WO2024106665A1 - Dc community power bidding and trading system - Google Patents

Dc community power bidding and trading system Download PDF

Info

Publication number
WO2024106665A1
WO2024106665A1 PCT/KR2023/009184 KR2023009184W WO2024106665A1 WO 2024106665 A1 WO2024106665 A1 WO 2024106665A1 KR 2023009184 W KR2023009184 W KR 2023009184W WO 2024106665 A1 WO2024106665 A1 WO 2024106665A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
bidding
control unit
community
energy storage
Prior art date
Application number
PCT/KR2023/009184
Other languages
French (fr)
Korean (ko)
Inventor
김창수
최상봉
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2024106665A1 publication Critical patent/WO2024106665A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/08Auctions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • An embodiment of the present disclosure relates to a power bidding and trading system. Specifically, power suppliers and power users connected to the DC distribution network are organized into one DC community, and efficient power use is achieved through power trading between neighbors within the DC community. It relates to a DC community power bidding and trading system that can promote.
  • PV Photovoltaics
  • the embodiment of the present disclosure seeks to provide a DC community power bidding and trading system that can increase power use efficiency through special power trading between prosumers by linking solar power generators, ESS, electric vehicle chargers, etc. within the DC community.
  • An embodiment of the present disclosure seeks to provide a DC community power bidding and trading system that can provide reliability to power trading within the community despite the power volatility of solar power generators.
  • the embodiment of the present disclosure seeks to provide a DC community power bidding trading system in which DC community participants can achieve mutual win-win in terms of economic efficiency.
  • the DC community power bidding and trading system includes a DC distribution network, a power bidding and trading control unit, and the like.
  • a DC distribution network can connect one or more electric vehicle charging stations, one or more buildings equipped with solar generators, and one or more energy storage devices.
  • the power bidding and transaction control department can preferentially allocate power produced by solar power generators to buildings where solar power generators are installed.
  • the power bidding and trading control unit may preferentially allocate stored power of the energy storage device to the electric vehicle charging station.
  • the power bidding and trading control unit may set the price of power supplied by the energy storage device to the electric vehicle charging station at a single price.
  • the power bidding and trading control unit first allocates power produced by the solar power generator to the building where the solar power generator is installed, and if there is any power remaining, the remaining power is transferred to the energy storage device as the bid power amount. It can be allocated proportionally.
  • the power bidding and trading control unit first allocates the power produced by the solar power generator to the building where the solar power generator is installed, and if there is any power remaining, the remaining power is distributed to other buildings and energy storage devices. It can be allocated in proportion to the amount of electricity bid.
  • the power bidding and trading control unit schedules the same-day power trading through bidding a day in advance, and when a power trading supply and demand imbalance occurs on the same day, the supply and demand imbalance is corrected through an energy storage device. It can be adjusted.
  • the power bidding and trading control unit may limit the bidding power amount of buildings and electric vehicle charging stations to be lower than the amount of power used the day before the bidding by a set percentage.
  • the power bidding and trading control unit may control power trading scheduling and power supply and demand one day in advance by unit transaction time.
  • the power bidding and trading control unit connects the energy storage device to the external distribution network, and when a supply and demand imbalance occurs in the DC distribution network, the energy storage device receives external power from the external distribution network. It can be received, converted to DC power, and then supplied to the DC distribution grid.
  • the power bidding and trading control unit may set the bidding price of the DC distribution network lower than the external price of the external distribution network.
  • the power bidding and trading control unit may set the bidding price of the DC distribution network to a single price.
  • the power bidding and trading control unit connects the building to an external distribution network and can supply external power to the building from the external distribution network when an imbalance in power supply and demand occurs in the building.
  • the efficiency of power use can be greatly increased by converting power transactions between prosumers within the DC community to a preferential allocation method in consideration of the characteristics of the DC community.
  • the energy storage device can further increase the reliability of power trading in the DC community by adjusting the imbalance in power supply and demand.
  • FIG. 1 is a configuration diagram of a DC community power bidding and trading system according to an embodiment of the present disclosure.
  • Figure 2 illustrates a method of pre-scheduling power trading in a DC community power bidding and trading system according to an embodiment of the present disclosure.
  • Figure 3 illustrates power trading optimization through an energy storage device in a method of pre-scheduling power trading using a DC community power bidding trading system according to an embodiment of the present disclosure.
  • Figure 4 illustrates a method of adjusting supply and demand imbalance in the process of executing power trading in the DC community power bidding and trading system according to an embodiment of the present disclosure.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, sequence, order, or number of the components are not limited by the term.
  • temporal precedence relationships such as “after”, “after”, “after”, “before”, etc.
  • temporal precedence relationships such as “after”, “after”, “after”, “before”, etc.
  • non-continuous cases may be included unless “immediately” or “directly” is used.
  • FIG. 1 is a configuration diagram of a DC community power bidding and trading system according to an embodiment of the present disclosure.
  • the DC community power bidding and trading system may include a DC distribution network 100, an external distribution network 200, and a power bidding and trading control unit 300.
  • the DC distribution network 100 consists of a certain area as a DC community and connected to a DC network, including one or more buildings (B1 to B3) equipped with solar power generators (PV1 to PV3), and buildings without solar power generators. (B4), one or more electric vehicle charging stations (EV1, EV2), one or more energy storage devices (ESS1, ESS2), etc. can be connected.
  • Solar power generators (PV1 ⁇ PV3) are installed on the rooftops of buildings (B1 ⁇ B3) to produce DC power. They can be used by connecting multiple panel-type modules with multiple solar cells to form an array. You can.
  • Solar power generators can selectively supply produced power to buildings (B1 to B4), electric vehicle charging stations (EV1 and EV2), energy storage devices (ESS1 and ESS2), etc., but in the embodiment of the present disclosure, power is used.
  • power is first supplied to buildings (B1 to B3) where solar power generators (PV1 to PV3) are installed, and if power remains, it is first supplied to energy storage devices (ESS1, ESS2), or other buildings and energy storage devices. It can be allocated and supplied to (ESS1, ESS2) according to a certain ratio.
  • the electric vehicle charging station charges DC power to the electric vehicle and can receive electricity from solar power generators (PV1 to PV3), energy storage devices (ESS1, ESS2), etc. within the DC distribution network 100.
  • EV1, EV2 charges DC power to the electric vehicle and can receive electricity from solar power generators (PV1 to PV3), energy storage devices (ESS1, ESS2), etc. within the DC distribution network 100.
  • PV1 to PV3 solar power generators
  • ESS1, ESS2 energy storage devices
  • it in order to greatly increase the efficiency of power use, it can be configured to receive priority supply from the energy storage devices (ESS1 and ESS2).
  • Energy storage devices receive and store power from solar power generators (PV1 ⁇ PV3), external distribution networks (200), etc., and then store it when power is needed in buildings (B1 ⁇ B4), electric vehicle charging stations (EV1, EV2), etc. can be supplied when
  • Energy storage devices can be composed of a battery that stores electricity, a PCS (Power Conditioning System) that manages the battery, an EMS (Energy Management System), and a BMS (Battery Management System).
  • PCS Power Conditioning System
  • EMS Electronicgy Management System
  • BMS Battery Management System
  • the external distribution network 200 is selectively connected to the DC distribution network 100 to use external power, and may be an AC power grid such as the KEPCO distribution network or a DC power grid such as a neighboring DC distribution network (not shown).
  • the external distribution network 200 is connected to buildings (B1 to B4), energy storage devices (ESS1, ESS2), etc., and selectively AC It can supply electric power or DC power.
  • buildings B1 to B4
  • energy storage devices ESS1, ESS2
  • AC It can supply electric power or DC power.
  • the power bidding transaction control unit 300 receives bids for the required power from buildings (B1 to B4) and electric vehicle charging stations (EV1, EV2), and provides the required power to the buildings (B1 to B4) and electric vehicle charging stations (EV1, EV2) according to the allocation criteria. is allocated, and the allocated power can be supplied from solar power generators (PV1 ⁇ PV3) and energy storage devices (ESS1, ESS2).
  • PV1 ⁇ PV3 solar power generators
  • ESS1, ESS2 energy storage devices
  • the power bidding transaction control unit 300 may preferentially allocate power produced by solar power generators (PV1 to PV3) to buildings (B1 to B3) in which the solar power generators (PV1 to PV3) are installed.
  • the bidding conditions of buildings (B1 to B3) where solar power generators (PV1 to PV3) are installed i.e., required amount of electricity, electricity price, etc., may not be considered.
  • the power bidding transaction control unit 300 first allocates the solar power generators (PV1 to PV3) to the buildings (B1 to B3) installed, and if there is any remaining power, first allocates the remaining power to the energy storage devices (ESS1 and ESS2), or It can be allocated to other buildings and energy storage devices (ESS1, ESS2) according to allocation criteria.
