JP2023525582A - 分散型エネルギー資源システムデザイン及び運転 - Google Patents

分散型エネルギー資源システムデザイン及び運転 Download PDF

Info

Publication number
JP2023525582A
JP2023525582A JP2022569109A JP2022569109A JP2023525582A JP 2023525582 A JP2023525582 A JP 2023525582A JP 2022569109 A JP2022569109 A JP 2022569109A JP 2022569109 A JP2022569109 A JP 2022569109A JP 2023525582 A JP2023525582 A JP 2023525582A
Authority
JP
Japan
Prior art keywords
level
energy
design
term
energy resource
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022569109A
Other languages
English (en)
Inventor
イネス ダ マタ セシリオ
マチュー シモン
シモン ビットルストン
シルヴァン ティエリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology BV
Original Assignee
Schlumberger Technology BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology BV filed Critical Schlumberger Technology BV
Publication of JP2023525582A publication Critical patent/JP2023525582A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Abstract

分散型エネルギー資源システムのデザイン及び運転を改善するためのエネルギー管理システムは、2レベルデザインシステム及び階層的最適化ベースの制御システムを含んでいる。2レベルデザインシステムは、個々のエネルギー資源に対して分散化された下位レベルのデザイナーを調整して、信頼レベル内で目標配置場所のエネルギー需要を満たすデザインされた分散型エネルギー資源システムに対する全体目標を求めるように構成された上位レベルのデザイナーと、局所的エネルギーサブシステムの詳細なデザインを改善するように構成された複数の下位レベルのデザイナーと、を含む。階層的最適化ベースの制御システムは、第1のレベルにおいて、長期制約及び将来事象に基づいて、長期運転スケジュールを決定するように構成された一次コントローラと、第2のレベルにおいて、運転中に分散型エネルギー資源システムの毎日の調整を制御するように構成された1つ以上の二次コントローラと、第3のレベルにおいて、種々のハードウェアを迅速に調整するように構成された複数の三次コントローラ及びアグリゲータと、を含む。【選択図】図1

