,yj+1为j+1的下游(或远距离下游)水位,SPj+1为j+1处预定义的目标水位,yj为运河池j的下游(或远距离下游)水位,SP为预定义的目标水位,e为水位误差。当一个池中发生错误时,首先相邻的上游和下游池受到干扰,因此所有池都逐渐参与控制过程。
在本申请实施例中,为了加快所有池之间共享错误的过程,差分误差变量由下式确定:
其中,ei为除j外水位误差,n为消力池总数。
利用上式能够让控制器在共享错误方面的更快反应,因为所有的运河池同时参与共享过程。
在使用DE-MPC方法对渠道水位进行预测调节时,首先要测量当前时刻渠道的水位数据或者估计控制开始时刻渠道的水位数据,获得当前或某一时刻系统状态。获得水位信息后根据需要更快的控制动作或者更平稳的控制过程选择合适的Q、R参数值。选择需要预测的时间步长、预测区间以及差分误差阈值,闸门开度作为控制变量进行输入。控制开始后,系统将根据预测区间的范围制定相应的控制计划即u(k),u(k+1),...,u(k+Nh-1),并得到预测区间的控制结果及水位误差值d(k),d(k+1),...,d(k+Nh),选择u(k)进行控制,控制结束后根据实际的水位误差值,以k+1时刻作为控制起点,重复上述步骤直至达到最优。
上述MPC控制过程可以均在水动力学模型中完成,水动力学模型首先读取实际的水位以及各闸门的闸门开度,以渠道各段闸门开度作为输入变量,水位作为输出变量,通过控制闸门开度的变化影响渠道水位的变化,模拟渠道水位的变化情况。结合DE-MPC控制方法为,根据DE-MPC控制方法制定的控制策略对渠道的闸门进行控制,改变闸门开度,由水动力学模型进行模拟,将模拟结果中得到的水位值输入至DE-MPC中,供其进行后续的控制。完成整个预测控制过程后,得到优化后的目标闸门联动控制策略。
其中,水动力学模型不做强制规定,可根据渠道实际情况进行选择例如SMS、WMS等,只要能够实现水位流量模拟即可。
具体地,本申请实施例提供的方法能够快速得到渠道闸门的控制开度,并且此方法以水位误差作为期望值,可以根据误差值的大小有效判断出渠道水位变化是否存在问题,对渠道安全、上下游用水户的正常供水是否有影响。判断结果一方面将辅助控制系统进行调整,维持水位稳定。
在上述实施例的基础上,为了进一步确保闸门联动控制的可靠性,作为一种可实施的方式,在一实施例中,按照并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度,包括:
步骤1031,基于预设PID控制器,按照并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。
具体地,可以利用预设PID控制器、多输入多输出傅里叶级数神经网络、多输入单输出傅里叶级数神经网络和系统控制器构建闸门联动控制器。其中PID控制器根据输入的当前闸门开度值(当前闸门开度信息)与目标闸门开度值(目标闸门联动控制策略表征的目标开度)的差值建立最优目标函数,结合多输入多输出傅里叶级数神经网络输出的增益参数,输出PID调节后的闸门开度值至系统控制器;系统控制器根据PID调节后的闸门开度值对引水闸门进行控制,输出系统的当前闸门开度值。多输入多输出傅里叶级数神经网络根据神经网络连接权重计算雅可比矩阵系统的近似值,然后根据神经网络自适应方程计算自适应调节后的神经网络偏置和神经网络连接权重,最后根据自适应调节后的神经网络偏置和神经网络连接权重计算PID控制器的增益参数,输出至PID控制器,以优化PID控制器。
其中,PID控制器建立的最优目标函数具体为:

e(k)=R(k)-y(k)
其中,E(k)为最优目标函数,e(k)为当前闸门开度值与目标闸门开度值的差值,R(k)为当前闸门开度值,y(k)为目标闸门开度值。
其中,神经网络自适应方程具体为:

其中,为自适应调节后的神经网络偏置,为原始的神经网络偏置,η为,e(k)为当前闸门开度值与目标闸门开度值的差值,y(k)为目标闸门开度值,u(k)为PID调节后的闸门开度值,Oh(k)为PID控制器的增益参数,为自适应调节后的神经网络连接权重,为原始的神经网络连接权重。
具体地,在一实施例中,为了提高PID控制器对闸门的控制效率,可以按照预设周期,基于如下公式优化预设PID控制器的增益参数:
其中,Oh为增益参数,为自适应调节后的神经网络偏置,N1为神经网络第1层隐藏层的神经元序列长度,Nmc为神经网络第mc层隐藏层的神经元序列长度,mc表示神经网络的隐藏层总数,l=3,为自适应调节后的神经网络连接权重,Hj为中间变量。h=1、2、3,增益参数包括Kp、Ki、Kd
具体地,在一实施例中,可以在按照并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度之后,可以监测各目标闸门的当前实际开度;根据各目标闸门的当前实际开度与目标闸门联动控制策略表征的各目标闸门的目标开度之间的偏差,确定目标闸门开度修正策略。
如图2所示,为本申请实施例提供的一种示例性的闸门联动控制方法的流程示意图,控制子系统接收到模拟子系统上传的闸门开度,得到闸门开度的预设值,由控制器对涉及到的目标闸门进行联动控制,监测设备将闸门当前实际开度实时上传至控制子系统实现实时反馈。
反馈系统是在渠道各个位置布设监测设备,获取闸门开度、渠道水深、过闸流量等数据。反馈系统主要有两个数据反馈方向,一个是在控制子系统对闸门进行控制时,反馈系统实时监控闸门开度的变化情况,将数据上传至控制子系统,控制器根据这些数据对控制策略进行及时调整,即确定目标闸门开度修正策略。另一方面,在控制子系统完成控制过程后,将实际闸门开度以及水位情况上传至模拟子系统, 利用水动力学模型进行模拟,直观展示控制结果。如图3所示,为本申请实施例提供的另一种示例性的闸门联动控制方法的流程示意图。
若控制结果(控制后的水位)达到预期要求(目标水位),则控制结束;若控制结果显示渠道水位未达到预期要求,则继续利用DE-MPC方法获取闸门开度,重复后续步骤,继续对渠道闸门进行控制,直至满足预期要求。
为了实现闸门的联动控制,结合渠道控制的多目标、非线性和时变性的特点,本申请实施例使用自适应傅里叶级数神经网络PID(AFSNNPID)控制方法,此方法可以实现参数调整以及控制两方面的功能。
PID控制器的离散形式:
其中,u(k)为闸门开度值,k为时间步长,e(k)为闸门的开度误差,Kp,Ki,Kd为PID的增益参数,影响闸门的控制效率,Ts为采样周期。
本申请实施例使用两个傅里叶级数神经网络(FSNN)来实现闸门联动控制器,右边的FSNN是仿真器FSNN,它是一个多输入单输出(MISO)FSNN,允许模拟系统的动态行为。
模拟器FSNN的输入向量Xe=[x1,x2,x3,…,xm]定义如下:
Xe=[u(k),u(k-1),...,u(k-be),y(k-1),y(k-2),...,y(k-ae)]
其中,me=1+be+ae是模拟器FSNN的输入数量,be为u的数量,ae为y的数量。
仿真器的输出由下式给出:
其连接权值用下式进行调整:

W0(k)=W0(k-1)+ηeh(k)
其中,n1为序列长度,nm为序列长度,eh(k)为第h个输出在时间步长k处的误差。
左边的FSNN是一个多输入多输出(MIMO)FSNN,有三个输出(o1,o2和o3)。它给控制器增益,Kp、Ki、Kd为PID控制器的三个参数,令o1=Kp,o2=Ki,o3=Kd,该网络的输入向量为:
Xc=[e(k),e(k-1),...,e(k-bc),u(k-1),u(k-2),...,u(k-ac)]
其中,mc=1+bc+ac是输入向量的数量,bc为e的数量,ac为u的数量。
FSNN的输出为:

H1=cos(n1ω1x1)cos(n2ω2x2)...cos(nmc-1ωmc-1xmc-1)cos(nmcωmcxmc)
H2=cos(n1ω1x1)cos(n2ω2x2)...cos(nmc-1ωmc-1xmc-1)sin(nmcωmcxmc)
...
Hl-1=sin(n1ω1x1)sin(n2ω2x2)...sin(nmc-1ωmc-1xmc-1)cos(nmcωmcxmc)
Hl=sin(n1ω1x1)sin(n2ω2x2)...sin(nmc-1ωmc-1xmc-1)sin(nmcωmcxmc)
其中,分别为连接权重和第h个MISO FSNN的偏差。 是频率权重,Ti是输入xi的范围(xi∈[0 Ti]),l=2m是产品节点数,是隐藏层与输出层之间的连接权值(状态权值),W0是网络偏置,Ni是序列长度。权重数由,给出。
给出PID控制器增益的FSNN连接权值被调整,从而使以下目标函数最小化:

e(k)=R(k)-y(k)
其中,y(k)为系统输出即闸门开度,R(k)为参考值即目标闸门开度值。
使用增量规则导出自适应规则,如下:

计算方法如下:
其中,表示时间k的雅可比矩阵,使用FSNN模型估计。
为获得该控制算法的快速收敛性和良好的控制性能,FSNN模型必须有足够的精度,较大的估计误差会导致控制算法的收敛或发散。得到的雅可比矩阵系统如下:
最后,该自适应方程如下:

具体地,控制器在运行时首先获得初始的闸门开度(当前闸门开度信息)以及控制参数,然后系统输出当前闸门开度与期望开度(目标开度)之间的差值,先计算雅可比矩阵系统的近似值,再计算新的值,再计算新的值,最后计算确定PID控制器的控制规律,以对渠道闸门进行控制。
其中,利用AFSNNPID控制器对渠道内闸门进行联动控制,一方面能够解决传统PID控制器无法处理渠道这种多目标非线性的问题,实现参数的自动调整,加快闸门的调节速度,将渠道连同闸门视为一个有机整体。另一方面,该控制系统能够实现闸门的智能控制,减少了人力成本,提高闸门调节工作的安全系数,同时为渠道闸门的调节方式提供了更多的选择,提高渠道的风险应对能力。
本申请实施例提供的闸门联动控制方法,通过获取并联供水发电系统的当前闸门开度信息和第三干渠的当前水位;其中,当前闸门开度信息包括当前第一闸门开度信息和当前第二闸门开度信息;根据并联供水发电系统的当前闸门开度信息和第三干渠的当前水位,确定并联供水发电系统的目标闸门联动控制策略;按照并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。上述方案提供的方法,通过根据并联供水发电系统的当前闸门开度信息和第三干渠的当前水位,确定并联供水发电系统的目标闸门联动控制策略,在实现多闸门引水工程的闸门联动精确控制的同时,提高了闸门的控制效率。并且,通过模拟-控制-反馈-调节的顺序对渠道水位进行高效、自动的控制,提高渠道的风险应对能力和调控的灵活程度。该方法可以对单渠道、多渠道、供水-发电渠道等多种类型渠道的水量状态进行全面的感知和高效调控,提升渠道的风险应对能力和供水的稳定性,减少人力成本,提高经济效益。
本申请实施例提供了一种闸门联动控制装置,应用于并联供水发电系统,并联供水发电系统包括水库、第一干渠、第二干渠、消力池和第三干渠,第一干渠和第二干渠并联,水库位于第一干渠和第二干渠的上游,消力池位于第一干渠和第二干渠的下游,第一干渠和水库之间设有第一闸门,第二干渠沿水流方向依次设有发电洞和发电机组,发电洞和发电机组之间设有第二闸门,第一干渠和第二干渠中的水流通过消力池汇入第三干渠,用于执行上述实施例提供的闸门联动控制方法。
如图4所示,为本申请实施例提供的闸门联动控制装置的结构示意图。该闸门联动控制装置40包括:获取模块401、确定模块402和控制模块403。
其中,获取模块,用于获取并联供水发电系统的当前闸门开度信息和第三干渠的当前水位;其中,当前闸门开度信息包括当前第一闸门开度信息和当前第二闸门开度信息;确定模块,用于根据并联供水发电系统的当前闸门开度信息和第三干渠的当前水位,确定并联供水发电系统的目标闸门联动控制策略; 控制模块,用于按照并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。
关于本实施例中的闸门联动控制装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本申请实施例提供的闸门联动控制装置,用于执行上述实施例提供的闸门联动控制方法,其实现方式与原理相同,不再赘述。
本申请实施例提供了一种并联供水发电系统,用于执行上述实施例提供的闸门联动控制方法。如图5所示,为本申请实施例提供的并联供水发电系统的结构示意图,该系统包括:
水库、第一干渠、第二干渠、消力池和第三干渠;第一干渠和第二干渠并联,水库位于第一干渠和第二干渠的上游,消力池位于第一干渠和第二干渠的下游;第一干渠和水库之间设有第一闸门;第二干渠沿水流方向依次设有发电洞和发电机组,发电洞和发电机组之间设有第二闸门;第一干渠和第二干渠中的水流通过消力池汇入第三干渠。
具体地,本申请实施例提供的并联供水发电系统具有三个层次的改进。首先是工程设计上的改进,在单纯的输水渠道中加入发电机组,并且为保证工程的安全性,将以往的单渠道输水改为多渠道并联输水,提高输水系统能力和调节空间,对水量的要求更小,应用范围上比单纯的发电工程更加广泛,能够适用于中小型河流,在水资源的利用上能够兼顾水量与水能的利用。发出的电力用来启动闸门的控制设备,同时,跟光能、风能的发电进行配合,能够达到全年全天时自动运行。在有水发电的时候才需要进行闸门的控制,在没水的时候闸门不需要进行控制,机组发电也不会有影响。然后是对并联渠道采用多闸门的控制方式,在渠道关键节点处设置闸门和监测设备,保证专业人员能够实时看到渠道的运行状态,同时利用控制系统,采集渠道水位流量数据分析输出闸门开度,通过调节闸门对渠道水量进行调整。并且多闸门的设置可以有效提高渠道的配水灵活度和风险应对能力,发电系统与控制系统相结合,实现工程的无人值守和自主运行。
为了充分利用水头差,在输水的过程中加入发电机组,消减落水势能的同时还能够带来一部分的经济效益。但仅依靠一条渠道承担发电和输水任务的话依然存在一定的风险。由于发电机组受到电网的影响,发电负荷存在波动,相应的发电流量也随之波动。此外,当发电机组出现故障甚至停机时,发电流量在很短的时间内要减为零,而总干渠供水流量在一定的时段内需要保持相对的稳定,流量短时间大幅波动将造成总干渠水位发生突变,对渠道安全运行造成威胁。倘若发电机组出现突发事故,机组出闸门紧急关闭后,上游来水无处倾泻,容易引发风险。此外,停止供水后,下游的需水也将无法得到满足,从而产生连锁的影响。
