WO2024108414A1 - Beam selection for coherent joint transmission - Google Patents

Beam selection for coherent joint transmission Download PDF

Info

Publication number
WO2024108414A1
WO2024108414A1 PCT/CN2022/133681 CN2022133681W WO2024108414A1 WO 2024108414 A1 WO2024108414 A1 WO 2024108414A1 CN 2022133681 W CN2022133681 W CN 2022133681W WO 2024108414 A1 WO2024108414 A1 WO 2024108414A1
Authority
WO
WIPO (PCT)
Prior art keywords
unified
default
beams
tci states
tci
Prior art date
Application number
PCT/CN2022/133681
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/133681 priority Critical patent/WO2024108414A1/en
Publication of WO2024108414A1 publication Critical patent/WO2024108414A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for beam selection for coherent joint transmission.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs.
  • a UE may communicate with a base station via downlink communications and uplink communications.
  • Downlink (or “DL” ) refers to a communication link from the base station to the UE
  • uplink (or “UL” ) refers to a communication link from the UE to the base station.
  • New Radio which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP- OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • the method may include receiving a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) .
  • TCI unified transmission configuration indicator
  • CJT coherent joint transmission
  • PDSCH physical downlink shared channel
  • the method may include selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being within a time offset for beam switching.
  • DCI scheduling downlink control information
  • the method may include receiving the PDSCH communication using the one or more selected default beams.
  • the method may include receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in a single frequency network (SFN) .
  • the method may include receiving a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
  • the UE may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH.
  • the one or more processors may be configured to select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching.
  • the one or more processors may be configured to receive the PDSCH communication using the one or more selected default beams.
  • the UE may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN.
  • the one or more processors may be configured to receive a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive the PDSCH communication using the one or more selected default beams.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
  • the apparatus may include means for receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH.
  • the apparatus may include means for selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching.
  • the apparatus may include means for receiving the PDSCH communication using the one or more selected default beams.
  • the apparatus may include means for receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN.
  • the apparatus may include means for receiving a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, UE, base station, network entity, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios.
  • Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements.
  • some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) .
  • Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components.
  • Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects.
  • transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) .
  • RF radio frequency
  • aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a network entity (e.g., base station) in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
  • a network entity e.g., base station
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of a disaggregated base station, in accordance with the present disclosure.
  • Fig. 4 illustrates an example logical architecture of a distributed random access network (RAN) , in accordance with the present disclosure.
  • RAN distributed random access network
  • Fig. 5 is a diagram illustrating an example of multiple transmit receive point (TRP) communication, in accordance with the present disclosure.
  • Fig. 6 is a diagram illustrating examples of beam management procedures, in accordance with the present disclosure.
  • Fig. 7 is a diagram illustrating an example of using beams for communications between a network entity and a UE, in accordance with the present disclosure.
  • Fig. 8 is a diagram illustrating an example of coherent joint transmission (CJT) and non-CJT for multiple TRPs, in accordance with the present disclosure.
  • Fig. 9 is a diagram illustrating an example of CJT for a physical downlink shared channel, in accordance with the present disclosure.
  • Fig. 10 is a diagram illustrating an example of beam selection, in accordance with the present disclosure.
  • Fig. 11 is a diagram illustrating an example of default beam selection within a time offset for beam switching, in accordance with the present disclosure.
  • Fig. 12 is a diagram illustrating an example of beam selection, in accordance with the present disclosure.
  • Fig. 13 is a diagram illustrating an example of beam selection after a time offset for beam switching, in accordance with the present disclosure.
  • Fig. 14 is a diagram illustrating an example process performed, for example, by a UE, in accordance with the present disclosure.
  • Fig. 15 is a diagram illustrating an example process performed, for example, by a UE, in accordance with the present disclosure.
  • Fig. 16 is a diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
  • NR New Radio
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples.
  • the wireless network 100 may include a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) .
  • UE user equipment
  • the wireless network 100 may also include one or more network entities, such as base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , and/or other network entities.
  • a base station 110 is a network entity that communicates with UEs 120.
  • a base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmit receive point (TRP) .
  • Each base station 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
  • a base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) .
  • CSG closed subscriber group
  • a base station 110 for a macro cell may be referred to as a macro base station.
  • a base station 110 for a pico cell may be referred to as a pico base station.
  • a base station 110 for a femto cell may be referred to as a femto base station or an in-home base station.
  • the BS 110a may be a macro base station for a macro cell 102a
  • the BS 110b may be a pico base station for a pico cell 102b
  • the BS 110c may be a femto base station for a femto cell 102c.
  • a base station may support one or multiple (e.g., three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) .
  • the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network entities in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • base station e.g., the base station 110 or “network entity” may refer to an aggregated base station, a disaggregated base station, an integrated access and backhaul (IAB) node, a relay node, and/or one or more components thereof.
  • base station or “network entity” may refer to a central unit (CU) , a distributed unit (DU) , a radio unit (RU) , a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC, or a combination thereof.
  • the terms “base station” or “network entity” may refer to one device configured to perform one or more functions, such as those described herein in connection with the base station 110.
  • the terms “base station” or “network entity” may refer to a plurality of devices configured to perform the one or more functions. For example, in some distributed systems, each of a number of different devices (which may be located in the same geographic location or in different geographic locations) may be configured to perform at least a portion of a function, or to duplicate performance of at least a portion of the function, and the terms “base station” or “network entity” may refer to any one or more of those different devices.
  • base station or “network entity” may refer to one or more virtual base stations and/or one or more virtual base station functions.
  • two or more base station functions may be instantiated on a single device.
  • the terms “base station” or “network entity” may refer to one of the base station functions and not another. In this way, a single device may include more than one base station.
  • the wireless network 100 may include one or more relay stations.
  • a relay station is a network entity that can receive a transmission of data from an upstream station (e.g., a network entity or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a network entity) .
  • a relay station may be a UE 120 that can relay transmissions for other UEs 120.
  • the BS 110d e.g., a relay base station
  • the BS 110a e.g., a macro base station
  • a base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
  • the wireless network 100 may be a heterogeneous network with network entities that include different types of BSs, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100.
  • macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to or communicate with a set of network entities and may provide coordination and control for these network entities.
  • the network controller 130 may communicate with the base stations 110 via a backhaul communication link.
  • the network entities may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit.
  • a UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio)
  • Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a network entity, another device (e.g., a remote device) , or some other entity.
  • Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices.
  • Some UEs 120 may be considered a Customer Premises Equipment.
  • a UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks 100 may be deployed in a given geographic area.
  • Each wireless network 100 may support a particular RAT and may operate on one or more frequencies.
  • a RAT may be referred to as a radio technology, an air interface, or the like.
  • a frequency may be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a network entity as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands.
  • devices of the wireless network 100 may communicate using one or more operating bands.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4a or FR4-1 52.6 GHz –71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • frequencies included in these operating bands may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • a UE may include a communication manager 140.
  • the communication manager 140 may receive a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) .
  • TCI unified transmission configuration indicator
  • CJT coherent joint transmission
  • PDSCH physical downlink shared channel
  • the communication manager 140 may select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being within a time offset for beam switching.
  • DCI scheduling downlink control information
  • the communication manager 140 may receive the PDSCH communication using the one or more selected default beams.
  • the communication manager 140 may receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in a single frequency network (SFN) .
  • the communication manager 140 may receive a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
  • a network entity may include a communication manager 150.
  • the communication manager 150 may transmit a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH.
  • the communication manager 150 may select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching.
  • the communication manager 150 may receive the PDSCH communication using the one or more selected default beams.
  • the communication manager 150 may transmit a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN.
  • the communication manager 150 may transmit a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a network entity (e.g., base station 110) in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • the base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ⁇ 1) .
  • the UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ⁇ 1) .
  • a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) .
  • the transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120.
  • MCSs modulation and coding schemes
  • CQIs channel quality indicators
  • the base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120.
  • the transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • the transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t.
  • each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.
  • Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream.
  • Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal.
  • the modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
  • a set of antennas 252 may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r.
  • R received signals e.g., R received signals
  • each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254.
  • DEMOD demodulator component
  • Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples.
  • Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • CQI CQI parameter
  • the network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292.
  • the network controller 130 may include, for example, one or more devices in a core network.
  • the network controller 130 may communicate with the network entity via the communication unit 294.
  • One or more antennas may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280.
  • the transmit processor 264 may generate reference symbols for one or more reference signals.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the network entity.
  • the modem 254 of the UE 120 may include a modulator and a demodulator.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 4-16) .
  • the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240.
  • the network entity may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244.
  • the network entity may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications.
  • the modem 232 of the network entity may include a modulator and a demodulator.
  • the network entity includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 4-16) .
  • a controller/processor of a network entity e.g., the controller/processor 240 of the base station 110
  • the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with beam selection for CJT, as described in more detail elsewhere herein.
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 1400 of Fig. 14, process 1500 of Fig. 15, and/or other processes as described herein.
  • the memory 242 and the memory 282 may store data and program codes for the network entity and the UE 120, respectively.
  • the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the network entity and/or the UE 120, may cause the one or more processors, the UE 120, and/or the network entity to perform or direct operations of, for example, process 1400 of Fig. 14, process 1500 of Fig. 15, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • a UE (e.g., UE 120) includes means for receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH; means for selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching; and/or means for receiving the PDSCH communication using the one or more selected default beams.
  • the means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • the UE includes means for receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN; and/or means for receiving a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
  • a network entity (e.g., base station 110) includes means for transmitting a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH; means for selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching; and/or means for receiving the PDSCH communication using the one or more selected default beams.
  • the means for the UE to perform operations described herein may include, for example, one or more of communication manager 150, antenna 234, modem 232, MIMO detector 236, receive processor 238, transmit processor 220, TX MIMO processor 230, controller/processor 240, or memory 242.
  • the network entity includes means for transmitting a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN; and/or means for transmitting a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example of a disaggregated base station 300, in accordance with the present disclosure.
  • a network node such as a Node B, evolved NB (eNB) , NR BS, 5G NB, access point (AP) , a TRP, or a cell, etc.
  • a BS such as a Node B, evolved NB (eNB) , NR BS, 5G NB, access point (AP) , a TRP, or a cell, etc.
  • eNB evolved NB
  • AP access point
  • TRP Transmission Retention Protocol
  • An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node.
  • a disaggregated base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more CUs, one or more DUs, or one or more RUs) .
  • a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other RAN nodes.
  • the DUs may be implemented to communicate with one or more RUs.
  • Each of the CU, DU, and RU also can be implemented as virtual units, such as a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) .
  • VCU virtual central unit
  • VDU virtual distributed unit
  • VRU virtual radio unit
  • Base station-type operation or network design may consider aggregation characteristics of base station functionality.
  • disaggregated base stations may be utilized in an IAB network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN Alliance) ) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) .
  • O-RAN open radio access network
  • vRAN virtualized radio access network
  • C-RAN cloud radio access network
  • Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design.
  • the various units of the disaggregated base station, or disaggregated RAN architecture can be configured for wired or wireless communication with at least one other unit.
  • the disaggregated base station 300 architecture may include one or more CUs 310 that can communicate directly with a core network 320 via a backhaul link, or indirectly with the core network 320 through one or more disaggregated base station units (such as a Near-RT RIC 325 via an E2 link, or a Non-RT RIC 315 associated with a Service Management and Orchestration (SMO) Framework 305, or both) .
  • a CU 310 may communicate with one or more DUs 330 via respective midhaul links, such as an F1 interface.
  • the DUs 330 may communicate with one or more RUs 340 via respective fronthaul links.
  • the fronthaul link, the midhaul link, and the backhaul link may be generally referred to as “communication links.
  • the RUs 340 may communicate with respective UEs 120 via one or more RF access links. In some aspects, the UE 120 may be simultaneously served by multiple RUs 340.
  • the DUs 330 and the RUs 340 may also be referred to as “O-RAN DUs (O-DUs” ) and “O-RAN RUs (O-RUs) ” , respectively.
  • a network entity may include a CU, a DU, an RU, or any combination of CUs, DUs, and RUs.
  • a network entity may include a disaggregated base station or one or more components of the disaggregated base station, such as a CU, a DU, an RU, or any combination of CUs, DUs, and RUs.
  • a network entity may also include one or more of a TRP, a relay station, a passive device, an intelligent reflective surface (IRS) , or other components that may provide a network interface for or serve a UE, mobile station, sensor/actuator, or other wireless device.
  • TRP Transmission Control Protocol
  • RATS intelligent reflective surface
  • Each of the units may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium.
  • Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units can be configured to communicate with one or more of the other units via the transmission medium.
  • the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units.
  • the units can include a wireless interface, which may include a receiver, a transmitter or transceiver (such as an RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • a wireless interface which may include a receiver, a transmitter or transceiver (such as an RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • the CU 310 may host one or more higher layer control functions.
  • control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 310.
  • the CU 310 may be configured to handle user plane functionality (i.e., Central Unit –User Plane (CU-UP) ) , control plane functionality (i.e., Central Unit –Control Plane (CU-CP) ) , or a combination thereof.
  • the CU 310 can be logically split into one or more CU-UP units and one or more CU-CP units.
  • the CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration.
  • the CU 310 can be implemented to communicate with the DU 330, as necessary, for network control and signaling.
  • the DU 330 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 340.
  • the DU 330 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the 3GPP.
  • the DU 330 may further host one or more low PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 330, or with the control functions hosted by the CU 310.
  • Lower-layer functionality can be implemented by one or more RUs 340.
  • an RU 340 controlled by a DU 330, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split.
  • the RU (s) 340 can be implemented to handle over the air (OTA) communication with one or more UEs 120.
  • OTA over the air
  • real-time and non-real-time aspects of control and user plane communication with the RU (s) 340 can be controlled by the corresponding DU 330.
  • this configuration can enable the DU (s) 330 and the CU 310 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
  • the SMO Framework 305 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements.
  • the SMO Framework 305 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (such as an O1 interface) .
  • the SMO Framework 305 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 390) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) .
  • a cloud computing platform such as an open cloud (O-Cloud) 390
  • network element life cycle management such as to instantiate virtualized network elements
  • a cloud computing platform interface such as an O2 interface
  • Such virtualized network elements can include, but are not limited to, CUs 310, DUs 330, RUs 340 and Near-RT RICs 325.
  • the SMO Framework 305 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 311, via an O1 interface. Additionally, in some implementations, the SMO Framework 305 can communicate directly with one or more RUs 340 via an O1 interface.
  • the SMO Framework 305 also may include a Non-RT RIC 315 configured to support functionality of the SMO Framework 305.
  • the Non-RT RIC 315 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 325.
  • the Non-RT RIC 315 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 325.
  • the Near-RT RIC 325 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 310, one or more DUs 330, or both, as well as an O-eNB, with the Near-RT RIC 325.
  • the Non-RT RIC 315 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 325 and may be received at the SMO Framework 305 or the Non-RT RIC 315 from non-network data sources or from network functions. In some examples, the Non-RT RIC 315 or the Near-RT RIC 325 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 315 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 305 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
  • SMO Framework 305 such as reconfiguration via O1
  • A1 policies such as A1 policies
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 illustrates an example logical architecture of a distributed RAN 400, in accordance with the present disclosure.
  • a 5G access node 405 may include an access node controller 410.
  • the access node controller 410 may be a CU of the distributed RAN 400.
  • a backhaul interface to a 5G core network 415 may terminate at the access node controller 410.
  • the 5G core network 415 may include a 5G control plane component 420 and a 5G user plane component 425 (e.g., a 5G gateway) , and the backhaul interface for one or both of the 5G control plane and the 5G user plane may terminate at the access node controller 410.
  • a backhaul interface to one or more neighbor access nodes 430 e.g., another 5G access node 405 and/or an LTE access node
  • the access node controller 410 may include and/or may communicate with one or more TRPs 435 (e.g., via an F1 Control (F1-C) interface and/or an F1 User (F1-U) interface) .
  • a TRP 435 may be a DU of the distributed RAN 400.
  • a TRP 435 may correspond to a base station 110 described above in connection with Fig. 1.
  • different TRPs 435 may be included in different base stations 110.
  • multiple TRPs 435 may be included in a single base station 110.
  • a base station 110 may include a CU (e.g., access node controller 410) and/or one or more DUs (e.g., one or more TRPs 435) .
  • a TRP 435 may be referred to as a cell, a panel, an antenna array, or an array.
  • a TRP 435 may be connected to a single access node controller 410 or to multiple access node controllers 410.
  • a dynamic configuration of split logical functions may be present within the architecture of distributed RAN 400.
  • a PDCP layer, an RLC layer, and/or a MAC layer may be configured to terminate at the access node controller 410 or at a TRP 435.
  • multiple TRPs 435 may transmit communications (e.g., the same communication or different communications) in the same transmission time interval (TTI) (e.g., a slot, a mini-slot, a subframe, or a symbol) or different TTIs using different quasi-co-location (QCL) relationships (e.g., different spatial parameters, different TCI states, different precoding parameters, and/or different beamforming parameters) .
  • TTI transmission time interval
  • QCL quasi-co-location
  • a TCI state may be used to indicate one or more QCL relationships.
  • a TRP 435 may be configured to individually (e.g., using dynamic selection) or jointly (e.g., using joint transmission with one or more other TRPs 435) serve traffic to a UE 120.
  • Fig. 4 is provided as an example. Other examples may differ from what was described with regard to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 of multiple TRP (multi-TRP) communication (sometimes referred to as multi-panel communication) , in accordance with the present disclosure.
  • multiple TRPs 505 may communicate with the same UE 120.
  • a TRP 505 may correspond to a TRP 435 described above in connection with Fig. 4.
  • the multiple TRPs 505 may communicate with the same UE 120 in a coordinated manner (e.g., using coordinated multipoint transmissions) to improve reliability and/or increase throughput.
  • the TRPs 505 may coordinate such communications via an interface between the TRPs 505 (e.g., a backhaul interface and/or an access node controller 410) .
  • the interface may have a smaller delay and/or higher capacity when the TRPs 505 are co-located at the same base station 110 (e.g., when the TRPs 505 are different antenna arrays or panels of the same base station 110) , and may have a larger delay and/or lower capacity (as compared to co-location) when the TRPs 505 are located at different base stations 110.
  • the different TRPs 505 may communicate with the UE 120 using different QCL relationships (e.g., different TCI states) , different DMRS ports, and/or different layers (e.g., of a multi-layer communication) .
  • a single physical downlink control channel may be used to schedule downlink data communications for a single PDSCH.
  • multiple TRPs 505 e.g., TRP A and TRP B
  • TRP A and TRP B may transmit communications to the UE 120 on the same PDSCH.
  • a communication may be transmitted using a single codeword with different spatial layers for different TRPs 505 (e.g., where one codeword maps to a first set of layers transmitted by a first TRP 505 and maps to a second set of layers transmitted by a second TRP 505) .
  • a communication may be transmitted using multiple codewords, where different codewords are transmitted by different TRPs 505 (e.g., using different sets of layers) .
  • different TRPs 505 may use different QCL relationships (e.g., different TCI states) for different DMRS ports corresponding to different layers.
  • a first TRP 505 may use a first QCL relationship or a first TCI state for a first set of DMRS ports corresponding to a first set of layers
  • a second TRP 505 may use a second (different) QCL relationship or a second (different) TCI state for a second (different) set of DMRS ports corresponding to a second (different) set of layers.
  • a TCI state in DCI may indicate the first QCL relationship (e.g., by indicating a first TCI state) and the second QCL relationship (e.g., by indicating a second TCI state) .
  • the first and the second TCI states may be indicated using a TCI field in the DCI.
  • the TCI field can indicate a single TCI state (for single-TRP transmission) or multiple TCI states (for multi-TRP transmission as discussed here) in this multi-TRP transmission mode (e.g., Mode 1) .
  • multiple PDCCHs may be used to schedule downlink data communications for multiple corresponding PDSCHs (e.g., one PDCCH for each PDSCH) .
  • a first PDCCH may schedule a first codeword to be transmitted by a first TRP 505
  • a second PDCCH may schedule a second codeword to be transmitted by a second TRP 505.
  • first DCI (e.g., transmitted by the first TRP 505) may schedule a first PDSCH communication associated with a first set of DMRS ports with a first QCL relationship (e.g., indicated by a first TCI state) for the first TRP 505, and second DCI (e.g., transmitted by the second TRP 505) may schedule a second PDSCH communication associated with a second set of DMRS ports with a second QCL relationship (e.g., indicated by a second TCI state) for the second TRP 505.
  • DCI (e.g., having DCI format 1_0 or DCI format 1_1) may indicate a corresponding TCI state for a TRP 505 corresponding to the DCI.
  • the TCI field of a DCI indicates the corresponding TCI state (e.g., the TCI field of the first DCI indicates the first TCI state and the TCI field of the second DCI indicates the second TCI state) .
  • Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
  • Fig. 6 is a diagram illustrating examples 600, 610, and 620 of beam management procedures, in accordance with the present disclosure.
  • examples 600, 610, and 620 include a UE 120 in communication with a network entity (e.g., base station 110) in a wireless network (e.g., wireless network 100) .
  • the devices shown in Fig. 6 are provided as examples, and the wireless network may support communication and beam management between other devices (e.g., between a UE 120 and a base station 110 or TRP, between a mobile termination node and a control node, between an IAB child node and an IAB parent node, and/or between a scheduled node and a scheduling node) .
  • the UE 120 and the base station 110 may be in a connected state (e.g., an RRC connected state) .
  • example 600 may include a base station 110 and a UE 120 communicating to perform beam management using channel state information (CSI) reference signals (CSI-RSs) .
  • Example 600 depicts a first beam management procedure (e.g., P1 CSI-RS beam management) .
