WO2024106977A1 - Method for producing transition metal-based monoatomic catalyst using ion implantation method - Google Patents
Method for producing transition metal-based monoatomic catalyst using ion implantation method Download PDFInfo
- Publication number
- WO2024106977A1 WO2024106977A1 PCT/KR2023/018466 KR2023018466W WO2024106977A1 WO 2024106977 A1 WO2024106977 A1 WO 2024106977A1 KR 2023018466 W KR2023018466 W KR 2023018466W WO 2024106977 A1 WO2024106977 A1 WO 2024106977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- transition metal
- nano
- monoatomic
- producing
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 109
- 229910052723 transition metal Inorganic materials 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 150000003624 transition metals Chemical class 0.000 title claims abstract description 32
- 238000005468 ion implantation Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title abstract description 46
- 239000000463 material Substances 0.000 claims abstract description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 18
- 150000002500 ions Chemical class 0.000 claims abstract description 16
- 238000006722 reduction reaction Methods 0.000 claims abstract description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 9
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 239000000446 fuel Substances 0.000 claims description 15
- 239000001257 hydrogen Substances 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 9
- 229910021389 graphene Inorganic materials 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 238000003786 synthesis reaction Methods 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000002105 nanoparticle Substances 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 5
- 239000006260 foam Substances 0.000 claims description 5
- 239000002073 nanorod Substances 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 5
- -1 transition metal chalcogen compound Chemical class 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 3
- 239000006229 carbon black Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 239000003575 carbonaceous material Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 238000000313 electron-beam-induced deposition Methods 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 238000007743 anodising Methods 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 238000007606 doctor blade method Methods 0.000 claims description 2
- 238000004070 electrodeposition Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 239000002110 nanocone Substances 0.000 claims description 2
- 239000002057 nanoflower Substances 0.000 claims description 2
- 239000002074 nanoribbon Substances 0.000 claims description 2
- 239000002135 nanosheet Substances 0.000 claims description 2
- 239000002070 nanowire Substances 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 239000002096 quantum dot Substances 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 238000002207 thermal evaporation Methods 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000007809 chemical reaction catalyst Substances 0.000 claims 4
- 238000001308 synthesis method Methods 0.000 abstract description 10
- 239000002245 particle Substances 0.000 abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 6
- 238000005868 electrolysis reaction Methods 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 3
- 239000007943 implant Substances 0.000 abstract description 2
- 125000004429 atom Chemical group 0.000 description 38
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000009826 distribution Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 9
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 9
- 239000011888 foil Substances 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 229910017052 cobalt Inorganic materials 0.000 description 8
- 239000010941 cobalt Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000002923 metal particle Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- 238000001350 scanning transmission electron microscopy Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 238000004998 X ray absorption near edge structure spectroscopy Methods 0.000 description 2
- 238000000441 X-ray spectroscopy Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910020647 Co-O Inorganic materials 0.000 description 1
- 229910002514 Co–Co Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- 229910020704 Co—O Inorganic materials 0.000 description 1
- 229910003298 Ni-Ni Inorganic materials 0.000 description 1
- 238000002056 X-ray absorption spectroscopy Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 238000004769 chrono-potentiometry Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000004502 linear sweep voltammetry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
Definitions
- the present invention relates to a method for producing a single-atomic catalyst, and in particular, to a method for producing a single-atomic catalyst that can overcome the performance limitations of existing catalysts and dramatically reduce catalyst usage by utilizing ion implantation.
- the characteristics of an excellent catalyst must include excellent activity, low cost, fuel selectivity, and durability.
- Various catalyst technologies such as nanoparticles and alloy materials have been proposed, but due to problems such as increased unit cost due to the use of precious metal materials, power loss due to low reaction efficiency, and low fuel selectivity due to complex fuel generation reactions, a catalyst material technology that satisfies all of the above characteristics This is absent.
- a single-atom catalyst is a catalyst in which metals are dispersed on a support by atoms, and can achieve ultra-high efficiency catalytic reactions by utilizing almost all atoms close to 100%, maximizing catalytic performance in various energy-fuel conversion reactions and providing the necessary Manufacturing costs can be reduced by reducing the amount of catalyst used.
- monoatomic catalysts with excellent activity and fuel selectivity can dramatically improve energy-fuel conversion efficiency, but at the same time, because their surface energy is very large, they are thermodynamically unstable, making their synthesis and implementation fundamentally difficult.
- the atoms move on the support and aggregate in the form of clusters or particles due to high surface energy, stabilizing the atoms in a single atom state on the support is the most fundamental technical challenge that must be solved for the implementation of a single atom catalyst.
- the purpose of the present invention is to overcome the fundamental technical difficulties in implementing existing monoatomic catalysts and to develop a transition metal-based monoatomic catalyst using an ion implantation method that can synthesize monoatomic catalysts effectively and in a large area. To provide a manufacturing method.
- one object of the present invention is to suppress the aggregation of single-atomic catalysts by injecting and controlling ions in various metastable states into the support using physical energy, and at the same time, create a transition metal unit capable of synthesizing single-atomic catalysts with a high support amount.
- the purpose is to provide a method for producing a self-catalyst.
- an object of the present invention is to provide a method for producing a monoatomic catalyst that can control the distribution, phase, defects, etc. of irradiated ions by adjusting various process variables.
- one object of the present invention is to provide a method for producing a monoatomic catalyst capable of synthesizing most transition metal-based monoatomic catalysts.
- one object of the present invention is to provide a method for manufacturing a transition metal monoatomic catalyst that has a simple manufacturing process, is highly reproducible, and can be industrially mass-produced.
- Another object of the present invention is to provide a method for producing a transition metal monoatomic catalyst that can maximize catalytic performance for various energy-gas fuel conversion reactions and dramatically reduce manufacturing costs.
- the present invention includes (a) a preparation step for producing a support; and (b) ionizing the result of the above step using equipment for ion implantation, ionizing the transition metal element and then accelerating it with high energy to inject the ions onto the surface of the support, forming a single atom catalyst.
- a method for producing a catalyst is provided.
- the ion implantation method of the present invention is a technique that physically implants ions into the surface of a target material by ionizing an arbitrary element and then accelerating it with high energy (tens to hundreds of keV). Compared to existing synthesis techniques, it has stability, diversity, and controllability. It has unrivaled advantages in
- the ion implantation method unlike the existing synthesis method in which particles are aggregated into a thermodynamically stable phase, allows ions accelerated by physical energy to stop at a specific lattice position and remain in a metastable state, resulting in structural/chemical effects at the atomic scale. It has stability and can be distributed.
- the distribution, phase, and defects of irradiated ions can be controlled by adjusting various process variables of the ion implantation method, such as irradiation dose and irradiation energy.
- the ion implantation method allows ions to be evenly injected into a base material over a large area, making it easy to enlarge the area and having high productivity.
- the present invention applied the ion implantation method having the above characteristics as a transition metal-based monoatom catalyst synthesis method.
- an ion injection method that can inject and control ions in various metastable states into the support is applied to transform the catalytic active site into an atom. It is possible to provide a single-atom catalyst system that overcomes the fundamental limitations of existing synthesis methods.
- the implementation of a metastable single-atom catalyst system through ion implantation in the present invention is the only method that overcomes all the technical difficulties of the existing synthesis method and can synthesize a highly efficient single-atom catalyst system optimized for fuel conversion reactions effectively and in a large area. I look forward to it.
- the single-atom catalyst in the present invention is a catalyst in which metals are dispersed on a support atom by atom, and can achieve ultra-high efficiency catalytic reactions by utilizing almost all atoms, so it can be used as a catalyst in various energy-fuel conversion reactions such as water electrolysis and carbon dioxide reduction. Performance can be maximized and the production cost can be significantly lowered by reducing the amount of catalyst required.
- Figure 1 is a flowchart showing a method for producing a single-atom catalyst according to an embodiment of the present invention.
- Figure 2 is a diagram schematically showing the formation process and structure of a monoatomic catalyst according to an embodiment of the present invention.
- Figure 3 is a graph showing the results of X-ray diffraction analysis of examples and comparative examples of the present invention.
- Figure 4 is an image of the results of elemental qualitative analysis using energy dispersion X-ray spectroscopy (EDS) of a metal multiatom catalyst prepared according to an embodiment of the present invention.
- EDS energy dispersion X-ray spectroscopy
- Figures 5 and 6 show the results of elemental quantitative analysis using EDS of the metal single-atom catalyst prepared according to Example and Comparative Example 1 of the present invention, respectively.
- the method for producing a monoatomic catalyst may include a step of preparing a support and a step of preparing a transition metal-based monoatomic catalyst.
- the support in the preparation step of the support, may be a transition metal oxide or a carbon-based support, and the transition metal oxide may be NiO, Cu 2 O, WO 3 , TiO 2 , Fe 2 O 3 , SnO 2 , BiVO 4 , ITO or SiO 2 , etc.
- a transition metal oxide support of a NiO thin film was manufactured, and a carbon-based support was also used (s100).
- the support may include a transition metal oxide including Cu 2 O, WO 3 , TiO 2 , Fe 2 O 3 , SnO 2 , BiVO 4 , ITO, or SiO 2 .
- the support may include carbon-based materials such as graphene, reduced graphene oxide (rGO), carbon nanotubes, and carbon black.
- the support may include a two-dimensional material including graphene, hexagonal nitrogen boride, transition metal chalcogenide compound, or MXene.
- an electron beam evaporator can be used to synthesize a NiO thin film on Pure Ti (puritiy > 99.5%) foil.
- the carrier may be formed on at least one of metal substrates such as metal foil and foam, transparent conductive oxide substrates, semiconductor substrates such as silicon, and insulator substrates such as glass and sapphire.
- the preparatory steps for producing the carrier include electron beam deposition, thermal evaporation, chemical vapor deposition, sputtering deposition, flame vapor deposition, hydrothermal synthesis, drop casting, electrodeposition, light supporting, It can be performed by anodizing or the doctor blade method.
- nickel foam without separate surface treatment, gas diffusion layer, polytetrafluoroethylene (PTFE), carbon paper, TEM grid, etc. may be included as a carrier. Therefore, the step of preparing a support in this specification should be broadly interpreted as including the step of preparing nickel foam, etc., which does not require separate surface treatment as above, in addition to the step of synthesizing the support material.
- the NiO source is mounted in the pocket of the electron beam evaporator, and a vacuum state is created using a vacuum pump. At this time, the initial vacuum is maintained at, for example, 10 -6 Torr. Then, the NiO source is vaporized using an electron beam at an acceleration voltage of 7 kV or more under vacuum conditions. If the appropriate deposition speed is not achieved, deposition does not occur on the Ti foil, which is the substrate.
- the rotation speed of the substrate is 1 rpm or more, and the deposition rate is 2.0 ⁇ /s or less.