Description

[関連出願の相互参照]
本出願は、米国仮出願第63/024,798号、発明の名称「Optimal Design and Operation of a Distributed Energy Resource System」(2020年5月14日に出願)からの優先権及びこの出願の利益を主張する。なおこの文献はその全体において参照により本明細書に組み込まれている。
[技術分野]
本開示は全般的に、分散型エネルギー資源システムに対するモデルベースのデザイン及び運転に関する。
このセクションでは、後述する本開示の種々の態様に関連し得る種々の技術態様を読み手に紹介することを目的としている。この説明は、本開示の種々の態様のより良好な理解を促すために読み手に背景情報を示すのに有用であると考えられる。したがって、これらの記載はこの観点から読むべきであって、従来技術を承認するものではないと理解すべきである。
分散型エネルギー資源システムには、種々の再生可能エネルギー源、例えば、地熱、太陽光発電、風力発電、小水力発電、バイオマス、バイオガス、またはそれらの組み合わせが含まれ得る。従来の電力システム(例えば、集中型電力グリッドシステム)とは違って、分散型エネルギー資源システムは、供給する負荷に近いところに配置される非集中型、モジュール方式、及びより柔軟なシステムであり得る。分散型エネルギー資源システムには、インテリジェントまたはスマートグリッド内でデザイン及び運転され得る複数のエネルギー発生及び貯蔵コンポーネントが含まれ得る。分散型エネルギー発生及び貯蔵によって、種々のエネルギー源からのエネルギーの収集が可能になる場合があり、環境影響が低くなり及び/またはエネルギー使用のコストが下がる場合がある。
種々のエネルギー資源(例えば、電気、地熱、太陽光、風力発電など)を統合することは、分散型エネルギー資源システムデザイン及び運転に対して課題を示す場合がある。例えば、地熱、太陽光、及び風力発電は、これらのエネルギー資源の不確かな性質(例えば、地面または地下の温度変化、気象変化など)の影響を受ける場合がある。場合によっては、分散型エネルギー資源システムのデザイン及び/または運転(例えば、種々のエネルギー資源の調整)は、非環境要因(例えば、電気料金または電力契約の変化)の影響を受けることがある。
この概要は、以下の詳細な説明で更に説明する考え方を選んで紹介するために設けている。この概要は、特許請求の範囲に記載される対象の主要または本質的な特徴を特定するためのものではなく、特許請求の範囲に記載される対象の範囲を限定する手助けとして用いるためのものでもない。
ある実施形態では、分散型エネルギー資源システムに対するエネルギー管理システムは、デザインシステム及び階層的最適化ベースの制御システムを含んでいる。デザインシステムは、上位レベルのデザイナーを含む。これは、個々のエネルギー資源に対して分散化された下位レベルのデザインルーチンを調整して、信頼レベル内で目標配置場所のエネルギー需要を満足する分散型エネルギー資源システムに対するデザイン入力に基づいて、上位レベルにおける全体的なデザインを求めるように構成されている。またデザインシステムは、複数の下位レベルのデザイナーを含む。これらは、分散化された下位レベルのデザインルーチンを実行して複数の局所的エネルギーサブシステムの詳細なデザインを作成するように構成されている。上位レベルのデザイナーは、詳細なデザインの少なくとも一部を用いて上位レベルにおける全体的なデザインを更新する。またデザインシステムは、上位レベルのデザイナー及び複数の下位レベルのデザイナーにデザイン入力を提供し、全体的なデザイン及び詳細なデザインを出力するように構成されたユーザインターフェースを含む。階層的最適化ベースの制御システムは、第1のレベルにおいて、長期制約及び将来事象に基づいて長期運転スケジュールを決定するように構成された一次コントローラと、第2のレベルにおいて、分散型エネルギー資源システムの毎日または短期(例えば、2日間、4日間、1週間など)の調整を制御するように構成された1つ以上の二次コントローラと、第3のレベルにおいて、種々のハードウェアを迅速に調整するように構成された複数の三次コントローラと、を含む。
本開示のこれら及び他の特徴、態様、並びに利点は、以下の詳細な説明を、添付図面を参照し読むことにより良好に理解される。図面の全体にわたって同様の文字は同様の部分を表す。
は、分散型エネルギー資源システムのデザイン及び制御用に実装されるエネルギー管理システムの実施形態の概略図であり、エネルギー管理システムはデザインシステム及び制御システムを含む図である。
は、図1のエネルギー管理システムのブロック図である。
は、図1のデザインシステムのアーキテクチャ例のブロック図である。
は、図3のデザインシステムを用いる分散型エネルギー資源システムのデザインに対する方法例のフロー図である。
は、図1の制御システムのアーキテクチャ例のブロック図である。
は、図5の制御システムを用いる分散型エネルギー資源システムの制御に対する方法例のフロー図である。
本開示の特定の実施形態について以下に説明する。これらの実施形態について簡潔に説明するために、本明細書では実際の実施態様のすべての特徴部について説明されない場合がある。当然のことながら、任意のこのような実際の実施態様を開発する際に、任意のエンジニアリングまたはデザインプロジェクトの場合と同様に、開発者の特定の目標を実現するために多くの実施固有の決定(例えば、実施ごとに変わり得るシステム関連の制約及びビジネス関連の制約との適合)をしなければならない。また、当然のことながら、このような開発努力は複雑で時間がかかる場合があるが、それにもかかわらず、本開示の利益を受ける当業者にとってデザイン、作製、及び製造のルーチン仕事である。
方法、デバイス、システム、及び応用例について本明細書で説明する。当然のことながら、用語「例」はここでは、例、具体例、または説明として機能することを意味するために用いる。本明細書に例として記載している任意の実施形態または特徴は、そのように述べていない限り、必ずしも他の実施形態または特徴よりも好都合であると構成されているわけではない。種々の実施形態を用いることができ、本明細書で示す主題の範囲から逸脱することなく変更を行うことができる。
更に、本明細書における要素、ブロック、または処理ステップのどんな列挙も明瞭さを目的とするものである。したがって、このような列挙が、これらの要素、ブロック、または処理ステップが特定の配列に忠実であることまたは特定の順番で行われることを意味すると解釈してはならない。
更に、種々の実施形態の要素を導入するとき、冠詞「a」、「an」、「the」、及び「前記」は、その要素の1つ以上が存在することを意味することを意図している。用語「含む(comprising)」、「含む(including)」、及び「有する(having)」は、包含的であって、列記した要素以外のさらなる要素が存在し得ることを意味することを意図している。
緒言
前述したように、種々のエネルギー資源(例えば、電気、地熱、太陽光、風力発電など)を統合することは、分散型エネルギー資源システムデザイン及び/または運転にとって困難であり得る。場合によっては、分散型エネルギー資源システムのデザイン及び/または運転(例えば、種々のエネルギー資源の調整)は、分散型エネルギー資源システムにおいて用いる地熱システム(複数可)、太陽光発電システム(複数可)、風力発電システム(複数可)、またはそれらの組み合わせの性能の変動を引き起こし得る環境要因(例えば、地面及び/または地下の温度変化、気象変化など)の影響を受けることがある。場合によっては、分散型エネルギー資源システムのデザイン及び/または運転は、非環境要因(例えば、電気料金、電力契約、他の関連する要因(複数可)、またはそれらの組み合わせの変化)の影響を受けることがある。
ある実施形態では、2レベルデザインシステム(上位レベルのデザイナーと複数の下位レベルのデザイナーとを含む)を用いて、分散型エネルギー資源システムのデザインをデザイン及び/または改善してもよい。分散型エネルギー資源システムは、居住地、商業及び工業施設、複数建物の商業及び工業用地、大学キャンパス、学校、病院、地方自治体、遠隔地、及び島などに対して用い得る。場合によっては、2レベルデザインシステムによって、特定の変化(例えば、変更)を受けている場合がある確立された分散型エネルギー資源システムに対する改善されたデザインが得られ得る。2レベルデザインシステムは、分散化されたエンジニアリングデザインルーチン(例えば、個々のエネルギー資源に対する詳細なデザインを作成するために下位レベルのデザイナーによって実行される下位レベルのデザインルーチン)を調整して、信頼レベル内で目標配置場所のエネルギー需要を満たすデザインされたエネルギーシステムに対する全体目標を求めるインテリジェント上位レベルのアグリゲータデザイナーを含んでいてもよい。ある実施形態では、2レベルデザインシステムは、集約場所レベル、施設レベル、器具レベル、配管レベルなどにおける目標配置場所のエネルギー消費量の特徴付けをもたらしてもよい。
更に、ある実施形態では、階層的最適化ベースの制御システムを用いて、運転中に分散型エネルギー資源システムに対する制御をもたらしてもよい。階層的最適化ベースの制御システムは、第1のレベル(例えば、上位レベル)における一次コントローラ、第2のレベル(例えば、より低いレベル)における1つ以上の二次コントローラ、並びに第3のレベル(例えば、下位レベル)における複数の三次コントローラ及びアグリゲータを含んでいてもよい。運転中に分散型エネルギー資源システムの毎日または短期(例えば、2日間、4日間、1週間など)の調整を改善するように構成された1つ以上の二次コントローラに、上位レベルにおいて長期制約及び将来事象に基づいて長期運転スケジュールを決定するように構成された一次コントローラをオーバーレイしてもよい。複数の三次コントローラ及びアグリゲータを、一次コントローラ及び1つ以上の二次コントローラに通信可能に接続してもよく、三次コントローラ及びアグリゲータを、種々のハードウェアコンポーネント(例えば、負荷、センサ、再生可能エネルギー発生要素、エネルギー貯蔵要素、長時間スケールを伴う要素、またはそれらの組み合わせ)を迅速に調整して、一次コントローラ及び1つ以上の二次コントローラからの決定したプラン、スケジュール、命令、またはそれらの組み合わせに基づいて目標運転状態にするように構成してもよい。階層的最適化ベースの制御システム内では、一次コントローラが分散型エネルギー資源システムの簡略化した記述を用いて、より長期の解(例えば、上位レベルのプランまたはスケジュール)を作成し、そして上位レベルのプランまたはスケジュールの1つ以上の短期部分(例えば、前日に対する要件)を、分散型エネルギー資源システムの設定点のレベルまで精緻化すべき1つ以上の二次コントローラに送ってもよい。これを、複数の三次コントローラ及びアグリゲータに送って、対応するハードウェアコンポーネント(例えば、温度制御、環境センシング、エネルギー発生など)を調整してもよい。
エネルギー管理システム例
図1は、分散型エネルギー資源システムのデザイン及び制御用に実装されるエネルギー管理システムの実施形態の概略図である。エネルギー管理システムはデザインシステム及び制御システムを含んでいる。例示した実施形態では、分散型エネルギー資源システムは複数のヒートポンプシステム(例えば、ヒートポンプシステム10A、10B、及び10C)を含んでいる。各ヒートポンプシステムを用いて建物内に暖気または冷気を送ってもよい。例えば、第1のヒートポンプシステム10Aを用いて第1の建物12A内に暖気または冷気を送ってもよく、第2のヒートポンプシステム10Bを用いて第2の建物12B内に暖気または冷気を送ってもよく、第3のヒートポンプシステム10Cを用いて第3の建物12C内に暖気または冷気を送ってもよい。
ある実施形態では、種々の構成の分散型エネルギー資源システムをデザインまたは実装してもよい。例えば、複数の地熱システム(例えば、ヒートポンプシステム)を、複数建物を含む目標場所(例えば、キャンパス)において用いてもよい。各建物はヒートポンプを有していてもよいが、いくつかの建物(複数可)は地熱システムを有していなくてもよい。表面パイプネットワークを用いて種々の地下の地中熱交換器を接続して、地熱資源(例えば、地熱システム)を種々の建物間で共有できるようにしてもよい。
例示するように、各ヒートポンプシステムはヒートポンプ及び地熱システムを含んでいてもよい。例えば、第1のヒートポンプシステム10Aは、第1のヒートポンプ14A及び第1の地熱システム16Aを含んでいてもよい。第1のヒートポンプ14Aは、第1の建物12A内の温度を制御するように構成され、第1の地熱システム16Aは、第1のヒートポンプ14Aに伝熱流体を送って第1のヒートポンプ14Aから伝熱流体を受け取るように構成されている。例えば、第1の建物12A内の空気の温度を上げるために、第1のヒートポンプ14Aは伝熱流体から空気に熱を伝達して、その結果、空気を加熱してもよい。伝熱流体から空気に熱を伝達すると、伝熱流体の温度が下がる。より冷たい伝熱流体が入口導管18Aを介して第1の地熱システム16A内に流れ、第1の地熱システム16Aは伝熱流体の温度を上げる。そして、より暖かい伝熱流体が出口導管20Aを介して第1のヒートポンプ14Aに流れ戻る。加えて、第1の建物12A内の空気の温度を下げるために、第1のヒートポンプ14Aは空気から伝熱流体に熱を伝達して、その結果、空気を冷却してもよい。空気から伝熱流体に熱を伝達すると、伝熱流体の温度が上がる。より暖かい伝熱流体が入口導管18Aを介して第1の地熱システム16A内に流れ、第1の地熱システム16Aは伝熱流体の温度を下げる。そして、より冷たい伝熱流体が出口導管20Aを介して第1のヒートポンプ14Aに流れ戻る。
第1の地熱システム16A内では、地面22と伝熱流体との間で熱が伝達される。例示した実施形態では、地熱システム16Aは複数の地中熱交換器24Aを含み、各地中熱交換器は地面22内の個々の裸孔/ボアホール内に配置されている。各地中熱交換器は、入口導管18Aから伝熱流体を受け取り、伝熱流体と地面22との間の熱伝達を促進し、伝熱流体が出口導管20Aまで流れることを可能にするように構成されている。例えば、第1のヒートポンプ14Aが第1の建物12A内の空気を冷却する間、各地中熱交換器24Aは、より暖かい伝熱流体から地面22への熱の伝達を促進してもよい。加えて、第1のヒートポンプ14Aが第1の建物12A内の空気を加熱する間、各地中熱交換器24Aは、地面22からより冷たい伝熱流体への熱の伝達を促進してもよい。第1の地熱システム16Aは、任意の好適なタイプの伝熱流体(例えば水、プロピレングリコール、エチレングリコール、またはそれらの組み合わせ)を用いてもよい。更に、例示した実施形態では、第1のヒートポンプシステム10Aは、単一の入口導管18A及び単一の出口導管20Aを含んでいるが、他の実施形態では、ヒートポンプシステムは、さらなる入口導管(複数可)(例えば、1、2、3、4、またはそれ以上のさらなる入口導管)及び/またはさらなる出口導管(複数可)(例えば、1、2、3、4、またはそれ以上のさらなる出口導管)を有していてもよい。各入口/出口導管は、対応する地中熱交換器または対応する地中熱交換器群に流体的に結合される。例えば、ヒートポンプシステムは、地熱システムの各地中熱交換器に対して入口導管及び出口導管を含んでいてもよい。
前述した第1の建物12A内の温度制御を他の建物に適用してもよい。例えば、第2の建物12Bに、第2のヒートポンプ14B、第2の地熱システム16B、入口導管18B、出口導管20B、及び地中熱交換器24Bを介して適用してもよく、及び/または第3の建物12Cに、第3のヒートポンプ14C、第3の地熱システム16C、入口導管18C、出口導管20C、及び地中熱交換器24Cを介して適用してもよい。更に、第1のヒートポンプシステム10Aに関して前述で開示した任意の変動を、第2のヒートポンプシステム10B及び/または第2のヒートポンプシステム10Cに適用してもよい。
更に、各地中熱交換器は任意の好適な構成を有していてもよい。例えば、ある実施形態では、少なくとも1つの地中熱交換器が単一のU字管を含んでいてもよい。伝熱流体が、ヒートポンプから単一のU字管の第1の通路内に、第1の通路の長さ(例えば、対応する裸孔の長さの実質的な部分に沿って延びる)に沿って、Uベンドを通って、単一のU字管の第2の通路の長さに沿って流れ、そしてヒートポンプに戻る。更に、ある実施形態では、少なくとも1つの地中熱交換器が複数のU字管を含んでいてもよい。各U字管は、裸孔内の任意の好適な場所に位置し、裸孔内の任意の好適な角度に配向される。このような実施形態では、伝熱流体は、単一のU字管に関して前述で開示した経路に沿って各U字管を貫流してもよい。更に、ある実施形態では、少なくとも1つの地中熱交換器は1つ以上の同軸管を含んでいてもよい。各同軸管は内部流路及び外部流路を有している。このような実施形態では、伝熱流体は、ヒートポンプから内部流路内に、内部流路の長さ(例えば、個々の裸孔の長さの実質的な部分に沿って延びる)に沿って、同軸管の端部を通って、外部流路の長さに沿って流れ、そしてヒートポンプに戻ってもよい。代替的に、伝熱流体は、ヒートポンプから外部流路内に、外部流路の長さ(例えば、個々の裸孔の長さの実質的な部分に沿って延びる)に沿って、同軸管の端部を通って、内部流路の長さに沿って流れ、そしてヒートポンプに戻ってもよい。前述したように、伝熱流体は各地中熱交換器を通って流れ、熱は地面と伝熱流体との間を伝達する。