  • the first beam management procedure may be referred to as a beam selection procedure, an initial beam acquisition procedure, a beam sweeping procedure, a cell search procedure, and/or a beam search procedure.
  • CSI-RSs may be configured to be transmitted from the base station 110 to the UE 120.
  • the CSI-RSs may be configured to be periodic (e.g., using RRC signaling) , semi-persistent (e.g., using MAC control element (MAC CE) signaling) , and/or aperiodic (e.g., using DCI) .
  • periodic e.g., using RRC signaling
  • semi-persistent e.g., using MAC control element (MAC CE) signaling
  • aperiodic e.g., using DCI
  • the first beam management procedure may include the base station 110 performing beam sweeping over multiple transmit (Tx) beams.
  • the base station 110 may transmit a CSI-RS using each transmit beam for beam management.
  • the base station may use a transmit beam to transmit (e.g., with repetitions) each CSI-RS at multiple times within the same reference signal (RS) resource set so that the UE 120 can sweep through receive beams in multiple transmission instances. For example, if the base station 110 has a set of N transmit beams and the UE 120 has a set of M receive beams, the CSI-RS may be transmitted on each of the N transmit beams M times so that the UE 120 may receive M instances of the CSI-RS per transmit beam.
  • RS reference signal
  • the UE 120 may perform beam sweeping through the receive beams of the UE 120.
  • the first beam management procedure may enable the UE 120 to measure a CSI-RS on different transmit beams using different receive beams to support selection of base station 110 transmit beams/UE 120 receive beam (s) beam pair (s) .
  • the UE 120 may report the measurements to the base station 110 to enable the base station 110 to select one or more beam pair (s) for communication between the base station 110 and the UE 120.
  • the first beam management process may also use synchronization signal blocks (SSBs) for beam management in a similar manner as described above.
  • SSBs synchronization signal blocks
  • example 610 may include a base station 110 and a UE 120 communicating to perform beam management using CSI-RSs.
  • Example 610 depicts a second beam management procedure (e.g., P2 CSI-RS beam management) .
  • the second beam management procedure may be referred to as a beam refinement procedure, a base station beam refinement procedure, a TRP beam refinement procedure, and/or a transmit beam refinement procedure.
  • CSI-RSs may be configured to be transmitted from the base station 110 to the UE 120.
  • the CSI-RSs may be configured to be aperiodic (e.g., using DCI) .
  • the second beam management procedure may include the base station 110 performing beam sweeping over one or more transmit beams.
  • the one or more transmit beams may be a subset of all transmit beams associated with the base station 110 (e.g., determined based at least in part on measurements reported by the UE 120 in connection with the first beam management procedure) .
  • the base station 110 may transmit a CSI-RS using each transmit beam of the one or more transmit beams for beam management.
  • the UE 120 may measure each CSI-RS using a single (e.g., a same) receive beam (e.g., determined based at least in part on measurements performed in connection with the first beam management procedure) .
  • the second beam management procedure may enable the base station 110 to select a best transmit beam based at least in part on measurements of the CSI-RSs (e.g., measured by the UE 120 using the single receive beam) reported by the UE 120.
  • example 620 depicts a third beam management procedure (e.g., P3 CSI-RS beam management) .
  • the third beam management procedure may be referred to as a beam refinement procedure, a UE beam refinement procedure, and/or a receive beam refinement procedure.
  • one or more CSI-RSs may be configured to be transmitted from the base station 110 to the UE 120.
  • the CSI-RSs may be configured to be aperiodic (e.g., using DCI) .
  • the third beam management process may include the base station 110 transmitting the one or more CSI-RSs using a single transmit beam (e.g., determined based at least in part on measurements reported by the UE 120 in connection with the first beam management procedure and/or the second beam management procedure) .
  • the base station may use a transmit beam to transmit (e.g., with repetitions) CSI-RS at multiple times within the same RS resource set so that UE 120 can sweep through one or more receive beams in multiple transmission instances.
  • the one or more receive beams may be a subset of all receive beams associated with the UE 120 (e.g., determined based at least in part on measurements performed in connection with the first beam management procedure and/or the second beam management procedure) .
  • the third beam management procedure may enable the base station 110 and/or the UE 120 to select a best receive beam based at least in part on reported measurements received from the UE 120 (e.g., of the CSI-RS of the transmit beam using the one or more receive beams) .
  • Fig. 6 is provided as an example of beam management procedures. Other examples of beam management procedures may differ from what is described with respect to Fig. 6.
  • the UE 120 and the base station 110 may perform the third beam management procedure before performing the second beam management procedure, and/or the UE 120 and the base station 110 may perform a similar beam management procedure to select a UE transmit beam.
  • Fig. 7 is a diagram illustrating an example 700 of using beams for communications between a network entity (e.g., base station 110) and a UE (e.g., UE 120) , in accordance with the present disclosure. As shown in Fig. 7, a base station 110 and a UE 120 may communicate with one another.
  • a network entity e.g., base station 110
  • a UE e.g., UE 120
  • a base station 110 and a UE 120 may communicate with one another.
  • the base station 110 may transmit to UEs 120 located within a coverage area of the base station 110.
  • the base station 110 and the UE 120 may be configured for beamformed communications, where the base station 110 may transmit in the direction of the UE 120 using a directional network entity transmit beam (e.g., a BS transmit beam) , and the UE 120 may receive the transmission using a directional UE receive beam.
  • a directional network entity transmit beam e.g., a BS transmit beam
  • Each transmit beam may have an associated beam ID, beam direction, or beam symbols, among other examples.
  • the base station 110 may transmit downlink communications via one or more transmit beams 705.
  • the UE 120 may attempt to receive downlink transmissions via one or more UE receive beams 710, which may be configured using different beamforming parameters at receive circuitry of the UE 120.
  • the UE 120 may identify a particular transmit beam 705, shown as transmit beam 705-A, and a particular UE receive beam 710, shown as UE receive beam 710-A, that provide relatively favorable performance (for example, that have a best channel quality of the different measured combinations of transmit beams 705 and UE receive beams 710) .
  • the UE 120 may transmit an indication of which transmit beam 705 is identified by the UE 120 as a preferred transmit beam, which the base station 110 may select for transmissions to the UE 120.
  • the UE 120 may thus attain and maintain a beam pair link (BPL) with the base station 110 for downlink communications (for example, a combination of the transmit beam 705-A and the UE receive beam 710-A) , which may be further refined and maintained in accordance with one or more established beam refinement procedures.
  • BPL beam pair link
  • a downlink beam such as a transmit beam 705 or a UE receive beam 710, may be associated with a TCI state.
  • a TCI state may indicate a directionality or a characteristic of the downlink beam, such as one or more QCL properties of the downlink beam.
  • a QCL property may include, for example, a Doppler shift, a Doppler spread, an average delay, a delay spread, or spatial receive parameters, among other examples.
  • each transmit beam 705 may be associated with a SSB, and the UE 120 may indicate a preferred transmit beam 705 by transmitting uplink transmissions in resources of the SSB that are associated with the preferred transmit beam 705.
  • a particular SSB may have an associated TCI state (for example, for an antenna port or for beamforming) .
  • the base station 110 may, in some examples, indicate a downlink transmit beam 705 based at least in part on antenna port QCL properties that may be indicated by the TCI state.
  • a TCI state may be associated with one downlink reference signal set (for example, an SSB and an aperiodic, periodic, or semi-persistent CSI-RS) for different QCL types (for example, QCL types for different combinations of Doppler shift, Doppler spread, average delay, delay spread, or spatial receive parameters, among other examples) .
  • the QCL type may correspond to analog receive beamforming parameters of a UE receive beam 710 at the UE 120.
  • the UE 120 may select a corresponding UE receive beam 710 from a set of BPLs based at least in part on the base station 110 indicating a transmit beam 705 via a TCI indication.
  • the base station 110 may maintain a set of activated TCI states for downlink shared channel transmissions and a set of activated TCI states for downlink control channel transmissions.
  • the set of activated TCI states for downlink shared channel transmissions may correspond to beams that the base station 110 uses for downlink transmission on a PDSCH.
  • the set of activated TCI states for downlink control channel communications may correspond to beams that the base station 110 may use for downlink transmission on a PDCCH or in a control resource set (CORESET) .
  • the UE 120 may also maintain a set of activated TCI states for receiving the downlink shared channel transmissions and the CORESET transmissions.
  • the UE 120 may have one or more antenna configurations based at least in part on the TCI state, and the UE 120 may not need to reconfigure antennas or antenna weighting configurations.
  • the set of activated TCI states for example, activated PDSCH TCI states and activated CORESET TCI states
  • the UE 120 may be configured by a configuration message, such as an RRC message.
  • the UE 120 may transmit in the direction of the base station 110 using a directional UE transmit beam, and the base station 110 may receive the transmission using a directional receive beam.
  • Each UE transmit beam may have an associated beam ID, beam direction, or beam symbols, among other examples.
  • the UE 120 may transmit uplink communications via one or more UE transmit beams 715.
  • the base station 110 may receive uplink transmissions via one or more receive beams 720 (e.g., BS receive beams) .
  • the base station 110 may identify a particular UE transmit beam 715, shown as UE transmit beam 715-A, and a particular receive beam 720, shown as receive beam 720-A, that provide relatively favorable performance (for example, that have a best channel quality of the different measured combinations of UE transmit beams 715 and receive beams 720) .
  • the base station 110 may transmit an indication of which UE transmit beam 715 is identified by the base station 110 as a preferred UE transmit beam, which the base station 110 may select for transmissions from the UE 120.
  • the UE 120 and the base station 110 may thus attain and maintain a BPL for uplink communications (for example, a combination of the UE transmit beam 715-A and the receive beam 720-A) , which may be further refined and maintained in accordance with one or more established beam refinement procedures.
  • An uplink beam such as a UE transmit beam 715 or a receive beam 720, may be associated with a spatial relation.
  • a spatial relation may indicate a directionality or a characteristic of the uplink beam, similar to one or more QCL properties, as described above.
  • 3GPP standards Release 17 established a unified TCI state framework in which a TCI state may be used to indicate more than one beam.
  • the TCI state may be used to indicate beams for a downlink channel or RS and/or an uplink channel or RS.
  • a joint downlink/uplink common TCI state may indicate a common beam for at least one downlink channel or RS and at least one uplink channel or RS.
  • This may be Type 1 and may include at least a UE-specific PDCCH, PDSCH, physical uplink control channel (PUCCH) , and physical uplink shared channel (PUSCH) .
  • a separate downlink common TCI state may indicate a common beam for more than one downlink channel or RS.
  • a separate uplink common TCI state may indicate a common beam for more than one uplink channel or RS.
  • Other types of unified TCI states may include a separate downlink single channel or RS TCI state that indicates a beam for a single downlink channel or RS, a separate uplink single channel or RS TCI state that indicates a beam for a single uplink channel or RS, or an uplink spatial relation information, such as a spatial relation indicator (SRI) , that indicates a beam for a single uplink channel or RS.
  • SRI spatial relation indicator
  • a network entity may transmit a unified TCI state indication that indicates a unified TCI state.
  • the unified TCI state indication may provide, for a downlink or a joint TCI state, QCL-Type1 (e.g., for QCL-Type A) and QCL-Type2 (e.g., for QCL-Type D) .
  • the unified TCI state indication may also provide, for a downlink or a joint TCI state, power control parameters, such as a P0 value, an alpha value, or cross-link interference (CLI) information.
  • the unified TCI state indication may indicate a path loss RS.
  • the unified TCI state indication may indicate an RS (e.g., for a spatial filter) and/or power control parameters.
  • Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.
  • Fig. 8 is a diagram illustrating an example 800 of CJT and non-CJT (NCJT) for multiple TRPs, in accordance with the present disclosure.
  • CJT involves multiple transmitters that each transmit a message with a phase that is constructively combined at a receiver.
  • CJT may include beamforming with antennas that are not co-located and that correspond to different TRPs.
  • CJT may improve the signal power and spatial diversity of communications in an NR network.
  • precoder A is precoded for one TRP
  • precoder B is precoded for a separate TRP. This may be expressed as: where letters not in bold are for precoder A and data for a first TRP, and letters in bold are for precoder B and data for a second TRP.
  • precoder may indicate a precoder for a specific TRP and rank (indicated by rank indicator (RI) ) .
  • Data (RI TRP ⁇ 1) X A : 1 ⁇ 1, X B : 2 ⁇ 1 may indicate data by TRP and RI.
  • precoder and data RI CJT ⁇ 1
  • X 2 ⁇ 1.
  • Reference number 802 shows joint precoding for multiple TRPs rather than separate precoding as shown for NCJT.
  • Reference number 804 shows 2 layers that are jointly precoded.
  • Fig. 8 is provided as an example. Other examples may differ from what is described with regard to Fig. 8.
  • Fig. 9 is a diagram illustrating an example 900 of CJT for a PDSCH, in accordance with the present disclosure.
  • Example 900 shows multiple TCI states that can be used for multiple beams to receive physical downlink channel (e.g., PDSCH or PDCCH) communications from multiple TRPs in multiple TRP (mTRP) operation.
  • a UE may use CJT for receiving a PDSCH on one or more of the multiple beams, where the UE uses multiple TCI states for each layer.
  • a network entity may indicate up to X unified TCI states for communications on the PDSCH, where each layer or DMRS antenna port of the PDSCH is received at the UE using multiple indicated unified TCI states.
  • the UE may be configured for CJT operations for the PDSCH, where X > 2 TCI states are applied to each layer of the PDSCH.
  • the UE may also be configured for SFN operations for a PDCCH, where two TCI states are applied to a CORESET receiving the PDCCH.
  • Fig. 9 is provided as an example. Other examples may differ from what is described with regard to Fig. 9.
  • Fig. 10 is a diagram illustrating an example 1000 of beam selection, in accordance with the present disclosure.
  • Example 1000 shows that a MAC CE may include a TCI codepoint that activates one or more unified TCI states.
  • a DCI may indicate unified TCI states that are to be used.
  • the UE may transmit feedback, such as an acknowledgement (ACK) , for the MAC CE and/or the DCI.
  • ACK acknowledgement
  • the UE may receive a scheduling DCI 1002, such as a DCI with a TCI state for a scheduling CORESET.
  • the UE may also receive DCI that is not scheduling DCI (e.g., non-scheduling CORESET) .
  • the DCI may indicate a scheduled time resource 1004 for a PDSCH communication (e.g., data, aperiodic CSI-RS) .
  • a time duration 1008 between the scheduling DCI 1002 and the scheduled time resource 1004 for the PDSCH communication may be within a time offset 1006 (time duration for QCL) , which may be a beam switching time that is a minimum time that is expected to allow the UE to switch beams. If the scheduled time resource 1004 (or the time duration 1008) is within the time offset 1006, the UE is expected to select a default beam in order to receive the PDSCH communication. With respect to 3GPP Release 17 and single TRP operation, the UE may be configured to select a default beam for PDSCH communications in SFN operations according to a set of rules.
  • the UE may be configured to select a beam with a TCI states of a lowest CORESET. For non-SFN operation, the UE may select a beam with a first TCI state of the lowest CORESET. If there are two TCI states (in one or more codepoints) for an SFN operation for the PDSCH, the UE may use a rule indicated by enableTwoDefaultTCI-States. If there is no TCI state field and the UE is configured for an SFN operation for the PDCCH, the UE may select a beam with one or two TCI states of a scheduling CORESET. If there is no TCI state field and the UE is not configured for an SFN operation for the PDCCH, the UE may select a beam with a first TCI state of a scheduling CORESET.
  • the UE does not support default beam selection if there are multiple TRPs that use CJT. Without such information, the UE may not select an appropriate beam in time and may fail to receive the PDSCH communications. Failed communications waste time, power, processing resources, and signaling resources.
  • a network entity may transmit a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH.
  • the UE may select one or more default beams for a PDSCH communication based at least in part on the message (e.g., indicated or activated unified TCI states in the message) and the time duration 1008 being within a time offset 1006 for beam switching (e.g., not enough time to determine QCL beam and switch beams) .
  • the UE may also apply the appropriate unified TCI states. In this way, the UE may select the appropriate default beams and apply the appropriate TCI states for receiving the PDSCH communication with CJT and multiple TRPs for more accurate and efficient communications, which conserves power, processing resources, and signaling resources.
  • beam selection may involve whether unified TCI states are for intra-cell beam management or for inter-cell mTRP operation. Beam selection may further involve how many unified TCI states are indicated and how many default beams are configured for or enabled by the UE. Sources for the default beam may include unified TCI state indications, TCI states for CORESETs, and/or unified TCI states activated by a MAC CE. In some aspect, beam selection may be based at least in part on a configuration for enabling default TCI states or default beams (e.g., enableXDefaultTCI-States) .
  • enableXDefaultTCI-States e.g., enableXDefaultTCI-States
  • Fig. 10 is provided as an example. Other examples may differ from what is described with regard to Fig. 10.
  • Fig. 11 is a diagram illustrating an example 1100 of default beam selection within a time offset for beam switching, in accordance with the present disclosure.
  • Example 1100 shows a network entity 1110 (e.g., base station 110) and a UE 1120 (e.g., UE 120) that may communicate with each other via a wireless network (e.g., wireless network 100) .
  • the network entity 1110 may control or operate with one or more TRPs.
  • the network entity 1110 may transmit a message that indicates or activates one or more unified TCI states (e.g., MAC CE activating one or more unified TCI states, DCI indicating one or more unified TCI states) associated with CJT operations for a PDSCH.
  • one or more unified TCI states e.g., MAC CE activating one or more unified TCI states, DCI indicating one or more unified TCI states
  • the UE 1120 may select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching. As shown by reference number 1135, the UE 1120 may receive the PDSCH communication using the one or more selected default beams.
  • the message may indicate or activate a single unified TCI state for intra-cell beam management (e.g., all used TCI states have a serving SSB as a root QCL) , where the UE 1120 supports a single default beam, two default beams, three default beams, or four default beams.
  • the single unified TCI state may be indicated by a unified TCI state indication in a DCI or in a single TCI codepoint activated by a MAC CE.
  • the UE 1120 may select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • the UE 1120 may apply one unified TCI state of one CORESET, one SFN CORESET, or one non-SFN CORESET.
  • the UE 1120 may use the indicated unified TCI state as the default PDSCH/AP CSI-RS beam.
  • the UE 1120 may use one TCI state of one CORESET, such as the first TCI of one CORESET (e.g., lowest CORESET ID) , one TCI state of one of SFN CORESETs (e.g., among those CORESETs not following the indicated unified TCI state) , or the TCI state of one non-SFN CORESET.
  • the UE 1120 may use a default beam as specified in an existing 3GPP Release 15, 16, or 17 rule (e.g., first TCI state of lowest CORESET ID in latest slot) .
  • the UE 1120 may apply (as a first option) two TCI states of one TCI codepoint (e.g., lowest codepoint activated by MAC CE) , apply (as a second option) two TCI states of one of the SFN CORESETs (e.g., among those CORESETs not following the indicated unified TCI state) , or apply unified TCI states based at least in part on a configuration for enabling multiple default beams for TCI states, such as for enabling two default beams (e.g., an RRC parameter enableTwoDefaultTCI) . If enableTwoDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • the UE 1120 may apply three unified TCIs states of one TCI codepoint (e.g., lowest codepoint activated by MAC CE) or apply TCI states based at least in part on a configuration for enabling three default beams (e.g., an RRC parameter enableThreeDefaultTCI) . If enableThreeDefaultTCI-States is configured, the UE 1120 may apply the three unified TCIs states, or otherwise use the first option or the second option.
  • a configuration for enabling three default beams e.g., an RRC parameter enableThreeDefaultTCI
  • the UE 1120 may apply four unified TCIs states of one TCI codepoint (e.g., lowest codepoint activated by MAC CE) or apply TCI states based at least in part on a configuration for enabling four default beams (e.g., an RRC parameter enableFourDefaultTCI) . If enableFourDefaultTCI-States is configured, the UE 1120 may apply the four unified TCIs states, or otherwise use the first option or the second option.
  • TCI codepoint e.g., lowest codepoint activated by MAC CE
  • TCI states based at least in part on a configuration for enabling four default beams (e.g., an RRC parameter enableFourDefaultTCI) .
  • enableFourDefaultTCI-States the UE 1120 may apply the four unified TCIs states, or otherwise use the first option or the second option.
  • the message may indicate or activate two unified TCI states for intra-cell beam management, where the UE 1120 supports a single default beam, two default beams, three default beams, or four default beams. If the UE 1120 supports a single beam, the UE 1120 may apply one unified TCI state selected from the two unified TCI states that were indicated, as a default PDSCH/AP CSI-RS beam (e.g., first unified TCI state) , or apply one TCI state of one CORESET.
  • a default PDSCH/AP CSI-RS beam e.g., first unified TCI state
  • the UE 1120 may apply the two unified TCI states or apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) . If the UE 1120 supports three default beams with two unified TCI states indicated, the UE 1120 may apply the two unified TCI states that were indicated or apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) .
  • the UE 1120 may apply the two unified TCI states that were indicated or apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) .
  • a configuration for enabling four default beams e.g., enableFourDefaultTCI
  • the message may indicate or activate three unified TCI states for intra-cell beam management, where the UE 1120 supports a single default beam, two default beams, three default beams, or four default beams. If the UE 1120 supports a single beam, the UE 1120 may apply one unified TCI state selected from the three unified TCI states that were indicated (e.g., first unified TCI state) , as a default PDSCH/AP CSI-RS beam (e.g., first unified TCI state) , or apply one TCI state of one CORESET.
  • the UE 1120 may apply one unified TCI state selected from the three unified TCI states that were indicated (e.g., first unified TCI state) , as a default PDSCH/AP CSI-RS beam (e.g., first unified TCI state) , or apply one TCI state of one CORESET.
  • the UE 1120 may apply two unified TCI states selected from the three unified TCI states that were indicated (e.g., first unified TCI state, second unified TCI state) or apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) . If the UE 1120 supports three default beams with three unified TCI states indicated, the UE 1120 may apply the three unified TCI states that were indicated or apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) .
  • enableThreeDefaultTCI enableThreeDefaultTCI
  • the UE 1120 may apply the three unified TCI states that were indicated or apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) .
  • a configuration for enabling four default beams e.g., enableFourDefaultTCI
  • the message may indicate or activate four unified TCI states for intra-cell beam management, where the UE 1120 supports a single default beam, two default beams, three default beams, or four default beams. If the UE 1120 supports a single beam, the UE 1120 may apply one unified TCI state selected from the four unified TCI states that were indicated (e.g., first unified TCI state) , as a default PDSCH or AP CSI-RS beam (e.g., first unified TCI state) , or apply one TCI state of one CORESET.
  • the UE 1120 may apply one unified TCI state selected from the four unified TCI states that were indicated (e.g., first unified TCI state) , as a default PDSCH or AP CSI-RS beam (e.g., first unified TCI state) , or apply one TCI state of one CORESET.
  • the UE 1120 may apply two unified TCI states selected from the four unified TCI states that were indicated (e.g., first unified TCI state, second unified TCI state) or apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) .
  • two unified TCI states selected from the four unified TCI states that were indicated (e.g., first unified TCI state, second unified TCI state) or apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) .
  • the UE 1120 may apply three unified TCI states selected from the four unified TCI states that were indicated (e.g., first unified TCI state, second unified TCI state, third unified TCI state) , or apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) . If the UE 1120 supports four default beams with four unified TCI states indicated, the UE 1120 may apply the four unified TCI states that were indicated or apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) .
  • enableThreeDefaultTCI enableThreeDefaultTCI
  • the message includes a single DCI with a TCI codepoint for inter-cell multiple TRP operation (e.g., at least one used TCI state has a non-serving SSB as the root QCL and the UE 1120 is not configured to use only mTRP operations) , where the single DCI indicates or activates a single unified TCI state, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and where selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • a single DCI with a TCI codepoint for inter-cell multiple TRP operation e.g., at least one used TCI state has a non-serving SSB as the root QCL and the UE 1120 is not configured to use only mTRP operations
  • the single DCI indicates or activates a single unified TCI state
  • the UE supports a single
  • the UE 1120 may select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams. For example, if the UE 1120 supports only a single default beam, the UE 1120 may apply one unified TCI state of one CORESET or use a specified default beam (e.g., first TCI state of lowest CORESET ID in latest slot) .
  • a specified default beam e.g., first TCI state of lowest CORESET ID in latest slot
  • the UE 1120 may apply two unified TCI states of one TCI codepoint (e.g., lowest codepoint and where at least one TCI state has a serving SSB as the root QCL) , apply two unified TCI states of SFN CORESETs (e.g., among those not following the indicated unified TCI states and where at least one TCI state has a serving SSB as the root QCL) , apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) , apply one unified TCI state of one CORESET, or use a default beam as specified in an existing 3GPP Release 15, 16, or 17 rule.
  • TCI codepoint e.g., lowest codepoint and where at least one TCI state has a serving SSB as the root QCL
  • SFN CORESETs e.g., among those not following the indicated unified TCI states and where at least one TCI state has a serving SSB as the root
  • the UE 1120 may apply three unified TCI states of one TCI codepoint (e.g., lowest codepoint and where at least one TCI state has a serving SSB as the root QCL) , apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) , apply one unified TCI state of one CORESET, or use a default beam as specified in an existing 3GPP Release 15, 16, or 17 rule.
  • a configuration for enabling three default beams e.g., enableThreeDefaultTCI
  • the UE 1120 may apply four unified TCI states of one TCI codepoint (e.g., lowest codepoint and where at least one TCI state has a serving SSB as the root QCL) , or apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) .
  • TCI codepoint e.g., lowest codepoint and where at least one TCI state has a serving SSB as the root QCL
  • TCI states based at least in part on a configuration for enabling four default beams e.g., enableFourDefaultTCI
  • the UE 1120 may select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams. For example, if the UE 1120 supports only a single default beam, the UE 1120 may apply one unified TCI state associated with a serving SSB selected from the two unified TCI states as a default PDSCH or AP CSI-RS beam (e.g., first TCI state among TCI states associated with the serving SSB) .
  • the UE 1120 may apply one TCI state associated with the serving SSB of one CORESET, including the first TCI state associated with the serving SSB of one CORESET (e.g., lowest CORESET ID) , one TCI state associated with the serving SSB of one of the SFN CORESETs (e.g., among those not following the indicated unified TCI states) , or the TCI state associated with the serving SSB of one non-SFN CORESET.
  • the first TCI state associated with the serving SSB of one CORESET e.g., lowest CORESET ID
  • one TCI state associated with the serving SSB of one of the SFN CORESETs e.g., among those not following the indicated unified TCI states
  • the TCI state associated with the serving SSB of one non-SFN CORESET e.g., among those not following the indicated unified TCI states
  • the UE 1120 may apply (as a first option) the two unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) two unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply (as a third option) two TCI states of one of the SFN CORESETs (e.g., among those not following the indicated unified TCI states) , apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) , or apply any of the options for the single default beam. If enableTwoDefaultTCI-States is configured, the UE 1120 may use the first option, the second option, or the third option.
  • enableTwoDefaultTCI-States is configured, the UE 1120 may use the first option, the second option, or the third
  • the UE 1120 may apply (as a first option) the two unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) three unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) , or apply any of the options for the single default beam. If enableThreeDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • enableThreeDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • the UE 1120 may apply (as a first option) the two unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) four unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) , or apply any of the options for the single default beam. If enableFourDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • enableFourDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • the UE 1120 may select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams. For example, if the UE 1120 supports only a single default beam, the UE 1120 may apply one unified TCI state associated with a serving SSB selected from the two unified TCI states as a default PDSCH or AP CSI-RS beam (e.g., first TCI state among TCI states associated with the serving SSB) .
  • the UE 1120 may apply one TCI state associated with the serving SSB of one CORESET, including the first TCI state associated with the serving SSB of one CORESET (e.g., lowest CORESET ID) , one TCI state associated with the serving SSB of one of the SFN CORESETs (e.g., among those not following the indicated unified TCI states) , or the TCI state associated with the serving SSB of one non-SFN CORESET.
  • the first TCI state associated with the serving SSB of one CORESET e.g., lowest CORESET ID
  • one TCI state associated with the serving SSB of one of the SFN CORESETs e.g., among those not following the indicated unified TCI states
  • the TCI state associated with the serving SSB of one non-SFN CORESET e.g., among those not following the indicated unified TCI states
  • the UE 1120 may apply (as a first option) the two unified TCI states selected from the three unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) two unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply (as a third option) two TCI states of one of the SFN CORESETs (e.g., among those not following the indicated unified TCI states) , apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) , or apply any of the options for the single default beam. If enableTwoDefaultTCI-States is configured, the UE 1120 may use the first option, the second option, or the third option.
  • enableTwoDefaultTCI-States is configured, the UE 1120 may use the first
  • the UE 1120 may apply (as a first option) the three unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) three unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) , or apply any of the options for the single default beam. If enableThreeDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • enableThreeDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • the UE 1120 may apply (as a first option) the three unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) four unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) , or apply any of the options for the single default beam. If enableFourDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • enableFourDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • the UE 1120 may select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams. For example, if the UE 1120 supports only a single default beam, the UE 1120 may apply one unified TCI state associated with a serving SSB selected from the two unified TCI states as a default PDSCH or AP CSI-RS beam (e.g., first TCI state among TCI states associated with the serving SSB) .
  • the UE 1120 may apply one TCI state associated with the serving SSB of one CORESET, including the first TCI state associated with the serving SSB of one CORESET (e.g., lowest CORESET ID) , one TCI state associated with the serving SSB of one of the SFN CORESETs (e.g., among those not following the indicated unified TCI states) , or the TCI state associated with the serving SSB of one non-SFN CORESET.
  • the first TCI state associated with the serving SSB of one CORESET e.g., lowest CORESET ID
  • one TCI state associated with the serving SSB of one of the SFN CORESETs e.g., among those not following the indicated unified TCI states
  • the TCI state associated with the serving SSB of one non-SFN CORESET e.g., among those not following the indicated unified TCI states
  • the UE 1120 may apply (as a first option) the two unified TCI states selected from the four unified TCI states that were indicated if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) two unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply (as a third option) two TCI states of one of the SFN CORESETs (e.g., among those not following the indicated unified TCI states) , apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) , or apply any of the options for the single default beam. If enableTwoDefaultTCI-States is configured, the UE 1120 may use the first option, the second option, or the third option.
  • enableTwoDefaultTCI-States is configured, the UE 1120 may
  • the UE 1120 may apply (as a first option) three unified TCI states selected from the four unified TCI states that were indicated if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) three unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) , or apply any of the options for the single default beam. If enableThreeDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • enableThreeDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • the UE 1120 may apply (as a first option) the four unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) four unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) , or apply any of the options for the single default beam. If enableFourDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • enableFourDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
  • Fig. 11 is provided as an example. Other examples may differ from what is described with regard to Fig. 11.
  • Fig. 12 is a diagram illustrating an example 1200 of beam selection, in accordance with the present disclosure.
  • Example 1200 shows, in some scenarios, the time offset 1006 is not applicable as a scheduled time resource 1204 for the PDSCH or AP CSI-RS is after the time offset 1006.
  • beam selection may involve whether unified TCI states are for intra-cell beam management or for inter-cell mTRP operation. Beam selection may further involve how many unified TCI states are indicated. Sources for the beam may include unified TCI state indications, TCI states for scheduling CORESETs, and/or unified TCI states activated by a MAC CE.
  • the UE 1120 may receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH communication in an SFN operation (e.g., for PDSCH, PUSCH, PUCCH, and PDCCH) and receive a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and the time duration 1008 being after the time offset 1006.
  • the UE 1120 may select better beams and improve communications, which conserves time, power, processing resources, and signaling resources.
  • Fig. 12 is provided as an example. Other examples may differ from what is described with regard to Fig. 12.
  • Fig. 13 is a diagram illustrating an example 1300 of beam selection after a time offset for beam switching, in accordance with the present disclosure.
  • the UE 1120 may receive a message (e.g., MAC CE, DCI) that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN.
  • a message e.g., MAC CE, DCI
  • the UE 1120 may select one or more beams based at least in part on the message (e.g., unified TCI state indications in the message) and the time duration 1008 (or the scheduled time resource 1204) being after the time offset 1006.
  • the UE 1120 may receive a PDSCH communication using one or more unified TCI states for the one or more selected beams.
  • the message may indicate or activate a single unified TCI state for intra-cell beam management (e.g., all used TCI states have a serving SSB as a root QCL) , where the UE 1120 supports a single beam or two beams.
  • the single unified TCI state may be indicated by a unified TCI state indication in a DCI or in a single TCI codepoint activated by a MAC CE. If the UE supports only a single beam, the UE 1120 may apply the unified TCI state that was indicated or apply a TCI state of a scheduling CORESET (e.g., if not following the indicated unified TCI state) .
  • the UE 1120 may apply two TCI states of one of the SFN CORESETs (e.g., among those CORESETs not following the indicated unified TCI state and having TCI states) .
  • the message may indicate or activate two unified TCI states for intra-cell beam management, where the UE 1120 supports a single beam or two beams. If the UE 1120 supports a single beam, the UE 1120 may apply one unified TCI state down-selected from the two unified TCI states that were indicated or apply one TCI state of a scheduling CORESET (if not following the indicated unified TCI state) . If the UE 1120 supports two default beams with two unified TCI states that were indicated, the UE 1120 may apply the two unified TCI states or apply two TCI states of a scheduling CORESET (if not following the two unified TCI states that were indicated and having two TCI states) .
  • the message may indicate or activate three unified TCI states for intra-cell beam management, where the UE 1120 supports a single beam, two beams, or three beams. If the UE 1120 supports a single beam, the UE 1120 may apply one unified TCI state down-selected by the scheduling DCI from the three unified TCI states that were indicated or apply one TCI state of a scheduling CORESET (if not following the indicated unified TCI state) .
  • the UE 1120 may apply two unified TCI states down-selected by the scheduling DCI from the three unified TCI states that were indicate or apply two TCI states of scheduling CORESETs (if not following the two unified TCI states that were indicated and having two TCI states) . If the UE 1120 supports three beams with three unified TCI states that were indicated, the UE 1120 may apply the three unified TCI states that were indicated.
  • the message may indicate or activate four unified TCI states for intra-cell beam management, where the UE 1120 supports a single beam, two beams, or three beams. If the UE 1120 supports a single beam, the UE 1120 may apply one unified TCI state down-selected by the scheduling DCI from the four unified TCI states that were indicated or apply one TCI state of a scheduling CORESET (if not following the indicated unified TCI state) .
  • the UE 1120 may apply two unified TCI states down-selected by the scheduling DCI from the four unified TCI states that were indicate or apply two TCI states of scheduling CORESETs (if not following the two unified TCI states that were indicated and having two TCI states) . If the UE 1120 supports three beams with four unified TCI states that were indicated, the UE 1120 may apply three unified TCI states down-selected by the scheduling DCI from the four unified TCI states that were indicated. If the UE 1120 supports four beams with four unified TCI states that were indicated, the UE 1120 may apply the four unified TCI states that were indicated.
  • the message includes a single DCI for inter-cell multiple TRP operation (e.g., at least one used TCI state has a non-serving SSB as the root QCL and the UE 1120 is not configured to use only mTRP operations) , where the single DCI indicates or activates a single unified TCI state.
  • the UE 1120 may support a single beam or two beams. If the UE 1120 supports only a single beam, the UE 1120 may apply use a default beam as specified in an existing 3GPP Release 15, 16, or 17 rule (e.g., first TCI state of lowest CORESET ID in latest slot) .
  • the UE 1120 may apply two TCI states of a scheduling CORESET (e.g., if not following the indicated unified TCI state and having two TCI states) .
  • the UE 1120 may apply one unified TCI state down-selected from the two unified TCI states that were indicated or apply a first TCI state of a scheduling CORESET (e.g., if not following the indicated unified TCI states) . If the UE 1120 supports two beams with two unified TCI states that were indicated, the UE 1120 may apply the two unified TCI states that were indicated or apply two TCI states of a scheduling CORESET (e.g., if not following the indicated unified TCI state and having two TCI states) .
  • the UE 1120 may apply one unified TCI state down-selected from the three unified TCI states that were indicated or apply a first TCI state of a scheduling CORESET (e.g., if not following the indicated unified TCI states) . If the UE 1120 supports two beams with three unified TCI states that were indicated, the UE 1120 may apply two unified TCI states down-selected by the scheduling DCI from the three unified TCI states that were indicated or apply two TCI states of a scheduling CORESET (e.g., if not following the indicated unified TCI state and having two TCI states) . If the UE 1120 supports three beams, the UE 1120 may apply the three unified TCI states that were indicated.
  • the UE 1120 may apply one unified TCI state down-selected from the four unified TCI states that were indicated or apply a first TCI state of a scheduling CORESET (e.g., if not following the indicated unified TCI states) . If the UE 1120 supports two beams with four unified TCI states that were indicated, the UE 1120 may apply two unified TCI states down-selected by the scheduling DCI from the four unified TCI states that were indicated or apply two TCI states of a scheduling CORESET (e.g., if not following the indicated unified TCI state and having two TCI states) .
  • the UE 1120 may apply three unified TCI states down-selected by the scheduling DCI from the four unified TCI states that were indicated. If the UE 1120 supports four beams, the UE 1120 may apply the four unified TCI states that were indicated.
  • Fig. 13 is provided as an example. Other examples may differ from what is described with regard to Fig. 13.
  • Fig. 14 is a diagram illustrating an example process 1400 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 1400 is an example where the UE (e.g., UE 120, UE 1120) performs operations associated with beam selection for CJT.
  • the UE e.g., UE 120, UE 1120
  • process 1400 may include receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH (block 1410) .
  • the UE e.g., using communication manager 1608 and/or reception component 1602 depicted in Fig. 16
  • process 1400 may include selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching (block 1420) .
  • the UE e.g., using communication manager 1608 and/or selection component 1610 depicted in Fig. 16
  • process 1400 may include receiving the PDSCH communication using the one or more selected default beams (block 1430) .
  • the UE e.g., using communication manager 1608 and/or reception component 1602 depicted in Fig. 16
  • Process 1400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the message indicates or activates a single unified TCI state for intra-cell beam management, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • process 1400 includes applying one unified TCI state of one CORESET, one SFN CORESET, or one non-SFN CORESET based at least in part on the UE supporting the single default beam, applying two unified TCI states of a TCI codepoint in the message or two unified TCI states of an SFN CORESET based at least in part on the UE supporting the two default beams, applying three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, or applying four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams.
  • process 1400 includes applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  • the message indicates or activates two unified TCI states for intra-cell multiple TRP operation, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • process 1400 includes applying the two unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, the three default beams, or the four default beams.
  • the message indicates or activates three unified TCI states for intra-cell multiple TRP operation, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • process 1400 includes applying two of the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, or applying the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams or the four default beams.
  • the message indicates or activates four unified TCI states for intra-cell multiple TRP operation, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • process 1400 includes applying two of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, applying three of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams, or applying the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the four default beams.
  • the message includes a single DCI with a TCI codepoint for inter-cell multiple TRP operation, where the single DCI indicates or activates a single unified TCI state, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • process 1400 includes applying one unified TCI state of one CORESET based at least in part on the UE supporting the single default beam, applying two unified TCI states of the TCI codepoint or two unified TCI states of an SFN CORESET based at least in part on the UE supporting the two default beams, where at least one TCI state has a serving SSB as a root QCL, applying three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state has the serving SSB as the QCL, or applying four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, and where at least one TCI state has the serving SSB as the QCL.
  • process 1400 includes applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  • the message includes a single DCI with a TCI codepoint for inter-cell multiple TRP operation, where the single DCI indicates or activates two unified TCI states, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and where selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • process 1400 includes applying one unified TCI state of the two unified TCI states based at least in part on the UE supporting the single default beam, where the one unified TCI state is associated with a serving SSB, applying the two unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, where at least one unified TCI state is associated with the SSB, applying the two unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state is associated with the SSB, or applying the two unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state is associated with the SSB.
  • process 1400 includes applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  • the message includes a single DCI with a TCI codepoint for inter-cell multiple TRP operation, where the single DCI indicates or activates three unified TCI states, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • process 1400 includes applying one unified TCI state of the three unified TCI states based at least in part on the UE supporting the single default beam, where the one unified TCI state is associated with a serving SSB, applying two of the three unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, where at least one unified TCI state is associated with the SSB, applying the three unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state is associated with the SSB, or applying the three unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state is associated with the SSB.
  • process 1400 includes applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  • the message includes a single DCI with a TCI codepoint for inter-cell multiple TRP operation, where the single DCI indicates or activates four unified TCI states, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • process 1400 includes applying one unified TCI state of the four unified TCI states based at least in part on the UE supporting the single default beam, where the one unified TCI state is associated with a serving SSB, applying two of the four unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, where at least one unified TCI state is associated with the SSB, applying three of the four unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state is associated with the SSB, or applying the four unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state is associated with the SSB.
  • process 1400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 14. Additionally, or alternatively, two or more of the blocks of process 1400 may be performed in parallel.
  • Fig. 15 is a diagram illustrating an example process 1500 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 1500 is an example where the UE (e.g., UE 120, UE 1120) performs operations associated with beam selection for CJT.
  • the UE e.g., UE 120, UE 1120
  • process 1500 may include receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN (block 1510) .
  • the UE e.g., using communication manager 1608 and/or reception component 1602 depicted in Fig. 16
  • process 1500 may include receiving a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching (block 1520) .
  • the UE e.g., using communication manager 1608 and/or reception component 1602 depicted in Fig. 16
  • Process 1500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the message indicates or activates a single unified TCI state for intra-cell beam management
  • process 1500 includes applying, for a single beam, the single unified TCI state or a unified TCI state of a scheduling CORESET, or applying, for two beams, the single unified TCI state or two unified TCI states of an SFN-scheduling CORESET.
  • the message indicates or activates two unified TCI states for intra-cell beam management
  • process 1500 includes applying, for a single beam, a TCI state down-selected from the two unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling CORESET, or applying, for two beams, the two unified TCI states or two unified TCI states of scheduling CORESETs.
  • the message indicates or activates three unified TCI states for intra-cell beam management
  • process 1500 includes applying, for a single beam, a TCI state down-selected from the three unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling CORESET, applying, for two beams, two TCI states down-selected from the three unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, or applying, for three beams, the three unified TCI states.
  • the message indicates or activates four unified TCI states for intra-cell beam management
  • process 1500 includes applying, for a single beam, a TCI state down-selected from the four unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling CORESET, applying, for two beams, two TCI states down-selected from the four unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, applying, for three beams, three TCI states down-selected from the four unified TCI states by the scheduling DCI, or applying, for four beams, the four unified TCI states.
  • the message indicates or activates a single unified TCI state for inter-cell multiple TRP operation
  • process 1500 includes applying, for a single beam, the single unified TCI state or a first TCI state of a lowest CORESET identifier in a latest slot, or applying, for two beams, the single unified TCI state or two unified TCI states of a scheduling CORESET.
  • the message indicates or activates two unified TCI states for inter-cell multiple TRP operation
  • process 1500 includes applying, for a single beam, a TCI state down-selected from the two unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling CORESET, or applying, for two beams, the two unified TCI states or two unified TCI states of scheduling CORESETs.
  • the message indicates or activates three unified TCI states for inter-cell multiple TRP operation
  • process 1500 includes applying, for a single beam, a TCI state down-selected from the three unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling CORESET, applying, for two beams, two TCI states down-selected from the three unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, or applying, for three beams, the three unified TCI states.
  • the message indicates or activates four unified TCI states for inter-cell multiple TRP operation
  • process 1500 includes applying, for a single beam, a TCI state down-selected from the four unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling CORESET, applying, for two beams, two TCI states down-selected from the four unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, applying, for three beams, three TCI states down-selected from the four unified TCI states by the scheduling DCI, or applying, for four beams, the four unified TCI states.
  • process 1500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 15. Additionally, or alternatively, two or more of the blocks of process 1500 may be performed in parallel.
  • Fig. 16 is a diagram of an example apparatus 1600 for wireless communication, in accordance with the present disclosure.
  • the apparatus 1600 may be a UE (e.g., UE 120, UE 1120) , or a UE may include the apparatus 1600.
  • the apparatus 1600 includes a reception component 1602 and a transmission component 1604, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1600 may communicate with another apparatus 1606 (such as a UE, a base station, or another wireless communication device) using the reception component 1602 and the transmission component 1604.
  • the apparatus 1600 may include the communication manager 1608.
  • the communication manager 1608 may control and/or otherwise manage one or more operations of the reception component 1602 and/or the transmission component 1604.
  • the communication manager 1608 may include one or more antennas, a modem, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the communication manager 1608 may be, or be similar to, the communication manager 140 depicted in Figs. 1 and 2.
  • the communication manager 1608 may be configured to perform one or more of the functions described as being performed by the communication manager 140.
  • the communication manager 1608 may include the reception component 1602 and/or the transmission component 1604.
  • the communication manager 1608 may include a selection component 1610 and/or a TCI component 1612, among other examples.
  • the apparatus 1600 may be configured to perform one or more operations described herein in connection with Figs. 1-13. Additionally, or alternatively, the apparatus 1600 may be configured to perform one or more processes described herein, such as process 1400 of Fig. 14, process 1500 of Fig. 15, or a combination thereof.
  • the apparatus 1600 and/or one or more components shown in Fig. 16 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 16 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1602 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1606.
  • the reception component 1602 may provide received communications to one or more other components of the apparatus 1600.
  • the reception component 1602 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1600.
  • the reception component 1602 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 1604 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1606.
  • one or more other components of the apparatus 1600 may generate communications and may provide the generated communications to the transmission component 1604 for transmission to the apparatus 1606.
  • the transmission component 1604 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1606.
  • the transmission component 1604 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1604 may be co-located with the reception component 1602 in a transceiver.
  • the reception component 1602 may receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH.
  • the selection component 1610 may select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching.
  • the reception component 1602 may receive the PDSCH communication using the one or more selected default beams.
  • the TCI component 1612 may apply one unified TCI state of one CORESET, one SFN CORESET, or one non-SFN CORESET based at least in part on the UE supporting the single default beam.
  • the TCI component 1612 may apply two unified TCI states of a TCI codepoint in the message or two unified TCI states of an SFN CORESET based at least in part on the UE supporting the two default beams.
  • the TCI component 1612 may apply three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams.
  • the TCI component 1612 may apply four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams.
  • the TCI component 1612 may apply one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  • the TCI component 1612 may apply the two unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, the three default beams, or the four default beams.
  • the TCI component 1612 may apply two of the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams.
  • the TCI component 1612 may apply the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams or the four default beams.
  • the TCI component 1612 may apply two of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams.
  • the TCI component 1612 may apply three of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams.
  • the TCI component 1612 may apply the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the four default beams.
  • the TCI component 1612 may apply one unified TCI state of one CORESET based at least in part on the UE supporting the single default beam.
  • the TCI component 1612 may apply two unified TCI states of the TCI codepoint or two unified TCI states of an SFN CORESET based at least in part on the UE supporting the two default beams, where at least one TCI state has a serving SSB as a root QCL.
  • the TCI component 1612 may apply three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state has the serving SSB as the QCL.
  • the TCI component 1612 may apply four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state has the serving SSB as the QCL.
  • the TCI component 1612 may apply one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  • the TCI component 1612 may apply one unified TCI state of the two unified TCI states based at least in part on the UE supporting the single default beam, where the one unified TCI state is associated with a serving SSB.
  • the TCI component 1612 may apply the two unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, where at least one unified TCI state is associated with the SSB.
  • the TCI component 1612 may apply the two unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state is associated with the SSB.
  • the TCI component 1612 may apply the two unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state is associated with the SSB.
  • the TCI component 1612 may apply one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  • the TCI component 1612 may apply one unified TCI state of the three unified TCI states based at least in part on the UE supporting the single default beam, where the one unified TCI state is associated with a serving SSB.
  • the TCI component 1612 may apply two of the three unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, where at least one unified TCI state is associated with the SSB.
  • the TCI component 1612 may apply the three unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state is associated with the SSB.
  • the TCI component 1612 may apply the three unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state is associated with the SSB.
  • the TCI component 1612 may apply one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  • the TCI component 1612 may apply one unified TCI state of the four unified TCI states based at least in part on the UE supporting the single default beam, where the one unified TCI state is associated with a serving SSB.
  • the TCI component 1612 may apply two of the four unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, where at least one unified TCI state is associated with the SSB.
  • the TCI component 1612 may apply three of the four unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state is associated with the SSB.
  • the TCI component 1612 may apply the four unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state is associated with the SSB.
  • the reception component 1602 may receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN.
  • the reception component 1602 may receive a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
  • Fig. 16 The number and arrangement of components shown in Fig. 16 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 16. Furthermore, two or more components shown in Fig. 16 may be implemented within a single component, or a single component shown in Fig. 16 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 16 may perform one or more functions described as being performed by another set of components shown in Fig. 16.
  • a method of wireless communication performed by a user equipment comprising: receiving a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) ; selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being within a time offset for beam switching; and receiving the PDSCH communication using the one or more selected default beams.
  • TCI unified transmission configuration indicator
  • CJT coherent joint transmission
  • PDSCH physical downlink shared channel
  • Aspect 2 The method of Aspect 1, wherein the message indicates or activates a single unified TCI state for intra-cell beam management, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • Aspect 3 The method of Aspect 2, further comprising, for the one or more selected default beams: applying one unified TCI state of one control resource set (CORESET) , one single frequency network (SFN) CORESET, or one non-SFN CORESET based at least in part on the UE supporting the single default beam, applying two unified TCI states of a TCI codepoint in the message or two unified TCI states of an SFN CORESET based at least in part on the UE supporting the two default beams, applying three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, or applying four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams.
  • CORESET control resource set
  • SFN single frequency network
  • Aspect 4 The method of Aspect 2, further comprising applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  • Aspect 5 The method of Aspect 1, wherein the message indicates or activates two unified TCI states for intra-cell multiple transmit receive point (TRP) operation, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • TRP intra-cell multiple transmit receive point
  • Aspect 6 The method of Aspect 5, further comprising applying the two unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, the three default beams, or the four default beams.
  • Aspect 7 The method of Aspect 1, wherein the message indicates or activates three unified TCI states for intra-cell multiple transmit receive point (TRP) operation, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • TRP intra-cell multiple transmit receive point
  • Aspect 8 The method of Aspect 7, further comprising, for the one or more selected default beams: applying two of the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, or applying the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams or the four default beams.
  • Aspect 9 The method of Aspect 1, wherein the message indicates or activates four unified TCI states for intra-cell multiple transmit receive point (TRP) operation, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • TRP intra-cell multiple transmit receive point
  • Aspect 10 The method of Aspect 9, further comprising, for the one or more selected default beams: applying two of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, applying three of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams, or applying the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the four default beams.
  • Aspect 11 The method of Aspect 1, wherein the message includes a single DCI with a TCI codepoint for inter-cell multiple transmit receive point (TRP) operation, wherein the single DCI indicates or activates a single unified TCI state, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • TRP inter-cell multiple transmit receive point
  • Aspect 12 The method of Aspect 11, further comprising, for the one or more selected default beams: applying one unified TCI state of one control resource set (CORESET) based at least in part on the UE supporting the single default beam, applying two unified TCI states of the TCI codepoint or two unified TCI states of a single frequency network (SFN) CORESET based at least in part on the UE supporting the two default beams, wherein at least one TCI state has a serving synchronization signal block (SSB) as a root QCL, applying three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, wherein at least one TCI state has the serving SSB as the QCL, or applying four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, wherein at least one TCI state has the serving SSB as the QCL.
  • CORESET control resource set
  • SFN single frequency network
  • Aspect 13 The method of Aspect 12, further comprising applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  • Aspect 14 The method of Aspect 1, wherein the message includes a single DCI with a TCI codepoint for inter-cell multiple transmit receive point (TRP) operation, wherein the single DCI indicates or activates two unified TCI states, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • TRP inter-cell multiple transmit receive point
  • Aspect 15 The method of Aspect 14, further comprising, for the one or more selected default beams: applying one unified TCI state of the two unified TCI states based at least in part on the UE supporting the single default beam, wherein the one unified TCI state is associated with a serving synchronization signal block (SSB) , applying the two unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, wherein at least one unified TCI state is associated with the SSB, applying the two unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, wherein at least one TCI state is associated with the SSB, or applying the two unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, wherein at least one TCI state is associated with the SSB.
  • SSB serving
  • Aspect 16 The method of Aspect 14, further comprising applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  • Aspect 17 The method of Aspect 1, wherein the message includes a single DCI with a TCI codepoint for inter-cell multiple transmit receive point (TRP) operation, wherein the single DCI indicates or activates three unified TCI states, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • TRP inter-cell multiple transmit receive point
  • Aspect 18 The method of Aspect 17, further comprising, for the one or more selected default beams: applying one unified TCI state of the three unified TCI states based at least in part on the UE supporting the single default beam, wherein the one unified TCI state is associated with a serving synchronization signal block (SSB) , applying two of the three unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, wherein at least one unified TCI state is associated with the SSB, applying the three unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, wherein at least one TCI state is associated with the SSB, or applying the three unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, wherein at least one TCI state is associated with the SSB.
  • SSB
  • Aspect 19 The method of Aspect 17, further comprising applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  • Aspect 20 The method of Aspect 1, wherein the message includes a single DCI with a TCI codepoint for inter-cell multiple transmit receive point (TRP) operation, wherein the single DCI indicates or activates four unified TCI states, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  • TRP inter-cell multiple transmit receive point
  • Aspect 21 The method of Aspect 20, further comprising, for the one or more selected default beams: applying one unified TCI state of the four unified TCI states based at least in part on the UE supporting the single default beam, wherein the one unified TCI state is associated with a serving synchronization signal block (SSB) , applying two of the four unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, wherein at least one unified TCI state is associated with the SSB, applying three of the four unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, wherein at least one TCI state is associated with the SSB, or applying the four unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, wherein at least one TCI state is associated with the SSB.
  • a method of wireless communication performed by a user equipment (UE) comprising: receiving a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) in a single frequency network (SFN) ; and receiving a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being after a time offset for beam switching.
  • TCI transmission configuration indicator
  • CJT coherent joint transmission
  • PDSCH physical downlink shared channel
  • SFN single frequency network
  • Aspect 23 The method of Aspect 22, wherein the message indicates or activates a single unified TCI state for intra-cell beam management, and wherein the method further includes: applying, for a single beam, the single unified TCI state or a unified TCI state of a scheduling control resource set (CORESET) , or applying, for two beams, the single unified TCI state or two unified TCI states of an SFN-scheduling CORESET.
  • CORESET scheduling control resource set
  • Aspect 24 The method of Aspect 22, wherein the message indicates or activates two unified TCI states for intra-cell beam management, and wherein the method further includes: applying, for a single beam, a TCI state down-selected from the two unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , or applying, for two beams, the two unified TCI states or two unified TCI states of scheduling CORESETs.
  • CORESET scheduling control resource set
  • Aspect 25 The method of any of Aspects 22-24, wherein the message indicates or activates three unified TCI states for intra-cell beam management, and wherein the method further includes: applying, for a single beam, a TCI state down-selected from the three unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , applying, for two beams, two TCI states down-selected from the three unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, or applying, for three beams, the three unified TCI states.
  • CORESET scheduling control resource set
  • Aspect 26 The method of Aspect 22, wherein the message indicates or activates four unified TCI states for intra-cell beam management, and wherein the method further includes: applying, for a single beam, a TCI state down-selected from the four unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , applying, for two beams, two TCI states down-selected from the four unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, applying, for three beams, three TCI states down-selected from the four unified TCI states by the scheduling DCI, or applying, for four beams, the four unified TCI states.
  • CORESET scheduling control resource set
  • Aspect 27 The method of Aspect 22, wherein the message indicates or activates a single unified TCI state for inter-cell multiple transmit receive point (TRP) operation, and wherein the method further includes: applying, for a single beam, the single unified TCI state or a first TCI state of a lowest control resource set (CORESET) identifier in a latest slot, or applying, for two beams, the single unified TCI state or two unified TCI states of a scheduling CORESET.
  • TRP inter-cell multiple transmit receive point
  • Aspect 28 The method of Aspect 22, wherein the message indicates or activates two unified TCI states for inter-cell multiple transmit receive point (TRP) operation, and wherein the method further includes: applying, for a single beam, a TCI state down-selected from the two unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , or applying, for two beams, the two unified TCI states or two unified TCI states of scheduling CORESETs.
  • TRP inter-cell multiple transmit receive point
  • Aspect 29 The method of Aspect 22, wherein the message indicates or activates three unified TCI states for inter-cell multiple transmit receive point (TRP) operation, and wherein the method further includes: applying, for a single beam, a TCI state down-selected from the three unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , applying, for two beams, two TCI states down-selected from the three unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, or applying, for three beams, the three unified TCI states.
  • CORESET scheduling control resource set
  • Aspect 30 The method of Aspect 22, wherein the message indicates or activates four unified TCI states for inter-cell multiple transmit receive point (TRP) operation, and wherein the method further includes: applying, for a single beam, a TCI state down-selected from the four unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , applying, for two beams, two TCI states down-selected from the four unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, applying, for three beams, three TCI states down-selected from the four unified TCI states by the scheduling DCI, or applying, for four beams, the four unified TCI states.
  • CORESET scheduling control resource set
  • a method of wireless communication performed by a network entity comprising: transmitting a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) ; selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being within a time offset for beam switching; and transmitting the PDSCH communication using the one or more selected default beams.
  • TCI unified transmission configuration indicator
  • CJT coherent joint transmission
  • PDSCH physical downlink shared channel
  • a method of wireless communication performed by a network entity comprising: transmitting a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) in a single frequency network (SFN) ; and transmitting a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being after a time offset for beam switching.
  • TCI transmission configuration indicator
  • CJT coherent joint transmission
  • PDSCH physical downlink shared channel
  • SFN single frequency network
  • Aspect 33 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-32.
  • Aspect 34 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-32.
  • Aspect 35 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-32.
  • Aspect 36 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-32.
  • Aspect 37 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-32.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) .
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a message that indicates or activates one or more unified transmission configuration indicator states associated with coherent joint transmission operations for a physical downlink shared channel (PDSCH). The UE may select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling downlink control information and a scheduled time resource being within a time offset for beam switching. The UE may receive the PDSCH communication using the one or more selected default beams. Numerous other aspects are described.

Description

BEAM SELECTION FOR COHERENT JOINT TRANSMISSION
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for beam selection for coherent joint transmission.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs. A UE may communicate with a base station via downlink communications and uplink communications. “Downlink” (or “DL” ) refers to a communication link from the base station to the UE, and “uplink” (or “UL” ) refers to a communication link from the UE to the base station.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different UEs to communicate on a municipal, national, regional, and/or global level. New Radio (NR) , which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP- OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
Some aspects described herein relate to a method of wireless communication performed by a user equipment (UE) . The method may include receiving a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) . The method may include selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being within a time offset for beam switching. The method may include receiving the PDSCH communication using the one or more selected default beams.
Some aspects described herein relate to a method of wireless communication performed by a UE. The method may include receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in a single frequency network (SFN) . The method may include receiving a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
Some aspects described herein relate to a UE for wireless communication. The UE may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH. The one or more processors may be configured to select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for  beam switching. The one or more processors may be configured to receive the PDSCH communication using the one or more selected default beams.
Some aspects described herein relate to a UE for wireless communication. The UE may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN. The one or more processors may be configured to receive a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH. The set of instructions, when executed by one or more processors of the UE, may cause the UE to select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive the PDSCH communication using the one or more selected default beams.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH. The apparatus may include means for selecting one or more default beams  for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching. The apparatus may include means for receiving the PDSCH communication using the one or more selected default beams.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN. The apparatus may include means for receiving a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, UE, base station, network entity, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages, will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
While aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios. Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements. For example, some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence  devices) . Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components. Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects. For example, transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) . It is intended that aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
Fig. 2 is a diagram illustrating an example of a network entity (e.g., base station) in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
Fig. 3 is a diagram illustrating an example of a disaggregated base station, in accordance with the present disclosure.
Fig. 4 illustrates an example logical architecture of a distributed random access network (RAN) , in accordance with the present disclosure.
Fig. 5 is a diagram illustrating an example of multiple transmit receive point (TRP) communication, in accordance with the present disclosure.
Fig. 6 is a diagram illustrating examples of beam management procedures, in accordance with the present disclosure.
Fig. 7 is a diagram illustrating an example of using beams for communications between a network entity and a UE, in accordance with the present disclosure.
Fig. 8 is a diagram illustrating an example of coherent joint transmission (CJT) and non-CJT for multiple TRPs, in accordance with the present disclosure.
Fig. 9 is a diagram illustrating an example of CJT for a physical downlink shared channel, in accordance with the present disclosure.
Fig. 10 is a diagram illustrating an example of beam selection, in accordance with the present disclosure.
Fig. 11 is a diagram illustrating an example of default beam selection within a time offset for beam switching, in accordance with the present disclosure.
Fig. 12 is a diagram illustrating an example of beam selection, in accordance with the present disclosure.
Fig. 13 is a diagram illustrating an example of beam selection after a time offset for beam switching, in accordance with the present disclosure.
Fig. 14 is a diagram illustrating an example process performed, for example, by a UE, in accordance with the present disclosure.
Fig. 15 is a diagram illustrating an example process performed, for example, by a UE, in accordance with the present disclosure.
Fig. 16 is a diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. One skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using  other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
While aspects may be described herein using terminology commonly associated with a 5G or New Radio (NR) radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure. The wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples. The wireless network 100 may include a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) . The wireless network 100 may also include one or more network entities, such as base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , and/or other network entities. A base station 110 is a network entity that communicates with UEs 120. A base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmit receive point (TRP) . Each base station 110 may provide communication coverage for a particular geographic area. In the Third Generation Partnership Project (3GPP) , the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted  access by UEs 120 with service subscriptions. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) . A base station 110 for a macro cell may be referred to as a macro base station. A base station 110 for a pico cell may be referred to as a pico base station. A base station 110 for a femto cell may be referred to as a femto base station or an in-home base station. In the example shown in Fig. 1, the BS 110a may be a macro base station for a macro cell 102a, the BS 110b may be a pico base station for a pico cell 102b, and the BS 110c may be a femto base station for a femto cell 102c. A base station may support one or multiple (e.g., three) cells.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) . In some examples, the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network entities in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
In some aspects, the terms “base station” (e.g., the base station 110) or “network entity” may refer to an aggregated base station, a disaggregated base station, an integrated access and backhaul (IAB) node, a relay node, and/or one or more components thereof. For example, in some aspects, “base station” or “network entity” may refer to a central unit (CU) , a distributed unit (DU) , a radio unit (RU) , a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC, or a combination thereof. In some aspects, the terms “base station” or “network entity” may refer to one device configured to perform one or more functions, such as those described herein in connection with the base station 110. In some aspects, the terms “base station” or “network entity” may refer to a plurality of devices configured to perform the one or more functions. For example, in some distributed systems, each of a number of different devices (which may be located in the same geographic location or in different geographic locations) may be configured to perform at least a portion of a function, or to duplicate performance of at least a portion of the function, and the terms “base station” or “network entity” may refer to any one or more of those different devices. In some aspects, the terms “base station” or “network entity” may refer to one  or more virtual base stations and/or one or more virtual base station functions. For example, in some aspects, two or more base station functions may be instantiated on a single device. In some aspects, the terms “base station” or “network entity” may refer to one of the base station functions and not another. In this way, a single device may include more than one base station.
The wireless network 100 may include one or more relay stations. A relay station is a network entity that can receive a transmission of data from an upstream station (e.g., a network entity or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a network entity) . A relay station may be a UE 120 that can relay transmissions for other UEs 120. In the example shown in Fig. 1, the BS 110d (e.g., a relay base station) may communicate with the BS 110a (e.g., a macro base station) and the UE 120d in order to facilitate communication between the BS 110a and the UE 120d. A base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
The wireless network 100 may be a heterogeneous network with network entities that include different types of BSs, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100. For example, macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to or communicate with a set of network entities and may provide coordination and control for these network entities. The network controller 130 may communicate with the base stations 110 via a backhaul communication link. The network entities may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
The UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile. A UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit. A UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a  wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, and/or any other suitable device that is configured to communicate via a wireless medium.
Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a network entity, another device (e.g., a remote device) , or some other entity. Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices. Some UEs 120 may be considered a Customer Premises Equipment. A UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components. In some examples, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In general, any number of wireless networks 100 may be deployed in a given geographic area. Each wireless network 100 may support a particular RAT and may operate on one or more frequencies. A RAT may be referred to as a radio technology, an air interface, or the like. A frequency may be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a network entity as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network. In such examples, a UE 120 may perform scheduling operations, resource selection  operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4-1 (52.6 GHz –71 GHz) , FR4 (52.6 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above examples in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band. It is contemplated that the frequencies included in these operating bands (e.g., FR1, FR2, FR3, FR4, FR4-a,  FR4-1, and/or FR5) may be modified, and techniques described herein are applicable to those modified frequency ranges.
In some aspects, a UE (e.g., UE 120) may include a communication manager 140. As described in more detail elsewhere herein, the communication manager 140 may receive a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) . The communication manager 140 may select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being within a time offset for beam switching. The communication manager 140 may receive the PDSCH communication using the one or more selected default beams.
In some aspects, the communication manager 140 may receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in a single frequency network (SFN) . The communication manager 140 may receive a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
In some aspects, a network entity (e.g., base station 110) may include a communication manager 150. As described in more detail elsewhere herein, the communication manager 150 may transmit a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH. The communication manager 150 may select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching. The communication manager 150 may receive the PDSCH communication using the one or more selected default beams.
In some aspects, the communication manager 150 may transmit a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN. The communication manager 150 may transmit a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a  scheduled time resource being after a time offset for beam switching. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a network entity (e.g., base station 110) in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure. The base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ≥ 1) . The UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ≥ 1) .
At the base station 110, a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) . The transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120. The base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120. The transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. The transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t. For example, each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232. Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal. The modems 232a through 232t may transmit a set of downlink signals (e.g., T  downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
At the UE 120, a set of antennas 252 (shown as antennas 252a through 252r) may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r. For example, each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254. Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples. Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples. In some examples, one or more components of the UE 120 may be included in a housing 284.
The network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292. The network controller 130 may include, for example, one or more devices in a core network. The network controller 130 may communicate with the network entity via the communication unit 294.
One or more antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one  or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at the UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280. The transmit processor 264 may generate reference symbols for one or more reference signals. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the network entity. In some examples, the modem 254 of the UE 120 may include a modulator and a demodulator. In some examples, the UE 120 includes a transceiver. The transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266. The transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 4-16) .
At the network entity (e.g., base station 110) , the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240. The network entity may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244. The network entity may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications. In some examples, the modem 232 of the network entity may include a modulator and a demodulator. In some examples, the network entity includes a transceiver. The transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230. The transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 4-16) .
A controller/processor of a network entity (e.g., the controller/processor 240 of the base station 110) , the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with beam selection for CJT, as described in more detail elsewhere herein. For example, the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 1400 of Fig. 14, process 1500 of Fig. 15, and/or other processes as described herein. The memory 242 and the memory 282 may store data and program codes for the network entity and the UE 120, respectively. In some examples, the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the network entity and/or the UE 120, may cause the one or more processors, the UE 120, and/or the network entity to perform or direct operations of, for example, process 1400 of Fig. 14, process 1500 of Fig. 15, and/or other processes as described herein. In some examples, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, a UE (e.g., UE 120) includes means for receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH; means for selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching; and/or means for receiving the PDSCH communication using the one or more selected default beams. The means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
In some aspects, the UE includes means for receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN; and/or means for receiving a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a  time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
In some aspects, a network entity (e.g., base station 110) includes means for transmitting a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH; means for selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching; and/or means for receiving the PDSCH communication using the one or more selected default beams. The means for the UE to perform operations described herein may include, for example, one or more of communication manager 150, antenna 234, modem 232, MIMO detector 236, receive processor 238, transmit processor 220, TX MIMO processor 230, controller/processor 240, or memory 242.
In some aspects, the network entity includes means for transmitting a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN; and/or means for transmitting a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example of a disaggregated base station 300, in accordance with the present disclosure.
Deployment of communication systems, such as 5G NR systems, may be arranged in multiple manners with various components or constituent parts. In a 5G NR system, or network, a network node, a network entity, a mobility element of a network, a radio access network (RAN) node, a core network node, a network element, or a network equipment, such as a base station, or one or more units (or one or more components) performing base station functionality, may be implemented in an aggregated or disaggregated architecture. For example, a BS (such as a Node B, evolved NB (eNB) , NR BS, 5G NB, access point (AP) , a TRP, or a cell, etc. ) may be implemented as an aggregated base station (also known as a standalone BS or a monolithic BS) or a disaggregated base station.
An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node. A disaggregated  base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more CUs, one or more DUs, or one or more RUs) . In some aspects, a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other RAN nodes. The DUs may be implemented to communicate with one or more RUs. Each of the CU, DU, and RU also can be implemented as virtual units, such as a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) .
Base station-type operation or network design may consider aggregation characteristics of base station functionality. For example, disaggregated base stations may be utilized in an IAB network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN Alliance) ) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) . Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design. The various units of the disaggregated base station, or disaggregated RAN architecture, can be configured for wired or wireless communication with at least one other unit.
The disaggregated base station 300 architecture may include one or more CUs 310 that can communicate directly with a core network 320 via a backhaul link, or indirectly with the core network 320 through one or more disaggregated base station units (such as a Near-RT RIC 325 via an E2 link, or a Non-RT RIC 315 associated with a Service Management and Orchestration (SMO) Framework 305, or both) . A CU 310 may communicate with one or more DUs 330 via respective midhaul links, such as an F1 interface. The DUs 330 may communicate with one or more RUs 340 via respective fronthaul links. The fronthaul link, the midhaul link, and the backhaul link may be generally referred to as “communication links. ” The RUs 340 may communicate with respective UEs 120 via one or more RF access links. In some aspects, the UE 120 may be simultaneously served by multiple RUs 340. The DUs 330 and the RUs 340 may also be referred to as “O-RAN DUs (O-DUs” ) and “O-RAN RUs (O-RUs) ” , respectively. A network entity may include a CU, a DU, an RU, or any combination of CUs, DUs, and RUs. A network entity may include a disaggregated base station or one or more components of the disaggregated base station, such as a CU, a DU, an RU, or any combination of CUs, DUs, and RUs. A network entity may also include one or  more of a TRP, a relay station, a passive device, an intelligent reflective surface (IRS) , or other components that may provide a network interface for or serve a UE, mobile station, sensor/actuator, or other wireless device.
Each of the units, i.e., the CUs 310, the DUs 330, the RUs 340, as well as the Near-RT RICs 325, the Non-RT RICs 315 and the SMO Framework 305, may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium. Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units, can be configured to communicate with one or more of the other units via the transmission medium. For example, the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units. Additionally, the units can include a wireless interface, which may include a receiver, a transmitter or transceiver (such as an RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
In some aspects, the CU 310 may host one or more higher layer control functions. Such control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like. Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 310. The CU 310 may be configured to handle user plane functionality (i.e., Central Unit –User Plane (CU-UP) ) , control plane functionality (i.e., Central Unit –Control Plane (CU-CP) ) , or a combination thereof. In some implementations, the CU 310 can be logically split into one or more CU-UP units and one or more CU-CP units. The CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration. The CU 310 can be implemented to communicate with the DU 330, as necessary, for network control and signaling.
The DU 330 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 340. In some aspects, the DU 330 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those  defined by the 3GPP. In some aspects, the DU 330 may further host one or more low PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 330, or with the control functions hosted by the CU 310.
Lower-layer functionality can be implemented by one or more RUs 340. In some deployments, an RU 340, controlled by a DU 330, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split. In such an architecture, the RU (s) 340 can be implemented to handle over the air (OTA) communication with one or more UEs 120. In some implementations, real-time and non-real-time aspects of control and user plane communication with the RU (s) 340 can be controlled by the corresponding DU 330. In some scenarios, this configuration can enable the DU (s) 330 and the CU 310 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
The SMO Framework 305 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements. For non-virtualized network elements, the SMO Framework 305 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (such as an O1 interface) . For virtualized network elements, the SMO Framework 305 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 390) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) . Such virtualized network elements can include, but are not limited to, CUs 310, DUs 330, RUs 340 and Near-RT RICs 325. In some implementations, the SMO Framework 305 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 311, via an O1 interface. Additionally, in some implementations, the SMO Framework 305 can communicate directly with one or more RUs 340 via an O1 interface. The SMO Framework 305 also may include a Non-RT RIC 315 configured to support functionality of the SMO Framework 305.
The Non-RT RIC 315 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources,  Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 325. The Non-RT RIC 315 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 325. The Near-RT RIC 325 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 310, one or more DUs 330, or both, as well as an O-eNB, with the Near-RT RIC 325.
In some implementations, to generate AI/ML models to be deployed in the Near-RT RIC 325, the Non-RT RIC 315 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 325 and may be received at the SMO Framework 305 or the Non-RT RIC 315 from non-network data sources or from network functions. In some examples, the Non-RT RIC 315 or the Near-RT RIC 325 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 315 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 305 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 illustrates an example logical architecture of a distributed RAN 400, in accordance with the present disclosure.
5G access node 405 may include an access node controller 410. The access node controller 410 may be a CU of the distributed RAN 400. In some aspects, a backhaul interface to a 5G core network 415 may terminate at the access node controller 410. The 5G core network 415 may include a 5G control plane component 420 and a 5G user plane component 425 (e.g., a 5G gateway) , and the backhaul interface for one or both of the 5G control plane and the 5G user plane may terminate at the access node controller 410. Additionally, or alternatively, a backhaul interface to one or more neighbor access nodes 430 (e.g., another 5G access node 405 and/or an LTE access node) may terminate at the access node controller 410.
The access node controller 410 may include and/or may communicate with one or more TRPs 435 (e.g., via an F1 Control (F1-C) interface and/or an F1 User (F1-U) interface) . A TRP 435 may be a DU of the distributed RAN 400. In some aspects, a  TRP 435 may correspond to a base station 110 described above in connection with Fig. 1. For example, different TRPs 435 may be included in different base stations 110. Additionally, or alternatively, multiple TRPs 435 may be included in a single base station 110. In some aspects, a base station 110 may include a CU (e.g., access node controller 410) and/or one or more DUs (e.g., one or more TRPs 435) . In some cases, a TRP 435 may be referred to as a cell, a panel, an antenna array, or an array.
TRP 435 may be connected to a single access node controller 410 or to multiple access node controllers 410. In some aspects, a dynamic configuration of split logical functions may be present within the architecture of distributed RAN 400. For example, a PDCP layer, an RLC layer, and/or a MAC layer may be configured to terminate at the access node controller 410 or at a TRP 435.
In some aspects, multiple TRPs 435 may transmit communications (e.g., the same communication or different communications) in the same transmission time interval (TTI) (e.g., a slot, a mini-slot, a subframe, or a symbol) or different TTIs using different quasi-co-location (QCL) relationships (e.g., different spatial parameters, different TCI states, different precoding parameters, and/or different beamforming parameters) . In some aspects, a TCI state may be used to indicate one or more QCL relationships. A TRP 435 may be configured to individually (e.g., using dynamic selection) or jointly (e.g., using joint transmission with one or more other TRPs 435) serve traffic to a UE 120.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what was described with regard to Fig. 4.
Fig. 5 is a diagram illustrating an example 500 of multiple TRP (multi-TRP) communication (sometimes referred to as multi-panel communication) , in accordance with the present disclosure. As shown in Fig. 5, multiple TRPs 505 may communicate with the same UE 120. A TRP 505 may correspond to a TRP 435 described above in connection with Fig. 4.
The multiple TRPs 505 (shown as TRP A and TRP B) may communicate with the same UE 120 in a coordinated manner (e.g., using coordinated multipoint transmissions) to improve reliability and/or increase throughput. The TRPs 505 may coordinate such communications via an interface between the TRPs 505 (e.g., a backhaul interface and/or an access node controller 410) . The interface may have a smaller delay and/or higher capacity when the TRPs 505 are co-located at the same base station 110 (e.g., when the TRPs 505 are different antenna arrays or panels of the same  base station 110) , and may have a larger delay and/or lower capacity (as compared to co-location) when the TRPs 505 are located at different base stations 110. The different TRPs 505 may communicate with the UE 120 using different QCL relationships (e.g., different TCI states) , different DMRS ports, and/or different layers (e.g., of a multi-layer communication) .
In a first multi-TRP transmission mode (e.g., Mode 1) , a single physical downlink control channel (PDCCH) may be used to schedule downlink data communications for a single PDSCH. In this case, multiple TRPs 505 (e.g., TRP A and TRP B) may transmit communications to the UE 120 on the same PDSCH. For example, a communication may be transmitted using a single codeword with different spatial layers for different TRPs 505 (e.g., where one codeword maps to a first set of layers transmitted by a first TRP 505 and maps to a second set of layers transmitted by a second TRP 505) . As another example, a communication may be transmitted using multiple codewords, where different codewords are transmitted by different TRPs 505 (e.g., using different sets of layers) . In either case, different TRPs 505 may use different QCL relationships (e.g., different TCI states) for different DMRS ports corresponding to different layers. For example, a first TRP 505 may use a first QCL relationship or a first TCI state for a first set of DMRS ports corresponding to a first set of layers, and a second TRP 505 may use a second (different) QCL relationship or a second (different) TCI state for a second (different) set of DMRS ports corresponding to a second (different) set of layers. In some aspects, a TCI state in DCI (e.g., transmitted on the PDCCH, such as DCI format 1_0 or DCI format 1_1) may indicate the first QCL relationship (e.g., by indicating a first TCI state) and the second QCL relationship (e.g., by indicating a second TCI state) . The first and the second TCI states may be indicated using a TCI field in the DCI. In general, the TCI field can indicate a single TCI state (for single-TRP transmission) or multiple TCI states (for multi-TRP transmission as discussed here) in this multi-TRP transmission mode (e.g., Mode 1) .
In a second multi-TRP transmission mode (e.g., Mode 2) , multiple PDCCHs may be used to schedule downlink data communications for multiple corresponding PDSCHs (e.g., one PDCCH for each PDSCH) . In this case, a first PDCCH may schedule a first codeword to be transmitted by a first TRP 505, and a second PDCCH may schedule a second codeword to be transmitted by a second TRP 505. Furthermore, first DCI (e.g., transmitted by the first TRP 505) may schedule a first PDSCH communication associated with a first set of DMRS ports with a first QCL relationship  (e.g., indicated by a first TCI state) for the first TRP 505, and second DCI (e.g., transmitted by the second TRP 505) may schedule a second PDSCH communication associated with a second set of DMRS ports with a second QCL relationship (e.g., indicated by a second TCI state) for the second TRP 505. In this case, DCI (e.g., having DCI format 1_0 or DCI format 1_1) may indicate a corresponding TCI state for a TRP 505 corresponding to the DCI. The TCI field of a DCI indicates the corresponding TCI state (e.g., the TCI field of the first DCI indicates the first TCI state and the TCI field of the second DCI indicates the second TCI state) .
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
Fig. 6 is a diagram illustrating examples 600, 610, and 620 of beam management procedures, in accordance with the present disclosure. As shown in Fig. 6, examples 600, 610, and 620 include a UE 120 in communication with a network entity (e.g., base station 110) in a wireless network (e.g., wireless network 100) . However, the devices shown in Fig. 6 are provided as examples, and the wireless network may support communication and beam management between other devices (e.g., between a UE 120 and a base station 110 or TRP, between a mobile termination node and a control node, between an IAB child node and an IAB parent node, and/or between a scheduled node and a scheduling node) . In some aspects, the UE 120 and the base station 110 may be in a connected state (e.g., an RRC connected state) .
As shown in Fig. 6, example 600 may include a base station 110 and a UE 120 communicating to perform beam management using channel state information (CSI) reference signals (CSI-RSs) . Example 600 depicts a first beam management procedure (e.g., P1 CSI-RS beam management) . The first beam management procedure may be referred to as a beam selection procedure, an initial beam acquisition procedure, a beam sweeping procedure, a cell search procedure, and/or a beam search procedure. As shown in Fig. 6 and example 600, CSI-RSs may be configured to be transmitted from the base station 110 to the UE 120. The CSI-RSs may be configured to be periodic (e.g., using RRC signaling) , semi-persistent (e.g., using MAC control element (MAC CE) signaling) , and/or aperiodic (e.g., using DCI) .
The first beam management procedure may include the base station 110 performing beam sweeping over multiple transmit (Tx) beams. The base station 110 may transmit a CSI-RS using each transmit beam for beam management. To enable the UE 120 to perform receive (Rx) beam sweeping, the base station may use a transmit  beam to transmit (e.g., with repetitions) each CSI-RS at multiple times within the same reference signal (RS) resource set so that the UE 120 can sweep through receive beams in multiple transmission instances. For example, if the base station 110 has a set of N transmit beams and the UE 120 has a set of M receive beams, the CSI-RS may be transmitted on each of the N transmit beams M times so that the UE 120 may receive M instances of the CSI-RS per transmit beam. In other words, for each transmit beam of the base station 110, the UE 120 may perform beam sweeping through the receive beams of the UE 120. As a result, the first beam management procedure may enable the UE 120 to measure a CSI-RS on different transmit beams using different receive beams to support selection of base station 110 transmit beams/UE 120 receive beam (s) beam pair (s) . The UE 120 may report the measurements to the base station 110 to enable the base station 110 to select one or more beam pair (s) for communication between the base station 110 and the UE 120. While example 600 has been described in connection with CSI-RSs, the first beam management process may also use synchronization signal blocks (SSBs) for beam management in a similar manner as described above.
As shown in Fig. 6, example 610 may include a base station 110 and a UE 120 communicating to perform beam management using CSI-RSs. Example 610 depicts a second beam management procedure (e.g., P2 CSI-RS beam management) . The second beam management procedure may be referred to as a beam refinement procedure, a base station beam refinement procedure, a TRP beam refinement procedure, and/or a transmit beam refinement procedure. As shown in Fig. 6 and example 610, CSI-RSs may be configured to be transmitted from the base station 110 to the UE 120. The CSI-RSs may be configured to be aperiodic (e.g., using DCI) . The second beam management procedure may include the base station 110 performing beam sweeping over one or more transmit beams. The one or more transmit beams may be a subset of all transmit beams associated with the base station 110 (e.g., determined based at least in part on measurements reported by the UE 120 in connection with the first beam management procedure) . The base station 110 may transmit a CSI-RS using each transmit beam of the one or more transmit beams for beam management. The UE 120 may measure each CSI-RS using a single (e.g., a same) receive beam (e.g., determined based at least in part on measurements performed in connection with the first beam management procedure) . The second beam management procedure may enable the base station 110 to select a best transmit beam based at least in part on measurements of the  CSI-RSs (e.g., measured by the UE 120 using the single receive beam) reported by the UE 120.
As shown in Fig. 6, example 620 depicts a third beam management procedure (e.g., P3 CSI-RS beam management) . The third beam management procedure may be referred to as a beam refinement procedure, a UE beam refinement procedure, and/or a receive beam refinement procedure. As shown in Fig. 6 and example 620, one or more CSI-RSs may be configured to be transmitted from the base station 110 to the UE 120. The CSI-RSs may be configured to be aperiodic (e.g., using DCI) . The third beam management process may include the base station 110 transmitting the one or more CSI-RSs using a single transmit beam (e.g., determined based at least in part on measurements reported by the UE 120 in connection with the first beam management procedure and/or the second beam management procedure) . To enable the UE 120 to perform receive beam sweeping, the base station may use a transmit beam to transmit (e.g., with repetitions) CSI-RS at multiple times within the same RS resource set so that UE 120 can sweep through one or more receive beams in multiple transmission instances. The one or more receive beams may be a subset of all receive beams associated with the UE 120 (e.g., determined based at least in part on measurements performed in connection with the first beam management procedure and/or the second beam management procedure) . The third beam management procedure may enable the base station 110 and/or the UE 120 to select a best receive beam based at least in part on reported measurements received from the UE 120 (e.g., of the CSI-RS of the transmit beam using the one or more receive beams) .
As indicated above, Fig. 6 is provided as an example of beam management procedures. Other examples of beam management procedures may differ from what is described with respect to Fig. 6. For example, the UE 120 and the base station 110 may perform the third beam management procedure before performing the second beam management procedure, and/or the UE 120 and the base station 110 may perform a similar beam management procedure to select a UE transmit beam.
Fig. 7 is a diagram illustrating an example 700 of using beams for communications between a network entity (e.g., base station 110) and a UE (e.g., UE 120) , in accordance with the present disclosure. As shown in Fig. 7, a base station 110 and a UE 120 may communicate with one another.
The base station 110 may transmit to UEs 120 located within a coverage area of the base station 110. The base station 110 and the UE 120 may be configured for  beamformed communications, where the base station 110 may transmit in the direction of the UE 120 using a directional network entity transmit beam (e.g., a BS transmit beam) , and the UE 120 may receive the transmission using a directional UE receive beam. Each transmit beam may have an associated beam ID, beam direction, or beam symbols, among other examples. The base station 110 may transmit downlink communications via one or more transmit beams 705.
The UE 120 may attempt to receive downlink transmissions via one or more UE receive beams 710, which may be configured using different beamforming parameters at receive circuitry of the UE 120. The UE 120 may identify a particular transmit beam 705, shown as transmit beam 705-A, and a particular UE receive beam 710, shown as UE receive beam 710-A, that provide relatively favorable performance (for example, that have a best channel quality of the different measured combinations of transmit beams 705 and UE receive beams 710) . In some examples, the UE 120 may transmit an indication of which transmit beam 705 is identified by the UE 120 as a preferred transmit beam, which the base station 110 may select for transmissions to the UE 120. The UE 120 may thus attain and maintain a beam pair link (BPL) with the base station 110 for downlink communications (for example, a combination of the transmit beam 705-A and the UE receive beam 710-A) , which may be further refined and maintained in accordance with one or more established beam refinement procedures.
A downlink beam, such as a transmit beam 705 or a UE receive beam 710, may be associated with a TCI state. A TCI state may indicate a directionality or a characteristic of the downlink beam, such as one or more QCL properties of the downlink beam. A QCL property may include, for example, a Doppler shift, a Doppler spread, an average delay, a delay spread, or spatial receive parameters, among other examples. In some examples, each transmit beam 705 may be associated with a SSB, and the UE 120 may indicate a preferred transmit beam 705 by transmitting uplink transmissions in resources of the SSB that are associated with the preferred transmit beam 705. A particular SSB may have an associated TCI state (for example, for an antenna port or for beamforming) . The base station 110 may, in some examples, indicate a downlink transmit beam 705 based at least in part on antenna port QCL properties that may be indicated by the TCI state. A TCI state may be associated with one downlink reference signal set (for example, an SSB and an aperiodic, periodic, or semi-persistent CSI-RS) for different QCL types (for example, QCL types for different  combinations of Doppler shift, Doppler spread, average delay, delay spread, or spatial receive parameters, among other examples) . In cases where the QCL type indicates spatial receive parameters, the QCL type may correspond to analog receive beamforming parameters of a UE receive beam 710 at the UE 120. Thus, the UE 120 may select a corresponding UE receive beam 710 from a set of BPLs based at least in part on the base station 110 indicating a transmit beam 705 via a TCI indication.
The base station 110 may maintain a set of activated TCI states for downlink shared channel transmissions and a set of activated TCI states for downlink control channel transmissions. The set of activated TCI states for downlink shared channel transmissions may correspond to beams that the base station 110 uses for downlink transmission on a PDSCH. The set of activated TCI states for downlink control channel communications may correspond to beams that the base station 110 may use for downlink transmission on a PDCCH or in a control resource set (CORESET) . The UE 120 may also maintain a set of activated TCI states for receiving the downlink shared channel transmissions and the CORESET transmissions. If a TCI state is activated for the UE 120, then the UE 120 may have one or more antenna configurations based at least in part on the TCI state, and the UE 120 may not need to reconfigure antennas or antenna weighting configurations. In some examples, the set of activated TCI states (for example, activated PDSCH TCI states and activated CORESET TCI states) for the UE 120 may be configured by a configuration message, such as an RRC message.
Similarly, for uplink communications, the UE 120 may transmit in the direction of the base station 110 using a directional UE transmit beam, and the base station 110 may receive the transmission using a directional receive beam. Each UE transmit beam may have an associated beam ID, beam direction, or beam symbols, among other examples. The UE 120 may transmit uplink communications via one or more UE transmit beams 715.
The base station 110 may receive uplink transmissions via one or more receive beams 720 (e.g., BS receive beams) . The base station 110 may identify a particular UE transmit beam 715, shown as UE transmit beam 715-A, and a particular receive beam 720, shown as receive beam 720-A, that provide relatively favorable performance (for example, that have a best channel quality of the different measured combinations of UE transmit beams 715 and receive beams 720) . In some examples, the base station 110 may transmit an indication of which UE transmit beam 715 is identified by the base station 110 as a preferred UE transmit beam, which the base station 110 may select for  transmissions from the UE 120. The UE 120 and the base station 110 may thus attain and maintain a BPL for uplink communications (for example, a combination of the UE transmit beam 715-A and the receive beam 720-A) , which may be further refined and maintained in accordance with one or more established beam refinement procedures. An uplink beam, such as a UE transmit beam 715 or a receive beam 720, may be associated with a spatial relation. A spatial relation may indicate a directionality or a characteristic of the uplink beam, similar to one or more QCL properties, as described above.
3GPP standards Release 17 established a unified TCI state framework in which a TCI state may be used to indicate more than one beam. The TCI state may be used to indicate beams for a downlink channel or RS and/or an uplink channel or RS. There may be multiple types of unified TCI states. For example, a joint downlink/uplink common TCI state may indicate a common beam for at least one downlink channel or RS and at least one uplink channel or RS. This may be Type 1 and may include at least a UE-specific PDCCH, PDSCH, physical uplink control channel (PUCCH) , and physical uplink shared channel (PUSCH) . A separate downlink common TCI state may indicate a common beam for more than one downlink channel or RS. This may be Type 2 and may include at least a UE-specific PDCCH and PDSCH. A separate uplink common TCI state may indicate a common beam for more than one uplink channel or RS. This may be Type 3 and may include at least a UE-specific PUCCH and PUSCH. Other types of unified TCI states may include a separate downlink single channel or RS TCI state that indicates a beam for a single downlink channel or RS, a separate uplink single channel or RS TCI state that indicates a beam for a single uplink channel or RS, or an uplink spatial relation information, such as a spatial relation indicator (SRI) , that indicates a beam for a single uplink channel or RS.
A network entity may transmit a unified TCI state indication that indicates a unified TCI state. The unified TCI state indication may provide, for a downlink or a joint TCI state, QCL-Type1 (e.g., for QCL-Type A) and QCL-Type2 (e.g., for QCL-Type D) . The unified TCI state indication may also provide, for a downlink or a joint TCI state, power control parameters, such as a P0 value, an alpha value, or cross-link interference (CLI) information. For a joint TCI state, the unified TCI state indication may indicate a path loss RS. For an uplink TCI state, the unified TCI state indication may indicate an RS (e.g., for a spatial filter) and/or power control parameters.
As indicated above, Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.
Fig. 8 is a diagram illustrating an example 800 of CJT and non-CJT (NCJT) for multiple TRPs, in accordance with the present disclosure.
CJT involves multiple transmitters that each transmit a message with a phase that is constructively combined at a receiver. CJT may include beamforming with antennas that are not co-located and that correspond to different TRPs. CJT may improve the signal power and spatial diversity of communications in an NR network.
For NCJT that is based on spatial domain multiplexing (SDM) , data is precoded separately on different TRPs. For example, precoder A is precoded for one TRP, and precoder B is precoded for a separate TRP. This may be expressed as: 
Figure PCTCN2022133681-appb-000001
where letters not in bold are for precoder A and data for a first TRP, and letters in bold are for precoder B and data for a second TRP. For example, precoder
Figure PCTCN2022133681-appb-000002
may indicate a precoder for a specific TRP and rank (indicated by rank indicator (RI) ) . Data (RI TRP×1) X A: 1×1, X B: 2×1 may indicate data by TRP and RI.
For CJT, data is precoded jointly on different TRPs. This may be expressed, for example as: 
Figure PCTCN2022133681-appb-000003
precoder
Figure PCTCN2022133681-appb-000004
and data (RI CJT×1) X: 2×1. Reference number 802 shows joint precoding for multiple TRPs rather than separate precoding as shown for NCJT. Reference number 804 shows 2 layers that are jointly precoded.
As indicated above, Fig. 8 is provided as an example. Other examples may differ from what is described with regard to Fig. 8.
Fig. 9 is a diagram illustrating an example 900 of CJT for a PDSCH, in accordance with the present disclosure.
Example 900 shows multiple TCI states that can be used for multiple beams to receive physical downlink channel (e.g., PDSCH or PDCCH) communications from multiple TRPs in multiple TRP (mTRP) operation. For example, a UE may use CJT for receiving a PDSCH on one or more of the multiple beams, where the UE uses multiple TCI states for each layer.
A network entity may indicate up to X unified TCI states for communications on the PDSCH, where each layer or DMRS antenna port of the PDSCH is received at  the UE using multiple indicated unified TCI states. In mTRP operation, the UE may be configured for CJT operations for the PDSCH, where X > 2 TCI states are applied to each layer of the PDSCH. The UE may also be configured for SFN operations for a PDCCH, where two TCI states are applied to a CORESET receiving the PDCCH.
As indicated above, Fig. 9 is provided as an example. Other examples may differ from what is described with regard to Fig. 9.
Fig. 10 is a diagram illustrating an example 1000 of beam selection, in accordance with the present disclosure.
Example 1000 shows that a MAC CE may include a TCI codepoint that activates one or more unified TCI states. A DCI may indicate unified TCI states that are to be used. The UE may transmit feedback, such as an acknowledgement (ACK) , for the MAC CE and/or the DCI. For a UE configured for SFN operations for the PDCCH, the UE may receive a scheduling DCI 1002, such as a DCI with a TCI state for a scheduling CORESET. The UE may also receive DCI that is not scheduling DCI (e.g., non-scheduling CORESET) . The DCI may indicate a scheduled time resource 1004 for a PDSCH communication (e.g., data, aperiodic CSI-RS) .
In some scenarios, a time duration 1008 between the scheduling DCI 1002 and the scheduled time resource 1004 for the PDSCH communication may be within a time offset 1006 (time duration for QCL) , which may be a beam switching time that is a minimum time that is expected to allow the UE to switch beams. If the scheduled time resource 1004 (or the time duration 1008) is within the time offset 1006, the UE is expected to select a default beam in order to receive the PDSCH communication. With respect to 3GPP Release 17 and single TRP operation, the UE may be configured to select a default beam for PDSCH communications in SFN operations according to a set of rules. If there is one TCI state (in all codepoints) and the UE is configured for an SFN operation in for a PDCCH or a PDSCH, the UE may be configured to select a beam with a TCI states of a lowest CORESET. For non-SFN operation, the UE may select a beam with a first TCI state of the lowest CORESET. If there are two TCI states (in one or more codepoints) for an SFN operation for the PDSCH, the UE may use a rule indicated by enableTwoDefaultTCI-States. If there is no TCI state field and the UE is configured for an SFN operation for the PDCCH, the UE may select a beam with one or two TCI states of a scheduling CORESET. If there is no TCI state field and the UE is not configured for an SFN operation for the PDCCH, the UE may select a beam with a first TCI state of a scheduling CORESET.
However, if the UE is configured for an SFN operation for the PDCCH but not configured for an SFN operation for the PDSCH, the UE does not support default beam selection if there are multiple TRPs that use CJT. Without such information, the UE may not select an appropriate beam in time and may fail to receive the PDSCH communications. Failed communications waste time, power, processing resources, and signaling resources.
According to various aspects described herein, a network entity may transmit a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH. The UE may select one or more default beams for a PDSCH communication based at least in part on the message (e.g., indicated or activated unified TCI states in the message) and the time duration 1008 being within a time offset 1006 for beam switching (e.g., not enough time to determine QCL beam and switch beams) . The UE may also apply the appropriate unified TCI states. In this way, the UE may select the appropriate default beams and apply the appropriate TCI states for receiving the PDSCH communication with CJT and multiple TRPs for more accurate and efficient communications, which conserves power, processing resources, and signaling resources.
In some aspects, beam selection may involve whether unified TCI states are for intra-cell beam management or for inter-cell mTRP operation. Beam selection may further involve how many unified TCI states are indicated and how many default beams are configured for or enabled by the UE. Sources for the default beam may include unified TCI state indications, TCI states for CORESETs, and/or unified TCI states activated by a MAC CE. In some aspect, beam selection may be based at least in part on a configuration for enabling default TCI states or default beams (e.g., enableXDefaultTCI-States) .
As indicated above, Fig. 10 is provided as an example. Other examples may differ from what is described with regard to Fig. 10.
Fig. 11 is a diagram illustrating an example 1100 of default beam selection within a time offset for beam switching, in accordance with the present disclosure. Example 1100 shows a network entity 1110 (e.g., base station 110) and a UE 1120 (e.g., UE 120) that may communicate with each other via a wireless network (e.g., wireless network 100) . The network entity 1110 may control or operate with one or more TRPs.
As shown by reference number 1125, the network entity 1110 may transmit a message that indicates or activates one or more unified TCI states (e.g., MAC CE  activating one or more unified TCI states, DCI indicating one or more unified TCI states) associated with CJT operations for a PDSCH.
As shown by reference number 1130, the UE 1120 may select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching. As shown by reference number 1135, the UE 1120 may receive the PDSCH communication using the one or more selected default beams.
In some aspects, the message may indicate or activate a single unified TCI state for intra-cell beam management (e.g., all used TCI states have a serving SSB as a root QCL) , where the UE 1120 supports a single default beam, two default beams, three default beams, or four default beams. The single unified TCI state may be indicated by a unified TCI state indication in a DCI or in a single TCI codepoint activated by a MAC CE. The UE 1120 may select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams. For example, if the UE supports only a single default beam, the UE 1120 may apply one unified TCI state of one CORESET, one SFN CORESET, or one non-SFN CORESET. The UE 1120 may use the indicated unified TCI state as the default PDSCH/AP CSI-RS beam. The UE 1120 may use one TCI state of one CORESET, such as the first TCI of one CORESET (e.g., lowest CORESET ID) , one TCI state of one of SFN CORESETs (e.g., among those CORESETs not following the indicated unified TCI state) , or the TCI state of one non-SFN CORESET. As another option, the UE 1120 may use a default beam as specified in an existing 3GPP Release 15, 16, or 17 rule (e.g., first TCI state of lowest CORESET ID in latest slot) .
In some aspects, if the UE 1120 supports two default beams with a single unified TCI state indicated, the UE 1120 may apply (as a first option) two TCI states of one TCI codepoint (e.g., lowest codepoint activated by MAC CE) , apply (as a second option) two TCI states of one of the SFN CORESETs (e.g., among those CORESETs not following the indicated unified TCI state) , or apply unified TCI states based at least in part on a configuration for enabling multiple default beams for TCI states, such as for enabling two default beams (e.g., an RRC parameter enableTwoDefaultTCI) . If enableTwoDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
In some aspects, if the UE 1120 supports three default beams with a single unified TCI state indicated, the UE 1120 may apply three unified TCIs states of one TCI  codepoint (e.g., lowest codepoint activated by MAC CE) or apply TCI states based at least in part on a configuration for enabling three default beams (e.g., an RRC parameter enableThreeDefaultTCI) . If enableThreeDefaultTCI-States is configured, the UE 1120 may apply the three unified TCIs states, or otherwise use the first option or the second option.
In some aspects, if the UE 1120 supports four default beams with a single unified TIC state indicated, the UE 1120 may apply four unified TCIs states of one TCI codepoint (e.g., lowest codepoint activated by MAC CE) or apply TCI states based at least in part on a configuration for enabling four default beams (e.g., an RRC parameter enableFourDefaultTCI) . If enableFourDefaultTCI-States is configured, the UE 1120 may apply the four unified TCIs states, or otherwise use the first option or the second option.
In some aspects, the message may indicate or activate two unified TCI states for intra-cell beam management, where the UE 1120 supports a single default beam, two default beams, three default beams, or four default beams. If the UE 1120 supports a single beam, the UE 1120 may apply one unified TCI state selected from the two unified TCI states that were indicated, as a default PDSCH/AP CSI-RS beam (e.g., first unified TCI state) , or apply one TCI state of one CORESET. If the UE 1120 supports two default beams with two unified TCI states indicated, the UE 1120 may apply the two unified TCI states or apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) . If the UE 1120 supports three default beams with two unified TCI states indicated, the UE 1120 may apply the two unified TCI states that were indicated or apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) . If the UE 1120 supports four default beams with two unified TCI states indicated, the UE 1120 may apply the two unified TCI states that were indicated or apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) .
In some aspects, the message may indicate or activate three unified TCI states for intra-cell beam management, where the UE 1120 supports a single default beam, two default beams, three default beams, or four default beams. If the UE 1120 supports a single beam, the UE 1120 may apply one unified TCI state selected from the three unified TCI states that were indicated (e.g., first unified TCI state) , as a default PDSCH/AP CSI-RS beam (e.g., first unified TCI state) , or apply one TCI state of one  CORESET. If the UE 1120 supports two default beams with three unified TCI states indicated, the UE 1120 may apply two unified TCI states selected from the three unified TCI states that were indicated (e.g., first unified TCI state, second unified TCI state) or apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) . If the UE 1120 supports three default beams with three unified TCI states indicated, the UE 1120 may apply the three unified TCI states that were indicated or apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) . If the UE 1120 supports four default beams with three unified TCI states indicated, the UE 1120 may apply the three unified TCI states that were indicated or apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) .
In some aspects, the message may indicate or activate four unified TCI states for intra-cell beam management, where the UE 1120 supports a single default beam, two default beams, three default beams, or four default beams. If the UE 1120 supports a single beam, the UE 1120 may apply one unified TCI state selected from the four unified TCI states that were indicated (e.g., first unified TCI state) , as a default PDSCH or AP CSI-RS beam (e.g., first unified TCI state) , or apply one TCI state of one CORESET. If the UE 1120 supports two default beams with four unified TCI states indicated, the UE 1120 may apply two unified TCI states selected from the four unified TCI states that were indicated (e.g., first unified TCI state, second unified TCI state) or apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) . If the UE 1120 supports three default beams with four unified TCI states indicated, the UE 1120 may apply three unified TCI states selected from the four unified TCI states that were indicated (e.g., first unified TCI state, second unified TCI state, third unified TCI state) , or apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) . If the UE 1120 supports four default beams with four unified TCI states indicated, the UE 1120 may apply the four unified TCI states that were indicated or apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) .
In some aspects, the message includes a single DCI with a TCI codepoint for inter-cell multiple TRP operation (e.g., at least one used TCI state has a non-serving SSB as the root QCL and the UE 1120 is not configured to use only mTRP operations) , where the single DCI indicates or activates a single unified TCI state, where the UE  supports a single default beam, two default beams, three default beams, or four default beams, and where selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
In some aspects, if a single unified TCI state is indicated by the single DCI, the UE 1120 may select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams. For example, if the UE 1120 supports only a single default beam, the UE 1120 may apply one unified TCI state of one CORESET or use a specified default beam (e.g., first TCI state of lowest CORESET ID in latest slot) . If the UE 1120 supports two default beams with a single unified TCI state indicated, the UE 1120 may apply two unified TCI states of one TCI codepoint (e.g., lowest codepoint and where at least one TCI state has a serving SSB as the root QCL) , apply two unified TCI states of SFN CORESETs (e.g., among those not following the indicated unified TCI states and where at least one TCI state has a serving SSB as the root QCL) , apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) , apply one unified TCI state of one CORESET, or use a default beam as specified in an existing 3GPP Release 15, 16, or 17 rule.
If the UE 1120 supports three default beams with a single unified TCI state indicated, the UE 1120 may apply three unified TCI states of one TCI codepoint (e.g., lowest codepoint and where at least one TCI state has a serving SSB as the root QCL) , apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) , apply one unified TCI state of one CORESET, or use a default beam as specified in an existing 3GPP Release 15, 16, or 17 rule. If the UE 1120 supports four default beams with a single unified TCI state indicated, the UE 1120 may apply four unified TCI states of one TCI codepoint (e.g., lowest codepoint and where at least one TCI state has a serving SSB as the root QCL) , or apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) .
In some aspects, if two unified TCI states are indicated by the single DCI, the UE 1120 may select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams. For example, if the UE 1120 supports only a single default beam, the UE 1120 may apply one unified TCI state associated with a serving SSB selected from the two unified TCI states as a  default PDSCH or AP CSI-RS beam (e.g., first TCI state among TCI states associated with the serving SSB) . The UE 1120 may apply one TCI state associated with the serving SSB of one CORESET, including the first TCI state associated with the serving SSB of one CORESET (e.g., lowest CORESET ID) , one TCI state associated with the serving SSB of one of the SFN CORESETs (e.g., among those not following the indicated unified TCI states) , or the TCI state associated with the serving SSB of one non-SFN CORESET.
If the UE 1120 supports two default beams with two unified TCI states that are indicated, the UE 1120 may apply (as a first option) the two unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) two unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply (as a third option) two TCI states of one of the SFN CORESETs (e.g., among those not following the indicated unified TCI states) , apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) , or apply any of the options for the single default beam. If enableTwoDefaultTCI-States is configured, the UE 1120 may use the first option, the second option, or the third option.
If the UE 1120 supports three default beams with two unified TCI states indicated, the UE 1120 may apply (as a first option) the two unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) three unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) , or apply any of the options for the single default beam. If enableThreeDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
If the UE 1120 supports four default beams with two unified TCI states that are indicated, the UE 1120 may apply (as a first option) the two unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) four unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) , or apply any of the options for the single default beam. If  enableFourDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
In some aspects, if three unified TCI states are indicated by the single DCI, the UE 1120 may select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams. For example, if the UE 1120 supports only a single default beam, the UE 1120 may apply one unified TCI state associated with a serving SSB selected from the two unified TCI states as a default PDSCH or AP CSI-RS beam (e.g., first TCI state among TCI states associated with the serving SSB) . The UE 1120 may apply one TCI state associated with the serving SSB of one CORESET, including the first TCI state associated with the serving SSB of one CORESET (e.g., lowest CORESET ID) , one TCI state associated with the serving SSB of one of the SFN CORESETs (e.g., among those not following the indicated unified TCI states) , or the TCI state associated with the serving SSB of one non-SFN CORESET.
If the UE 1120 supports two default beams with three unified TCI states that are indicated, the UE 1120 may apply (as a first option) the two unified TCI states selected from the three unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) two unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply (as a third option) two TCI states of one of the SFN CORESETs (e.g., among those not following the indicated unified TCI states) , apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) , or apply any of the options for the single default beam. If enableTwoDefaultTCI-States is configured, the UE 1120 may use the first option, the second option, or the third option.
If the UE 1120 supports three default beams with three unified TCI states indicated, the UE 1120 may apply (as a first option) the three unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) three unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) , or apply any of the options for the single default beam. If enableThreeDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
If the UE 1120 supports four default beams with three unified TCI states that are indicated, the UE 1120 may apply (as a first option) the three unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) four unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) , or apply any of the options for the single default beam. If enableFourDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
In some aspects, if four unified TCI states are indicated by the single DCI, the UE 1120 may select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams. For example, if the UE 1120 supports only a single default beam, the UE 1120 may apply one unified TCI state associated with a serving SSB selected from the two unified TCI states as a default PDSCH or AP CSI-RS beam (e.g., first TCI state among TCI states associated with the serving SSB) . The UE 1120 may apply one TCI state associated with the serving SSB of one CORESET, including the first TCI state associated with the serving SSB of one CORESET (e.g., lowest CORESET ID) , one TCI state associated with the serving SSB of one of the SFN CORESETs (e.g., among those not following the indicated unified TCI states) , or the TCI state associated with the serving SSB of one non-SFN CORESET.
If the UE 1120 supports two default beams with four unified TCI states that are indicated, the UE 1120 may apply (as a first option) the two unified TCI states selected from the four unified TCI states that were indicated if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) two unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply (as a third option) two TCI states of one of the SFN CORESETs (e.g., among those not following the indicated unified TCI states) , apply TCI states based at least in part on a configuration for enabling two default beams (e.g., enableTwoDefaultTCI) , or apply any of the options for the single default beam. If enableTwoDefaultTCI-States is configured, the UE 1120 may use the first option, the second option, or the third option.
If the UE 1120 supports three default beams with four unified TCI states indicated, the UE 1120 may apply (as a first option) three unified TCI states selected  from the four unified TCI states that were indicated if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) three unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply TCI states based at least in part on a configuration for enabling three default beams (e.g., enableThreeDefaultTCI) , or apply any of the options for the single default beam. If enableThreeDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
If the UE 1120 supports four default beams with four unified TCI states that are indicated, the UE 1120 may apply (as a first option) the four unified TCI states if at least one indicated unified TCI state is associated with the serving SSB, apply (as a second option) four unified TCI states of one TCI codepoint (e.g., lowest codepoint) , where at least one unified TCI state is associated with the serving SSB, apply TCI states based at least in part on a configuration for enabling four default beams (e.g., enableFourDefaultTCI) , or apply any of the options for the single default beam. If enableFourDefaultTCI-States is configured, the UE 1120 may use the first option or the second option.
As indicated above, Fig. 11 is provided as an example. Other examples may differ from what is described with regard to Fig. 11.
Fig. 12 is a diagram illustrating an example 1200 of beam selection, in accordance with the present disclosure.
Example 1200 shows, in some scenarios, the time offset 1006 is not applicable as a scheduled time resource 1204 for the PDSCH or AP CSI-RS is after the time offset 1006. In some aspects, beam selection may involve whether unified TCI states are for intra-cell beam management or for inter-cell mTRP operation. Beam selection may further involve how many unified TCI states are indicated. Sources for the beam may include unified TCI state indications, TCI states for scheduling CORESETs, and/or unified TCI states activated by a MAC CE.
In some aspects, the UE 1120 may receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH communication in an SFN operation (e.g., for PDSCH, PUSCH, PUCCH, and PDCCH) and receive a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and the time duration 1008 being after the time offset 1006. By using information for selecting beams (applying TCI  states) , the UE 1120 may select better beams and improve communications, which conserves time, power, processing resources, and signaling resources.
As indicated above, Fig. 12 is provided as an example. Other examples may differ from what is described with regard to Fig. 12.
Fig. 13 is a diagram illustrating an example 1300 of beam selection after a time offset for beam switching, in accordance with the present disclosure.
As shown by reference number 1305, the UE 1120 may receive a message (e.g., MAC CE, DCI) that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN. As shown by reference number 1310, the UE 1120 may select one or more beams based at least in part on the message (e.g., unified TCI state indications in the message) and the time duration 1008 (or the scheduled time resource 1204) being after the time offset 1006. As shown by reference number 1315, the UE 1120 may receive a PDSCH communication using one or more unified TCI states for the one or more selected beams.
In some aspects, the message may indicate or activate a single unified TCI state for intra-cell beam management (e.g., all used TCI states have a serving SSB as a root QCL) , where the UE 1120 supports a single beam or two beams. The single unified TCI state may be indicated by a unified TCI state indication in a DCI or in a single TCI codepoint activated by a MAC CE. If the UE supports only a single beam, the UE 1120 may apply the unified TCI state that was indicated or apply a TCI state of a scheduling CORESET (e.g., if not following the indicated unified TCI state) . In some aspects, if the UE 1120 supports two beams with a single unified TCI state indicated, the UE 1120 may apply two TCI states of one of the SFN CORESETs (e.g., among those CORESETs not following the indicated unified TCI state and having TCI states) .
In some aspects, the message may indicate or activate two unified TCI states for intra-cell beam management, where the UE 1120 supports a single beam or two beams. If the UE 1120 supports a single beam, the UE 1120 may apply one unified TCI state down-selected from the two unified TCI states that were indicated or apply one TCI state of a scheduling CORESET (if not following the indicated unified TCI state) . If the UE 1120 supports two default beams with two unified TCI states that were indicated, the UE 1120 may apply the two unified TCI states or apply two TCI states of a scheduling CORESET (if not following the two unified TCI states that were indicated and having two TCI states) .
In some aspects, the message may indicate or activate three unified TCI states for intra-cell beam management, where the UE 1120 supports a single beam, two beams, or three beams. If the UE 1120 supports a single beam, the UE 1120 may apply one unified TCI state down-selected by the scheduling DCI from the three unified TCI states that were indicated or apply one TCI state of a scheduling CORESET (if not following the indicated unified TCI state) . If the UE 1120 supports two beams with three unified TCI states that were indicated, the UE 1120 may apply two unified TCI states down-selected by the scheduling DCI from the three unified TCI states that were indicate or apply two TCI states of scheduling CORESETs (if not following the two unified TCI states that were indicated and having two TCI states) . If the UE 1120 supports three beams with three unified TCI states that were indicated, the UE 1120 may apply the three unified TCI states that were indicated.
In some aspects, the message may indicate or activate four unified TCI states for intra-cell beam management, where the UE 1120 supports a single beam, two beams, or three beams. If the UE 1120 supports a single beam, the UE 1120 may apply one unified TCI state down-selected by the scheduling DCI from the four unified TCI states that were indicated or apply one TCI state of a scheduling CORESET (if not following the indicated unified TCI state) . If the UE 1120 supports two beams with four unified TCI states that were indicated, the UE 1120 may apply two unified TCI states down-selected by the scheduling DCI from the four unified TCI states that were indicate or apply two TCI states of scheduling CORESETs (if not following the two unified TCI states that were indicated and having two TCI states) . If the UE 1120 supports three beams with four unified TCI states that were indicated, the UE 1120 may apply three unified TCI states down-selected by the scheduling DCI from the four unified TCI states that were indicated. If the UE 1120 supports four beams with four unified TCI states that were indicated, the UE 1120 may apply the four unified TCI states that were indicated.
In some aspects, the message includes a single DCI for inter-cell multiple TRP operation (e.g., at least one used TCI state has a non-serving SSB as the root QCL and the UE 1120 is not configured to use only mTRP operations) , where the single DCI indicates or activates a single unified TCI state. The UE 1120 may support a single beam or two beams. If the UE 1120 supports only a single beam, the UE 1120 may apply use a default beam as specified in an existing 3GPP Release 15, 16, or 17 rule (e.g., first TCI state of lowest CORESET ID in latest slot) . If the UE 1120 supports two  beams with a single unified TCI state indicated, the UE 1120 may apply two TCI states of a scheduling CORESET (e.g., if not following the indicated unified TCI state and having two TCI states) .
In some aspects, if two unified TCI states are indicated by the single DCI and if the UE 1120 supports only a single beam, the UE 1120 may apply one unified TCI state down-selected from the two unified TCI states that were indicated or apply a first TCI state of a scheduling CORESET (e.g., if not following the indicated unified TCI states) . If the UE 1120 supports two beams with two unified TCI states that were indicated, the UE 1120 may apply the two unified TCI states that were indicated or apply two TCI states of a scheduling CORESET (e.g., if not following the indicated unified TCI state and having two TCI states) .
In some aspects, if three unified TCI states are indicated by the single DCI and if the UE 1120 supports only a single beam, the UE 1120 may apply one unified TCI state down-selected from the three unified TCI states that were indicated or apply a first TCI state of a scheduling CORESET (e.g., if not following the indicated unified TCI states) . If the UE 1120 supports two beams with three unified TCI states that were indicated, the UE 1120 may apply two unified TCI states down-selected by the scheduling DCI from the three unified TCI states that were indicated or apply two TCI states of a scheduling CORESET (e.g., if not following the indicated unified TCI state and having two TCI states) . If the UE 1120 supports three beams, the UE 1120 may apply the three unified TCI states that were indicated.
In some aspects, if four unified TCI states are indicated by the single DCI and if the UE 1120 supports only a single beam, the UE 1120 may apply one unified TCI state down-selected from the four unified TCI states that were indicated or apply a first TCI state of a scheduling CORESET (e.g., if not following the indicated unified TCI states) . If the UE 1120 supports two beams with four unified TCI states that were indicated, the UE 1120 may apply two unified TCI states down-selected by the scheduling DCI from the four unified TCI states that were indicated or apply two TCI states of a scheduling CORESET (e.g., if not following the indicated unified TCI state and having two TCI states) . If the UE 1120 supports three beams, the UE 1120 may apply three unified TCI states down-selected by the scheduling DCI from the four unified TCI states that were indicated. If the UE 1120 supports four beams, the UE 1120 may apply the four unified TCI states that were indicated.
As indicated above, Fig. 13 is provided as an example. Other examples may differ from what is described with regard to Fig. 13.
Fig. 14 is a diagram illustrating an example process 1400 performed, for example, by a UE, in accordance with the present disclosure. Example process 1400 is an example where the UE (e.g., UE 120, UE 1120) performs operations associated with beam selection for CJT.
As shown in Fig. 14, in some aspects, process 1400 may include receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH (block 1410) . For example, the UE (e.g., using communication manager 1608 and/or reception component 1602 depicted in Fig. 16) may receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH, as described above.
As further shown in Fig. 14, in some aspects, process 1400 may include selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching (block 1420) . For example, the UE (e.g., using communication manager 1608 and/or selection component 1610 depicted in Fig. 16) may select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching, as described above.
As further shown in Fig. 14, in some aspects, process 1400 may include receiving the PDSCH communication using the one or more selected default beams (block 1430) . For example, the UE (e.g., using communication manager 1608 and/or reception component 1602 depicted in Fig. 16) may receive the PDSCH communication using the one or more selected default beams, as described above.
Process 1400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the message indicates or activates a single unified TCI state for intra-cell beam management, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
In a second aspect, alone or in combination with the first aspect, process 1400 includes applying one unified TCI state of one CORESET, one SFN CORESET, or one non-SFN CORESET based at least in part on the UE supporting the single default beam, applying two unified TCI states of a TCI codepoint in the message or two unified TCI states of an SFN CORESET based at least in part on the UE supporting the two default beams, applying three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, or applying four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams.
In a third aspect, alone or in combination with one or more of the first and second aspects, process 1400 includes applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the message indicates or activates two unified TCI states for intra-cell multiple TRP operation, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 1400 includes applying the two unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, the three default beams, or the four default beams.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the message indicates or activates three unified TCI states for intra-cell multiple TRP operation, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, process 1400 includes applying two of the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, or applying the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams or the four default beams.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the message indicates or activates four unified TCI states for intra-cell multiple TRP operation, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 1400 includes applying two of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, applying three of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams, or applying the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the four default beams.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the message includes a single DCI with a TCI codepoint for inter-cell multiple TRP operation, where the single DCI indicates or activates a single unified TCI state, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, process 1400 includes applying one unified TCI state of one CORESET based at least in part on the UE supporting the single default beam, applying two unified TCI states of the TCI codepoint or two unified TCI states of an SFN CORESET based at least in part on the UE supporting the two default beams, where at least one TCI state has a serving SSB as a root QCL, applying three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state has the serving SSB as the QCL, or applying four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, and where at least one TCI state has the serving SSB as the QCL.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, process 1400 includes applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the message includes a single DCI with a TCI codepoint for inter-cell multiple TRP operation, where the single DCI indicates or activates two unified TCI states, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and where selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, process 1400 includes applying one unified TCI state of the two unified TCI states based at least in part on the UE supporting the single default beam, where the one unified TCI state is associated with a serving SSB, applying the two unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, where at least one unified TCI state is associated with the SSB, applying the two unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state is associated with the SSB, or applying the two unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state is associated with the SSB.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, process 1400 includes applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the message includes a single DCI with a TCI codepoint for inter-cell multiple TRP operation, where the single DCI indicates or activates three unified TCI states, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, process 1400 includes applying one unified TCI state of the three unified TCI states based at least in part on the UE supporting the single default beam, where the one unified TCI state is associated with a serving SSB, applying two of  the three unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, where at least one unified TCI state is associated with the SSB, applying the three unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state is associated with the SSB, or applying the three unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state is associated with the SSB.
In an eighteenth aspect, alone or in combination with one or more of the first through seventeenth aspects, process 1400 includes applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
In a nineteenth aspect, alone or in combination with one or more of the first through eighteenth aspects, the message includes a single DCI with a TCI codepoint for inter-cell multiple TRP operation, where the single DCI indicates or activates four unified TCI states, where the UE supports a single default beam, two default beams, three default beams, or four default beams, and selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
In a twentieth aspect, alone or in combination with one or more of the first through nineteenth aspects, process 1400 includes applying one unified TCI state of the four unified TCI states based at least in part on the UE supporting the single default beam, where the one unified TCI state is associated with a serving SSB, applying two of the four unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, where at least one unified TCI state is associated with the SSB, applying three of the four unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state is associated with the SSB, or applying the four unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state is associated with the SSB.
Although Fig. 14 shows example blocks of process 1400, in some aspects, process 1400 may include additional blocks, fewer blocks, different blocks, or  differently arranged blocks than those depicted in Fig. 14. Additionally, or alternatively, two or more of the blocks of process 1400 may be performed in parallel.
Fig. 15 is a diagram illustrating an example process 1500 performed, for example, by a UE, in accordance with the present disclosure. Example process 1500 is an example where the UE (e.g., UE 120, UE 1120) performs operations associated with beam selection for CJT.
As shown in Fig. 15, in some aspects, process 1500 may include receiving a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN (block 1510) . For example, the UE (e.g., using communication manager 1608 and/or reception component 1602 depicted in Fig. 16) may receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN, as described above.
As further shown in Fig. 15, in some aspects, process 1500 may include receiving a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching (block 1520) . For example, the UE (e.g., using communication manager 1608 and/or reception component 1602 depicted in Fig. 16) may receive a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching, as described above.
Process 1500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the message indicates or activates a single unified TCI state for intra-cell beam management, and process 1500 includes applying, for a single beam, the single unified TCI state or a unified TCI state of a scheduling CORESET, or applying, for two beams, the single unified TCI state or two unified TCI states of an SFN-scheduling CORESET.
In a second aspect, alone or in combination with the first aspect, the message indicates or activates two unified TCI states for intra-cell beam management, and process 1500 includes applying, for a single beam, a TCI state down-selected from the two unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling  CORESET, or applying, for two beams, the two unified TCI states or two unified TCI states of scheduling CORESETs.
In a third aspect, alone or in combination with one or more of the first and second aspects, the message indicates or activates three unified TCI states for intra-cell beam management, and process 1500 includes applying, for a single beam, a TCI state down-selected from the three unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling CORESET, applying, for two beams, two TCI states down-selected from the three unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, or applying, for three beams, the three unified TCI states.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the message indicates or activates four unified TCI states for intra-cell beam management, and process 1500 includes applying, for a single beam, a TCI state down-selected from the four unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling CORESET, applying, for two beams, two TCI states down-selected from the four unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, applying, for three beams, three TCI states down-selected from the four unified TCI states by the scheduling DCI, or applying, for four beams, the four unified TCI states.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the message indicates or activates a single unified TCI state for inter-cell multiple TRP operation, and process 1500 includes applying, for a single beam, the single unified TCI state or a first TCI state of a lowest CORESET identifier in a latest slot, or applying, for two beams, the single unified TCI state or two unified TCI states of a scheduling CORESET.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the message indicates or activates two unified TCI states for inter-cell multiple TRP operation, and process 1500 includes applying, for a single beam, a TCI state down-selected from the two unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling CORESET, or applying, for two beams, the two unified TCI states or two unified TCI states of scheduling CORESETs.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the message indicates or activates three unified TCI states for inter-cell multiple TRP operation, and process 1500 includes applying, for a single  beam, a TCI state down-selected from the three unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling CORESET, applying, for two beams, two TCI states down-selected from the three unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, or applying, for three beams, the three unified TCI states.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the message indicates or activates four unified TCI states for inter-cell multiple TRP operation, and process 1500 includes applying, for a single beam, a TCI state down-selected from the four unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling CORESET, applying, for two beams, two TCI states down-selected from the four unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, applying, for three beams, three TCI states down-selected from the four unified TCI states by the scheduling DCI, or applying, for four beams, the four unified TCI states.
Although Fig. 15 shows example blocks of process 1500, in some aspects, process 1500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 15. Additionally, or alternatively, two or more of the blocks of process 1500 may be performed in parallel.
Fig. 16 is a diagram of an example apparatus 1600 for wireless communication, in accordance with the present disclosure. The apparatus 1600 may be a UE (e.g., UE 120, UE 1120) , or a UE may include the apparatus 1600. In some aspects, the apparatus 1600 includes a reception component 1602 and a transmission component 1604, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1600 may communicate with another apparatus 1606 (such as a UE, a base station, or another wireless communication device) using the reception component 1602 and the transmission component 1604. As further shown, the apparatus 1600 may include the communication manager 1608. The communication manager 1608 may control and/or otherwise manage one or more operations of the reception component 1602 and/or the transmission component 1604. In some aspects, the communication manager 1608 may include one or more antennas, a modem, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. The communication manager 1608 may be, or be similar to, the communication manager 140 depicted in Figs. 1 and 2. For example, in some aspects, the communication  manager 1608 may be configured to perform one or more of the functions described as being performed by the communication manager 140. In some aspects, the communication manager 1608 may include the reception component 1602 and/or the transmission component 1604. The communication manager 1608 may include a selection component 1610 and/or a TCI component 1612, among other examples.
In some aspects, the apparatus 1600 may be configured to perform one or more operations described herein in connection with Figs. 1-13. Additionally, or alternatively, the apparatus 1600 may be configured to perform one or more processes described herein, such as process 1400 of Fig. 14, process 1500 of Fig. 15, or a combination thereof. In some aspects, the apparatus 1600 and/or one or more components shown in Fig. 16 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 16 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1602 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1606. The reception component 1602 may provide received communications to one or more other components of the apparatus 1600. In some aspects, the reception component 1602 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1600. In some aspects, the reception component 1602 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 1604 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1606. In some aspects, one or more other components of the apparatus  1600 may generate communications and may provide the generated communications to the transmission component 1604 for transmission to the apparatus 1606. In some aspects, the transmission component 1604 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1606. In some aspects, the transmission component 1604 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1604 may be co-located with the reception component 1602 in a transceiver.
In some aspects, the reception component 1602 may receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH. The selection component 1610 may select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being within a time offset for beam switching. The reception component 1602 may receive the PDSCH communication using the one or more selected default beams.
The TCI component 1612 may apply one unified TCI state of one CORESET, one SFN CORESET, or one non-SFN CORESET based at least in part on the UE supporting the single default beam. The TCI component 1612 may apply two unified TCI states of a TCI codepoint in the message or two unified TCI states of an SFN CORESET based at least in part on the UE supporting the two default beams. The TCI component 1612 may apply three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams. The TCI component 1612 may apply four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams. The TCI component 1612 may apply one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
The TCI component 1612 may apply the two unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, the three default beams, or the four default beams. The TCI component 1612 may apply two of the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams. The TCI component  1612 may apply the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams or the four default beams.
The TCI component 1612 may apply two of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams. The TCI component 1612 may apply three of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams. The TCI component 1612 may apply the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the four default beams.
The TCI component 1612 may apply one unified TCI state of one CORESET based at least in part on the UE supporting the single default beam. The TCI component 1612 may apply two unified TCI states of the TCI codepoint or two unified TCI states of an SFN CORESET based at least in part on the UE supporting the two default beams, where at least one TCI state has a serving SSB as a root QCL. The TCI component 1612 may apply three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state has the serving SSB as the QCL. The TCI component 1612 may apply four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state has the serving SSB as the QCL. The TCI component 1612 may apply one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
The TCI component 1612 may apply one unified TCI state of the two unified TCI states based at least in part on the UE supporting the single default beam, where the one unified TCI state is associated with a serving SSB. The TCI component 1612 may apply the two unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, where at least one unified TCI state is associated with the SSB. The TCI component 1612 may apply the two unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state is associated with the SSB. The TCI component 1612 may apply the two unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state is associated with the SSB. The TCI component 1612 may apply one or more unified TCI states for the one  or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
The TCI component 1612 may apply one unified TCI state of the three unified TCI states based at least in part on the UE supporting the single default beam, where the one unified TCI state is associated with a serving SSB. The TCI component 1612 may apply two of the three unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, where at least one unified TCI state is associated with the SSB. The TCI component 1612 may apply the three unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state is associated with the SSB. The TCI component 1612 may apply the three unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state is associated with the SSB. The TCI component 1612 may apply one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
The TCI component 1612 may apply one unified TCI state of the four unified TCI states based at least in part on the UE supporting the single default beam, where the one unified TCI state is associated with a serving SSB. The TCI component 1612 may apply two of the four unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, where at least one unified TCI state is associated with the SSB. The TCI component 1612 may apply three of the four unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, where at least one TCI state is associated with the SSB. The TCI component 1612 may apply the four unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, where at least one TCI state is associated with the SSB.
In some aspects, the reception component 1602 may receive a message that indicates or activates one or more unified TCI states associated with CJT operations for a PDSCH in an SFN. The reception component 1602 may receive a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling DCI and a scheduled time resource being after a time offset for beam switching.
