WO2024108972A1 - 一种基于nb-iot膜式燃气表实现的恒流检测方法 - Google Patents

一种基于nb-iot膜式燃气表实现的恒流检测方法 Download PDF

Info

Publication number
WO2024108972A1
WO2024108972A1 PCT/CN2023/098834 CN2023098834W WO2024108972A1 WO 2024108972 A1 WO2024108972 A1 WO 2024108972A1 CN 2023098834 W CN2023098834 W CN 2023098834W WO 2024108972 A1 WO2024108972 A1 WO 2024108972A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
sub
interval
iot
calculation
Prior art date
Application number
PCT/CN2023/098834
Other languages
English (en)
French (fr)
Inventor
汪培春
刘金梁
王滨滨
邢旭东
梅钢
刘陵宠
杨惠涵
朱驾宁
Original Assignee
上海飞奥燃气设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海飞奥燃气设备有限公司 filed Critical 上海飞奥燃气设备有限公司
Publication of WO2024108972A1 publication Critical patent/WO2024108972A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices

Definitions

  • the present invention relates to a gas consumption anomaly diagnosis technology, and in particular to a constant current detection method based on an NB-IoT diaphragm gas meter.
  • the purpose of the present invention is to provide a constant current detection method based on an NB-IoT diaphragm gas meter, which can monitor different flow intervals and make the abnormal diagnosis of user gas consumption more accurate, less costly and more convenient.
  • a constant current detection method based on NB-IoT membrane gas meter includes the following steps:
  • the upper and lower limit flow intervals [Q min , Q max ] of the NB-IoT diaphragm gas meter are divided into three flow step sub-intervals, and the upper and lower thresholds of each sub-interval are between [Q min , Q max ].
  • the range of each sub-interval is dynamically adjusted according to demand, and the upper and lower limit thresholds and constant current parameters of each flow step sub-interval are independently maintained and set.
  • the rated number of calculations is set to 6 times; the average time is calculated based on the time taken to sample the rated number of pulses for the first 6 times and after removing the maximum and minimum values.
  • the present invention has the following beneficial effects:
  • the upper and lower limit intervals of the diaphragm gas meter can be divided into multiple sub-intervals, and the upper and lower limits of the constant current detection interval and the detection time can be dynamically adjusted for each interval.
  • Different detection time can be set according to different steps of residential gas flow, so as to shorten the gas consumption as much as possible.
  • the detection and diagnosis time of short constant flow abnormal events can be shortened, so that the valve can be closed in time to ensure the safety of residents’ lives and property.
  • FIG1 is a schematic flow chart of the detection method
  • FIG2 is a schematic diagram showing the division of three flow ladder sub-intervals
  • Figure 3 is a schematic diagram of pulse collection and flow calculation
  • FIG4 is a schematic diagram of flow monitoring.
  • a constant current detection method based on an NB-IoT diaphragm gas meter is disclosed, as shown in FIG1 , including the following steps:
  • each sub-interval is divided into three flow step sub-intervals, and the upper and lower thresholds [Fn min , Fn max ] of each sub-interval are both between [Q min , Q max ].
  • the interval range of each sub-interval is dynamically adjusted and set according to demand, and the upper and lower limit thresholds and constant current parameters of each flow step sub-interval are independently maintained and set.
  • the current flow rate Flow of the specific sub-interval is calculated according to the rated pulse sampling times, the gas volume of a single pulse and the time taken to sample the rated number of pulses.
  • Each flow step sub-interval calculates the current flow in the sub-interval and the step The flow detection threshold comparison and judgment, as shown in Figure 4, if the calculated current flow Flow is within the current flow step interval [Fn min , Fn max ], continue flow monitoring and accumulate the number of calculations; if the calculated current flow is lower than the lower limit Fn min of the current flow step interval or higher than the upper limit Fn max of the current flow step interval, return to step S2 to re-monitor the flow and restart the calculation of the number of flow calculations.
  • the average time T 6ave spent on each flow calculation is calculated according to the time spent on sampling the rated number of pulses at the calculation rated times.
  • the set calculation rated number of times is 6 times; the average time is calculated based on the time taken for sampling the rated number of pulses for the first 6 times and after removing the maximum and minimum values.
  • the effective value of the constant current threshold parameter is judged.
  • the upper and lower limit thresholds Fn min and Fn max of the flow step sub-interval are between the upper and lower limit flow intervals [Q min , Q max ] of the NB-IoT diaphragm gas meter and Fn min ⁇ Fn max , the flow monitoring and constant current judgment under this step are performed.
  • the platform sends constant flow configuration parameters, upper and lower flow limits and constant flow duration thresholds under three flow levels.
  • the user opens the valve and uses natural gas.
  • the meter-end constant flow detection algorithm monitors the gas flow under different flow levels in real time.
  • the gas meter When the flow detection of a certain step interval is determined to be constant flow, the gas meter will promptly perform the corresponding ordinary valve closing or authorized valve closing according to the valve linkage parameters configured by the platform, and report the constant flow abnormality to the business platform.
  • the business platform notifies the user and gas construction and maintenance personnel. After the user or construction and maintenance personnel arrive at the site to confirm the abnormality and eliminate the risks related to abnormal gas use, if it is an ordinary valve closing, the valve can be opened directly by short pressing the button; if it is an authorized valve closing, the platform needs to issue the valve opening authorization, and then the valve can be opened by short pressing the button.
  • valve linkage can be implemented for abnormal gas usage by residents to ensure the safety of residents' lives and property; monitoring of different flow ranges can more accurately diagnose long-term abnormal gas usage by residents; through reporting of constant flow abnormality data, the business platform can promptly notify gas companies and residents of abnormal situations; the business platform can adjust the constant flow detection parameters at the meter end, the valve linkage parameters for constant flow abnormalities, and the sound and light alarm information.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本发明公开了一种基于NB-IoT膜式燃气表实现的恒流检测方法,解决了目前对用户用气异常情况难以精准诊断的问题,其技术方案要点是划分子区间,设定子区间上下阈值及恒流参数;基于计量脉冲进行流量计算和监控,并对流量计算次数清零,并计算特定子区间的当前流量;判断当前流量是否位于子区间上下阈值,并于持续监控达到设定的计算额定次数时,计算每次流量计算所花费的平均时间,计算流量计算次数阈值,比较该流量监控持续时间内累计的计算次数与流量计算阈值,对该子区间进行恒流判断,本发明的一种基于NB-IoT膜式燃气表实现的恒流检测方法,能针对不同的流量区间监控,对用户用气的异常诊断更加的精准、成本更低、更便捷。