各裸孔を掘削機によって形成してもよい。掘削機は、遠位(例えば、低い側の)端に掘削ビットを有する掘削ストリングを含んでいてもよい。掘削機は、掘削ストリングを駆動して回転させながら、掘削ビットを地面22内に付勢することによって、裸孔を形成してもよい。掘削プロセスの間、掘削流体(例えば、泥)を裸孔内に注入してもよい。掘削流体は、他にも機能があるが、掘削ビットを冷却し、掘削プロセスに対する潤滑をもたらし、及び表面まで切断を送るように構成されている。掘削機は、掘削ストリングをサポートするマストを含んでいる。ある実施形態では、マストを地面22の表面26に対して種々の角度で配向して、掘削機が裸孔を表面26に対して種々の角度で形成できるようにしてもよい。各裸孔を形成した後で、地中熱交換器(例えば、地中熱交換器24A)を対応する裸孔内に配置してもよく、セメントを対応する裸孔内に注入して、地中熱交換器を対応する裸孔内の目標位置に固定してもよい。
例示した実施形態では、各裸孔/地中熱交換器は、地面22の表面26に垂直に延びるラインに対して角度が付いている。しかし、他の実施形態では、少なくとも1つの裸孔/地中熱交換器は、表面26に垂直に延びるラインに実質的に平行であってもよい。更に、ある実施形態では、少なくとも1つの裸孔/地中熱交換器は、外れた経路に沿って水源容器から地面22内に延びてもよい。例えば、外れた経路は、表面26に垂直に延びるラインに実質的に平行に延びる第1のセクションと、表面26に垂直に延びるラインに対してある角度で延びる第2のセクションとを含んでいてもよい。
ある実施形態では、少なくとも1つの建物を、対応するヒートポンプシステムと、1つ以上の再生可能エネルギー発生システム(例えば、太陽光発電システム、風力発電システム、小水力発電システム、バイオマス発電システム、バイオガス発電システム、別の好適な再生可能エネルギーシステム、またはそれらの組み合わせ)に接続してもよい。例えば、第3の建物12Cは、第3の地熱システム16C及び太陽光発電システム40に接続されている。太陽光発電システム40は、第3の建物12Cにさらなる電力を提供してもよい。
例示した実施形態では、エネルギー管理システム50は、分散型エネルギー資源システム51に通信可能に接続されている。分散型エネルギー資源システム51は、1つ以上のヒートポンプシステム(例えば、10A、10B、及び10C)と、1つ以上の再生可能エネルギー発生システム(例えば、限定することなく、太陽光発電システム(例えば、太陽光発電システム40)、風力発電システム、小水力発電システム、バイオマス発電システム、バイオガス発電システム、任意の他の好適な再生可能エネルギーシステム、またはそれらの組み合わせ)とを含んでいる。ある実施形態では、分散型エネルギー資源システム51は、ユーザ需要に基づいてさらなるエネルギー源(複数可)を加えることができる漸進的システムであってもよい。エネルギー管理システム50を、地熱システム(例えば、16A、16B、及び16C)、他の再生可能エネルギー発生システム(例えば、太陽光発電システム40)、建物(例えば、建物12A、12B、及び12C)内の種々の負荷及び/またはセンサ、並びに分散型エネルギー資源システム51の他のコンポーネントに、(例えば、ネットワークを介して)通信可能に結合してもよい。エネルギー管理システム50を用いて、分散型エネルギー資源システム51に対するシステムデザイン及び制御を得てもよい。
例示した実施形態では、エネルギー管理システム50はデザインシステム52を含んでいる。デザインシステム52は、分散型エネルギー資源システムのデザインをデザイン及び/または改善してもよい。分散型エネルギー資源システムは、居住地、商業及び工業施設、複数建物の商業及び工業用地、大学キャンパス、学校、病院、地方自治体、遠隔地、及び島などに対して用い得る。場合によっては、デザインシステム52によって、特定の変化(例えば、変更)を受けている場合がある確立された分散型エネルギー資源システムに対する改善されたデザインが得られ得る。デザインシステム52に関するさらなる詳細について、図3及び4を参照して後述する。
例示した実施形態では、エネルギー管理システム50は制御システム54も含んでいる。制御システム54は、分散型エネルギー資源システム51に対する制御をもたらし得る。例えば、制御システム54を用いて再生可能エネルギー発生システム及び/または負荷を制御して、エネルギー使用量を制御し、対応するコストを減らしてもよい。制御システム54に関するさらなる詳細について、図5及び6を参照して後述する。例示した実施形態では、エネルギー管理システム50はデザインシステム52及び制御システム54を含んでいるが、他の実施形態では、デザインシステムまたは制御システムを省略してもよい。
またエネルギー管理システム50は、データベース55を含んでいてもよい。データベース55を用いて、デザインシステム52及び制御システム54に提供されるデータ、デザインシステム52及び制御システム54から出力されるデータ、及び他の好適なデータ(例えば、現時点でデザイン中の分散型エネルギー資源システムと同様の分散型エネルギー資源システムに対する履歴デザインデータ、現時点で運転中の分散型エネルギー資源システムに対する履歴運転/制御データ、他の履歴データ(例えば、エネルギー価格データ、局所気象履歴データ、局所地球物理/地理履歴データ)など))を記憶してもよい。
デザインシステム52、制御システム54、及びデータベース55に加えて、エネルギー管理システム50は、他の好適なコンポーネント(例えば、ユーザインターフェース、ネットワークインターフェース、メモリ及び記憶装置など)を含んでいてもよい。エネルギー管理システム50に関するさらなる詳細について、図2を参照して後述する。
図2は、図1のエネルギー管理システム50のブロック図である。例示するように、エネルギー管理システム50はユーザインターフェース56及び処理システム58を含んでいる。ある実施形態では、処理システム58は、分散型エネルギー資源システムをデザイン及び/または制御するように構成されている。例示した実施形態では、処理システム58は1つ以上のプロセッサ60を含んでいる。1つ以上のプロセッサ60を用いて、分散型エネルギー資源システムをデザイン及び/または制御するソフトウェア(例えば、デザインソフトウェア、運転制御ソフトウェアなど)を実行してもよい。またプロセッサ(複数可)60は、1つ以上のマイクロプロセッサ(例えば、1つ以上の「汎用」マイクロプロセッサ、1つ以上の専用マイクロプロセッサ、及び/もしくは特定用途向け集積回路(ASICS)、またはそれらのいくつかの組み合わせ)を含んでいてもよい。例えば、プロセッサ(複数可)60は、1つ以上の縮小命令セット(RISC)プロセッサを含んでいてもよい。
例示するように、エネルギー管理システム50のユーザインターフェース56は、オペレータが処理システム58に入力を与えて出力を受け取ることを可能にするように構成された複数のデバイスを含んでいる。例示した実施形態では、ユーザインターフェース56は、データを入力すること、選択を行うこと、エネルギー管理システム50を運転すること、またはそれらの組み合わせを行うためのキーボード62及びマウス64を含んでいる。更に、ユーザインターフェース56は、データをプリントするため(例えば、ユーザ入力の目的に基づいた上位レベルのデザイン、個々のエネルギー資源(例えば、エネルギーサブシステム)の下位レベルの詳細なデザイン、またはそれらの組み合わせをプリントするため)のプリンター66を含んでいる。またユーザインターフェース56は、エネルギー管理を促進するために、オペレータに視覚データ(例えば、種々の分散型エネルギー資源及び/または負荷の設定点に対応するデータ)を示すように構成されたディスプレイ68を含む。ある実施形態では、ディスプレイ68は、オペレータがデータを入力することを可能にするように構成されたタッチスクリーンを含んでいてもよい。例示した実施形態には、キーボード62、マウス64、プリンター66、及びディスプレイ68が含まれているが、代替的な実施形態では、ユーザインターフェース56は、より多いかまたはより少ない入力及び/または出力デバイスを含んでいてもよい。
例示した実施形態では、エネルギー管理システム50は、記憶デバイス(複数可)70(例えば、非一時的な記憶媒体)、例えば、読み出し専用メモリ(ROM)、フラッシュメモリ、ハードドライブ、または任意の他の好適な光学、磁気、または固体記憶媒体、またはそれらの組み合わせを含んでいる。記憶デバイス(複数可)70は、前述したデータベース55を格納していてもよい。記憶デバイス(複数可)70は、データ(例えば、入力データ、出力データなど)、命令(例えば、分散型エネルギー資源システムをデザイン及び/または制御するためのソフトウェアまたはファームウェア)、及び任意の他の好適なデータを記憶してもよい。例えば、例示した実施形態では、記憶デバイス(複数可)70は、入力媒体72、命令媒体74、及び出力媒体76を含んでいる。入力媒体72は、上位レベルにおける初期のユーザ入力の目的を示すデータ、下位レベルにおける個々のエネルギー資源の初期の詳細なデザインを示すデータ、種々の分散型エネルギー資源もしくは負荷の初期の設定点を示すデータ、種々の分散型エネルギー資源及び/もしくは負荷をモニタリングする種々のセンサから受け取ったデータ、他の好適なデータ、またはそれらの組み合わせを記憶してもよい。加えて、命令媒体74は、他にもデータがあるが、種々の分散型エネルギー資源及び/または負荷の調整された設定点を決定するための命令を示すデータを記憶してもよい。出力媒体76は、上位レベルのデザインを示すデータ、個々のエネルギー資源の下位レベルの詳細なデザインを示すデータ、種々の分散型エネルギー資源及び/もしくは負荷の調整された設定点を示すデータ、他の好適なデータ、またはそれらの組み合わせを記憶してもよい。例示した記憶デバイス(複数可)70は入力媒体、命令媒体、及び出力媒体を含んでいるが、ある実施形態では、これらの媒体を、1つまたは2つの媒体に結合してもよく、またはさらなる媒体(例えば、各入力に対する媒体、各出力に対する媒体など)に分離してもよい。更に、記憶デバイス(複数可)70はさらなる媒体を含んでいてもよく、及び/または代替的な実施形態において、少なくとも1つの例示した媒体を省略してもよい。
例示した実施形態では、エネルギー管理システム50は、揮発性メモリ、例えば、ランダムアクセスメモリ(RAM)、及び/または不揮発性メモリ、例えばROMを有するメモリデバイス(複数可)78を含んでいる。メモリデバイス(複数可)78は、種々の情報を記憶してもよく、種々の目的のために用いてもよい。例えば、メモリデバイス(複数可)78は、処理システム58が実行するプロセッサ実行可能命令(例えば、ファームウェアまたはソフトウェア)、例えば、分散型エネルギー資源システムをデザイン及び/または制御するための命令を記憶してもよい。
更に、例示した実施形態では、エネルギー管理システム50は、処理システム58とプライベートネットワーク(例えば、企業ネットワーク)またはインターネット82との間のデータ接続を確立するように構成されたネットワークインターフェース80を含んでいる。ネットワークインターフェース80は、種々の通信プロトコル、例えば、オープンデータベースコネクティビティ(ODBC)、TCP/IPプロトコル、分散リレーショナルデータベースアーキテクチャ(DRDA)プロトコル、データベース変更プロトコル(DCP)、HTTPプロトコル、他の好適な現在または将来のプロトコル、またはそれらの組み合わせを用いてもよい。ある実施形態では、ネットワークインターフェース80を、遠隔処理システムから入力データを受け取るように構成してもよく、及び/またはネットワークインターフェース80を、遠隔処理システムに出力データを送るように構成してもよい。例えば、ネットワークインターフェース80を、ユーザ入力の目的に基づいた初期の上位レベルのデザインを示すデータ、個々のエネルギー資源の初期の下位レベルの詳細なデザインを示すデータ、種々の分散型エネルギー資源及び/もしくは負荷の初期の設定点を示すデータ、種々の分散型エネルギー資源及び/もしくは負荷をモニタリングする種々のセンサから受け取ったデータ、他の好適なデータ、またはそれらの組み合わせを受け取るように構成してもよい。加えて、ネットワークインターフェース80を、他にもデータがあるが、ユーザ入力の目的に基づいた決定した上位レベルのデザインを示す出力データ、個々のエネルギー資源の決定した下位レベルの詳細なデザインを示すデータ、種々の分散型エネルギー資源及び/または負荷の調整された設定点を示すデータを送るように構成してもよい。
例えば、例示した実施形態では、ネットワークインターフェース80は、プライベートネットワークまたはインターネット82を介して分散型エネルギー資源システム84にデータを出力するように構成されている。分散型エネルギー資源システム84は、種々のエネルギー源86、例えば、電気グリッドパワー、地熱発電、太陽光発電(例えば、図1を参照して前述で開示した太陽光発電システム)、風力発電、小水力発電、バイオマス発電、バイオガス発電、またはそれらの組み合わせを含んでいてもよい。例示した実施形態では、分散型エネルギー資源システム84は、ハードウェア88及びハードウェアコントローラ90も含んでいる。ハードウェア88は、種々の負荷(例えば、空調装置、ファン、ボイラー、バーナー、ポンプなど)、センサ(例えば、温度センサ)、エネルギー貯蔵要素(例えば、燃料電池、バッテリ、キャパシタ、フライホイール、圧縮空気、揚水、超磁石、水素など)、などを含んでいてもよい。ハードウェアコントローラ90は、ハードウェア88の動作を制御するように構成された種々の対応するコントローラを含んでいてもよい。例えば、ハードウェアコントローラ90は、建物内の温度を制御するために空調装置の運転を調整する空調装置コントローラを含んでいてもよい。
例示した実施形態では、処理システム58は、分散型エネルギー資源システム84のシステムデザイン及び制御を改善するように構成されている。このような実施形態では、プロセッサ(複数可)60は、デザイン入力データを受け取り、デザイン入力データと下位レベルのデザイナーからの入力データとに基づいて第1の目的関数を低減することによって上位レベルのデザインを決定するように構成されている。またプロセッサ(複数可)60は、インターフェースを介して、下位レベルのデザイナーに制約を出力し、エネルギーサブシステムからプラグインに対するリクエストを受け取るように構成されている。加えて、プロセッサ(複数可)60は、インターフェースを介して、上位レベルのデザインへの反復精緻化を行うために下位レベルのデザイナーから初期推測及びデザイン結果を受け取り、デザイン出力データを出力するように構成されている。ある実施形態では、分散型エネルギー資源システムが目標場所に配置されて運転された後に、プロセッサ(複数可)60は、上位レベルの一次コントローラによって長期運転制御に対する入力データを受け取る工程と、入力データに基づいて第2の目的関数を低減することによって長期運転スケジュールを決定する工程であって、長期運転スケジュールの1つ以上の短期部分を用いて制約を生成する、決定する工程と、複数の二次コントローラに制約を出力する工程と、一次コントローラによって、複数の二次コントローラからシステム状態を受け取る工程と、一次コントローラ及び複数の二次コントローラによって、要件に対するシステム状態の適合をモニタリングする工程であって、分散型エネルギー資源システムの動的な予想モデルを用いて、適合をモニタリングする妥当なシナリオをシミュレートし、要件はシステム関連の制約またはビジネス関連の制約を含む、モニタリングする工程と、システム状態の適合をモニタリングすることに基づいて相違を検出する工程と、相違の検出に応じて、一次コントローラをトリガして長期運転スケジュールを再プランまたは更新する工程と、更新した長期運転スケジュールの1つ以上の更新した短期部分(例えば、新しい毎日または短期の部分)を複数の二次コントローラに送り、分散型エネルギー資源システムの毎日または短期の運転を調整する工程と、複数の三次コントローラによって、ハードウェアの運転を調整して、更新した長期運転スケジュールの1つ以上の更新した短期部分に基づいて分散型エネルギー資源システムの運転を制御すること、を行うように構成されている。
分散型エネルギー資源システムのデザイン
前述したように、エネルギー管理システム50は、分散型エネルギー資源システム(例えば、居住地、商業及び工業施設、複数建物の商業及び工業用地、大学キャンパス、学校、病院、地方自治体、遠隔地、及び島などに対して用いられるシステムを含む)のデザインを提供し及び/またはデザインを改善するように構成されたデザインシステム52を含んでいてもよい。ある実施形態では、デザインシステム52は、確立された分散型エネルギー資源システムに対する改善されたデザインを提供してもよい。例えば、確立された分散型エネルギー資源システムは、変更(例えば、太陽光発電システムまたは太陽光パネルを加える/取り除くこと、風力発電システムを加える/取り除くこと、1つ以上のエネルギー貯蔵要素を加える/取り除くことなど)を受けている場合がある。したがって、デザインシステムは、開発すべき分散型エネルギー資源システムに対するデザインを提供し、確立された分散型エネルギー資源システムにおける特定の変化に応じて、確立された分散型エネルギー資源システムに対するデザインを改善するように構成されている。
前述したことを念頭に置いて、図3は、図1のデザインシステム52のアーキテクチャ例のブロック図である。デザインシステム52は、2レベルにおける分散型エネルギー資源システムのデザインを提供してもよい。ユーザ入力の目的に基づいた上位レベルのデザインと、個々のエネルギー資源(例えば、エネルギーサブシステム)の下位レベルの詳細なデザインとである。ユーザ入力の目的は、種々のエネルギー使用関連の目的(例えば、限定することなく、プロジェクト設備投資、プロジェクト投資回収期間、エネルギーシステム運転コスト、エネルギーシステム炭素強度、他の好適なオブジェクト、またはそれらの組み合わせ)を含んでいてもよい。