  • the allocation standard can be allocated in proportion to the amount of bid power if the bid prices are the same (e.g., when the power price within the DC distribution network is set to a single price), and if the bid prices are considered together, the bid price is higher.
  • the amount of electricity bid can be allocated to the bidder first.
  • the power bidding transaction control unit 300 may allocate the remaining power to the electric vehicle charging stations (EV1 and EV2). Even in this case, the remaining power can be allocated according to predetermined allocation criteria.
  • the allocation criteria is proportional to the amount of bid power. If the bid prices are also considered, the bidder with the higher bid price can be allocated the amount of bid power first.
  • the power bidding transaction control unit 300 may preferentially allocate the stored power of the energy storage devices (ESS1 and ESS2) to the amount of bid power required by the electric vehicle charging stations (EV1 and EV2). In this case, the power bidding transaction control unit 300 bids all of the bid power to the electric vehicle charging stations (EV1 and EV2) at a single price, without considering the bidding conditions of the electric vehicle charging stations (EV1 and EV2), that is, the bid power amount and bid price. , or it can be allocated in proportion to the amount of electricity bid.
  • the power bidding transaction control unit 300 first allocates the stored power of the energy storage devices (ESS1 and ESS2) to the electric vehicle charging stations (EV1 and EV2) and, if there is any remaining power, bids the remaining power to the buildings (B1 to B4). That is, allocation can be made based on bid power amount, bid price, etc. As for allocation conditions, the required amount of power can be allocated first in the order of the highest bid price.
  • the power bidding transaction control unit 300 may schedule power trading on the same day (the day after the bidding date) through bidding one day in advance. During the bidding process, the power bidding transaction control unit 300 may limit the bidding power amount of buildings (B1 to B4) and electric vehicle charging stations (EV1, EV2) to be lower than the amount of power used the previous day by a set percentage (e.g., 10%). Through this, it is possible to prevent the daily power consumption of buildings (B1 to B4) or electric vehicle charging stations (EV1, EV2) from being less than the bid power amount.
  • a set percentage e.g. 10%
  • the power bidding transaction control unit 300 transfers the stored power of the energy storage devices (ESS1 and ESS2) to the buildings (B1 to B4) where the supply and demand imbalance occurred and the electric vehicle charging station (EV1 and EV2). ), the supply-demand imbalance (lack of required electricity) can be resolved by supplying in proportion to the amount of electricity bid.
  • the power bidding transaction control unit 300 may control the unit transaction time by setting the power transaction scheduling to a unit transaction time, for example, 5 minutes, 15 minutes, 30 minutes, 1 hour, etc.
  • the preferred unit transaction time can be set to 5 minutes.
  • the power bidding transaction control unit 300 connects the energy storage devices (ESS1 and ESS2) to an external distribution network 200 such as the KEPCO distribution network and an adjacent community distribution network, and when a supply and demand imbalance occurs in the DC distribution network 100, the External power can be received from the distribution network 200, converted to DC power in the energy storage devices ESS1 and ESS2, and then controlled to be supplied to the DC distribution network 100.
  • an external distribution network 200 such as the KEPCO distribution network and an adjacent community distribution network
  • the power bidding transaction control unit 300 may set the bid price (electricity price) of the DC distribution network 100 to be lower than the external price (electricity price) of the external distribution network 200, for example, at 90% of the external price. .
  • the power bidding transaction control unit 300 may set the bidding price of the DC distribution network 100 to a single price (90% of the external price).
  • the power bidding transaction control unit 300 connects the buildings (B1 to B4) with the external distribution network (200), and when an imbalance in power supply and demand occurs in the buildings (B1 to B4), external power is transmitted from the external distribution network (200) to the building (B1). It can be controlled to supply to ⁇ B4).
  • Figure 2 illustrates a method of pre-scheduling power trading in a DC community power bidding and trading system according to an embodiment of the present disclosure.
  • the method of pre-scheduling power trading in the DC community power bidding trading system first determines the power generation amount of participating solar power generators (PV1 to PV3) and the building (B1).
  • the load of ⁇ B4) and the load of electric vehicle charging stations (EV1, EV2) are predicted for 24 hours (generation amount, load) in unit transaction time, for example, in 5-minute increments, based on usage data the day before the bid or over a certain period of time. (S11).
  • step S12 solar power generators (PV1 to PV3) make sales bids in 5-minute increments based on the predicted power generation in step S11, and buildings (B1 to B4) make sales bids in 5-minute increments based on the predicted load in step S11.
  • Purchase bids are made in minutes, and electric vehicle charging stations (EV1 and EV2) execute purchase bids in 5-minute increments based on the predicted load in step S11.
  • EV1 and EV2 electric vehicle charging stations
  • step S13 the sales bid for solar power generators (PV1 to PV3) is assigned priority to the purchase bid for the building (B1 to B3) equipped with the solar power generator (PV1 to PV3) to execute a priority contract, and the electric vehicle
  • the purchase bid for the charging station (EV1, EV2) executes the contract first by supplying power to the energy storage device (ESS1, ESS2).
  • step S14 if there is a shortage of purchases of buildings (B1 to B4) and a surplus in sales of solar power generators (PV1 to PV3) and energy storage devices (ESS1, ESS2), in step S15 the energy storage device ( Optimize power trading supplied from ESS1, ESS2) to buildings (B1 ⁇ B4).
  • the sales surplus of solar power generators (PV1 ⁇ PV3) is first allocated in proportion to the purchase shortage of buildings (B1 ⁇ B4), and then energy storage devices (ESS1, ESS2) are added to buildings (B1 ⁇ B4). Additional allocations may be made for purchase shortfalls.
  • the sales price of the energy storage devices ESS1 and ESS2 may be set to 90% or less of the power price of the external distribution network 200.
  • the energy storage devices ESS1 and ESS2 can purchase external power from the external distribution network 200 at the point when the power price in the external distribution network 200 is lowest.
  • the external distribution network 200 is the KEPCO distribution network
  • the energy storage devices ESS1 and ESS2 can purchase and store late-night power at the lowest price through the KEPCO distribution network.
  • step S16 a supply contract is completed between the buildings (B1 to B4) and the energy storage devices (ESS1 and ESS2) based on the optimization transaction in step S15, and in the subsequent step (S17), all participants, i.e. solar
  • the transaction contract between photovoltaic generators (PV1 ⁇ PV3), buildings (B1 ⁇ B4), electric vehicle charging stations (EV1, EV2), and energy storage devices (ESS1, ESS2), that is, same-day power transaction scheduling, is completed in 5 minutes.
  • Figure 3 illustrates power trading optimization through an energy storage device in a method of pre-scheduling power trading using a DC community power bidding trading system according to an embodiment of the present disclosure.
  • step S23 when the purchase/sale bid in step S21 and the priority contract for buildings (B1 to B3) equipped with solar power generators (PV1 to PV3) in step S22 are made, step S23 ), the process of proportionally allocating the remaining power of solar power generators (PV1 to PV3) to the remaining purchases of buildings (B1 to B4) and energy storage devices (ESS1 and ESS2) can be carried out.
  • a purchase shortage (power shortage) or a sales surplus (power surplus) may occur.
  • the surplus power is sent to the energy storage devices (ESS1 and ESS2) for storage, and when a purchase shortage occurs, the stored power of the energy storage devices (ESS1 and ESS2) ( First allocate to electric vehicle charging stations (EV1, EV2) and the remaining stored power can be allocated in proportion to the purchase shortage of buildings (B1 to B4).
  • the lowest price (e.g., late-night power) is charged from an external distribution network (e.g., KEPCO distribution network, other DC distribution network, etc.). You can purchase and save more.
  • an external distribution network e.g., KEPCO distribution network, other DC distribution network, etc.
  • Figure 4 illustrates a method of adjusting supply and demand imbalance in the process of executing power trading in the DC community power bidding and trading system according to an embodiment of the present disclosure.
  • a supply and demand imbalance (transaction difference, that is, actual power use difference) may occur as in step S32.
  • the power supply and demand imbalance between the buildings (B1 to B4) and the electric vehicle charging stations (EV1 and EV2) can be adjusted using the stored power of the energy storage devices (ESS1 and ESS2). Therefore, in the embodiment of the present disclosure, it is desirable for the energy storage devices ESS1 and ESS2 to secure a level of stored power that can overcome the supply and demand imbalance error.
  • a penalty may be imposed on buildings (B1 to B4) and electric vehicle charging stations (EV1 and EV2) that cause power supply and demand imbalance beyond the error range.
  • the penalty may be a decrease in the power allocation ranking or a reduction in the amount of successful bid power by a certain ratio to the amount of bid power.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Finance (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Power Engineering (AREA)
  • General Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A DC community power bidding and trading system comprises a DC distribution network and a power bidding and trading control unit. The DC distribution network connects one or more electric vehicle charging stations, one or more buildings having solar power generators, and one or more energy storage devices. The power bidding and trading control unit preferentially allocates power produced by the solar power generators to the buildings in which the solar power generators are installed. In addition, if power remains after the preferential allocation, the power bidding and trading control unit can allocate the remaining power to other buildings and the energy storage devices in proportion to the amount of power bid, schedules same-day power trading through bidding one day in advance, and if a power trading supply-demand imbalance occurs on the current day, can adjust the supply-demand imbalance through the energy storage devices.

Description

DC 커뮤니티 전력 입찰 거래 시스템DC Community Power Bidding Trading System
본 개시의 실시예는 전력 입찰 및 거래 시스템에 관한 것으로, 상세하게는 DC 배전망에 연결된 전력 공급자와 전력 사용자를 하나의 DC 커뮤니티로 구성하고, DC 커뮤니티 내에서 이웃 간 전력 거래를 통하여 효율적인 전력 사용을 도모할 수 있는 DC 커뮤니티 전력 입찰 거래 시스템에 관한 것이다.An embodiment of the present disclosure relates to a power bidding and trading system. Specifically, power suppliers and power users connected to the DC distribution network are organized into one DC community, and efficient power use is achieved through power trading between neighbors within the DC community. It relates to a DC community power bidding and trading system that can promote.
신재생 에너지 보급 확대와 RE100 정책으로 분산형 태양광 발전(PV:Photovotaics)이 급증하고 있다. 태양광 발전은 도심 건물의 옥상, 야외 주차장 등 부하 중심지에 설치되어 분산 전원의 역할을 충실히 하고 있다. Distributed solar power generation (PV: Photovoltaics) is rapidly increasing due to the expansion of renewable energy supply and the RE100 policy. Solar power generation is installed at load centers such as rooftops of city buildings and outdoor parking lots, faithfully serving as a distributed power source.
한편, 태양광 발전의 출력 변동성을 완화하기 위하여 태양광과 연계한 에너지 저장장치(ESS)의 설치가 증가하고 있다.Meanwhile, in order to alleviate the output volatility of solar power generation, the installation of energy storage systems (ESS) linked to solar power is increasing.
태양광 발전기과 에너지 저장장치에서 다루는 전력은 전통적인 교류(AC) 방식이 아닌 직류(DC) 방식으로 공급하는 것이 효율적이며, 최근에는 전력 사용 측면에서도 DC 소비형 전력 기기가 증가하고 있다.It is more efficient to supply power from solar power generators and energy storage devices through direct current (DC) rather than the traditional alternating current (AC) method, and in recent years, the number of DC-consuming power devices has been increasing in terms of power use.
이러한 환경 변화에 따라,태양광 발전기, 에너지 저장장치 등에서 공급되는 전력을 효율적으로 활용하기 위한 DC 배전 연구가 활발히 이루어지고 있다.In response to these environmental changes, DC distribution research is being actively conducted to efficiently utilize power supplied from solar power generators, energy storage devices, etc.
한편, 전국 단위의 발전량 예측이 어려워 중앙 시스템에서 수급 균형을 유지하는 비용이 증가하고 있다. 그 결과, AC 망과 분리된 독립적인 수급 운영을 할 수 있고 전력망(예: DC 커뮤니티 배전망) 내에서 프로슈머 간의 이웃 전력 거래(P2P(Peer-to-Peer) 방식)를 통해 지역 커뮤니티의 전력 사용 효율성을 높이는 연구도 병행되고 있다. Meanwhile, the cost of maintaining supply and demand balance in the central system is increasing as it is difficult to predict power generation at a national level. As a result, it is possible to operate independent supply and demand separated from the AC grid and use power in local communities through neighboring power transactions (Peer-to-Peer (P2P) method) between prosumers within the power grid (e.g. DC community distribution grid). Research to improve efficiency is also being conducted in parallel.
그런데, 지역 DC 커뮤니티 배전망 운영에서, 태양광 발전기 등과 같은 소규모 분산 전원의 보급 확대는 발전 출력의 불확실성(예: DC 커뮤니티 내에서 태양광 발전기 등의 공급 설비의 한계로 수요 대비 공급량이 부족한 경우)을 수반하고 있어, DC 커뮤니티 내에서 시장 가격 형성과 같은 프로슈머 간의 일반적인 전력 거래를 통해서는 전력 사용의 효율성을 최대화하기가 어렵다.However, in the operation of local DC community distribution networks, the expansion of small-scale distributed power sources such as solar power generators can lead to uncertainty in power generation output (e.g., when supply is insufficient compared to demand due to limitations in supply facilities such as solar power generators within the DC community). It is difficult to maximize the efficiency of power use through general power transactions between prosumers, such as market price formation within the DC community.
본 개시의 실시예는 DC 커뮤니티 내에서 태양광 발전기, ESS, 전기차 충전기 등을 연계하여 프로슈머 간의 특수 전력 거래를 통해 전력 사용 효율성을 높일 수 있는 DC 커뮤니티 전력 입찰 거래 시스템을 제공하고자 한다.The embodiment of the present disclosure seeks to provide a DC community power bidding and trading system that can increase power use efficiency through special power trading between prosumers by linking solar power generators, ESS, electric vehicle chargers, etc. within the DC community.
본 개시의 실시예는 태양광 발전기의 전력 변동성에도 커뮤니티 내의 전력 거래에 신뢰성을 부여할 수 있는 DC 커뮤니티 전력 입찰 거래 시스템을 제공하고자 한다.An embodiment of the present disclosure seeks to provide a DC community power bidding and trading system that can provide reliability to power trading within the community despite the power volatility of solar power generators.
또한, 본 개시의 실시예는 DC 커뮤니티의 참여자가 경제성 측면에서 상호 윈윈할 수 있는 DC 커뮤니티 전력 입찰 거래 시스템을 제공하고자 한다.In addition, the embodiment of the present disclosure seeks to provide a DC community power bidding trading system in which DC community participants can achieve mutual win-win in terms of economic efficiency.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템은 DC 배전망, 전력 입찰 거래 제어부 등을 포함한다.The DC community power bidding and trading system according to an embodiment of the present disclosure includes a DC distribution network, a power bidding and trading control unit, and the like.
DC 배전망은 하나 이상의 전기차 충전소, 태양광 발전기를 구비하는 하나 이상의 건물, 하나 이상의 에너지 저장장치를 연결할 수 있다.A DC distribution network can connect one or more electric vehicle charging stations, one or more buildings equipped with solar generators, and one or more energy storage devices.
전력 입찰 거래 제어부는 태양광 발전기에서 생산된 전력을 태양광 발전기가 설치된 건물에 우선 배정할 수 있다.The power bidding and transaction control department can preferentially allocate power produced by solar power generators to buildings where solar power generators are installed.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서, 전력 입찰 거래 제어부는 에너지 저장장치의 저장 전력을 전기차 충전소에 우선 배정할 수 있다.In the DC community power bidding and trading system according to an embodiment of the present disclosure, the power bidding and trading control unit may preferentially allocate stored power of the energy storage device to the electric vehicle charging station.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서, 전력 입찰 거래 제어부는 에너지 저장장치가 전기차 충전소에 공급하는 전력의 가격을 단일 가격으로 설정할 수 있다.In the DC community power bidding and trading system according to an embodiment of the present disclosure, the power bidding and trading control unit may set the price of power supplied by the energy storage device to the electric vehicle charging station at a single price.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서, 전력 입찰 거래 제어부는 태양광 발전기에서 생산된 전력을 태양광 발전기가 설치된 건물에 우선 배정하고 전력이 남으면 남은 전력을 에너지 저장장치에 입찰 전력량에 비례하여 배정할 수 있다.In the DC community power bidding and trading system according to an embodiment of the present disclosure, the power bidding and trading control unit first allocates power produced by the solar power generator to the building where the solar power generator is installed, and if there is any power remaining, the remaining power is transferred to the energy storage device as the bid power amount. It can be allocated proportionally.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서, 전력 입찰 거래 제어부는 태양광 발전기에서 생산된 전력을 태양광 발전기가 설치된 건물에 우선 배정하고 전력이 남으면 남은 전력을 다른 건물과 에너지 저장장치에 입찰 전력량에 비례하여 배정할 수 있다.In the DC community power bidding and trading system according to an embodiment of the present disclosure, the power bidding and trading control unit first allocates the power produced by the solar power generator to the building where the solar power generator is installed, and if there is any power remaining, the remaining power is distributed to other buildings and energy storage devices. It can be allocated in proportion to the amount of electricity bid.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서, 전력 입찰 거래 제어부는, 하루 전 입찰을 통해 당일 전력 거래를 스케줄링하고, 당일에 전력 거래 수급 불균형이 발생하면 에너지 저장장치를 통해 수급 불균형을 조절할수 있다.In the DC community power bidding and trading system according to an embodiment of the present disclosure, the power bidding and trading control unit schedules the same-day power trading through bidding a day in advance, and when a power trading supply and demand imbalance occurs on the same day, the supply and demand imbalance is corrected through an energy storage device. It can be adjusted.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서, 전력 입찰 거래 제어부는 건물 및 전기차 충전소의 입찰 전력량을 입찰 전날 사용 전력량보다 설정 비율만큼 낮게 제한할 수 있다.In the DC community power bidding and trading system according to an embodiment of the present disclosure, the power bidding and trading control unit may limit the bidding power amount of buildings and electric vehicle charging stations to be lower than the amount of power used the day before the bidding by a set percentage.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서, 전력 입찰 거래 제어부는 하루 전 전력 거래 스케줄링과 전력 수급을 단위 거래 시간으로 제어할 수 있다.In the DC community power bidding and trading system according to an embodiment of the present disclosure, the power bidding and trading control unit may control power trading scheduling and power supply and demand one day in advance by unit transaction time.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서, 전력 입찰 거래 제어부는 에너지 저장장치를 외부 배전망과 연결하여 DC 배전망에 수급 불균형이 발생하면 에너지 저장장치에서 외부 배전망으로부터 외부 전력을 수신하여 DC 전력으로 변환한 후 DC 배전망에 공급할 수 있다.In the DC community power bidding and trading system according to an embodiment of the present disclosure, the power bidding and trading control unit connects the energy storage device to the external distribution network, and when a supply and demand imbalance occurs in the DC distribution network, the energy storage device receives external power from the external distribution network. It can be received, converted to DC power, and then supplied to the DC distribution grid.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서, 전력 입찰 거래 제어부는 DC 배전망의 입찰 가격을 외부 배전망의 외부 가격보다 낮게 설정할 수 있다.In the DC community power bidding and trading system according to an embodiment of the present disclosure, the power bidding and trading control unit may set the bidding price of the DC distribution network lower than the external price of the external distribution network.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서, 전력 입찰 거래 제어부는 DC 배전망의 입찰 가격을 단일 가격으로 설정할 수 있다.In the DC community power bidding and trading system according to an embodiment of the present disclosure, the power bidding and trading control unit may set the bidding price of the DC distribution network to a single price.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서, 전력 입찰 거래 제어부는 건물을 외부 배전망과 연결하여 건물에서 전력 수급 불균형이 발생하면 외부 배전망으로부터 외부 전력을 건물에 공급할 수 있다.In the DC community power bidding and trading system according to an embodiment of the present disclosure, the power bidding and trading control unit connects the building to an external distribution network and can supply external power to the building from the external distribution network when an imbalance in power supply and demand occurs in the building.
본 개시의 실시예에 의하면, DC 커뮤니티 내에서 프로슈머 간의 전력 거래를 DC 커뮤니티의 특성을 고려하여 우선 배정 방식으로 전환함으로써 전력 사용의 효율성을 크게 높일 수 있다.According to an embodiment of the present disclosure, the efficiency of power use can be greatly increased by converting power transactions between prosumers within the DC community to a preferential allocation method in consideration of the characteristics of the DC community.
본 개시의 실시예에 의하면, 태양광 발전 전력에 변동이 발생하더라도 에너지 저장장치가 전력 수급의 불균형을 조절함으로써 DC 커뮤니티의 전력 거래 신뢰성을 한층 높일 수 있다.According to an embodiment of the present disclosure, even if there is a change in solar power generation power, the energy storage device can further increase the reliability of power trading in the DC community by adjusting the imbalance in power supply and demand.
또한, 본 개시의 실시예에 의하면, DC 커뮤니티의 참여자(건물, 전기차 충전소 등)가 낮은 가격으로 전력을 사용할 수 있어 경제성 측면에서 서로 윈윈할 수 있다.In addition, according to the embodiment of the present disclosure, participants in the DC community (buildings, electric vehicle charging stations, etc.) can use electricity at a low price, creating a win-win situation in terms of economic efficiency.
도 1은 본 개시의 일 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템의 구성도이다.1 is a configuration diagram of a DC community power bidding and trading system according to an embodiment of the present disclosure.
도 2는 본 개시의 일 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서 전력 거래를 사전 스케줄링하는 방법을 예시하고 있다.Figure 2 illustrates a method of pre-scheduling power trading in a DC community power bidding and trading system according to an embodiment of the present disclosure.
도 3은 본 개시의 일 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템을 이용하여 전력 거래를 사전 스케줄링하는 방법에서 에너지 저장장치를 통한 전력 거래 최적화를 예시하고 있다.Figure 3 illustrates power trading optimization through an energy storage device in a method of pre-scheduling power trading using a DC community power bidding trading system according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서전력 거래를 실행하는 과정의 수급 불균형을 조정하는 방법을 예시하고 있다.Figure 4 illustrates a method of adjusting supply and demand imbalance in the process of executing power trading in the DC community power bidding and trading system according to an embodiment of the present disclosure.
이하, 본 개시의 일부 실시예들을 예시적인 도면을 참조하여 상세하게 설명한다. Hereinafter, some embodiments of the present disclosure will be described in detail with reference to illustrative drawings.
각 도면의 구성 요소들에 참조부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가질 수 있다. 또한, 본 개시를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 개시의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 수 있다. 본 명세서 상에서 언급된 "포함한다", "갖는다", "이루어진다" 등이 사용되는 경우 "~만"이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별한 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함할 수 있다.In adding reference numerals to components in each drawing, identical components may have the same reference numerals as much as possible even if they are shown in different drawings. Additionally, in describing the present disclosure, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present disclosure, the detailed description may be omitted. When “comprises,” “has,” “consists of,” etc. mentioned in the specification are used, other parts may be added unless “only” is used. When a component is expressed in the singular, it can also include the plural, unless specifically stated otherwise.
또한, 본 개시의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질, 차례, 순서 또는 개수 등이 한정되지 않는다.Additionally, in describing the components of the present disclosure, terms such as first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, sequence, order, or number of the components are not limited by the term.
구성 요소들의 위치 관계에 대한 설명에 있어서, 둘 이상의 구성 요소가 "연결", "결합" 또는 "접속" 등이 된다고 기재된 경우, 둘 이상의 구성 요소가 직접적으로 "연결", "결합" 또는 "접속" 될 수 있지만, 둘 이상의 구성 요소와 다른 구성 요소가 더 "개재"되어 "연결", "결합" 또는 "접속" 될 수도 있다고 이해되어야 할 것이다. 여기서, 다른 구성 요소는 서로 "연결", "결합" 또는 "접속" 되는 둘 이상의 구성 요소 중 하나 이상에 포함될 수도 있다.In the description of the positional relationship of components, when two or more components are described as being “connected,” “coupled,” or “connected,” the two or more components are directly “connected,” “coupled,” or “connected.” ", but it should be understood that two or more components and other components may be further "interposed" and "connected," "combined," or "connected." Here, other components may be included in one or more of two or more components that are “connected,” “coupled,” or “connected” to each other.
구성 요소들이나, 동작 방법이나 제작 방법 등과 관련한 시간적 흐름 관계에 대한 설명에 있어서, 예를 들어, "~후에", "~에 이어서", "~다음에", "~전에" 등으로 시간적 선후 관계 또는 흐름적 선후 관계가 설명되는 경우, "바로" 또는 "직접"이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.In the explanation of temporal flow relationships related to components, operation methods, production methods, etc., for example, temporal precedence relationships such as “after”, “after”, “after”, “before”, etc. Or, when a sequential relationship is described, non-continuous cases may be included unless “immediately” or “directly” is used.
한편, 구성 요소에 대한 수치 또는 그 대응 정보(예: 레벨 등)가 언급된 경우, 별도의 명시적 기재가 없더라도, 수치 또는 그 대응 정보는 각종 요인(예: 공정상의 요인, 내부 또는 외부 충격, 노이즈 등)에 의해 발생할 수 있는 오차 범위를 포함하는 것으로 해석될 수 있다.On the other hand, when a numerical value or corresponding information (e.g. level, etc.) for a component is mentioned, even if there is no separate explicit description, the numerical value or corresponding information is related to various factors (e.g. process factors, internal or external shocks, It can be interpreted as including the error range that may occur due to noise, etc.).
도 1은 본 개시의 일 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템의 구성도이다.1 is a configuration diagram of a DC community power bidding and trading system according to an embodiment of the present disclosure.
본 개시의 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템은 DC 배전망(100), 외부 배전망(200), 전력 입찰 거래 제어부(300) 등을 포함할 수 있다.The DC community power bidding and trading system according to an embodiment of the present disclosure may include a DC distribution network 100, an external distribution network 200, and a power bidding and trading control unit 300.
DC 배전망(100)은 일정 지역을 DC 커뮤니티로 구성하여 DC 망으로 연결한 것으로, 태양광 발전기(PV1~PV3)를 구비하는 하나 이상의 건물(B1~B3), 태양광 발전기를 구비하지 않은 건물(B4), 하나 이상의 전기차 충전소(EV1,EV2), 하나 이상의 에너지 저장장치(ESS1,ESS2) 등을 연결할 수 있다.The DC distribution network 100 consists of a certain area as a DC community and connected to a DC network, including one or more buildings (B1 to B3) equipped with solar power generators (PV1 to PV3), and buildings without solar power generators. (B4), one or more electric vehicle charging stations (EV1, EV2), one or more energy storage devices (ESS1, ESS2), etc. can be connected.
태양광 발전기(PV1~PV3)는 건물(B1~B3) 등의 옥상에 설치하여 DC 전력을 생산하는 것으로, 다수의 태양 전지셀을 연결한 패널 형태의 모듈을 다수 연결하여 어레이 형태로 구성하여 사용할 수 있다.Solar power generators (PV1~PV3) are installed on the rooftops of buildings (B1~B3) to produce DC power. They can be used by connecting multiple panel-type modules with multiple solar cells to form an array. You can.
태양광 발전기(PV1~PV3)는 생산 전력을 건물(B1~B4), 전기차 충전소(EV1,EV2), 에너지 저장장치(ESS1,ESS2) 등에 선택적으로 공급할 수 있는데, 본 개시의 실시예에서는 전력 사용의 효율성을 크게 높이기 위해서, 태양광 발전기(PV1~PV3)가 설치된 건물(B1~B3)에 우선 공급하고, 전력이 남으면 에너지 저장장치(ESS1,ESS2)에 우선 공급하거나, 다른 건물과 에너지 저장장치(ESS1,ESS2)에 소정 비율에 따라 할당 공급할 수 있다.Solar power generators (PV1 to PV3) can selectively supply produced power to buildings (B1 to B4), electric vehicle charging stations (EV1 and EV2), energy storage devices (ESS1 and ESS2), etc., but in the embodiment of the present disclosure, power is used. In order to greatly increase the efficiency, power is first supplied to buildings (B1 to B3) where solar power generators (PV1 to PV3) are installed, and if power remains, it is first supplied to energy storage devices (ESS1, ESS2), or other buildings and energy storage devices. It can be allocated and supplied to (ESS1, ESS2) according to a certain ratio.
전기차 충전소(EV1,EV2)는 전기차에 DC 전력을 충전하는 것으로, DC 배전망(100) 내의 태양광 발전기(PV1~PV3), 에너지 저장장치(ESS1,ESS2) 등으로부터 전기를 수신할 수 있다. 본 개시의 실시예에서는 전력 사용의 효율성을 크게 높이기 위해서 에너지 저장장치(ESS1,ESS2)로부터 우선 공급받도록 구성할 수 있다.The electric vehicle charging station (EV1, EV2) charges DC power to the electric vehicle and can receive electricity from solar power generators (PV1 to PV3), energy storage devices (ESS1, ESS2), etc. within the DC distribution network 100. In the embodiment of the present disclosure, in order to greatly increase the efficiency of power use, it can be configured to receive priority supply from the energy storage devices (ESS1 and ESS2).
에너지 저장장치(ESS1,ESS2)는 태양광 발전기(PV1~PV3), 외부 배전망(200) 등으로부터 전력을 수신하여 저장해 두었다가 건물(B1~B4), 전기차 충전소(EV1,EV2) 등에서 전력이 필요할 때 공급할 수 있다.Energy storage devices (ESS1, ESS2) receive and store power from solar power generators (PV1~PV3), external distribution networks (200), etc., and then store it when power is needed in buildings (B1~B4), electric vehicle charging stations (EV1, EV2), etc. can be supplied when
에너지 저장장치(ESS1,ESS2)는 전기를 저장하는 배터리, 배터리를 관리하는 PCS(Power Conditioning System), EMS(Energy Management System), BMS(Battery Management System) 등으로 구성할 수 있다.Energy storage devices (ESS1, ESS2) can be composed of a battery that stores electricity, a PCS (Power Conditioning System) that manages the battery, an EMS (Energy Management System), and a BMS (Battery Management System).
외부 배전망(200)은 DC 배전망(100)에 선택적으로 연결하여 외부 전력을 사용하는 것으로, 한전 배전망과 같은 AC 전력망, 이웃 DC 배전망(미도시)과 같은 DC 전력망 등일 수 있다.The external distribution network 200 is selectively connected to the DC distribution network 100 to use external power, and may be an AC power grid such as the KEPCO distribution network or a DC power grid such as a neighboring DC distribution network (not shown).
외부 배전망(200)은 건물(B1~B4), 에너지 저장장치(ESS1,ESS2) 등에 연결되어 건물(B1~B4), 에너지 저장장치(ESS1,ESS2) 등에서 전력을 필요로 할 때 선택적으로 AC 전력 또는 DC 전력을 공급할 수 있다.The external distribution network 200 is connected to buildings (B1 to B4), energy storage devices (ESS1, ESS2), etc., and selectively AC It can supply electric power or DC power.
전력 입찰 거래 제어부(300)는 건물(B1~B4)과 전기차 충전소(EV1,EV2)로부터 필요 전력을 입찰받고, 건물(B1~B4)과 전기차 충전소(EV1,EV2)에 배정 기준에 따라 필요 전력을 할당하며, 할당 전력을 태양광 발전기(PV1~PV3)과 에너지 저장장치(ESS1,ESS2) 등으로부터 공급할 수 있다.The power bidding transaction control unit 300 receives bids for the required power from buildings (B1 to B4) and electric vehicle charging stations (EV1, EV2), and provides the required power to the buildings (B1 to B4) and electric vehicle charging stations (EV1, EV2) according to the allocation criteria. is allocated, and the allocated power can be supplied from solar power generators (PV1~PV3) and energy storage devices (ESS1, ESS2).
전력 입찰 거래 제어부(300)는 태양광 발전기(PV1~PV3)에서 생산된 전력을 태양광 발전기(PV1~PV3)가 설치된 건물(B1~B3)에 우선 배정할 수 있다. 이 경우, 태양광 발전기(PV1~PV3)가 설치된 건물(B1~B3)의 입찰 조건, 즉 필요 전력량, 전력 가격 등은 고려하지 않을 수 있다.The power bidding transaction control unit 300 may preferentially allocate power produced by solar power generators (PV1 to PV3) to buildings (B1 to B3) in which the solar power generators (PV1 to PV3) are installed. In this case, the bidding conditions of buildings (B1 to B3) where solar power generators (PV1 to PV3) are installed, i.e., required amount of electricity, electricity price, etc., may not be considered.
전력 입찰 거래 제어부(300)는, 태양광 발전기(PV1~PV3)가 설치된 건물(B1~B3)에 우선 배정하고 남은 전력이 있으면, 남은 전력을 에너지 저장장치(ESS1,ESS2)에 우선 배정하거나, 다른 건물과 에너지 저장장치(ESS1,ESS2)에 배정 기준에 따라 할당할 수 있다. 여기서, 배정 기준은 입찰 가격이 동일한 경우에는(예: DC 배전망 내에서 전력 가격을 단일 가격으로 설정한 경우) 입찰 전력량에 비례하여 할당할 수 있고, 입찰 가격을 함께 고려할 경우에는 입찰 가격이 높은 입찰자에 먼저 입찰 전력량만큼 할당할 수 있다.The power bidding transaction control unit 300 first allocates the solar power generators (PV1 to PV3) to the buildings (B1 to B3) installed, and if there is any remaining power, first allocates the remaining power to the energy storage devices (ESS1 and ESS2), or It can be allocated to other buildings and energy storage devices (ESS1, ESS2) according to allocation criteria. Here, the allocation standard can be allocated in proportion to the amount of bid power if the bid prices are the same (e.g., when the power price within the DC distribution network is set to a single price), and if the bid prices are considered together, the bid price is higher. The amount of electricity bid can be allocated to the bidder first.
전력 입찰 거래 제어부(300)는, 에너지 저장장치(ESS1,ESS2)의 저장 전력이 설정 전력을 초과한 경우, 남은 전력을 전기차 충전소(EV1,EV2)에 배정할 수 있다. 이 경우에도, 소정의 배정 기준에 따라 남은 전력을 할당할 수 있다. 배정 기준은 입찰 가격이 동일한 경우에는 입찰 전력량에 비례하여 배정하고, 입찰 가격을 함께 고려할 경우에는 입찰 가격이 높은 입찰자에 먼저 입찰 전력량만큼 할당할 수 있다.When the stored power of the energy storage devices (ESS1 and ESS2) exceeds the set power, the power bidding transaction control unit 300 may allocate the remaining power to the electric vehicle charging stations (EV1 and EV2). Even in this case, the remaining power can be allocated according to predetermined allocation criteria. When the bid prices are the same, the allocation criteria is proportional to the amount of bid power. If the bid prices are also considered, the bidder with the higher bid price can be allocated the amount of bid power first.
전력 입찰 거래 제어부(300)는, 전기차 충전소(EV1,EV2)가 요구하는 입찰 전력량에 대해서는, 에너지 저장장치(ESS1,ESS2)의 저장 전력을 우선 할당할 수 있다. 이 경우, 전력 입찰 거래 제어부(300)는, 전기차 충전소(EV1,EV2)의 입찰 조건, 즉 입찰 전력량, 입찰 가격 등을 고려하지 않고, 단일 가격으로 전기차 충전소(EV1,EV2)에 입찰 전력량의 전부, 또는 입찰 전력량에 비례하여 할당할 수 있다.The power bidding transaction control unit 300 may preferentially allocate the stored power of the energy storage devices (ESS1 and ESS2) to the amount of bid power required by the electric vehicle charging stations (EV1 and EV2). In this case, the power bidding transaction control unit 300 bids all of the bid power to the electric vehicle charging stations (EV1 and EV2) at a single price, without considering the bidding conditions of the electric vehicle charging stations (EV1 and EV2), that is, the bid power amount and bid price. , or it can be allocated in proportion to the amount of electricity bid.
전력 입찰 거래 제어부(300)는, 에너지 저장장치(ESS1,ESS2)의 저장 전력을 전기차 충전소(EV1,EV2)에 우선 배정하고 남은 전력이 있으면, 남은 전력을 건물(B1~B4)에 입찰 조건, 즉 입찰 전력량, 입찰 가격 등에 기초하여 할당할 수 있다. 배정 조건은 입찰 가격이 높은 순으로 필요 전력량만큼 우선 할당할 수 있다.The power bidding transaction control unit 300 first allocates the stored power of the energy storage devices (ESS1 and ESS2) to the electric vehicle charging stations (EV1 and EV2) and, if there is any remaining power, bids the remaining power to the buildings (B1 to B4). That is, allocation can be made based on bid power amount, bid price, etc. As for allocation conditions, the required amount of power can be allocated first in the order of the highest bid price.
전력 입찰 거래 제어부(300)는 하루 전 입찰을 통해 당일(입찰일 다음날) 전력 거래를 스케줄링할 수 있다. 입찰 과정에서, 전력 입찰 거래 제어부(300)는 건물(B1~B4)과 전기차 충전소(EV1,EV2)의 입찰 전력량을 전날 사용 전력량보다 설정 비율(예: 10%)만큼 낮게 제한할 수 있다. 이를 통해, 건물(B1~B4) 또는 전기차 충전소(EV1,EV2)의 당일 전력 사용량이 입찰 전력량보다 작아지는 것을 방지할 수 있다. 이 경우, 당일 전력 거래에서 수급 불균형이 발생하면, 전력 입찰 거래 제어부(300)는 에너지 저장장치(ESS1,ESS2)의 저장 전력을 수급 불균형이 발생한 건물(B1~B4)과 전기차 충전소(EV1,EV2)에 입찰 전력량에 비례하는 방식으로 공급하여 수급 불균형(필요 전력량의 부족)을 해소할 수 있다.The power bidding transaction control unit 300 may schedule power trading on the same day (the day after the bidding date) through bidding one day in advance. During the bidding process, the power bidding transaction control unit 300 may limit the bidding power amount of buildings (B1 to B4) and electric vehicle charging stations (EV1, EV2) to be lower than the amount of power used the previous day by a set percentage (e.g., 10%). Through this, it is possible to prevent the daily power consumption of buildings (B1 to B4) or electric vehicle charging stations (EV1, EV2) from being less than the bid power amount. In this case, if a supply and demand imbalance occurs in the same-day power transaction, the power bidding transaction control unit 300 transfers the stored power of the energy storage devices (ESS1 and ESS2) to the buildings (B1 to B4) where the supply and demand imbalance occurred and the electric vehicle charging station (EV1 and EV2). ), the supply-demand imbalance (lack of required electricity) can be resolved by supplying in proportion to the amount of electricity bid.
전력 입찰 거래 제어부(300)는 전력 거래 스케줄링을 단위 거래 시간, 예를 들어 5분, 15분, 30분, 1시간 등으로 설정하여 단위 거래 시간을 단위로 제어할 수 있다. 여기서, 바람직한 단위 거래 시간은 5분으로 설정할 수 있다.The power bidding transaction control unit 300 may control the unit transaction time by setting the power transaction scheduling to a unit transaction time, for example, 5 minutes, 15 minutes, 30 minutes, 1 hour, etc. Here, the preferred unit transaction time can be set to 5 minutes.
전력 입찰 거래 제어부(300)는, 에너지 저장장치(ESS1,ESS2)를 한전 배전망, 인접 커뮤니티 배전망 등과 같은 외부 배전망(200)과 연결하여 DC 배전망(100)에 수급 불균형이 발생하면 외부 배전망(200)으로부터 외부 전력을 수신하여 에너지 저장장치(ESS1,ESS2)에서 DC 전력으로 변환한 후 DC 배전망(100)에 공급하도록 제어할 수 있다.The power bidding transaction control unit 300 connects the energy storage devices (ESS1 and ESS2) to an external distribution network 200 such as the KEPCO distribution network and an adjacent community distribution network, and when a supply and demand imbalance occurs in the DC distribution network 100, the External power can be received from the distribution network 200, converted to DC power in the energy storage devices ESS1 and ESS2, and then controlled to be supplied to the DC distribution network 100.
전력 입찰 거래 제어부(300)는 DC 배전망(100)의 입찰 가격(전력 가격)을 외부 배전망(200)의 외부 가격(전력 가격)보다 낮게, 예를 들어 외부 가격의 90%로 설정할 수 있다.The power bidding transaction control unit 300 may set the bid price (electricity price) of the DC distribution network 100 to be lower than the external price (electricity price) of the external distribution network 200, for example, at 90% of the external price. .
전력 입찰 거래 제어부(300)는 DC 배전망(100)의 입찰 가격을 단일 가격(외부 가격의 90%)으로 설정할 수 있다.The power bidding transaction control unit 300 may set the bidding price of the DC distribution network 100 to a single price (90% of the external price).
전력 입찰 거래 제어부(300)는 건물(B1~B4)을 외부 배전망(200)과 연결하여 건물(B1~B4)에서 전력 수급 불균형이 발생하면 외부 배전망(200)으로부터 외부 전력을 건물(B1~B4)에 공급하도록 제어할 수 있다.The power bidding transaction control unit 300 connects the buildings (B1 to B4) with the external distribution network (200), and when an imbalance in power supply and demand occurs in the buildings (B1 to B4), external power is transmitted from the external distribution network (200) to the building (B1). It can be controlled to supply to ~B4).
도 2는 본 개시의 일 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서 전력 거래를 사전 스케줄링하는 방법을 예시하고 있다.Figure 2 illustrates a method of pre-scheduling power trading in a DC community power bidding and trading system according to an embodiment of the present disclosure.
도 2에 도시한 바와 같이, 본 개시의 일 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서 전력 거래를 사전 스케줄링하는 방법은, 먼저 참여하고 있는 태양광 발전기(PV1~PV3)의 발전량, 건물(B1~B4)의 부하, 전기차 충전소(EV1,EV2)의 부하를 입찰 전날 또는 일정 기간의 사용 데이터를 기초로 하여 단위 거래 시간, 예를 들어 5분 단위로 24시간 값(발전량, 부하)을 예측한다(S11).As shown in FIG. 2, the method of pre-scheduling power trading in the DC community power bidding trading system according to an embodiment of the present disclosure first determines the power generation amount of participating solar power generators (PV1 to PV3) and the building (B1). The load of ~B4) and the load of electric vehicle charging stations (EV1, EV2) are predicted for 24 hours (generation amount, load) in unit transaction time, for example, in 5-minute increments, based on usage data the day before the bid or over a certain period of time. (S11).
단계(S12)에서, 태양광 발전기(PV1~PV3)는 단계(S11)의 예측 발전량을 기초로 5분 단위 판매 입찰을, 건물(B1~B4)는 단계(S11)의 예측 부하를 기초로 5분 단위 구입 입찰을, 그리고 전기차 충전소(EV1,EV2)는 단계(S11)의 예측 부하를 기초로 5분 단위 구입 입찰을 실행한다.In step S12, solar power generators (PV1 to PV3) make sales bids in 5-minute increments based on the predicted power generation in step S11, and buildings (B1 to B4) make sales bids in 5-minute increments based on the predicted load in step S11. Purchase bids are made in minutes, and electric vehicle charging stations (EV1 and EV2) execute purchase bids in 5-minute increments based on the predicted load in step S11.
단계(S13)에서, 태양광 발전기(PV1~PV3)의 판매 입찰은 해당 태양광 발전기(PV1~PV3)가 구비된 건물(B1~B3)의 구입 입찰에 우선 배정하여 우선 계약을 실행하고, 전기차 충전소(EV1,EV2)의 구입 입찰은 에너지 저장장치(ESS1,ESS2)의 전력 공급으로 우선 계약을 실행한다.In step S13, the sales bid for solar power generators (PV1 to PV3) is assigned priority to the purchase bid for the building (B1 to B3) equipped with the solar power generator (PV1 to PV3) to execute a priority contract, and the electric vehicle The purchase bid for the charging station (EV1, EV2) executes the contract first by supplying power to the energy storage device (ESS1, ESS2).
단계(S14)에서, 건물(B1~B4)의 구입 부족, 그리고 태양광 발전기(PV1~PV3)와 에너지 저장장치(ESS1,ESS2)의 판매 잉여가 발생하면, 단계(S15)에서 에너지 저장장치(ESS1,ESS2)에서 건물(B1~B4)로 공급하는 전력 거래를 최적화한다. 예를 들어, 태양광 발전기(PV1~PV3)의 판매 잉여를 건물(B1~B4)의 구입 부족량에 비례하여 먼저 할당하고, 이후 에너지 저장장치(ESS1,ESS2)에서 건물(B1~B4)의 추가 구입 부족량에 대하여 추가 할당을 실행할 수 있다. In step S14, if there is a shortage of purchases of buildings (B1 to B4) and a surplus in sales of solar power generators (PV1 to PV3) and energy storage devices (ESS1, ESS2), in step S15 the energy storage device ( Optimize power trading supplied from ESS1, ESS2) to buildings (B1~B4). For example, the sales surplus of solar power generators (PV1~PV3) is first allocated in proportion to the purchase shortage of buildings (B1~B4), and then energy storage devices (ESS1, ESS2) are added to buildings (B1~B4). Additional allocations may be made for purchase shortfalls.
단계(S15)에서, 에너지 저장장치(ESS1,ESS2)의 판매 가격은 외부 배전망(200)의 전력 가격의 90% 이하로 설정할 수 있다. 이를 위해, 에너지 저장장치(ESS1,ESS2)는 외부 배전망(200)에서 전력 가격이 가장 낮은 시점에 외부 배전망(200)으로부터 외부 전력을 구매할 수 있다. 예를 들어, 외부 배전망(200)이 한전 배전망일 경우, 에너지 저장장치(ESS1,ESS2)는 한전 배전망으로 심야 전력을 최저 가격으로 구매하여 저장할 수 있다.In step S15, the sales price of the energy storage devices ESS1 and ESS2 may be set to 90% or less of the power price of the external distribution network 200. To this end, the energy storage devices ESS1 and ESS2 can purchase external power from the external distribution network 200 at the point when the power price in the external distribution network 200 is lowest. For example, when the external distribution network 200 is the KEPCO distribution network, the energy storage devices ESS1 and ESS2 can purchase and store late-night power at the lowest price through the KEPCO distribution network.
단계(S16)에서 단계(S15)의 최적화 거래를 기초로 건물(B1~B4)과 에너지 저장장치(ESS1,ESS2) 사이에 공급 계약을 완료하고, 이후 단계(S17)에서, 전체 참여자, 즉 태양광 발전기(PV1~PV3), 건물(B1~B4), 전기차 충전소(EV1,EV2), 에너지 저장장치(ESS1,ESS2) 사이의 거래 계약, 즉 당일 전력 거래 스케줄링을 5분 단위로 완성한다.In step S16, a supply contract is completed between the buildings (B1 to B4) and the energy storage devices (ESS1 and ESS2) based on the optimization transaction in step S15, and in the subsequent step (S17), all participants, i.e. solar The transaction contract between photovoltaic generators (PV1~PV3), buildings (B1~B4), electric vehicle charging stations (EV1, EV2), and energy storage devices (ESS1, ESS2), that is, same-day power transaction scheduling, is completed in 5 minutes.
도 3은 본 개시의 일 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템을 이용하여 전력 거래를 사전 스케줄링하는 방법에서 에너지 저장장치를 통한 전력 거래 최적화를 예시하고 있다.Figure 3 illustrates power trading optimization through an energy storage device in a method of pre-scheduling power trading using a DC community power bidding trading system according to an embodiment of the present disclosure.
도 3에 도시한 바와 같이, 단계(S21)의 구입/판매 입찰과 단계(S22)의 태양광 발전기(PV1~PV3)가 구비된 건물(B1~B3)의 우선 계약이 이루어지면, 단계(S23)에서 태양광 발전기(PV1~PV3)의 남은 전력을 건물(B1~B4)과 에너지 저장장치(ESS1,ESS2)의 잔여 구입량에 비례 할당하는 과정을 실행할 수 있다.As shown in FIG. 3, when the purchase/sale bid in step S21 and the priority contract for buildings (B1 to B3) equipped with solar power generators (PV1 to PV3) in step S22 are made, step S23 ), the process of proportionally allocating the remaining power of solar power generators (PV1 to PV3) to the remaining purchases of buildings (B1 to B4) and energy storage devices (ESS1 and ESS2) can be carried out.
태양광 발전기(PV1~PV3)의 남은 전력을 건물(B1~B4)에 할당하는 과정에서 구입 부족(전력 부족) 또는 판매 잉여(전력 잉여)가 발생할 수 있다. 이 경우, 단계(S24,S25)와 같이, 판매 잉여가 발생하면 잉여 전력을 에너지 저장장치(ESS1,ESS2)에 보내 저장하고, 구입 부족이 발생하면 에너지 저장장치(ESS1,ESS2)의 저장 전력(전기차 충전소(EV1,EV2)에 우선 할당하고 남은 저장 전력)을 건물(B1~B4)의 구입 부족량에 비례하여 할당할 수 있다.In the process of allocating the remaining power from solar power generators (PV1 to PV3) to buildings (B1 to B4), a purchase shortage (power shortage) or a sales surplus (power surplus) may occur. In this case, as in steps S24 and S25, when a sales surplus occurs, the surplus power is sent to the energy storage devices (ESS1 and ESS2) for storage, and when a purchase shortage occurs, the stored power of the energy storage devices (ESS1 and ESS2) ( First allocate to electric vehicle charging stations (EV1, EV2) and the remaining stored power can be allocated in proportion to the purchase shortage of buildings (B1 to B4).
한편, 도 3에 도시한 바와 같이, 에너지 저장장치(ESS1,ESS2)의 저장 전력이 부족한 경우에는 외부 배전망(예: 한전 배전망, 다른 DC 배전망 등)으로부터 최저 가격(예: 심야 전력)에 구매하여 추가 저장할 수 있다.Meanwhile, as shown in FIG. 3, when the stored power of the energy storage devices (ESS1 and ESS2) is insufficient, the lowest price (e.g., late-night power) is charged from an external distribution network (e.g., KEPCO distribution network, other DC distribution network, etc.). You can purchase and save more.
도 4는 본 개시의 일 실시예에 따른 DC 커뮤니티 전력 입찰 거래 시스템에서전력 거래를 실행하는 과정의 수급 불균형을 조정하는 방법을 예시하고 있다.Figure 4 illustrates a method of adjusting supply and demand imbalance in the process of executing power trading in the DC community power bidding and trading system according to an embodiment of the present disclosure.
도 4에 도시한 바와 같이, 단계(S31)과 같이 사전 스케줄링에 따라 전력을 사용하는 과정에서, 단계(S32)와 같이, 수급 불균형(거래 차이, 즉 실제 전력 사용 차이)이 발생할 수 있다. 이 경우, 단계(S33)과 같이, 에너지 저장장치(ESS1,ESS2)의 저장 전력을 이용하여 건물(B1~B4)과 전기차 충전소(EV1,EV2)의 전력 수급 불균형을 조절할 수 있다. 따라서, 본 개시의 실시예에서, 에너지 저장장치(ESS1,ESS2)는 수급 불균형 오차를 극복할 수 있는 정도의 저장 전력을 확보하는 것이 바람직하다.As shown in FIG. 4, in the process of using power according to pre-scheduling as in step S31, a supply and demand imbalance (transaction difference, that is, actual power use difference) may occur as in step S32. In this case, as in step S33, the power supply and demand imbalance between the buildings (B1 to B4) and the electric vehicle charging stations (EV1 and EV2) can be adjusted using the stored power of the energy storage devices (ESS1 and ESS2). Therefore, in the embodiment of the present disclosure, it is desirable for the energy storage devices ESS1 and ESS2 to secure a level of stored power that can overcome the supply and demand imbalance error.
한편, 본 개시의 실시예에서는 전력 수급 불균형을 오차 범위를 넘어서 유발하는 건물(B1~B4)과 전기차 충전소(EV1,EV2)에 대해서는 페널티를 부과할 수 있다. 페널티는 전력 할당 순위를 하락시키거나 입찰 전력량에 대해 낙찰 전력량을 일정 비율로 감소시키는 것일 수 있다.Meanwhile, in the embodiment of the present disclosure, a penalty may be imposed on buildings (B1 to B4) and electric vehicle charging stations (EV1 and EV2) that cause power supply and demand imbalance beyond the error range. The penalty may be a decrease in the power allocation ranking or a reduction in the amount of successful bid power by a certain ratio to the amount of bid power.
이상의 설명은 본 개시의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 개시의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 또한, 본 개시에 개시된 실시예들은 본 개시의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로 이러한 실시예에 의하여 본 개시의 기술 사상의 범위가 한정되는 것은 아니다. 본 개시의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 개시의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an illustrative explanation of the technical idea of the present disclosure, and those skilled in the art will be able to make various modifications and variations without departing from the essential characteristics of the present disclosure. In addition, the embodiments disclosed in the present disclosure are not intended to limit the technical idea of the present disclosure, but rather are for explanation, and therefore the scope of the technical idea of the present disclosure is not limited by these embodiments. The scope of protection of this disclosure should be interpreted in accordance with the claims below, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of rights of this disclosure.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2022년 11월 16일 한국에 출원한 특허출원번호 제10-2022-0153945호에 대해 미국 특허법 119(a)조 (35 U.S.C §119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외의 국가에 대해서도 위와 동일한 이유로 우선권을 주장하며 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority under Article 119(a) of the U.S. Patent Act (35 U.S.C. §119(a)) to Patent Application No. 10-2022-0153945 filed in Korea on November 16, 2022. All contents are hereby incorporated by reference into this patent application. In addition, this patent application claims priority for countries other than the United States for the same reasons as above, and the entire contents thereof are incorporated into this patent application by reference.

Claims (12)

  1. 하나 이상의 전기차 충전소, 태양광 발전기를 구비하는 하나 이상의 건물, 하나 이상의 에너지 저장장치를 연결하는 DC 배전망;A DC distribution network connecting one or more electric vehicle charging stations, one or more buildings equipped with solar power generators, and one or more energy storage devices;
    상기 태양광 발전기에서 생산된 전력을 상기 태양광 발전기가 설치된 건물에 우선 배정하는 전력 입찰 거래 제어부를 포함하는, DC 커뮤니티 전력 입찰 거래 시스템.A DC community power bidding transaction system comprising a power bidding transaction control unit that preferentially allocates power produced by the solar generator to a building in which the solar generator is installed.
  2. 제1항에 있어서, 상기 전력 입찰 거래 제어부는The method of claim 1, wherein the power bidding transaction control unit
    상기 에너지 저장장치의 저장 전력을 상기 전기차 충전소에 우선 배정하는, DC 커뮤니티 전력 입찰 거래 시스템.A DC community power bidding transaction system that prioritizes the stored power of the energy storage device to the electric vehicle charging station.
  3. 제2항에 있어서, 상기 전력 입찰 거래 제어부는The method of claim 2, wherein the power bidding transaction control unit
    상기 에너지 저장장치가 상기 전기차 충전소에 공급하는 전력의 가격을 단일 가격으로 설정하는, DC 커뮤니티 전력 입찰 거래 시스템.A DC community power bidding transaction system that sets the price of power supplied by the energy storage device to the electric vehicle charging station at a single price.
  4. 제2항에 있어서, 상기 전력 입찰 거래 제어부는The method of claim 2, wherein the power bidding transaction control unit
    상기 태양광 발전기에서 생산된 전력을 상기 태양광 발전기가 설치된 건물에 우선 배정하고 전력이 남으면 남은 전력을 상기 에너지 저장장치에 입찰 전력량에 비례하여 배정하는, DC 커뮤니티 전력 입찰 거래 시스템.A DC community power bidding transaction system that first allocates power produced by the solar power generator to the building where the solar power generator is installed and, if power remains, allocates the remaining power to the energy storage device in proportion to the amount of bid power.
  5. 제2항에 있어서, 상기 전력 입찰 거래 제어부는The method of claim 2, wherein the power bidding transaction control unit
    상기 태양광 발전기에서 생산된 전력을 상기 태양광 발전기가 설치된 건물에 우선 배정하고 전력이 남으면 남은 전력을 다른 건물과 상기 에너지 저장장치에 입찰 전력량에 비례하여 배정하는, DC 커뮤니티 전력 입찰 거래 시스템.A DC community power bidding transaction system that first allocates power produced by the solar power generator to the building where the solar power generator is installed and, if power remains, allocates the remaining power to other buildings and the energy storage device in proportion to the amount of bid power.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 전력 입찰 거래 제어부는The method of any one of claims 1 to 5, wherein the power bidding transaction control unit
    하루 전 입찰을 통해 당일 전력 거래를 스케줄링하고,Schedule same-day power transactions through bidding one day in advance,
    당일에 전력 거래 수급 불균형이 발생하면 상기 에너지 저장장치를 통해 상기 수급 불균형을 조절하는, DC 커뮤니티 전력 입찰 거래 시스템.A DC community power bidding trading system that adjusts the supply and demand imbalance through the energy storage device when an imbalance in power trading supply and demand occurs on the same day.
  7. 제6항에 있어서, 상기 전력 입찰 거래 제어부는The method of claim 6, wherein the power bidding transaction control unit
    상기 건물 및 전기차 충전소의 입찰 전력량을 입찰 전날 사용 전력량보다 설정 비율만큼 낮게 제한하는, DC 커뮤니티 전력 입찰 거래 시스템.A DC community power bidding transaction system that limits the bidding power amount of the building and electric vehicle charging station to a set ratio lower than the amount of power used the day before the bidding.
  8. 제6항에 있어서, 상기 전력 입찰 거래 제어부는The method of claim 6, wherein the power bidding transaction control unit
    상기 하루 전 전력 거래 스케줄링과 당일 전력 수급을 단위 거래 시간으로 제어하는, DC 커뮤니티 전력 입찰 거래 시스템.A DC community power bidding transaction system that schedules power transactions the day before and controls power supply and demand on the same day by unit transaction time.
  9. 제6항에 있어서, 상기 전력 입찰 거래 제어부는The method of claim 6, wherein the power bidding transaction control unit
    상기 에너지 저장장치를 외부 배전망과 연결하여 상기 DC 배전망에 수급 불균형이 발생하면 상기 에너지 저장장치에서 상기 외부 배전망으로부터 외부 전력을 수신하여 DC 전력으로 변환한 후 상기 DC 배전망에 공급하는, DC 커뮤니티 전력 입찰 거래 시스템.By connecting the energy storage device to an external distribution network, when a supply and demand imbalance occurs in the DC distribution network, the energy storage device receives external power from the external distribution network, converts it into DC power, and supplies it to the DC distribution network. DC Community Power Bidding Trading System.
  10. 제9항에 있어서, 상기 전력 입찰 거래 제어부는The method of claim 9, wherein the power bidding transaction control unit
    상기 DC 배전망의 입찰 가격을 상기 외부 배전망의 외부 가격보다 낮게 설정하는, DC 커뮤니티 전력 입찰 거래 시스템.A DC community power bidding transaction system that sets the bidding price of the DC distribution network lower than the external price of the external distribution network.
  11. 제10항에 있어서, 상기 전력 입찰 거래 제어부는The method of claim 10, wherein the power bidding transaction control unit
    상기 DC 배전망의 입찰 가격을 단일 가격으로 설정하는, DC 커뮤니티 전력 입찰 거래 시스템.A DC community power bidding trading system that sets the bidding price of the DC distribution network to a single price.
  12. 제9항에 있어서, 상기 전력 입찰 거래 제어부는The method of claim 9, wherein the power bidding transaction control unit
    상기 건물을 상기 외부 배전망과 연결하여 상기 건물에서 전력 수급 불균형이 발생하면 상기 외부 배전망으로부터 외부 전력을 상기 건물에 공급하는, DC 커뮤니티 전력 입찰 거래 시스템.A DC community power bidding transaction system that connects the building to the external distribution network and supplies external power to the building from the external distribution network when a power supply/demand imbalance occurs in the building.
PCT/KR2023/009184 2022-11-16 2023-06-29 Dc community power bidding and trading system WO2024106665A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220153945A KR20240072441A (en) 2022-11-16 2022-11-16 System For Bidding And Trading Power In DC Community
KR10-2022-0153945 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024106665A1 true WO2024106665A1 (en) 2024-05-23

Family

ID=91085018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009184 WO2024106665A1 (en) 2022-11-16 2023-06-29 Dc community power bidding and trading system

Country Status (2)

Country Link
KR (1) KR20240072441A (en)
WO (1) WO2024106665A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101791902B1 (en) * 2016-05-10 2017-10-31 재단법인차세대융합기술연구원 The apparatus and method of distributed energy resource for vitalizing transactive energy
KR20200061008A (en) * 2018-11-23 2020-06-02 주식회사 야베스 Prosumer Energy trading Method Using Energy Storage System for home use
JP2021040403A (en) * 2019-09-02 2021-03-11 オムロン株式会社 Power supply system and electricity charge managing method
JP2021158839A (en) * 2020-03-27 2021-10-07 本田技研工業株式会社 Power trading system and management device
JP2022125647A (en) * 2021-02-17 2022-08-29 オムロン株式会社 Power supply system and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101791902B1 (en) * 2016-05-10 2017-10-31 재단법인차세대융합기술연구원 The apparatus and method of distributed energy resource for vitalizing transactive energy
KR20200061008A (en) * 2018-11-23 2020-06-02 주식회사 야베스 Prosumer Energy trading Method Using Energy Storage System for home use
JP2021040403A (en) * 2019-09-02 2021-03-11 オムロン株式会社 Power supply system and electricity charge managing method
JP2021158839A (en) * 2020-03-27 2021-10-07 本田技研工業株式会社 Power trading system and management device
JP2022125647A (en) * 2021-02-17 2022-08-29 オムロン株式会社 Power supply system and program

Also Published As

Publication number Publication date
KR20240072441A (en) 2024-05-24

Similar Documents

Publication Publication Date Title
WO2017142241A1 (en) Power management method for ess connected with new and renewable energy
US8803362B2 (en) Standalone unit of a standalone power grid for communicating energy requests with another standalone unit
CN111882105B (en) Micro-grid group containing shared energy storage system and day-ahead economic optimization scheduling method thereof
US20160011577A1 (en) Collaborative balancing of renewable energy overproduction with electricity-heat coupling and electric and thermal storage for prosumer communities
CN108667147B (en) Optimized dispatching method for flexible medium-voltage direct-current power distribution center with multiple micro-grids
JP6256844B2 (en) Power management apparatus, power management system, and power management method
CN114050621B (en) Distributed energy storage power distribution system and method
WO2020149494A1 (en) System for autonomously controlling direct current power distribution between consumers within direct current microgrid, and operating method therefor
WO2019107632A1 (en) Photovoltaic/ess apparatus energy management system for tracking power generation reference, and control method therefor
Qi et al. When shared autonomous electric vehicles meet microgrids: Citywide energy-mobility orchestration
CN113098042A (en) Base station distributed energy storage power-saving control method based on user power utilization prediction
Siraj et al. Optimal power dispatch in solar‐assisted uninterruptible power supply systems
CN106374517B (en) A kind of battery energy storage system control method for reducing photovoltaic plant abandoning light and rationing the power supply
Then et al. Coordination of spatially distributed electric vehicle charging for voltage rise and voltage unbalance mitigation in networks with solar penetration
US10978879B2 (en) Electrical energy management of exchanges between a plurality of residential networks
WO2024106665A1 (en) Dc community power bidding and trading system
CN112803480A (en) Optical storage system and control method thereof
CN117132017A (en) Shared energy storage operation optimization method based on cooperative game theory and CPS layered architecture
Bruno et al. A microgrid architecture for integrating EV charging system and public street lighting
WO2017204497A1 (en) Bess control system and method for smart grid
US20120068534A1 (en) Power Supply System Including Alternative Sources-Control and Communication
JP2015015802A (en) Power management system and control device
WO2015126000A1 (en) Demand response service system of sewage and waste water treatment plant
US11646582B2 (en) System and method for distributing electrical power
CN114648164A (en) Multi-micro-grid autonomous coordination multi-hierarchy optimization scheduling method based on SoS framework