Description

一种基于NB-IoT膜式燃气表实现的恒流检测方法 技术领域
本发明涉及燃气用气异常诊断技术,特别涉及一种基于NB-IoT膜式燃气表实现的恒流检测方法。
背景技术
在国家进行节能减排和大力发展清洁能源的大背景下,天燃气作为一种现代化清洁能源,对减少空气污染,优化大气环境,提高居民生活质量具有重大意义。近年来天燃气在居民用户家庭中的使用占比越来越高,同时燃气安全事故发生率也居高不下。由于居民燃气安全意识淡薄,干烧,管道老化引发的长时间的燃气泄露易造成居民用户的生命和财产损失,对用户用气异常的情况难以精准监控诊断。
发明内容
本发明的目的是提供一种基于NB-IoT膜式燃气表实现的恒流检测方法,能针对不同的流量区间监控,对用户用气的异常诊断更加的精准、成本更低、更便捷。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种基于NB-IoT膜式燃气表实现的恒流检测方法,包括有以下步骤:
S1、将NB-IoT膜式燃气表的上下限流量区间划分为若干个子区间,设定各子区间的上下阈值及恒流参数;
S2、基于计量脉冲模块进行流量计算和监控,并对流量计算次数清零;
S3、根据额定脉冲采样次数、单次脉冲气体量及采样额定数量的 脉冲所花时间计算特定子区间的当前流量;
S4、判断当前流量是否位于该子区间上下阈值范围内,若是,继续监控并累计计算次数;反之,重新开始监控;
S5、持续监控阶段达到设定的计算额定次数时,根据计算额定次数下采样额定数量脉冲所花的时间,计算每次流量计算所花费的平均时间;
S6、基于流量监控持续时间及每次流量计算所花费的平均时间,计算该子区间流量监控持续阶段内的流量计算次数阈值;
S7、比较流量监控持续时间内累计的计算次数与流量计算阈值,对该子区间进行恒流判断,若累计的计算次数大于等于流量计算次数阈值,则判定为该子区间当前流量处于恒流异常,反之,判定为恒流状态。
作为优选,根据NB-IoT膜式燃气表的上下限流量区间[Qmin,Qmax],划分为三个流量阶梯子区间,各子区间的上下阈值均位于[Qmin,Qmax]之间。
作为优选,各子区间的区间范围根据需求动态调整,每个流量阶梯子区间的上下限阈值和恒流参数相互之间独立维护设置。
作为优选,设定的计算额定次数为6次;根据前6次的采样额定数量脉冲所花的时间,并除去最大值和最小值后进行平均时间的计算。
综上所述,本发明具有以下有益效果:
通过计量脉冲来计算当前流量,无需额外的流量计算模块,节约了用户用气成本;同时可以将膜式燃气表的上下限区间划分为多个子区间,可以对每个区间动态的调整恒流检测区间上下限和检测时长,能根据居民用气流量阶梯不同设置不同的检测时长,从而尽可能的缩 短恒流异常事件的检测诊断时间,从而及时地进行关阀操作来保证居民的生命和财产安全。
附图说明
图1为本检测方法的流程示意图;
图2为三个流量阶梯子区间的划分示意图;
图3为脉冲采集和流量计算示意图;
图4为流量监控示意图。
具体实施方式
以下结合附图对本发明作进一步详细说明。
根据一个或多个实施例,公开了一种基于NB-IoT膜式燃气表实现的恒流检测方法,如图1所示,包括有以下步骤:
S1、将NB-IoT膜式燃气表的上下限流量区间划分为若干个子区间,设定各子区间的上下阈值及恒流参数。
具体的,如图2所示,根据NB-IoT膜式燃气表的上下限流量区间[Qmin,Qmax],划分为三个流量阶梯子区间,各子区间的上下阈值[Fnmin,Fnmax]均位于[Qmin,Qmax]之间。各子区间的区间范围根据需求动态调整和设置,每个流量阶梯子区间的上下限阈值和恒流参数相互之间独立维护设置。
S2、开阀后使用燃气,基于计量脉冲模块进行流量计算和监控,并对流量计算次数清零。
S3、在特定的子区间内,如图3所示,根据额定脉冲采样次数、单次脉冲气体量及采样额定数量的脉冲所花时间计算特定子区间的当前流量Flow。
S4、每个流量阶梯子区间将该子区间内计算出的当前流量与阶梯 流量检测阈值比较判定,如图4所示,如果计算出的当前流量Flow处于当前流量阶梯区间[Fnmin,Fnmax]内,则继续流量监控并累计计算次数;如果计算出的当前流量低于当前流量阶梯区间的下限Fnmin或者高于当前流量阶梯区间的上限Fnmax,返回步骤S2以重新进行流量监控并重新开始进行流量计算次数的计算。
S5、持续监控阶段达到设定的计算额定次数时,根据计算额定次数下采样额定数量脉冲所花的时间,计算每次流量计算所花费的平均时间T6ave
具体的,设定的计算额定次数为6次;根据前6次的采样额定数量脉冲所花的时间,并除去最大值和最小值后进行平均时间的计算。
S6、基于流量监控持续时间及每次流量计算所花费的平均时间,计算该子区间流量监控持续阶段内的流量计算次数阈值。
计算流量的次数=流量监控持续时间/平均时间T6ave
S7、比较流量监控持续时间内累计的计算次数与流量计算阈值,对该子区间进行恒流判断。每次计算出的当前流量始终连续处于当前流量阶梯子区间的阈值检测范围内,并且持续时间大于或等于流量监控持续时间,或累计的计算次数大于等于流量计算次数阈值,则判定为该子区间当前流量处于恒流异常,反之,判定为恒流状态。
恒流阈值参数的有效值判断,当流量阶梯子区间的上下限阈值Fnmin和Fnmax处于NB-IoT膜式燃气表的上下限流量区间[Qmin,Qmax]区间之间并且Fnmin<Fnmax,才进行该阶梯下的流量监控和恒流判定。
平台下发恒流配置参数,三个流量阶梯下的流量上下限和恒流持续时间阈值,用户开阀并使用天然气,表端恒流检测算法实时监控不同流量阶梯下的用气流量。
当某个阶梯区间的流量检测判定为恒流后,燃气表根据平台下发配置的阀门联动参数及时进行相应的普通关阀或权限关阀,并将恒流异常上报给业务平台,业务平台通知用户和燃气施工维护人员,用户或者施工维护人员到达现场确认异常,并排除异常用气相关风险后。如果是普通关阀,则直接进行短按按键开阀;如果是权限关阀,则需要平台下发开阀授权后,进行短按按键方可开阀。
通过恒流检测,能对居民用气异常进行阀门联动保证居民的生命和财产安全;针对不同的流量区间的监控,能更加精准的诊断出居民用户长时间的用气异常;通过恒流异常的数据上报,业务平台可及时通知燃气公司和居民用户异常情况;业务平台可以调整表端的恒流检测参数、恒流异常的阀门联动参数及声光报警信息。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (4)