例示した実施形態では、デザインシステム52は上位レベルのデザイナー102を含み、上位レベルのデザイン102は、ユーザ入力の目的と他の入力データとに基づいた上位レベルのデザインを作成するように構成されている。またデザインシステム52は、下位レベルのデザイナー103(例えば、地熱システム16Aの詳細なデザインを作成するように構成された地熱サブシステムデザイナー104A、及び太陽光発電システム40の詳細なデザインを作成するように構成された太陽光発電サブシステムデザイナー104B)を含んでいる。上位レベルのデザイナー102及び下位レベルのデザイナー103は、種々のモデル(例えば、限定することなく、シミュレーションモデル(複数可)、最適化モデル(複数可)、予想モデル(複数可)、予測モデル(複数可)、任意の他の好適なモデル(複数可)、またはそれらの組み合わせ)を用いるオプティマイザを含んでいてもよい。例えば、地熱サブシステムデザイナー104Aは、ヒートポンプ及び表面配管モデル108と表面モデル110とを含んでいてもよく、太陽光発電サブシステムデザイナー104Bは、太陽光起電(PV)モデル112を含んでいてもよい。このようなモデルは、連続的に/実質的にオープンで、分散型エネルギー資源システムに対する種々の変形を受け入れる機能を伴って働くエバーグリーンモデルであってもよい。上位レベルのデザイナー102及び下位レベルのデザイナー103は、分散型エネルギー資源システムが配置される目標配置場所(例えば、集約場所レベル、施設レベル、器具レベル、配管レベルなど)のエネルギー消費量を予測するように構成された予測モデルを含んでいてもよい。ある実施形態では、予測モデルは、エネルギー価格、エネルギー需要、エネルギー発生、環境要因、エネルギー貯蔵容量、他の好適な要因であって分散型エネルギー資源システムに対応付けられるもの、またはそれらの組み合わせを予測するように構成されている。
上位レベルのデザイナー102は、個々のエネルギー資源に対して下位レベルのデザイナー103を自動的に調整して、分散型エネルギー資源システムに対する全体目標を求めてもよい。ある実施形態では、上位レベルのデザイナー102は、上位レベルのデザイナー102と下位レベルのデザイナー103との間のインターフェース106が考慮される場合、下位レベルのデザイナー103に非依存型であってもよい。
上位レベルのデザイナー102は、オプティマイザ(複数可)(例えば、種々のモデルを用いる)に対するデザイン入力118を受け取ってもよい。オプティマイザ(複数可)は、デザイン出力120(分散型エネルギー資源システムに対するユーザ入力の目的に基づいた上位レベルのデザインを含む)を作成してもよい。デザイン入力118は、種々の入力(例えば、限定することなく、電力グリッド安定性制約、熱的快適性レベル、不確実性を伴うエネルギー価格予測、不確実性(例えば、建物使用法、占有率、気象などに基づく)を伴うエネルギー需要予測、建物エネルギーモデル、不確実性を伴うエネルギー発生予測、太陽光起電(PV)モデル、地下モデル、他の好適な入力、またはそれらの組み合わせ)を含んでいてもよい。またデザイン出力120は、種々のデザイン目標(例えば、限定することなく、プロジェクト設備投資または資本経費(CAPEXproject)、プロジェクト投資回収期間、分散型エネルギー資源システム運転コストまたは運転費(OPEX)、エネルギー節約、メンテナンスに関連する分散型エネルギー資源システム運転コスト(OPEXmaintenance)、分散型エネルギー資源システム炭素強度(CO2強度)、カーボンフットプリント節約、またはそれらの組み合わせ)を含んでいてもよい。例えば、前述したように、エネルギー管理システム50は、ユーザが、処理システムに入力を与えること(例えば、デザイン入力118の一部として)と、処理システムから出力を受け取る(例えば、デザイン出力120の一部として)ことを可能にするように構成された複数のデバイス(例えば、ユーザインターフェース)を含んでいてもよい。このような入力及び出力を、入力媒体及び出力媒体を用いる記憶デバイス(複数可)に記憶してもよい。
下位レベルのデザイナー103(例えば、地熱サブシステムデザイナー104A、太陽光発電サブシステムデザイナー104B)は、個々のエネルギー資源(例えば、地熱システム、太陽光発電システム、風力発電システムなどを含むエネルギーサブシステム)の下位レベルの詳細なデザインを作成するように構成されている。いくつかの実施形態では、上位レベルのデザイナー102と下位レベルのデザイナー103との間のインターフェース106が考慮される場合、下位レベルの詳細なデザインの特定の機能を1つ以上の外部デザインモデルまたはソフトウェアによって提供してもよい。いくつかの実施形態では、上位レベルのデザイナー102と下位レベルのデザイナー103との間のインターフェース106が考慮される場合、エネルギー消費量(例えば、目標配置場所の予測されるエネルギー消費量)を、1つ以上の外部デザインモデルまたはソフトウェアによって提供してもよい。
デザインシステム52は、分散型エネルギー資源システムのデザインに対して階層的最適化アプローチを用いてもよい。階層的最適化アプローチは2レベルを含んでいてもよい。エネルギーシステム全体に対するデザインを作成するように構成された上位レベルのデザイナー102(例えば、アグリゲータ)と、互いに分離され、局所的エネルギーサブシステムの詳細なデザインを作成するように構成された1つ以上の下位レベルのデザイナー103(例えば、地熱サブシステムデザイナー104A及び太陽光発電サブシステムデザイナー104B)とである。上位レベルのデザイナーは、エネルギーシステム全体に対するユーザ入力の目的(例えば、プロジェクト経済性及び運転中の炭素強度)を最適化しようとする。これには、局所的エネルギーサブシステムからのエネルギー限界及び他の制約を考慮することが含まれる。各下位レベルのデザイナーは、対応するエネルギーサブシステム(例えば、地熱サブシステム(例えば、地熱システム16A)及び太陽光発電サブシステム(例えば、太陽光発電システム40))の詳細なエンジニアリングデザインを最適化しようとする。
互いに連係して働くために、下位レベルのデザイナー103は、インターフェース106を介して上位レベルのデザイナー102と連動してもよい。上位レベルのデザイナーと下位レベルのデザイナー103との間のインターフェース106を、上位レベルのデザイナー102から制約114を通り、下位レベルのデザイナー103から物理的パラメータ(例えば、デザイン結果116)を通るように構成してもよい。ある実施形態では、下位レベルのデザイナー103は上位レベルのデザイナー102から制約114を受け取ってもよい。制約114は、最小エネルギー出力、最大コスト、最大エネルギー消費量、別のサブシステムデザイナーによって規定される他の好適なパラメータ、またはそれらの組み合わせを含んでいてもよい。例えば、太陽熱発生サブシステムのサブシステムデザイナーからもたらされる流体温度を、インターフェース106を介して上位レベルのデザイナー102に送ってもよい。流体温度が目標配置場所の要求を満たす場合、流体温度を、地中熱ヒートポンプサブシステムのサブシステムデザイナーに、制約として送ってもよい。ある実施形態では、下位レベルのデザイナーは、デザイン結果116(詳細なパラメータを含む)を上位レベルのデザイナー102に送ってもよい。パラメータは、実際のCAPEXproject、実際のエネルギー消費量、実際の発生エネルギー、種々の物理的パラメータ、他の好適なパラメータ、またはそれらの組み合わせを含んでいてもよい。いくつかの実施形態では、特定の下位レベルのデザイナー(例えば、地熱サブシステムデザイナー104A)は、上位レベルのデザイナー102に送らなくてもよい他のデザイン結果(複数可)122を形成してもよい。例えば、他のデザイン結果(複数可)122は、地熱井デザイン、ヒートポンプ、及び/または配管デザインなどを含んでいてもよい。他のデザイン結果(複数可)122を、目標配置場所で働いているフィールドエンジニアが用いてもよい。
2レベル(上位レベルのデザイナー102及び下位レベルのデザイナー103を含む)は、収束または満足のいく目的値に到達するまで、最適化プロセスの間連絡して繰り返してもよい。2レベルデザインは、インテリジェント上位レベルのアグリゲータデザイナーを提供する。これは、分散化された下位レベルのデザイナー(例えば、個々のエネルギー資源に対する下位レベルのデザイナー)を調整して、信頼レベル内で目標配置場所のエネルギー需要を満たすデザインされたエネルギーシステムに対する全体目標を求める。ある実施形態では、2レベルデザインは、集約場所レベル、施設レベル、器具レベル、配管レベルなどにおける目標配置場所のエネルギー消費量の特徴付けを提供してもよい。
本明細書に記載の2レベルデザインアーキテクチャによって、デザインシステム52は、デザインアーキテクチャが異なる他のデザインシステムよりも効率的にデザインプロセスを実行することができる。例えば、デザインシステム52を用いて、デザインプロセスは上位レベルのデザインプロセスと複数の下位レベルのデザインプロセスとに分割し得る。下位レベルのデザイナー103は、対応する下位レベルのデザインプロセスを互いに独立かつ並列に実行し得る。したがって、デザインシステム52は、個々のデザインプロセス(例えば、サブシステムデザインに対する)を順次に実行し得る他のデザインシステムと比べて、短いターンアラウンドタイム及び/または少ないコンピューティング能力でデザインプロセスを実行し得る。
ある実施形態では、デザインシステム52を、上位レベル及び下位レベルの両方におけるデザインを改善するようにトレーニングしてもよい(例えば、機械学習によって)。例えば、トレーニングデータ(例えば、現時点でデザイン下の分散型エネルギー資源システムと同様の分散型エネルギー資源システムに対する履歴デザインデータ及び/または他の履歴データ、例えば、エネルギー価格データ、局所気象履歴データ、局所地球物理/地理履歴データなど)を入力データとして用いて、デザインシステム52を、機械学習アルゴリズムを用いてトレーニングしてもよい。機械学習によるトレーニング後に、デザインシステム52は、デザインパラメータ(複数可)及び/またはモデル(複数可)(例えば、シミュレーションモデル、最適化モデル、予想モデル、予測モデルなど)を改善している場合がある。機械学習アルゴリズムを、データベース55に記憶された履歴デザインデータ及び他の履歴データにアクセスし得る機械学習回路またはソフトウェアを用いて実装してもよい。推論に応じて、機械学習回路またはソフトウェアは、種々の形態の機械学習を実装してもよい。いくつかの実施形態では、教師あり機械学習を実装してもよい。いくつかの実施形態では、教師なし機械学習を実装してもよい。本明細書で用いる場合、機械学習とは、明瞭な指示を用いてまたは用いずに特定のタスクを実行するためにデザインシステムが用いるアルゴリズム及び統計モデルを指す場合がある。例えば、機械学習プロセスは、クリーンデータ(「トレーニングデータ」として知られる)のサンプルに基づいて、数学的なモデル(例えば、シミュレーションモデル、最適化モデル、予想モデル、予測モデル、建物エネルギーモデル、太陽光起電(PV)モデル、地下モデルなど)を作成して、タスクを実行するように明示的にプログラムされることなく予想または決定を行ってもよい。
前述したように、デザインシステムによってデザインされた分散型エネルギー資源システムを、居住地、商業及び工業施設、複数建物の商業及び工業用地、大学キャンパス、学校、病院、地方自治体、遠隔地、及び島などに対して用いてもよい。漸進的システム(例えば、用地/キャンパス開発プロジェクトにおいて起きるもの)に適応するために、2レベルデザインを用いて、分散型エネルギー資源システムの複数の将来の構成(例えば、エネルギー資源または負荷が追加または除去されている)に対するデザインを提供してもよい。2レベルデザインに関するさらなる詳細について、図4を参照して後述する。
デザインシステム52のアーキテクチャに関して前述したコンポーネントは典型的なコンポーネントであり、デザインシステム52には、図示したようにさらなるまたはより少ないコンポーネントが含まれていてもよいことに留意されたい。
一実施形態では、デザインシステム52を用いて、大学キャンパスにおいて用いる複数の太陽光発電サブシステムを含む分散型エネルギー資源システムに対する改善されたデザインが提供される。上位レベルのデザイナー102は初期デザインを受け取る。初期デザインには、大学キャンパスにおいて用いるある数量の太陽光起電(PV)パネルが含まれる。また上位レベルのデザイナー102は、ユーザ入力の目的(例えば、プロジェクト設備投資、プロジェクト投資回収期間、エネルギーシステム運転コスト、エネルギーシステム炭素強度など)と、他のデザイン入力(例えば、エネルギー価格予測、太陽光起電PVモデル、局所気象履歴データなど)とを受け取ってもよい。更に、上位レベルのデザイナー102は、新しいデザイン入力、例えば、特定の気候予測モデル(複数可)に基づいた長時間スケールの(例えば、10年間に渡る)局所的な気象予報を受け取る。新しいデザイン入力に基づいて、上位レベルのデザイナー102は、分散型エネルギー資源システムを再デザインして、更新された制約(例えば、太陽光発電システムからの更新された最小エネルギー出力、更新された最大エネルギー消費量など)を作成する。これらは、インターフェースを通って下位レベルのデザイナー103(例えば、太陽光発電サブシステムデザイナー)に送られる。それに応じて、下位レベルのデザイナー103は、詳細なデザイン(例えば、長時間スケールの局所的な気象予報に基づいた太陽光発電サブシステムエネルギー発生)を再現する。これらは、インターフェースを通って上位レベルのデザイナー102に戻る。上位レベルのデザイナー102は、受け取った詳細なデザインを用いて上位レベルにおけるデザインを更新する。これには、大学キャンパスにおいて用いる太陽光PVパネルの更新された数量が含まれる。最適化プロセスは、収束または満足のいく目的値に到達するまで複数回繰り返すことを含んでいてもよい。更に、1つ以上のヒートポンプサブシステムを分散型エネルギー資源内に加えてもよい。上位レベルのデザイナーは、太陽光発電サブシステムと熱ポンプサブシステムとの間の詳細なデザインのバランスを取るように、上位レベルにおけるデザインを更新してもよい。例えば、太陽光PVパネルの数量及び/または熱ポンプもしくは熱交換器の数量を更新してもよい。
図4は、図3のデザインシステムを用いる分散型エネルギー資源システムのデザインに対する方法例150のフロー図である。図4で説明する方法例150は特定の順番で説明しているが、方法例150は任意の好適な順番で行ってもよく、本明細書で提示した順番に限定されない。各処理ブロックを、本方法においてデザインシステムによって実行されていると以下に説明するが、他の好適なコンピューティングシステム(複数可)が、本明細書に記載の方法ステップのうちの少なくとも1つを実行してもよい。
プロセスブロック152において、上位レベルのデザイナーは、上位レベルのデザインに対するデザイン入力データを受け取ってもよい。デザイン入力データは以下、電力グリッド安定性制約、熱的快適性レベル、不確実性を伴うエネルギー価格予測、不確実性を伴うエネルギー需要予測(例えば、建物使用法、占有率、気象などに基づく)、建物エネルギーモデル、不確実性を伴うエネルギー発生予測、太陽光起電(PV)モデル、地下モデル、表面占有面積制限、設備投資もしくは資本経費(CAPEX)制限、またはそれらの組み合わせ、を含んでいてもよい。ある実施形態では、ユーザ選好及びユーティリティオペレータ制約を、上位レベルのデザイナーへの入力として用いてもよい。
ある実施形態では、特定の外部入力を上位レベルのデザイナーが用いてもよい。例えば、1つ以上の予測モデル(例えば、化石燃料エネルギー価格予測モデル、気候変動予測モデルなど)からの結果である。このような結果は、予測されるエネルギー消費量、予測されるエネルギー発生可能性、予測されるエネルギー価格、エネルギー需要、エネルギー発生、環境要因、エネルギー貯蔵容量などを含んでいてもよい。このような結果には、対応する不確実性が伴い得る。不確実性(σとマーキングされる)は、特定の決定変数及び中間変数に対する上位レベルのデザインの重要な特徴であり得る。本明細書に記載の2レベルデザインアーキテクチャによって、フレームの不確実性問題に対する頑強な最適化アプローチが提供される。上位レベルのデザインの場合、長スケール期間(例えば、1年)を外部入力に対して与えてもよい。
プロセスブロック154において、上位レベルのデザイナーは、デザイン入力データ(初期反復)と下位レベルのデザイナーからの入力データ(後続の反復)とに基づいて目的関数を低減する(例えば、最小限にする)ことによって、上位レベルのデザインを決定してもよい。初期反復、上位レベルのデザイナーは、下位レベルのデザイナーから入力データを受け取らなくてもよく、デザイン入力データに基づいて目的関数を低減しても(例えば、最小限にしても)よい。異議機能、Z(CAPEXproject、OPEX、OPEXmaintenance、CO2強度、PERCENTrenewables)(PERCENTrenewablesは、用いる再生可能エネルギーのパーセンテージである)は、上位レベルのデザイナーが低減すべき(例えば、最小限にすべき)多目的関数であってもよい。デザインシステムは、様々な目標目的を満たす複数の将来のシナリオを提供してもよく、ユーザは「モードタイプ」ゴールを選択してもよい。ある実施形態では、多目的は、クライアントの要求(例えば、数10年にわたる温度、極端な出来事など)に適応させ得る。多目的は、列記したデザイン目標(例えば、設備投資、運転費用、メンテナンスに関連する運転コスト、CO2強度、プロジェクト投資回収期間、エネルギー節約、カーボンフットプリント節約など)のいずれかもしくは全て、他の好適な目標、またはそれらの組み合わせを含んでいてもよい。