- the thickness of the deposited NiO thin film is 100 nm or less.
- the structure of the carrier is a bulk thin film or nano particle, nano cluster, nano dot, nano rod, nano wire, zigzag nano rod. (zigzag nano rod), nano helix, nano spring, nano sheet, nano flower, nano ribbon, nano cone, sponge and It may include at least one structure among foams.
- the transition metal single atom is Co, Ni, Fe, Cu, Ti, Contains at least one of Cr, Ag, Au, Ir, Ru, Pd, Pt, Al, Cd, Bi, Rh, Mg, Mo, Mn, Sn, Zn, In, Ta, Nb, Pb, V, W and Zr can do.
- the NiO support obtained in step (s100) is mounted in the target chamber of the ion implantation device.
- a high-energy injector of 10 to 200 keV is used, and a high concentration of Co + , Ni + , Fe + , Cu + , Ti + , etc. is administered at an irradiation dose of about 10 14 to 10 17 /cm 2 .
- An ion of one of the transition metal materials can be injected into the carrier.
- the selected transition metal (Co material in this embodiment) is injected into the NiO support to be deposited.
- the distribution form of the injected metal ion species Co is formed into nano clusters above an appropriate irradiation dose, whereas it exists in the form of a single atom under an appropriate irradiation dose.
- Co metal is injected into the NiO support at an irradiation dose of 10 15 /cm 2 or less.
- Figure 2 is a diagram schematically showing the formation process and structure of a single-atom catalyst according to an embodiment of the present invention.
- the single-atom catalyst material may include, for example, transition metal materials such as Co, Ni, Fe, Cu, Ti, Cr, etc.
- the monoatomic catalyst is a support material, such as transition metal oxides such as NiO, Cu 2 O, WO 3 , TiO 2 , and Fe 2 O 3 , or graphene, rGO (reduced graphene oxide), carbon nanotubes, It may contain carbon-based materials such as carbon black.
- Comparative Example 1 used the transition metal oxide-based carrier itself obtained in step (a) of the above example as a sample, and evaluated the sample through the following evaluation method.
- Example 1 the support in step (s100) was analyzed as is, and a peak corresponding to the cubic phase, which is the basic crystal structure of the support NiO, was observed.
- Example and Comparative Example 2 it can be seen that the size of the peak corresponding to NiO decreases and broadens as metal ion species are irradiated. Accordingly, it can be seen that defects such as oxygen vacancies are induced by partial destruction of the bonding state in the support through the ion implantation method, and amorphization occurs.
- the elements constituting the monoatomic catalyst prepared in the above example were analyzed using energy dispersive spectroscopy (EDS), and are shown in FIG. 4.
- EDS energy dispersive spectroscopy
- FIG 4 is an image of the results of qualitative elemental analysis using energy dispersion X-ray spectroscopy (EDS) of a metal monoatomic catalyst prepared according to an embodiment of the present invention. Looking at this, it can be seen that nickel, oxygen, and cobalt are distributed in the catalyst manufactured as in the example. In addition, it can be seen that cobalt atoms do not aggregate with each other and are evenly distributed within the NiO support.
- EDS energy dispersion X-ray spectroscopy
- Figures 5 and 6 show the results of elemental quantitative analysis using EDS of the metal single-atom catalyst prepared according to Example and Comparative Example 2 of the present invention, respectively. It can be confirmed that Ni, O, and Co elements corresponding to metal single atoms are present from the Ti support on the conductive substrate in the prepared catalyst. Looking at Figure 5, the composition of Co in the catalyst prepared according to an example of the present invention is 1.68 at%. In comparison, looking at FIG. 6, the EDS analysis results of Comparative Example 2 show that Co is present in a significant amount, at 12.98 at%. This is an analysis showing that since cobalt in the example exists in a single atomic form, the amount of metal used can be significantly reduced.
- Figure 7a is a scanning transmission electron microscopy (STEM) image of a sample in which the cobalt single atom formation process was applied to a carbon carrier without surface treatment.
- STEM scanning transmission electron microscopy
- Synchrotron accelerator-based absorption spectroscopy analysis was performed to confirm the coordination structure of Co metal particles present on the NiO support in the samples of the examples.
- FIG. 8a is a result of XANES (X-ray absorption near edge structure) analysis of Co K edge
- Figure 8b is a radial distribution spectra of Co K edge EXAFS (extended X-ray absorption fine structure) result.
- FIG. 8A it can be seen that the Co single atoms of the example have a higher white line intensity compared to the Co foil, and thus the Co single atoms have a relatively higher oxidation number than the metal Co foil.
- the Co-Co peak around 2.15 angstroms corresponding to the bond between Co metal atoms was not observed, and Co-Ni around 2.56 angstroms and 1.62 angs.
- the Co-O bond near the tron it is believed that the injected Co metal atoms do not aggregate with each other, but that Co single atoms are formed in a form combined with elements in the NiO support.
- Example and Comparative Examples 1 and 2 were applied as catalyst electrodes for electrochemical hydrogen evolution reaction and the hydrogen evolution reaction (HER) performance was analyzed in 1.0 M KOH. The results are shown in the HER polarization curve in Figure 10.
- FIG. 10 compared to Comparative Example 1, the overvoltage required to achieve the same current density tends to decrease in Comparative Example 2 and Example 1, which is due to the injection of Co metal particles in the support and the creation of phases and defects according to the ion implantation method. It is inferred that hydrogen generation activity increases. In addition, as the irradiation dose of the ion implantation method decreases, the catalytic activity increases.
- the Co single atom catalyst electrode manufactured according to the example shows an overvoltage of 223 mV at a current density of 10 mA cm -2 , and the hydrogen production efficiency is 2% compared to the existing NiO supported catalyst electrode due to the effect of the injected Co single atom. It can be seen that the improvement is significantly more than twofold.
- electrochemical analyzes such as linear sweep voltammetry and long-term chronopotentiometry before and after cyclic voltammetry (CV) were performed to evaluate the durability of the Co single-atom catalyst electrode system synthesized by ion implantation.
- the catalyst activity does not deteriorate even before and after CV 3000 cycles and under a long-term hydrogen generation reaction of more than 30 hours, indicating that a monoatomic catalyst electrode with excellent durability is realized through the ion implantation method.
- the ion implantation method can investigate most elements in the periodic table and can be commonly applied regardless of most types of metals and types of carriers. Taking advantage of these advantages, the same procedure as in the example was performed, but samples were produced in which Fe, Ni, and Cu metals were injected into the carbon carrier at an irradiation dose of 10 15 /cm 2 or less.
- Figures 12a, 12b, and 12c are scanning transmission electron microscope (STEM) images of samples obtained by applying the single atom formation process of Fe, Ni, and Cu metals to a carbon support without surface treatment, respectively.
- STEM scanning transmission electron microscope
- Figure 12d is the same as the example, except that the sample in which Fe, Ni, and Cu metals were injected into the NiO support at an irradiation dose of 10 15 /cm 2 or less was applied as a catalyst electrode for electrochemical hydrogen generation reaction at 1.0 M. Hydrogen Evolution Reaction (HER) performance was analyzed in KOH.
- HER Hydrogen Evolution Reaction
- the overvoltage required to achieve the same current density tended to decrease, which was achieved by ion implantation within the support. This is the result of improved hydrogen production efficiency compared to the existing NiO supported catalyst electrode due to the single atom effect of Fe, Ni, and Cu each formed at the atomic level.
- monoatomic catalysts in various metastable states can be directly injected and formed on a support, making it possible to implement a monoatomic catalyst with uniform distribution and high supported amount.
- no additional processes are required, the process is simple, and a single-atom catalyst can be manufactured at a low cost.
- existing synthesis methods that are highly dependent on specific substances and have limited substance selectivity, they are commonly applicable regardless of most types of metals and types of supports, allowing the synthesis of various transition metal monoatomic catalysts. It is very advantageous in that it can be used widely, such as reducing carbon dioxide and reducing carbon dioxide.
- transition metal monoatomic catalysts include, for example, any one of a catalyst for a hydrogen evolution reaction, a catalyst for an oxygen evolution reaction, a catalyst for a hydrogen oxidation reaction, a catalyst for an oxygen reduction reaction, a catalyst for carbon dioxide reduction, a catalyst for ammonia reduction, and a catalyst for fuel cell electrodes. It can be used as one.
- the production method of the present invention since most metal atoms participate in the reaction, the atomic utilization rate is high and the amount of catalyst used can be significantly reduced, making it economical. Because surface atoms are highly utilized and a single type of catalytic active site exists, fuel conversion efficiency and fuel selectivity can be maximized.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Catalysts (AREA)
Abstract
The present invention relates to a method for producing a transition metal monoatomic catalyst by using an ion implantation method, whereby a highly efficient fuel-tailored monoatomic catalyst can be provided by utilizing an ion implantation method that can physically implant ions in various metastable states into a support and control the ions. According to the production method according to the present invention, unlike existing synthesis methods in which particles are aggregated into a thermodynamically stable phase, physically accelerated ions can stop at specific lattice sites and be maintained in a metastable state and thus may be distributed while retaining structural/chemical stability on an atomic scale. In addition, unlike existing methods that are limited in terms of material selection, most species of ions can be implanted into various supports, and thus it is possible to provide various transition metal-based monoatomic catalysts that can be widely used in water electrolysis, carbon dioxide reduction reactions, etc.
Description
본 발명은 단원자 촉매의 제조 방법에 관한 것으로 특히, 이온 주입법을 활용하여 기존 촉매의 성능 한계를 극복하고 촉매 사용량을 획기적으로 감소시킬 수 있는 단원자 촉매의 제조 방법에 관한 것이다The present invention relates to a method for producing a single-atomic catalyst, and in particular, to a method for producing a single-atomic catalyst that can overcome the performance limitations of existing catalysts and dramatically reduce catalyst usage by utilizing ion implantation.
화석연료의 과도한 사용에 따른 에너지 위기 및 환경 문제를 해결하기 위한 대안으로, 수전해, 이산화탄소 한원 등, 다양한 에너지-연료 변환저장 기술에 대한 연구가 활발히 진행되고 있다. 물에서 수소 (수전해), 이산화탄소로부터 메탄 등의 가스 연료를 효율적으로 생산하기 위해서는 관련 반응에 최적화된 우수한 촉매 소재의 개발이 필요하다. As an alternative to solving the energy crisis and environmental problems caused by excessive use of fossil fuels, research is being actively conducted on various energy-fuel conversion and storage technologies, such as water electrolysis and carbon dioxide reduction. In order to efficiently produce gaseous fuels such as hydrogen from water (water electrolysis) and methane from carbon dioxide, it is necessary to develop excellent catalyst materials optimized for related reactions.