The number and arrangement of components shown in Fig. 16 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 16. Furthermore, two or more components shown in Fig. 16 may be implemented within a single component, or a single component shown in Fig. 16 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 16 may perform one or more functions described as being performed by another set of components shown in Fig. 16.
The following provides an overview of some Aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a user equipment (UE) , comprising: receiving a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) ; selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being within a time offset for beam switching; and receiving the PDSCH communication using the one or more selected default beams.
Aspect 2: The method of Aspect 1, wherein the message indicates or activates a single unified TCI state for intra-cell beam management, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
Aspect 3: The method of Aspect 2, further comprising, for the one or more selected default beams: applying one unified TCI state of one control resource set (CORESET) , one single frequency network (SFN) CORESET, or one non-SFN CORESET based at least in part on the UE supporting the single default beam, applying two unified TCI states of a TCI codepoint in the message or two unified TCI states of an SFN CORESET based at least in part on the UE supporting the two default beams, applying three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, or applying four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams.
Aspect 4: The method of Aspect 2, further comprising applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
Aspect 5: The method of Aspect 1, wherein the message indicates or activates two unified TCI states for intra-cell multiple transmit receive point (TRP) operation, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
Aspect 6: The method of Aspect 5, further comprising applying the two unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, the three default beams, or the four default beams.
Aspect 7: The method of Aspect 1, wherein the message indicates or activates three unified TCI states for intra-cell multiple transmit receive point (TRP) operation, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
Aspect 8: The method of Aspect 7, further comprising, for the one or more selected default beams: applying two of the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, or applying the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams or the four default beams.
Aspect 9: The method of Aspect 1, wherein the message indicates or activates four unified TCI states for intra-cell multiple transmit receive point (TRP) operation, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
Aspect 10: The method of Aspect 9, further comprising, for the one or more selected default beams: applying two of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default  beams, applying three of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams, or applying the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the four default beams.
Aspect 11: The method of Aspect 1, wherein the message includes a single DCI with a TCI codepoint for inter-cell multiple transmit receive point (TRP) operation, wherein the single DCI indicates or activates a single unified TCI state, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
Aspect 12: The method of Aspect 11, further comprising, for the one or more selected default beams: applying one unified TCI state of one control resource set (CORESET) based at least in part on the UE supporting the single default beam, applying two unified TCI states of the TCI codepoint or two unified TCI states of a single frequency network (SFN) CORESET based at least in part on the UE supporting the two default beams, wherein at least one TCI state has a serving synchronization signal block (SSB) as a root QCL, applying three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, wherein at least one TCI state has the serving SSB as the QCL, or applying four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, wherein at least one TCI state has the serving SSB as the QCL.
Aspect 13: The method of Aspect 12, further comprising applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
Aspect 14: The method of Aspect 1, wherein the message includes a single DCI with a TCI codepoint for inter-cell multiple transmit receive point (TRP) operation, wherein the single DCI indicates or activates two unified TCI states, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
Aspect 15: The method of Aspect 14, further comprising, for the one or more selected default beams: applying one unified TCI state of the two unified TCI states  based at least in part on the UE supporting the single default beam, wherein the one unified TCI state is associated with a serving synchronization signal block (SSB) , applying the two unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, wherein at least one unified TCI state is associated with the SSB, applying the two unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, wherein at least one TCI state is associated with the SSB, or applying the two unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, wherein at least one TCI state is associated with the SSB.
Aspect 16: The method of Aspect 14, further comprising applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
Aspect 17: The method of Aspect 1, wherein the message includes a single DCI with a TCI codepoint for inter-cell multiple transmit receive point (TRP) operation, wherein the single DCI indicates or activates three unified TCI states, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
Aspect 18: The method of Aspect 17, further comprising, for the one or more selected default beams: applying one unified TCI state of the three unified TCI states based at least in part on the UE supporting the single default beam, wherein the one unified TCI state is associated with a serving synchronization signal block (SSB) , applying two of the three unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, wherein at least one unified TCI state is associated with the SSB, applying the three unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, wherein at least one TCI state is associated with the SSB, or applying the three unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, wherein at least one TCI state is associated with the SSB.
Aspect 19: The method of Aspect 17, further comprising applying one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
Aspect 20: The method of Aspect 1, wherein the message includes a single DCI with a TCI codepoint for inter-cell multiple transmit receive point (TRP) operation, wherein the single DCI indicates or activates four unified TCI states, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein selecting the one or more default beams includes selecting the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
Aspect 21: The method of Aspect 20, further comprising, for the one or more selected default beams: applying one unified TCI state of the four unified TCI states based at least in part on the UE supporting the single default beam, wherein the one unified TCI state is associated with a serving synchronization signal block (SSB) , applying two of the four unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, wherein at least one unified TCI state is associated with the SSB, applying three of the four unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, wherein at least one TCI state is associated with the SSB, or applying the four unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, wherein at least one TCI state is associated with the SSB.
Aspect 22: A method of wireless communication performed by a user equipment (UE) , comprising: receiving a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) in a single frequency network (SFN) ; and receiving a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being after a time offset for beam switching.
Aspect 23: The method of Aspect 22, wherein the message indicates or activates a single unified TCI state for intra-cell beam management, and wherein the method further includes: applying, for a single beam, the single unified TCI state or a unified TCI state of a scheduling control resource set (CORESET) , or applying, for two  beams, the single unified TCI state or two unified TCI states of an SFN-scheduling CORESET.
Aspect 24: The method of Aspect 22, wherein the message indicates or activates two unified TCI states for intra-cell beam management, and wherein the method further includes: applying, for a single beam, a TCI state down-selected from the two unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , or applying, for two beams, the two unified TCI states or two unified TCI states of scheduling CORESETs.
Aspect 25: The method of any of Aspects 22-24, wherein the message indicates or activates three unified TCI states for intra-cell beam management, and wherein the method further includes: applying, for a single beam, a TCI state down-selected from the three unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , applying, for two beams, two TCI states down-selected from the three unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, or applying, for three beams, the three unified TCI states.
Aspect 26: The method of Aspect 22, wherein the message indicates or activates four unified TCI states for intra-cell beam management, and wherein the method further includes: applying, for a single beam, a TCI state down-selected from the four unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , applying, for two beams, two TCI states down-selected from the four unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, applying, for three beams, three TCI states down-selected from the four unified TCI states by the scheduling DCI, or applying, for four beams, the four unified TCI states.
Aspect 27: The method of Aspect 22, wherein the message indicates or activates a single unified TCI state for inter-cell multiple transmit receive point (TRP) operation, and wherein the method further includes: applying, for a single beam, the single unified TCI state or a first TCI state of a lowest control resource set (CORESET) identifier in a latest slot, or applying, for two beams, the single unified TCI state or two unified TCI states of a scheduling CORESET.
Aspect 28: The method of Aspect 22, wherein the message indicates or activates two unified TCI states for inter-cell multiple transmit receive point (TRP) operation, and wherein the method further includes: applying, for a single beam, a TCI  state down-selected from the two unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , or applying, for two beams, the two unified TCI states or two unified TCI states of scheduling CORESETs.
Aspect 29: The method of Aspect 22, wherein the message indicates or activates three unified TCI states for inter-cell multiple transmit receive point (TRP) operation, and wherein the method further includes: applying, for a single beam, a TCI state down-selected from the three unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , applying, for two beams, two TCI states down-selected from the three unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, or applying, for three beams, the three unified TCI states.
Aspect 30: The method of Aspect 22, wherein the message indicates or activates four unified TCI states for inter-cell multiple transmit receive point (TRP) operation, and wherein the method further includes: applying, for a single beam, a TCI state down-selected from the four unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , applying, for two beams, two TCI states down-selected from the four unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, applying, for three beams, three TCI states down-selected from the four unified TCI states by the scheduling DCI, or applying, for four beams, the four unified TCI states.
Aspect 31: A method of wireless communication performed by a network entity, comprising: transmitting a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) ; selecting one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being within a time offset for beam switching; and transmitting the PDSCH communication using the one or more selected default beams.
Aspect 32: A method of wireless communication performed by a network entity, comprising: transmitting a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) in a single frequency network (SFN) ; and transmitting a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the  message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being after a time offset for beam switching.
Aspect 33: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-32.
Aspect 34: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-32.
Aspect 35: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-32.
Aspect 36: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-32.
Aspect 37: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-32.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As used herein, a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the  operation and behavior of the systems and/or methods are described herein without reference to specific software code, since those skilled in the art will understand that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, “satisfying a threshold” may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. Many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. The disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) . Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (30)

  1. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    receive a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) ;
    select one or more default beams for a PDSCH communication based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being within a time offset for beam switching; and
    receive the PDSCH communication using the one or more selected default beams.
  2. The UE of claim 1, wherein the message indicates or activates a single unified TCI state for intra-cell beam management, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein the one or more processors, to select the one or more default beams, are configured to select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  3. The UE of claim 2, wherein the one or more processors are configured to, for the one or more selected default beams:
    apply one unified TCI state of one control resource set (CORESET) , one single frequency network (SFN) CORESET, or one non-SFN CORESET based at least in part on the UE supporting the single default beam,
    apply two unified TCI states of a TCI codepoint in the message or two unified TCI states of an SFN CORESET based at least in part on the UE supporting the two default beams,
    apply three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, or
    apply four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams.
  4. The UE of claim 2, wherein the one or more processors are configured to apply one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  5. The UE of claim 1, wherein the message indicates or activates two unified TCI states for intra-cell multiple transmit receive point (TRP) operation, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein the one or more processors, to select the one or more default beams, are configured to select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  6. The UE of claim 5, wherein the one or more processors are configured to apply the two unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, the three default beams, or the four default beams.
  7. The UE of claim 1, wherein the message indicates or activates three unified TCI states for intra-cell multiple transmit receive point (TRP) operation, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein the one or more processors, to select the one or more default beams, are configured to select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  8. The UE of claim 7, wherein the one or more processors are configured to, for the one or more selected default beams:
    apply two of the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams, or
    apply the three unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams or the four default beams.
  9. The UE of claim 1, wherein the message indicates or activates four unified TCI states for intra-cell multiple transmit receive point (TRP) operation, wherein the UE  supports a single default beam, two default beams, three default beams, or four default beams, and wherein the one or more processors, to select the one or more default beams, are configured to select one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  10. The UE of claim 9, wherein the one or more processors are configured to, for the one or more selected default beams:
    apply two of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the two default beams,
    apply three of the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the three default beams, or
    apply the four unified TCI states for the one or more selected default beams based at least in part on the UE supporting the four default beams.
  11. The UE of claim 1, wherein the message includes a single DCI with a TCI codepoint for inter-cell multiple transmit receive point (TRP) operation, wherein the single DCI indicates or activates a single unified TCI state, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein the one or more processors, to select the one or more default beams, are configured to select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  12. The UE of claim 11, wherein the one or more processors are configured to, for the one or more selected default beams:
    apply one unified TCI state of one control resource set (CORESET) based at least in part on the UE supporting the single default beam,
    apply two unified TCI states of the TCI codepoint or two unified TCI states of a single frequency network (SFN) CORESET based at least in part on the UE supporting the two default beams, wherein at least one TCI state has a serving synchronization signal block (SSB) as a root quasi-co-location (QCL) ,
    apply three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, wherein at least one TCI state has the serving SSB as the QCL, or
    apply four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, wherein at least one TCI state has the serving SSB as the QCL.
  13. The UE of claim 12, wherein the one or more processors are configured to apply one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  14. The UE of claim 1, wherein the message includes a single DCI with a TCI codepoint for inter-cell multiple transmit receive point (TRP) operation, wherein the single DCI indicates or activates two unified TCI states, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein the one or more processors, to select the one or more default beams, are configured to select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  15. The UE of claim 14, wherein the one or more processors are configured to, for the one or more selected default beams:
    apply one unified TCI state of the two unified TCI states based at least in part on the UE supporting the single default beam, wherein the one unified TCI state is associated with a serving synchronization signal block (SSB) ,
    apply the two unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, wherein at least one unified TCI state is associated with the SSB,
    apply the two unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, wherein at least one TCI state is associated with the SSB, or
    apply the two unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, wherein at least one TCI state is associated with the SSB.
  16. The UE of claim 14, wherein the one or more processors are configured to apply one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  17. The UE of claim 1, wherein the message includes a single DCI with a TCI codepoint for inter-cell multiple transmit receive point (TRP) operation, wherein the single DCI indicates or activates three unified TCI states, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein the one or more processors, to select the one or more default beams, are configured to select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  18. The UE of claim 17, wherein the one or more processors are configured to, for the one or more selected default beams:
    apply one unified TCI state of the three unified TCI states based at least in part on the UE supporting the single default beam, wherein the one unified TCI state is associated with a serving synchronization signal block (SSB) ,
    apply two of the three unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, wherein at least one unified TCI state is associated with the SSB,
    apply the three unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, wherein at least one TCI state is associated with the SSB, or
    apply the three unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, wherein at least one TCI state is associated with the SSB.
  19. The UE of claim 17, wherein the one or more processors are configured to apply one or more unified TCI states for the one or more selected default beams based at least in part on a configuration for multiple default beams for TCI states.
  20. The UE of claim 1, wherein the message includes a single DCI with a TCI codepoint for inter-cell multiple transmit receive point (TRP) operation, wherein the single DCI indicates or activates four unified TCI states, wherein the UE supports a single default beam, two default beams, three default beams, or four default beams, and wherein the one or more processors, to select the one or more default beams, are  configured to select the one or more default beams from the single default beam, the two default beams, the three default beams, or the four default beams.
  21. The UE of claim 20, wherein the one or more processors are configured to, for the one or more selected default beams:
    apply one unified TCI state of the four unified TCI states based at least in part on the UE supporting the single default beam, wherein the one unified TCI state is associated with a serving synchronization signal block (SSB) ,
    apply two of the four unified TCI states or two unified TCI states of a codepoint in the message based at least in part on the UE supporting the two default beams, wherein at least one unified TCI state is associated with the SSB,
    apply three of the four unified TCI states or three unified TCI states of the TCI codepoint based at least in part on the UE supporting the three default beams, wherein at least one TCI state is associated with the SSB, or
    apply the four unified TCI states or four unified TCI states of the TCI codepoint based at least in part on the UE supporting the four default beams, wherein at least one TCI state is associated with the SSB.
  22. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    receive a message that indicates or activates one or more unified transmission configuration indicator (TCI) states associated with coherent joint transmission (CJT) operations for a physical downlink shared channel (PDSCH) in a single frequency network (SFN) ; and
    receive a PDSCH communication using the one or more unified TCI states for one or more beams based at least in part on the message and a time duration between a scheduling downlink control information (DCI) and a scheduled time resource being after a time offset for beam switching.
  23. The UE of claim 22, wherein the message indicates or activates a single unified TCI state for intra-cell beam management, and wherein the one or more processors are configured to:
    apply, for a single beam, the single unified TCI state or a unified TCI state of a scheduling control resource set (CORESET) , or
    apply, for two beams, the single unified TCI state or two unified TCI states of an SFN-scheduling CORESET.
  24. The UE of claim 22, wherein the message indicates or activates two unified TCI states for intra-cell beam management, and wherein the one or more processors are configured to:
    apply, for a single beam, a TCI state down-selected from the two unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , or
    apply, for two beams, the two unified TCI states or two unified TCI states of scheduling CORESETs.
  25. The UE of claim 22, wherein the message indicates or activates three unified TCI states for intra-cell beam management, and wherein the one or more processors are configured to:
    apply, for a single beam, a TCI state down-selected from the three unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) ,
    apply, for two beams, two TCI states down-selected from the three unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, or
    apply, for three beams, the three unified TCI states.
  26. The UE of claim 22, wherein the message indicates or activates four unified TCI states for intra-cell beam management, and wherein the one or more processors are configured to:
    apply, for a single beam, a TCI state down-selected from the four unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) ,
    apply, for two beams, two TCI states down-selected from the four unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs,
    apply, for three beams, three TCI states down-selected from the four unified TCI states by the scheduling DCI, or
    apply, for four beams, the four unified TCI states.
  27. The UE of claim 22, wherein the message indicates or activates a single unified TCI state for inter-cell multiple transmit receive point (TRP) operation, and wherein the one or more processors are configured to:
    apply, for a single beam, the single unified TCI state or a first TCI state of a lowest control resource set (CORESET) identifier in a latest slot, or
    apply, for two beams, the single unified TCI state or two unified TCI states of a scheduling CORESET.
  28. The UE of claim 22, wherein the message indicates or activates two unified TCI states for inter-cell multiple transmit receive point (TRP) operation, and wherein the one or more processors are configured to:
    apply, for a single beam, a TCI state down-selected from the two unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) , or
    apply, for two beams, the two unified TCI states or two unified TCI states of scheduling CORESETs.
  29. The UE of claim 22, wherein the message indicates or activates three unified TCI states for inter-cell multiple transmit receive point (TRP) operation, and wherein the one or more processors are configured to:
    apply, for a single beam, a TCI state down-selected from the three unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) ,
    apply, for two beams, two TCI states down-selected from the three unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs, or
    apply, for three beams, the three unified TCI states.
  30. The UE of claim 22, wherein the message indicates or activates four unified TCI states for inter-cell multiple transmit receive point (TRP) operation, and wherein the one or more processors are configured to:
    apply, for a single beam, a TCI state down-selected from the four unified TCI states by the scheduling DCI or a first unified TCI state of a scheduling control resource set (CORESET) ,
    apply, for two beams, two TCI states down-selected from the four unified TCI states by the scheduling DCI or two unified TCI states of scheduling CORESETs,
    apply, for three beams, three TCI states down-selected from the four unified TCI states by the scheduling DCI, or
    apply, for four beams, the four unified TCI states.
PCT/CN2022/133681 2022-11-23 2022-11-23 Beam selection for coherent joint transmission WO2024108414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133681 WO2024108414A1 (en) 2022-11-23 2022-11-23 Beam selection for coherent joint transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133681 WO2024108414A1 (en) 2022-11-23 2022-11-23 Beam selection for coherent joint transmission

Publications (1)

Publication Number Publication Date
WO2024108414A1 true WO2024108414A1 (en) 2024-05-30

Family

ID=91194940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133681 WO2024108414A1 (en) 2022-11-23 2022-11-23 Beam selection for coherent joint transmission

Country Status (1)

Country Link
WO (1) WO2024108414A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210045149A1 (en) * 2019-10-14 2021-02-11 Intel Corporation Default transmission configuration indicator (tci) state determination for cross-carrier scheduling
CN113228793A (en) * 2021-03-30 2021-08-06 北京小米移动软件有限公司 Method and device for determining default beam and communication equipment
CN114375548A (en) * 2019-09-13 2022-04-19 高通股份有限公司 Capability-based shared data channel TCI status determination
US20220167324A1 (en) * 2020-11-20 2022-05-26 Samsung Electronics Co., Ltd. Method and ue for determining default beam behavior in wireless network
CN115336363A (en) * 2020-04-10 2022-11-11 联想(北京)有限公司 Default beam determination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114375548A (en) * 2019-09-13 2022-04-19 高通股份有限公司 Capability-based shared data channel TCI status determination
US20210045149A1 (en) * 2019-10-14 2021-02-11 Intel Corporation Default transmission configuration indicator (tci) state determination for cross-carrier scheduling
CN115336363A (en) * 2020-04-10 2022-11-11 联想(北京)有限公司 Default beam determination
US20220167324A1 (en) * 2020-11-20 2022-05-26 Samsung Electronics Co., Ltd. Method and ue for determining default beam behavior in wireless network
CN113228793A (en) * 2021-03-30 2021-08-06 北京小米移动软件有限公司 Method and device for determining default beam and communication equipment

Similar Documents

Publication Publication Date Title
US20230114659A1 (en) Joint channel estimation for repetitions without a demodulation reference signal
US20230354056A1 (en) Beam configuration reporting for hierarchical beam pair identification
US20230254815A1 (en) Default beam for multi-downlink control information based multi-transmit receive point with unified transmission configuration indicator
WO2024108414A1 (en) Beam selection for coherent joint transmission
WO2024108408A1 (en) Transmission configuration indicator state indications for coherent joint transmission
WO2024040559A1 (en) Sounding reference signal (srs) resource sets for srs transmissions
WO2023201703A1 (en) Channel state information report configuration for multiple transmit receive points
WO2023201619A1 (en) Indication of simultaneous uplink transmission for multiple transmit receive points
US20230077873A1 (en) Measurement reporting with delta values
WO2023206434A1 (en) Unified transmission configuration indicator for a single frequency network
WO2024020987A1 (en) Non-active bandwidth parts for candidate cell operations in mobility
WO2024082258A1 (en) Pathloss reference signal indication
US20230308992A1 (en) Measurements of linear combinations of beams
WO2023159453A1 (en) Unified transmission configuration indicator state indications for single-transmission-reception point (trp) and multi-trp configurations
US20240039667A1 (en) Sounding reference signal precoding
WO2023201696A1 (en) Spatial division multiplexing of uplink channel transmissions
WO2023184371A1 (en) Common timing advance group for multiple transmit receive point operation
WO2023212844A1 (en) Linked channel state information reports for coherent joint transmission
WO2024040550A1 (en) Unified transmission configuration indicator state indications in downlink control information
US20240204972A1 (en) Indicating transmission configuration indicator state based on aperiodic channel state information reference signal
WO2023164856A1 (en) Multiple transmit receive point beam setting for unified transmission configuration indicator state
WO2023231039A1 (en) Per-beam time-domain basis selection for channel state information codebook
US20240214978A1 (en) Mobility characteristic adjustment by user equipment
WO2024000142A1 (en) Frequency domain basis selection for multiple transmit receive points
WO2023168642A1 (en) Antenna panel unavailability indication