解く際には(初期反復において)、上位レベルのデザイナーは、下位レベルのデザイナーに対する種々の制約を提供し得る。制約は、各エネルギーサブシステムに対する最小エネルギー出力要件、予算上の制約(複数可)(例えば、最大コストCAPEXmax、最大エネルギー消費量/使用など)、任意の他の好適なパラメータ(例えば、伝熱流体温度、蓄熱に対する地面の熱容量など)、またはそれらの組み合わせを含んでいてもよい。したがって、上位レベルの決定変数(例えば、各エネルギーサブシステムに対する最小エネルギー出力要件及び予算上の制約(複数可))は、下位レベルのデザイナーに対する制約であり得る。ある実施形態では、上位の決定変数及び制約のいくつかは時間ベースのベクトル(プロジェクトライフまたは別の好適な範囲に渡る)である。上位レベルのデザイナーと下位レベルのデザイナーとの間のインターフェースは、このような次元をサポートするように構成されている。
プロセスブロック156において、上位レベルのデザイナーは、インターフェースを介して、1つ以上の下位レベルのデザイナー(例えば、地熱サブシステムデザイナー及び/または太陽光発電サブシステムデザイナー)に制約を送ってもよい。受け取った制約に基づいて、各下位レベルのデザイナーは、対応するエネルギーサブシステムの対応する局所的な詳細デザインを作成して、特定の目標目的(例えば、正味のエネルギー出力、地熱発電比率、太陽光発電比率など)を改善し(例えば、最大にし)、一方で、上位レベルのデザイナーが提供した制約(例えば、CAPEX、エネルギー消費量、最小エネルギー出力など)、並びにその局所的なサブシステムに対する特定の技術的制約(例えば、地中熱ヒートポンプサブシステムの場合の地熱井における流体温度限界)を満たそうとするように構成されている。
ある実施形態では、特定の外部入力を局所的なデザインプロセスに対して用いてもよい(例えば、局所的な予測モデルからの結果)。このような結果は、予測されるエネルギー消費量、予測されるエネルギー発生可能性、予測されるエネルギー価格、エネルギー需要、履歴エネルギー発生、環境要因、エネルギー貯蔵容量などを含んでいてもよい。このような結果には、対応する不確実性が伴い得る。下位レベルのデザイナーの場合、短時間スケール期間(例えば、1日)を外部入力に対して与えてもよい。
各エネルギーサブシステムに対する局所的なデザインを、別個かつ漸進的に決定してもよい。対応するエネルギーサブシステムに対応付けられる各下位レベルのデザイナーは、システムモデルを有していてもよい。例えば、エネルギーサブシステムのCAPEX及びOPEX(エネルギー使用量、メンテナンスなどから)が、作成されたエネルギープロファイル(例えば、エネルギー発生及び消費量)にどのように関係するかの近似的関係を含む。システムモデルはまた、デザインパラメータ「x」とデザイン結果(例えば、CAPEX、エネルギー発生、不確実性を伴う消費プロファイルなど)との間の詳細な関係を含んでいてもよい。
局所的なデザインが収束する場合には、解x*(CAPEXi、Ei out、Ei in)(Ei outは反復「i」の最小/最大エネルギー発生であり、Ei inは反復「i」の最小/最大エネルギー消費量である)を、インターフェースを介して、反復精緻化に対する初期推測として上位レベルのデザイン最適化に送る。
局所的なデザインが収束しない場合には、下位レベルのデザイナーは、上位レベルのデザイナーに、デザインパラメータx(CAPEXi、Ei out、Ei in)の初期推測をどのように改善するかについて通知してもよい。いくつかの実施形態では、ある形態の勾配または経験則を決定することを用いてもよい。いくつかの実施形態では、履歴データを用いてもよい。このような履歴データはデータベース55に記憶してもよい。
ある実施形態では、インターフェースを、下位レベルのデザイナーのうちの1つから生じる関連パラメータを、他の下位レベルのデザイナーのうちの1つ以上に送ることをサポートするように構成してもよい。
ある実施形態では、上位レベルのデザイナーが送った予算及びエネルギー出力制約を、下位レベルのデザイナーのシステムモデルにおいて直接用いてもよい。場合によっては、これらの制約を直接的な制約に(例えば、デザインパラメータ「x」上で)変換する前処理ステップによって、局所的なデザインプロセスを促進してもよい。
プロセスブロック158において、上位レベルのデザイナーは、インターフェースを介して、プラグインに対するリクエストを、1つ以上の下位レベルのデザイナーに対応付けられる1つ以上のエネルギーサブシステム(例えば、地熱システム、太陽光発電システム、風力発電システムなど)から受け取ってもよい。本明細書で用いる場合、プラグインは、具体的な特徴(例えば、詳細なデザイン特徴)を既存のシステム(例えば、上位レベルのデザイナー)に加えようとするコンポーネント(例えば、下位レベルのデザイナー)を指してもよい。プラグインに対するリクエストは、プラグインに対するリクエストが上位レベルのデザイナーによって許可された場合に、1つ以上のエネルギーサブシステムの1つ以上の下位レベルのデザイナーが上位レベルのデザイナーに特定のデザイン情報を送ることを可能にしてもよい。
プロセスブロック160において、1つ以上のエネルギーサブシステムからプラグインに対するリクエストを受け入れることに応じて、上位レベルのデザイナーは、インターフェースを介して、下位レベルのデザイナーから、初期推測(例えば、デザインパラメータx(CAPEXi、Ei out、Ei in)の初期推測、勾配または経験則、またはデータベースに記憶された何らかの履歴データ)及びデザイン結果(例えば、解x*(CAPEXi、Ei out、Ei in))を受け取ってもよい。受け取った初期推測及びデザイン結果をプロセスブロック154に送り返して、上位レベルのデザインに対する反復精緻化を行ってもよい。
プロセスブロック162において、デザインシステムはデザイン出力データを作成してもよい。上位レベルのデザイナーは、分散型エネルギー資源システムに対する全体的なデザインを作成してもよい。例えば、プロジェクト設備投資または資本経費(CAPEXproject)、プロジェクト投資回収期間、エネルギーシステム運転コストまたは運転費用(OPEX)、エネルギー節約、メンテナンスに関連するエネルギーシステム運転コスト(OPEXmaintenance)、エネルギーシステム炭素強度(CO2強度)、カーボンフットプリント節約、またはそれらの組み合わせである。下位レベルのデザイナーは、個々のエネルギー資源(例えば、エネルギーサブシステム)に対する詳細なデザインを作成してもよい。例えば、地熱サブシステムデザイナーは、目標場所におけるヒートポンプシステム(複数可)に対するデザインパラメータを作成してもよい。例えば、配置すべき熱交換器の数、地面内の対応する裸孔/ボアホール内に配置すべき熱交換の深さ、配置すべき入口導管及び出口導管の数などである。例えば、太陽光発電サブシステムデザイナーは、目標場所における太陽光発電システムに対するデザインパラメータを作成してもよい。例えば、配置すべき太陽光起電(PV)パネルの数、PVパネルの位置(例えば、建物の上にまたは地面に)及び/または方向(例えば、太陽を追跡できるか否か)などである。デザインシステムは、前述で列記したデザイン結果を、ユーザインターフェースを介して(例えば、プリンターまたはディスプレイを用いて)1人以上のユーザに示してもよい。1人以上のユーザは、デザイン結果に基づいて、デザインされた分散型エネルギーシステムの性能を決定してもよい。デザインシステムのデザイン結果によって、目標場所における最終的にデザインされる分散型エネルギー資源システムの構築が促進され得る。
上位レベルのデザイナー及び下位レベルのデザイナーを、単一のコンピューティングデバイス(例えば、サーバ、デスクトップコンピュータ、ラップトップ、タブレットなど)において実装してもよいし、または下位レベルのデザイナーを、種々のコンピューティングデバイス(複数可)(例えば、各下位レベルのデザイナーに対する種々のコンピューティングデバイス、上位レベルのデザイナーとは異なるコンピューティングデバイスなど)において、他の場所(例えば、クラウド上)に配置された外部シミュレータ(複数可)として、実装してもよい。
分散型エネルギー資源システムの運転
分散型エネルギー資源システムが(例えば、本デザインシステムまたは別のシステムによって)デザインされて目標場所(例えば、居住地、商業及び工業施設、複数建物の商業及び工業用地、大学キャンパス、学校、病院、地方自治体、遠隔地、及び島など)に配置された後で、エネルギー管理システム50を用いて、分散型エネルギー資源システムに対するシステム制御を与えて、エネルギー効率の向上(例えば、特定のエネルギー消費量の削減、再生可能エネルギー使用量の増加、メンテナンスコストの削減等)を行ってもよい。エネルギー管理システムは、階層的最適化ベースの制御システム(例えば、コントローラ)を用いてもよい。ここでは、短期コントローラが、分散型エネルギー資源システムの毎日の調整を制御及び改善し、短期コントローラに長期適応プランニングシステム(例えば、長期コントローラ)をオーバーレイする。長期適応プランニングシステムは、上位レベルにおける長期制約及び将来事象(例えば、予想されるハードウェアメンテナンス作業)に基づいて長期運転スケジュールを決定するように構成されている。階層的最適化ベースの制御システムの価値は、長期コントローラが、分散型エネルギー資源システムの簡略化した記述を用いて、より長期の解(例えば、上位レベルのプランまたはスケジュール)を作成し、そして、長期運転スケジュールの短期部分(例えば、前日に対する要件)を、分散型エネルギー資源システムのより低いレベル(例えば、設定点レベル)まで精緻化すべき短期コントローラに送ってもよい。
エネルギー管理システムは、階層的最適化ベースの制御システムを用いて、制御システムの上位レベル(例えば、第1のレベル)における動的な予想モデル及び下位レベル(例えば、第2のレベル、第3のレベルなど)における種々の動的な予想モデルを介して、要件に対する将来のシステム状態の適合を自動的にモニタリングし、上位レベルにおける長期適応プランニングシステムを自動的にトリガして長期運転スケジュールを再プランしてもよい。要件は、実施態様ごとに変わり得る任意のシステム関連の制約及び/またはビジネス関連の制約(例えば、設備投資、エネルギー消費量、最小エネルギー出力など)を含んでいてもよい。要件は、開発者の特定のゴールを実現するために形成すべきデザインプロジェクトの多くの実施態様固有の決定に関連付けてもよい。上位レベルにおける動的な予想モデル及び下位レベルにおける種々の動的な予想モデルを、分散型エネルギー資源システムの運転寿命を通して構成して反復的に改善してもよい。これらのモデルを、エネルギー需要、エネルギー発生、及びエネルギー貯蔵容量に対する予測モデル(階層的最適化ベースの制御システムに制約を与える)が用いてもよい。
いくつかの実施形態では、動的な予想モデルのうちの1つが、分散型エネルギー資源システムの運転データ(例えば、エネルギー消費量)を含んでいてもよい。目標配置場所のエネルギー消費量を、分散型エネルギー資源システムにおけるエネルギー生産資源の運転データから特徴付けてもよい。エネルギー管理システムは、運転データを用いて、目標配置場所のエネルギー消費量の動的な予想モデルを反復的に改善してもよい。ある実施形態では、エネルギー管理システムは、マイクロテスティングを用いて、エネルギーサブシステム(例えば、地熱システム(複数可)、太陽光発電システム(複数可)、風力発電システム(複数可)等)などの分散型エネルギー資源の動的な予想モデルを構成して反復的に改善してもよい。
このことを念頭において、図5は、図1の制御システム54のアーキテクチャ例のブロック図である。制御システム54は、運転中に分散型エネルギー資源システムに対する改善された制御をもたらし得る。例えば、制御システム54を用いて再生可能エネルギー発生システム及び/または負荷を制御して、エネルギー効率を改善し、対応するコストを減らしてもよい。制御システム54は、2つ以上のレベルにおける制御ハードウェア(例えば、コントローラ)を含んでいてもよい。例示した実施形態では、制御システム54は以下、長期コントローラ202、1つ以上の短期コントローラ204、及び種々の局所コントローラ(例えば、局所環境コントローラ206)、負荷コントローラ208A(負荷210A(例えば、空調装置)に通信可能に接続されている)、負荷コントローラ208B(負荷210B(例えば、電気ヒーター)に通信可能に接続されている)、再生可能エネルギー発生要素コントローラ208C(再生可能エネルギー発生要素210C(例えば、太陽光発電システム、風力発電システム)に通信可能に接続されている)、エネルギー貯蔵要素コントローラ208D(エネルギー貯蔵要素210D(例えば、燃料電池、バッテリ、キャパシタ、フライホイール、圧縮空気、揚水発電、超磁石、水素など)に通信可能に接続されている)、長時間スケール要素コントローラ208E(長時間スケールコンポーネント(例えば、その変化が短期コントローラ204の予想範囲外にあり得るように長期ダイナミクスを有する特定のエネルギー資源)を伴う要素210Eに通信可能に接続されている)、測定アグリゲータ214(種々のセンサ216(例えば、温度センサ、水分センサなど)に通信可能に接続されている)、分散型エネルギー資源システムが用い得る任意の好適なハードウェア、またはそれらの組み合わせ、を含む。
上位レベルにおける長期コントローラ202は、自動動的プランナー、制約プログラムミングソルバー、モデルベースの予想コントローラ、または別の時間ベースの最適化プログラム(分散型エネルギー資源システムの運転を自動的に再プランニングすることができる)として実装してもよい。制御システム54は、上位レベルにおける長期コントローラ202及び第2のレベルにおける短期コントローラ204を用いて、種々の局所コンポーネントコントローラ205(例えば、負荷コントローラ208A及び208B、再生可能エネルギー発生要素コントローラ208C、エネルギー貯蔵要素コントローラ208D)及びアグリゲータ(例えば、測定アグリゲータ214)の運転を制御してもよい。上位レベルにおけるプランニング範囲は、以下が得られるように長期(例えば、25年)であってもよい、(i)長期運転スケジュールに基づいた分散型エネルギー資源システムの運転が、現れるのに長時間スケールがかかるシステム状態制約(例えば、地中熱ヒートポンプシステムにおける地面との熱伝達の安定性)を満たし、(ii)長期運転スケジュールに基づいたプランニングが、将来事象、例えば分散型エネルギー資源システム設備の予想メンテナンス、エネルギー消費行動における予想される変化、例えば、エネルギー消費者または他のユーザからの不在期間を予想する。制御システム54は、これらの将来事象を考慮した全体運転スケジュールを決定する。
第2のレベルにおける短期コントローラ204を、モデルベースの予想コントローラまたは他の時間ベースの制御プログラム/ルーチンとして実装してもよい。全体運転スケジュールを、局所コンポーネントコントローラ205と短期コントローラ204のシステムモデル240とが実行する。これらは、動的な予想モデルとして実装され、前述した要件に対する将来の状態の適合をモニタリングするための妥当なシナリオのシミュレーションを行うために用いられる。相違が生じた場合、エネルギー管理システムが長期コントローラ202を自動的にトリガして長期運転スケジュールを再プランしてもよい。更新した長期運転スケジュールを、第2のレベルにおける短期コントローラ204に自動的に配置してもよいし、または承認を得るために人間の意思決定者に伝達してもよい。
短期コントローラ204は、エネルギー発生、貯蔵、電力と熱との間の変換、及び制御可能な負荷を調整して、終日または短期運転に対する電力/エネルギーの供給と需要との間の整合(コストを減らし、利益を増加させ、炭素強度を減らし、またはそれらの組み合わせを行う)を実現するように構成されている。階層的最適化ベースの制御システムによって、短期コントローラ204は、上位レベルのプラン(例えば、長期運転スケジュール)から特定の運転パラメータに対する制約を受け取ることができる。第2のレベルにおける短期コントローラ204は、三次コントローラ(例えば、局所コンポーネントコントローラ205)を制御する二次コントローラとして動作してもよい。三次コントローラは、個々のエネルギー資源に対する設定点追跡を実行している。
個々のエネルギー資源のうちの一部(例えば、長時間スケールを伴う要素210E)は、その状態(複数可)の変化が短期コントローラ204の予想範囲外になり得るように長期ダイナミクスを有していてもよい。地中熱ヒートポンプシステムにおける地面との熱伝達の安定性は一例である。これらの長期ダイナミクスは、短期コントローラ204に対する一定の挙動(例えば、1日の範囲内)として説明され、長期コントローラ202によって制御される。
局所コンポーネントコントローラ205(例えば、ハードウェアコントローラ及び/またはアグリゲータ)を、個々のエネルギー資源に対する長期運転スケジュールの1つ以上の短期部分に基づいて設定点スケジュールを実行するように構成してもよい。各設定点スケジュールは、対応するコンポーネント(例えば、ハードウェア、センサなど)を改善された方法で運転するための詳細な設定点を含んでいてもよい。いくつかの実施形態では、再生可能エネルギー発生要素コントローラ208C及びエネルギー貯蔵要素コントローラ208Dは、アプリケーションプログラミングインターフェース(API)を介して、短期コントローラ204と直接通信してもよい。いくつかの実施形態では、負荷コントローラ208A及び208Bは、局所環境コントローラ206を通して短期コントローラ204と通信してもよい。局所ハードウェアコントローラ208A及び208Bは、負荷210A及び210Bの運転を制御して、建物の暖気または冷気を、より低いレベルにおける局所環境コントローラ206によって(例えば、オンデマンドで)、短期コントローラ204によって(例えば、毎日)、及び長期コントローラ202によって(例えば、毎月または毎年)によって制御される特定の調整により、もたらしてもよい。