우수한 촉매의 특성은 뛰어난 활성, 값싼 단가, 연료 선택성 및 내구성을 겸비해야 한다. 나노 입자, 합금 소재 등 다양한 촉매 기술이 제시되었으나, 귀금속 물질 사용으로 단가 상승, 낮은 반응 효율로 인한 전력 손실, 복잡한 연료생성 반응에 의한 낮은 연료 선택성 등의 문제로 상기 특성을 모두 충족하는 촉매 소재 기술이 부재한다.The characteristics of an excellent catalyst must include excellent activity, low cost, fuel selectivity, and durability. Various catalyst technologies such as nanoparticles and alloy materials have been proposed, but due to problems such as increased unit cost due to the use of precious metal materials, power loss due to low reaction efficiency, and low fuel selectivity due to complex fuel generation reactions, a catalyst material technology that satisfies all of the above characteristics This is absent.
이러한 기존 촉매 기술의 한계를 극복하기 위해, 최근 여러 종류의 단원자 촉매를 합성하고 이를 활용한 연구 결과들이 보고되고 있다. 단원자 촉매는 금속이 원자 단위로 지지체에 분산되어 있는 촉매로, 100%에 가까운 거의 모든 원자를 활용해 초고효율 촉매 반응을 이룰 수 있어, 다양한 에너지-연료 변환 반응에서 촉매 성능을 극대화시키고, 필요한 촉매 사용량을 줄여 제작 단가를 절감시킬 수 있다.To overcome these limitations of existing catalyst technologies, research results on the synthesis and use of various types of monoatomic catalysts have recently been reported. A single-atom catalyst is a catalyst in which metals are dispersed on a support by atoms, and can achieve ultra-high efficiency catalytic reactions by utilizing almost all atoms close to 100%, maximizing catalytic performance in various energy-fuel conversion reactions and providing the necessary Manufacturing costs can be reduced by reducing the amount of catalyst used.
그러나, 우수한 활성 및 연료 선택성을 지닌 단원자 촉매는 에너지-연료 변환 효율을 획기적으로 향상시킬 수 있으나, 동시에 표면에너지가 매우 크기 때문에 열역학적으로 불안정하여 합성 및 구현이 근본적으로 어렵다. 즉, 높은 표면에너지로 인해 원자들이 지지체 상에서 이동하고 클러스터나 입자 형태로 응집되므로, 원자들을 지지체 상에 단원자 상태로 안정화시키는 것이 단원자 촉매의 구현을 위해 해결되어야 할 가장 근본적인 기술적 난제이다.However, monoatomic catalysts with excellent activity and fuel selectivity can dramatically improve energy-fuel conversion efficiency, but at the same time, because their surface energy is very large, they are thermodynamically unstable, making their synthesis and implementation fundamentally difficult. In other words, because the atoms move on the support and aggregate in the form of clusters or particles due to high surface energy, stabilizing the atoms in a single atom state on the support is the most fundamental technical challenge that must be solved for the implementation of a single atom catalyst.
단원자 촉매의 합성을 위해 국내·외 연구진에 의해, 습식법, 열분해법, 원자층 증착법 등 다양한 방법들이 기존에 시도되어 왔으나, 기존의 합성법은 다음과 같은 근본적인 한계를 지닌다. 1) 단원자 촉매의 불안정성: 단원자 촉매의 높은 표면 에너지로 인해 원자들이 지지체 상에서 이동하고 클러스터나 입자 형태로 응집되므로, 장시간 구동에 따른 성능 열화 등, 촉매 활성이 제한적이고, 안정성이 취약하여 실제 촉매 전극으로의 응용이 어렵다. 2) 단원자 촉매 합성을 위한 물질적 제약: 기존 단원자 촉매 합성법은 특정 물질에 대한 의존성이 높고, 구현 가능한 단원자 촉매 물질이 제약적이다. 이에 따라 시행착오법을 토대로 단편적인 물질 조합에 대한 연구가 주로 이루어져 왔으며, 단원자 촉매의 물질적/구조적 변인의 정량적 제어의 한계는 단원자 촉매 시스템의 메커니즘 탐구에 기반한 거시적 연구 전략의 제시에 심각한 장애 요인이다. 또한, Pt, Ir 등과 같은 귀금속 물질에 기반한 단원자 촉매 개발 연구에 치우쳐져 있어, 촉매 제작 단가 측면에서도 한계를 지닌다. 3) 단원자 촉매의 불규칙적/비정량적 산포: 기존 합성법은 원자들 간 응집을 억제하기 위해 매우 소량의 금속 전구체와 별도의 리간드를 이용하기 때문에 단원자 촉매의 담지량이 상당히 작고, 산발적, 비정량적인 단원자 분포를 야기해 제어가 어렵다.To synthesize monoatomic catalysts, various methods such as wet method, thermal decomposition method, and atomic layer deposition method have been attempted by domestic and foreign researchers. However, existing synthesis methods have the following fundamental limitations. 1) Instability of single-atom catalysts: Due to the high surface energy of single-atom catalysts, atoms move on the support and aggregate into clusters or particles, so catalytic activity is limited, including performance deterioration due to long-term operation, and stability is weak, resulting in poor actual performance. Application as a catalyst electrode is difficult. 2) Material constraints for monoatomic catalyst synthesis: Existing monoatomic catalyst synthesis methods are highly dependent on specific materials, and the monoatomic catalyst materials that can be implemented are limited. Accordingly, research has mainly been conducted on fragmentary material combinations based on trial and error methods, and the limitations of quantitative control of material/structural variables of single-atom catalysts are a serious obstacle to presenting macroscopic research strategies based on exploring the mechanism of single-atom catalyst systems. It's a factor. In addition, research is focused on developing single-atom catalysts based on noble metal materials such as Pt and Ir, which has limitations in terms of catalyst production cost. 3) Irregular/non-quantitative distribution of monoatomic catalysts: Since the existing synthesis method uses a very small amount of metal precursor and a separate ligand to suppress aggregation between atoms, the amount of monoatomic catalyst supported is quite small, sporadic, and non-quantitative. It causes monatomic distribution and is difficult to control.
실질적인 단원자 촉매의 응용을 위해서는 응집이 억제되는 동시에 높은 농도로 금속 원자를 분산시켜야 하고, 물질 선택에 자유도가 있으며 대면적화가 가능한 방법이어야 한다. 따라서, 단원자 촉매 구현의 기술적 난제를 극복할 수 있는 독창적인 합성 기술의 개발이 요구된다.For practical application of a single-atom catalyst, agglomeration must be suppressed while metal atoms must be dispersed at a high concentration, there must be freedom in material selection, and a method must be available for large-area applications. Therefore, the development of an original synthesis technology that can overcome the technical difficulties of implementing a single-atom catalyst is required.
상술한 문제를 해결하기 위하여, 본 발명의 목적은 기존 단원자 촉매 구현의 근본적인 기술적 난제를 극복하고, 단원자 촉매를 효과적, 대면적으로 합성할 수 있는 이온 주입법을 활용한 전이금속 기반 단원자 촉매의 제조방법을 제공하는 것이다.In order to solve the above-mentioned problems, the purpose of the present invention is to overcome the fundamental technical difficulties in implementing existing monoatomic catalysts and to develop a transition metal-based monoatomic catalyst using an ion implantation method that can synthesize monoatomic catalysts effectively and in a large area. To provide a manufacturing method.
상세하게, 본 발명의 일 목적은 물리적인 에너지로 다양한 준안정 상태의 이온을 지지체에 주입 및 제어함으로써, 단원자 촉매의 응집을 억제하는 동시에 높은 담지량으로 단원자 촉매를 합성할 수 있는 전이금속 단원자 촉매의 제조방법을 제공하는 것이다.In detail, one object of the present invention is to suppress the aggregation of single-atomic catalysts by injecting and controlling ions in various metastable states into the support using physical energy, and at the same time, create a transition metal unit capable of synthesizing single-atomic catalysts with a high support amount. The purpose is to provide a method for producing a self-catalyst.
상세하게, 본 발명의 일 목적은 다양한 공정 변수를 조절해 조사된 이온의 분포, 상, 결함 등을 제어할 수 있는 단원자 촉매의 제조방법을 제공하는 것이다.In detail, an object of the present invention is to provide a method for producing a monoatomic catalyst that can control the distribution, phase, defects, etc. of irradiated ions by adjusting various process variables.
상세하게, 본 발명의 일 목적은 대부분의 전이금속 기반 단원자 촉매를 합성할 수 있는 단원자 촉매의 제조방법을 제공하는 것이다.In detail, one object of the present invention is to provide a method for producing a monoatomic catalyst capable of synthesizing most transition metal-based monoatomic catalysts.
상세하게, 본 발명의 일 목적은 제조공정이 단순하고 재현성이 높으며, 산업적으로 대량생산이 가능한 전이금속 단원자 촉매의 제조방법을 제공하는 것이다.In detail, one object of the present invention is to provide a method for manufacturing a transition metal monoatomic catalyst that has a simple manufacturing process, is highly reproducible, and can be industrially mass-produced.
본 발명의 또 다른 목적은, 다양한 에너지-가스 연료 변환 반응에 대해 촉매 성능을 극대화시키고, 제작 단가를 획기적으로 낮출 수 있는 전이금속 단원자 촉매의 제조방법을 제공하는 것이다. Another object of the present invention is to provide a method for producing a transition metal monoatomic catalyst that can maximize catalytic performance for various energy-gas fuel conversion reactions and dramatically reduce manufacturing costs.
단, 본 발명이 해결하고자 하는 기술적 과제들은 상기 과제들로 한정되는 것이 아니며, 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있다. However, the technical problems to be solved by the present invention are not limited to the above problems, and can be expanded in various ways without departing from the technical spirit and scope of the present invention.
상기한 목적을 달성하기 위하여 본 발명은 (a) 담지체를 제작하기 위한 준비 단계; 및 (b) 상기 단계의 결과물을 이온 주입법을 위한 장비를 사용, 전이금속 원소를 이온화한 후 높은 에너지로 가속하여 담지체 표면 상에 이온을 주입, 단원자 촉매를 형성하는 단계를 포함하는 단원자 촉매의 제조방법을 제공한다. In order to achieve the above object, the present invention includes (a) a preparation step for producing a support; and (b) ionizing the result of the above step using equipment for ion implantation, ionizing the transition metal element and then accelerating it with high energy to inject the ions onto the surface of the support, forming a single atom catalyst. A method for producing a catalyst is provided.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Specific details of other embodiments are included in the detailed description and drawings.
