WO2023201696A1 - Spatial division multiplexing of uplink channel transmissions - Google Patents

Spatial division multiplexing of uplink channel transmissions Download PDF

Info

Publication number
WO2023201696A1
WO2023201696A1 PCT/CN2022/088435 CN2022088435W WO2023201696A1 WO 2023201696 A1 WO2023201696 A1 WO 2023201696A1 CN 2022088435 W CN2022088435 W CN 2022088435W WO 2023201696 A1 WO2023201696 A1 WO 2023201696A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
uplink channel
downlink transmission
trp
scheduled downlink
Prior art date
Application number
PCT/CN2022/088435
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/088435 priority Critical patent/WO2023201696A1/en
Publication of WO2023201696A1 publication Critical patent/WO2023201696A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for spatial division multiplexing of uplink channel transmissions.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs.
  • a UE may communicate with a base station via downlink communications and uplink communications.
  • Downlink (or “DL” ) refers to a communication link from the base station to the UE
  • uplink (or “UL” ) refers to a communication link from the UE to the base station.
  • New Radio which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • an apparatus for wireless communication at a user equipment includes a memory and one or more processors, coupled to the memory, configured to: receive, from a first transmit receive point (TRP) , a first scheduling downlink transmission that schedules a first scheduled downlink transmission; receive, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • TRP transmit receive point
  • an apparatus for wireless communication at a network entity includes a memory and one or more processors, coupled to the memory, configured to: transmit, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; transmit, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; receive, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and receive, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • a method of wireless communication performed by a UE includes receiving, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; receiving, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; transmitting, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and transmitting, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • a method of wireless communication performed by a network entity includes transmitting, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; transmitting, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; receiving, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and receiving, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: receive, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; receive, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a network entity, cause the network entity to: transmit, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; transmit, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; receive, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and receive, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • an apparatus for wireless communication includes means for receiving, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; means for receiving, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; means for transmitting, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and means for transmitting, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • an apparatus for wireless communication includes means for transmitting, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; means for transmitting, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; means for receiving, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and means for receiving, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios.
  • Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements.
  • some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) .
  • Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components.
  • Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects.
  • transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) .
  • RF radio frequency
  • aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a network entity, such as a base station, in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
  • a network entity such as a base station
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of a disaggregated network entity architecture, such as a disaggregated base station architecture, in accordance with the present disclosure.
  • Fig. 4 is a diagram illustrating examples of uplink transmission schemes, in accordance with the present disclosure.
  • Fig. 5 is a diagram illustrating an example of a multiple downlink control information (DCI) (multi-DCI) multiple transmit receive point (TRP) (multi-TRP) scheme, in accordance with the present disclosure.
  • DCI downlink control information
  • TRP transmit receive point
  • Fig. 6 is a diagram illustrating an example associated with spatial division multiplexing of uplink channel transmissions, in accordance with the present disclosure.
  • Figs. 7-8 are diagrams illustrating example processes associated with spatial division multiplexing of uplink channel transmissions, in accordance with the present disclosure.
  • Figs. 9-10 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
  • NR New Radio
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples.
  • the wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities.
  • UE user equipment
  • a base station 110 is an entity that communicates with UEs 120.
  • a base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) .
  • Each base station 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
  • a base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) .
  • CSG closed subscriber group
  • a base station 110 for a macro cell may be referred to as a macro base station.
  • a base station 110 for a pico cell may be referred to as a pico base station.
  • a base station 110 for a femto cell may be referred to as a femto base station or an in-home base station.
  • the BS 110a may be a macro base station for a macro cell 102a
  • the BS 110b may be a pico base station for a pico cell 102b
  • the BS 110c may be a femto base station for a femto cell 102c.
  • a base station may support one or multiple (e.g., three) cells.
  • base station e.g., the base station 110 or “network entity” may refer to an aggregated base station, a disaggregated base station, an integrated access and backhaul (IAB) node, a relay node, and/or one or more components thereof.
  • base station or “network entity” may refer to a central unit (CU) , a distributed unit (DU) , a radio unit (RU) , a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC, or a combination thereof.
  • the term “base station” or “network entity” may refer to one device configured to perform one or more functions, such as those described herein in connection with the base station 110.
  • the term “base station” or “network entity” may refer to a plurality of devices configured to perform the one or more functions. For example, in some distributed systems, each of a number of different devices (which may be located in the same geographic location or in different geographic locations) may be configured to perform at least a portion of a function, or to duplicate performance of at least a portion of the function, and the term “base station” or “network entity” may refer to any one or more of those different devices.
  • base station or “network entity” may refer to one or more virtual base stations and/or one or more virtual base station functions.
  • two or more base station functions may be instantiated on a single device.
  • base station or “network entity” may refer to one of the base station functions and not another. In this way, a single device may include more than one base station.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) .
  • the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • the wireless network 100 may include one or more relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) .
  • a relay station may be a UE 120 that can relay transmissions for other UEs 120.
  • the BS 110d e.g., a relay base station
  • the BS 110a e.g., a macro base station
  • a base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
  • the wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100.
  • macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110.
  • the network controller 130 may communicate with the base stations 110 via a backhaul communication link.
  • the base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit.
  • a UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio)
  • Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity.
  • Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices.
  • Some UEs 120 may be considered a Customer Premises Equipment.
  • a UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks 100 may be deployed in a given geographic area.
  • Each wireless network 100 may support a particular RAT and may operate on one or more frequencies.
  • a RAT may be referred to as a radio technology, an air interface, or the like.
  • a frequency may be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands.
  • devices of the wireless network 100 may communicate using one or more operating bands.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4a or FR4-1 52.6 GHz –71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • frequencies included in these operating bands may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • a UE may include a communication manager 140.
  • the communication manager 140 may receive, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; receive, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
  • a network entity may include a communication manager 150.
  • the communication manager 150 may transmit, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; transmit, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; receive, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and receive, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a network entity, such as a base station 110, in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • the base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ⁇ 1) .
  • the UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ⁇ 1) .
  • a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) .
  • the transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120.
  • MCSs modulation and coding schemes
  • CQIs channel quality indicators
  • the base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120.
  • the transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • the transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t.
  • each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.
  • Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream.
  • Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal.
  • the modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
  • a set of antennas 252 may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r.
  • R received signals e.g., R received signals
  • each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254.
  • DEMOD demodulator component
  • Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples.
  • Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • CQI CQI parameter
  • the network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292.
  • the network controller 130 may include, for example, one or more devices in a core network.
  • the network controller 130 may communicate with the base station 110 via the communication unit 294.
  • One or more antennas may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280.
  • the transmit processor 264 may generate reference symbols for one or more reference signals.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110.
  • the modem 254 of the UE 120 may include a modulator and a demodulator.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 6-10) .
  • the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240.
  • the base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244.
  • the base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications.
  • the modem 232 of the base station 110 may include a modulator and a demodulator.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 6-10) .
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with spatial division multiplexing of uplink channel transmissions, as described in more detail elsewhere herein.
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • the memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively.
  • the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • a UE (e.g., UE 120) includes means for receiving, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; means for receiving, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; means for transmitting, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and/or means for transmitting, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • the means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • a network entity (e.g., base station 110) includes means for transmitting, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; means for transmitting, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; means for receiving, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and/or means for receiving, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • the means for the network entity to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of a disaggregated network entity architecture, such as a disaggregated base station architecture, in accordance with the present disclosure.
  • Deployment of communication systems may be arranged in multiple manners with various components or constituent parts.
  • a network node, a network entity, a mobility element of a network, a RAN node, a core network node, a network element, or a network equipment such as a base station (BS, e.g., base station 110) , or one or more units (or one or more components) performing base station functionality, may be implemented in an aggregated or disaggregated architecture.
  • BS base station
  • base station 110 e.g., base station 110
  • a BS such as a Node B (NB) , eNB, NR BS, 5G NB, access point (AP) , a TRP, a cell, or the like
  • NB Node B
  • eNB evolved Node B
  • NR BS NR BS
  • 5G NB access point
  • TRP TRP
  • cell a cell, or the like
  • an aggregated base station also known as a standalone BS or a monolithic BS
  • disaggregated base station also known as a standalone BS or a monolithic BS
  • An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node.
  • a disaggregated base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more CUs, one or more DUs, or one or more RUs) .
  • a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other RAN nodes.
  • the DUs may be implemented to communicate with one or more RUs.
  • Each of the CU, DU and RU also can be implemented as virtual units, i.e., a virtual centralized unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) .
  • VCU virtual centralized unit
  • VDU virtual distributed unit
  • VRU virtual radio unit
  • Base station-type operation or network design may consider aggregation characteristics of base station functionality.
  • disaggregated base stations may be utilized in an IAB network, an O-RAN (such as the network configuration sponsored by the O-RAN Alliance) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) .
  • vRAN virtualized radio access network
  • C-RAN cloud radio access network
  • Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design.
  • the various units of the disaggregated base station, or disaggregated RAN architecture can be configured for wired or wireless communication with at least one other unit.
  • the disaggregated base station architecture shown in Fig. 3 may include one or more CUs 310 that can communicate directly with a core network 320 via a backhaul link, or indirectly with the core network 320 through one or more disaggregated base station units (such as a Near-RT RIC 325 via an E2 link, or a Non-RT RIC 315 associated with a Service Management and Orchestration (SMO) Framework 305, or both) .
  • a CU 310 may communicate with one or more DUs 330 via respective midhaul links, such as an F1 interface.
  • the DUs 330 may communicate with one or more RUs 340 via respective fronthaul links.
  • the RUs 340 may communicate with respective UEs 120 via one or more radio frequency (RF) access links.
  • RF radio frequency
  • Each of the units may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium.
  • Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units can be configured to communicate with one or more of the other units via the transmission medium.
  • the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units.
  • the units can include a wireless interface, which may include a receiver, a transmitter or transceiver (such as an RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • a wireless interface which may include a receiver, a transmitter or transceiver (such as an RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • the CU 310 may host one or more higher layer control functions.
  • control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 310.
  • the CU 310 may be configured to handle user plane functionality (e.g., Central Unit –User Plane (CU-UP) ) , control plane functionality (e.g., Central Unit –Control Plane (CU-CP) ) , or a combination thereof.
  • the CU 310 can be logically split into one or more CU-UP units and one or more CU-CP units.
  • the CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration.
  • the CU 310 can be implemented to communicate with the DU 330, as necessary, for network control and signaling.
  • the DU 330 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 340.
  • the DU 330 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the 3GPP.
  • the DU 330 may further host one or more low-PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 330, or with the control functions hosted by the CU 310.
  • Lower-layer functionality can be implemented by one or more RUs 340.
  • an RU 340 controlled by a DU 330, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split.
  • the RU (s) 340 can be implemented to handle over the air (OTA) communication with one or more UEs 120.
  • OTA over the air
  • real-time and non-real-time aspects of control and user plane communication with the RU (s) 340 can be controlled by the corresponding DU 330.
  • this configuration can enable the DU (s) 330 and the CU 310 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
  • the SMO Framework 305 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements.
  • the SMO Framework 305 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (such as an O1 interface) .
  • the SMO Framework 305 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 390) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) .
  • a cloud computing platform such as an open cloud (O-Cloud) 390
  • network element life cycle management such as to instantiate virtualized network elements
  • a cloud computing platform interface such as an O2 interface
  • Such virtualized network elements can include, but are not limited to, CUs 310, DUs 330, RUs 340 and Near-RT RICs 325.
  • the SMO Framework 305 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 311, via an O1 interface. Additionally, in some implementations, the SMO Framework 305 can communicate directly with one or more RUs 340 via an O1 interface.
  • the SMO Framework 305 also may include a Non-RT RIC 315 configured to support functionality of the SMO Framework 305.
  • the Non-RT RIC 315 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 325.
  • the Non-RT RIC 315 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 325.
  • the Near-RT RIC 325 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 310, one or more DUs 330, or both, as well as an O-eNB, with the Near-RT RIC 325.
  • the Non-RT RIC 315 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 325 and may be received at the SMO Framework 305 or the Non-RT RIC 315 from non-network data sources or from network functions. In some examples, the Non-RT RIC 315 or the Near-RT RIC 325 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 315 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 305 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
  • SMO Framework 305 such as reconfiguration via O1
  • A1 policies such as A1 policies
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • a UE may communicate with a first TRP and a second TRP.
  • the UE may communicate with the first TRP using a first panel, and the UE may communicate with the second TRP using a second panel.
  • the UE may perform a simultaneous multi-panel uplink transmission to the first TRP and the second TRP in FR2 while achieving high uplink throughput and reliability.
  • the UE may be a customer premise equipment (CPE) , a fixed wireless access (FWA) device, a vehicle, or an industrial device.
  • CPE customer premise equipment
  • FWA fixed wireless access
  • An uplink precoding indication may be associated with a physical uplink shared channel (PUSCH) , where no new codebook may be introduced for the simultaneous multi-panel uplink transmission to the first TRP and the second TRP.
  • PUSCH physical uplink shared channel
  • a total quantity of layers may be up to four across a plurality of panels (e.g., four panels) , and a total quantity of codewords may be up to two across the plurality of panels, based at least in part on a single downlink control information (DCI) based multi-TRP operation and a multiple DCI (multi-DCI) based multi-TRP operation.
  • DCI downlink control information
  • multi-DCI multi-DCI
  • An uplink beam indication may be associated with a physical uplink control channel (PUCCH) or PUSCH, where a unified transmission configuration indicator (TCI) framework extension may be assumed, based at least in part on the single DCI based multi-TRP operation and the multi-DCI based multi-TRP operation. Further, in the multi-DCI based multi-TRP operation, the UE may transmit a first PUSCH and a second PUSCH, or a first PUCCH and a second PUCCH, across two panels in a same component carrier.
  • TCI transmission configuration indicator
  • a UE may perform uplink channel transmissions in a multi-TRP operation, which may involve uplink channel transmissions to a first TRP and a second TRP.
  • An uplink channel transmission may include an acknowledgement (ACK) or a negative acknowledgement (NACK) .
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the UE may not be configured to support simultaneous uplink channel transmissions to the first TRP and the second TRP using spatial division multiplexing. Further, the UE may not be configured to support simultaneous uplink channel transmissions in response to separate downlink schedulings received from the first TRP and the second TRP.
  • the UE may receive, from a first TRP associated with a network entity, a first scheduling downlink transmission that schedules a first scheduled downlink transmission.
  • the first scheduling downlink transmission may be a first DCI.
  • the UE may receive, from a second TRP associated with the network entity, a second scheduling downlink transmission that schedules a second scheduled downlink transmission.
  • the second scheduling downlink transmission may be a second DCI.
  • the UE may transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission.
  • the UE may transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission.
  • the first uplink channel transmission and the second uplink channel transmission may be simultaneous uplink channel transmissions.
  • the second uplink channel transmission may be spatial division multiplexed with the first uplink channel transmission.
  • the UE may support spatial division multiplexed uplink channel transmissions for the first TRP and the second TRP based at least in part on separate downlink schedulings received from the first TRP and the second TRP.
  • the UE may support simultaneous uplink channel transmissions in response to the separate downlink schedulings received from the first TRP and the second TRP.
  • Fig. 4 is a diagram illustrating an example 400 of uplink transmission schemes, in accordance with the present disclosure.
  • a UE may transmit an uplink transmission to a network entity.
  • the network entity may be associated with a single TRP.
  • the UE may transmit the uplink transmission using four layers (e.g., four transmission streams) .
  • the UE may transmit a first uplink transmission to a first TRP and a second uplink transmission to a second TRP.
  • the first TRP and the second TRP may be associated with a network entity.
  • the first uplink transmission and the second uplink transmission may each be associated with two layers.
  • the UE may perform the first uplink transmission and the second uplink transmission using TDM. In other words, the first uplink transmission and the second uplink transmission may be associated with separate resources in a time domain.
  • the UE may simultaneously transmit a first uplink transmission to a first TRP and a second uplink transmission to a second TRP.
  • the first uplink transmission may be “simultaneous” with the second uplink transmission when a time difference between the first uplink transmission and the second uplink transmission is within a threshold.
  • the first TRP and the second TRP may be associated with a network entity.
  • the first uplink transmission and the second uplink transmission may each be associated with two layers.
  • the UE may perform the first uplink transmission and the second uplink transmission using spatial division multiplexing (SDM) or frequency division multiplexing (FDM) .
  • SDM spatial division multiplexing
  • FDM frequency division multiplexing
  • resources associated with the first uplink transmission may overlap in time but not frequency with resources associated with the second uplink transmission may.
  • SDM resources associated with the first uplink transmission and resources associated with the second uplink transmission may overlap in time and frequency, but the resources associated with the first uplink transmission may be spatially separated from the resources associated with the second uplink transmission.
  • the first TRP may be associated with a first transmission configuration indication (TCI)
  • TCI transmission configuration indication
  • the second TRP may be associated with a second TCI.
  • the UE may perform the first uplink transmission using a first beam and the second uplink transmission using a second beam, where the second beam may be different from the first beam.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • Fig. 5 is a diagram illustrating an example of a multi-DCI and multi-TRP scheme, in accordance with the present disclosure.
  • a UE may receive, from a first TRP associated with a network entity, a first DCI.
  • the first DCI may be associated with a first physical downlink control channel (PDCCH) transmission.
  • the first DCI may schedule a first physical downlink shared channel (PDSCH) transmission.
  • the UE may receive, from a second TRP associated with the network entity, a second DCI.
  • the second DCI may be associated with a second PDCCH transmission.
  • the second DCI may schedule a second PDSCH transmission.
  • the UE may receive the first PDSCH transmission from the first TRP.
  • the UE may receive the second PDSCH transmission from the second TRP.
  • the UE may transmit, to the first TRP, a first PUCCH transmission based at least in part on the first PDSCH transmission.
  • the UE may transmit, to the second TRP, a second PUCCH transmission based at least in part on the second PDSCH transmission.
  • the first PUCCH transmission may be spatial domain multiplexed with the second PUCCH transmission. In other words, resources associated with the first PUCCH transmission and resources associated with the second PUCCH transmission may overlap in time and frequency, but the resources associated with the first PUCCH transmission may be spatially separated from the resources associated with the second PUCCH transmission.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
  • Fig. 6 is a diagram illustrating an example associated with spatial division multiplexing of uplink channel transmissions, in accordance with the present disclosure.
  • example 600 includes communication between a UE (e.g., UE 120) and a network entity (e.g., base station 110) .
  • the UE and the network entity may be included in a wireless network, such as wireless network 100.
  • the UE may be configured with a multi-DCI based multi-TRP operation.
  • the UE may communicate with a first TRP associated with the network entity.
  • the UE may communicate with a second TRP associated with the network entity.
  • the UE may receive, from the first TRP associated with the network entity, a first scheduling downlink transmission that schedules a first scheduled downlink transmission.
  • the network entity may transmit, via the first TRP to the UE, the first scheduling downlink transmission.
  • the first scheduling downlink transmission may be a first PDCCH transmission that indicates a first DCI.
  • the first DCI may schedule the first scheduled downlink transmission.
  • the first scheduling downlink transmission may be associated with a first CORESET pool index.
  • the UE may receive, from the second TRP associated with the network entity, a second scheduling downlink transmission that schedules a second scheduled downlink transmission.
  • the network entity may transmit, via the second TRP to the UE, the second scheduling downlink transmission.
  • the second scheduling downlink transmission may be a second PDCCH transmission that indicates a second DCI.
  • the second DCI may schedule the second scheduled downlink transmission.
  • the second scheduling downlink transmission may be associated with a second CORESET pool index.
  • the UE may receive, from the first TRP, the first scheduled downlink transmission.
  • the network entity may transmit, via the first TRP to the UE, the first scheduled downlink transmission.
  • the UE may receive the first scheduled downlink transmission based at least in part on the first scheduling downlink transmission.
  • the first scheduled downlink transmission may be a first PDSCH transmission.
  • the UE may receive, from the second TRP, the second scheduled downlink transmission.
  • the network entity may transmit, via the second TRP to the UE, the second scheduled downlink transmission.
  • the UE may receive the second scheduled downlink transmission based at least in part on the second scheduling downlink transmission.
  • the second scheduled downlink transmission may be a second PDSCH transmission.
  • the UE may transmit, to the first TRP, a first uplink channel transmission.
  • the network entity may receive, via the first TRP from the UE, the first uplink channel transmission.
  • the UE may transmit the first uplink channel transmission based at least in part on the first scheduled downlink transmission.
  • the first uplink channel transmission may be a first PUCCH transmission.
  • the first uplink channel transmission may be associated with a first TCI state.
  • the UE may transmit, to the second TRP, a second uplink channel transmission.
  • the network entity may receive, via the second TRP from the UE, the second uplink channel transmission.
  • the UE may transmit the second uplink channel transmission based at least in part on the second scheduled downlink transmission.
  • the second uplink channel transmission may be a second PUCCH transmission.
  • the second uplink channel transmission may be associated with a second TCI state.
  • the first uplink channel transmission and the second uplink channel transmission may be simultaneous uplink transmissions.
  • the UE may transmit the first uplink channel transmission to the first TRP and the second uplink channel transmission to the second TRP at substantially the same time (e.g., within a certain time threshold from each other) .
  • the second uplink channel transmission may be spatial division multiplexed with the first uplink channel transmission. Resources associated with the first uplink channel transmission and resources associated with the second uplink channel transmission may overlap in time and frequency, but the resources associated with the first uplink channel transmission may be spatially separated from the resources associated with the second uplink channel transmission.
  • the UE may be preconfigured or configured by the network entity to support simultaneous spatial division multiplexed uplink channel transmissions to the first TRP and the second TRP.
  • the first scheduled downlink transmission may be a first downlink grant (DG) PDSCH transmission where the first scheduling downlink transmission may be a first DCI
  • the second scheduled downlink transmission may be a second DG PDSCH transmission where the second scheduling downlink transmission may be a second DCI
  • the first scheduled downlink transmission may be a DG PDSCH transmission where the first scheduling downlink transmission may be a first DCI
  • the second scheduled downlink transmission may be a semi-persistent scheduling (SPS) PDSCH transmission where the second scheduling downlink transmission may be an RRC configuration or a second DCI activating the SPS PDSCH transmission.
  • SPS semi-persistent scheduling
  • the first scheduled downlink transmission may be a DG PDSCH transmission
  • the second scheduled downlink transmission may be a channel state information (CSI) transmission, such as a channel state information reference signal (CSI-RS) transmission where the second scheduling downlink transmission may be an RRC configuration, a medium access control control element (MAC-CE) or a second DCI enabling CSI report transmissions.
  • CSI channel state information
  • the first scheduled downlink transmission may be a CSI transmission where the first scheduling downlink transmission may be an RRC configuration, a MAC-CE or a first DCI
  • the second scheduled downlink transmission may be an SPS PDSCH transmission where the second scheduling downlink transmission may be an RRC configuration or a second DCI.
  • the UE may support spatial division multiplexed PUCCH transmissions to different TRPs (e.g., the first TRP and the second TRP) based at least in part on separate downlink schedulings (e.g., two different downlink schedulings) .
  • the separate downlink schedulings may be associated with the different TRPs, which may be associated with different CORESET pool indexes.
  • the separate downlink schedulings may include a first PDCCH transmission for a first DG PDSCH transmission and a second PDCCH transmission for a second DG PDSCH transmission.
  • a first PUCCH transmission (e.g., an ACK or NACK) may be associated with the first DG PDSCH transmission, and a second PUCCH transmission may be associated with the second DG PDSCH transmission.
  • the separate downlink schedulings may include a first PDCCH transmission for a DG PDSCH transmission and a second PDCCH transmission for an SPS PDSCH transmission.
  • a first PUCCH transmission may be associated with the DG PDSCH transmission
  • a second PUCCH transmission may be associated with the SPS PDSCH transmission.
  • the separate downlink schedulings may include a PDCCH transmission for a DG PDSCH transmission and a scheduling for a CSI transmission.
  • a first PUCCH transmission may be associated with the DG PDSCH transmission and the second PUCCH transmission may be associated with the CSI transmission.
  • the separate downlink schedulings may include a scheduling for a CSI transmission and a PDCCH transmission for an SPS PDSCH transmission.
  • a first PUCCH transmission may be associated with the CSI transmission and the second PUCCH transmission may be associated with the SPS PDSCH transmission.
  • the first uplink channel transmission and the second uplink channel transmission may be intended for the different TRPs, and the first uplink channel transmission and the second uplink channel transmission may be associated with two simultaneous TCI states. In other words, the first uplink channel transmission and the second uplink channel transmission may be associated with simultaneous uplink channel transmissions. In some aspects, the first uplink channel transmission may be associated with a first closed loop index, and the second uplink channel transmission may be associated with a second closed loop index.
  • the first uplink channel transmission and the second uplink channel transmission may be associated with two different closed loop indexes.
  • Transmit power control (TPC) commands for the first uplink channel transmission and the second uplink channel transmission may be indicated in TPC fields of corresponding DCIs associated with the first and second CORESET pool indexes, respectively.
  • the first uplink channel transmission and the second uplink channel transmission may be associated with a same uplink channel format.
  • the uplink channel format may be a PUCCH format 0, 1, 2, 3, 4 as specified in 3GPP NR specifications.
  • the first uplink channel transmission and the second uplink channel transmission of same uplink channel format may be associated with different cyclic shifts and/or different orthogonal cover codes.
  • the first uplink channel transmission and the second uplink channel transmission may be associated with overlapping resources in time and frequency.
  • the first uplink channel transmission and the second uplink channel transmission may be associated with overlapping PUCCH transmissions.
  • the UE may expect that the overlapping PUCCH transmissions are supported only for two PUCCH transmissions of a same PUCCH format.
  • the overlapping PUCCH transmissions of the first uplink channel transmission and the second uplink channel transmission may be two PUCCH format 0 transmissions having different cyclic shifts.
  • the overlapping PUCCH transmissions of the first uplink channel transmission and the second uplink channel transmission may be two PUCCH format 1 transmissions having different cyclic shifts and/or different orthogonal cover codes.
  • the overlapping PUCCH transmissions of the first uplink channel transmission and the second uplink channel transmission may be two PUCCH format 4 transmissions having different orthogonal cover codes, in which the two overlapping PUCCH transmissions may have the same quantity of DMRS symbol (s) and the same DMRS symbol locations.
  • the UE may expect that the overlapping PUCCH transmissions of the first uplink channel transmission and the second uplink channel transmission are not associated with PUCCH format 2 or PUCCH format 3.
  • a PUCCH transmission associated with PUCCH format 2 or PUCCH format 3 is not expected to overlap with any other PUCCH transmission due to no UE multiplexing capability in such scenarios.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 700 is an example where the UE (e.g., UE 120) performs operations associated with spatial division multiplexing of uplink channel transmissions.
  • process 700 may include receiving, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission (block 710) .
  • the UE e.g., using reception component 902, depicted in Fig. 9 may receive, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission, as described above.
  • process 700 may include receiving, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission (block 720) .
  • the UE e.g., using reception component 902, depicted in Fig. 9 may receive, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission, as described above.
  • process 700 may include transmitting, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission (block 730) .
  • the UE e.g., using transmission component 904, depicted in Fig. 9 may transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission, as described above.
  • process 700 may include transmitting, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission (block 740) .
  • the UE e.g., using transmission component 904, depicted in Fig. 9
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the first scheduling downlink transmission is a first PDCCH transmission that indicates a first DCI, wherein the first DCI schedules the first scheduled downlink transmission
  • the second scheduling downlink transmission is a second PDCCH transmission that indicates a second DCI, wherein the second DCI schedules the second scheduled downlink transmission.
  • the first uplink channel transmission is a first PUCCH transmission and the second uplink channel transmission is a second PUCCH transmission.
  • process 700 includes receiving, from the first TRP, the first scheduled downlink transmission; and receiving, from the second TRP, the second scheduled downlink transmission.
  • the first scheduling downlink transmission is associated with a first CORESET pool index
  • the second scheduling downlink transmission is associated with a second CORESET pool index
  • the first uplink channel transmission and the second uplink channel transmission are simultaneous uplink transmissions.
  • the first uplink channel transmission is associated with a first TCI state and the second uplink channel transmission is associated with a second TCI state.
  • the first scheduled downlink transmission is a first DG PDSCH transmission
  • the second scheduled downlink transmission is a second DG PDSCH transmission
  • the first scheduled downlink transmission is a DG PDSCH transmission
  • the second scheduled downlink transmission is an SPS PDSCH transmission
  • the first scheduled downlink transmission is a DG PDSCH transmission
  • the second scheduled downlink transmission is a CSI transmission
  • the first scheduled downlink transmission is a CSI transmission
  • the second scheduled downlink transmission is an SPS PDSCH transmission.
  • the first uplink channel transmission is associated with a first closed loop index and the second uplink channel transmission is associated with a second closed loop index.
  • the first uplink channel transmission and the second uplink channel transmission are associated with a same uplink channel format.
  • the same uplink channel format is associated with one or more of different cyclic shifts or different orthogonal cover codes.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a network entity, in accordance with the present disclosure.
  • Example process 800 is an example where the network entity (e.g., base station 110) performs operations associated with spatial division multiplexing of uplink channel transmissions.
  • the network entity e.g., base station 110
  • process 800 may include transmitting, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission (block 810) .
  • the network entity e.g., using transmission component 1004, depicted in Fig. 10) may transmit, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission, as described above.
  • process 800 may include transmitting, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission (block 820) .
  • the network entity e.g., using transmission component 1004, depicted in Fig. 10
  • process 800 may include receiving, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission (block 830) .
  • the network entity e.g., using reception component 1002, depicted in Fig. 10
  • process 800 may include receiving, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission (block 840) .
  • the network entity e.g., using reception component 1002, depicted in Fig. 10
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a diagram of an example apparatus 900 for wireless communication.
  • the apparatus 900 may be a UE, or a UE may include the apparatus 900.
  • the apparatus 900 includes a reception component 902 and a transmission component 904, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 900 may communicate with another apparatus 906 (such as a UE, a base station, or another wireless communication device) using the reception component 902 and the transmission component 904.
  • another apparatus 906 such as a UE, a base station, or another wireless communication device
  • the apparatus 900 may be configured to perform one or more operations described herein in connection with Fig. 6. Additionally, or alternatively, the apparatus 900 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7.
  • the apparatus 900 and/or one or more components shown in Fig. 9 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 9 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 902 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 906.
  • the reception component 902 may provide received communications to one or more other components of the apparatus 900.
  • the reception component 902 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 900.
  • the reception component 902 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 904 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 906.
  • one or more other components of the apparatus 900 may generate communications and may provide the generated communications to the transmission component 904 for transmission to the apparatus 906.
  • the transmission component 904 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 906.
  • the transmission component 904 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 904 may be co-located with the reception component 902 in a transceiver.
  • the reception component 902 may receive, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission.
  • the reception component 902 may receive, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission.
  • the transmission component 904 may transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission.
  • the transmission component 904 may transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • the reception component 902 may receive, from the first TRP, the first scheduled downlink transmission.
  • the reception component 902 may receive, from the second TRP, the second scheduled downlink transmission.
  • Fig. 9 The number and arrangement of components shown in Fig. 9 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 9. Furthermore, two or more components shown in Fig. 9 may be implemented within a single component, or a single component shown in Fig. 9 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 9 may perform one or more functions described as being performed by another set of components shown in Fig. 9.
  • Fig. 10 is a diagram of an example apparatus 1000 for wireless communication.
  • the apparatus 1000 may be a network entity, or a network entity may include the apparatus 1000.
  • the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004.
  • another apparatus 1006 such as a UE, a base station, or another wireless communication device
  • the apparatus 1000 may be configured to perform one or more operations described herein in connection with Fig. 6. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8.
  • the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the network entity described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006.
  • the reception component 1002 may provide received communications to one or more other components of the apparatus 1000.
  • the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1000.
  • the reception component 1002 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the network entity described in connection with Fig. 2.
  • the transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006.
  • one or more other components of the apparatus 1000 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006.
  • the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006.
  • the transmission component 1004 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the network entity described in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
  • the transmission component 1004 may transmit, via a first TRP to a (UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission.
  • the transmission component 1004 may transmit, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission.
  • the reception component 1002 may receive, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission.
  • the reception component 1002 may receive, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • Fig. 10 The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
  • a method of wireless communication performed by a user equipment comprising: receiving, from a first transmit receive point (TRP) , a first scheduling downlink transmission that schedules a first scheduled downlink transmission; receiving, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; transmitting, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and transmitting, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • TRP transmit receive point
  • Aspect 2 The method of Aspect 1, wherein: the first scheduling downlink transmission is a first physical downlink control channel (PDCCH) transmission that indicates a first downlink control information (DCI) , wherein the first DCI schedules the first scheduled downlink transmission; and the second scheduling downlink transmission is a second PDCCH transmission that indicates a second DCI, wherein the second DCI schedules the second scheduled downlink transmission.
  • PDCCH physical downlink control channel
  • DCI downlink control information
  • Aspect 3 The method of any of Aspects 1 through 2, wherein the first uplink channel transmission is a first physical uplink control channel (PUCCH) transmission and the second uplink channel transmission is a second PUCCH transmission.
  • PUCCH physical uplink control channel
  • Aspect 4 The method of any of Aspects 1 through 3, further comprising: receiving, from the first TRP, the first scheduled downlink transmission; and receiving, from the second TRP, the second scheduled downlink transmission.
  • Aspect 5 The method of any of Aspects 1 through 4, wherein: the first scheduling downlink transmission is associated with a first control resource set (CORESET) pool index; and the second scheduling downlink transmission is associated with a second CORESET pool index.
  • CORESET control resource set
  • Aspect 6 The method of any of Aspects 1 through 5, wherein the first uplink channel transmission and the second uplink channel transmission are simultaneous uplink transmissions.
  • Aspect 7 The method of any of Aspects 1 through 6, wherein the first uplink channel transmission is associated with a first transmission configuration indicator (TCI) state and the second uplink channel transmission is associated with a second TCI state.
  • TCI transmission configuration indicator
  • Aspect 8 The method of any of Aspects 1 through 7, wherein: the first scheduled downlink transmission is a first downlink grant (DG) physical downlink shared channel (PDSCH) transmission; and the second scheduled downlink transmission is a second DG PDSCH transmission.
  • DG downlink grant
  • PDSCH physical downlink shared channel
  • Aspect 9 The method of any of Aspects 1 through 8, wherein: the first scheduled downlink transmission is a downlink grant physical downlink shared channel (PDSCH) transmission; and the second scheduled downlink transmission is a semi-persistent scheduling PDSCH transmission.
  • PDSCH physical downlink shared channel
  • Aspect 10 The method of any of Aspects 1 through 9, wherein: the first scheduled downlink transmission is a downlink grant physical downlink shared channel (PDSCH) transmission; and the second scheduled downlink transmission is a channel state information transmission.
  • PDSCH physical downlink shared channel
  • Aspect 11 The method of any of Aspects 1 through 10, wherein: the first scheduled downlink transmission is a channel state information transmission; and the second scheduled downlink transmission is a semi-persistent scheduling physical downlink shared channel transmission.
  • Aspect 12 The method of any of Aspects 1 through 11, wherein the first uplink channel transmission is associated with a first closed loop index and the second uplink channel transmission is associated with a second closed loop index.
  • Aspect 13 The method of any of Aspects 1 through 12, wherein the first uplink channel transmission and the second uplink channel transmission are associated with a same uplink channel format.
  • Aspect 14 The method of Aspect 13, wherein the same uplink channel format is associated with one or more of: different cyclic shifts or different orthogonal cover codes.
  • a method of wireless communication performed by a network entity comprising: transmitting, via a first transmit receive point (TRP) to a user equipment (UE) , a first scheduling downlink transmission that schedules a first scheduled downlink transmission; transmitting, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; receiving, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and receiving, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  • TRP transmit receive point
  • UE user equipment
  • Aspect 16 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-14.
  • Aspect 17 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-14.
  • Aspect 18 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-14.
  • Aspect 19 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-14.
  • Aspect 20 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-14.
  • Aspect 21 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of Aspect 15.
  • Aspect 22 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of Aspect 15.
  • Aspect 23 An apparatus for wireless communication, comprising at least one means for performing the method of Aspect 15.
  • Aspect 24 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of Aspect 15.
  • Aspect 25 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of Aspect 15.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) .
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a first transmit receive point (TRP), a first scheduling downlink transmission that schedules a first scheduled downlink transmission. The UE may receive, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission. The UE may transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission. The UE may transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission. Numerous other aspects are described.

Description

SPATIAL DIVISION MULTIPLEXING OF UPLINK CHANNEL TRANSMISSIONS
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for spatial division multiplexing of uplink channel transmissions.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs. A UE may communicate with a base station via downlink communications and uplink communications. “Downlink” (or “DL” ) refers to a communication link from the base station to the UE, and “uplink” (or “UL” ) refers to a communication link from the UE to the base station.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different UEs to communicate on a municipal, national, regional, and/or global level. New Radio (NR) , which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using  orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some implementations, an apparatus for wireless communication at a user equipment (UE) includes a memory and one or more processors, coupled to the memory, configured to: receive, from a first transmit receive point (TRP) , a first scheduling downlink transmission that schedules a first scheduled downlink transmission; receive, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
In some implementations, an apparatus for wireless communication at a network entity includes a memory and one or more processors, coupled to the memory, configured to: transmit, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; transmit, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; receive, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and receive, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
In some implementations, a method of wireless communication performed by a UE includes receiving, from a first TRP, a first scheduling downlink transmission that  schedules a first scheduled downlink transmission; receiving, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; transmitting, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and transmitting, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
In some implementations, a method of wireless communication performed by a network entity includes transmitting, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; transmitting, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; receiving, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and receiving, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
In some implementations, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: receive, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; receive, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
In some implementations, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a network entity, cause the network entity to: transmit, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; transmit, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled  downlink transmission; receive, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and receive, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
In some implementations, an apparatus for wireless communication includes means for receiving, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; means for receiving, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; means for transmitting, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and means for transmitting, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
In some implementations, an apparatus for wireless communication includes means for transmitting, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; means for transmitting, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; means for receiving, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and means for receiving, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily  utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages, will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
While aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios. Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements. For example, some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) . Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components. Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects. For example, transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) . It is intended that aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the  description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
Fig. 2 is a diagram illustrating an example of a network entity, such as a base station, in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
Fig. 3 is a diagram illustrating an example of a disaggregated network entity architecture, such as a disaggregated base station architecture, in accordance with the present disclosure.
Fig. 4 is a diagram illustrating examples of uplink transmission schemes, in accordance with the present disclosure.
Fig. 5 is a diagram illustrating an example of a multiple downlink control information (DCI) (multi-DCI) multiple transmit receive point (TRP) (multi-TRP) scheme, in accordance with the present disclosure.
Fig. 6 is a diagram illustrating an example associated with spatial division multiplexing of uplink channel transmissions, in accordance with the present disclosure.
Figs. 7-8 are diagrams illustrating example processes associated with spatial division multiplexing of uplink channel transmissions, in accordance with the present disclosure.
Figs. 9-10 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. One skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be  practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
While aspects may be described herein using terminology commonly associated with a 5G or New Radio (NR) radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure. The wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples. The wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities. A base station 110 is an entity that communicates with UEs 120. A base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) . Each base station 110 may provide communication coverage for a particular geographic area. In the Third Generation Partnership Project (3GPP) , the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) . A base station 110 for a macro cell may be referred to as a macro base station. A base station 110 for a pico cell may be referred to as a pico base station. A base station 110 for a femto cell may be referred to as a femto base station or an in-home base station. In the example shown in Fig. 1, the BS 110a may be a macro base station for a macro cell 102a, the BS 110b may be a pico base station for a pico cell 102b, and the BS 110c may be a femto base station for a femto cell 102c. A base station may support one or multiple (e.g., three) cells.
In some aspects, the term “base station” (e.g., the base station 110) or “network entity” may refer to an aggregated base station, a disaggregated base station, an integrated access and backhaul (IAB) node, a relay node, and/or one or more components thereof. For example, in some aspects, “base station” or “network entity” may refer to a central unit (CU) , a distributed unit (DU) , a radio unit (RU) , a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC, or a combination thereof. In some aspects, the term “base station” or “network entity” may refer to one device configured to perform one or more functions, such as those described herein in connection with the base station 110. In some aspects, the term “base station” or “network entity” may refer to a plurality of devices configured to perform the one or more functions. For example, in some distributed systems, each of a number of different devices (which may be located in the same geographic location or in different geographic locations) may be configured to perform at least a portion of a function, or to duplicate performance of at least a portion of the function, and the term “base station” or “network entity” may refer to any one or more of those different devices. In some aspects, the term “base station” or “network entity” may refer to one or more virtual base stations and/or one or more virtual base station functions. For example, in some aspects, two or more base station functions may be instantiated on a single device. In some aspects, the term “base station” or “network entity” may refer to  one of the base station functions and not another. In this way, a single device may include more than one base station.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) . In some examples, the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
The wireless network 100 may include one or more relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) . A relay station may be a UE 120 that can relay transmissions for other UEs 120. In the example shown in Fig. 1, the BS 110d (e.g., a relay base station) may communicate with the BS 110a (e.g., a macro base station) and the UE 120d in order to facilitate communication between the BS 110a and the UE 120d. A base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
The wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100. For example, macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110. The network controller 130 may communicate with the base stations 110 via a backhaul communication link. The base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
The UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile. A UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit. A UE 120 may be a  cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, and/or any other suitable device that is configured to communicate via a wireless medium.
Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity. Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices. Some UEs 120 may be considered a Customer Premises Equipment. A UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components. In some examples, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In general, any number of wireless networks 100 may be deployed in a given geographic area. Each wireless network 100 may support a particular RAT and may operate on one or more frequencies. A RAT may be referred to as a radio technology, an air interface, or the like. A frequency may be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications,  device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network. In such examples, a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4-1 (52.6 GHz –71 GHz) , FR4 (52.6 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above examples in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly  represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band. It is contemplated that the frequencies included in these operating bands (e.g., FR1, FR2, FR3, FR4, FR4-a, FR4-1, and/or FR5) may be modified, and techniques described herein are applicable to those modified frequency ranges.
In some aspects, a UE (e.g., UE 120) may include a communication manager 140. As described in more detail elsewhere herein, the communication manager 140 may receive, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; receive, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
In some aspects, a network entity (e.g., base station 110) may include a communication manager 150. As described in more detail elsewhere herein, the communication manager 150 may transmit, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; transmit, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; receive, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and receive, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a network entity, such as a base station 110, in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure. The base station 110 may be equipped with a  set of antennas 234a through 234t, such as T antennas (T ≥ 1) . The UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ≥ 1) .
At the base station 110, a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) . The transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120. The base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120. The transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. The transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t. For example, each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232. Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal. The modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
At the UE 120, a set of antennas 252 (shown as antennas 252a through 252r) may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r. For example, each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254. Each modem 254 may use a respective demodulator component to  condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples. Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples. In some examples, one or more components of the UE 120 may be included in a housing 284.
The network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292. The network controller 130 may include, for example, one or more devices in a core network. The network controller 130 may communicate with the base station 110 via the communication unit 294.
One or more antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at the UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280. The transmit processor 264 may generate reference symbols for one or more reference signals. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110. In some examples, the  modem 254 of the UE 120 may include a modulator and a demodulator. In some examples, the UE 120 includes a transceiver. The transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266. The transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 6-10) .
At the base station 110, the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240. The base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244. The base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications. In some examples, the modem 232 of the base station 110 may include a modulator and a demodulator. In some examples, the base station 110 includes a transceiver. The transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230. The transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 6-10) .
The controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with spatial division multiplexing of uplink channel transmissions, as described in more detail elsewhere herein. For example, the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein. The memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively. In some examples, the memory 242 and/or the memory 282 may include a non-transitory computer-readable  medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein. In some examples, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, a UE (e.g., UE 120) includes means for receiving, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; means for receiving, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; means for transmitting, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and/or means for transmitting, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission. The means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
In some aspects, a network entity (e.g., base station 110) includes means for transmitting, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission; means for transmitting, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; means for receiving, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and/or means for receiving, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission. In some aspects, the means for the network entity to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor  230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of a disaggregated network entity architecture, such as a disaggregated base station architecture, in accordance with the present disclosure.
Deployment of communication systems, such as 5G NR systems, may be arranged in multiple manners with various components or constituent parts. In a 5G NR system, or network, a network node, a network entity, a mobility element of a network, a RAN node, a core network node, a network element, or a network equipment, such as a base station (BS, e.g., base station 110) , or one or more units (or one or more components) performing base station functionality, may be implemented in an aggregated or disaggregated architecture. For example, a BS (such as a Node B (NB) , eNB, NR BS, 5G NB, access point (AP) , a TRP, a cell, or the like) may be implemented as an aggregated base station (also known as a standalone BS or a monolithic BS) or a disaggregated base station.
An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node. A disaggregated base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more CUs, one or more DUs, or one or more RUs) . In some aspects, a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other RAN nodes. The DUs may be implemented to communicate with one or more RUs. Each of the CU, DU and RU also can be implemented as virtual units, i.e., a virtual centralized unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) .
Base station-type operation or network design may consider aggregation characteristics of base station functionality. For example, disaggregated base stations may be utilized in an IAB network, an O-RAN (such as the network configuration sponsored by the O-RAN Alliance) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) . Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design. The various units of the disaggregated base station, or disaggregated RAN architecture, can be configured for wired or wireless communication with at least one other unit.
The disaggregated base station architecture shown in Fig. 3 may include one or more CUs 310 that can communicate directly with a core network 320 via a backhaul link, or indirectly with the core network 320 through one or more disaggregated base station units (such as a Near-RT RIC 325 via an E2 link, or a Non-RT RIC 315 associated with a Service Management and Orchestration (SMO) Framework 305, or both) . A CU 310 may communicate with one or more DUs 330 via respective midhaul links, such as an F1 interface. The DUs 330 may communicate with one or more RUs 340 via respective fronthaul links. The RUs 340 may communicate with respective UEs 120 via one or more radio frequency (RF) access links. In some implementations, the UE 120 may be simultaneously served by multiple RUs 340.
Each of the units (e.g., the CUs 310, the DUs 330, the RUs 340) , as well as the Near-RT RICs 325, the Non-RT RICs 315, and the SMO Framework 305, may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium. Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units, can be configured to communicate with one or more of the other units via the transmission medium. For example, the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units. Additionally, the units can include a wireless interface, which may include a receiver, a transmitter or transceiver (such as an RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
In some aspects, the CU 310 may host one or more higher layer control functions. Such control functions can include radio resource control (RRC) , packet data  convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like. Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 310. The CU 310 may be configured to handle user plane functionality (e.g., Central Unit –User Plane (CU-UP) ) , control plane functionality (e.g., Central Unit –Control Plane (CU-CP) ) , or a combination thereof. In some implementations, the CU 310 can be logically split into one or more CU-UP units and one or more CU-CP units. The CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration. The CU 310 can be implemented to communicate with the DU 330, as necessary, for network control and signaling.
The DU 330 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 340. In some aspects, the DU 330 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the 3GPP. In some aspects, the DU 330 may further host one or more low-PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 330, or with the control functions hosted by the CU 310.
Lower-layer functionality can be implemented by one or more RUs 340. In some deployments, an RU 340, controlled by a DU 330, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split. In such an architecture, the RU (s) 340 can be implemented to handle over the air (OTA) communication with one or more UEs 120. In some implementations, real-time and non-real-time aspects of control and user plane communication with the RU (s) 340 can be controlled by the corresponding DU 330. In some scenarios, this configuration can enable the DU (s) 330 and the CU 310 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
The SMO Framework 305 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements. For non-virtualized network elements, the SMO Framework 305 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (such as an O1 interface) . For virtualized network elements, the SMO Framework 305 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 390) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) . Such virtualized network elements can include, but are not limited to, CUs 310, DUs 330, RUs 340 and Near-RT RICs 325. In some implementations, the SMO Framework 305 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 311, via an O1 interface. Additionally, in some implementations, the SMO Framework 305 can communicate directly with one or more RUs 340 via an O1 interface. The SMO Framework 305 also may include a Non-RT RIC 315 configured to support functionality of the SMO Framework 305.
The Non-RT RIC 315 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 325. The Non-RT RIC 315 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 325. The Near-RT RIC 325 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 310, one or more DUs 330, or both, as well as an O-eNB, with the Near-RT RIC 325.
In some implementations, to generate AI/ML models to be deployed in the Near-RT RIC 325, the Non-RT RIC 315 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 325 and may be received at the SMO Framework 305 or the Non-RT RIC 315 from non-network data sources or from network functions. In some examples, the Non-RT RIC 315 or the Near-RT RIC 325 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 315 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions  through the SMO Framework 305 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
In a multiple TRP (multi-TRP) operation, a UE may communicate with a first TRP and a second TRP. The UE may communicate with the first TRP using a first panel, and the UE may communicate with the second TRP using a second panel. The UE may perform a simultaneous multi-panel uplink transmission to the first TRP and the second TRP in FR2 while achieving high uplink throughput and reliability. In some cases, the UE may be a customer premise equipment (CPE) , a fixed wireless access (FWA) device, a vehicle, or an industrial device.
An uplink precoding indication may be associated with a physical uplink shared channel (PUSCH) , where no new codebook may be introduced for the simultaneous multi-panel uplink transmission to the first TRP and the second TRP. A total quantity of layers may be up to four across a plurality of panels (e.g., four panels) , and a total quantity of codewords may be up to two across the plurality of panels, based at least in part on a single downlink control information (DCI) based multi-TRP operation and a multiple DCI (multi-DCI) based multi-TRP operation. An uplink beam indication may be associated with a physical uplink control channel (PUCCH) or PUSCH, where a unified transmission configuration indicator (TCI) framework extension may be assumed, based at least in part on the single DCI based multi-TRP operation and the multi-DCI based multi-TRP operation. Further, in the multi-DCI based multi-TRP operation, the UE may transmit a first PUSCH and a second PUSCH, or a first PUCCH and a second PUCCH, across two panels in a same component carrier.
A UE may perform uplink channel transmissions in a multi-TRP operation, which may involve uplink channel transmissions to a first TRP and a second TRP. An uplink channel transmission may include an acknowledgement (ACK) or a negative acknowledgement (NACK) . However, the UE may not be configured to support simultaneous uplink channel transmissions to the first TRP and the second TRP using spatial division multiplexing. Further, the UE may not be configured to support simultaneous uplink channel transmissions in response to separate downlink schedulings received from the first TRP and the second TRP.
In various aspects of techniques and apparatuses described herein, the UE may receive, from a first TRP associated with a network entity, a first scheduling downlink  transmission that schedules a first scheduled downlink transmission. The first scheduling downlink transmission may be a first DCI. The UE may receive, from a second TRP associated with the network entity, a second scheduling downlink transmission that schedules a second scheduled downlink transmission. The second scheduling downlink transmission may be a second DCI. The UE may transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission. The UE may transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission. The first uplink channel transmission and the second uplink channel transmission may be simultaneous uplink channel transmissions. The second uplink channel transmission may be spatial division multiplexed with the first uplink channel transmission. In other words, when the UE is configured with a multi-DCI based multi-TRP operation, the UE may support spatial division multiplexed uplink channel transmissions for the first TRP and the second TRP based at least in part on separate downlink schedulings received from the first TRP and the second TRP. As a result, the UE may support simultaneous uplink channel transmissions in response to the separate downlink schedulings received from the first TRP and the second TRP.
Fig. 4 is a diagram illustrating an example 400 of uplink transmission schemes, in accordance with the present disclosure.
As shown by reference number 402, in an uplink single TRP operation, a UE may transmit an uplink transmission to a network entity. The network entity may be associated with a single TRP. The UE may transmit the uplink transmission using four layers (e.g., four transmission streams) .
As shown by reference number 404, in an uplink time division multiplexing (TDM) multi-TRP operation, the UE may transmit a first uplink transmission to a first TRP and a second uplink transmission to a second TRP. The first TRP and the second TRP may be associated with a network entity. The first uplink transmission and the second uplink transmission may each be associated with two layers. The UE may perform the first uplink transmission and the second uplink transmission using TDM. In other words, the first uplink transmission and the second uplink transmission may be associated with separate resources in a time domain.
As shown by reference number 406, in an uplink simultaneous transmission multi-TRP operation, the UE may simultaneously transmit a first uplink transmission to a first TRP and a second uplink transmission to a second TRP. The first uplink  transmission may be “simultaneous” with the second uplink transmission when a time difference between the first uplink transmission and the second uplink transmission is within a threshold. The first TRP and the second TRP may be associated with a network entity. The first uplink transmission and the second uplink transmission may each be associated with two layers. The UE may perform the first uplink transmission and the second uplink transmission using spatial division multiplexing (SDM) or frequency division multiplexing (FDM) . With FDM, resources associated with the first uplink transmission may overlap in time but not frequency with resources associated with the second uplink transmission may. With SDM, resources associated with the first uplink transmission and resources associated with the second uplink transmission may overlap in time and frequency, but the resources associated with the first uplink transmission may be spatially separated from the resources associated with the second uplink transmission. The first TRP may be associated with a first transmission configuration indication (TCI) , and the second TRP may be associated with a second TCI. As a result, the UE may perform the first uplink transmission using a first beam and the second uplink transmission using a second beam, where the second beam may be different from the first beam.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
Fig. 5 is a diagram illustrating an example of a multi-DCI and multi-TRP scheme, in accordance with the present disclosure.
As shown in Fig. 5, in a multi-DCI multi-TRP operation, a UE may receive, from a first TRP associated with a network entity, a first DCI. The first DCI may be associated with a first physical downlink control channel (PDCCH) transmission. The first DCI may be associated with a first control resource set (CORESET) pool index (e.g., CORESETpoolindex=0) . The first DCI may schedule a first physical downlink shared channel (PDSCH) transmission. The UE may receive, from a second TRP associated with the network entity, a second DCI. The second DCI may be associated with a second PDCCH transmission. The second DCI may be associated with a second CORESET pool index (e.g., CORESETpoolindex=1) . The second DCI may schedule a second PDSCH transmission. The UE may receive the first PDSCH transmission from the first TRP. The UE may receive the second PDSCH transmission from the second TRP. The UE may transmit, to the first TRP, a first PUCCH transmission based at least in part on the first PDSCH transmission. The UE may transmit, to the second TRP, a  second PUCCH transmission based at least in part on the second PDSCH transmission. The first PUCCH transmission may be spatial domain multiplexed with the second PUCCH transmission. In other words, resources associated with the first PUCCH transmission and resources associated with the second PUCCH transmission may overlap in time and frequency, but the resources associated with the first PUCCH transmission may be spatially separated from the resources associated with the second PUCCH transmission.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
Fig. 6 is a diagram illustrating an example associated with spatial division multiplexing of uplink channel transmissions, in accordance with the present disclosure. As shown in Fig. 6, example 600 includes communication between a UE (e.g., UE 120) and a network entity (e.g., base station 110) . In some aspects, the UE and the network entity may be included in a wireless network, such as wireless network 100.
In some aspects, the UE may be configured with a multi-DCI based multi-TRP operation. The UE may communicate with a first TRP associated with the network entity. The UE may communicate with a second TRP associated with the network entity.
As shown by reference number 602, the UE may receive, from the first TRP associated with the network entity, a first scheduling downlink transmission that schedules a first scheduled downlink transmission. The network entity may transmit, via the first TRP to the UE, the first scheduling downlink transmission. The first scheduling downlink transmission may be a first PDCCH transmission that indicates a first DCI. The first DCI may schedule the first scheduled downlink transmission. The first scheduling downlink transmission may be associated with a first CORESET pool index.
As shown by reference number 604, the UE may receive, from the second TRP associated with the network entity, a second scheduling downlink transmission that schedules a second scheduled downlink transmission. The network entity may transmit, via the second TRP to the UE, the second scheduling downlink transmission. The second scheduling downlink transmission may be a second PDCCH transmission that indicates a second DCI. The second DCI may schedule the second scheduled downlink transmission. The second scheduling downlink transmission may be associated with a second CORESET pool index.
As shown by reference number 606, the UE may receive, from the first TRP, the first scheduled downlink transmission. The network entity may transmit, via the first TRP to the UE, the first scheduled downlink transmission. The UE may receive the first scheduled downlink transmission based at least in part on the first scheduling downlink transmission. The first scheduled downlink transmission may be a first PDSCH transmission.
As shown by reference number 608, the UE may receive, from the second TRP, the second scheduled downlink transmission. The network entity may transmit, via the second TRP to the UE, the second scheduled downlink transmission. The UE may receive the second scheduled downlink transmission based at least in part on the second scheduling downlink transmission. The second scheduled downlink transmission may be a second PDSCH transmission.
As shown by reference number 610, the UE may transmit, to the first TRP, a first uplink channel transmission. The network entity may receive, via the first TRP from the UE, the first uplink channel transmission. The UE may transmit the first uplink channel transmission based at least in part on the first scheduled downlink transmission. The first uplink channel transmission may be a first PUCCH transmission. The first uplink channel transmission may be associated with a first TCI state.
As shown by reference number 612, the UE may transmit, to the second TRP, a second uplink channel transmission. The network entity may receive, via the second TRP from the UE, the second uplink channel transmission. The UE may transmit the second uplink channel transmission based at least in part on the second scheduled downlink transmission. The second uplink channel transmission may be a second PUCCH transmission. The second uplink channel transmission may be associated with a second TCI state.
In some aspects, the first uplink channel transmission and the second uplink channel transmission may be simultaneous uplink transmissions. The UE may transmit the first uplink channel transmission to the first TRP and the second uplink channel transmission to the second TRP at substantially the same time (e.g., within a certain time threshold from each other) . In some aspects, the second uplink channel transmission may be spatial division multiplexed with the first uplink channel transmission. Resources associated with the first uplink channel transmission and resources associated with the second uplink channel transmission may overlap in time  and frequency, but the resources associated with the first uplink channel transmission may be spatially separated from the resources associated with the second uplink channel transmission. The UE may be preconfigured or configured by the network entity to support simultaneous spatial division multiplexed uplink channel transmissions to the first TRP and the second TRP.
In some aspects, the first scheduled downlink transmission may be a first downlink grant (DG) PDSCH transmission where the first scheduling downlink transmission may be a first DCI, and the second scheduled downlink transmission may be a second DG PDSCH transmission where the second scheduling downlink transmission may be a second DCI. In some aspects, the first scheduled downlink transmission may be a DG PDSCH transmission where the first scheduling downlink transmission may be a first DCI, and the second scheduled downlink transmission may be a semi-persistent scheduling (SPS) PDSCH transmission where the second scheduling downlink transmission may be an RRC configuration or a second DCI activating the SPS PDSCH transmission. In some aspects, the first scheduled downlink transmission may be a DG PDSCH transmission, and the second scheduled downlink transmission may be a channel state information (CSI) transmission, such as a channel state information reference signal (CSI-RS) transmission where the second scheduling downlink transmission may be an RRC configuration, a medium access control control element (MAC-CE) or a second DCI enabling CSI report transmissions. In some aspects, the first scheduled downlink transmission may be a CSI transmission where the first scheduling downlink transmission may be an RRC configuration, a MAC-CE or a first DCI, and the second scheduled downlink transmission may be an SPS PDSCH transmission where the second scheduling downlink transmission may be an RRC configuration or a second DCI.
In some aspects, when the UE is configured for the multi-DCI based multi-TRP operation, the UE may support spatial division multiplexed PUCCH transmissions to different TRPs (e.g., the first TRP and the second TRP) based at least in part on separate downlink schedulings (e.g., two different downlink schedulings) . The separate downlink schedulings may be associated with the different TRPs, which may be associated with different CORESET pool indexes.
In a first example, the separate downlink schedulings may include a first PDCCH transmission for a first DG PDSCH transmission and a second PDCCH transmission for a second DG PDSCH transmission. A first PUCCH transmission (e.g.,  an ACK or NACK) may be associated with the first DG PDSCH transmission, and a second PUCCH transmission may be associated with the second DG PDSCH transmission.
In a second example, the separate downlink schedulings may include a first PDCCH transmission for a DG PDSCH transmission and a second PDCCH transmission for an SPS PDSCH transmission. A first PUCCH transmission may be associated with the DG PDSCH transmission, and a second PUCCH transmission may be associated with the SPS PDSCH transmission.
In a third example, the separate downlink schedulings may include a PDCCH transmission for a DG PDSCH transmission and a scheduling for a CSI transmission. A first PUCCH transmission may be associated with the DG PDSCH transmission and the second PUCCH transmission may be associated with the CSI transmission.
In a fourth example, the separate downlink schedulings may include a scheduling for a CSI transmission and a PDCCH transmission for an SPS PDSCH transmission. A first PUCCH transmission may be associated with the CSI transmission and the second PUCCH transmission may be associated with the SPS PDSCH transmission.
