CN112240267B - 基于风速相关性与风功率曲线的风机监测方法 - Google Patents

基于风速相关性与风功率曲线的风机监测方法 Download PDF

Info

Publication number
CN112240267B
CN112240267B CN201910646003.5A CN201910646003A CN112240267B CN 112240267 B CN112240267 B CN 112240267B CN 201910646003 A CN201910646003 A CN 201910646003A CN 112240267 B CN112240267 B CN 112240267B
Authority
CN
China
Prior art keywords
fan
wind power
wind
data
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910646003.5A
Other languages
English (en)
Other versions
CN112240267A (zh
Inventor
文武
刘玉宝
刘月薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu University of Information Technology
Original Assignee
Chengdu University of Information Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu University of Information Technology filed Critical Chengdu University of Information Technology
Priority to CN201910646003.5A priority Critical patent/CN112240267B/zh
Publication of CN112240267A publication Critical patent/CN112240267A/zh
Application granted granted Critical
Publication of CN112240267B publication Critical patent/CN112240267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics

Abstract

本发明公开了一种基于风速相关性与风功率曲线的风机监测方法,主要包括风机状态判断和风机数据判断。本发明通过有效地从SCADA数据中提出了相关性与风功率曲线,基于SCADA数据分析测试风机与邻近风机的风速相关性,通过风速相关性计算判断出测试风机是否处于正常状态,可有效检测风力涡轮机状态是否持续恶化。同时,本发明通过历史SCADA数据拟合出测试风机的风功率曲线,并利用风功率曲线判断测试风机的实时风功率数据是否正常。在曲线拟合的过程中,原始风功率数据经过多轮清洗,较传统方法能够更加准确地获取风功率曲线,从而能够更准确地判断测试风机的实时风功率数据是否正常。