본 발명의 이온 주입법은 임의의 원소를 이온화한 후 높은 에너지(수십-수백 keV)로 가속하여 물리적으로 타겟 소재의 표면에 이온을 주입하는 기법으로, 기존 합성 기술과 비교해 안정성, 다양성, 제어성 측면에서 독보적인 장점을 지닌다.The ion implantation method of the present invention is a technique that physically implants ions into the surface of a target material by ionizing an arbitrary element and then accelerating it with high energy (tens to hundreds of keV). Compared to existing synthesis techniques, it has stability, diversity, and controllability. It has unrivaled advantages in
특히, 상기 이온 주입법은 열역학적인 안정한 상으로 입자가 응집되는 기존의 합성 방법과 달리, 물리적인 에너지로 가속된 이온이 특정 격자 위치에서 정지해 준안정 상태로 유지될 수 있어 원자 규모로 구조적/화학적 안정성을 가지며 분포할 수 있다.In particular, the ion implantation method, unlike the existing synthesis method in which particles are aggregated into a thermodynamically stable phase, allows ions accelerated by physical energy to stop at a specific lattice position and remain in a metastable state, resulting in structural/chemical effects at the atomic scale. It has stability and can be distributed.
또한 주기율표상 대다수 원소를 조사 가능하여 다양한 물질 조합을 구현할 수 있다. 물질 선택성이 제약적인 기존의 방법과 달리 각종 지지체 상에 대부분의 이온종을 주입할 수 있어, 수전해, 이산화탄소 환원 반응 등 광범위하게 활용될 수 있는 다양한 전이금속 기반 단원자 촉매를 제공할 수 있다. In addition, the majority of elements on the periodic table can be investigated, allowing various material combinations to be implemented. Unlike existing methods that have limited material selectivity, most ionic species can be injected onto various supports, providing a variety of transition metal-based monoatomic catalysts that can be widely used in water electrolysis and carbon dioxide reduction reactions.
또한 조사선량, 조사 에너지 등 이온 주입법의 다양한 공정 변수를 조절해 조사된 이온의 분포, 상, 결함 등을 제어할 수 있다.In addition, the distribution, phase, and defects of irradiated ions can be controlled by adjusting various process variables of the ion implantation method, such as irradiation dose and irradiation energy.
또한, 상기 이온 주입법은 이온을 넓은 면적의 모재에 고르게 주입 가능하여 대면적화에 용이하고 생산성이 높다.In addition, the ion implantation method allows ions to be evenly injected into a base material over a large area, making it easy to enlarge the area and having high productivity.
본 발명은 상기 특징을 갖는 이온 주입법을 전이금속 기반 단원자 촉매 합성 방법으로 적용하였다. 본 발명의 제조방법에 따르면, 열역학적인 안정한 상으로 입자가 응집되는 기존의 합성 방법과 달리, 다양한 준안정한 상태의 이온을 지지체에 주입 및 제어할 수 있는 이온 주입법을 적용하여, 촉매 활성점을 원자수준으로 제어하고 이를 통해 기존 합성방법의 근본적인 한계를 극복한 단원자 촉매 시스템을 제공할 수 있다. The present invention applied the ion implantation method having the above characteristics as a transition metal-based monoatom catalyst synthesis method. According to the production method of the present invention, unlike the existing synthesis method in which particles aggregate into a thermodynamically stable phase, an ion injection method that can inject and control ions in various metastable states into the support is applied to transform the catalytic active site into an atom. It is possible to provide a single-atom catalyst system that overcomes the fundamental limitations of existing synthesis methods.
본 발명에서의 이온 주입법을 통한 준안정상의 단원자 촉매 시스템 구현은 상기 기존 합성법의 기술적 난제를 모두 극복하고 연료 변환 반응에 최적화된 고효율 단원자 촉매 시스템을 효과적, 대면적으로 합성할 수 있는 유일한 방법으로 기대된다.The implementation of a metastable single-atom catalyst system through ion implantation in the present invention is the only method that overcomes all the technical difficulties of the existing synthesis method and can synthesize a highly efficient single-atom catalyst system optimized for fuel conversion reactions effectively and in a large area. I look forward to it.
또한 본 발명에서의 단원자 촉매는 금속이 원자 단위로 지지체에 분산되어 있는 촉매로 거의 모든 원자를 활용해 초고효율 촉매 반응을 이룰 수 있어, 수전해, 이산화탄소 환원 등 다양한 에너지-연료 변환 반응에서 촉매 성능을 극대화시키고, 필요한 촉매 사용량을 줄여 제작 단가를 확연히 낮출 수 있다.In addition, the single-atom catalyst in the present invention is a catalyst in which metals are dispersed on a support atom by atom, and can achieve ultra-high efficiency catalytic reactions by utilizing almost all atoms, so it can be used as a catalyst in various energy-fuel conversion reactions such as water electrolysis and carbon dioxide reduction. Performance can be maximized and the production cost can be significantly lowered by reducing the amount of catalyst required.
단, 본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.However, the effects according to the present invention are not limited to the contents exemplified above, and various other effects are included in the present specification.
도 1은 본 발명의 실시예에 따른 단원자 촉매의 제작방법을 나타낸 흐름도이다. Figure 1 is a flowchart showing a method for producing a single-atom catalyst according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 단원자 촉매의 형성 과정 및 구조를 도식적으로 나타낸 도면이다.Figure 2 is a diagram schematically showing the formation process and structure of a monoatomic catalyst according to an embodiment of the present invention.
도 3은 본 발명의 실시예 및 비교예의 X선 회절 분석 결과를 나타낸 그래프이다.Figure 3 is a graph showing the results of X-ray diffraction analysis of examples and comparative examples of the present invention.
도 4는 본 발명의 일 실시예 따라 제조된 금속 다원자 촉매의 에너지 분사형 X-선 분광법 (EDS) 을 이용한 원소 정성분석 결과 이미지이다.Figure 4 is an image of the results of elemental qualitative analysis using energy dispersion X-ray spectroscopy (EDS) of a metal multiatom catalyst prepared according to an embodiment of the present invention.
도 5 및 도 6은 각각 본 발명의 실시예 및 비교예 1에 따라 제조된 금속 단원자 촉매의 EDS를 이용한 원소 정량분석 결과이다. Figures 5 and 6 show the results of elemental quantitative analysis using EDS of the metal single-atom catalyst prepared according to Example and Comparative Example 1 of the present invention, respectively.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예에 대하여 상세하게 설명한다. 본 발명의 이점, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. The advantages of the present invention and how to achieve them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms. The present embodiments only serve to ensure that the disclosure of the present invention is complete, and are not limited to the embodiments disclosed below, and the present invention is not limited to the embodiments disclosed below. It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims.
본 발명의 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 본 명세서 상에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우, '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.The shape, size, ratio, number, etc. shown in the drawings for explaining embodiments of the present invention are illustrative, and the present invention is not limited to the details shown. Additionally, in describing the present invention, if it is determined that a detailed description of related known technologies may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. When 'includes', 'has', 'consists of', etc. mentioned in this specification are used, other parts may be added unless 'only' is used. In cases where a component is expressed in the singular, the plural is included unless specifically stated otherwise.
구성요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.When interpreting components, it is interpreted to include the margin of error even if there is no separate explicit description.
또한, 본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하며, 당업자가 충분히 이해할 수 있듯이 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다.In addition, the features of the various embodiments of the present invention can be partially or fully combined or combined with each other, and as can be fully understood by those skilled in the art, various technical interconnections and operations are possible, and each embodiment can be implemented independently of each other. It may be possible, or it may be possible to implement them together due to a related relationship.
이하, 도 1 내지 도 6을 참조하여 본 발명의 실시예를 상세하게 설명한다. Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6.
실시예Example
먼저, 도 1을 참조하면, 본 발명의 실시예에 따른 단원자 촉매의 제조방법은 담지체의 준비 단계 및 전이금속 기반 단원자 촉매 제조단계를 포함할 수 있다. First, referring to FIG. 1, the method for producing a monoatomic catalyst according to an embodiment of the present invention may include a step of preparing a support and a step of preparing a transition metal-based monoatomic catalyst.
보다 상세하게, 담지체의 준비 단계에서 담지체는 전이금속 산화물 또는 탄소계 담지체가 될 수 있으며, 전이금속 산화물은 NiO, Cu2O, WO3, TiO2, Fe2O3, SnO2, BiVO4, ITO 또는 SiO2 등이 될 수 있다. 본 실시예에서는 NiO 박막의 전이금속 산화물 담지체를 제작하고, 또한, 탄소계 담지체를 사용하였다.(s100) More specifically, in the preparation step of the support, the support may be a transition metal oxide or a carbon-based support, and the transition metal oxide may be NiO, Cu 2 O, WO 3 , TiO 2 , Fe 2 O 3 , SnO 2 , BiVO 4 , ITO or SiO 2 , etc. In this example, a transition metal oxide support of a NiO thin film was manufactured, and a carbon-based support was also used (s100).
이 경우, 상기 담지체는 NiO 외에도 Cu2O, WO3, TiO2, Fe2O3, SnO2, BiVO4, ITO 또는 SiO2를 포함하는 전이금속 산화물을 포함할 수 있다. 또는, 상기 담지체는 그래핀, rGO(reduced graphene oxide), 탄소나노튜브, 카본 블랙 등의 탄소계 물질을 포함할 수도 있다. 또는 상기 담지체는 그래핀, 육방정계 붕화질소, 전이금속 칼코겐 화합물 또는 맥신을 포함하는 2차원 물질을 포함할 수도 있다. In this case, in addition to NiO, the support may include a transition metal oxide including Cu 2 O, WO 3 , TiO 2 , Fe 2 O 3 , SnO 2 , BiVO 4 , ITO, or SiO 2 . Alternatively, the support may include carbon-based materials such as graphene, reduced graphene oxide (rGO), carbon nanotubes, and carbon black. Alternatively, the support may include a two-dimensional material including graphene, hexagonal nitrogen boride, transition metal chalcogenide compound, or MXene.