In some aspects, the first uplink channel transmission and the second uplink channel transmission may be intended for the different TRPs, and the first uplink channel transmission and the second uplink channel transmission may be associated with two simultaneous TCI states. In other words, the first uplink channel transmission and the second uplink channel transmission may be associated with simultaneous uplink channel transmissions. In some aspects, the first uplink channel transmission may be associated with a first closed loop index, and the second uplink channel transmission may be associated with a second closed loop index. In other words, when scheduled by two DCIs (e.g., the first DCI and the second DCI) associated with the two different CORESET pool indexes (e.g., the first CORESET pool index and the second CORESET pool index) , the first uplink channel transmission and the second uplink channel transmission may be associated with two different closed loop indexes. Transmit power control (TPC) commands for the first uplink channel transmission and the second uplink channel transmission may be indicated in TPC fields of corresponding DCIs associated with the first and second CORESET pool indexes, respectively.
In some aspects, the first uplink channel transmission and the second uplink channel transmission may be associated with a same uplink channel format. For  example, the uplink channel format may be a  PUCCH format  0, 1, 2, 3, 4 as specified in 3GPP NR specifications. The first uplink channel transmission and the second uplink channel transmission of same uplink channel format may be associated with different cyclic shifts and/or different orthogonal cover codes. The first uplink channel transmission and the second uplink channel transmission may be associated with overlapping resources in time and frequency. The first uplink channel transmission and the second uplink channel transmission may be associated with overlapping PUCCH transmissions.
In some aspects, when a beam separation is not sufficient for the overlapping PUCCH transmissions, in order to reduce an inter-TRP interference, the UE may expect that the overlapping PUCCH transmissions are supported only for two PUCCH transmissions of a same PUCCH format. As a first example, the overlapping PUCCH transmissions of the first uplink channel transmission and the second uplink channel transmission may be two PUCCH format 0 transmissions having different cyclic shifts. As a second example, the overlapping PUCCH transmissions of the first uplink channel transmission and the second uplink channel transmission may be two PUCCH format 1 transmissions having different cyclic shifts and/or different orthogonal cover codes. As a third example, the overlapping PUCCH transmissions of the first uplink channel transmission and the second uplink channel transmission may be two PUCCH format 4 transmissions having different orthogonal cover codes, in which the two overlapping PUCCH transmissions may have the same quantity of DMRS symbol (s) and the same DMRS symbol locations. In some aspects, the UE may expect that the overlapping PUCCH transmissions of the first uplink channel transmission and the second uplink channel transmission are not associated with PUCCH format 2 or PUCCH format 3. In other words, a PUCCH transmission associated with PUCCH format 2 or PUCCH format 3 is not expected to overlap with any other PUCCH transmission due to no UE multiplexing capability in such scenarios.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with the present disclosure. Example process 700 is an example where the UE (e.g., UE 120) performs operations associated with spatial division multiplexing of uplink channel transmissions.
As shown in Fig. 7, in some aspects, process 700 may include receiving, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission (block 710) . For example, the UE (e.g., using reception component 902, depicted in Fig. 9) may receive, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include receiving, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission (block 720) . For example, the UE (e.g., using reception component 902, depicted in Fig. 9) may receive, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include transmitting, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission (block 730) . For example, the UE (e.g., using transmission component 904, depicted in Fig. 9) may transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include transmitting, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission (block 740) . For example, the UE (e.g., using transmission component 904, depicted in Fig. 9) may transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the first scheduling downlink transmission is a first PDCCH transmission that indicates a first DCI, wherein the first DCI schedules the first scheduled downlink transmission, and the second scheduling downlink transmission is a  second PDCCH transmission that indicates a second DCI, wherein the second DCI schedules the second scheduled downlink transmission.
In a second aspect, alone or in combination with the first aspect, the first uplink channel transmission is a first PUCCH transmission and the second uplink channel transmission is a second PUCCH transmission.
In a third aspect, alone or in combination with one or more of the first and second aspects, process 700 includes receiving, from the first TRP, the first scheduled downlink transmission; and receiving, from the second TRP, the second scheduled downlink transmission.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the first scheduling downlink transmission is associated with a first CORESET pool index, and the second scheduling downlink transmission is associated with a second CORESET pool index.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the first uplink channel transmission and the second uplink channel transmission are simultaneous uplink transmissions.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the first uplink channel transmission is associated with a first TCI state and the second uplink channel transmission is associated with a second TCI state.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the first scheduled downlink transmission is a first DG PDSCH transmission, and the second scheduled downlink transmission is a second DG PDSCH transmission.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the first scheduled downlink transmission is a DG PDSCH transmission, and the second scheduled downlink transmission is an SPS PDSCH transmission.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the first scheduled downlink transmission is a DG PDSCH transmission, and the second scheduled downlink transmission is a CSI transmission.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the first scheduled downlink transmission is a CSI transmission, and the second scheduled downlink transmission is an SPS PDSCH transmission.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the first uplink channel transmission is associated with a first closed loop index and the second uplink channel transmission is associated with a second closed loop index.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the first uplink channel transmission and the second uplink channel transmission are associated with a same uplink channel format.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the same uplink channel format is associated with one or more of different cyclic shifts or different orthogonal cover codes.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a network entity, in accordance with the present disclosure. Example process 800 is an example where the network entity (e.g., base station 110) performs operations associated with spatial division multiplexing of uplink channel transmissions.
As shown in Fig. 8, in some aspects, process 800 may include transmitting, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission (block 810) . For example, the network entity (e.g., using transmission component 1004, depicted in Fig. 10) may transmit, via a first TRP to a UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include transmitting, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission (block 820) . For example, the network entity (e.g., using transmission component 1004, depicted in Fig. 10) may transmit, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include receiving, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission (block 830) . For example, the network entity (e.g., using reception component 1002, depicted in Fig. 10) may receive,  via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include receiving, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission (block 840) . For example, the network entity (e.g., using reception component 1002, depicted in Fig. 10) may receive, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission, as described above.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a diagram of an example apparatus 900 for wireless communication. The apparatus 900 may be a UE, or a UE may include the apparatus 900. In some aspects, the apparatus 900 includes a reception component 902 and a transmission component 904, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 900 may communicate with another apparatus 906 (such as a UE, a base station, or another wireless communication device) using the reception component 902 and the transmission component 904.
In some aspects, the apparatus 900 may be configured to perform one or more operations described herein in connection with Fig. 6. Additionally, or alternatively, the apparatus 900 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7. In some aspects, the apparatus 900 and/or one or more components shown in Fig. 9 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 9 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the  set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 902 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 906. The reception component 902 may provide received communications to one or more other components of the apparatus 900. In some aspects, the reception component 902 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 900. In some aspects, the reception component 902 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 904 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 906. In some aspects, one or more other components of the apparatus 900 may generate communications and may provide the generated communications to the transmission component 904 for transmission to the apparatus 906. In some aspects, the transmission component 904 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 906. In some aspects, the transmission component 904 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 904 may be co-located with the reception component 902 in a transceiver.
The reception component 902 may receive, from a first TRP, a first scheduling downlink transmission that schedules a first scheduled downlink transmission. The reception component 902 may receive, from a second TRP, a second scheduling  downlink transmission that schedules a second scheduled downlink transmission. The transmission component 904 may transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission. The transmission component 904 may transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission. The reception component 902 may receive, from the first TRP, the first scheduled downlink transmission. The reception component 902 may receive, from the second TRP, the second scheduled downlink transmission.
The number and arrangement of components shown in Fig. 9 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 9. Furthermore, two or more components shown in Fig. 9 may be implemented within a single component, or a single component shown in Fig. 9 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 9 may perform one or more functions described as being performed by another set of components shown in Fig. 9.
Fig. 10 is a diagram of an example apparatus 1000 for wireless communication. The apparatus 1000 may be a network entity, or a network entity may include the apparatus 1000. In some aspects, the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004.
In some aspects, the apparatus 1000 may be configured to perform one or more operations described herein in connection with Fig. 6. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8. In some aspects, the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the network entity described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as  software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006. The reception component 1002 may provide received communications to one or more other components of the apparatus 1000. In some aspects, the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1000. In some aspects, the reception component 1002 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the network entity described in connection with Fig. 2.
The transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006. In some aspects, one or more other components of the apparatus 1000 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006. In some aspects, the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006. In some aspects, the transmission component 1004 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the network entity described in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
The transmission component 1004 may transmit, via a first TRP to a (UE, a first scheduling downlink transmission that schedules a first scheduled downlink transmission. The transmission component 1004 may transmit, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled  downlink transmission. The reception component 1002 may receive, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission. The reception component 1002 may receive, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
The following provides an overview of some Aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a user equipment (UE) , comprising: receiving, from a first transmit receive point (TRP) , a first scheduling downlink transmission that schedules a first scheduled downlink transmission; receiving, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; transmitting, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and transmitting, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
Aspect 2: The method of Aspect 1, wherein: the first scheduling downlink transmission is a first physical downlink control channel (PDCCH) transmission that indicates a first downlink control information (DCI) , wherein the first DCI schedules the first scheduled downlink transmission; and the second scheduling downlink transmission is a second PDCCH transmission that indicates a second DCI, wherein the second DCI schedules the second scheduled downlink transmission.
Aspect 3: The method of any of Aspects 1 through 2, wherein the first uplink channel transmission is a first physical uplink control channel (PUCCH) transmission and the second uplink channel transmission is a second PUCCH transmission.
Aspect 4: The method of any of Aspects 1 through 3, further comprising: receiving, from the first TRP, the first scheduled downlink transmission; and receiving, from the second TRP, the second scheduled downlink transmission.
Aspect 5: The method of any of Aspects 1 through 4, wherein: the first scheduling downlink transmission is associated with a first control resource set (CORESET) pool index; and the second scheduling downlink transmission is associated with a second CORESET pool index.
Aspect 6: The method of any of Aspects 1 through 5, wherein the first uplink channel transmission and the second uplink channel transmission are simultaneous uplink transmissions.
Aspect 7: The method of any of Aspects 1 through 6, wherein the first uplink channel transmission is associated with a first transmission configuration indicator (TCI) state and the second uplink channel transmission is associated with a second TCI state.
Aspect 8: The method of any of Aspects 1 through 7, wherein: the first scheduled downlink transmission is a first downlink grant (DG) physical downlink shared channel (PDSCH) transmission; and the second scheduled downlink transmission is a second DG PDSCH transmission.
Aspect 9: The method of any of Aspects 1 through 8, wherein: the first scheduled downlink transmission is a downlink grant physical downlink shared channel (PDSCH) transmission; and the second scheduled downlink transmission is a semi-persistent scheduling PDSCH transmission.
Aspect 10: The method of any of Aspects 1 through 9, wherein: the first scheduled downlink transmission is a downlink grant physical downlink shared channel (PDSCH) transmission; and the second scheduled downlink transmission is a channel state information transmission.
Aspect 11: The method of any of Aspects 1 through 10, wherein: the first scheduled downlink transmission is a channel state information transmission; and the second scheduled downlink transmission is a semi-persistent scheduling physical downlink shared channel transmission.
Aspect 12: The method of any of Aspects 1 through 11, wherein the first uplink channel transmission is associated with a first closed loop index and the second uplink channel transmission is associated with a second closed loop index.
Aspect 13: The method of any of Aspects 1 through 12, wherein the first uplink channel transmission and the second uplink channel transmission are associated with a same uplink channel format.
Aspect 14: The method of Aspect 13, wherein the same uplink channel format is associated with one or more of: different cyclic shifts or different orthogonal cover codes.
Aspect 15: A method of wireless communication performed by a network entity, comprising: transmitting, via a first transmit receive point (TRP) to a user equipment (UE) , a first scheduling downlink transmission that schedules a first scheduled downlink transmission; transmitting, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission; receiving, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and receiving, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
Aspect 16: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-14.
Aspect 17: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-14.
Aspect 18: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-14.
Aspect 19: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-14.
Aspect 20: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-14.
Aspect 21: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of Aspect 15.
Aspect 22: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of Aspect 15.
Aspect 23: An apparatus for wireless communication, comprising at least one means for performing the method of Aspect 15.
Aspect 24: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of Aspect 15.
Aspect 25: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of Aspect 15.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As used herein, a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods are described herein without reference to specific software code, since those skilled in the art will understand that  software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, “satisfying a threshold” may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. Many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. The disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) . Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (30)