Description

基于风速相关性与风功率曲线的风机监测方法
技术领域
本发明涉及可再生能源利用领域,尤其涉及一种基于风速相关性与风功率曲线的风机监测方法,适合对于大型风场风力涡轮机状态的早期预测和实时监测。
背景技术
据世界风能协会(WWEA)估计,到2020年,世界上大约12%的电力将通过风力发电实现,使风能成为增长最快的能源之一。但将风能整合到现有电力供应系统一直是一个挑战,风能可用性的最大问题在于,气象条件的变化导致风能生产不能像其他更传统的能源一样方便调整。这是因为风能不受控。为了更好地提高风力发电的经济效益,对风力发电过程的安全、可靠运行有了更高的要求,风力发电机组的异常状态监测、早期故障与关键参数的预测已成为当前研究的热点。
目前的SCADA(Supervisory Control And Data Acquisition,监控与数据采集)系统仅局限于单一的超阈值报警模式,只有当监测数据严重劣化时这种报警模式才会触发报警,无法在劣化现象发生的前期及时提醒运维人员采取有效措施来预防故障的恶化。本发明是针对在劣化现象下,利用SCADA资料,使用其中的风速和功率数据,通过风速相关性检测、风电场动态功率曲线拟合对风电场数据质量进行早期预测和实时监测。
发明内容
本发明主要目的在于,提供一种基于风速相关性与风功率曲线的风机监测方法,以解决现有的风力发电机组状态监测方式无法对风力发电机组的状态进行早期预测的问题。本发明是通过如下技术方案实现的:
一种基于风速相关性与风功率曲线的风机监测方法,包括风机状态判断和风机数据判断,所述风机状态判断包括如下步骤:
步骤A:获取测试风机及与所述测试风机邻近的预设数量的对比风机的SCADA数据;
步骤B:从所述测试风机及各对比风机的SCADA数据中提取所述测试风机及各对比风机在预设时间内的同一时刻的风速数据;
步骤C:根据所述测试风机及各对比风机在预设时间内的同一时刻的风速数据,计算所述测试风机与各对比风机的风速相关性;
步骤D:根据所述测试风机与各对比风机的风速相关性判断所述测试风机的状态是否正常;
所述风机数据判断包括如下步骤:
步骤E:提取所述测试风机在预设周期内的原始风功率数据,并表示在直角坐标系中;
步骤F:对所述原始风功率数据进行清洗以滤除其中的明显异常数据;
步骤G:对步骤F得到的风功率数据进行曲线拟合,得到第一风功率曲线;
步骤H:根据所述第一风功率曲线对所述原始风功率数据进行清洗;
步骤I:对步骤H得到的风功率数据进行曲线拟合,得到第二风功率曲线;
步骤J:根据所述第二风功率曲线对所述原始风功率数据进行清洗;
步骤K:对步骤J得到的风功率数据进行曲线拟合,得到第三风功率曲线;
步骤L:基于所述第三风功率曲线判断所述测试风机的实时风功率数据是否正常。
进一步地,所述步骤C中,设X为测试风机风速,Y为对比风机风速,则测试风机与对比风机的风速相关性
Figure DEST_PATH_IMAGE001
为:
Figure DEST_PATH_IMAGE003
其中,
Figure 606240DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
的协方差,
Figure 127351DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE007
方差,
Figure 642646DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE009
方差。
进一步地,所述预设数量的对比风机具体为3台对比风机,则所述步骤D中:
如果所述3台对比风机中有任意一台与所述测试风机的风速相关性大于0.65,或者所述3台对比风机中有任意两台与所述测试风机的风速相关性大于0.45,则判定所述测试风机的状态为正常,否则判定所述测试风机的状态为异常。
进一步地,所述步骤G、所述步骤I和所述步骤K中曲线拟合的公式为:
Figure DEST_PATH_IMAGE011
其中
Figure 847494DEST_PATH_IMAGE012
为风速为
Figure DEST_PATH_IMAGE013
时的风功率值,
Figure 688411DEST_PATH_IMAGE014