在原有干渠的基础上另外修建一条干渠,可以解决单渠道出现堵塞情况时水流无处宣泄的问题,同时还能够保证下游的供水需要。此渠道的规模与原干渠一致,在发电机组正常运行的时候起到备用调节作用,当机组出现故障时可以从这条渠道进行输水,避免对机组造成进一步破坏的同时还能够满足下游的需水要求。这样可以解决下游的输水问题以及机组故障时下泄水流的引导问题。但在使用备用干渠进行输水时,水流的突然增大仍然会对渠道衬砌产生危害,无法有效解决渠道水位的突变问题。鉴于渠道水位变化的控制要求,需要对输入流量进行平滑控制,保证水位缓慢变化的同时不影响其他水利设施的运行。因此,有必要建立一套可靠高效的供水与发电联动控制系统,协调发电与供水流量之间的平衡。 通过该系统的建设,及时调节总干渠进水闸闸门开度,保证电站发电和渠道输水安全。在此系统的基础上加入自动化的元素,实现供水-发电的联动控制,自动调节闸门开度,提高反应速度的同时还能够节省一部分人力成本,减轻运管人员的劳动强度,为科学调度和日常运行提供强有力的技术手段。
其中,该系统还包括电子设备,如图6所示,为本申请实施例提供的电子设备的结构示意图。该电子设备60包括:至少一个处理器61和存储器62。
存储器存储计算机执行指令;至少一个处理器执行存储器存储的计算机执行指令,使得至少一个处理器执行如上实施例提供的闸门联动控制方法。
本申请实施例提供的一种并联供水发电系统,用于执行上述实施例提供的闸门联动控制方法,其实现方式与原理相同,不再赘述。
为了体现本发明中闸门联动控制系统的性能,设计两种不同情况下闸门控制,一种是渠道无水状态下闸门控制的响应速度,另一种是渠道有水状态下闸门控制的响应速度,并与ANNPDI(人工神经网络PID)进行对比,首先对控制系统参数进行预设,如表1所示。
表1控制系统参数预设
在第一次实验中,每个闸门面对相同的情况,对于每个控制器和相同的初始条件,均方误差(MSE)、平均绝对误差(MAE)和均方根误差(RMSE)的值在考虑的控制区间上计算,控制结果见表2。
表2每个控制器的计算时间、MSE、MAE和RMSE值
第二次实验中,渠道中处于有水状态,每个闸门需要将开度调节到预设位置,对于每个控制器和相同的初始条件,控制结果见表3。
表3每个控制器的计算时间、MSE、MAE和RMSE值
由上可以看出,本发明提出的闸门联动控制方法在跟踪精度、对外部干扰和动态系统变化的鲁棒性方面都具有良好的控制性能,能够有效处理闸门联动控制这类非线性问题,此外,控制系统的计算时间 非常短,在实时控制中有很大的应用前景。
本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如上任一实施例提供的闸门联动控制方法。
本申请实施例的包含计算机可执行指令的存储介质,可用于存储前述实施例中提供的闸门联动控制方法的计算机执行指令,其实现方式与原理相同,不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种闸门联动控制方法,应用于并联供水发电系统,所述并联供水发电系统包括水库、第一干渠、第二干渠、消力池和第三干渠,所述第一干渠和第二干渠并联,所述水库位于所述第一干渠和第二干渠的上游,所述消力池位于所述第一干渠和第二干渠的下游,所述第一干渠和水库之间设有第一闸门,所述第二干渠沿水流方向依次设有发电洞和发电机组,所述发电洞和发电机组之间设有第二闸门,所述第一干渠和第二干渠中的水流通过所述消力池汇入所述第三干渠,其特征在于,所述方法包括:
    获取所述并联供水发电系统的当前闸门开度信息和所述第三干渠的当前水位;其中,所述当前闸门开度信息包括当前第一闸门开度信息和当前第二闸门开度信息;
    根据所述并联供水发电系统的当前闸门开度信息和所述第三干渠的当前水位,确定所述并联供水发电系统的目标闸门联动控制策略;
    按照所述并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述并联供水发电系统的当前闸门开度信息和所述第三干渠的当前水位,确定所述并联供水发电系统的目标闸门联动控制策略,包括:
    获取所述第三干渠的目标水位;
    基于预设水动力模型,根据所述当前水位和所述目标水位之间的差值以及所述当前闸门开度信息,确定所述并联供水发电系统的闸门联动控制策略集;
    基于预设水位误差优化目标函数,在所述闸门联动控制策略集中筛选水位误差最小的目标闸门联动控制策略。
  3. 根据权利要求2所述的方法,其特征在于,所述基于预设水位误差优化目标函数,在所述闸门联动控制策略集中筛选水位误差最小的闸门联动控制策略,包括:
    基于如下预设水位误差优化目标函数,在所述闸门联动控制策略集中筛选水位误差最小的目标闸门联动控制策略:
    其中,U*表示目标闸门联动控制策略,U表示所述闸门联动控制策略集 中的任一闸门联动控制策略,x0表示闸门联动控制策略U对应的第三干渠的初始水位,J(U,x0)为水位误差计算函数,k为时间步长,Nh为预测区间,所述预测区间包括若干个时间步长,x(k)为第三干渠在时间步长k下的水位预测值,Q,R为预设二次偏差惩罚的常数加权矩阵,Ql为预设线性惩罚的常数加权矩阵,T为转置符号,u(k)为闸门联动控制策略U表征的各闸门的闸门开度,x(Nh)为预测区间内水位预测值与目标水位值之间的最终误差。
  4. 根据权利要求3所述的方法,其特征在于,所述第三干渠由多段串联的子干渠组成,每个子干渠之间都设有消力池,所述第三干渠设有多个出水闸门,所述目标闸门包括所述出水闸门,所述方法还包括:
    基于预设差分误差计算公式,预测在按照所述目标闸门联动控制策略控制目标闸门的闸门开度情况下各所述消力池的差分误差,
    当任一所述消力池的差分误差不小于预设差分误差阈值时,优化所述目标闸门联动控制策略。
  5. 根据权利要求4所述的方法,其特征在于,所述基于预设差分误差计算公式,预测在按照所述目标闸门联动控制策略控制目标闸门的闸门开度情况下各所述消力池的差分误差,包括:
    基于如下预设差分误差计算公式,预测在按照所述目标闸门联动控制策略控制目标闸门的闸门开度情况下各所述消力池的差分误差:
    其中,Dj为消力池j的差分误差,ej为消力池j的水位误差,n为消力池总数,ei为除消力池j外其他消力池的水位误差。
  6. 根据权利要求1所述的方法,其特征在于,所述按照所述并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度,包括:
    基于预设PID控制器,按照所述并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。
  7. 根据权利要求6所述的方法,其特征在于,还包括:
    按照预设周期,基于如下公式优化所述预设PID控制器的增益参数:
    其中,Oh为增益参数,为自适应调节后的神经网络偏置,N1为神经网络第1层隐藏层的神经元序列长度,Nmc为神经网络第mc层隐藏层的神经元序列长度,mc表示神经网络的隐藏层总数,为自适应调节后的神经网络连接权重,Hj为中间变量。
  8. 根据权利要求1所述的方法,其特征在于,在按照所述并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度之后,所述方法还包括:
    监测各所述目标闸门的当前实际开度;
    根据各所述目标闸门的当前实际开度与所述目标闸门联动控制策略表征的各目标闸门的目标开度之间的偏差,确定目标闸门开度修正策略。
  9. 一种闸门联动控制装置,应用于并联供水发电系统,所述并联供水发电系统包括水库、第一干渠、第二干渠、消力池和第三干渠,所述第一干渠和第二干渠并联,所述水库位于所述第一干渠和第二干渠的上游,所述消力池位于所述第一干渠和第二干渠的下游,所述第一干渠和水库之间设有第一闸门,所述第二干渠沿水流方向依次设有发电洞和发电机组,所述发电洞和发电机组之间设有第二闸门,所述第一干渠和第二干渠中的水流通过所述消力池汇入所述第三干渠,其特征在于,所述装置包括:
    获取模块,用于获取所述并联供水发电系统的当前闸门开度信息和所述第三干渠的当前水位;其中,所述当前闸门开度信息包括当前第一闸门开度信息和当前第二闸门开度信息;
    确定模块,用于根据所述并联供水发电系统的当前闸门开度信息和所述第三干渠的当前水位,确定所述并联供水发电系统的目标闸门联动控制策略;
    控制模块,用于按照所述并联供水发电系统的目标闸门联动控制策略,控制目标闸门的闸门开度。
  10. 一种并联供水发电系统,其特征在于,包括:
    水库、第一干渠、第二干渠、消力池和第三干渠;
    所述第一干渠和第二干渠并联,所述水库位于所述第一干渠和第二干渠的上游,所述消力池位于所述第一干渠和第二干渠的下游;
    所述第一干渠和水库之间设有第一闸门;
    所述第二干渠沿水流方向依次设有发电洞和发电机组,所述发电洞和发电机组之间设有第二闸门;
    所述第一干渠和第二干渠中的水流通过所述消力池汇入所述第三干渠;
    还包括电子设备,所述电子设备包括至少一个处理器和存储器;
    所述存储器存储计算机执行指令;
    所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述至少一个处理器执行如权利要求1至8任一项所述的方法。
PCT/CN2023/106647 2023-03-02 2023-07-10 一种闸门联动控制方法、装置及并联供水发电系统 WO2024109103A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310220346.1 2023-03-02
CN202310220346.1A CN116411550A (zh) 2023-03-02 2023-03-02 一种闸门联动控制方法、装置及并联供水发电系统