  1. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    receive, from a first transmit receive point (TRP) , a first scheduling downlink transmission that schedules a first scheduled downlink transmission;
    receive, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission;
    transmit, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and
    transmit, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  2. The apparatus of claim 1, wherein:
    the first scheduling downlink transmission is a first physical downlink control channel (PDCCH) transmission that indicates a first downlink control information (DCI) , wherein the first DCI schedules the first scheduled downlink transmission; and
    the second scheduling downlink transmission is a second PDCCH transmission that indicates a second DCI, wherein the second DCI schedules the second scheduled downlink transmission.
  3. The apparatus of claim 1, wherein the first uplink channel transmission is a first physical uplink control channel (PUCCH) transmission and the second uplink channel transmission is a second PUCCH transmission.
  4. The apparatus of claim 1, wherein the one or more processors are further configured to:
    receive, from the first TRP, the first scheduled downlink transmission; and
    receive, from the second TRP, the second scheduled downlink transmission.
  5. The apparatus of claim 1, wherein:
    the first scheduling downlink transmission is associated with a first control resource set (CORESET) pool index; and
    the second scheduling downlink transmission is associated with a second CORESET pool index.
  6. The apparatus of claim 1, wherein the first uplink channel transmission and the second uplink channel transmission are simultaneous uplink transmissions.
  7. The apparatus of claim 1, wherein the first uplink channel transmission is associated with a first transmission configuration indicator (TCI) state and the second uplink channel transmission is associated with a second TCI state.
  8. The apparatus of claim 1, wherein:
    the first scheduled downlink transmission is a first downlink grant (DG) physical downlink shared channel (PDSCH) transmission; and
    the second scheduled downlink transmission is a second DG PDSCH transmission.
  9. The apparatus of claim 1, wherein:
    the first scheduled downlink transmission is a downlink grant physical downlink shared channel (PDSCH) transmission; and
    the second scheduled downlink transmission is a semi-persistent scheduling PDSCH transmission.
  10. The apparatus of claim 1, wherein:
    the first scheduled downlink transmission is a downlink grant physical downlink shared channel (PDSCH) transmission; and
    the second scheduled downlink transmission is a channel state information transmission.
  11. The apparatus of claim 1, wherein:
    the first scheduled downlink transmission is a channel state information transmission; and
    the second scheduled downlink transmission is a semi-persistent scheduling physical downlink shared channel transmission.
  12. The apparatus of claim 1, wherein the first uplink channel transmission is associated with a first closed loop index and the second uplink channel transmission is associated with a second closed loop index.
  13. The apparatus of claim 1, wherein the first uplink channel transmission and the second uplink channel transmission are associated with a same uplink channel format.
  14. The apparatus of claim 13, wherein the same uplink channel format is associated with one or more of: different cyclic shifts or different orthogonal cover codes.
  15. An apparatus for wireless communication at a network entity, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    transmit, via a first transmit receive point (TRP) to a user equipment (UE) , a first scheduling downlink transmission that schedules a first scheduled downlink transmission;
    transmit, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission;
    receive, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and
    receive, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  16. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving, from a first transmit receive point (TRP) , a first scheduling downlink transmission that schedules a first scheduled downlink transmission;
    receiving, from a second TRP, a second scheduling downlink transmission that schedules a second scheduled downlink transmission;
    transmitting, to the first TRP, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and
    transmitting, to the second TRP, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
  17. The method of claim 16, wherein:
    the first scheduling downlink transmission is a first physical downlink control channel (PDCCH) transmission that indicates a first downlink control information (DCI) , wherein the first DCI schedules the first scheduled downlink transmission; and
    the second scheduling downlink transmission is a second PDCCH transmission that indicates a second DCI, wherein the second DCI schedules the second scheduled downlink transmission.
  18. The method of claim 16, wherein the first uplink channel transmission is a first physical uplink control channel (PUCCH) transmission and the second uplink channel transmission is a second PUCCH transmission.
  19. The method of claim 16, further comprising:
    receiving, from the first TRP, the first scheduled downlink transmission; and
    receiving, from the second TRP, the second scheduled downlink transmission.
  20. The method of claim 16, wherein:
    the first scheduling downlink transmission is associated with a first control resource set (CORESET) pool index; and
    the second scheduling downlink transmission is associated with a second CORESET pool index.
  21. The method of claim 16, wherein the first uplink channel transmission and the second uplink channel transmission are simultaneous uplink transmissions.
  22. The method of claim 16, wherein the first uplink channel transmission is associated with a first transmission configuration indicator (TCI) state and the second uplink channel transmission is associated with a second TCI state.
  23. The method of claim 16, wherein:
    the first scheduled downlink transmission is a first downlink grant (DG) physical downlink shared channel (PDSCH) transmission; and
    the second scheduled downlink transmission is a second DG PDSCH transmission.
  24. The method of claim 16, wherein:
    the first scheduled downlink transmission is a downlink grant physical downlink shared channel (PDSCH) transmission; and
    the second scheduled downlink transmission is a semi-persistent scheduling PDSCH transmission.
  25. The method of claim 16, wherein:
    the first scheduled downlink transmission is a downlink grant physical downlink shared channel (PDSCH) transmission; and
    the second scheduled downlink transmission is a channel state information transmission.
  26. The method of claim 16, wherein:
    the first scheduled downlink transmission is a channel state information transmission; and
    the second scheduled downlink transmission is a semi-persistent scheduling physical downlink shared channel transmission.
  27. The method of claim 16, wherein the first uplink channel transmission is associated with a first closed loop index and the second uplink channel transmission is associated with a second closed loop index.
  28. The method of claim 16, wherein the first uplink channel transmission and the second uplink channel transmission are associated with a same uplink channel format.
  29. The method of claim 28, wherein the same uplink channel format is associated with one or more of: different cyclic shifts or different orthogonal cover codes.
  30. A method of wireless communication performed by a network entity, comprising:
    transmitting, via a first transmit receive point (TRP) to a user equipment (UE) , a first scheduling downlink transmission that schedules a first scheduled downlink transmission;
    transmitting, via a second TRP to the UE, a second scheduling downlink transmission that schedules a second scheduled downlink transmission;
    receiving, via the first TRP from the UE, a first uplink channel transmission based at least in part on the first scheduled downlink transmission; and
    receiving, via the second TRP from the UE, a second uplink channel transmission based at least in part on the second scheduled downlink transmission, wherein the second uplink channel transmission is spatial division multiplexed with the first uplink channel transmission.
PCT/CN2022/088435 2022-04-22 2022-04-22 Spatial division multiplexing of uplink channel transmissions WO2023201696A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088435 WO2023201696A1 (en) 2022-04-22 2022-04-22 Spatial division multiplexing of uplink channel transmissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088435 WO2023201696A1 (en) 2022-04-22 2022-04-22 Spatial division multiplexing of uplink channel transmissions