各レベルにおけるコントローラ(複数可)は、エネルギー価格、エネルギー需要、エネルギー発生、環境要因、エネルギー貯蔵容量などを与える予測モデルから入力を受け取ってもよい。また各レベルにおけるコントローラ(複数可)は、ユーティリティオペレータからユーザ選好及び/または制約の入力を受け取ってもよい。例示した実施形態では、長期コントローラ202は運転入力230を受け取ってもよい。運転入力230は、ユーザ入力及び他の入力、例えば電力グリッド安定性制約、熱的快適性レベル、不確実性を伴うエネルギー価格予測、不確実性を伴うエネルギー需要予測(例えば、建物使用法、占有率、気象など)、建物エネルギーモデル、不確実性を伴うエネルギー発生予測、太陽光起電(PV)モデル、地下モデル、またはそれらの組み合わせを含んでいてもよい。
ある実施形態では、長期コントローラ202は、長時間スケール要素コントローラ208Eと長期コントローラ202との間のデータ交換を制御するアプリケーションプログラミングインターフェース(API)242を含んでいてもよい。短期コントローラ204は、短期コントローラ204と局所コンポーネントコントローラ205との間のデータ交換を制御するAPI244を含んでいてもよい。これらのAPIは、種々のレベルにおけるアプリケーション(例えば、運転制御)を、2つのアプリケーションがより効率的に互いに通信できるようにすることによって促進してもよい。
ある実施形態では、動的な予想モデル(例えば、制御システム54並びに目標配置場所におけるエネルギー消費要素の局所ハードウェアコントローラの、上位レベルにおける動的な予想モデル及び下位レベルにおける種々の動的な予想モデル)を、エネルギー管理システムが取得した運転データによって規則的に(例えば、1日、1週間、1ヶ月ごと)更新してもよい。制御システム54の更新したモデルを、規則的に及び/またはエンドユーザのリクエストにより作成して、例えば、エネルギー資源または負荷が追加または除去された分散型エネルギー資源システムの新しい漸進的デザインを評価してもよい。新しい漸進的デザインは、制御システムによって実行されるときに、分散型エネルギー資源システムのより正確な制御をもたらし得る。
ある実施形態では、制御システム54を、種々のレベルにおける運転/制御を改善するように、機械学習によってトレーニングしてもよい。例えば、トレーニングデータ(例えば、運転中の分散型エネルギー資源システムに対する履歴運転/制御データ、及び/または他の履歴データ、例えば、エネルギー価格データ、局所気象履歴データ、局所地球物理/地理履歴データ、他の好適なデータ、またはそれらの組み合わせ)を入力データとして用いて、制御システム54を、機械学習アルゴリズムを用いてトレーニングしてもよい。このような機械学習アルゴリズムは、データベースに記憶された履歴運転/制御データ及び/または他の履歴データにアクセスし得る機械学習回路またはソフトウェアを用いて実装してもよい。形成すべき推論に応じて、機械学習回路は異なる形態の機械学習を実装してもよい。機械学習回路またはソフトウェアは、前述したデザインシステムをトレーニングするために用いた同じ回路もしくはソフトウェアであってもよいし、または異なる回路もしくはソフトウェアであってもよい。いくつかの実施形態では、教師あり機械学習を実装してもよい。いくつかの実施形態では、教師なし機械学習を実装してもよい。本明細書で用いる場合、「機械学習」は、明瞭な指示を用いてまたは用いずに特定のタスクを実行するためにコンピュータシステムが用いるアルゴリズム及び統計モデルを指す場合がある。例えば、機械学習プロセスは、クリーンデータ(「トレーニングデータ」として知られる)のサンプルに基づいて、数学的なモデル(例えば、制御システム54の上位レベルにおける動的な予想モデル及び/または下位レベルにおける種々の動的な予想モデル)を作成して、タスクを実行するように明示的にプログラムされることなく予想または決定を行ってもよい。
ある実施形態では、動的な予想モデルを、個々のエネルギー資源(例えば、エネルギーサブシステム、例えば、地熱システム(複数可)、太陽光発電システム(複数可)、風力発電システム(複数可)など)をマイクロテストすることによって構成及び/または改善してもよい。例えば、予想モデルベースのコントローラは、特定の設定点において変動を生じさせて、それぞれの個々のエネルギー資源に対する局所的(例えば、線形)モデルのパラメータを較正してもよい。一連の局所ドメインモデル(例えば、短期コントローラ204内)を、種々の条件下でエネルギー管理システムの運転使用の全体にわたって構成してよい。これにより、長期コントローラまたは短期コントローラが、分散型エネルギー資源システムの以前の運転条件に近い運転条件に迅速に適応できるようにし得る。このような「局所ドメイン」モデルは、付加情報及びモデルが基づく物理に応じて、線形またはより複雑(例えば、非線形)であってもよい。
ある実施形態では、エネルギー管理システムは、長期コントローラ202及び短期コントローラ204に対する実行フィードバックを作成する状態推定器を含んでいてもよい。実行フィードバックは、エネルギーの流れ、貯蔵システム(複数可)に対する充填状態、設備(例えば、局所ハードウェア)の健康状態、予想される耐用年数の終了、性能劣化傾向などを含んでいてもよい。
前述したように、運転中の分散型エネルギー資源システムを、居住地、商業及び工業施設、複数建物の商業及び工業用地、大学キャンパス、学校、病院、地方自治体、遠隔地、及び島などで用いてもよい。階層的最適化ベースの制御システムを用いて、動的な分散型エネルギー資源システム(例えば、エネルギー資源または負荷が付加/除去された)の運転に対する改善された制御をもたらして、用地(例えば、大学キャンパス)開発プロジェクトにおいて生じる変化に適応してもよい。階層的最適化ベースの制御システムに関するさらなる詳細について、図6を参照して以下に説明する。
制御システム54のアーキテクチャに関して前述したコンポーネントは典型的なコンポーネントであり、制御システム54は、図示したようにさらなるまたはより少ないコンポーネントを含んでいてもよいことに注意されたい。
図6は、図5の制御システムを用いる分散型エネルギー資源システムの制御に対する方法例のフロー図である。図6で説明する方法例250は特定の順番で説明しているが、方法例250は任意の好適な順番で行ってもよく、本明細書で提示した順番に限定されない。各処理ブロックを、本方法において制御システムによって実行されていると以下に説明するが、他の好適なコンピューティングシステム(複数可)が、本明細書に記載の方法ステップのうちの少なくとも1つを実行してもよい。
プロセスブロック252において、長期コントローラは長期運転制御に対する入力データを受け取ってもよい。入力データは、電力グリッド安定性制約、熱的快適性レベル、不確実性を伴うエネルギー価格予測、不確実性を伴うエネルギー需要予測(例えば、建物使用法、占有率、気象など)、建物エネルギーモデル、不確実性を伴うエネルギー発生予測、太陽光起電(PV)モデル、地下モデル、またはそれらの組み合わせを含んでいてもよい。ある実施形態では、長期コントローラは、エネルギー価格、エネルギー需要、エネルギー発生、環境要因、エネルギー貯蔵容量、またはそれらの組み合わせを与える予測モデルから入力データを受け取ってもよい。ある実施形態では、長期コントローラは、ユーティリティオペレータから、ユーザ選好及び/または制約に関連する入力データを受け取ってもよい。ある実施形態では、入力データは、測定アグリゲータからの測定値を含んでいてもよい。このような測定値は、センサ(例えば、建物温度を測定する温度センサなど)によって取得してもよい。
プロセスブロック254において、長期コントローラは、入力データに基づいて目的関数を低減する(例えば、最小限にする)ことによって長期運転スケジュールを決定してもよい。目的関数は、運転評価基準、例えばコスト、利益、炭素強度、任意の好適な評価基準、またはそれらの組み合わせを含んでいてもよい。例えば、長期運転制御は、コストを下げること、利益を増加させること、炭素強度を下げること、またはそれらの組み合わせを含んでいてもよい。特定の運転評価基準を短期コントローラに対する制約として用いてもよい。長期コントローラは、分散型エネルギー資源システムの簡略化した記述を用いて、より長期の解(例えば、上位レベルのプランまたはスケジュール)を作成し、そして上位レベルのプランまたはスケジュールの短期部分を短期コントローラに送ってもよい。
プロセスブロック256において、長期コントローラは短期コントローラに制約を出力してもよい。前述したように、制約は、上位レベルのプランまたはスケジュールの1つ以上の短期部分(例えば、長期運転スケジュール)、例えば、前日に対する要件(例えば、毎日の電力制約、毎日の熱流制約など)を、分散型エネルギー資源及び/または負荷の設定点のレベルまで精緻化すべき短期コントローラに対して含んでいてもよい。短期コントローラは、前日のプラン/実行及び/または日内のプラン/実行を実行してもよい。例えば、短期コントローラは、エネルギー発生、貯蔵、電力と熱との間の変換、及び制御可能な負荷を調整して、終日に対する電力及びエネルギーの供給と需要との間の整合(コストを減らすこと、利益を増加させること、炭素強度を下げること、またはそれらの組み合わせを行う)を実現してもよい。本明細書に記載の制御フレームワークによって、上位レベルのプランまたはスケジュールによって課される特定の運転パラメータ(複数可)に対する制約を受け取ることができる。また短期コントローラは、局所ハードウェアコントローラ及び/または他のコントローラ(例えば、局所環境コントローラ)から入力を受け取って、第2のレベルにおける改善された制御を実行する。入力は、局所ハードウェア及び/もしくは設備の要素タイプ、モデルパラメータ、他の好適なパラメータ(複数可)、またはそれらの組み合わせを含んでいてもよい。長期運転スケジュールの1つ以上の短期部分が短期コントローラによって実行されると、システムモデルは妥当なシナリオをシミュレートして、システム状態を作成し得る。
プロセスブロック258において、長期コントローラは短期コントローラからシステム状態を受信してもよい。システム状態は、長期運転スケジュールの1つ以上の短期部分を実行した後のフィードバック、例えば、エネルギーの流れ、貯蔵システムに対する充填状態、設備(例えば、局所ハードウェア)の健康状態、予想される耐用年数の終了、性能劣化傾向などを含んでいてもよい。
プロセスブロック260において、長期コントローラは、特定の要件、例えば、システム関連の制約及び/またはビジネス関連の制約(例えば、設備投資、エネルギー消費量、最小エネルギー出力など)に対するシステム状態の適合をモニタリングしてもよい。モニタリングは、短期コントローラから受け取ったシステム状態に基づいて予想モデルが実行するシミュレーションに基づいてもよい。モニタリングプロセスは、将来のシステム状態(例えば、分散型エネルギー資源システムに対応付けられる種々のシナリオのシミュレーションに基づいて予測される)が適合要件と相違する相違を特定/検出してもよい。
プロセスブロック262において、長期コントローラは、相違が検出されたかどうかを判定してもよい。相違が検出された場合、エネルギー管理システムは長期コントローラを自動的にトリガして、長期運転スケジュールを再プランしてもよい。更新した長期運転スケジュールを、第2のレベルにおける短期コントローラ204に自動的に配置してもよく、または承認を得るために人間の意思決定者に伝達してもよい。例えば、ある実施形態では、人間の意思(例えば、オペレータの決定)を用いて再プランが望ましいかどうかを判定してもよい。
プロセスブロック262において、相違は検出されないと長期コントローラが判定した場合、プロセス250はプロセスブロック258に戻って、短期コントローラからシステム状態を連続的に受け取り、可能な相違(複数可)を検出するためにシステム状態の適合をモニタリングしてもよい。
局所コンポーネントコントローラ(例えば、負荷コントローラ、再生可能エネルギー発生要素コントローラ、エネルギー貯蔵要素コントローラ)及びアグリゲータ(例えば、測定アグリゲータ)は、局所ハードウェアを迅速に調整して、第3のレベルにおける分散型エネルギー資源システムの運転を、1つ以上の短期コントローラからの更新した長期運転スケジュールの1つ以上の更新した短期部分、1つ以上の命令、またはそれらの組み合わせに基づいて制御してもよい。
長期コントローラ及び短期コントローラを、単一のコンピューティングデバイス(例えば、サーバ、デスクトップコンピュータ、ラップトップ、タブレットなど)において実装してもよく、または短期コントローラを、種々のコンピューティングデバイス(複数可)(例えば、各短期コントローラに対する異なるコンピューティングデバイス、上位レベルのコントローラとは異なるコンピューティングデバイスなど)において、他の場所(例えば、クラウド上)に配置された外部シミュレータ(複数可)として、実装してもよい。
デザイン及び運転の応用例
一実施形態では、デザイン中の分散型エネルギー資源システムは、クローズドループにおいて地中熱ヒートポンプシステムを含んでいてもよく、これを、太陽光起電(PV)モデル及び/または熱モデル、乾燥空気熱交換器、及び補助供給源(例えばガスボイラー及び/または冷却機)に結合してもよい。このような複雑さを伴う分散型エネルギー資源システムを、以下の基準、例えば、初期投資コスト(CAPEX)、運転コスト(OPEX)(電気、ガス、及び/またはメンテナンスのコストを含む)、分散型エネルギー資源システムの寿命上でのエネルギーの平準化コスト、またはCO2/温室効果ガス(GHG)放出(例えば、年間またはフォームのライフサイクルの両方、設備の製造を含む)のうちの少なくとも1つ(しかしこれに限定することなく)に基づいて、デザインしてもよい。
例えば、プロジェクトゴールがCO2放出を減らす(例えば、最小限にする)ことである場合、デザインプロセスの出力は、補助ガスボイラー(複数可)を減らすかまたはなくすことを含んでいてもよく、したがって、地熱井の数及びヒートポンプの容量が増加し、その結果、CAPEXが増加する。またエネルギー管理システムは、例えば、夏の間に地熱井を再充填し得る太陽熱モデルを使用することで、冬の間のヒートポンプの性能を改善して消費電力を減らして、予想されるOPEXを減らしても(例えば、最小限にしても)よい。更に、地表温度は夏の方が冬よりも高いため、エネルギー管理システムによって季節間の蓄熱が促進され得る。
一実施形態では、分散型エネルギー資源システムの改善された運転によって、システム寿命(例えば25年)にわたって高性能を維持することができる。例えば、地熱井内をクローズドループで循環する流体の温度は、常に所定の範囲を下回り得る(例えば、-3C~40℃)。このような改善された運転には、複数の時間スケールにおける予想モデルベースのプランニングが含まれていてもよい(例えば、流体の温度を、予想モデルを定期的に(例えば、1週間、1ヶ月、四半期ごとに)用いて推定する)。
別の実施形態では、建物の熱慣性を用いて負荷をシフトさせ、より低い電気料金から利益を得てもよい。熱慣性を用いた最適化ベースの制御は、電気料金、気象、及び建物エネルギー消費量の予測を入力として用いてもよい。
エネルギー管理システムは、建物の挙動(例えば、熱慣性及びエネルギー消費量)及び個々のエネルギー資源の挙動を(例えば、機械学習を用いて)学習することによって、時間の経過とともに改善され得る。またエネルギー管理システムは、故障の検出/予想(例えば、ヒートポンプに対する予想健康管理)を可能にし、故障を防ぐ遠隔修正処置、現場にチームを送って故障を直し及び/または防ぐこと、メンテナンス中の非稼働設備の影響を軽減すること(例えば、予想/プラン上に基づいて)などを含む種々の処置をトリガし得る。このような故障検出/予想によって、クライアント経験が改善され、運転及び/またはメンテナンスコストが減り得る。
本開示の技術的効果には、種々の再生可能エネルギー資源を含む分散型エネルギー資源システムのデザイン及び運転を改善することが含まれる。このような改善されたデザイン及び制御は、予想モデルに基づいてもよく、予測モデルを用いてシステム状態を現在のデザイン及び/または運転スケジュールに基づいて推定してもよく、それに応じてデザイン及び/または運転スケジュールを自動的に調整してもよい。ある実施形態では、目標配置場所(例えば、建物)がすでに、室内(例えばオフィス)温度を制御する局所管理システム(例えば、局所温度制御システム)を有している場合がある。開示した技術によって、エネルギー管理をより高いレベル(複数可)で動的に調整して、より良好なゴール、例えば、コスト削減、利益増加、または炭素強度削減を短期スケール(例えば、1日)及び/または長期スケール(例えば、1年以上)の両方において実現することが、可能になり得る。
本明細書では特定の特徴のみを例示して説明してきたが、多くの変更及び修正が当業者には想起される。したがって、添付の特許請求の範囲は、本開示の真の趣旨に含まれるすべての変更及び変形に及ぶことが意図されていることを理解されたい。
本明細書で提示及び請求される手法は、現在の技術分野を明らかに改善する実用的な性質の物質及び具体例に参照及び適用され、したがって、抽象的でも、無形でも、純粋に理論的なものでもない。更に、本明細書の終わりに添付の任意の請求項に、「[機能]を[実行する]ための手段」または「[機能]を[実行する]ためのステップ」として示される1つ以上の要素が含まれている場合、このような要素は米国特許法112(f)の下で解釈すべきであることが意図されている。しかし、何らかの他の方法で示される要素を含む任意の請求項に対しては、このような要素は米国特許法112(f)の下で解釈すべきではないことが意図されている。