  1. 一种基于NB-IoT膜式燃气表实现的恒流检测方法,其特征是,包括有以下步骤:
    S1、将NB-IoT膜式燃气表的上下限流量区间划分为若干个子区间,设定各子区间的上下阈值及恒流参数;
    S2、基于计量脉冲模块进行流量计算和监控,并对流量计算次数清零;
    S3、根据额定脉冲采样次数、单次脉冲气体量及采样额定数量的脉冲所花时间计算特定子区间的当前流量;
    S4、判断当前流量是否位于该子区间上下阈值范围内,若是,继续监控并累计计算次数;反之,重新开始监控;
    S5、持续监控阶段达到设定的计算额定次数时,根据计算额定次数下采样额定数量脉冲所花的时间,计算每次流量计算所花费的平均时间;
    S6、基于流量监控持续时间及每次流量计算所花费的平均时间,计算该子区间流量监控持续阶段内的流量计算次数阈值;
    S7、比较流量监控持续时间内累计的计算次数与流量计算阈值,对该子区间进行恒流判断,若累计的计算次数大于等于流量计算次数阈值,则判定为该子区间当前流量处于恒流异常,反之,判定为恒流状态。
  2. 根据权利要求1所述的基于NB-IoT膜式燃气表实现的恒流检测方法,其特征是:根据NB-IoT膜式燃气表的上下限流量区间[Qmin,Qmax],划分为三个流量阶梯子区间,各子区间的上下阈值均位于[Qmin,Qmax]之间。
  3. 根据权利要求1所述的基于NB-IoT膜式燃气表实现的恒流检 测方法,其特征是:各子区间的区间范围根据需求动态调整,每个流量阶梯子区间的上下限阈值和恒流参数相互之间独立维护设置。
  4. 根据权利要求1所述的基于NB-IoT膜式燃气表实现的恒流检测方法,其特征是:设定的计算额定次数为6次;根据前6次的采样额定数量脉冲所花的时间,并除去最大值和最小值后进行平均时间的计算。
PCT/CN2023/098834 2022-11-25 2023-06-07 一种基于nb-iot膜式燃气表实现的恒流检测方法 WO2024108972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211496915.7A CN115824334A (zh) 2022-11-25 2022-11-25 一种基于NB-IoT膜式燃气表实现的恒流检测方法
CN202211496915.7 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024108972A1 true WO2024108972A1 (zh) 2024-05-30

Family

ID=85531866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098834 WO2024108972A1 (zh) 2022-11-25 2023-06-07 一种基于nb-iot膜式燃气表实现的恒流检测方法

Country Status (2)

Country Link
CN (1) CN115824334A (zh)
WO (1) WO2024108972A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115824334A (zh) * 2022-11-25 2023-03-21 上海飞奥燃气设备有限公司 一种基于NB-IoT膜式燃气表实现的恒流检测方法
CN117975679A (zh) * 2024-03-29 2024-05-03 航宇星物联科技(辽宁)有限公司 一种智能燃气表长时间恒定流量报警检测判断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079980A (ja) * 2013-01-25 2013-05-02 Tokyo Gas Co Ltd ガス遮断装置とそれによる流量変化判定方法、およびガス遮断装置用の制御器
CN112284463A (zh) * 2020-09-28 2021-01-29 广州燃气集团有限公司 一种降低燃气微泄漏误报警的方法、智能燃气表及系统
CN112504356A (zh) * 2019-11-01 2021-03-16 金卡智能集团股份有限公司 燃气异常检测方法、装置、设备及存储介质
CN115247809A (zh) * 2022-08-03 2022-10-28 山东拙诚智能科技有限公司 一种通过学习用户用气习惯进行燃气安全管理的方法
CN115824334A (zh) * 2022-11-25 2023-03-21 上海飞奥燃气设备有限公司 一种基于NB-IoT膜式燃气表实现的恒流检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079980A (ja) * 2013-01-25 2013-05-02 Tokyo Gas Co Ltd ガス遮断装置とそれによる流量変化判定方法、およびガス遮断装置用の制御器
CN112504356A (zh) * 2019-11-01 2021-03-16 金卡智能集团股份有限公司 燃气异常检测方法、装置、设备及存储介质
CN112284463A (zh) * 2020-09-28 2021-01-29 广州燃气集团有限公司 一种降低燃气微泄漏误报警的方法、智能燃气表及系统
CN115247809A (zh) * 2022-08-03 2022-10-28 山东拙诚智能科技有限公司 一种通过学习用户用气习惯进行燃气安全管理的方法
CN115824334A (zh) * 2022-11-25 2023-03-21 上海飞奥燃气设备有限公司 一种基于NB-IoT膜式燃气表实现的恒流检测方法

Also Published As

Publication number Publication date
CN115824334A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2024108972A1 (zh) 一种基于nb-iot膜式燃气表实现的恒流检测方法
CN110375787B (zh) 一种计量仪表运行状态在线评价方法
CN111781463A (zh) 一种台区线损异常辅助诊断方法
CA2528900C (fr) Procede de suivi des performances d&#39;un equipement industriel
CN105866638A (zh) 一种城网电缆接头绝缘状态在线监测预警装置及方法
CN104316803B (zh) 一种基于带电检测的电力变压器状态评价方法及系统
CN107247201A (zh) 基于功率及时间特性的电烤箱非侵入辨识方法
WO2020164322A1 (zh) 一种基于一元模型的低压用户回路抗阻估计方法
CN111260087A (zh) 一种管网异常管理系统
CN110691285A (zh) 具有智能重新连接功能的水公用事业仪表
CN113189437A (zh) 一种台区停、上电故障区域的检测方法
CN116795009A (zh) 一种变流变压给水机组节能控制系统
CN109141774B (zh) 一种通过向燃气表注册用气设备实现燃气安全管理方法
CN115146977A (zh) 一种基于物联网的企业能效数据管理方法及系统
CN110750760B (zh) 一种基于态势感知和控制图的异常理论线损检测方法
CN115841737B (zh) 一种构建在燃气切断装置上的燃气安全监测方法及其装置
CN112240267B (zh) 基于风速相关性与风功率曲线的风机监测方法
CN115219106B (zh) 一种基于云计算的压缩空气管网泄露动态测量的方法
CN116052406A (zh) 一种远程智能抄表系统
CN115792708A (zh) 一种spd在线老化监测系统及方法
CN113324181B (zh) 一种智慧供气管理方法及系统
CN113483274B (zh) 一种基于超声波技术的水路物联网监控设备
CN114063003A (zh) 基于小台区的电能表测量误差检测方法、系统及存储介质
CN114498923A (zh) 一种基于低压台区分段线损的反窃电方法
CN112197163A (zh) 一种蒸汽疏水阀状态监测系统及方法