Publications (1)

Publication Number Publication Date
WO2024109103A1 true WO2024109103A1 (zh) 2024-05-30

Family

ID=87057434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106647 WO2024109103A1 (zh) 2023-03-02 2023-07-10 一种闸门联动控制方法、装置及并联供水发电系统

Country Status (2)

Country Link
CN (1) CN116411550A (zh)
WO (1) WO2024109103A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116822911B (zh) * 2023-08-29 2023-12-05 水利部交通运输部国家能源局南京水利科学研究院 平原城市河网有序流动调控关键节点识别方法
CN117367335B (zh) * 2023-09-27 2024-06-18 海南蓄能发电有限公司 尾闸故障判定方法、装置、计算机设备、存储介质
CN117436621B (zh) * 2023-12-21 2024-04-02 山东省水利科学研究院 一种水利工程中渠道衬砌方案的确定方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1315953A2 (ru) * 1985-12-03 1987-06-07 Одесский Политехнический Институт Устройство дл регулировани уровн воды в канале
US20050129463A1 (en) * 2003-11-19 2005-06-16 Craig Kenneth R. Irrigation gate system
KR100945174B1 (ko) * 2009-07-30 2010-03-03 주식회사 파워텍시스 농업용수로용 수위조절장치 및 그의 제어방법
CN102890732A (zh) * 2012-09-10 2013-01-23 清华大学 一种含多种结构物渠道的水动力条件并行化数值模拟方法
CN103475698A (zh) * 2013-08-27 2013-12-25 肖振清 一种多渠段水利系统及控制方法
CN109274753A (zh) * 2018-10-10 2019-01-25 广州远动信息技术有限公司 一种基于灌区的信息化智能监测系统及其方法
CN111783369A (zh) * 2020-07-22 2020-10-16 中国水利水电科学研究院 一种多闸群明渠调水工程的短期多目标优化调度方法
CN112779900A (zh) * 2021-01-27 2021-05-11 杨锡安 一种高水头通航发电船闸
CN114397919A (zh) * 2021-12-02 2022-04-26 清华大学 一种全渠道灌溉多闸门联合调度控制系统及方法
CN114839943A (zh) * 2022-07-04 2022-08-02 国能大渡河流域水电开发有限公司 一种梯级电站闸门控制策略生成和滚动优化方法及系统
CN114908716A (zh) * 2022-06-17 2022-08-16 中国电建集团贵阳勘测设计研究院有限公司 一种基于高水头、大削落深度条件下的水利枢纽系统
CN115167308A (zh) * 2022-07-21 2022-10-11 扬州大学 一种用于指导闸门调控的调水工程多目标预测控制算法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1315953A2 (ru) * 1985-12-03 1987-06-07 Одесский Политехнический Институт Устройство дл регулировани уровн воды в канале
US20050129463A1 (en) * 2003-11-19 2005-06-16 Craig Kenneth R. Irrigation gate system
KR100945174B1 (ko) * 2009-07-30 2010-03-03 주식회사 파워텍시스 농업용수로용 수위조절장치 및 그의 제어방법
CN102890732A (zh) * 2012-09-10 2013-01-23 清华大学 一种含多种结构物渠道的水动力条件并行化数值模拟方法
CN103475698A (zh) * 2013-08-27 2013-12-25 肖振清 一种多渠段水利系统及控制方法
CN109274753A (zh) * 2018-10-10 2019-01-25 广州远动信息技术有限公司 一种基于灌区的信息化智能监测系统及其方法
CN111783369A (zh) * 2020-07-22 2020-10-16 中国水利水电科学研究院 一种多闸群明渠调水工程的短期多目标优化调度方法
CN112779900A (zh) * 2021-01-27 2021-05-11 杨锡安 一种高水头通航发电船闸
CN114397919A (zh) * 2021-12-02 2022-04-26 清华大学 一种全渠道灌溉多闸门联合调度控制系统及方法
CN114908716A (zh) * 2022-06-17 2022-08-16 中国电建集团贵阳勘测设计研究院有限公司 一种基于高水头、大削落深度条件下的水利枢纽系统
CN114839943A (zh) * 2022-07-04 2022-08-02 国能大渡河流域水电开发有限公司 一种梯级电站闸门控制策略生成和滚动优化方法及系统
CN115167308A (zh) * 2022-07-21 2022-10-11 扬州大学 一种用于指导闸门调控的调水工程多目标预测控制算法