Claims (22)

  1. 分散型エネルギー資源システムに対するエネルギー管理システムであって、
    デザインシステムであって、
    個々のエネルギー資源に対して分散化された下位レベルのデザイナーを調整して、上位レベルの全体的なデザインを、信頼レベル内で目標配置場所のエネルギー需要を満たす前記分散型エネルギー資源システムに対するデザイン入力に基づいて求めるように構成された上位レベルのデザイナーと、
    複数の局所的エネルギーサブシステムの詳細なデザインを作成するように構成された複数の下位レベルのデザイナーであって、前記上位レベルのデザイナーは、前記詳細なデザインの少なくとも一部を用いて前記上位レベルの全体的なデザインを更新する、前記複数の下位レベルのデザイナーと、
    を含むデザインシステムと、
    前記全体的なデザイン及び前記詳細なデザインを出力するように構成されたユーザインターフェースと、
    を備えたことを特徴とするエネルギー管理システム。
  2. 前記分散型エネルギー資源システムは、1つ以上の居住地、1つ以上の商業及び工業施設、1つ以上の複数建物の商業及び工業用地、1つ以上の大学キャンパス、1つ以上の学校、1つ以上の病院、1つ以上の地方自治体、1つ以上の遠隔地、またはそれらの組み合わせ、に対して用いられる
    ことを特徴とする請求項1に記載のエネルギー管理システム。
  3. 前記デザイン入力は、プロジェクト設備投資、プロジェクト投資回収期間、分散型エネルギー資源システム運転コスト、もしくは分散型エネルギー資源システム炭素強度、またはそれらの組み合わせ、を含むユーザ入力を含む
    ことを特徴とする請求項1に記載のエネルギー管理システム。
  4. 前記詳細なデザインの複数の機能は、複数の外部デザインモデルまたはソフトウェアによって提供される
    ことを特徴とする請求項1に記載のエネルギー管理システム。
  5. 前記エネルギー管理システムは、1つ以上の予測モデルの結果を前記デザイン入力の一部として用いる
    ことを特徴とする請求項1に記載のエネルギー管理システム。
  6. 前記1つ以上の予測モデルの前記結果は、エネルギー価格、エネルギー需要、エネルギー発生、環境要因、エネルギー貯蔵容量、またはそれらの組み合わせ、を含む
    ことを特徴とする請求項5に記載のエネルギー管理システム。
  7. 分散型エネルギー資源システムに対するエネルギー管理システムであって、
    階層的最適化ベースの制御システムであって、
    第1のレベルにおいて、長期制約及び将来事象に基づいて、分散型エネルギー資源システムに対する長期運転スケジュールを決定するように構成された一次コントローラと、
    第2のレベルにおいて、前記分散型エネルギー資源システムの毎日の調整を制御するために前記長期運転スケジュールの1つ以上の短期部分を受け取るように構成された1つ以上の二次コントローラと、
    前記一次コントローラ及び前記1つ以上の二次コントローラからの前記長期運転スケジュールの少なくとも一部、前記長期運転スケジュールの前記1つ以上の短期部分、1つ以上の命令、またはそれらの組み合わせ、に基づいて、第3のレベルにおいて、前記分散型エネルギー資源システムの運転を制御するために複数のハードウェアを迅速に調整するように構成された複数の三次コントローラと、
    を含む階層的最適化ベースの制御システム
    を備えたことを特徴とするエネルギー管理システム。
  8. 前記将来事象は、設備メンテナンス作業、不在期間などのエネルギー消費行動における予想される変化、またはそれらの組み合わせ、を含む
    ことを特徴とする請求項7に記載のエネルギー管理システム。
  9. 前記1つ以上の二次コントローラは、前記毎日の調整を前記分散型エネルギー資源システムの設定点のレベルまで精緻化するように構成されている
    ことを特徴とする請求項7に記載のエネルギー管理システム。
  10. 前記一次コントローラ及び前記1つ以上の二次コントローラは、複数の予想モデルを含み、
    前記一次コントローラ及び前記1つ以上の二次コントローラは、前記エネルギー管理システムの運転使用において測定されたデータに基づいて前記複数の予想モデルを反復的に改善するように構成され、
    前記複数の予想モデルのうちの少なくとも1つは、目標配置場所のエネルギー消費量を特徴付ける前記分散型エネルギー資源システムの運転データを含む
    ことを特徴とする請求項7に記載のエネルギー管理システム。
  11. 前記一次コントローラ及び前記1つ以上の二次コントローラは、個々のエネルギー資源をマイクロテストすることによって前記複数の予想モデルを反復的に改善するように構成され、
    前記マイクロテスティングは、特定の設定点において変動を生じさせて前記個々のエネルギー資源に対する複数の局所ドメインモデルのパラメータを較正することを含み、
    前記1つ以上の二次コントローラは、前記複数の局所ドメインモデルを種々の条件下で前記エネルギー管理システムの運転使用の全体にわたって構築して、前記一次コントローラまたは前記1つ以上の二次コントローラが前記分散型エネルギー資源システムの以前の運転条件に近い運転条件に迅速に適応することを可能にするように構成されている
    ことを特徴とする請求項10に記載のエネルギー管理システム。
  12. 前記一次コントローラが、前記第1のレベルにおいて前記分散型エネルギー資源システムの前記長期運転スケジュールを自動的に更新し、前記1つ以上の二次コントローラが、前記第2のレベルにおいて前記分散型エネルギー資源システムの毎日の調整を自動的に更新する、というように、前記一次コントローラ及び前記1つ以上の二次コントローラは、自動動的プランナー、制約プログラミングソルバー、モデルベースの予想コントローラ、または別の時間ベースの最適化プログラム、として実装される
    ことを特徴とする請求項7に記載のエネルギー管理システム。
  13. 前記一次コントローラは、将来の状態の要件とシミュレーションによって推定された妥当な将来の状態との間で検出された相違に応じて、前記長期運転スケジュールを自動的に更新するように構成され、
    前記1つ以上の二次コントローラは、前記制御最適化プロセスにおいて検出された前記相違に応じて毎日の調整を自動的に更新するように構成され、
    または、それらの組み合わせである
    ことを特徴とする請求項12に記載のエネルギー管理システム。
  14. 分散型エネルギー資源システムをデザインするための方法であって、
    上位レベルのデザイナーによって、デザイン入力データを受け取る工程と、
    前記上位レベルのデザイナーによって、上位レベルのデザインを、前記デザイン入力データと複数の下位レベルのデザイナーからの入力データとに基づいて第1の目的関数を低減することによって決定する工程と、
    前記上位レベルのデザイナーによって、前記複数の下位レベルのデザイナーにインターフェースを介して制約を出力する工程と、
    前記上位レベルのデザイナーによって、前記インターフェースを介して前記複数の下位レベルのデザイナーから初期デザイン及びデザイン結果を受け取る工程であって、前記受け取った初期デザイン及び前記デザイン結果を前記上位レベルのデザイナーが用いて、前記上位レベルのデザインに対する反復精緻化を行う、前記受け取る工程と、
    前記上位レベルのデザインを出力する工程と、
    を備えたことを特徴とする方法。
  15. 目標配置場所レベル、集約場所レベル、施設レベル、器具レベル、または配管レベル、での前記分散型エネルギー資源システムのエネルギー消費量を特徴付ける工程を含む
    ことを特徴とする請求項14に記載の方法。
  16. 前記分散型エネルギー資源システムの前記エネルギー消費量は、複数の外部デザインモデルまたはソフトウェアによって提供される
    ことを特徴とする請求項15に記載の方法。
  17. 前記分散型エネルギー資源システムの前記エネルギー消費量は、前記分散型エネルギー資源システムにおけるエネルギー生産資源の運転データから特徴付けられる
    ことを特徴とする請求項15に記載の方法。
  18. 前記デザイン入力データは、ユーザ選好、ユーティリティオペレータ制約、またはそれらの組み合わせ、を含む
    ことを特徴とする請求項14に記載の方法。
  19. 前記分散型エネルギー資源システムが目標場所に配置されて運転された後に、
    一次コントローラによって、長期運転制御に対する制御入力データを受け取る工程と、
    前記一次コントローラによって、前記制御入力データに基づいて第2の目的関数を低減することによって長期運転スケジュールを決定する工程と、
    前記一次コントローラによって、前記長期運転スケジュールの1つ以上の短期部分に基づいて複数の制約を生成する工程と、
    前記一次コントローラによって、複数の二次コントローラに前記複数の制約を出力する工程と、
    前記一次コントローラによって、前記複数の二次コントローラから複数のシステム状態を受け取る工程と、
    前記一次コントローラ及び前記複数の二次コントローラによって、複数の要件との前記複数のシステム状態の適合をモニタリングする工程と、
    前記複数のシステム状態と前記複数の要件との間の相違の検出に応じて、前記一次コントローラをトリガして前記長期運転スケジュールを更新させる工程と、
    前記更新した長期運転スケジュールの1つ以上の更新した短期部分を前記複数の二次コントローラに送り、前記分散型エネルギー資源システムの毎日または短期の運転を調整する工程と、
    複数の三次コントローラによって、複数のハードウェアの運転を調整して、前記分散型エネルギー資源システムの運転を、前記更新した長期運転スケジュールの前記1つ以上の更新した短期部分、1つ以上の命令、またはそれらの組み合わせに基づいて制御する工程と、
    を備えたことを特徴とする請求項14に記載の方法。
  20. 前記一次コントローラまたは前記1つ以上の二次コントローラは、1つ以上の予測モデルの結果を入力として用いる
    ことを特徴とする請求項19に記載の方法。
  21. 前記1つ以上の予測モデルの前記結果は、エネルギー価格、エネルギー需要、エネルギー発生、環境要因、またはエネルギー貯蔵容量、を含む
    ことを特徴とする請求項19に記載の方法。
  22. 前記分散型エネルギー資源システムの動的な予想モデルを用いて妥当なシナリオをシミュレートして、前記複数の要件に対する前記適合をモニタリングし、前記複数の要件はシステム関連の制約またはビジネス関連の制約を含む
    ことを特徴とする請求項19に記載の方法。
JP2022569109A 2020-05-14 2021-05-14 分散型エネルギー資源システムデザイン及び運転 Pending JP2023525582A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063024798P 2020-05-14 2020-05-14
US63/024,798 2020-05-14
PCT/US2021/032395 WO2021231831A1 (en) 2020-05-14 2021-05-14 Distributed energy resource system design and operation