본 발명의 실시예에 따른 전이금속 산화물 기반 담지체의 제작 단계에서, Pure Ti (puritiy > 99.5%) foil 위에 NiO 박막을 합성하기 위해 전자빔 증착기를 활용할 수 있다. 이 경우, Ti foil 외에도, 담지체는 금속 호일 및 폼과 같은 금속 기판, 투명 전도성 산화물 기판, 실리콘과 같은 반도체 기판, 유리와 사파이어 같은 부도체 기판 중 적어도 어느 하나 상에 형성될 수 있다. 또한, 전자빔 증착기를 이용한 전자빔 증착법 외에도, 상기 담지체를 제작하기 위한 준비 단계는 전자빔 증착법, 열 증착법, 화학 증착법, 스퍼터링 증착법, 화염 기상 합성법, 수열 합성법, 드롭 캐스팅법, 전착법, 광 담지법, 아노다이징 또는 독터 블레이드 법에 의해 수행될 수 있다. 또한, 별도의 표면처리를 하지 않은 니켈 폼, Gas Diffusion Layer, 폴리테트라플루오로에틸렌 (PTFE), 카본 페이퍼, TEM grid 등을 담지체로 포함할 수 있다. 따라서, 본 명세서에서 담지체를 준비하는 단계는 담지체 물질을 합성하는 단계 외에도 위와 같은 별도의 표면 처리가 필요 없는 니켈 폼 등을 마련하는 단계를 포함하는 것으로서 넓게 해석되어야 한다. In the manufacturing step of the transition metal oxide-based support according to an embodiment of the present invention, an electron beam evaporator can be used to synthesize a NiO thin film on Pure Ti (puritiy > 99.5%) foil. In this case, in addition to Ti foil, the carrier may be formed on at least one of metal substrates such as metal foil and foam, transparent conductive oxide substrates, semiconductor substrates such as silicon, and insulator substrates such as glass and sapphire. In addition, in addition to the electron beam deposition method using an electron beam evaporator, the preparatory steps for producing the carrier include electron beam deposition, thermal evaporation, chemical vapor deposition, sputtering deposition, flame vapor deposition, hydrothermal synthesis, drop casting, electrodeposition, light supporting, It can be performed by anodizing or the doctor blade method. In addition, nickel foam without separate surface treatment, gas diffusion layer, polytetrafluoroethylene (PTFE), carbon paper, TEM grid, etc. may be included as a carrier. Therefore, the step of preparing a support in this specification should be broadly interpreted as including the step of preparing nickel foam, etc., which does not require separate surface treatment as above, in addition to the step of synthesizing the support material.
한편, 준비된 Ti foil을 전자빔 증착기의 메인 챔버에 장착한후, NiO 소스를 전자빔 증착기의 포켓에 장착하고, 진공 펌프를 이용하여 진공 상태를 형성한다. 이 때, 초기 진공은 예컨대, 10-6 Torr로 유지한다. 그리고, 진공 조건 하에서 7 kV 이상 가속 전압으로 전자빔을 이용하여 NiO 소스를 기화시킨다. 적정 증착 속도에 미치지 못할 경우, 기판인 Ti foil 상에 증착이 일어나지 않는다. 기판의 회전 속도는 1 rpm 이상이고, 증착 속도는 2.0 Å/s 이하이다. 증착되는 NiO 박막의 두께는 100 nm 이하이다. 완성된 NiO 담지체에 대해 주사전자현미경 (Scanning Electron Microscopy), X선 회절측정 (X-ray diffraction), 및 X선 광전자 분광법 (X-ray photoemission spectroscopy)을 이용하여 NiO 박막 형성 여부, 결정 구조 및 표면 상태를 확인한다. 이 때, 상기 담지체의 구조는 벌크 박막 또는 나노 파티클(nano particle), 나노 클러스터(nano cluster), 나노 점(nano dot), 나노 막대(nano rod), 나노 와이어(nano wire), 지그재그 나노 막대(zigzag nano rod), 나노 헬릭스(nano helix), 나노 스프링(nano spring), 나노 시트(nano sheet), 나노 플라워(nano flower), 나노 리본 (nano ribbon), 나노 콘 (nano cone), 스펀지 및 폼(foam) 중 적어도 어느 하나의 구조를 포함할 수 있다. Meanwhile, after mounting the prepared Ti foil in the main chamber of the electron beam evaporator, the NiO source is mounted in the pocket of the electron beam evaporator, and a vacuum state is created using a vacuum pump. At this time, the initial vacuum is maintained at, for example, 10 -6 Torr. Then, the NiO source is vaporized using an electron beam at an acceleration voltage of 7 kV or more under vacuum conditions. If the appropriate deposition speed is not achieved, deposition does not occur on the Ti foil, which is the substrate. The rotation speed of the substrate is 1 rpm or more, and the deposition rate is 2.0 Å/s or less. The thickness of the deposited NiO thin film is 100 nm or less. For the completed NiO support, scanning electron microscopy, X-ray diffraction, and Check the surface condition. At this time, the structure of the carrier is a bulk thin film or nano particle, nano cluster, nano dot, nano rod, nano wire, zigzag nano rod. (zigzag nano rod), nano helix, nano spring, nano sheet, nano flower, nano ribbon, nano cone, sponge and It may include at least one structure among foams.
그리고, 상술한 바와 같이 형성된 전이금속 기반 담지체 및 이온 주입법을 사용하여, 담지체 상에 전이금속 단원자를 형성시킨다.(s200) 이 경우, 전이금속 단원자는 Co, Ni, Fe, Cu, Ti, Cr, Ag, Au, Ir, Ru, Pd, Pt, Al, Cd, Bi, Rh, Mg, Mo, Mn, Sn, Zn, In, Ta, Nb, Pb, V, W 및 Zr 중 적어도 하나를 포함할 수 있다. Then, using the transition metal-based support formed as described above and the ion implantation method, a transition metal single atom is formed on the support. (s200) In this case, the transition metal single atom is Co, Ni, Fe, Cu, Ti, Contains at least one of Cr, Ag, Au, Ir, Ru, Pd, Pt, Al, Cd, Bi, Rh, Mg, Mo, Mn, Sn, Zn, In, Ta, Nb, Pb, V, W and Zr can do.
보다 구체적으로, 본 발명의 실시예에 따르면, 단계 (s100)에서 얻은 NiO 담지체를 이온주입장치의 타겟 챔버에 장착한다. 상기 단계 (s200)에서는 10~200 keV의 고에너지 주입기를 사용하여, 1014~1017/cm2 정도의 조사선량으로 예컨대, 고농도의 Co+, Ni+, Fe+, Cu+, Ti+ 등 전이금속 물질 중 하나의 이온을 담지체 내에 주입할 수 있다. 본 실시예에서는 선택된 전이금속(본 실시예에서는 Co 물질)이 증착 대상인 NiO 담지체에 주입된다. 이 때, 주입되는 금속 이온종 Co의 분포 형태가 적정 조사선량 이상에서는 나노 클러스터로 형성되는 반면, 적정 조사선량 하에서는 단원자 형태로 존재하게 된다. 이 때, 나노 클러스터로의 응집을 막기 위해, 1015/cm2 이하의 조사선량으로 Co 금속을 NiO 담지체에 주입한다. 상술한 과정을 거치게 되면 전이금속 산화물계 지지체(본 실시예에서는 NiO)에 전이금속(본 실시예에서는 Co) 단원자가 담지된 촉매를 수득할 수 있다. More specifically, according to an embodiment of the present invention, the NiO support obtained in step (s100) is mounted in the target chamber of the ion implantation device. In the step (s200), a high-energy injector of 10 to 200 keV is used, and a high concentration of Co + , Ni + , Fe + , Cu + , Ti + , etc. is administered at an irradiation dose of about 10 14 to 10 17 /cm 2 . An ion of one of the transition metal materials can be injected into the carrier. In this embodiment, the selected transition metal (Co material in this embodiment) is injected into the NiO support to be deposited. At this time, the distribution form of the injected metal ion species Co is formed into nano clusters above an appropriate irradiation dose, whereas it exists in the form of a single atom under an appropriate irradiation dose. At this time, in order to prevent aggregation into nanoclusters, Co metal is injected into the NiO support at an irradiation dose of 10 15 /cm 2 or less. By going through the above-described process, it is possible to obtain a catalyst in which a transition metal (Co in this example) single atom is supported on a transition metal oxide support (NiO in this example).
도 2는 본 발명의 일 실시예에 따른 단원자 촉매의 형성 과정 및 구조를 도식적으로 나타낸 도면이다.Figure 2 is a diagram schematically showing the formation process and structure of a single-atom catalyst according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 실시예에 따른 단원자 촉매 물질은, 예를 들어, 전이금속 물질인 Co, Ni, Fe, Cu, Ti, Cr 등을 포함할 수 있다. 또한, 상기 단원자 촉매는 담지체 (supporter) 물질로서 NiO, Cu2O, WO3, TiO2, Fe2O3 등의 전이금속 산화물 혹은 그래핀, rGO (reduced graphene oxide), 탄소나노튜브, 카본 블랙 등의 탄소계 물질을 포함할 수 있다.Referring to FIG. 2, the single-atom catalyst material according to an embodiment of the present invention may include, for example, transition metal materials such as Co, Ni, Fe, Cu, Ti, Cr, etc. In addition, the monoatomic catalyst is a support material, such as transition metal oxides such as NiO, Cu 2 O, WO 3 , TiO 2 , and Fe 2 O 3 , or graphene, rGO (reduced graphene oxide), carbon nanotubes, It may contain carbon-based materials such as carbon black.
비교예 1.Comparative Example 1.
비교예 1은 상기 실시예의 단계 (a)에서 수득된 전이금속 산화물 기반 담지체 자체를 시료로 하여, 하기 평가 방법을 통해 시료를 평가하였다.Comparative Example 1 used the transition metal oxide-based carrier itself obtained in step (a) of the above example as a sample, and evaluated the sample through the following evaluation method.
비교예 2.Comparative Example 2.
상기 실시예와 동일하게 실시하되, 이온주입법 과정에서 적정 조사량 이상인 1015/cm2 이상의 조사선량으로 Co 금속이 주입된 NiO 담지체를 시료로 하여, 하기 평가 방법을 통해 시료를 평가하였다. The same procedure as the above example was carried out, except that a NiO carrier into which Co metal was implanted at an irradiation dose of 10 15 /cm 2 or more, which is more than the appropriate irradiation dose during the ion implantation process, was used as a sample, and the sample was evaluated using the following evaluation method.
실험예 1. X선 회절 (X-ray diffraction, XRD) 분석Experimental Example 1. X-ray diffraction (XRD) analysis
실험예 1에서는 X선 회절 분석 (X-ray diffraction, XRD)을 이용해 본 발명의 실시예 및 비교예 1 및 2의 결정성을 분석하였다. 도 3은 본 발명의 실시예 및 비교예의 X선 회절 분석 결과를 나타낸 그래프이다.In Experimental Example 1, the crystallinity of the Examples and Comparative Examples 1 and 2 of the present invention was analyzed using X-ray diffraction (XRD). Figure 3 is a graph showing the results of X-ray diffraction analysis of examples and comparative examples of the present invention.
비교예 1은 단계 (s100)의 담지체를 그대로 분석한 것으로, 담지체 NiO의 기본 결정 구조인 cubic 상에 해당하는 피크가 관찰되었다. 실시예 및 비교예 2의 경우, 금속 이온종을 조사함에 따라 NiO에 해당하는 피크의 크기가 감소되고, 넓어지는 것을 확인할 수 있다. 이에 따라, 이온 주입법을 통해 담지체 내 결합 상태의 부분적 파괴로 산소 공공(vacancy)과 같은 결함이 유도되고, 비정질화가 일어나는 것을 알 수 있다. In Comparative Example 1, the support in step (s100) was analyzed as is, and a peak corresponding to the cubic phase, which is the basic crystal structure of the support NiO, was observed. In the case of Example and Comparative Example 2, it can be seen that the size of the peak corresponding to NiO decreases and broadens as metal ion species are irradiated. Accordingly, it can be seen that defects such as oxygen vacancies are induced by partial destruction of the bonding state in the support through the ion implantation method, and amorphization occurs.