为所述测试风机的最大功率值,
Figure 916392DEST_PATH_IMAGE013
为风速值,
Figure DEST_PATH_IMAGE015
,
Figure 907482DEST_PATH_IMAGE016
,
Figure DEST_PATH_IMAGE017
为拟合曲线参数。
进一步地,所述步骤G、所述步骤I和所述步骤K中曲线拟合的公式为:
Figure DEST_PATH_IMAGE019
其中
Figure 403054DEST_PATH_IMAGE020
为功率为
Figure DEST_PATH_IMAGE021
时的风速值,
Figure 978654DEST_PATH_IMAGE014
为所述测试风机的最大功率值,
Figure 67833DEST_PATH_IMAGE022
为风功率值,
Figure 580723DEST_PATH_IMAGE015
,
Figure 9430DEST_PATH_IMAGE016
,
Figure 457729DEST_PATH_IMAGE017
为拟合曲线参数。
进一步地,所述步骤H包括:
将所述原始风功率数据中距所述第一风功率曲线的距离大于2的点全部清洗掉。
进一步地,所述步骤J包括:
将所述原始风功率数据中距所述第二风功率曲线的距离大于1的点全部清洗掉。
与现有技术相比,本发明提供的基于风速相关性与风功率曲线的风机监测方法,有效地从SCADA数据中提出了相关性与风功率曲线,基于SCADA数据分析测试风机与邻近风机的风速相关性,通过风速相关性计算判断出测试风机是否处于正常状态,可有效检测风力涡轮机状态是否持续恶化。同时,本发明通过历史SCADA数据拟合出测试风机的风功率曲线,并利用风功率曲线判断测试风机的实时风功率数据是否正常。在曲线拟合的过程中,原始风功率数据经过多轮清洗,较传统方法能够更加准确地获取风功率曲线,从而能够更准确地判断测试风机的实时风功率数据是否正常。
附图说明
图1为原始风功率数据示意图;
图2为本发明实施例第一次清洗后的数据及第一风功率曲线示意图;
图3为本发明实施例第二次清洗后的数据及第二风功率曲线示意图;
图4为本发明实施例第三次清洗后的数据及第三风功率曲线示意图;
图5为本发明实施例风机状态判断流程示意图;
图6为本发明实施例风机数据判断流程示意图。
具体实施方式
本发明是针对大型风场风力涡轮机的质量检测而设计的,其主要思想是通过获取到每个风力涡轮机(简称风机)邻近的风机的风速信息,通过判断测试风机与邻近风机的风速相关性变化情况来预测测试风机的状态变化情况,同时,通过多步拟合获取正确的风功率曲线,并应用风功率曲线对测试风机的实时数据进行检测,以判断数据是否正常,确保风场的监测数据质量。基于上述基本原理,对本发明技术方案详述如下:
本发明实施例提供的基于风速相关性与风功率曲线的风机监测方法,包括风机状态判断和风机数据判断。其中,如图5所示,风机状态判断包括如下步骤:
步骤A:获取测试风机及与测试风机邻近的预设数量的对比风机的SCADA数据;
步骤B:从测试风机及各对比风机的SCADA数据中提取测试风机及各对比风机在预设时间内的同一时刻的风速数据;
步骤C:根据测试风机及各对比风机在预设时间内的同一时刻的风速数据,计算测试风机与各对比风机的风速相关性;
步骤D:根据测试风机与各对比风机的风速相关性判断测试风机的状态是否正常;
如图6所示,风机数据判断包括如下步骤:
步骤E:提取测试风机在预设周期内的原始风功率数据,并表示在直角坐标系中;
步骤F:对原始风功率数据进行清洗以滤除其中的明显异常数据;
步骤G:对步骤F得到的风功率数据进行曲线拟合,得到第一风功率曲线;
步骤H:根据第一风功率曲线对原始风功率数据进行清洗;
步骤I:对步骤H得到的风功率数据进行曲线拟合,得到第二风功率曲线;
步骤J:根据第二风功率曲线对原始风功率数据进行清洗;
步骤K:对步骤J得到的风功率数据进行曲线拟合,得到第三风功率曲线;
步骤L:基于第三风功率曲线判断测试风机的实时风功率数据是否正常。
步骤C中,设X为测试风机风速,Y为对比风机风速,则测试风机与对比风机的风速相关性
Figure DEST_PATH_IMAGE023
为:
Figure DEST_PATH_IMAGE025
其中,