Publications (1)

Publication Number Publication Date
WO2023201696A1 true WO2023201696A1 (en) 2023-10-26

Family

ID=88418867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088435 WO2023201696A1 (en) 2022-04-22 2022-04-22 Spatial division multiplexing of uplink channel transmissions

Country Status (1)

Country Link
WO (1) WO2023201696A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210135741A1 (en) * 2019-10-31 2021-05-06 Qualcomm Incorporated Beam selection for communication in a multi-transmit-receive point deployment
WO2021087856A1 (en) * 2019-11-07 2021-05-14 Zte Corporation System and method for transmission repetition mode indicators
CN113632401A (en) * 2019-02-14 2021-11-09 株式会社Ntt都科摩 User terminal and wireless communication method
CN113785512A (en) * 2019-02-14 2021-12-10 株式会社Ntt都科摩 User terminal and wireless communication method
WO2022006864A1 (en) * 2020-07-10 2022-01-13 Lenovo (Beijing) Limited Transmission using dmrs from two code division multiplexing groups
US20220029750A1 (en) * 2019-02-14 2022-01-27 Ntt Docomo, Inc. User terminal and radio communication method
WO2022030819A1 (en) * 2020-08-07 2022-02-10 엘지전자 주식회사 Method and device for transmitting and receiving uplink in wireless communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632401A (en) * 2019-02-14 2021-11-09 株式会社Ntt都科摩 User terminal and wireless communication method
CN113785512A (en) * 2019-02-14 2021-12-10 株式会社Ntt都科摩 User terminal and wireless communication method
US20220029750A1 (en) * 2019-02-14 2022-01-27 Ntt Docomo, Inc. User terminal and radio communication method
US20210135741A1 (en) * 2019-10-31 2021-05-06 Qualcomm Incorporated Beam selection for communication in a multi-transmit-receive point deployment
WO2021087856A1 (en) * 2019-11-07 2021-05-14 Zte Corporation System and method for transmission repetition mode indicators
WO2022006864A1 (en) * 2020-07-10 2022-01-13 Lenovo (Beijing) Limited Transmission using dmrs from two code division multiplexing groups
WO2022030819A1 (en) * 2020-08-07 2022-02-10 엘지전자 주식회사 Method and device for transmitting and receiving uplink in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (NOKIA, NOKIA SHANGHAI BELL): "Summary of AI:8.1.2.1 Enhancements for Multi-TRP URLLC for PUCCH and PUSCH", 3GPP DRAFT; R1-2007182, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 25 August 2020 (2020-08-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051921452 *

Similar Documents

Publication Publication Date Title
US20230345475A1 (en) Scheduling of an uplink transmission of multiple transport blocks
US20230114659A1 (en) Joint channel estimation for repetitions without a demodulation reference signal
US20230354056A1 (en) Beam configuration reporting for hierarchical beam pair identification
WO2023201696A1 (en) Spatial division multiplexing of uplink channel transmissions
US20230077873A1 (en) Measurement reporting with delta values
WO2023168648A1 (en) Reporting common timing advance configuration capabilities
WO2024040559A1 (en) Sounding reference signal (srs) resource sets for srs transmissions
US20230127928A1 (en) Carrier switching for a physical uplink control channel
WO2024040553A1 (en) Power control parameters for a configured grant physical uplink shared channel
US20230300756A1 (en) Prioritizations for transmission power reductions in carrier aggregation for simultaneous transmissions
WO2024040550A1 (en) Unified transmission configuration indicator state indications in downlink control information
WO2023206434A1 (en) Unified transmission configuration indicator for a single frequency network
WO2023168642A1 (en) Antenna panel unavailability indication
US20230163889A1 (en) Hybrid automatic repeat request (harq) codebook configurations indicating harq process identifiers
US20230208566A1 (en) Hybrid automatic repeat request acknowledgement codebook for downlink control information without downlink assignment
US20240137933A1 (en) Uplink transmissions in next available slots
WO2022233292A1 (en) Resetting a beam based at least in part on a subcarrier spacing
US20240089724A1 (en) Multiplexing at a forwarding node
WO2023184371A1 (en) Common timing advance group for multiple transmit receive point operation
WO2023159541A1 (en) Timing advance offset configuration
US20230370226A1 (en) Varying densities for phase-tracking reference signals
WO2023206376A1 (en) Reporting coherent joint transmission type ii channel state information feedback
WO2024082168A1 (en) Closed loop power control for sounding reference signals
WO2023197103A1 (en) Uplink power control for multiple transmit-receive points
WO2023201711A1 (en) Signaling for aggregated channel bandwidth for carrier aggregation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937932

Country of ref document: EP

Kind code of ref document: A1