또한, 비교예 2의 경우, 코발트의 조밀육방격자(hcp)에 해당하는 XRD 피크가 관찰되었고, 이는 일반적인 코발트 금속 혹은 나노입자에서 보이는 결정 구조에 해당한다. 그러나, 실시예의 코발트 단원자의 XRD 분석 결과, 전도성 기판이 Ti foil 및 담지체인 NiO 에 의한 XRD 피크 이외에는 코발트와 관련된 어떠한 결정 구조도 관찰되지 않았다. 이는 낮은 조사선량에서 코발트가 단원자 형태로 존재하기 때문에 결정구조를 이루지 않고 있다는 것을 알 수 있는 분석이다.Additionally, in the case of Comparative Example 2, an XRD peak corresponding to the close-packed hexagonal lattice (hcp) of cobalt was observed, which corresponds to the crystal structure seen in general cobalt metal or nanoparticles. However, as a result of the XRD analysis of the cobalt single atom in the example, no crystal structure related to cobalt was observed other than the XRD peak due to Ti foil as the conductive substrate and NiO as the support. This is an analysis that shows that cobalt does not form a crystal structure because it exists in a single atom form at low irradiation doses.
실험예 2. 에너지 분산형 분광법 (EDS) 및 주사투과전자현미경 (STEM) 분석 Experimental Example 2. Energy dispersive spectroscopy (EDS) and scanning transmission electron microscopy (STEM) analysis
에너지 분산형 분광법 (Energy dispersive spectroscopy, EDS)을 이용하여 상기 실시예에서 제조한 단원자 촉매를 구성하고 있는 원소를 분석하여 도 4에 나타내었다.The elements constituting the monoatomic catalyst prepared in the above example were analyzed using energy dispersive spectroscopy (EDS), and are shown in FIG. 4.
도 4는 본 발명의 일 실시예 따라 제조된 금속 단원자 촉매의 에너지 분사형 X-선 분광법 (EDS) 을 이용한 원소 정성분석 결과 이미지이다. 이를 살펴보면 실시예와 같이 제작된 촉매 내에 니켈, 산소, 코발트가 분포하고 있는 것을 알 수 있다. 또한 코발트 원자의 경우, 서로 응집되지 않고, NiO 담지체 내 고르게 분포하고 있음을 알 수 있다.Figure 4 is an image of the results of qualitative elemental analysis using energy dispersion X-ray spectroscopy (EDS) of a metal monoatomic catalyst prepared according to an embodiment of the present invention. Looking at this, it can be seen that nickel, oxygen, and cobalt are distributed in the catalyst manufactured as in the example. In addition, it can be seen that cobalt atoms do not aggregate with each other and are evenly distributed within the NiO support.
한편, 도 5 및 도 6은 각각 본 발명의 실시예 및 비교예 2에 따라 제조된 금속 단원자 촉매의 EDS를 이용한 원소 정량분석 결과이다. 제조된 촉매 내에 전도성 기판에서 Ti 담지체로부터 Ni, O 및 금속 단원자에 해당하는 Co 원소가 존재함을 확인할 수 있다. 도 5을 살펴보면, 본 발명의 실시예에 따라 제조된 촉매에 대해 Co의 조성은 1.68 at% 이다. 이에 비해, 도 6를 살펴보면 비교예 2의 EDS 분석 결과, Co가 12.98 at%으로, 상당량 존재함을 알 수 있다. 이는 실시예에서의 코발트가 단원자 형태로 존재하므로 금속 사용량을 확연히 감소시킬 수 있음을 알 수 있는 분석이다.Meanwhile, Figures 5 and 6 show the results of elemental quantitative analysis using EDS of the metal single-atom catalyst prepared according to Example and Comparative Example 2 of the present invention, respectively. It can be confirmed that Ni, O, and Co elements corresponding to metal single atoms are present from the Ti support on the conductive substrate in the prepared catalyst. Looking at Figure 5, the composition of Co in the catalyst prepared according to an example of the present invention is 1.68 at%. In comparison, looking at FIG. 6, the EDS analysis results of Comparative Example 2 show that Co is present in a significant amount, at 12.98 at%. This is an analysis showing that since cobalt in the example exists in a single atomic form, the amount of metal used can be significantly reduced.
도 7a는 표면처리를 하지 않은 카본 담지체에 코발트 단원자 형성과정을 적용한 시료의 주사투과전자현미경 (Scanning Transmission Electron Microscopy, STEM) 이미지이다. 관찰결과, 조사된 Co 금속 입자의 입도 분포가 원자 수준으로 분포하고 있음을 알 수 있다. 즉, 1015/cm2 이하의 조사선량으로 Co 금속을 주입한 경우, Co 금속 원자가 어떠한 나노입자 형태로 뭉치지 않고, 단원자 형태로 분포하고 있음을 알 수 있다. 반면 도 7b에서 보이듯이, 이온주입법 과정에서 적정 조사량 이상인 1015/cm2 이상의 조사선량으로 Co 금속이 주입된 경우, Co 금속 입자가 서로 응집된 나노 클러스터 형태로 존재하고 있음을 알 수 있다. 따라서 이온 주입법의 조사선량 조절을 통해 조사된 Co 금속 입자의 입도 분포가 원자 수준으로 분포하고 있음을 직접적으로 증명하였다.Figure 7a is a scanning transmission electron microscopy (STEM) image of a sample in which the cobalt single atom formation process was applied to a carbon carrier without surface treatment. As a result of observation, it can be seen that the particle size distribution of the irradiated Co metal particles is distributed at the atomic level. That is, when Co metal is injected at an irradiation dose of 10 15 /cm 2 or less, it can be seen that Co metal atoms do not aggregate into any nanoparticles, but are distributed in the form of single atoms. On the other hand, as shown in FIG. 7b, when Co metal was injected during the ion implantation process at an irradiation dose of 10 15 /cm 2 or more, which is more than the appropriate irradiation dose, it can be seen that the Co metal particles exist in the form of nanoclusters aggregated together. Therefore, it was directly proven that the particle size distribution of the irradiated Co metal particles was distributed at the atomic level through the irradiation dose control of the ion implantation method.
실험예 3. 엑스-선 흡수분광 분석 Experimental Example 3. X-ray absorption spectroscopy analysis
실시예의 시료에서 NiO 담지체 상에 존재하는 Co 금속 입자의 배위 결합 구조를 확인하기 위해 방사광 가속기 기반 흡수분광 분석을 진행하였다.Synchrotron accelerator-based absorption spectroscopy analysis was performed to confirm the coordination structure of Co metal particles present on the NiO support in the samples of the examples.
도 8a는 Co K edge의 XANES(X-ray absorption near edge structure) 분석 결과이며, 도 8b는 Co K edge EXAFS(Extended X-ray absorption fine structure) 결과의 동경분포 스펙트라(Radial distribution spectra)이다. 도 8a를 보면 Co foil에 비해 실시예의 Co 단원자가 더 높은 백선 강도 (white line intensity)를 가지므로, Co 단원자가 금속 Co foil에 비해 비교적 높은 산화수를 가짐을 알 수 있다. 도 8b의 R-space 분석을 통해, Co foil에서와 달리, 실시예의 경우 Co 금속 원자 간의 결합에 해당하는 2.15 옹스트론 부근 Co-Co peak이 관찰되지 않고, 2.56 옹스트론 부근 Co-Ni 및 1.62 옹스트론 부근 Co-O 결합이 관찰되는 것으로 보아, 주입된 Co 금속 원자 간 서로 응집되지 않고, NiO 담지체 내 원소와 결합한 형태로 Co 단원자가 형성되는 것으로 판단된다.Figure 8a is a result of XANES (X-ray absorption near edge structure) analysis of Co K edge, and Figure 8b is a radial distribution spectra of Co K edge EXAFS (extended X-ray absorption fine structure) result. Looking at FIG. 8A, it can be seen that the Co single atoms of the example have a higher white line intensity compared to the Co foil, and thus the Co single atoms have a relatively higher oxidation number than the metal Co foil. Through the R-space analysis of FIG. 8b, unlike in the Co foil, in the example, the Co-Co peak around 2.15 angstroms corresponding to the bond between Co metal atoms was not observed, and Co-Ni around 2.56 angstroms and 1.62 angs. Considering that the Co-O bond near the tron is observed, it is believed that the injected Co metal atoms do not aggregate with each other, but that Co single atoms are formed in a form combined with elements in the NiO support.
이온 주입에 따른 담지체의 결함, 상 등 국부적인 배위 결합 구조 변화 등을 분석하기 위해 Ni K edge XANES spectrum을 분석한 결과, 도 9a에서 보여지듯이 Co 이온빔 조사선량이 증가할수록 Ni K edge peak의 intensity가 감소하고, edge position이 낮은 energy로 shift됨이 관찰되며, 이는 담지체와 Co 금속종의 상호작용에 따라 Ni의 전자 밀도가 증가하는 것으로 확인된다. 도 9b에서 Co K edge EXAFS 결과의 동경분포 스펙트라를 살펴보면, Co 금속종의 조사선량이 증가할수록 Ni-Ni 결합 길이가 감소하는 것으로 보여지며, 이를 통해 Co 금속종의 조사에 따라 NiO 담지체 내 strain이 유도되는 것으로 관찰된다. 이는 높은 가속에너지로 인한 NiO 담지체 내 부분적 결합 파괴 및 NiO 담지체와 Co 단원자 간의 상호작용으로 인한 결합 구조의 변화로 판단된다. 따라서 이온 주입법의 조사선량을 조절해 조사된 이온의 분포, 담지체 내 상, 결함 등을 제어할 수 있다.As a result of analyzing the Ni K edge It is observed that decreases and the edge position shifts to low energy, which confirms that the electron density of Ni increases due to the interaction between the carrier and the Co metal species. Looking at the diameter distribution spectrum of the Co K edge EXAFS result in Figure 9b, it appears that the Ni-Ni bond length decreases as the irradiation dose of the Co metal species increases, and through this, the strain in the NiO carrier increases depending on the irradiation of the Co metal species. It is observed that this is induced. This is believed to be a change in the bond structure due to partial bond destruction within the NiO support due to high acceleration energy and interaction between the NiO support and Co single atoms. Therefore, by adjusting the irradiation dose of the ion implantation method, the distribution of irradiated ions, the phase within the carrier, and defects can be controlled.