Figure 440728DEST_PATH_IMAGE026
Figure DEST_PATH_IMAGE027
的协方差,
Figure 727616DEST_PATH_IMAGE028
Figure DEST_PATH_IMAGE029
方差,
Figure 807567DEST_PATH_IMAGE030
Figure DEST_PATH_IMAGE031
方差。
预设数量的对比风机具体为3台对比风机,则步骤D中:
如果3台对比风机中有任意一台与测试风机的风速相关性大于0.65,或者3台对比风机中有任意两台与测试风机的风速相关性大于0.45,则判定测试风机的状态为正常,否则判定测试风机的状态为异常。
步骤G、步骤I和步骤K中曲线拟合的公式为:
Figure DEST_PATH_IMAGE033
其中
Figure 754663DEST_PATH_IMAGE034
为风速为
Figure DEST_PATH_IMAGE035
时的风功率值,
Figure 552855DEST_PATH_IMAGE036
为测试风机的最大功率值,
Figure 158280DEST_PATH_IMAGE035
为风速值,
Figure DEST_PATH_IMAGE037
,
Figure 92738DEST_PATH_IMAGE038
,
Figure DEST_PATH_IMAGE039
为拟合曲线参数。
步骤G、步骤I和步骤K中曲线拟合的公式为:
Figure DEST_PATH_IMAGE041
其中
Figure 774517DEST_PATH_IMAGE042
为功率为
Figure DEST_PATH_IMAGE043
时的风速值,
Figure 935371DEST_PATH_IMAGE036
为测试风机的最大功率值,
Figure 203542DEST_PATH_IMAGE043
为风功率值,
Figure 648298DEST_PATH_IMAGE037
,
Figure 812563DEST_PATH_IMAGE038
,
Figure 319768DEST_PATH_IMAGE039
为拟合曲线参数。
步骤H包括:
将原始风功率数据中距第一风功率曲线的距离大于2的点全部清洗掉。
步骤J包括:
将原始风功率数据中距第二风功率曲线的距离大于1的点全部清洗掉。
以下以图1至图4为例,对本发明技术方案进行举例说明:图1是某风机半年内的原始风功率数据。从中可以看出,原始功率数据中明显异常数据较多,直接用这些数据进行曲线拟合得到的曲线很难有效反映真实风功率曲线,因此,本发明通过上述步骤F首先对原始风功率数据进行了第一次清洗。第一次清洗主要用于将原始风功率中的明显异常数据清洗掉,清洗结果见图2。明显异常数据包括但不限于:风速小于0的所有数据、风速小于2时风功率大于100W的数据、风速大于5时风功率小于100W的数据、风速大于11时风功率小于1900W的数据。第一次清洗完成以后,通过曲线拟合,得到第一风功率曲线,结果如图2所示。从图2可以看出,该拟合曲线仍然不够稳定,抖动很大,因此,接下来对原始风功率数据进行第二次清洗。第二次清洗主要在于,基于第一风功率曲线来进行监测,把距离第一风功率曲线大于2的点全部清洗掉,清洗结果见图3。第二次清洗完成后,通过曲线拟合,得到第二风功率曲线,结果如图3所示。从图3可以看出,拟合曲线趋于稳定,抖动较小,但是由于仍然有一定抖动,因此,需对原始风功率数据进行第三次清洗。第三次清洗主要在于,基于第二风功率曲线来进行监测,把距离第二风功率曲线大于1的点全部清洗掉,清洗结果见图4。第三次清洗完成后,通过曲线拟合,得到第三风功率曲线,结果如图4所示,从图4可以看出,拟合曲线已经稳定,无抖动。通过三次清洗和曲线拟合后所得到的图4所示的风功率曲线就是本发明得到的最终风功率曲线,然后就可以利用最终的风功率曲线对测试风机的实时风功率数据进行监测,判断实时数据是否正确。
以上实施例仅仅是为了更好的描述本发明的流程,而非对风力涡轮机状态的检测流程的实施方式的限定,相关工程技术人员可以根据各自风场的具体情况,进行适当的数据调整,如:调整第一次清洗数据的清洗范围,调整第二次清洗和第三次清洗时的距离值等。这里无需也不可能穷举所有的变形形式,但是基于本发明拆分的所有变形形式也属于本发明的保护范围。

