WO2024106542A1 - Filament et son procédé de production - Google Patents

Filament et son procédé de production Download PDF

Info

Publication number
WO2024106542A1
WO2024106542A1 PCT/JP2023/041531 JP2023041531W WO2024106542A1 WO 2024106542 A1 WO2024106542 A1 WO 2024106542A1 JP 2023041531 W JP2023041531 W JP 2023041531W WO 2024106542 A1 WO2024106542 A1 WO 2024106542A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
filament
lignocellulose
acid
dope
Prior art date
Application number
PCT/JP2023/041531
Other languages
English (en)
Japanese (ja)
Inventor
由佳 中川
知弘 橋爪
隆司 渡辺
Original Assignee
株式会社ダイセル
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, 国立大学法人京都大学 filed Critical 株式会社ダイセル
Publication of WO2024106542A1 publication Critical patent/WO2024106542A1/fr

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

La présente invention concerne un filament dont un constituant principal est la lignocellulose dérivée d'un matériau végétal. Au moins une partie de la cellulose, de l'hémicellulose et de la lignine constituant la lignocellulose forme une liaison ester avec de l'acide formique. Un procédé de production du filament consiste à : pulvériser grossièrement un matériau végétal contenant la lignocellulose pour obtenir une poudre grossière ; dissoudre la poudre dans un acide organique pour obtenir un dopant contenant la lignocellulose ; et injecter le dopant dans un liquide de coagulation pour former le filament. L'acide organique est de l'acide formique ou une solution d'acide formique ayant une concentration en acide formique supérieure à 93 % en masse. Le liquide de coagulation est un solvant polaire ayant un point d'ébullition inférieur ou égal à 100 °C.
PCT/JP2023/041531 2022-11-17 2023-11-17 Filament et son procédé de production WO2024106542A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022184062 2022-11-17
JP2022-184062 2022-11-17

Publications (1)

Publication Number Publication Date
WO2024106542A1 true WO2024106542A1 (fr) 2024-05-23

Family

ID=91084574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041531 WO2024106542A1 (fr) 2022-11-17 2023-11-17 Filament et son procédé de production

Country Status (1)

Country Link
WO (1) WO2024106542A1 (fr)

Similar Documents

Publication Publication Date Title
Du et al. Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization
Rambabu et al. Production of nanocellulose fibers from pinecone biomass: Evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films
Le Normand et al. Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective
Dilamian et al. A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw
Fahma et al. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB)
Adel et al. Microfibrillated cellulose from agricultural residues. Part I: Papermaking application
Sonia et al. Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa
Chirayil et al. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant
Cherian et al. A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization
Chan et al. Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood
Chowdhury et al. Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process
Rosa et al. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior
Li et al. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp
Chen et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process
Kaushik et al. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization
Reddy et al. Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid
Cherian et al. Isolation of nanocellulose from pineapple leaf fibres by steam explosion
Codou et al. Partial periodate oxidation and thermal cross-linking for the processing of thermoset all-cellulose composites
Dou et al. Lignin containing cellulose nanofibril production from willow bark at 80 C using a highly recyclable acid hydrotrope
Xu et al. Effects of hydrothermal pretreatment on nano-mechanical property of switchgrass cell wall and on energy consumption of isolated lignin-coated cellulose nanofibrils by mechanical grinding
Burhani et al. Isolation of nanocellulose from oil palm empty fruit bunches using strong acid hydrolysis
Luzi et al. Modulation of acid hydrolysis reaction time for the extraction of cellulose nanocrystals from Posidonia oceanica leaves
Zhu et al. Isolation and characterization of cellulose micro/nanofibrils from douglas fir
Wang et al. Morphology, structure and property of high consistency mechano-enzymatic fibrillated cellulose: Effect of treatment consistency of bamboo pulp fibers
CN111868094B (zh) 乙酸纤维素、乙酸纤维素纤维、乙酸纤维素组合物、乙酸纤维素的制造方法、及乙酸纤维素组合物的制造方法