Publications (1)

Publication Number Publication Date
JP2023525582A true JP2023525582A (ja) 2023-06-16

Family

ID=78512673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022569109A Pending JP2023525582A (ja) 2020-05-14 2021-05-14 分散型エネルギー資源システムデザイン及び運転

Country Status (6)

Country Link
US (1) US20210358058A1 (ja)
EP (1) EP4150733A4 (ja)
JP (1) JP2023525582A (ja)
KR (1) KR20230011950A (ja)
CA (1) CA3183601A1 (ja)
WO (1) WO2021231831A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10859986B2 (en) * 2018-12-28 2020-12-08 Enel X North America, Inc. Electrical system control for achieving long-term objectives, and related systems, apparatuses, and methods
US11962156B2 (en) 2021-08-19 2024-04-16 Caterpillar Inc. Systems and methods for constrained optimization of a hybrid power system that accounts for asset maintenance and degradation
US11936184B2 (en) * 2021-08-19 2024-03-19 Caterpillar Inc. Systems and methods for operating hybrid power system by combining prospective and real-time optimizations
EP4195440A1 (en) * 2021-12-08 2023-06-14 Abb Schweiz Ag Energy distribution system and method of controlling the distribution of energy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090040029A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Transceiver and charging component for a power aggregation system
AU2010204729A1 (en) * 2009-01-14 2011-09-01 Integral Analytics, Inc. Optimization of microgrid energy use and distribution
WO2012015508A1 (en) * 2010-07-29 2012-02-02 Spirae, Inc. Dynamic distributed power grid control system
US20140350743A1 (en) * 2012-08-27 2014-11-27 Nec Laboratories America, Inc. Tiered power management system for microgrids
GB201218342D0 (en) * 2012-10-12 2012-11-28 Univ Leuven Kath Method and system for distributing and/or controlling an energy flow taking into account constraints relating to the electricity network
US9887544B2 (en) * 2013-04-15 2018-02-06 Lockheed Martin Corporation System and method for mathematical predictive analytics and computational energy modeling
US10749339B2 (en) * 2015-09-11 2020-08-18 Paul Joseph Meier Modeling system for energy systems
US11144681B2 (en) * 2017-11-10 2021-10-12 Autodesk, Inc. Generative design pipeline for urban and neighborhood planning
GB2577853B (en) * 2018-06-22 2021-03-24 Moixa Energy Holdings Ltd Systems for machine learning, optimising and managing local multi-asset flexibility of distributed energy storage resources
US10804702B2 (en) * 2018-10-11 2020-10-13 Centrica Business Solutions Belgium Self-organizing demand-response system
EP3767559B1 (en) * 2019-07-14 2023-11-15 IMEC vzw Multi-scale optimization framework for smart energy systems
CA3115583A1 (en) * 2020-04-17 2021-10-17 Mcmaster University Integrated community energy and harvesting system

Also Published As

Publication number Publication date
CA3183601A1 (en) 2021-11-18
WO2021231831A1 (en) 2021-11-18
EP4150733A1 (en) 2023-03-22
EP4150733A4 (en) 2024-05-15
KR20230011950A (ko) 2023-01-25
US20210358058A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
Talebi et al. A review of district heating systems: modeling and optimization
JP2023525582A (ja) 分散型エネルギー資源システムデザイン及び運転
Li et al. Review of building energy modeling for control and operation
Mahbub et al. Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design
Saloux et al. Model-based predictive control to minimize primary energy use in a solar district heating system with seasonal thermal energy storage
Yang et al. Vertical-borehole ground-coupled heat pumps: A review of models and systems
Sarbu et al. A review of modelling and optimisation techniques for district heating systems
Quintana et al. Optimized control strategies for solar district heating systems
Rui et al. Modelling ground source heat pump system by an integrated simulation programme
Dai et al. Active and passive thermal energy storage in combined heat and power plants to promote wind power accommodation
Ahmed et al. Optimal design, operational controls, and data-driven machine learning in sustainable borehole heat exchanger coupled heat pumps: Key implementation challenges and advancement opportunities
Ikonen et al. Short term optimization of district heating network supply temperatures
Saloux et al. Control-oriented model of a solar community with seasonal thermal energy storage: development, calibration and validation
Pálsson Methods for planning and operating decentralized combined heat and power plants
Aljubran et al. FGEM: Flexible Geothermal Economics Modeling tool
VOROPAI et al. The development of a joint modelling framework for operational flexibility in power systems
Wei et al. Evaluation of model predictive control (MPC) of solar thermal heating system with thermal energy storage for buildings with highly variable occupancy levels
Sánchez et al. Integrated model concept for district energy management optimisation platforms
Brown et al. Modelling borehole thermal energy storage using curtailed wind energy as a fluctuating source of charge
Chen et al. Coordination of behind-the-meter energy storage and building loads: optimization with deep learning model
Zagarella Estimating the buildings hourly energy demand for Smart Energy District planning.
Narayanan et al. Systems approach to energy efficient building operation: case studies and lessons learned in a university campus
Guo et al. Key district heating technologies for building energy flexibility: A review
Wernstedt et al. Simulation of district heating systems for evaluation of real-time control strategies
Zhang et al. Day-ahead optimal scheduling of micro gas turbine-based microgrid considering electricity and heating energy