Claims (4)

1.一种基于风速相关性与风功率曲线的风机监测方法,其特征在于,包括风机状态判断和风机数据判断,所述风机状态判断包括如下步骤:
步骤A:获取测试风机及与所述测试风机邻近的预设数量的对比风机的SCADA数据;
步骤B:从所述测试风机及各对比风机的SCADA数据中提取所述测试风机及各对比风机在预设时间内的同一时刻的风速数据;
步骤C:根据所述测试风机及各对比风机在预设时间内的同一时刻的风速数据,计算所述测试风机与各对比风机的风速相关性, 设X为测试风机风速,Y为对比风机风速,则测试风机与对比风机的风速相关性
Figure DEST_PATH_IMAGE002
为:
Figure DEST_PATH_IMAGE004
其中,
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE008
的协方差,
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE012
方差,
Figure DEST_PATH_IMAGE014
Figure DEST_PATH_IMAGE016
方差;
步骤D:根据所述测试风机与各对比风机的风速相关性判断所述测试风机的状态是否正常;
所述风机数据判断包括如下步骤:
步骤E:提取所述测试风机在预设周期内的原始风功率数据,并表示在直角坐标系中;
步骤F:对所述原始风功率数据进行清洗以滤除其中的明显异常数据;
步骤G:对步骤F得到的风功率数据进行曲线指数拟合,得到第一风功率曲线;
步骤H:根据所述第一风功率曲线对所述原始风功率数据进行清洗;
步骤I:对步骤H得到的风功率数据进行曲线指数拟合,得到第二风功率曲线;
步骤J:根据所述第二风功率曲线对所述原始风功率数据进行清洗;
步骤K:对步骤J得到的风功率数据进行曲线指数拟合,得到第三风功率曲线;
步骤L:基于所述第三风功率曲线判断所述测试风机的实时风功率数据是否正常;
其中,所述步骤G、所述步骤I和所述步骤K中曲线拟合的公式为:
Figure DEST_PATH_IMAGE018
其中
Figure DEST_PATH_IMAGE020
为风速为
Figure DEST_PATH_IMAGE022
时的风功率值,
Figure DEST_PATH_IMAGE024
为所述测试风机的最大功率值,
Figure 182842DEST_PATH_IMAGE022
为风速值,
Figure DEST_PATH_IMAGE026
,
Figure DEST_PATH_IMAGE028
,
Figure DEST_PATH_IMAGE030
为拟合曲线参数;
所述步骤G、所述步骤I和所述步骤K中曲线拟合的公式为:
Figure DEST_PATH_IMAGE032
其中
Figure DEST_PATH_IMAGE034
为功率为
Figure DEST_PATH_IMAGE036
时的风速值,
Figure 116295DEST_PATH_IMAGE024
为所述测试风机的最大功率值,
Figure 427190DEST_PATH_IMAGE036
为风功率值,
Figure 478192DEST_PATH_IMAGE026
,
Figure 823722DEST_PATH_IMAGE028
,
Figure 52709DEST_PATH_IMAGE030
为拟合曲线参数。
2.根据权利要求1所述的基于风速相关性与风功率曲线的风机监测方法,其特征在于,所述预设数量的对比风机具体为3台对比风机,则所述步骤D中:
如果所述3台对比风机中有任意一台与所述测试风机的风速相关性大于0.65,或者所述3台对比风机中有任意两台与所述测试风机的风速相关性大于0.45,则判定所述测试风机的状态为正常,否则判定所述测试风机的状态为异常。
3.根据权利要求1所述的基于风速相关性与风功率曲线的风机监测方法,其特征在于,所述步骤H包括:
将所述原始风功率数据中距所述第一风功率曲线的距离大于2的点全部清洗掉。
4.根据权利要求1所述的基于风速相关性与风功率曲线的风机监测方法,其特征在于,所述步骤J包括:
将所述原始风功率数据中距所述第二风功率曲线的距离大于1的点全部清洗掉。
CN201910646003.5A 2019-07-17 2019-07-17 基于风速相关性与风功率曲线的风机监测方法 Active CN112240267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910646003.5A CN112240267B (zh) 2019-07-17 2019-07-17 基于风速相关性与风功率曲线的风机监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910646003.5A CN112240267B (zh) 2019-07-17 2019-07-17 基于风速相关性与风功率曲线的风机监测方法

Publications (2)

Publication Number Publication Date
CN112240267A CN112240267A (zh) 2021-01-19
CN112240267B true CN112240267B (zh) 2021-11-19

Family

ID=74167513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910646003.5A Active CN112240267B (zh) 2019-07-17 2019-07-17 基于风速相关性与风功率曲线的风机监测方法

Country Status (1)

Country Link
CN (1) CN112240267B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884705A (zh) * 2021-09-28 2022-01-04 上海电气风电集团股份有限公司 簇群风机风速计的监测方法及其系统及计算机可读存储介质
CN114969017B (zh) * 2022-07-28 2022-11-11 深圳量云能源网络科技有限公司 风功率数据清洗方法、清洗装置及预测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013020289A1 (en) * 2011-08-11 2013-02-14 Vestas Wind Systems A/S Wind power plant and method of controlling wind turbine generator in a wind power plant
CN104819107A (zh) * 2015-05-13 2015-08-05 北京天源科创风电技术有限责任公司 一种风电机组功率曲线异常漂移的诊断方法及系统
CN106368908A (zh) * 2016-08-30 2017-02-01 华电电力科学研究院 一种基于scada系统风电机组功率曲线测试方法
CN107654342A (zh) * 2017-09-21 2018-02-02 湘潭大学 一种考虑湍流的风电机组功率异常的检测方法
CN108443088A (zh) * 2018-05-17 2018-08-24 中能电力科技开发有限公司 一种基于累计概率分布的风电机组状态判定方法
US10167851B2 (en) * 2014-10-23 2019-01-01 General Electric Company System and method for monitoring and controlling wind turbines within a wind farm
CN109779848A (zh) * 2019-01-25 2019-05-21 国电联合动力技术有限公司 全场风速修正函数的获得方法、装置及风电场