Also Published As

Publication number Publication date
CN116411550A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2024109103A1 (zh) 一种闸门联动控制方法、装置及并联供水发电系统
JP7346705B2 (ja) ファジィニューラルネットワークに基づく直列水路の水位予測及び制御方法
US9008807B2 (en) Method of large scale process optimization and optimal planning based on real time dynamic simulation
Ehteram et al. Reducing irrigation deficiencies based optimizing model for multi-reservoir systems utilizing spider monkey algorithm
Li et al. An improved risk-benefit collaborative grey target decision model and its application in the decision making of load adjustment schemes
CN106505635A (zh) 弃风最小的有功调度模型及调度系统
Rao Adaptive Neuro Fuzzy based Load Frequency Control of multi area system under open market scenario
CN114415520B (zh) 一种水联网灌区的全渠系自适应预测控制方法
JP2023525582A (ja) 分散型エネルギー資源システムデザイン及び運転
CN117348400A (zh) 一种水网多通道并联联动控制系统
CN104408317A (zh) 一种基于Bootstrap回声状态网络集成的冶金企业煤气流量区间预测方法
Zhong et al. Research on data-driven operation control of secondary loop of district heating system
Zheng et al. Digital twin modeling for district heating network based on hydraulic resistance identification and heat load prediction
CN101685964A (zh) 基于大规模并行处理的在线调度辅助决策方法和系统
Yuan et al. Self-optimization system dynamics simulation of real-time short term cascade hydropower system considering uncertainties
Ma et al. Multi-objective solution and decision-making framework for coordinating the short-term hydropeaking-navigation-production conflict of cascade hydropower reservoirs
Paluszczyszyn Advanced modelling and simulation of water distribution systems with discontinuous control elements
Li et al. Multiagent deep meta reinforcement learning for sea computing-based energy management of interconnected grids considering renewable energy sources in sustainable cities
Majumder et al. Real-time monitoring of power production in modular hydropower plant: most significant parameter approach
Moosavian et al. Sequential quadratic programming and analytic hierarchy process for nonlinear multiobjective optimization of a hydropower network
Lampl et al. Optimization modeling in a smart grid
CN116070386A (zh) 水网工程智能化设计、评估方法及系统
CN115051360A (zh) 集成式知识迁移的电力系统运行风险在线计算方法与装置
Zhu et al. Distributed model predictive control based on the alternating direction method of multipliers for branching open canal irrigation systems
CN114336704A (zh) 一种区域能源互联网多智能体分布式控制及效率评测方法