실험예 4. 수소발생 반응 성능 분석Experimental Example 4. Hydrogen generation reaction performance analysis
상기 실시예 및 비교예 1, 2에서 제조된 시료를 전기화학적 수소발생반응용 촉매 전극으로 적용하여 1.0 M KOH 에서 수소발생반응 (Hydrogen Evolution Reaction, HER) 성능을 분석하였다. 그 결과는 도 10에 HER 분극곡선으로 나타내었다. 도 10을 참조하면 비교예 1에 대비해 비교예 2 및 실시예의 경우 동일 전류 밀도를 달성하는데 필요한 과전압이 감소하는 경향을 보이며, 이는 이온 주입법에 따라 담지체 내 Co 금속 입자의 주입 및 상, 결함 생성 등을 통해 수소발생 활성이 증가하는 것으로 유추된다. 또한, 이온 주입법의 조사선량이 감소할수록 촉매 활성이 증가하며, 이는 조사선량이 감소할수록 담지체 내 분산되어 있는 Co 금속 활성 입자의 분포 형태가 sub-nano~원자 수준으로 감소하여 원자 활용도가 증가해 촉매 성능을 향상시킨 것으로 판단된다. 특히 실시예에 따라 제조된 Co 단원자 촉매 전극의 경우, 전류 밀도 10 mA cm-2 에서 223 mV의 과전압을 보이며, 주입된 Co 단원자의 효과로 인해 기존 NiO 담지체 촉매 전극 대비 수소 생산효율이 2배 이상 월등히 향상됨을 알 수 있다. The samples prepared in Example and Comparative Examples 1 and 2 were applied as catalyst electrodes for electrochemical hydrogen evolution reaction and the hydrogen evolution reaction (HER) performance was analyzed in 1.0 M KOH. The results are shown in the HER polarization curve in Figure 10. Referring to FIG. 10, compared to Comparative Example 1, the overvoltage required to achieve the same current density tends to decrease in Comparative Example 2 and Example 1, which is due to the injection of Co metal particles in the support and the creation of phases and defects according to the ion implantation method. It is inferred that hydrogen generation activity increases. In addition, as the irradiation dose of the ion implantation method decreases, the catalytic activity increases. This means that as the irradiation dose decreases, the distribution form of the Co metal active particles dispersed in the carrier decreases to the sub-nano ~ atomic level, thereby increasing atomic utilization. It is believed that catalyst performance has been improved. In particular, the Co single atom catalyst electrode manufactured according to the example shows an overvoltage of 223 mV at a current density of 10 mA cm -2 , and the hydrogen production efficiency is 2% compared to the existing NiO supported catalyst electrode due to the effect of the injected Co single atom. It can be seen that the improvement is significantly more than twofold.
도 11에서와 같이 이온 주입법으로 합성된 Co 단원자 촉매 전극 시스템의 내구성을 평가하기 위해 Cyclic voltammetry(CV) 전-/후- Linear sweep voltammetry 및 장시간 Chronopotentiometry 등의 전기화학 분석을 수행하였다. 도 11에서와 같이 CV 3000 cycles 전, 후 및 30 시간 이상의 장시간 수소발생반응 하에서도 촉매 활성이 저하되지 않는 것으로 보아, 이온 주입법을 통해 우수한 내구성을 갖는 단원자 촉매 전극이 구현됨을 알 수 있다.As shown in Figure 11, electrochemical analyzes such as linear sweep voltammetry and long-term chronopotentiometry before and after cyclic voltammetry (CV) were performed to evaluate the durability of the Co single-atom catalyst electrode system synthesized by ion implantation. As shown in Figure 11, the catalyst activity does not deteriorate even before and after CV 3000 cycles and under a long-term hydrogen generation reaction of more than 30 hours, indicating that a monoatomic catalyst electrode with excellent durability is realized through the ion implantation method.
실험예 5. 다양한 금속의 단원자 촉매 분석Experimental Example 5. Analysis of single-atom catalysts of various metals
상기 이온주입법은 물질 선택성이 제약적인 기존의 방법과 달리, 주기율표상 대다수 원소를 조사 가능하여 대부분의 금속 종류 및 담지체의 종류에 상관없이 공통적으로 적용 가능하다. 이러한 장점을 활용하여 실시예와 동일하게 실시하되, 카본 담지체에 1015/cm2 이하의 조사선량으로 각각 Fe, Ni 및 Cu 금속이 주입된 시료를 제작하였다. 도 12a, 도 12 b, 도 12 c는 표면처리를 하지 않은 카본 담지체에 각각 Fe, Ni 및 Cu 금속의 단원자 형성 과정을 적용한 시료의 주사투과전자현미경 (STEM) 이미지이다. 1015/cm2 이하의 조사선량으로 Fe, Ni 및 Cu 금속을 주입한 경우, 금속의 종류에 관계없이, 금속 원자가 어떠한 나노입자 형태로 뭉치지 않고, 단원자 형태로 분포하고 있음을 알 수 있다. 따라서 이온 주입법을 통해 다양한 금속 원소로 이루어진 단원자 촉매를 제작할 수 있음을 직접적으로 증명하였다.Unlike existing methods that have limited material selectivity, the ion implantation method can investigate most elements in the periodic table and can be commonly applied regardless of most types of metals and types of carriers. Taking advantage of these advantages, the same procedure as in the example was performed, but samples were produced in which Fe, Ni, and Cu metals were injected into the carbon carrier at an irradiation dose of 10 15 /cm 2 or less. Figures 12a, 12b, and 12c are scanning transmission electron microscope (STEM) images of samples obtained by applying the single atom formation process of Fe, Ni, and Cu metals to a carbon support without surface treatment, respectively. When Fe, Ni, and Cu metals are injected at an irradiation dose of 10 15 /cm 2 or less, it can be seen that regardless of the type of metal, the metal atoms do not aggregate into any nanoparticles but are distributed in the form of single atoms. Therefore, it was directly demonstrated that monoatomic catalysts made of various metal elements can be produced through ion implantation.
도 12d은 실시예와 동일하게 실시하되, 1015/cm2 이하의 조사선량으로 각각 Fe, Ni 및 Cu 금속이 NiO 담지체에 주입된 시료를 전기화학적 수소발생반응용 촉매 전극으로 적용하여 1.0 M KOH 에서 수소발생반응 (Hydrogen Evolution Reaction, HER) 성능을 분석하였다. 도 12d를 참조하면 비교예 1에 대비해 Fe, Ni 및 Cu 금속이 NiO 담지체에 주입된 시료의 경우, 동일 전류 밀도를 달성하는데 필요한 과전압이 감소하는 경향을 보이며, 이는 이온 주입법에 따라 담지체 내 각각 원자 수준으로 형성된 Fe, Ni 및 Cu 단원자 효과로 인해 기존 NiO 담지체 촉매 전극 대비 수소 생산효율을 향상시킨 결과이다.Figure 12d is the same as the example, except that the sample in which Fe, Ni, and Cu metals were injected into the NiO support at an irradiation dose of 10 15 /cm 2 or less was applied as a catalyst electrode for electrochemical hydrogen generation reaction at 1.0 M. Hydrogen Evolution Reaction (HER) performance was analyzed in KOH. Referring to Figure 12d, compared to Comparative Example 1, in the case of the sample in which Fe, Ni, and Cu metals were implanted into the NiO support, the overvoltage required to achieve the same current density tended to decrease, which was achieved by ion implantation within the support. This is the result of improved hydrogen production efficiency compared to the existing NiO supported catalyst electrode due to the single atom effect of Fe, Ni, and Cu each formed at the atomic level.
상기 전술한 실시예 및 비교예는 본 발명의 이해를 돕기 위한 일 예에 불과한 것으로 이에 의해 본 발명의 권리범위가 축소되거나 한정되는 것은 아니다. The above-mentioned examples and comparative examples are merely examples to aid understanding of the present invention, and the scope of the present invention is not reduced or limited thereby.
본 발명의 제조방법에 따르면, 기존 방법에 비해 다양한 준안정 상태의 단원자 촉매를 담지체에 직접 주입 및 형성할 수 있어서, 균일 분포 및 높은 담지량을 갖는 단원자 촉매 구현이 가능하다. 또한, 추가 공정이 불필요하고 공정이 단순하며, 저렴한 비용으로 단원자 촉매를 제조할 수 있다. 특정 물질에 대한 의존성이 높고, 물질 선택성이 제약적인 기존의 합성 방법과 달리, 대부분의 금속 종류 및 담지체의 종류에 상관없이 공통적으로 적용 가능하여 각종 전이금속 단원자 촉매를 합성할 수 있고, 수전해, 이산화탄소 환원 등 이를 광범위하게 활용할 수 있다는 측면에서 매우 유리하다. 이러한 전이금속 단원자 촉매는 예컨대, 수소발생 반응용 촉매, 산소발생 반응용 촉매, 수소 산화 반응용 촉매, 산소환원 반응용 촉매, 이산화탄소 환원용 촉매, 암모니아 환원용 촉매 및 연료전지 전극용 촉매 중 어느 하나로 사용될 수 있다. According to the production method of the present invention, compared to existing methods, monoatomic catalysts in various metastable states can be directly injected and formed on a support, making it possible to implement a monoatomic catalyst with uniform distribution and high supported amount. In addition, no additional processes are required, the process is simple, and a single-atom catalyst can be manufactured at a low cost. Unlike existing synthesis methods that are highly dependent on specific substances and have limited substance selectivity, they are commonly applicable regardless of most types of metals and types of supports, allowing the synthesis of various transition metal monoatomic catalysts. It is very advantageous in that it can be used widely, such as reducing carbon dioxide and reducing carbon dioxide. These transition metal monoatomic catalysts include, for example, any one of a catalyst for a hydrogen evolution reaction, a catalyst for an oxygen evolution reaction, a catalyst for a hydrogen oxidation reaction, a catalyst for an oxygen reduction reaction, a catalyst for carbon dioxide reduction, a catalyst for ammonia reduction, and a catalyst for fuel cell electrodes. It can be used as one.
또한, 본 발명의 제조방법에 따르면, 대부분의 금속 원자가 모두 반응에 참여하기 때문에 원자 이용률이 높고, 촉매 사용량을 확연히 낮출 수 있어 경제적이다. 표면원자의 활용도가 높고, 단일 형태의 촉매 활성점이 존재하므로 연료 변환 효율과 연료 선택성을 극대화시킬 수 있다. In addition, according to the production method of the present invention, since most metal atoms participate in the reaction, the atomic utilization rate is high and the amount of catalyst used can be significantly reduced, making it economical. Because surface atoms are highly utilized and a single type of catalytic active site exists, fuel conversion efficiency and fuel selectivity can be maximized.
Claims (9)
- (a) 담지체를 제작하기 위한 준비 단계; 및 (a) Preparation steps for producing a carrier; and(b) 상기 단계 (a)의 결과물을 이온 주입법을 위한 장비를 사용, 금속 원소를 이온화한 후 물리적인 에너지로 가속하여 담지체 표면 상에 이온을 주입하여 전이금속 단원자를 형성하는 단계;(b) ionizing the result of step (a) using equipment for ion implantation and then accelerating it with physical energy to inject the ions onto the surface of the carrier to form transition metal monoatoms;를 포함하는 전이금속 단원자 촉매의 제조방법.Method for producing a transition metal monoatomic catalyst comprising.
- 제1항에 있어서, According to paragraph 1,상기 전이금속 단원자는 Co, Ni, Fe, Cu, Ti, Cr, Ag, Au, Ir, Ru, Pd, Pt, Al, Cd, Bi, Rh, Mg, Mo, Mn, Sn, Zn, In, Ta, Nb, Pb, V, W 및 Zr 중 적어도 하나를 포함하는 전이금속 원소를 포함하는,The transition metal monoatoms include Co, Ni, Fe, Cu, Ti, Cr, Ag, Au, Ir, Ru, Pd, Pt, Al, Cd, Bi, Rh, Mg, Mo, Mn, Sn, Zn, In, Ta. Containing a transition metal element including at least one of Nb, Pb, V, W and Zr,전이금속 단원자 촉매의 제조방법.Method for producing transition metal monoatomic catalyst.
- 제1항에 있어서, According to paragraph 1,상기 담지체는 NiO, Cu2O, WO3, TiO2, Fe2O3, SnO2, BiVO4, ITO 또는 SiO2를 포함하는 전이금속 산화물을 포함하는,The carrier includes a transition metal oxide including NiO, Cu 2 O, WO 3 , TiO 2 , Fe 2 O 3, SnO 2 , BiVO 4 , ITO or SiO 2 ,전이금속 기반 단원자 촉매의 제조방법.Method for producing transition metal-based monoatomic catalyst.
- 제1항에 있어서, According to paragraph 1,상기 담지체는 그래핀, rGO (reduced graphene oxide), 탄소나노튜브 또는 카본 블랙을 포함하는 탄소계 물질을 포함하는,The carrier includes a carbon-based material including graphene, reduced graphene oxide (rGO), carbon nanotubes, or carbon black.전이금속 기반 단원자 촉매의 제조방법.Method for producing transition metal-based monoatomic catalyst.
- 제1항에 있어서, According to paragraph 1,상기 담지체는 그래핀, 육방정계 붕화질소, 전이금속 칼코겐 화합물 또는 맥신을 포함하는 2차원 물질을 포함하는,The carrier includes a two-dimensional material including graphene, hexagonal nitrogen boride, transition metal chalcogen compound, or MXene.전이금속 기반 단원자 촉매의 제조방법.Method for producing transition metal-based monoatomic catalyst.
- 제1항에 있어서, According to paragraph 1,상기 담지체를 제작하기 위한 준비 단계는 전자빔 증착법, 열 증착법, 화학 증착법, 스퍼터링 증착법, 화염 기상 합성법, 수열 합성법, 드롭 캐스팅법, 전착법, 광 담지법, 아노다이징 및 독터 블레이드 법 중 적어도 어느 하나에 의하여 수행되는,The preparation step for producing the support includes at least one of electron beam deposition, thermal evaporation, chemical vapor deposition, sputtering deposition, flame vapor synthesis, hydrothermal synthesis, drop casting, electrodeposition, light support, anodizing, and doctor blade method. performed by,전이금속 단원자 촉매의 제조방법.Method for producing transition metal monoatomic catalyst.
- 제 1항에 있어서, According to clause 1,상기 담지체의 구조는 벌크 박막 또는 나노 파티클(nano particle), 나노 클러스터(nano cluster), 나노 점(nano dot), 나노 막대(nano rod), 나노 와이어(nano wire), 지그재그 나노 막대(zigzag nano rod), 나노 헬릭스(nano helix), 나노 스프링(nano spring), 나노 시트(nano sheet), 나노 플라워(nano flower), 나노 리본 (nano ribbon), 나노 콘 (nano cone), 스펀지, 폼(foam) 중 적어도 어느 하나의 구조를 포함하는, The structure of the carrier is a bulk thin film or nano particle, nano cluster, nano dot, nano rod, nano wire, zigzag nano rod. rod, nano helix, nano spring, nano sheet, nano flower, nano ribbon, nano cone, sponge, foam ) Containing at least one of the structures,전이금속 단원자 촉매의 제조방법. Method for producing transition metal monoatomic catalyst.
- 제1항에 있어서, According to paragraph 1,상기 담지체는 금속 기판, 투명 전도성 산화물 기판, 실리콘과 같은 반도체 기판, 유리와 사파이어 같은 부도체 기판 중 적어도 어느 하나 상에 형성되는, The carrier is formed on at least one of a metal substrate, a transparent conductive oxide substrate, a semiconductor substrate such as silicon, and an inconductor substrate such as glass and sapphire.전이금속 단원자 촉매의 제조방법.Method for producing transition metal monoatomic catalyst.
- 제1항에 있어서, According to paragraph 1,상기 전이금속 단원자 촉매는 수소발생 반응용 촉매, 산소발생 반응용 촉매, 수소 산화 반응용 촉매, 산소환원 반응용 촉매, 이산화탄소 환원용 촉매, 암모니아 환원용 촉매 및 연료전지 전극용 촉매 중 어느 하나로 사용되는,The transition metal monoatomic catalyst is used as any one of a hydrogen generation reaction catalyst, an oxygen generation reaction catalyst, a hydrogen oxidation reaction catalyst, an oxygen reduction reaction catalyst, a carbon dioxide reduction catalyst, ammonia reduction catalyst, and a fuel cell electrode catalyst. felled,전이금속 단원자 촉매의 제조방법.Method for producing transition metal monoatomic catalyst.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20220155525 | 2022-11-18 | ||
KR10-2022-0155525 | 2022-11-18 | ||
KR1020230146848A KR20240073760A (en) | 2022-11-18 | 2023-10-30 | Method of synthesizing transition metal based single atom catalysts using ion beam irradiation |
KR10-2023-0146848 | 2023-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024106977A1 true WO2024106977A1 (en) | 2024-05-23 |
Family
ID=91084947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/018466 WO2024106977A1 (en) | 2022-11-18 | 2023-11-16 | Method for producing transition metal-based monoatomic catalyst using ion implantation method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024106977A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101113632B1 (en) * | 2009-10-29 | 2012-03-13 | 서울대학교산학협력단 | Synthesis methods of Nano-sized transition metal catalyst on a Carbon support |
KR20120126339A (en) * | 2011-05-11 | 2012-11-21 | 한국과학기술연구원 | Method of fabrication for nano particle complex catalyst by plasma ion implantation and Device for the method |
JP2017127863A (en) * | 2016-01-20 | 2017-07-27 | 国立大学法人 筑波大学 | Oxygen reduction catalyst, activation method of the same, and fuel cell catalyst |
KR20200116246A (en) * | 2019-04-01 | 2020-10-12 | 포항공과대학교 산학협력단 | Method of synthesizing transition metal single-atom catalysts |
KR102321245B1 (en) * | 2020-03-31 | 2021-11-03 | 한국과학기술연구원 | Manufacturing method of carbon composite co-doped with bimetallic transition metal and nitrogen and use thereof |
-
2023
- 2023-11-16 WO PCT/KR2023/018466 patent/WO2024106977A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101113632B1 (en) * | 2009-10-29 | 2012-03-13 | 서울대학교산학협력단 | Synthesis methods of Nano-sized transition metal catalyst on a Carbon support |
KR20120126339A (en) * | 2011-05-11 | 2012-11-21 | 한국과학기술연구원 | Method of fabrication for nano particle complex catalyst by plasma ion implantation and Device for the method |
JP2017127863A (en) * | 2016-01-20 | 2017-07-27 | 国立大学法人 筑波大学 | Oxygen reduction catalyst, activation method of the same, and fuel cell catalyst |
KR20200116246A (en) * | 2019-04-01 | 2020-10-12 | 포항공과대학교 산학협력단 | Method of synthesizing transition metal single-atom catalysts |
KR102321245B1 (en) * | 2020-03-31 | 2021-11-03 | 한국과학기술연구원 | Manufacturing method of carbon composite co-doped with bimetallic transition metal and nitrogen and use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery | |
US9005816B2 (en) | Coating of porous carbon for use in lithium air batteries | |
US7855021B2 (en) | Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof | |
CN1240612C (en) | Carbon nanometer for fuel battery, its preparing method and fuel battery therewith | |
US8541146B2 (en) | Photocatalytic methods for preparation of electrocatalyst materials | |
US20050053826A1 (en) | Low platinum fuel cell catalysts and method for preparing the same | |
Xiang et al. | Tuning interfacial structures for better catalysis of water electrolysis | |
US20100004121A1 (en) | Short carbon nanotube for catalyst support, method of preparing the same, catalyst impregnated carbon nanotube using the same, and fuel cell using the catalyst impregnated carbon nanotube | |
US20050112450A1 (en) | Low platinum fuel cell catalysts and method for preparing the same | |
US20130150235A1 (en) | Method for manufacturing core-shell type supported catalysts and core-shell type supported catalysts formed thereby | |
US11552303B2 (en) | Methods, catalysts, and supports for electrochemical devices | |
US7097933B2 (en) | Catalyst for fuel cell oxygen electrodes | |
CN111871427B (en) | Precious metal/molybdenum-nickel composite material and preparation method and application thereof | |
KR20210064782A (en) | Method of manufacturing metal single-atom catalysts | |
KR20060080727A (en) | Pt/ru alloy catalyst for fuel cell | |
Chu et al. | Modulating dominant facets of Pt through multistep selective anchored on WC for enhanced hydrogen evolution catalysis | |
CN1976101A (en) | Method for producing carbon-carrying platinum-based alloy electrode | |
WO2024106977A1 (en) | Method for producing transition metal-based monoatomic catalyst using ion implantation method | |
Wu | Transition metal selenides for oxygen evolution reaction | |
KR20240073760A (en) | Method of synthesizing transition metal based single atom catalysts using ion beam irradiation | |
Chakraborty et al. | Photo-electrocatalytic methanol oxidation on Pd decorated BiOI nanoparticles in alkali | |
Liu et al. | NiFeCo–OH/NiTe nanoarrays with amorphous/crystalline interfaces for highly efficient oxygen evolution reaction | |
Guo et al. | oxygen electrocatalysts based on various modulation strategies for rechargeable Li-O2 batteries | |
US20150024289A1 (en) | HIERARCHICAL METAL/TiSi2 NANOSTRUCTURE MATERIALS AND METHOD OF PREPARATION THEREOF | |
Kang et al. | A trinary support of Ni/NiO/C to immobilize Ir nanoclusters for alkaline hydrogen oxidation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23892040 Country of ref document: EP Kind code of ref document: A1 |