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013020289A1 (en) * 2011-08-11 2013-02-14 Vestas Wind Systems A/S Wind power plant and method of controlling wind turbine generator in a wind power plant
US10167851B2 (en) * 2014-10-23 2019-01-01 General Electric Company System and method for monitoring and controlling wind turbines within a wind farm
CN104819107A (zh) * 2015-05-13 2015-08-05 北京天源科创风电技术有限责任公司 一种风电机组功率曲线异常漂移的诊断方法及系统
CN106368908A (zh) * 2016-08-30 2017-02-01 华电电力科学研究院 一种基于scada系统风电机组功率曲线测试方法
CN107654342A (zh) * 2017-09-21 2018-02-02 湘潭大学 一种考虑湍流的风电机组功率异常的检测方法
CN108443088A (zh) * 2018-05-17 2018-08-24 中能电力科技开发有限公司 一种基于累计概率分布的风电机组状态判定方法
CN109779848A (zh) * 2019-01-25 2019-05-21 国电联合动力技术有限公司 全场风速修正函数的获得方法、装置及风电场

Also Published As

Publication number Publication date
CN112240267A (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
CN103912448B (zh) 一种区域风电场机组功率特性监测方法
CN108072524B (zh) 一种风电机组齿轮箱轴承故障预警方法
CN105134510A (zh) 一种风力发电机组变桨系统的状态监测和故障诊断方法
CN108627720B (zh) 一种基于贝叶斯算法的电力设备状态监测方法
CN104390657A (zh) 一种发电机组运行参数测量传感器故障诊断方法及系统
CN105043770B (zh) 一种风电机组振动异常的判断方法及其装置
CN106704103B (zh) 一种基于叶片参数自学习的风电机组功率曲线获取方法
EP2836706B1 (en) Method for controlling a profile of a blade on a wind turbine
CN108335021A (zh) 一种风力机状态可靠度评估的方法及维修决策优化
CN104131950A (zh) 一种风电机组温度特征量的阈值分区确定方法
CN103631681A (zh) 一种在线修复风电场异常数据的方法
CN112240267B (zh) 基于风速相关性与风功率曲线的风机监测方法
CN112836941B (zh) 一种煤电机组汽轮机高加系统在线健康状况评估方法
CN107869420B (zh) 风力涡轮机发电场的风力涡轮机偏航控制方法及系统
CN103439091A (zh) 水轮机转轮叶片裂纹故障早期预警和诊断方法及系统
CN103925155A (zh) 一种风电机组输出功率异常的自适应检测方法
CN107654342A (zh) 一种考虑湍流的风电机组功率异常的检测方法
CN110190611A (zh) 基于pmu的电网周波变化率的一次调频校正方法及系统
CN112228290B (zh) 一种风力机变桨系统故障智能预警方法
CN115453356B (zh) 一种动力设备运行状态监测分析方法、系统、终端及介质
CN108506171A (zh) 一种大型半直驱机组齿轮箱冷却系统故障预警方法
Pandit et al. Comparison of binned and Gaussian Process based wind turbine power curves for condition monitoring purposes
CN111794921B (zh) 一种基于迁移成分分析的陆上风电机组叶片结冰诊断方法
Osadciw et al. Wind turbine diagnostics based on power curve using particle swarm optimization
Ye et al. Using SCADA data fusion by swarm intelligence for wind turbine condition monitoring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant