WO2024106407A1 - Composition containing polymer particles and production method for composition containing polymer particles - Google Patents

Composition containing polymer particles and production method for composition containing polymer particles Download PDF

Info

Publication number
WO2024106407A1
WO2024106407A1 PCT/JP2023/040850 JP2023040850W WO2024106407A1 WO 2024106407 A1 WO2024106407 A1 WO 2024106407A1 JP 2023040850 W JP2023040850 W JP 2023040850W WO 2024106407 A1 WO2024106407 A1 WO 2024106407A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
composition
polymer
mass
polymer particles
Prior art date
Application number
PCT/JP2023/040850
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 山崎
俊一 辻
小百合 山田
Original Assignee
キリンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリンホールディングス株式会社 filed Critical キリンホールディングス株式会社
Publication of WO2024106407A1 publication Critical patent/WO2024106407A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/04Preparations for care of the skin for chemically tanning the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to a composition comprising polymer particles and a method for producing a composition comprising polymer particles.
  • the present invention relates to a composition comprising polymer particles containing 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate (DHHB) and a method for producing the composition.
  • DHHB 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate
  • DHHB 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate
  • Patent Document 1 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate
  • Patent Document 2 reports cationic polymer particles encapsulating DHHB, which are polymers comprising structural units derived from a cationic polymerization initiator and structural units derived from a monomer containing a carbon-carbon double bond.
  • Patent Document 3 reports a cosmetic preparation containing microcapsules encapsulating an ultraviolet absorbent, characterized in that the ultraviolet absorbent is at least in a liquid or amorphous state, the microcapsules are made of a polyurethane/polyurethane resin wall film, the average particle size is 0.1 to 10 ⁇ m, and the wall film material accounts for 20 to 95% by weight of the microcapsules.
  • an object of the present invention is to provide a polymer particle-containing composition that contains DHHB, has a high DHHB content, and has excellent stability over time.
  • Another object of the present invention is to provide a method for manufacturing the above composition.
  • the inventors further conducted intensive research into the manufacturing method of polymer particle-containing compositions and discovered that polymer particle-containing compositions manufactured by a method different from conventional methods have a high DHHB content and excellent stability over time. Based on this knowledge, the inventors conducted further research and have completed the present invention.
  • the present invention is as follows. ⁇ 1> Component A: 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate, A composition comprising: component B: a polymer containing a repeating unit derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80° C. or higher; and component C: polymer particles containing polyvinyl alcohol; and water, The average particle size of the polymer particles is 350 nm or less, The polymer particles have a polydispersity index PdI of 0.2 or less as measured by a dynamic light scattering method; The composition, wherein the content of component A in the composition is 5.5 mass% or more.
  • Component A 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate,
  • a composition comprising: component B: a polymer containing a repeating unit derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80° C. or higher; and component C: polymer particles containing polyvinyl alcohol, wherein the polymer particles have an average particle size of 350 nm or less;
  • the content of component A is 26 to 67% by mass relative to the content of component B,
  • the composition, wherein the polymer particles have a polydispersity index PdI of 0.2 or less as measured by a dynamic light scattering method.
  • composition according to ⁇ 7>, wherein the monomer is styrene or methyl methacrylate.
  • component B is a polymer having a cationic functional group.
  • ⁇ 11> The method according to ⁇ 10>, wherein the total mass of the monomers contained in the reaction solution before the start of the polymerization reaction is 1.5 to 3.9 times the total mass of component A, and the total mass of the water is 10 to 15 times the total mass of component A.
  • ⁇ 12> The method according to ⁇ 10> or ⁇ 11>, wherein the reaction solution is not diluted during the course of the polymerization reaction.
  • ⁇ 13> The method according to any one of ⁇ 10> to ⁇ 12>, wherein the emulsification is carried out for 10 minutes or more and at a stirring speed of 6,000 rpm or more.
  • ⁇ 18> The method according to any one of ⁇ 10> to ⁇ 17>, wherein the reaction liquid before emulsification contains component B.
  • the reaction liquid before emulsification contains component B.
  • the monomer is styrene and component B is polystyrene.
  • the composition is the composition according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 21> The method according to any one of ⁇ 10> to ⁇ 20>, wherein the content of component A in the composition relative to the content of component A in the reaction liquid is 70 mass% or more.
  • the present invention provides a polymer particle-containing composition that has a high DHHB content and excellent stability over time, and a method for producing the same.
  • FIG. 1 shows the relative amounts of DHHB in aqueous alcohol containing example compositions: 10% by weight ethanol (E_10), 20% by weight 1,3-butanediol (B_20), 10% by weight 1,2-pentanediol (P_10), 2.5% by weight 1,2-hexanediol (H_2.5).
  • E_10 ethanol
  • B_20 1,3-butanediol
  • P_10 1,2-pentanediol
  • H_2.5 1,2-hexanediol
  • 1 shows SEM images of hair fibers treated with water or polymer particle compositions: (A) water (control), (B) polymer particle composition of Reference Example S1, (C) polymer particle composition of Reference Example S2, (D) magnified image of the boxed area in (B). Scale bar (white) for (A)-(C) is 10 ⁇ m, scale bar (black) for (D) is 3 ⁇ m.
  • compositions containing polymer particles contains DHHB (2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate; sometimes referred to as "Component A" in this specification).
  • the DHHB dissolves in oils but precipitates at low temperatures and has low solubility in water. Therefore, the DHHB present in the composition of this embodiment is present encapsulated in polymer particles.
  • the composition of this embodiment is preferably an oil-in-water emulsion in which polymer particles containing DHHB are dispersed in an aqueous medium.
  • the average particle size of the polymer particles is 350 nm or less. By having the average particle size in this range, the polymer particles are less likely to aggregate over time, making it possible to provide a stable composition.
  • the average particle size is represented by the hydrodynamic average particle size (Z-Ave) measured by a known dynamic light scattering method.
  • the hydrodynamic average particle size measured by the dynamic light scattering method is calculated from the temporal variation of the scattered light intensity measured from particles undergoing Brownian motion in a dispersion medium.
  • the scattered light intensity can be measured, for example, using a Zetasizer Nano ZSP (Malvern Instruments Limited, UK).
  • the polydispersity index (PdI) of the polymer particles measured by dynamic light scattering is 0.2 or less, and preferably 0.1 or less.
  • PdI can be measured, for example, using a Zetasizer Nano ZSP (Malvern Instruments). PdI is used as an index for evaluating the width of the particle size distribution of the polymer particles in the composition together with the average particle size. In a composition (emulsion) containing polymer particles with a large width of the particle size distribution, a phenomenon of emulsion collapse called Ostwald ripening is likely to occur.
  • the average zeta potential of the polymer particles in the composition of this embodiment is not particularly limited, but in order to further suppress the occurrence of aggregation in the composition, it is preferably +10 mV to +70 mV, and more preferably +30 mV to +70 mV.
  • the average zeta potential is calculated from the electrophoretic migration velocity of the polymer particles.
  • the average zeta potential can be measured, for example, using a Zetasizer Nano ZSP (Malvern Instruments).
  • the polymer particles in the composition of this embodiment contain at least DHHB (component A), a polymer containing repeating units derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80°C or higher (sometimes referred to herein as “polymer X” or “component B”), and polyvinyl alcohol (sometimes referred to herein as “component C”).
  • component A a polymer containing repeating units derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80°C or higher
  • polymer X polymer X
  • component C polyvinyl alcohol
  • the polymer particles may contain other components in addition to components A to C.
  • other components include a polymerization initiator added during the formation of the polymer particles, an oil-soluble UV absorber other than DHHB, or a polymer other than polymer X.
  • the purpose of adding a polymer other than polymer X may be, for example, to promote particle formation.
  • polymers other than polymer X include polystyrene, and the polymer other than polymer X can be dissolved in the monomer solution at the beginning of the reaction to promote the formation of polymer particles.
  • the content of components other than components A to C in the polymer particles is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less, based on the content of all components in the polymer particles.
  • the content of the polymer particles in the composition of this embodiment is preferably 20% by mass or more, more preferably 22% by mass or more, based on the total mass of the composition.
  • the content of the polymer particles in the composition of this embodiment is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 35% by mass or less, based on the total mass of the composition.
  • the content (mass) of polymer particles in the polymer particle-containing composition corresponds to the solid content mass (dry mass) of the composition when the composition contains only the components that can be removed by drying process (water or solvent such as unreacted monomer) as the components other than polymer particles.
  • drying process water or solvent such as unreacted monomer
  • the components other than polymer particles are dissolved in the composition, the components can be removed by centrifugation, so the dry mass of the precipitate after centrifugation corresponds to the content (mass) of polymer particles.
  • the content of DHHB (component A) in the polymer particles is preferably 20% by mass or more, more preferably 22% by mass or more, and preferably 33% by mass or less, more preferably 31% by mass or less.
  • a composition can be preferably obtained that has a high DHHB content and is stable with the polymer particles less likely to aggregate over time.
  • the content of DHHB in the composition of this embodiment is preferably 5.5% by mass or more. In other words, the content of DHHB is preferably 5.5% by mass or more relative to the total mass of the composition of this embodiment.
  • the composition of this embodiment contains such a high content of DHHB that it is useful, for example, as a cosmetic ingredient that has a high UV protection effect even in small amounts.
  • the content of DHHB in the composition is also preferably, for example, 5.7% by mass or more, 5.8% by mass or more, 6.0% by mass or more, or 6.2% by mass or more. There is no particular upper limit, but it is usually sufficient if it is 10% by mass or less.
  • the composition of this embodiment can have a DHHB content of 5.5% by mass or more by increasing the polymer particle concentration as well as the content of DHHB in the polymer particles.
  • DHHB content in the composition can be measured using known methods such as those described in "Hygienic Testing Methods - Commentary 2015” (edited by the Pharmaceutical Society of Japan, Kanehara Publishing (2015)).
  • DHHB can be extracted from the composition with tetrahydrofuran and chloroform, and then measured using high performance liquid chromatography (using absorbance at 350 nm as an index).
  • a polymer (polymer X) containing repeating units derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80°C or higher is a polymer produced by a polymerization reaction of a monomer capable of forming a homopolymer having a glass transition temperature of 80°C or higher (sometimes referred to as "monomer X" in this specification).
  • monomer X a monomer capable of forming a homopolymer having a glass transition temperature of 80°C or higher
  • other monomers besides monomer X may also react with monomer X and become constituent units of polymer X.
  • Monomer X is a monomer that, when homopolymerized at a sufficient degree of polymerization such that the glass transition temperature does not fluctuate, results in a homopolymer with a glass transition temperature of 80°C or higher.
  • the monomer is one that results in a homopolymer with a glass transition temperature of 80 to 200°C, more preferably, one that results in a homopolymer with a glass transition temperature of 80 to 180°C, and even more preferably, one that results in a homopolymer with a glass transition temperature of 80°C to 150°C.
  • the glass transition temperature of the resulting homopolymer can be measured using differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • monomer X a monomer containing a carbon-carbon double bond is preferable.
  • monomers containing a carbon-carbon double bond include vinyl compound monomers, such as acrylamides, methacrylamides, acrylic acids, esters of acrylic acids, methacrylic acids, esters of methacrylic acids, and styrenes.
  • monomer X examples include styrene, methyl methacrylate, isopropyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, acrylic acid, N,N-dimethylacrylamide, dimethyl itaconate, and dimethyl fumarate.
  • styrene or methyl methacrylate is preferred, and styrene is more preferred. Since DHHB has high solubility in styrene, the content of DHHB in the polymer particles can be increased when styrene is used as monomer X.
  • the glass transition temperatures of homopolymers with a sufficient degree of polymerization are as follows: styrene: 100°C, methyl methacrylate: 105°C, isopropyl methacrylate: 83°C, cyclohexyl methacrylate: 107°C, phenyl methacrylate: 110°C, acrylic acid: 101°C, N,N-dimethylacrylamide: 121°C, dimethyl itaconate: 100°C, and dimethyl fumarate: 100°C.
  • the repeating units derived from monomer X may be one type or two or more types.
  • polymer X may contain only repeating units derived from styrene, only repeating units derived from methyl methacrylate, only repeating units derived from acrylic acid, repeating units derived from styrene and repeating units derived from methyl methacrylate, repeating units derived from styrene and repeating units derived from acrylic acid, or repeating units derived from styrene, repeating units derived from methyl methacrylate, and repeating units derived from acrylic acid.
  • Polymer X preferably contains only repeating units derived from styrene or only repeating units derived from methyl methacrylate, and more preferably contains only repeating units derived from styrene, as repeating units derived from monomer X.
  • polymer X there are no particular limitations on polymer X as long as it contains a repeating unit derived from monomer X in part or in whole.
  • polymer X may further contain structural units derived from other monomers other than the repeating units derived from monomer X. Examples of other monomers include vinyl acetate.
  • the ratio of repeating units derived from monomer X to the total mass of polymer X may be 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 98% by mass or more. It is particularly preferable that polymer X does not contain structural units derived from other monomers other than the repeating units derived from monomer X.
  • the polymer X may contain a structural unit derived from a bifunctional crosslinking monomer as a structural unit derived from another monomer other than the repeating unit derived from monomer X.
  • the bifunctional crosslinking monomer include monomers containing two or more vinyl groups in the molecule. Specific examples include N,N'-methylenebisacrylamide, N,N'-ethylenebisacrylamide, N,N'-methylenebismethacrylamide, N,N'-ethylenebismethacrylamide, ethylene glycol diacrylate, and ethylene glycol dimethacrylate.
  • polymer X can be a branched polymer.
  • Polymer X may be either a linear polymer or a branched polymer without any particular limitation, but from the viewpoint of forming polymer particles with excellent stability over time, it is preferable that the polymer X is a linear polymer.
  • the polymer X may have a substituent at the polymer end or at the side chain.
  • the substituent may be derived from the monomer X or another monomer, may be introduced during the polymerization reaction, or may be introduced in a reaction after the polymerization reaction.
  • the substituent may be, for example, a residue of a polymerization initiator during the polymerization reaction, as described later.
  • the substituent is preferably an aryl group or a polar group.
  • the polar group is preferably a cationic functional group.
  • the cationic functional group is preferably present at one or both of the polymer terminals.
  • polymer X is a linear polymer having cationic functional groups at the ends.
  • Polymer particles whose surfaces are covered with positive charges have high adsorption to skin and hair, and are suitable for use in cosmetics, etc.
  • the weight average molecular weight Mw of polymer X in the composition of this embodiment is preferably 1,000 to 1,000,000, more preferably 5,000 to 500,000, and even more preferably 10,000 to 400,000.
  • the number average molecular weight Mn of polymer X is preferably 1,000 to 500,000, more preferably 3,000 to 400,000, and even more preferably 5,000 to 300,000.
  • the weight average molecular weight Mw and the average molecular weight Mn can be measured by gel permeation chromatography (GPC) and obtained as polystyrene equivalent values.
  • GPC gel permeation chromatography
  • the polymer particles dissolved in an organic solvent or the like in advance are measured using a JASCO GPC system (JASCO PU-2080 pump, JASCO RI-2031 differential refractometer, JASCO CO-2060 column oven, Shodex GPC KD-806M column), and the weight average molecular weight Mw and the average molecular weight Mn can be calculated using a calibration curve obtained using a polystyrene standard sample.
  • the content of polymer X (component B) may be about 1.5 to 3.9 times the content (mass) of DHHB (component A), and preferably 2 to 3.5 times.
  • the content of DHHB (component A) may be about 26 to 67% by mass, and preferably 30 to 50% by mass, of the content of polymer X (component B).
  • the required content of DHHB in the polymer particles is ensured, leakage of DHHB from the polymer particles can be prevented, and aggregation of the polymer particles accompanied by crystallization of the leaked DHHB can be further prevented.
  • the polymer particles in the composition of this embodiment contain polyvinyl alcohol (component C).
  • Polyvinyl alcohol has traditionally been used as a dispersant to impart mechanical or freezing stability to compositions (emulsions) containing polymer particles.
  • the polymer particles formed of polymer X (component B) encapsulating DHHB (component A) are further modified with polyvinyl alcohol (component C) to improve salt tolerance.
  • the average degree of polymerization of polyvinyl alcohol may be about 100 to 1000, more preferably 100 to 500, and even more preferably 100 to 300.
  • the size of the droplets in the emulsion reaction liquid during production can be made about 1000 nm or less, making it easy to adjust the average particle size of the polymer particles to 350 nm or less.
  • the droplets are stable, for example, even when an inert gas is blown in before or at the start of the polymerization reaction.
  • the polyvinyl alcohol may have some or all of the hydroxyl groups in its structure acetylated.
  • the polyvinyl alcohol may be one produced by saponifying polyvinyl acetate.
  • the degree of saponification may be 70 mol% or more, and preferably 75 mol% or more.
  • the content of polyvinyl alcohol is preferably 1 to 20% by mass, more preferably 2 to 10% by mass, based on the content of polymer X. Within this range, a composition having a high DHHB content and being stable with polymer particles that are unlikely to aggregate over time can be preferably obtained.
  • the content of polymer X (component B) and/or polyvinyl alcohol (component C) can be calculated using infrared absorption spectrum (IR) and/or nuclear magnetic resonance spectrum (NMR), etc. Specifically, first, the polymer particles separated by centrifugation or filter filtration are dissolved in an organic solvent, etc., and the constituent molecules after dissolution are purified by appropriate column chromatography, etc., and each constituent molecule is measured by IR and/or NMR, etc. to identify polymer X (component B) or polyvinyl alcohol (component C).
  • IR infrared absorption spectrum
  • NMR nuclear magnetic resonance spectrum
  • a calibration curve is created using a standard sample of polymer X (component B) or polyvinyl alcohol (component C) to show the relationship between the content and the spectral peak intensity in IR and/or NMR, etc.
  • the content of polymer X (component B) or polyvinyl alcohol (component C) can be calculated from the value of the spectral peak intensity obtained by measuring polymer X (component B) or polyvinyl alcohol (component C) in the polymer particles by IR and/or NMR, etc. using the obtained calibration curve.
  • the composition of this embodiment contains water.
  • the water is contained to make the composition an oil-in-water emulsion composition, and is not particularly limited as long as it is normally used in cosmetics and the like.
  • Examples of water include purified water, pure water, Elix (registered trademark) water (water treated by reverse osmosis membrane and continuous ion exchange), hot spring water, deep sea water, and steam distilled water from plants, and one or more types can be appropriately selected and used as necessary.
  • the content is not particularly limited, and can be appropriately contained in an amount corresponding to the content of other components, or in an amount that will result in a composition having the desired characteristics in the manufacturing method of the composition described below.
  • the content of water in the composition of this embodiment may be in the range of 10 to 40 masses relative to the total mass of the composition.
  • the total mass of water in the composition is preferably in the range of 10 to 15 times the total mass of component A, and more preferably in the range of 12 to 15 times.
  • the composition of this embodiment may contain, for example, a polar solvent other than water.
  • polar solvents include alcohols such as ethanol.
  • the amount of polar solvent can be appropriately selected, but as described below, in the production of the composition of this embodiment, from the viewpoint of improving the conversion rate from monomer (styrene monomer, etc.) to polymer, it is preferable that the composition of this embodiment does not substantially contain ethanol.
  • the composition of this embodiment may contain a surfactant (emulsifier), but it is preferable that it does not substantially contain a surfactant. This is because a polymer particle-containing composition that does not contain a surfactant is preferable for cosmetic applications.
  • the surfactant content in the composition of this embodiment is 1.5 mM or less, preferably 1.0 mM or less, more preferably 0.5 mM or less, or 0.05% by mass or less, preferably 0.01% by mass or less, based on the total mass of the composition of this embodiment.
  • the composition of this embodiment may contain a monomer (a raw material constituting polymer X that has not reacted).
  • the monomer may be present dissolved or dispersed in water as a component other than the polymer particles.
  • the content of the monomer relative to the total mass of the composition of this embodiment is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 10% by mass or less.
  • the composition of this aspect comprises: comprising polymer particles comprising component A, component B, and component C, and water;
  • the average particle size of the polymer particles is 350 nm or less,
  • the polymer particles have a polydispersity index PdI of 0.2 or less as measured by a dynamic light scattering method;
  • the content of component A in the composition is 5.5% by mass or more.
  • the composition of this aspect comprises: A composition comprising polymer particles comprising component A, component B, and component C,
  • the average particle size of the polymer particles is 350 nm or less,
  • the content of component A is 26 to 67% by mass relative to the content of component B,
  • the polymer particles have a polydispersity index PdI of 0.2 or less as measured by a dynamic light scattering method.
  • composition of the above-mentioned embodiment can be produced, for example, by a production method including emulsifying a reaction liquid containing at least DHHB (component A), monomer X (raw material for the polymer, component B), polyvinyl alcohol (component C), and water, and carrying out a polymerization reaction of the monomers simultaneously with the emulsification or immediately after the emulsification.
  • a production method including emulsifying a reaction liquid containing at least DHHB (component A), monomer X (raw material for the polymer, component B), polyvinyl alcohol (component C), and water, and carrying out a polymerization reaction of the monomers simultaneously with the emulsification or immediately after the emulsification.
  • the composition which is the final product, can be obtained without substantially diluting the emulsified reaction liquid with water or the like.
  • the manufacturing method of a polymer particle-containing composition an oily mixture containing an oil-soluble component such as DHHB and a monomer is dropped into an aqueous solvent such as water to disperse it.
  • the manufacturing method of this embodiment does not need to include a step of substantial dilution by such dispersion.
  • the "substantial dilution step” means a step of adding water in an amount of 100% by mass or more (preferably 50% by mass or more, more preferably 30% by mass or more) relative to the mass of water in the reaction liquid.
  • the emulsified reaction liquid is subjected to a polymerization reaction without going through a dilution step, and a composition containing polymer particles can be obtained without diluting the reaction liquid with water or an aqueous solution between the start and end of the polymerization reaction, except for the addition of the polymerization initiator.
  • the reaction liquid containing water is emulsified in advance, so that the final product can be manufactured without dilution, and therefore a composition with a high polymer particle concentration can be manufactured in one pot.
  • the reaction liquid refers to a liquid containing a monomer (including at least monomer X) constituting polymer X.
  • the reaction liquid may contain polymer X, but means a liquid in which at least a portion (for example, 10% by mass or more, preferably 50% by mass or more) of the monomer remains unpolymerized.
  • the reaction liquid at the time of emulsification may not contain polymer X.
  • the conversion rate of the monomer to polymer can be improved and the incorporation of DHHB into the polymer particles can be promoted.
  • the content of polymer X in the reaction liquid before the start of emulsification is preferably 1.0% by mass to 20% by mass, more preferably 5.0% by mass to 15% by mass, and even more preferably 8.0% by mass to 12% by mass, based on the total mass of the monomer constituting polymer X and polymer X.
  • the reaction liquid may be prepared, for example, by mixing the materials before the polymerization reaction so that the content of the monomers constituting polymer X is 1.5 to 3.9 times (preferably 2 to 3.5 times) the content of DHHB (component A) and the content of water is 10 to 15 times (preferably 12 to 15 times) the content of DHHB (component A).
  • polyvinyl alcohol may be added in an amount of preferably 1 to 20% by mass, more preferably 2 to 10% by mass, based on the total amount of monomers constituting polymer X used.
  • the final product composition can be obtained in one pot without substantial dilution.
  • the mass ratio of DHHB (component A), the monomer constituting polymer X, polyvinyl alcohol (component C), and water in the reaction liquid may be determined based on the mass ratios of component A, polymer X (component B), component C, and water in the final product composition, as well as DHHB (component A), taking into consideration the incorporation rate of DHHB (component A) into the composition or the conversion rate of monomer to polymer. If a polymerization reaction is carried out simultaneously during the emulsification stage of the reaction liquid, a polymerization initiator may be added to the reaction liquid.
  • the reaction liquid is preferably prepared by a procedure that includes dissolving DHHB (component A) in a monomer that constitutes polymer X, such as styrene, to prepare an oily mixture, and then mixing this with an aqueous solution in which polyvinyl alcohol (component C) is dissolved in water.
  • a polymerization initiator it may be added to the oily mixture, the aqueous solution, or a solution in which both are mixed, depending on the type of polymerization initiator.
  • the reaction liquid is preferably substantially free of ethanol.
  • the conversion rate of monomers e.g., styrene monomer, etc.
  • substantially free means that ethanol may be contained in an amount that does not significantly affect the efficiency of the polymerization reaction.
  • ethanol may be contained in an amount that does not require the establishment of a new purification step or a change in the purification method after the polymerization reaction, compared to the case where a reaction mixture containing no ethanol is used.
  • the reaction liquid is free of ethanol, and the polymerization reaction is carried out in an ethanol-free reaction liquid.
  • a surfactant may be added to the reaction solution to further stabilize the polymerization reaction.
  • surfactants include sodium dodecyl sulfate, sodium dodecylbenzene sulfate, sodium pentadecane sulfate, N-dodecyl-N,N,N-trimethylammonium bromide, N-cetyl-N,N,N-trimethylammonium bromide, hexadecyltrimethylammonium chloride, and Triton X-100.
  • the polymerization reaction in the manufacturing method of this embodiment can proceed stably without adding a surfactant. Therefore, the manufacturing method of this embodiment can produce a polymer particle-containing composition that does not contain a surfactant and is suitable for use as a cosmetic.
  • the above emulsification can be performed by stirring. Strong stirring is preferable for the reaction solution for emulsification.
  • the rotation speed can be changed appropriately taking into consideration the scattering of the reaction solution, but the final rotation speed for strong stirring should be 3000 rpm or more, preferably 4000 rpm or more, and more preferably 5000 rpm or more.
  • the stirring time should be 1 minute or more, preferably 5 minutes or more, and more preferably 8 minutes or more.
  • stirring is performed for 10 minutes or more at 6000 rpm or more.
  • Stirring can be performed using a stirrer (e.g., mixer, homomixer, homogenizer, etc.) that is capable of high-speed stirring at 6000 rpm or more and is capable of mixing and emulsifying water and oil.
  • a stirrer e.g., mixer, homomixer, homogenizer, etc.
  • the polymerization reaction can be initiated, for example, by adding a polymerization initiator, raising the temperature, or both.
  • the polymerization reaction temperature depends on the monomer or polymerization initiator used, but is preferably 50 to 100°C, more preferably 60 to 90°C, and even more preferably 70 to 85°C.
  • the reaction liquid may be prepared at room temperature and then heated to the polymerization reaction temperature.
  • the reaction may be carried out in an air atmosphere, but from the viewpoint of improving the conversion rate of the monomer to the polymer, it is preferable to carry out the reaction in a vacuum or in an inert gas atmosphere.
  • An inert gas may be blown into the reaction liquid. Examples of the inert gas include nitrogen gas, helium gas, and argon gas.
  • the reaction liquid may be stirred.
  • the rotation speed during stirring is preferably 10 to 10,000 rpm, more preferably 50 to 1,000 rpm, and even more preferably 80 to 500 rpm. In order to improve the conversion rate from monomer to polymer, stirring at 80 to 200 rpm is particularly preferred.
  • the reaction time for the polymerization reaction is usually 30 minutes to 24 hours, and preferably 1 hour to 6 hours.
  • the polymerization reaction is preferably carried out in the presence of a polymerization initiator. It is also preferable to start the reaction by adding a polymerization initiator. In other words, it is preferable to add a polymerization initiator to the reaction liquid after emulsification without including a polymerization initiator in the reaction liquid before emulsification. At the same time, the reaction liquid may be heated as described above.
  • the polymerization initiator may be dissolved in a solvent such as water or ethanol and added to the reaction liquid as a solution, or the polymerization initiator may be added as is in the form of a solid or liquid form.
  • a solvent such as water or ethanol
  • the polymerization initiator may be added as is in the form of a solid or liquid form.
  • the total amount of polymerization initiator to be added may be added in one go, or may be added in multiple portions (for example, two times).
  • the polymerization initiator added in this case may be a radical polymerization initiator, and is preferably a cationic radical polymerization initiator.
  • the polymerization reaction may be carried out after emulsification of the reaction liquid, or may proceed simultaneously with the emulsification stage of the reaction liquid, but it is preferable to carry out the polymerization reaction after emulsification of the reaction liquid.
  • polymerization reaction at the emulsification stage of the reaction liquid may cause problems such as too much oxygen entering the reaction liquid due to bubbles generated by strong stirring, preventing polymerization by radicals from proceeding and reducing the conversion rate of monomer to polymer. Therefore, when emulsifying the reaction liquid and polymerizing the reaction liquid simultaneously, it is preferable to use an apparatus capable of carrying out the reaction under a vacuum or inert gas atmosphere from which oxygen has been removed in advance.
  • the polymerization initiator used in the manufacturing method of this embodiment can be selected according to the monomer used.
  • a radical polymerization initiator may be used.
  • the radical polymerization initiator is not particularly limited, but for example, a nonionic radical polymerization initiator, a cationic radical polymerization initiator, an anionic radical polymerization initiator, or an amphoteric radical polymerization initiator can be used.
  • a cationic radical polymerization initiator is preferred.
  • a cationic radical polymerization initiator that bonds to the polymer generated during the polymerization reaction is preferred.
  • a cationic radical polymerization initiator By using such a cationic radical polymerization initiator, a cationic functional group is introduced into the polymer X, and polymer particles whose surfaces are covered with positive charges can be formed. Polymer particles whose surfaces are covered with charges are less likely to aggregate due to electrical repulsion between the particles, and the stability over time of the polymer particle-containing composition can be improved. In addition, by being positively charged, as described above, the particles are more easily adsorbed to the skin and hair, improving their suitability as cosmetics.
  • a cationic radical polymerization initiator is a cationic radical polymerization initiator represented by formula (I).
  • a cationic radical polymerization initiator represented by formula (I) For further details on the cationic radical polymerization initiator represented by formula (I), see, for example, JP 2017-051113 A. The contents of this document are incorporated herein by reference.
  • Specific examples of the cationic radical polymerization initiator represented by formula (I) include the above-mentioned ADIP or ADIP-Cl.
  • ADIP or ADIP-Cl the polymer particles of this embodiment can be prepared under milder reaction conditions, and the decrease in the storage stability of the polymer particles due to damage caused by heating during the preparation of the polymer particles can be suppressed.
  • ADIP or ADIP-Cl the polymer particles can be prepared under milder reaction conditions as described above, which can contribute to reducing the environmental load during synthesis.
  • Y represents a single bond or CR 85 ;
  • Z represents a single bond or CR 86 ;
  • R 72 , R 73 , R 75 , R 76 , R 77 , R 78 , R 85 and R 86 are each independently selected from the group consisting of a hydrogen atom, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkylcarbonyl, phenyl and hydroxy, wherein said C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkylcarbonyl and phenyl may be further substituted with 1 or 2 substituents selected from the group consisting of C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkylcarbonyl, phenyl and hydroxy;
  • R 72 and R 73 may further each independently represent adamantyl, or C 1-6 alkyl substituted with Si(OCH 3 ) 2 (CH 3 ); or
  • the "counter anion” in the cationic radical polymerization initiator represented by formula (I) is not particularly limited as long as it is an anion that is commonly used as a counter anion for organic compounds in the technical field of organic chemistry, and includes, for example, halide anions (chloride ion, bromide ion, fluoride ion, iodide ion), conjugate bases of organic acids (e.g., acetate ion, citrate ion, trifluoroacetate ion), nitrate ion, sulfate ion, carbonate ion, etc.
  • halide anions chloride ion, bromide ion, fluoride ion, iodide ion
  • conjugate bases of organic acids e.g., acetate ion, citrate ion, trifluoroacetate ion
  • Counter anions preferred in the present invention include, for example, trifluoromethanesulfonate ion (triflate), chloride ion, nitrate ion, etc.
  • triflate trifluoromethanesulfonate ion
  • chloride ion, acetate ion, or citrate ion are preferred, and chloride ion is more preferred, from the viewpoints of improving the stability over time of the composition produced, increasing the yield of the particles when preparing the polymer particles, and improving the production cost.
  • the cationic radical polymerization initiator preferably has a residue that becomes a substituent of polymer X through a polymerization reaction.
  • Examples of the residue of the cationic radical polymerization initiator that becomes part of polymer X include the following residues.
  • the amount of cationic radical polymerization initiator used may be 0.01 mol% or more relative to the total molar amount of the monomers used, and an appropriate amount can be selected within the range of concentrations at which radical synthesis proceeds.
  • a polymerization initiator of 0.1 mol% or more, preferably 1 mol% or more, and 10 mol% or less, preferably 5 mol% or less can be used.
  • an oil-soluble polymerization initiator may be used together with the cationic radical polymerization initiator as necessary.
  • the oil-soluble polymerization initiator include azobisisobutyronitrile (AIBN, CAS RN: 78-67-1), 2,2'-azobis(2,4-dimethylvaleronitrile) (V-65, CAS RN: 4419-118), etc., and one or more selected from these oil-soluble polymerization initiators are preferable.
  • the oil-soluble polymerization initiator one that can generate radicals even at low temperatures is preferable, and for example, V-65 is preferable.
  • the conversion rate from monomers e.g., styrene monomer, etc.
  • a sufficient conversion rate can be obtained even if an oil-soluble polymerization initiator is not used.
  • the method for producing a composition containing a branched polymer as polymer X may further include a reaction for further crosslinking the polymer obtained by the above polymerization reaction.
  • the crosslinking may proceed simultaneously with the polymerization reaction.
  • DHHB DHHB
  • component A component A
  • the content of component A in the polymer particle composition relative to the content of component A in the reaction solution is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more. Since DHHB is not soluble in water, DHHB that is not incorporated into the polymer particles precipitates as a solid on the walls of the reaction vessel, etc., and can be easily removed.
  • the conversion rate from monomer to polymer by the polymerization reaction is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more.
  • the manufacturing method of this embodiment may include a purification step to remove, for example, DHHB or unreacted monomers that do not constitute the polymer particles.
  • the manufacturing method of this embodiment can be carried out without a purification step by optimizing the mass ratio of DHHB (component A), monomers that constitute polymer X, polyvinyl alcohol (component C), and water in the reaction solution.
  • the composition of the present disclosure can be used, for example, as a cosmetic, a quasi-drug, a pharmaceutical, or a raw material thereof.
  • the composition of the present disclosure can be blended with, as necessary, the following components, for example, within a range that does not substantially impair the effects of the present invention: Liquid fats and oils such as olive oil, camellia oil, macadamia nut oil, castor oil, etc.; solid fats and oils; waxes such as carnauba wax, candelilla wax, jojoba oil, beeswax, lanolin, etc.; higher alcohols such as stearyl alcohol, cetanol, behenyl alcohol, isostearyl alcohol, etc.; higher fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, etc.; hydrocarbon oils such as liquid paraffin, paraffin, volatile isopar
  • the composition of the present disclosure may contain an aqueous alcohol in a concentration range used for antibacterial purposes in cosmetics.
  • aqueous alcohol include ethanol, 1,2-hexanediol, 1,2-pentanediol, 1,3-butanediol, glycerin, and dipropylene glycol.
  • the aqueous alcohol may be used at a concentration that reaches the minimum inhibitory concentration (MIC) (J Soc Cosmet Chem Japan 46 (2012) 295-300. https://doi.org/10.5107/sccj.46.295.).
  • MIC minimum inhibitory concentration
  • the composition of this aspect can be manufactured as a cosmetic, quasi-drug, pharmaceutical, or raw material thereof according to a method that corresponds to the selected dosage form and form.
  • any one or more of the above-mentioned ingredients may be added in the manufacturing process of the composition of this aspect described above, or any one or more of the above-mentioned ingredients or a solvent such as water or ethanol may be added after the composition of this aspect is manufactured as described above.
  • a solvent after the polymerization reaction that results in stable polymer particles.
  • the composition is manufactured by dissolving the above-mentioned essential ingredients and necessary optional ingredients in a solvent such as water.
  • a solvent such as water.
  • the product form of the cosmetic include emulsion, lotion, cream, sunscreen, ointment, powder, sheet, or spray.
  • the cosmetic is a cosmetic composition for skin.
  • the cosmetic is a cosmetic composition for hair.
  • composition of this embodiment when the composition of this embodiment is produced as a raw material for cosmetics, quasi-drugs, or pharmaceuticals, the composition of this embodiment may be added to an aqueous medium containing water, liquid oils and fats, surfactants, thickeners, etc., and further processing such as heating, cooling, or stirring may be performed as necessary to produce the cosmetics, quasi-drugs, or pharmaceuticals.
  • the polyvinyl alcohol (PVA) used was PVA manufactured by Nippon Vinyl Acetate & Poval Co., Ltd. (product name: JMR-3H, degree of saponification: 78 mol%, average degree of polymerization: 110).
  • the 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate (DHHB) used was DHHB manufactured by Tokyo Chemical Industry Co., Ltd.
  • the homomixer used was a Laborution Homomixer MARK II 2.5 model (manufactured by Primix Corporation).
  • Example 1 Synthesis of cationic styrene-based polymer particles SY032 containing UV absorber DHHB 15 g of DHHB was dissolved in 45 g of styrene. Then, 20 g of an aqueous solution in which 4.0 g of PVA was dissolved was placed in a beaker, and 170 g of pure water was added. The aqueous PVA solution was set in a homomixer, and a styrene solution containing DHHB was added while stirring at 2000 rpm. The resulting reaction solution was emulsified by stirring for 10 minutes at a stirring speed of 6000 rpm.
  • the emulsified reaction solution was transferred to a separable flask (capacity 300 mL) with a baffle after blowing argon gas into the entire solution for 10 minutes.
  • the mixture obtained by adding 470 mg of VA-044 to the above reaction solution was heated to 80 ° C. with a mantle heater while stirring at 120 rpm with a mechanical stirrer. After 2 hours of reaction, an additional 470 mg of VA-044 was added, and the reaction was continued for another 2 hours to obtain a polymer particle composition (SY032) as a reaction product.
  • Example 2 Synthesis of cationic styrene-based polymer particles SY034 containing UV absorber DHHB (when V-50 is used as initiator) 15 g of DHHB was dissolved in 45 g of styrene. Then, 20 g of an aqueous solution in which 4.0 g of PVA was dissolved was placed in a beaker, and 170 g of pure water was added. The PVA aqueous solution was set in a homomixer, and the styrene solution containing DHHB was added while stirring at 2000 rpm. The resulting reaction solution was emulsified by increasing the stirring speed to 6000 rpm and stirring for 10 minutes.
  • the emulsified reaction solution was transferred to a separable flask (capacity 300 mL) with a baffle after blowing argon gas into the entire solution for 10 minutes.
  • the mixture obtained by adding 470 mg of V-50 to the above reaction solution was heated to 80 ° C. with a mantle heater while stirring at 120 rpm with a mechanical stirrer. After 2 hours of reaction, an additional 470 mg of V-50 was added, and the reaction was continued for another 2 hours, to obtain a polymer particle composition (SY034) as a reaction product.
  • Comparative Example 1 Synthesis of cationic butyl acrylate polymer particles SY036 containing UV absorber DHHB 15 g of DHHB was dissolved in 45 g of tert-butyl acrylate. Then, 20 g of an aqueous solution in which 4.0 g of PVA was dissolved was placed in a beaker, and 170 g of pure water was added. The PVA aqueous solution was set in a homomixer, and a tert-butyl acrylate solution containing DHHB was added while stirring at 2000 rpm. The resulting reaction solution was further emulsified by increasing the stirring speed to 6000 rpm and stirring for 10 minutes.
  • the emulsified reaction solution was transferred to a separable flask (capacity 300 mL) with a baffle after blowing argon gas into the entire solution for 10 minutes.
  • the mixture in which 470 mg of VA-044 was added to the above reaction solution was heated to 80 ° C. with a mantle heater while stirring at 120 rpm with a mechanical stirrer. After 2 hours of reaction, an additional 470 mg of VA-044 was added, and the reaction was continued for another 2 hours to obtain a polymer particle composition (SY036) as a reaction product.
  • Example 3 Synthesis of cationic methyl methacrylate polymer particles SY038 containing UV absorber DHHB 15 g of DHHB was dissolved in 45 g of methyl methacrylate. Then, 20 g of an aqueous solution in which 4.0 g of PVA was dissolved was placed in a beaker, and 170 g of pure water was added. The PVA aqueous solution was set in a homomixer, and the methyl methacrylate solution containing DHHB was added while stirring at 2000 rpm. The resulting reaction solution was further emulsified by increasing the stirring speed to 6000 rpm and stirring for 10 minutes.
  • the emulsified reaction solution was transferred to a separable flask (capacity 300 mL) with a baffle after blowing argon gas into the entire solution for 10 minutes.
  • the mixture in which 470 mg of VA-044 was added to the above reaction solution was heated to 80 ° C. with a mantle heater while stirring at 120 rpm with a mechanical stirrer. After 2 hours of reaction, an additional 470 mg of VA-044 was added, and the reaction was continued for another 2 hours to obtain a polymer particle composition (SY038) as a reaction product.
  • Comparative Example 2 Synthesis of cationic styrene-based polymer particles SY039 containing UV absorber DHHB 15 g of DHHB was dissolved in 45 g of styrene. Then, 20 g of an aqueous solution in which 4.0 g of PVA was dissolved in a separable flask (capacity 300 mL) with a baffle was placed in a beaker, and 170 g of pure water was added. A styrene solution containing DHHB was further added. While stirring at 450 rpm, argon gas was blown into the entire reaction solution obtained for 10 minutes, and 470 mg of VA-044 was added. The mixture was heated to 80 ° C.
  • the polymer particle compositions (reaction products) obtained in Evaluation Examples 1 to 3 and Comparative Examples 1 and 2 were each transferred from the reaction vessel to a measurement vessel [microtube (material: polypropylene, capacity: 1.5 mL, manufactured by Eppendorf Co., Ltd.)] and dried with dry heat to calculate the dry mass of each polymer particle composition.
  • the DHHB content of each polymer particle composition was measured as follows, with reference to "Hygienic Test Methods - Commentary 2015" (edited by the Pharmaceutical Society of Japan, Kanehara Publishing (2015)).
  • the polymer particle composition was centrifuged (20400G, 10 minutes) to recover the precipitate. After diluting the recovered material with tetrahydrofuran, DHHB was extracted with chloroform and quantitatively analyzed by high performance liquid chromatography (HPLC). DHHB was detected using the absorbance at 350 nm as an index.
  • the average particle size of the polymer particles contained in the polymer particle composition was measured by dynamic light scattering using a Zetasizer Nano ZSP (Malvern Instruments). PdI was measured using a Zetasizer Nano ZSP (Malvern Instruments). The average zeta potential was measured using a Zetasizer Nano ZSP (Malvern Instruments). All measurements were performed at 25° C., and the viscosity of water was 0.89 mPa ⁇ s ⁇ 1 and the relative dielectric constant was 78.5. Henry's function (1.5) was used to calculate the zeta potential.
  • the stability over time was evaluated by transferring a sample immediately after production into a glass bottle, storing it at room temperature for 2 weeks, and then evaluating the stability over time according to the following criteria.
  • evaluation criteria A: When shaken 5 times or less, no visual change from immediately after manufacture is observed.
  • Table 1 shows the amounts of ingredients and manufacturing processes used to manufacture the compositions of Examples 1 to 3 and Comparative Examples 1 and 2, as well as the measurement results of the resulting compositions.
  • the content of DHHB in the composition of Example 1 was high at 6.2% by mass, and the stability over time was also good.
  • the content of DHHB in the composition of Example 2 was high at 5.8% by mass, and the stability over time was also good.
  • tert-butyl acrylate was used as the monomer during production.
  • the content of DHHB in the obtained composition was high at 5.6% by mass, but the stability over time was poor.
  • the content of DHHB in the composition of Example 3 was high at 5.8% by mass, and the stability over time was also good.
  • the composition of Comparative Example 2 had excellent stability over time, the content of DHHB in the composition of Comparative Example 2 was 3.8% by mass, which was less than 5.5% by mass.
  • the production did not include a step of stirring to obtain an emulsion. DHHB precipitated from the reaction solution was found to adhere to the wall of the beaker used, and the uptake rate of DHHB was 63% by mass.
  • Polymer concentration (mass%) of polymer particle composition solids concentration (mass%) of polymer particle composition ⁇ DHHB content (mass%) in polymer particle composition
  • the positive control was prepared as follows: The polymer particle composition of Reference Example S1 (20 mg) and THF (100 ⁇ L) were mixed thoroughly in a 1.5 mL tube. Chloroform (600 ⁇ L) was then added and ultrasonicated for 15 minutes. The ultrasonicated sample (10 ⁇ L) was diluted with acetonitrile (990 ⁇ L). All prepared samples were filtered through a PTFE (polytetrafluoroethylene) membrane filter with a pore size of 0.2 ⁇ m.
  • PTFE polytetrafluoroethylene
  • the DHHB content in the supernatant containing each alcohol and the positive control was measured by HPLC in the same manner as when determining the DHHB content in the polymer particle composition. Based on the HPLC analysis, the relative amount of DHHB in the alcohol aqueous solution was calculated as "(DHHB content in alcohol aqueous solution)/(DHHB content in positive control)". As shown in Figure 1, DHHB was not detected in any of the solutions, indicating that DHHB had not leaked from the polymer particles.
  • FIG. 2 shows SEM images of hair treated with water (FIG. 2A), the polymer particle composition of Reference Example S1 (FIG. 2B), and the polymer particle composition of Reference Example S2 (FIG. 2C), and FIG. 2D shows an enlarged image of the square frame shown in FIG. 2B.
  • the characteristic scale-like surface structure of hair can be seen in FIGS. 2A-D, and particles can be seen over a wide area of the hair surface in FIGS. 2B and 2D.
  • the particle diameter measured from the 10 particles observed in FIG. 2D was 263 ⁇ 19 nm, which was almost the same as the particle diameter obtained by measurement using the dynamic light scattering method.
  • no particle structure was observed in FIGS. 2A and 2C. That is, it was confirmed that the polymer particles (cationic) in the polymer particle composition of Reference Example S1 were strongly adsorbed to hair, and the polymer particles (anionic) in the polymer particle composition of Reference Example S2 were not adsorbed to hair.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Emergency Medicine (AREA)
  • Polymerisation Methods In General (AREA)
  • Cosmetics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a composition containing water and polymer particles that contain 2-[4-(diethylamino)-2-hydroxybenzoyl] hexyl benzoate (DHHB), a polymer containing a repeating unit derived from a monomer able to form a homopolymer having a glass transition temperature of at least 80°C, and a polyvinyl alcohol, wherein the average particle size of the polymer particles is at most 350 nm, the PdI is at most 0.2, and the DHHB content is at least 5.5 mass%. This composition has excellent long-term stability while having a high DHHB content. This composition can be produced using a production method that comprises agitating and emulsifying a reaction solution containing DHHB, the abovementioned monomer, a polyvinyl alcohol, and water, and subjecting the monomer to a polymerization reaction at the same time as the emulsification or after the emulsification.

Description

ポリマー粒子を含む組成物およびポリマー粒子を含む組成物の製造方法Compositions containing polymer particles and methods for making compositions containing polymer particles
 本発明は、ポリマー粒子を含む組成物およびポリマー粒子を含む組成物の製造方法に関する。特に、本発明は、2-[4-(ジエチルアミノ)-2-ヒドロキシベンゾイル]安息香酸ヘキシル(DHHB)を含有するポリマー粒子を含む組成物および当該組成物の製造方法に関する。 The present invention relates to a composition comprising polymer particles and a method for producing a composition comprising polymer particles. In particular, the present invention relates to a composition comprising polymer particles containing 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate (DHHB) and a method for producing the composition.
 2-[4-(ジエチルアミノ)-2-ヒドロキシベンゾイル]安息香酸ヘキシル(以下「DHHB」という)は、主に日焼け止め化粧料等に使用されるUVA紫外線吸収剤として知られている(特許文献1、非特許文献1)。DHHB等の紫外線吸収剤の使用において、皮膚に直接塗布した場合の皮膚への刺激を低減するために、また、皮膚への吸着性を向上させるために、紫外線吸収剤をポリマー粒子に内包する技術が開発されている。
 例えば、特許文献2には、DHHBを内包するカチオン性ポリマー粒子であって、該カチオン性ポリマー粒子が、カチオン性重合開始剤に由来する構造単位および炭素-炭素二重結合を含むモノマーに由来する構造単位を含んでなる重合体である、DHHBを内包するカチオン性ポリマー粒子が報告されている。
 また、例えば、特許文献3には、紫外線吸収剤を内包するマイクロカプセルを含有する化粧料であって、紫外線吸収剤が少なくとも液体もしくは無定形状態であり、マイクロカプセルがポリウレア/ポリウレタン樹脂壁膜からなり、平均粒子径が0.1~10μm、且つマイクロカプセルに占める壁膜材比率が20~95重量%であることを特徴とする化粧料が報告されている。
2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate (hereinafter referred to as "DHHB") is known as a UVA ultraviolet absorbing agent used mainly in sunscreen cosmetics and the like (Patent Document 1, Non-Patent Document 1). In using ultraviolet absorbing agents such as DHHB, in order to reduce irritation to the skin when directly applied to the skin and to improve the adsorption to the skin, a technique for encapsulating the ultraviolet absorbing agent in polymer particles has been developed.
For example, Patent Document 2 reports cationic polymer particles encapsulating DHHB, which are polymers comprising structural units derived from a cationic polymerization initiator and structural units derived from a monomer containing a carbon-carbon double bond.
Furthermore, for example, Patent Document 3 reports a cosmetic preparation containing microcapsules encapsulating an ultraviolet absorbent, characterized in that the ultraviolet absorbent is at least in a liquid or amorphous state, the microcapsules are made of a polyurethane/polyurethane resin wall film, the average particle size is 0.1 to 10 μm, and the wall film material accounts for 20 to 95% by weight of the microcapsules.
特開2012-193138号公報JP 2012-193138 A 特開2021-088555号公報JP 2021-088555 A 特開平07-267841号公報Japanese Patent Application Laid-Open No. 07-267841
 本発明者らが、特許文献2に記載の製法を用いてDHHBの含有量がより高いポリマー粒子含有組成物の製造を試みていたところ、時間の経過とともに凝集物が生じるという問題があることを初めて見出した。凝集物が生じたポリマー粒子含有組成物は振とうしても製造直後の状態に戻らず、例えば化粧料としての使用に適していないものであった。本発明は、この問題を解決するためになされたものである。すなわち、本発明は、DHHBを含有するポリマー粒子含有組成物において、高いDHHBの含有量を有し、且つ経時安定性に優れたポリマー粒子含有組成物を提供することを課題とする。本発明はまた、上記組成物の製造方法を提供することを課題とする。 When the present inventors were attempting to manufacture a polymer particle-containing composition with a higher DHHB content using the manufacturing method described in Patent Document 2, they discovered for the first time that there was a problem with the formation of aggregates over time. A polymer particle-containing composition in which aggregates had formed would not return to the state it was in immediately after manufacture even when shaken, making it unsuitable for use, for example, as a cosmetic. The present invention has been made to solve this problem. That is, an object of the present invention is to provide a polymer particle-containing composition that contains DHHB, has a high DHHB content, and has excellent stability over time. Another object of the present invention is to provide a method for manufacturing the above composition.
 本発明者らは、ポリマー粒子含有組成物の製造方法についてさらに鋭意研究を重ね、従来とは異なる製法により製造されたポリマー粒子含有組成物が高いDHHBの含有量を有すること、および経時安定性に優れていることを見出した。本発明者らはこの知見に基づきさらに検討を重ね、本発明を完成するに至った。 The inventors further conducted intensive research into the manufacturing method of polymer particle-containing compositions and discovered that polymer particle-containing compositions manufactured by a method different from conventional methods have a high DHHB content and excellent stability over time. Based on this knowledge, the inventors conducted further research and have completed the present invention.
 具体的には、本発明は以下のとおりである。
<1>成分A:2-[4-(ジエチルアミノ)-2-ヒドロキシベンゾイル]安息香酸ヘキシル、
成分B:ガラス転移温度80℃以上のホモポリマーを形成できるモノマー由来の繰り返し単位を含むポリマー、および
成分C:ポリビニルアルコール
を含むポリマー粒子、ならびに

を含む組成物であって、
上記ポリマー粒子の平均粒子径が350nm以下であり、
上記ポリマー粒子の動的光散乱法による多分散性指数PdIが0.2以下であり、
上記組成物中の成分Aの含有量が5.5質量%以上である組成物。
<2>成分Aの含有量が成分Bの含有量に対し26~67質量%である、<1>に記載の組成物。
<3>上記モノマーがスチレンまたはメタクリル酸メチルである、<1>または<2>に記載の組成物。
<4>成分Bがカチオン性の官能基を有するポリマーである、<1>~<3>のいずれかに記載の組成物。
<5>上記ポリマー粒子中の成分Aの含有量が20質量%以上である、<1>~<4>のいずれかに記載の組成物。
<6>界面活性剤を実質的に含まない、<1>~<5>のいずれかに記載の組成物。
Specifically, the present invention is as follows.
<1> Component A: 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate,
A composition comprising: component B: a polymer containing a repeating unit derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80° C. or higher; and component C: polymer particles containing polyvinyl alcohol; and water,
The average particle size of the polymer particles is 350 nm or less,
The polymer particles have a polydispersity index PdI of 0.2 or less as measured by a dynamic light scattering method;
The composition, wherein the content of component A in the composition is 5.5 mass% or more.
<2> The composition according to <1>, wherein the content of component A is 26 to 67 mass% relative to the content of component B.
<3> The composition according to <1> or <2>, wherein the monomer is styrene or methyl methacrylate.
<4> The composition according to any one of <1> to <3>, wherein component B is a polymer having a cationic functional group.
<5> The composition according to any one of <1> to <4>, wherein the content of component A in the polymer particles is 20 mass% or more.
<6> The composition according to any one of <1> to <5>, which is substantially free of a surfactant.
<7>成分A:2-[4-(ジエチルアミノ)-2-ヒドロキシベンゾイル]安息香酸ヘキシル、
成分B:ガラス転移温度80℃以上のホモポリマーを形成できるモノマー由来の繰り返し単位を含むポリマー、および
成分C:ポリビニルアルコール
を含むポリマー粒子を含む組成物であって、上記ポリマー粒子の平均粒子径が350nm以下であり、
成分Aの含有量が成分Bの含有量に対し、26~67質量%であり、
上記ポリマー粒子の動的光散乱法による多分散性指数PdIが0.2以下である、組成物。
<8>上記モノマーがスチレンまたはメタクリル酸メチルである、<7>に記載の組成物。
<9>成分Bがカチオン性の官能基を有するポリマーである、<7>または<8>に記載の組成物。
<7> Component A: 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate,
A composition comprising: component B: a polymer containing a repeating unit derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80° C. or higher; and component C: polymer particles containing polyvinyl alcohol, wherein the polymer particles have an average particle size of 350 nm or less;
The content of component A is 26 to 67% by mass relative to the content of component B,
The composition, wherein the polymer particles have a polydispersity index PdI of 0.2 or less as measured by a dynamic light scattering method.
<8> The composition according to <7>, wherein the monomer is styrene or methyl methacrylate.
<9> The composition according to <7> or <8>, wherein component B is a polymer having a cationic functional group.
<10>成分A:2-[4-(ジエチルアミノ)-2-ヒドロキシベンゾイル]安息香酸ヘキシル、
成分B:ガラス転移温度80℃以上のホモポリマーを形成できるモノマー由来の繰り返し単位を含むポリマー、および
成分C:ポリビニルアルコール
を含むポリマー粒子を含む組成物の製造方法であって、
成分A、上記モノマー、成分C、および水を少なくとも含む反応液を乳化する工程、ならびに
上記乳化と同時にまたは上記乳化の後に上記モノマーの重合反応を行なう工程
を含む、製造方法。
<11>上記重合反応の開始前の反応液に含まれる上記モノマーの全質量が成分Aの全質量の1.5~3.9倍であり、上記水の全質量が成分Aの全質量の10~15倍である、<10>に記載の製造方法。
<12>上記反応液が上記重合反応の開始から完了までの間に希釈されない、<10>または<11>に記載の製造方法。
<13>上記乳化が10分以上および6000rpm以上の条件からなる撹拌により行なわれる、<10>~<12>のいずれかに記載の製造方法。
<14>上記重合反応が重合開始剤の存在下で行なわれる、<10>~<13>のいずれかに記載の製造方法。
<15>上記乳化前の反応液が重合開始剤を含まず、さらに上記乳化後の上記反応液に重合開始剤が添加される工程を含む、<10>~<14>のいずれかに記載の製造方法。
<16>上記ポリマー粒子が上記繰り返し単位および上記重合開始剤の残基を有するポリマーを含む、<14>または<15>に記載の製造方法。
<17>上記残基がカチオン性の官能基を有する残基である、<16>に記載の製造方法。
<10> Component A: 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate,
A method for producing a composition comprising component B: a polymer containing a repeating unit derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80° C. or higher, and component C: polymer particles containing polyvinyl alcohol, the method comprising the steps of:
The production method includes a step of emulsifying a reaction liquid containing at least component A, the monomer, component C, and water, and a step of carrying out a polymerization reaction of the monomer simultaneously with or after the emulsification.
<11> The method according to <10>, wherein the total mass of the monomers contained in the reaction solution before the start of the polymerization reaction is 1.5 to 3.9 times the total mass of component A, and the total mass of the water is 10 to 15 times the total mass of component A.
<12> The method according to <10> or <11>, wherein the reaction solution is not diluted during the course of the polymerization reaction.
<13> The method according to any one of <10> to <12>, wherein the emulsification is carried out for 10 minutes or more and at a stirring speed of 6,000 rpm or more.
<14> The method according to any one of <10> to <13>, wherein the polymerization reaction is carried out in the presence of a polymerization initiator.
<15> The method according to any one of <10> to <14>, wherein the reaction liquid before the emulsification does not contain a polymerization initiator, and further comprises a step of adding a polymerization initiator to the reaction liquid after the emulsification.
<16> The method according to <14> or <15>, wherein the polymer particles contain a polymer having the repeating unit and a residue of the polymerization initiator.
<17> The method according to <16>, wherein the residue is a residue having a cationic functional group.
<18>上記乳化前の反応液が成分Bを含む、<10>~<17>のいずれかに記載の製造方法。
<19>上記モノマーがスチレンであり、成分Bがポリスチレンである、<18>に記載の製造方法。
<20>上記組成物が<1>~<9>のいずれかに記載の組成物である、<10>~<19>のいずれかに記載の製造方法。
<21>上記反応液の成分Aの含有量に対する上記組成物の成分Aの含有量が70質量%以上である、<10>~<20>のいずれかに記載の製造方法。
<18> The method according to any one of <10> to <17>, wherein the reaction liquid before emulsification contains component B.
<19> The method according to <18>, wherein the monomer is styrene and component B is polystyrene.
<20> The method according to any one of <10> to <19>, wherein the composition is the composition according to any one of <1> to <9>.
<21> The method according to any one of <10> to <20>, wherein the content of component A in the composition relative to the content of component A in the reaction liquid is 70 mass% or more.
 本発明により、高いDHHBの含有量を有し、且つ経時安定性に優れたポリマー粒子含有組成物、およびその製造方法が提供される。 The present invention provides a polymer particle-containing composition that has a high DHHB content and excellent stability over time, and a method for producing the same.
実施例組成物を含む水性アルコール中のDHHBの相対量を示す図である:10質量%エタノール(E_10)、20質量%1,3-ブタンジオール(B_20)、10質量%1,2-ペンタンジオール(P_10)、2.5質量%1,2-ヘキサンジオール(H_2.5)。FIG. 1 shows the relative amounts of DHHB in aqueous alcohol containing example compositions: 10% by weight ethanol (E_10), 20% by weight 1,3-butanediol (B_20), 10% by weight 1,2-pentanediol (P_10), 2.5% by weight 1,2-hexanediol (H_2.5). 水またはポリマー粒子組成物で処理した毛髪繊維のSEM画像である:(A)水(対照)、(B)参考例S1のポリマー粒子組成物、(C)参考例S2のポリマー粒子組成物、(D)(B)の四角枠内の領域の拡大画像。(A)~(C)のスケールバー(白色)は10μm、(D)のスケールバー(黒色)は3μmである。1 shows SEM images of hair fibers treated with water or polymer particle compositions: (A) water (control), (B) polymer particle composition of Reference Example S1, (C) polymer particle composition of Reference Example S2, (D) magnified image of the boxed area in (B). Scale bar (white) for (A)-(C) is 10 μm, scale bar (black) for (D) is 3 μm.
 以下、本発明について詳細に説明する。
 以下の説明において、含有量等の物質の量は、別途記載の無い場合は質量で表される。また、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
The present invention will be described in detail below.
In the following description, the amount of a substance, such as the content, is expressed by mass unless otherwise specified. Furthermore, a numerical range expressed using "to" means a range including the numerical values before and after "to" as the lower and upper limits.
<ポリマー粒子含有組成物>
 本発明の一態様は、ポリマー粒子を含有する組成物に関する。
 本態様の組成物はDHHB(2-[4-(ジエチルアミノ)-2-ヒドロキシベンゾイル]安息香酸ヘキシル;本明細書において「成分A」ということがある。)を含有する。
<Polymer particle-containing composition>
One aspect of the present invention relates to a composition containing polymer particles.
The composition of this embodiment contains DHHB (2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate; sometimes referred to as "Component A" in this specification).
 DHHBは、油剤に溶解するが低温で析出し、また水への溶解性は低い。したがって、本態様の組成物中に存在するDHHBは、ポリマー粒子に内包されて存在する。本態様の組成物は、DHHBを含むポリマー粒子が水媒体に分散している水中油滴エマルションであることが好ましい。 DHHB dissolves in oils but precipitates at low temperatures and has low solubility in water. Therefore, the DHHB present in the composition of this embodiment is present encapsulated in polymer particles. The composition of this embodiment is preferably an oil-in-water emulsion in which polymer particles containing DHHB are dispersed in an aqueous medium.
 本態様の組成物において、ポリマー粒子の平均粒子径は350nm以下である。この範囲であることにより、経時的にポリマー粒子が凝集しにくく安定な組成物とすることができる。
 本態様において平均粒子径は、公知の動的光散乱法による流体力学的な平均粒子径(Z-Ave)で示される。動的光散乱法による流体力学的な平均粒子径は、分散媒中でブラウン運動をする粒子からの散乱光強度を測定し、その強度の時間的変動から算出される。散乱光強度は、例えば、ゼータサイザーナノZSP(マルバーン社)(Zetasizer Nano ZSP, Malvern Instruments Limited, UK)等を用いて測定することができる。ゼータサイザーナノZSPは波長633nmの10mW He-Neレーザーを備えている。
 本態様の組成物におけるポリマー粒子の平均粒子径は、350nm以下であれば特に制限はないが、10nm以上であることが好ましく、50nm以上であることがより好ましく、さらには100nm以上であることがより好ましい。この範囲で必要量のDHHBを内包することができる。
In the composition of this embodiment, the average particle size of the polymer particles is 350 nm or less. By having the average particle size in this range, the polymer particles are less likely to aggregate over time, making it possible to provide a stable composition.
In this embodiment, the average particle size is represented by the hydrodynamic average particle size (Z-Ave) measured by a known dynamic light scattering method. The hydrodynamic average particle size measured by the dynamic light scattering method is calculated from the temporal variation of the scattered light intensity measured from particles undergoing Brownian motion in a dispersion medium. The scattered light intensity can be measured, for example, using a Zetasizer Nano ZSP (Malvern Instruments Limited, UK). The Zetasizer Nano ZSP is equipped with a 10 mW He-Ne laser with a wavelength of 633 nm.
The average particle size of the polymer particles in the composition of this embodiment is not particularly limited as long as it is 350 nm or less, but is preferably 10 nm or more, more preferably 50 nm or more, and even more preferably 100 nm or more. Within this range, the necessary amount of DHHB can be encapsulated.
 また、本態様の組成物において、ポリマー粒子の動的光散乱法による多分散性指数(Polydispersity Index, PdI)は、0.2以下であり、0.1以下であることが好ましい。PdIは、例えば、ゼータサイザーナノZSP(マルバーン社)等を用いて測定することができる。PdIは、平均粒子径と共に組成物におけるポリマー粒子の粒子径分布の幅を評価するための指標として用いられる。粒子径分布の幅が大きいポリマー粒子含有組成物(エマルション)では、オストワルドライプニング(Ostwald ripening)と呼ばれるエマルション崩壊の現象が起こりやすくなる。オストワルドライプニングは、粒子径が異なる粒子間では油-水界面の曲率の差から、Kelvin則で示される溶解度差が生じ、小さな油滴から大きな油滴へ油の分子拡散がおこり、大きな油滴はさらに大きくなっていくという現象である。本態様の組成物は、PdIが0.2以下である。この範囲であることにより、経時的にポリマー粒子の凝集が起こりにくく安定な組成物とすることができる。 In addition, in the composition of this embodiment, the polydispersity index (PdI) of the polymer particles measured by dynamic light scattering is 0.2 or less, and preferably 0.1 or less. PdI can be measured, for example, using a Zetasizer Nano ZSP (Malvern Instruments). PdI is used as an index for evaluating the width of the particle size distribution of the polymer particles in the composition together with the average particle size. In a composition (emulsion) containing polymer particles with a large width of the particle size distribution, a phenomenon of emulsion collapse called Ostwald ripening is likely to occur. Ostwald ripening is a phenomenon in which a solubility difference occurs between particles with different particle sizes due to the difference in curvature of the oil-water interface, as shown by Kelvin's law, and molecular diffusion of oil occurs from small oil droplets to large oil droplets, causing the large oil droplets to become even larger. The composition of this embodiment has a PdI of 0.2 or less. By keeping the content within this range, the polymer particles are less likely to aggregate over time, making the composition stable.
 加えて、本態様の組成物におけるポリマー粒子の平均ゼータ電位は、特に制限はないが、組成物における凝集の発生をさらに抑える為に、+10m~+70mVであることが好ましく、+30mV~+70mVであることがより好ましい。
 本態様において平均ゼータ電位は、ポリマー粒子の電気泳動移動速度から算出される。平均ゼータ電位は、例えば、ゼータサイザーナノZSP(マルバーン社)等を用いて測定することができる。
In addition, the average zeta potential of the polymer particles in the composition of this embodiment is not particularly limited, but in order to further suppress the occurrence of aggregation in the composition, it is preferably +10 mV to +70 mV, and more preferably +30 mV to +70 mV.
In this embodiment, the average zeta potential is calculated from the electrophoretic migration velocity of the polymer particles. The average zeta potential can be measured, for example, using a Zetasizer Nano ZSP (Malvern Instruments).
 本態様の組成物におけるポリマー粒子はDHHB(成分A)、ガラス転移温度80℃以上のホモポリマーを形成できるモノマー由来の繰り返し単位を含むポリマー(本明細書において、「ポリマーX」または「成分B」ということがある。)、およびポリビニルアルコール(本明細書において、「成分C」ということがある。)を少なくとも含む。 The polymer particles in the composition of this embodiment contain at least DHHB (component A), a polymer containing repeating units derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80°C or higher (sometimes referred to herein as "polymer X" or "component B"), and polyvinyl alcohol (sometimes referred to herein as "component C").
 ポリマー粒子は成分A~C以外の他の成分を含んでいてもよい。他の成分としては、例えば、ポリマー粒子の形成時に加えられる重合開始剤のほか、DHHB以外の油溶性紫外線吸収剤またはポリマーX以外のポリマーがあげられる。ポリマーX以外のポリマーの添加目的としては、例えば、粒子形成の促進等があげられる。ポリマーX以外のポリマーとしては例えばポリスチレン等が挙げられ、ポリマーX以外のポリマーを反応初期のモノマー溶液に溶解し、ポリマー粒子形成を促進することができる。
 ポリマー粒子における成分A~C以外の他の成分の含有量はポリマー粒子のすべての成分の含有量に対し15質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましい。
The polymer particles may contain other components in addition to components A to C. Examples of other components include a polymerization initiator added during the formation of the polymer particles, an oil-soluble UV absorber other than DHHB, or a polymer other than polymer X. The purpose of adding a polymer other than polymer X may be, for example, to promote particle formation. Examples of polymers other than polymer X include polystyrene, and the polymer other than polymer X can be dissolved in the monomer solution at the beginning of the reaction to promote the formation of polymer particles.
The content of components other than components A to C in the polymer particles is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less, based on the content of all components in the polymer particles.
 本態様の組成物におけるポリマー粒子の含有量は、組成物の全質量に対し、20質量%以上であることが好ましく、22質量%以上であることがより好ましい。また、本態様の組成物におけるポリマー粒子の含有量は、組成物の全質量に対し、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、35質量%以下であることがさらに好ましい。
 ポリマー粒子含有組成物におけるポリマー粒子の含有量(質量)は、組成物がポリマー粒子以外の成分として乾燥工程により除去可能な成分(水または未反応のモノマー等の溶剤)のみを含む場合は、組成物の固形分質量(乾燥質量)に相当する。また、ポリマー粒子以外の成分が組成物中に溶解している場合は、当該成分は、遠心操作により除くことができるため、遠心操作後の沈殿物の乾燥質量がポリマー粒子の含有量(質量)に相当する。
The content of the polymer particles in the composition of this embodiment is preferably 20% by mass or more, more preferably 22% by mass or more, based on the total mass of the composition. The content of the polymer particles in the composition of this embodiment is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 35% by mass or less, based on the total mass of the composition.
The content (mass) of polymer particles in the polymer particle-containing composition corresponds to the solid content mass (dry mass) of the composition when the composition contains only the components that can be removed by drying process (water or solvent such as unreacted monomer) as the components other than polymer particles.In addition, when the components other than polymer particles are dissolved in the composition, the components can be removed by centrifugation, so the dry mass of the precipitate after centrifugation corresponds to the content (mass) of polymer particles.
 ポリマー粒子におけるDHHB(成分A)の含有量(組成物中のポリマー粒子のすべての成分の含有量に対するDHHBの含有量の割合)は、20質量%以上であることが好ましく、22質量%以上であることがより好ましく、また、33質量%以下であることが好ましく、31質量%以下であることがより好ましい。この範囲において、高いDHHB含有量を有し、且つ経時的にポリマー粒子が凝集しにくく安定な組成物を好ましく得ることができる。 The content of DHHB (component A) in the polymer particles (the ratio of the content of DHHB to the content of all components of the polymer particles in the composition) is preferably 20% by mass or more, more preferably 22% by mass or more, and preferably 33% by mass or less, more preferably 31% by mass or less. Within this range, a composition can be preferably obtained that has a high DHHB content and is stable with the polymer particles less likely to aggregate over time.
 本態様の組成物のDHHBの含有量は5.5質量%以上であることが好ましい。すなわち、本態様の組成物の全質量に対してDHHBは5.5質量%以上であることが好ましい。本態様の組成物はこのようにDHHBを高含有量で含むことにより、例えば、少量で紫外線防止効果の高い化粧料原料として有用である。組成物におけるDHHBの含有量は、例えば5.7質量%以上、5.8質量%以上、6.0質量%以上、6.2質量%以上であることも好ましい。上限は特にないが、通常10質量%以下であればよい。本態様の組成物は、ポリマー粒子中のDHHBの含有量とともに、ポリマー粒子濃度を高めることにより、5.5質量%以上のDHHBの含有量を有し得る。 The content of DHHB in the composition of this embodiment is preferably 5.5% by mass or more. In other words, the content of DHHB is preferably 5.5% by mass or more relative to the total mass of the composition of this embodiment. The composition of this embodiment contains such a high content of DHHB that it is useful, for example, as a cosmetic ingredient that has a high UV protection effect even in small amounts. The content of DHHB in the composition is also preferably, for example, 5.7% by mass or more, 5.8% by mass or more, 6.0% by mass or more, or 6.2% by mass or more. There is no particular upper limit, but it is usually sufficient if it is 10% by mass or less. The composition of this embodiment can have a DHHB content of 5.5% by mass or more by increasing the polymer particle concentration as well as the content of DHHB in the polymer particles.
 組成物中のDHHBの含有量は、「衛生試験法・注解2015」(日本薬学会編,金原出版(2015年))等に記載の公知の方法を用いて測定することができる。例えば、組成物からテトラヒドロフランおよびクロロホルムでDHHBを抽出し、高速液体クロマトグラフィー(350nmの吸光度を指標)を用いて測定することができる。 The DHHB content in the composition can be measured using known methods such as those described in "Hygienic Testing Methods - Commentary 2015" (edited by the Pharmaceutical Society of Japan, Kanehara Publishing (2015)). For example, DHHB can be extracted from the composition with tetrahydrofuran and chloroform, and then measured using high performance liquid chromatography (using absorbance at 350 nm as an index).
 ガラス転移温度80℃以上のホモポリマーを形成できるモノマー由来の繰り返し単位を含むポリマー(ポリマーX)は、ガラス転移温度80℃以上のホモポリマーを形成できるモノマー(本明細書において、「モノマーX」ということがある。)の重合反応により生成するポリマーである。なお、後述するように、ポリマーXを得る際のモノマーXの重合反応では、モノマーXとともにモノマーX以外のその他のモノマーも反応し、ポリマーXの構成単位となっていてもよい。 A polymer (polymer X) containing repeating units derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80°C or higher is a polymer produced by a polymerization reaction of a monomer capable of forming a homopolymer having a glass transition temperature of 80°C or higher (sometimes referred to as "monomer X" in this specification). As described below, in the polymerization reaction of monomer X to obtain polymer X, other monomers besides monomer X may also react with monomer X and become constituent units of polymer X.
 モノマーXは、ガラス転移温度が変動しない程度の十分な重合度にて単独重合を行った場合に、得られるホモポリマーのガラス転移温度が80℃以上となるモノマーである。好ましくは、得られるホモポリマーのガラス転移温度が80~200℃となるモノマーであり、より好ましくは、得られるホモポリマーのガラス転移温度が80~180℃となるモノマーであり、さらに好ましくは、得られるホモポリマーのガラス転移温度が80℃~150℃となるモノマーである。 Monomer X is a monomer that, when homopolymerized at a sufficient degree of polymerization such that the glass transition temperature does not fluctuate, results in a homopolymer with a glass transition temperature of 80°C or higher. Preferably, the monomer is one that results in a homopolymer with a glass transition temperature of 80 to 200°C, more preferably, one that results in a homopolymer with a glass transition temperature of 80 to 180°C, and even more preferably, one that results in a homopolymer with a glass transition temperature of 80°C to 150°C.
 得られるホモポリマーのガラス転移温度は、示差走査熱量測定(DSC)法を用いて測定することができる。具体的なDSC法の測定方法は、JIS K 7121(1987年)に記載の方法に準ずる。 The glass transition temperature of the resulting homopolymer can be measured using differential scanning calorimetry (DSC). The specific method for measuring DSC is in accordance with the method described in JIS K 7121 (1987).
 モノマーXとしては、炭素-炭素二重結合を含むモノマーが好ましい。炭素-炭素二重結合を含むモノマーの例としてはビニル系化合物モノマーがあげられ、例えば、アクリルアミド類、メタクリルアミド類、アクリル酸類、アクリル酸類のエステル類、メタクリル酸類、メタクリル酸類のエステル類、およびスチレン類等、があげられる。 As monomer X, a monomer containing a carbon-carbon double bond is preferable. Examples of monomers containing a carbon-carbon double bond include vinyl compound monomers, such as acrylamides, methacrylamides, acrylic acids, esters of acrylic acids, methacrylic acids, esters of methacrylic acids, and styrenes.
 モノマーXの具体例としては、例えば、スチレン、メタクリル酸メチル、メタクリル酸イソプロピルメタクリル酸シクロヘキシル、メタクリル酸フェニル、アクリル酸、N,N-ジメチルアクリルアミド、イタコン酸ジメチル、およびフマル酸ジメチル等があげられる。この中でスチレンまたはメタクリル酸メチルが好ましく、スチレンがより好ましい。スチレンに対するDHHBの溶解性が高いため、モノマーXとしてスチレンを用いた場合、ポリマー粒子中のDHHBの含有量を増加させることができる。
 なお、十分な重合度のホモポリマーとした際のガラス転移温度は、スチレンは100℃、メタクリル酸メチルは105℃、メタクリル酸イソプロピルは83℃、メタクリル酸シクロヘキシルは107℃、メタクリル酸フェニルは110℃、アクリル酸は101℃、N,N-ジメチルアクリルアミドは121℃、イタコン酸ジメチルは100℃、フマル酸ジメチル100℃である。
Specific examples of monomer X include styrene, methyl methacrylate, isopropyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, acrylic acid, N,N-dimethylacrylamide, dimethyl itaconate, and dimethyl fumarate. Among these, styrene or methyl methacrylate is preferred, and styrene is more preferred. Since DHHB has high solubility in styrene, the content of DHHB in the polymer particles can be increased when styrene is used as monomer X.
The glass transition temperatures of homopolymers with a sufficient degree of polymerization are as follows: styrene: 100°C, methyl methacrylate: 105°C, isopropyl methacrylate: 83°C, cyclohexyl methacrylate: 107°C, phenyl methacrylate: 110°C, acrylic acid: 101°C, N,N-dimethylacrylamide: 121°C, dimethyl itaconate: 100°C, and dimethyl fumarate: 100°C.
 ポリマーXにおいて、モノマーX由来の繰り返し単位は1種であっても、2種以上であってもよい。例えば、ポリマーXは、モノマーX由来の繰り返し単位として、スチレン由来の繰り返し単位のみを含んでいてもよく、メタクリル酸メチル由来の繰り返し単位のみを含んでいてもよく、アクリル酸由来の繰り返し単位のみを含んでいてもよく、スチレン由来の繰り返し単位とメタクリル酸メチル由来の繰り返し単位とを含んでいてもよく、スチレン由来の繰り返し単位とアクリル酸由来の繰り返し単位とを含んでいてもよく、スチレン由来の繰り返し単位とメタクリル酸メチル由来の繰り返し単位とアクリル酸由来の繰り返し単位とを含んでいてもよい。ポリマーXは、モノマーX由来の繰り返し単位として、スチレン由来の繰り返し単位のみ、または、メタクリル酸メチル由来の繰り返し単位のみを含むことが好ましく、スチレン由来の繰り返し単位のみを含むことがより好ましい。 In polymer X, the repeating units derived from monomer X may be one type or two or more types. For example, polymer X may contain only repeating units derived from styrene, only repeating units derived from methyl methacrylate, only repeating units derived from acrylic acid, repeating units derived from styrene and repeating units derived from methyl methacrylate, repeating units derived from styrene and repeating units derived from acrylic acid, or repeating units derived from styrene, repeating units derived from methyl methacrylate, and repeating units derived from acrylic acid. Polymer X preferably contains only repeating units derived from styrene or only repeating units derived from methyl methacrylate, and more preferably contains only repeating units derived from styrene, as repeating units derived from monomer X.
 ポリマーXは、一部または全部にモノマーX由来の繰り返し単位を含んでいれば特に制限はない。例えば、ポリマーXは、モノマーX由来の繰り返し単位以外の、その他のモノマー由来の構造単位をさらに含んでいてもよい。その他のモノマーとしては、例えば酢酸ビニル等があげられる。ポリマーXの全質量に対する、モノマーX由来の繰り返し単位の比率は80質量%以上であればよく、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上がさらに好ましく、モノマーX由来の繰り返し単位以外の、その他のモノマー由来の構造単位を含んでいないことが特に好ましい。 There are no particular limitations on polymer X as long as it contains a repeating unit derived from monomer X in part or in whole. For example, polymer X may further contain structural units derived from other monomers other than the repeating units derived from monomer X. Examples of other monomers include vinyl acetate. The ratio of repeating units derived from monomer X to the total mass of polymer X may be 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 98% by mass or more. It is particularly preferable that polymer X does not contain structural units derived from other monomers other than the repeating units derived from monomer X.
 さらに、モノマーX由来の繰り返し単位以外の、その他のモノマー由来の構造単位として、二官能架橋用モノマー由来の構造単位を含んでいてもよい。二官能架橋用モノマーとしては、分子中に2以上のビニル基を含むモノマー等があげられる。具体的な例としては、N,N’-メチレンビスアクリルアミド、N,N’-エチレンビスアクリルアミド、N,N’-メチレンビスメタクリルアミド、N,N’-エチレンビスメタクリルアミド、エチレングリコールジアクリレート、エチレングリコールジメタクリレート等があげられる。その他のモノマー由来の構造単位として、二官能架橋用モノマー由来の構造単位を含むことで、ポリマーXは分岐状ポリマーとすることができる。 Furthermore, the polymer X may contain a structural unit derived from a bifunctional crosslinking monomer as a structural unit derived from another monomer other than the repeating unit derived from monomer X. Examples of the bifunctional crosslinking monomer include monomers containing two or more vinyl groups in the molecule. Specific examples include N,N'-methylenebisacrylamide, N,N'-ethylenebisacrylamide, N,N'-methylenebismethacrylamide, N,N'-ethylenebismethacrylamide, ethylene glycol diacrylate, and ethylene glycol dimethacrylate. By including a structural unit derived from a bifunctional crosslinking monomer as a structural unit derived from another monomer, polymer X can be a branched polymer.
 ポリマーXは、直鎖状ポリマーでも、分岐状ポリマーでも特に制限はないが、経時安定性に優れたポリマー粒子の形成の観点から、直鎖状ポリマーであることが好ましい。 Polymer X may be either a linear polymer or a branched polymer without any particular limitation, but from the viewpoint of forming polymer particles with excellent stability over time, it is preferable that the polymer X is a linear polymer.
 また、ポリマーXはポリマー末端または側鎖に置換基を有していてもよい。置換基は、モノマーXまたはその他のモノマーに由来していてもよく、重合反応時に導入されてもよく、重合反応後の反応で導入されていてもよい。置換基は、例えば、後述のように、重合反応時の重合開始剤の残基であってもよい。
 置換基としては、アリール基または極性基が好ましい。極性基としては、カチオン性の官能基であることが好ましい。カチオン性の官能基はいずれか一方または両方のポリマー末端にあることが好ましい。
Furthermore, the polymer X may have a substituent at the polymer end or at the side chain. The substituent may be derived from the monomer X or another monomer, may be introduced during the polymerization reaction, or may be introduced in a reaction after the polymerization reaction. The substituent may be, for example, a residue of a polymerization initiator during the polymerization reaction, as described later.
The substituent is preferably an aryl group or a polar group. The polar group is preferably a cationic functional group. The cationic functional group is preferably present at one or both of the polymer terminals.
 表面が陽性荷電で覆われたポリマー粒子を形成するために、ポリマーXは末端にカチオン性の官能基を有する直鎖状ポリマーが特に好ましい。表面が陽性荷電で覆われたポリマー粒子は、皮膚や毛髪への高い吸着性を有し、化粧品等への利用が好適である。 In order to form polymer particles whose surfaces are covered with positive charges, it is particularly preferable that polymer X is a linear polymer having cationic functional groups at the ends. Polymer particles whose surfaces are covered with positive charges have high adsorption to skin and hair, and are suitable for use in cosmetics, etc.
 本態様の組成物におけるポリマーXの重量平均分子量Mwは、1000~1000000が好ましく、5000~500000がより好ましく、10000~400000がさらに好ましい。ポリマーXの数平均分子量Mnは、1000~500000が好ましく、3000~400000がより好ましく、5000~300000がさらに好ましい。ポリマーXのMwおよびMnをこの範囲とすることで、ポリマーXからなるポリマー粒子の粒径の調整を容易にすることができる。 The weight average molecular weight Mw of polymer X in the composition of this embodiment is preferably 1,000 to 1,000,000, more preferably 5,000 to 500,000, and even more preferably 10,000 to 400,000. The number average molecular weight Mn of polymer X is preferably 1,000 to 500,000, more preferably 3,000 to 400,000, and even more preferably 5,000 to 300,000. By setting the Mw and Mn of polymer X within these ranges, it is possible to easily adjust the particle size of the polymer particles made of polymer X.
 本態様において重量平均分子量Mwおよび平均分子量Mnは、それぞれゲルパーミエーションクロマトグラフィー(GPC)法により測定し、ポリスチレン換算値として得ることができる。具体的には、JASCO GPC system(JASCO PU-2080ポンプ、JASCO RI-2031示差屈折計、JASCO CO-2060カラムオーブン、Shodex GPC KD-806Mカラム)を使用して予め有機溶媒等で溶解したポリマー粒子を測定し、ポリスチレン標準試料により得られる較正曲線を用いて算出することができる。 In this embodiment, the weight average molecular weight Mw and the average molecular weight Mn can be measured by gel permeation chromatography (GPC) and obtained as polystyrene equivalent values. Specifically, the polymer particles dissolved in an organic solvent or the like in advance are measured using a JASCO GPC system (JASCO PU-2080 pump, JASCO RI-2031 differential refractometer, JASCO CO-2060 column oven, Shodex GPC KD-806M column), and the weight average molecular weight Mw and the average molecular weight Mn can be calculated using a calibration curve obtained using a polystyrene standard sample.
 本態様の組成物において、ポリマーX(成分B)の含有量はDHHB(成分A)の含有量(質量)に対し、1.5~3.9倍程度であればよく、2~3.5倍であることが好ましい。すなわち、DHHB(成分A)の含有量はポリマーX(成分B)の含有量に対し、26~67質量%程度であればよく、30~50質量%であることが好ましい。この範囲において、必要なポリマー粒子中のDHHBの含有量が確保されるとともに、ポリマー粒子からのDHHBの漏出を防止することができ、漏出したDHHBの結晶化を伴ったポリマー粒子の凝集をさらに防止することができる。 In the composition of this embodiment, the content of polymer X (component B) may be about 1.5 to 3.9 times the content (mass) of DHHB (component A), and preferably 2 to 3.5 times. In other words, the content of DHHB (component A) may be about 26 to 67% by mass, and preferably 30 to 50% by mass, of the content of polymer X (component B). Within this range, the required content of DHHB in the polymer particles is ensured, leakage of DHHB from the polymer particles can be prevented, and aggregation of the polymer particles accompanied by crystallization of the leaked DHHB can be further prevented.
 本態様の組成物中のポリマー粒子はポリビニルアルコール(成分C)を含む。ポリビニルアルコールは、従来から、ポリマー粒子を含む組成物(エマルション)に機械安定性または凍結安定性を付与するために、分散剤として使用されている。DHHB(成分A)を内包するポリマーX(成分B)で形成されるポリマー粒子はさらにポリビニルアルコール(成分C)で修飾されることにより、耐塩性が向上する。 The polymer particles in the composition of this embodiment contain polyvinyl alcohol (component C). Polyvinyl alcohol has traditionally been used as a dispersant to impart mechanical or freezing stability to compositions (emulsions) containing polymer particles. The polymer particles formed of polymer X (component B) encapsulating DHHB (component A) are further modified with polyvinyl alcohol (component C) to improve salt tolerance.
 ポリビニルアルコールの平均重合度は、100~1000程度であればよく、100~500であることがより好ましく、100~300であることがさらに好ましい。100~300程度の平均重合度を有するポリビニルアルコールを使用すると、製造時の乳化反応液中の液滴のサイズを1000nm程度以下とすることができ、ポリマー粒子の平均粒子径を350nm以下に調整することが容易となる。このとき上記液滴は、例えば重合反応の開始前あるいは開始時に不活性ガスを吹き込む際も安定である。 The average degree of polymerization of polyvinyl alcohol may be about 100 to 1000, more preferably 100 to 500, and even more preferably 100 to 300. When polyvinyl alcohol with an average degree of polymerization of about 100 to 300 is used, the size of the droplets in the emulsion reaction liquid during production can be made about 1000 nm or less, making it easy to adjust the average particle size of the polymer particles to 350 nm or less. In this case, the droplets are stable, for example, even when an inert gas is blown in before or at the start of the polymerization reaction.
 ポリビニルアルコールは、その構造中の水酸基の一部または全部がアセチル化されたものであってもよい。例えば、ポリビニルアルコールとしては、ポリ酢酸ビニルをけん化することにより製造されたものを用いてもよい。けん化度は70モル%以上であればよく、75モル%以上であることが好ましい。
 本態様の組成物において、ポリビニルアルコールの含有量は、ポリマーXの含有量に対して、1~20質量%が好ましく、2~10質量%がより好ましい。この範囲において、高いDHHB含有量を有し、且つ経時的にポリマー粒子が凝集しにくく安定な組成物を好ましく得ることができる。
The polyvinyl alcohol may have some or all of the hydroxyl groups in its structure acetylated. For example, the polyvinyl alcohol may be one produced by saponifying polyvinyl acetate. The degree of saponification may be 70 mol% or more, and preferably 75 mol% or more.
In the composition of this embodiment, the content of polyvinyl alcohol is preferably 1 to 20% by mass, more preferably 2 to 10% by mass, based on the content of polymer X. Within this range, a composition having a high DHHB content and being stable with polymer particles that are unlikely to aggregate over time can be preferably obtained.
 本態様の組成物において、ポリマーX(成分B)および/またはポリビニルアルコール(成分C)の含有量は、赤外線吸収スペクトル(IR)および/または核磁気共鳴スペクトル(NMR)等を用いて、それぞれ算出することができる。具体的には、まず、遠心分離またはフィルターろ過等を用いて分離したポリマー粒子を有機溶媒等に溶解させ、溶解後の構成分子を適切なカラムクロマトグラフィー等で精製し、それぞれの構成分子をIRおよびまたはNMR等により測定することで、ポリマーX(成分B)またはポリビニルアルコール(成分C)を同定する。その後、ポリマーX(成分B)またはポリビニルアルコール(成分C)の標準品を用いて含有量とIRおよび/またはNMR等におけるスペクトルピーク強度との関係について検量線を作成する。次に、得られた検量線を用いてポリマー粒子中のポリマーX(成分B)またはポリビニルアルコール(成分C)について、IRおよび/またはNMR等により測定して得たスペクトルピーク強度の値から、ポリマーX(成分B)またはポリビニルアルコールの含有量(成分C)を算出することができる。 In the composition of this embodiment, the content of polymer X (component B) and/or polyvinyl alcohol (component C) can be calculated using infrared absorption spectrum (IR) and/or nuclear magnetic resonance spectrum (NMR), etc. Specifically, first, the polymer particles separated by centrifugation or filter filtration are dissolved in an organic solvent, etc., and the constituent molecules after dissolution are purified by appropriate column chromatography, etc., and each constituent molecule is measured by IR and/or NMR, etc. to identify polymer X (component B) or polyvinyl alcohol (component C). Then, a calibration curve is created using a standard sample of polymer X (component B) or polyvinyl alcohol (component C) to show the relationship between the content and the spectral peak intensity in IR and/or NMR, etc. Next, the content of polymer X (component B) or polyvinyl alcohol (component C) can be calculated from the value of the spectral peak intensity obtained by measuring polymer X (component B) or polyvinyl alcohol (component C) in the polymer particles by IR and/or NMR, etc. using the obtained calibration curve.
 本態様の組成物は、水を含む。水は、水中油型乳化組成物とするために含まれるものであり、化粧料等に通常用いられるものであれば、特に制限されない。水としては、精製水、純水、Elix(登録商標)水(逆浸透膜および連続イオン交換処理水)、温泉水、深層水、または植物の水蒸気蒸留水をあげることができ、必要に応じて一種または二種以上を適宜選択して用いることができる。また含有量は、特に限定されず、適宜、他の成分の含有量に応じた量、または後述の組成物の製造方法にて目的の特性を有する組成物となるような量で含有することができる。例えば、本態様の組成物における水の含有量は、組成物の全質量に対し、10~40質量の範囲であればよい。また、組成物における水の全質量が成分Aの全質量の10~15倍となる範囲が好ましく、12~15倍となる範囲がより好ましい。 The composition of this embodiment contains water. The water is contained to make the composition an oil-in-water emulsion composition, and is not particularly limited as long as it is normally used in cosmetics and the like. Examples of water include purified water, pure water, Elix (registered trademark) water (water treated by reverse osmosis membrane and continuous ion exchange), hot spring water, deep sea water, and steam distilled water from plants, and one or more types can be appropriately selected and used as necessary. The content is not particularly limited, and can be appropriately contained in an amount corresponding to the content of other components, or in an amount that will result in a composition having the desired characteristics in the manufacturing method of the composition described below. For example, the content of water in the composition of this embodiment may be in the range of 10 to 40 masses relative to the total mass of the composition. In addition, the total mass of water in the composition is preferably in the range of 10 to 15 times the total mass of component A, and more preferably in the range of 12 to 15 times.
 また、本態様の組成物は、水以外に、例えば極性溶媒を含んでもよい。極性溶媒の例としては、エタノール等のアルコール類があげられる。極性溶媒の量は適宜選択できるが、後述の通り、本態様の組成物の製造において、モノマー(スチレンモノマー等)からポリマーへの転化率の向上の観点からは、本態様の組成物はエタノールを実質的に含まないことが好ましい。
 また、本態様の組成物は、界面活性剤(乳化剤)を含んでもよいが、実質的に含まないことが好ましい。化粧品用途において、界面活性剤を含まないポリマー粒子含有組成物が好ましいからである。ここで、「界面活性剤を実質的に含まない」というとき、例えば、本態様の組成物中、1.5mM以下、好ましくは1.0mM以下、より好ましくは0.5mM以下であること、または本態様の組成物全質量に対して0.05質量%以下、好ましくは0.01質量%以下である。
In addition, the composition of this embodiment may contain, for example, a polar solvent other than water. Examples of polar solvents include alcohols such as ethanol. The amount of polar solvent can be appropriately selected, but as described below, in the production of the composition of this embodiment, from the viewpoint of improving the conversion rate from monomer (styrene monomer, etc.) to polymer, it is preferable that the composition of this embodiment does not substantially contain ethanol.
In addition, the composition of this embodiment may contain a surfactant (emulsifier), but it is preferable that it does not substantially contain a surfactant. This is because a polymer particle-containing composition that does not contain a surfactant is preferable for cosmetic applications. Here, when "substantially does not contain a surfactant", for example, the surfactant content in the composition of this embodiment is 1.5 mM or less, preferably 1.0 mM or less, more preferably 0.5 mM or less, or 0.05% by mass or less, preferably 0.01% by mass or less, based on the total mass of the composition of this embodiment.
 本態様の組成物は、モノマー(ポリマーXを構成する原料であって未反応であったモノマー)を含んでいてもよい。モノマーはポリマー粒子以外の成分として水中に溶解または分散して存在しうる。本態様の組成物全質量に対するモノマーの含有量は30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。 The composition of this embodiment may contain a monomer (a raw material constituting polymer X that has not reacted). The monomer may be present dissolved or dispersed in water as a component other than the polymer particles. The content of the monomer relative to the total mass of the composition of this embodiment is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 10% by mass or less.
 一実施形態において、本態様の組成物は、
成分A、成分B、および成分Cを含むポリマー粒子、ならびに水を含み、
上記ポリマー粒子の平均粒子径が350nm以下であり、
上記ポリマー粒子の動的光散乱法による多分散性指数PdIが0.2以下であり、
上記組成物中の成分Aの含有量が5.5質量%以上である。
In one embodiment, the composition of this aspect comprises:
comprising polymer particles comprising component A, component B, and component C, and water;
The average particle size of the polymer particles is 350 nm or less,
The polymer particles have a polydispersity index PdI of 0.2 or less as measured by a dynamic light scattering method;
The content of component A in the composition is 5.5% by mass or more.
 別の実施形態において、本態様の組成物は、
成分A、成分B、および成分Cを含むポリマー粒子を含む組成物であって、
上記ポリマー粒子の平均粒子径が350nm以下であり、
成分Aの含有量が成分Bの含有量に対し、26~67質量%であり、
上記ポリマー粒子の動的光散乱法による多分散性指数PdIが0.2以下である。
In another embodiment, the composition of this aspect comprises:
A composition comprising polymer particles comprising component A, component B, and component C,
The average particle size of the polymer particles is 350 nm or less,
The content of component A is 26 to 67% by mass relative to the content of component B,
The polymer particles have a polydispersity index PdI of 0.2 or less as measured by a dynamic light scattering method.
<ポリマー粒子含有組成物の製造方法>
 本発明の別の一態様は、ポリマー粒子を含有する組成物の製造方法に関する。
 上述の態様の組成物は、例えば、DHHB(成分A)、モノマーX(成分Bであるポリマーの原料)、ポリビニルアルコール(成分C)、および水を少なくとも含む反応液を乳化すること、ならびに上記乳化と同時にまたは上記乳化直後に連続して上記モノマーの重合反応を行なうことを含む製造方法で製造することができる。この製造方法では反応液の乳化後、乳化した反応液を実質的に水等により希釈することなく、最終生成物である組成物を得ることができる。
<Method of producing polymer particle-containing composition>
Another aspect of the invention relates to a method for making a composition containing polymer particles.
The composition of the above-mentioned embodiment can be produced, for example, by a production method including emulsifying a reaction liquid containing at least DHHB (component A), monomer X (raw material for the polymer, component B), polyvinyl alcohol (component C), and water, and carrying out a polymerization reaction of the monomers simultaneously with the emulsification or immediately after the emulsification. In this production method, after emulsification of the reaction liquid, the composition, which is the final product, can be obtained without substantially diluting the emulsified reaction liquid with water or the like.
 例えば、DHHB等の油溶性の成分およびモノマーを含む油性混合物を水等の水性溶媒に滴下して分散させることはポリマー粒子含有組成物の製造方法において一般的に行われている。しかし、本態様の製造方法は、このような分散等による実質的な希釈の工程を含む必要がない。ここで、「実質的な希釈の工程」とは、反応液中の水の質量に対して100質量%以上(好ましくは50質量%以上、より好ましくは30質量%以上)の水を加える工程を意味する。具体的には反応液の乳化後、乳化した反応液を希釈の工程を経ることなく重合反応に供し、重合開始剤の添加を除いて、重合反応の開始から終了までの間に反応液を水または水性溶液等で希釈せずに、ポリマー粒子を含有する組成物を得ることができる。本態様の製造方法では、予め水を含む反応液を乳化することにより、希釈なしに最終生成物の製造が可能であるため、高いポリマー粒子濃度の組成物をワンポットで製造することができる。 For example, in the manufacturing method of a polymer particle-containing composition, an oily mixture containing an oil-soluble component such as DHHB and a monomer is dropped into an aqueous solvent such as water to disperse it. However, the manufacturing method of this embodiment does not need to include a step of substantial dilution by such dispersion. Here, the "substantial dilution step" means a step of adding water in an amount of 100% by mass or more (preferably 50% by mass or more, more preferably 30% by mass or more) relative to the mass of water in the reaction liquid. Specifically, after emulsification of the reaction liquid, the emulsified reaction liquid is subjected to a polymerization reaction without going through a dilution step, and a composition containing polymer particles can be obtained without diluting the reaction liquid with water or an aqueous solution between the start and end of the polymerization reaction, except for the addition of the polymerization initiator. In the manufacturing method of this embodiment, the reaction liquid containing water is emulsified in advance, so that the final product can be manufactured without dilution, and therefore a composition with a high polymer particle concentration can be manufactured in one pot.
 なお、反応液は、ポリマーXを構成するモノマー(少なくともモノマーXを含む)を含むものをいう。反応液はポリマーXを含んでいてもよいが、少なくとも一部(例えば、10質量%以上、好ましくは50質量%以上)のモノマーが重合せずに残っているものを意味する。乳化に供される時点の反応液は、ポリマーXを含んでいなくてもよい。一方、反応液がポリマーXを含むことにより、モノマーのポリマーへの転化率を向上させるとともにポリマー粒子へのDHHBの取込を促進することができる。ポリマーXを含有する場合の乳化開始前の反応液中のポリマーXの含有量はポリマーXを構成するモノマーとポリマーXとの合計質量に対し、1.0質量%~20質量%が好ましく、5.0質量%~15質量%がより好ましく、8.0質量%~12質量%がさらに好ましい。 The reaction liquid refers to a liquid containing a monomer (including at least monomer X) constituting polymer X. The reaction liquid may contain polymer X, but means a liquid in which at least a portion (for example, 10% by mass or more, preferably 50% by mass or more) of the monomer remains unpolymerized. The reaction liquid at the time of emulsification may not contain polymer X. On the other hand, by containing polymer X in the reaction liquid, the conversion rate of the monomer to polymer can be improved and the incorporation of DHHB into the polymer particles can be promoted. When polymer X is contained, the content of polymer X in the reaction liquid before the start of emulsification is preferably 1.0% by mass to 20% by mass, more preferably 5.0% by mass to 15% by mass, and even more preferably 8.0% by mass to 12% by mass, based on the total mass of the monomer constituting polymer X and polymer X.
 反応液は、例えば、重合反応前において、ポリマーXを構成するモノマーの含有量がDHHB(成分A)の含有量の1.5~3.9倍(好ましくは2~3.5倍)、水の含有量がDHHB(成分A)の含有量の10~15倍(好ましくは12~15倍)となるように材料を混合して用意すればよい。また、ポリビニルアルコールは使用されるポリマーXを構成するモノマー全量に対して、好ましくは1~20質量%、より好ましくは2~10質量%となるように添加すればよい。 The reaction liquid may be prepared, for example, by mixing the materials before the polymerization reaction so that the content of the monomers constituting polymer X is 1.5 to 3.9 times (preferably 2 to 3.5 times) the content of DHHB (component A) and the content of water is 10 to 15 times (preferably 12 to 15 times) the content of DHHB (component A). Furthermore, polyvinyl alcohol may be added in an amount of preferably 1 to 20% by mass, more preferably 2 to 10% by mass, based on the total amount of monomers constituting polymer X used.
 本態様の製造方法では、実質的に希釈することなく、ワンポットで最終生成物である組成物を得ることができる。反応液におけるDHHB(成分A)、ポリマーXを構成するモノマー、ポリビニルアルコール(成分C)、および水の質量比は、最終生成物である組成物の成分A、ポリマーX(成分B)、成分C、および水の質量比およびDHHB(成分A)に基づき、さらに、DHHB(成分A)の組成物への取込率またはモノマーからポリマーへの転化率を考慮して決定すればよい。反応液の乳化段階で同時に重合反応を進める場合は反応液に重合開始剤を加えてもよい。 In the manufacturing method of this embodiment, the final product composition can be obtained in one pot without substantial dilution. The mass ratio of DHHB (component A), the monomer constituting polymer X, polyvinyl alcohol (component C), and water in the reaction liquid may be determined based on the mass ratios of component A, polymer X (component B), component C, and water in the final product composition, as well as DHHB (component A), taking into consideration the incorporation rate of DHHB (component A) into the composition or the conversion rate of monomer to polymer. If a polymerization reaction is carried out simultaneously during the emulsification stage of the reaction liquid, a polymerization initiator may be added to the reaction liquid.
 反応液は、DHHB(成分A)をスチレン等のポリマーXを構成するモノマーに溶解して油性混合物を調製し、これを、ポリビニルアルコール(成分C)を水に溶解した水溶液と混合することを含む手順で用意することが好ましい。重合開始剤を加える場合は、重合開始剤の種類に応じて上記油性混合物、上記水溶液または両者を混合した溶液に加えればよい。 The reaction liquid is preferably prepared by a procedure that includes dissolving DHHB (component A) in a monomer that constitutes polymer X, such as styrene, to prepare an oily mixture, and then mixing this with an aqueous solution in which polyvinyl alcohol (component C) is dissolved in water. When a polymerization initiator is added, it may be added to the oily mixture, the aqueous solution, or a solution in which both are mixed, depending on the type of polymerization initiator.
 反応液は、エタノールを実質的に含まないことが好ましい。エタノールを実質的に含まない反応系とすることにより、モノマー(例えば、スチレンモノマー等)からポリマーへの転化率が向上するため、重合反応後の精製が容易になるか、あるいは不要となる。ここで、「実質的に含まない」とは、重合反応の効率に有意な影響を与えない程度の量であれば含まれていてもよいことを意味する。例えば、エタノールは、エタノールを全く含まない反応混合物を用いた場合と比較して、重合反応後の精製工程を新たに設けることまたは精製方法を変更することを必要としない程度の量であれば、含まれていてもよい。好ましくは、反応液はエタノールを含まず、重合反応はエタノールを含まない反応液中で行われる。 The reaction liquid is preferably substantially free of ethanol. By making the reaction system substantially free of ethanol, the conversion rate of monomers (e.g., styrene monomer, etc.) to polymer is improved, making purification after the polymerization reaction easier or unnecessary. Here, "substantially free" means that ethanol may be contained in an amount that does not significantly affect the efficiency of the polymerization reaction. For example, ethanol may be contained in an amount that does not require the establishment of a new purification step or a change in the purification method after the polymerization reaction, compared to the case where a reaction mixture containing no ethanol is used. Preferably, the reaction liquid is free of ethanol, and the polymerization reaction is carried out in an ethanol-free reaction liquid.
 反応液には、さらに重合反応の安定化のために界面活性剤(乳化剤)を添加してもよい。界面活性剤としては、ドデシル硫酸ナトリウム、ドデシルベンゼン硫酸ナトリウム、ペンタデカン硫酸ナトリウム、N-ドデシル-N,N,N-トリメチルアンモニウムブロマイド、N-セチル-N,N,N-トリメチルアンモニウムブロマイド、ヘキサデシルトリメチルアンモニウムクロリド、またはトライトンX-100等があげられる。ただし、本態様の製造方法における重合反応では、界面活性剤を加えなくても安定して反応を進めることができる。したがって、本態様の製造方法により、化粧品として好適な、界面活性剤を含まないポリマー粒子含有組成物を製造することができる。 A surfactant (emulsifier) may be added to the reaction solution to further stabilize the polymerization reaction. Examples of surfactants include sodium dodecyl sulfate, sodium dodecylbenzene sulfate, sodium pentadecane sulfate, N-dodecyl-N,N,N-trimethylammonium bromide, N-cetyl-N,N,N-trimethylammonium bromide, hexadecyltrimethylammonium chloride, and Triton X-100. However, the polymerization reaction in the manufacturing method of this embodiment can proceed stably without adding a surfactant. Therefore, the manufacturing method of this embodiment can produce a polymer particle-containing composition that does not contain a surfactant and is suitable for use as a cosmetic.
 上記の乳化は撹拌により行なうことができる。乳化のための反応液の撹拌は強撹拌とすることが好ましい。反応液の調製と兼ねて行う場合には、反応液の飛散等を考慮し、回転数を適宜変化させることもできるが、最終的な強撹拌における回転数は3000rpm以上であればよく、4000rpm以上であることが好ましく、5000rpm以上であることがさらに好ましい。撹拌時間は1分以上であればよく、5分以上であることが好ましく、8分以上であることがさらに好ましい。好適には10分以上、6000rpm以上の撹拌を行えばよい。撹拌は6000rpm以上の高速撹拌が可能であって、水と油を混合して乳化させることが可能な撹拌機(例えば、ミキサー、ホモミキサー、またはホモジナイザー等)を利用して行なうことができる。 The above emulsification can be performed by stirring. Strong stirring is preferable for the reaction solution for emulsification. When stirring is performed in conjunction with the preparation of the reaction solution, the rotation speed can be changed appropriately taking into consideration the scattering of the reaction solution, but the final rotation speed for strong stirring should be 3000 rpm or more, preferably 4000 rpm or more, and more preferably 5000 rpm or more. The stirring time should be 1 minute or more, preferably 5 minutes or more, and more preferably 8 minutes or more. Preferably, stirring is performed for 10 minutes or more at 6000 rpm or more. Stirring can be performed using a stirrer (e.g., mixer, homomixer, homogenizer, etc.) that is capable of high-speed stirring at 6000 rpm or more and is capable of mixing and emulsifying water and oil.
 重合反応は、例えば、重合開始剤の添加、昇温、またはその両方により開始させることができる。重合反応温度は使用するモノマーまたは重合開始剤にもよるが、50~100℃が好ましく、60~90℃がより好ましく、70~85℃がさらに好ましい。例えば、常温で反応液を調製した後、重合反応温度まで昇温すればよい。重合反応の開始時、特に、重合開始剤を添加して重合反応を開始させるときは、空気雰囲気中で行なってもよいが、モノマーからポリマーへの転化率向上の観点から、真空または不活性ガス雰囲気下で行なうことが好ましい。反応液に不活性ガスを吹き込んでもよい。不活性ガスとしては、窒素ガス、ヘリウムガス、またはアルゴンガス等があげられる。 The polymerization reaction can be initiated, for example, by adding a polymerization initiator, raising the temperature, or both. The polymerization reaction temperature depends on the monomer or polymerization initiator used, but is preferably 50 to 100°C, more preferably 60 to 90°C, and even more preferably 70 to 85°C. For example, the reaction liquid may be prepared at room temperature and then heated to the polymerization reaction temperature. At the start of the polymerization reaction, particularly when the polymerization initiator is added to start the polymerization reaction, the reaction may be carried out in an air atmosphere, but from the viewpoint of improving the conversion rate of the monomer to the polymer, it is preferable to carry out the reaction in a vacuum or in an inert gas atmosphere. An inert gas may be blown into the reaction liquid. Examples of the inert gas include nitrogen gas, helium gas, and argon gas.
 重合反応においては、反応液を撹拌してもよい。撹拌における回転数は10~10000rpmであることが好ましく、50~1000rpmであることがより好ましく、80~500rpmであることがさらに好ましい。モノマーからポリマーへの転化率を向上させるため、特に80~200rpmの撹拌が好ましい。 In the polymerization reaction, the reaction liquid may be stirred. The rotation speed during stirring is preferably 10 to 10,000 rpm, more preferably 50 to 1,000 rpm, and even more preferably 80 to 500 rpm. In order to improve the conversion rate from monomer to polymer, stirring at 80 to 200 rpm is particularly preferred.
 重合反応の反応時間は通常30分~24時間であればよく、1時間~6時間であることが好ましい。 The reaction time for the polymerization reaction is usually 30 minutes to 24 hours, and preferably 1 hour to 6 hours.
 重合反応は重合開始剤の存在下で行なうことが好ましい。また、重合開始剤の添加により反応を開始させることが好ましい。すなわち、乳化前の反応液には重合開始剤を含まずに、乳化後の反応液に重合開始剤を添加する方法が好ましい。このとき同時に上述のように反応液の昇温を行なってもよい。 The polymerization reaction is preferably carried out in the presence of a polymerization initiator. It is also preferable to start the reaction by adding a polymerization initiator. In other words, it is preferable to add a polymerization initiator to the reaction liquid after emulsification without including a polymerization initiator in the reaction liquid before emulsification. At the same time, the reaction liquid may be heated as described above.
 重合開始剤は水またはエタノール等の溶媒に溶解させて、溶液として反応液へ添加してもよく、例えば固体または液体である重合開始剤をそのまま添加してもよい。上述の通り、乳化した反応液を希釈することは好ましくなく、溶媒に溶解させる場合に用いる溶媒は最小限の量を用いることが好ましく、重合開始剤は乳化した反応液にそのまま添加することがより好ましい。重合開始剤は添加する総量の重合開始剤を1回で添加してもよく、複数回(例えば2回)に分けて添加してもよい。このとき添加される重合開始剤はラジカル重合開始剤であればよく、カチオン性ラジカル重合開始剤であることが好ましい。 The polymerization initiator may be dissolved in a solvent such as water or ethanol and added to the reaction liquid as a solution, or the polymerization initiator may be added as is in the form of a solid or liquid form. As mentioned above, it is not preferable to dilute the emulsified reaction liquid, and it is preferable to use the minimum amount of solvent when dissolving in a solvent, and it is more preferable to add the polymerization initiator as is to the emulsified reaction liquid. The total amount of polymerization initiator to be added may be added in one go, or may be added in multiple portions (for example, two times). The polymerization initiator added in this case may be a radical polymerization initiator, and is preferably a cationic radical polymerization initiator.
 本態様の製造方法においては、反応液の乳化後に重合反応を行ってもよく、反応液の乳化段階で同時に重合反応を進めてもよいが、反応液の乳化後に重合反応を行うことが好ましい。空気雰囲気下において反応液の乳化段階での重合反応は強撹拌による気泡の発生のため反応液に酸素が入り過ぎて、ラジカルによる重合が進まず、モノマーからポリマーへの転化率が低下するという問題が生じ得る。したがって、反応液の乳化と重合反応とを同時に進める場合は予め酸素を排除した真空または不活性ガス雰囲気下で反応可能な装置を使用することが好ましい。 In the manufacturing method of this embodiment, the polymerization reaction may be carried out after emulsification of the reaction liquid, or may proceed simultaneously with the emulsification stage of the reaction liquid, but it is preferable to carry out the polymerization reaction after emulsification of the reaction liquid. In an air atmosphere, polymerization reaction at the emulsification stage of the reaction liquid may cause problems such as too much oxygen entering the reaction liquid due to bubbles generated by strong stirring, preventing polymerization by radicals from proceeding and reducing the conversion rate of monomer to polymer. Therefore, when emulsifying the reaction liquid and polymerizing the reaction liquid simultaneously, it is preferable to use an apparatus capable of carrying out the reaction under a vacuum or inert gas atmosphere from which oxygen has been removed in advance.
 本態様の製造方法で使用する重合開始剤は使用するモノマーに応じて選択することができる。スチレンまたはメタクリル酸メチル等の炭素-炭素二重結合を含むモノマーが使用される場合、ラジカル重合開始剤を用いればよい。ラジカル重合開始剤としては、特に限定されないが、例えば、非イオン性ラジカル重合開始剤、カチオン性ラジカル重合開始剤、アニオン性ラジカル重合開始剤、または両性ラジカル重合開始剤等を用いることができる。これらのうち、カチオン性ラジカル重合開始剤が好ましい。特に、重合反応時にそのカチオン性残基が生成するポリマーに結合するカチオン性ラジカル重合開始剤が好ましい。このようなカチオン性ラジカル重合開始剤の使用により、ポリマーXにカチオン性の官能基が導入され、表面が陽性荷電で覆われているポリマー粒子を形成することができる。表面が荷電で覆われているポリマー粒子は粒子同士が電気的に反発することによって、凝集しにくく、ポリマー粒子含有組成物の経時安定性を向上させることができる。また、陽性に荷電していることにより、上述のように、皮膚や毛髪への吸着性が高くなり、化粧料としての適性が向上する。 The polymerization initiator used in the manufacturing method of this embodiment can be selected according to the monomer used. When a monomer containing a carbon-carbon double bond, such as styrene or methyl methacrylate, is used, a radical polymerization initiator may be used. The radical polymerization initiator is not particularly limited, but for example, a nonionic radical polymerization initiator, a cationic radical polymerization initiator, an anionic radical polymerization initiator, or an amphoteric radical polymerization initiator can be used. Among these, a cationic radical polymerization initiator is preferred. In particular, a cationic radical polymerization initiator that bonds to the polymer generated during the polymerization reaction is preferred. By using such a cationic radical polymerization initiator, a cationic functional group is introduced into the polymer X, and polymer particles whose surfaces are covered with positive charges can be formed. Polymer particles whose surfaces are covered with charges are less likely to aggregate due to electrical repulsion between the particles, and the stability over time of the polymer particle-containing composition can be improved. In addition, by being positively charged, as described above, the particles are more easily adsorbed to the skin and hair, improving their suitability as cosmetics.
 カチオン性ラジカル重合開始剤としては、特に限定されないが、2,2’-[ジアゼン-1,2-ジイルビス(プロパン-2,2-ジイル)]ビス(1,3-ジメチル-4,5-ジヒドロ-1H-イミダゾール-3-イウム)=ジトリフルオロメタンスルホネート(ADIP)、2,2’-[ジアゼン-1,2-ジイルビス(プロパン-2,2-ジイル)]ビス(1,3-ジメチル-4,5-ジヒドロ-1H-イミダゾール-3-イウム)=ジクロライド(ADIP-Cl)、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロライド(V-50、富士フイルム和光純薬)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド(VA-044、富士フイルム和光純薬株式会社製)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン](VA-061、富士フイルム和光純薬)からなる群から選択される一種または二種以上を使用することが好ましい。 Cationic radical polymerization initiators include, but are not limited to, 2,2'-[diazene-1,2-diylbis(propane-2,2-diyl)]bis(1,3-dimethyl-4,5-dihydro-1H-imidazol-3-ium)=ditrifluoromethanesulfonate (ADIP), 2,2'-[diazene-1,2-diylbis(propane-2,2-diyl)]bis(1,3-dimethyl-4,5-dihydro-1H-imidazol-3-ium)=dichloride (ADI It is preferable to use one or more selected from the group consisting of 2,2'-azobis(2-methylpropionamidine) dihydrochloride (V-50, Fujifilm Wako Pure Chemical Industries), 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (VA-044, Fujifilm Wako Pure Chemical Industries), and 2,2'-azobis[2-(2-imidazolin-2-yl)propane] (VA-061, Fujifilm Wako Pure Chemical Industries).
 カチオン性ラジカル重合開始剤としては、さらに、式(I)で表されるカチオン性ラジカル重合開始剤を例としてあげることができる。なお、式(I)で表されるカチオン性ラジカル重合開始剤についての更なる詳細は、例えば、特開2017-051113号公報を参照することができる。当該文献の内容は、参照により本明細書の一部に組み込まれる。なお、式(I)で表されるカチオン性ラジカル重合開始剤の具体例としては、上述のADIPまたはADIP-Clをあげることができるが、ADIPまたはADIP-Clを用いることにより、より温和な反応条件で本実施形態のポリマー粒子を調製することができ、ポリマー粒子の調製時における加熱等のダメージによるポリマー粒子の保存安定性の低下を抑制することもできる。また、ADIPまたはADIP-Clを用いることにより、上述のとおり、より温和な反応条件でポリマー粒子を調製することができるから、合成時の環境負荷にも貢献することができる。 Another example of the cationic radical polymerization initiator is a cationic radical polymerization initiator represented by formula (I). For further details on the cationic radical polymerization initiator represented by formula (I), see, for example, JP 2017-051113 A. The contents of this document are incorporated herein by reference. Specific examples of the cationic radical polymerization initiator represented by formula (I) include the above-mentioned ADIP or ADIP-Cl. By using ADIP or ADIP-Cl, the polymer particles of this embodiment can be prepared under milder reaction conditions, and the decrease in the storage stability of the polymer particles due to damage caused by heating during the preparation of the polymer particles can be suppressed. In addition, by using ADIP or ADIP-Cl, the polymer particles can be prepared under milder reaction conditions as described above, which can contribute to reducing the environmental load during synthesis.
[式中、
 Yは、単結合またはCR85を表し、
 Zは、単結合またはCR86を表し、
 R72、R73、R75、R76、R77、R78、R85およびR86は、それぞれ独立して、水素原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルカルボニル、フェニル、およびヒドロキシからなる群から選択され、ここで上記C1-6アルキル、C1-6アルコキシ、C1-6アルキルカルボニル、およびフェニルは、さらにC1-6アルキル、C1-6アルコキシ、C1-6アルキルカルボニル、フェニル、およびヒドロキシからなる群から選択される1または2個の置換基で置換されていてもよく
 R72およびR73は、さらに、それぞれ独立して、アダマンチル、またはSi(OCH(CH)で置換されたC1-6アルキルを表してもよく、あるいは、R75およびR76、またはR77およびR78は、一緒になって-(CH3-5-を形成してもよく、
 R81、R82、R83、およびR84は、C1-4アルキル、C1-4アルキルカルボニル、およびC1-3アルコキシからなる群から選択される置換基であり、ここで上記C1-4アルキルは一つのC1-3アルコキシ基で置換されていてもよく、および
 R71およびR74は、それぞれ独立して、C1-3アルキル基であり、X はカウンターアニオンである]
[Wherein,
Y represents a single bond or CR 85 ;
Z represents a single bond or CR 86 ;
R 72 , R 73 , R 75 , R 76 , R 77 , R 78 , R 85 and R 86 are each independently selected from the group consisting of a hydrogen atom, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkylcarbonyl, phenyl and hydroxy, wherein said C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkylcarbonyl and phenyl may be further substituted with 1 or 2 substituents selected from the group consisting of C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkylcarbonyl, phenyl and hydroxy; R 72 and R 73 may further each independently represent adamantyl, or C 1-6 alkyl substituted with Si(OCH 3 ) 2 (CH 3 ); or R 75 and R 76 or R 77 and R 78 together represent -(CH 2 ) 3-5 - may be formed,
R 81 , R 82 , R 83 , and R 84 are substituents selected from the group consisting of C 1-4 alkyl, C 1-4 alkylcarbonyl, and C 1-3 alkoxy, wherein the C 1-4 alkyl is optionally substituted with one C 1-3 alkoxy group; and R 71 and R 74 are each independently a C 1-3 alkyl group, and X f - is a counter anion.
 式(I)で表されるカチオン性ラジカル重合開始剤における「カウンターアニオン」とは、有機化学の技術分野で有機化合物のカウンターアニオンとして通常用いられるアニオンであれば特に制限されず、例えば、ハロゲン化物アニオン(塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン)、有機酸の共役塩基(例えば酢酸イオン、クエン酸イオン、トリフルオロ酢酸イオン)、硝酸イオン、硫酸イオン、または炭酸イオン等が含まれる。本発明において好ましいカウンターアニオンとしては、例えば、トリフルオロメタンスルホン酸イオン(トリフレート)、塩化物イオン、または硝酸イオン等があげられる。これらの中でも、製造される組成物の経時安定性を向上させ、ポリマー粒子の調製の際における当該粒子の収率を高め、製造コストを改善できるという観点から、塩化物イオン、酢酸イオン、またはクエン酸イオンが好ましく、塩化物イオンがより好ましい。 The "counter anion" in the cationic radical polymerization initiator represented by formula (I) is not particularly limited as long as it is an anion that is commonly used as a counter anion for organic compounds in the technical field of organic chemistry, and includes, for example, halide anions (chloride ion, bromide ion, fluoride ion, iodide ion), conjugate bases of organic acids (e.g., acetate ion, citrate ion, trifluoroacetate ion), nitrate ion, sulfate ion, carbonate ion, etc. Counter anions preferred in the present invention include, for example, trifluoromethanesulfonate ion (triflate), chloride ion, nitrate ion, etc. Among these, chloride ion, acetate ion, or citrate ion are preferred, and chloride ion is more preferred, from the viewpoints of improving the stability over time of the composition produced, increasing the yield of the particles when preparing the polymer particles, and improving the production cost.
 カチオン性ラジカル重合開始剤は、重合反応によりその残基がポリマーXの置換基となることが好ましい。ポリマーXの一部となるカチオン性ラジカル重合開始剤の残基としては、例えば以下の各残基があげられる。 The cationic radical polymerization initiator preferably has a residue that becomes a substituent of polymer X through a polymerization reaction. Examples of the residue of the cationic radical polymerization initiator that becomes part of polymer X include the following residues.
 カチオン性ラジカル重合開始剤の使用量は、使用するモノマーの全モル量に対して0.01モル%以上の量であればよく、ラジカル合成が進行する濃度の範囲内で適量を選択することができる。例えば、0.1モル%以上、好ましくは1モル%以上、且つ、10モル%以下、好ましくは5モル%以下の重合開始剤を使用することができる。 The amount of cationic radical polymerization initiator used may be 0.01 mol% or more relative to the total molar amount of the monomers used, and an appropriate amount can be selected within the range of concentrations at which radical synthesis proceeds. For example, a polymerization initiator of 0.1 mol% or more, preferably 1 mol% or more, and 10 mol% or less, preferably 5 mol% or less can be used.
 さらに、本態様の製造方法における重合反応においては、必要に応じてカチオン性ラジカル重合開始剤とともに油溶性重合開始剤を使用してもよい。油溶性重合開始剤としては、例えば、アゾビスイソブチロニトリル(AIBN、CAS RN:78-67-1)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(V-65、CAS RN:4419-118)等をあげることができ、これらの油溶性重合開始剤から選択される一種以上が好ましい。また、油溶性重合開始剤としては、低温でもラジカルを発生させることができるものが好ましく、例えば、V-65が好ましい。油溶性重合開始剤を併用することにより、モノマー(例えば、スチレンモノマー等)からポリマーへの転化率が向上する。ただし、本態様の製造方法における重合反応においては、油溶性重合開始剤を使用しない場合でも十分な転化率を得ることができる。 Furthermore, in the polymerization reaction in the manufacturing method of this embodiment, an oil-soluble polymerization initiator may be used together with the cationic radical polymerization initiator as necessary. Examples of the oil-soluble polymerization initiator include azobisisobutyronitrile (AIBN, CAS RN: 78-67-1), 2,2'-azobis(2,4-dimethylvaleronitrile) (V-65, CAS RN: 4419-118), etc., and one or more selected from these oil-soluble polymerization initiators are preferable. In addition, as the oil-soluble polymerization initiator, one that can generate radicals even at low temperatures is preferable, and for example, V-65 is preferable. By using an oil-soluble polymerization initiator in combination, the conversion rate from monomers (e.g., styrene monomer, etc.) to polymers is improved. However, in the polymerization reaction in the manufacturing method of this embodiment, a sufficient conversion rate can be obtained even if an oil-soluble polymerization initiator is not used.
 ポリマーXとして分岐状ポリマーを含む組成物の製造方法はさらに上記の重合反応で得られたポリマーをさらに架橋する反応を含んでいてもよい。架橋は重合反応と同時に進行していてもよい。 The method for producing a composition containing a branched polymer as polymer X may further include a reaction for further crosslinking the polymer obtained by the above polymerization reaction. The crosslinking may proceed simultaneously with the polymerization reaction.
 また、本態様の製造方法における重合反応により、反応液中のDHHB(成分A)の大半は生成されるポリマー粒子内に取り込まれ、高いDHHB含有量を有することができる。反応液の成分Aの含有量に対するポリマー粒子組成物の成分Aの含有量は70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。なお、DHHBは水に溶解しないため、ポリマー粒子内に取り込まれなかったDHHBは固体として反応容器壁面等に析出し、容易に取り除くことができる。 Furthermore, by the polymerization reaction in the manufacturing method of this embodiment, most of the DHHB (component A) in the reaction solution is incorporated into the polymer particles produced, resulting in a high DHHB content. The content of component A in the polymer particle composition relative to the content of component A in the reaction solution is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more. Since DHHB is not soluble in water, DHHB that is not incorporated into the polymer particles precipitates as a solid on the walls of the reaction vessel, etc., and can be easily removed.
 本態様の製造方法における重合反応によるモノマーからポリマーへの転化率は70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。 In the manufacturing method of this embodiment, the conversion rate from monomer to polymer by the polymerization reaction is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more.
 本態様の製造方法は、例えばポリマー粒子を構成しないDHHBまたは未反応のモノマー等を除くための精製工程を含んでいてもよい。一方、本態様の製造方法は、反応液におけるDHHB(成分A)、ポリマーXを構成するモノマー、ポリビニルアルコール(成分C)、および水の質量比の最適化により、精製工程無しに実施することができる。 The manufacturing method of this embodiment may include a purification step to remove, for example, DHHB or unreacted monomers that do not constitute the polymer particles. On the other hand, the manufacturing method of this embodiment can be carried out without a purification step by optimizing the mass ratio of DHHB (component A), monomers that constitute polymer X, polyvinyl alcohol (component C), and water in the reaction solution.
<ポリマー粒子含有組成物の用途>
 本開示の組成物は、例えば化粧料、医薬部外品、医薬品またはそれらの原料として使用することができる。化粧料としての使用のため、本開示の組成物に、必要に応じて、本発明の効果を実質上損なわない範囲内で、例えば以下の成分を配合することができる:
オリーブ油、ツバキ油、マカデミアナッツ油、ひまし油等の液体油脂;固体油脂;カルナウバロウ、キャンデリラロウ、ホホバ油、ミツロウ、ラノリン等のロウ;ステアリルアルコール、セタノール、ベヘニルアルコール、イソステアリルアルコール等の高級アルコール;ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸等の高級脂肪酸;流動パラフィン、パラフィン、揮発性イソパラフィン、ワセリン、セレシン、マイクロクリスタリンワックス、スクワラン等の炭化水素油;ミリスチン酸イソプロピル、ミリスチン酸2-オクチルドデシル、2-エチルヘキサン酸セチル、リンゴ酸ジイソステアリル等のエステル油;メチルポリシロキサン、メチルフェニルポリシロキサン、メチルハイドロジェンポリシロキサン、シクロメチコン、アミノ変性若しくはポリエーテル変性シリコーン油等のシリコーン油または架橋型シリコーン;グリセリン、プロピレングリコール、ジプロピレングリコール、1,3-ブチレングリコール、ポリエチレングリコール、ソルビトール、2-ピロリドン-5-カルボン酸ナトリウム、ヒアルロン酸ナトリウム等の保湿剤;カチオン化セルロース、カチオン化グアーガム、カチオン化ローカストビーンガム等のカチオン性多糖類、ポリクオタニウム-7等の合成系カチオン性高分子、ポリクオタニウム-39等の両性高分子等の水溶性高分子;トリクロロカルバニリド、イオウ、ジンクピリチオン、イソプロピルメチルフェノール、ピロクトンオラミン等の抗フケ用薬剤;植物系増粘剤、微生物系増粘剤、動物系増粘剤、セルロース系増粘剤、デンプン系増粘剤、アルギン酸系増粘剤、ビニル系高分子、高分子量ポリエチレングリコール等の増粘剤;粘度調整剤;陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤、乳濁剤;金属イオン封鎖剤;紫外線吸収剤;酸化防止剤;メチルパラベン、エチルパラベン、プロピルパラベン、フェノキシエタノール、安息香酸ナトリウム、1,2-オクタンジオール、メチルイソチアゾリノン等の防腐剤;マイカ、タルク、カオリン、炭酸カルシウム、炭酸マグネシウム、無水ケイ酸、酸化アルミニウム、硫酸バリウム、ベンガラ、黄酸化鉄、黒酸化鉄、酸化クロム、群青、紺青、カーボンブラック、二酸化チタン、酸化亜鉛、雲母チタン、魚鱗箔、オキシ塩化ビスマス、窒化ホウ素、フォトクロミック顔料、合成フッ素金雲母、鉄含有合成フッ素金雲母、微粒子複合粉体等の粉末成分;赤色106号、だいだい色205号、黄色4号、緑色3号、青色1号等の色素;低級アルコール、多価アルコール、糖、アミノ酸、有機アミン、高分子エマルジョン、各種抽出液、血行促進剤、局所刺激剤、毛包賦活剤、抗男性ホルモン剤、抗脂漏剤、角質溶解剤、殺菌剤、酸化防止剤、酸化防止助剤、消炎剤、美白剤、抗シワ剤、収れん剤、抗酸化剤、活性酸素除去剤、皮膚栄養剤、ビタミン類、生薬エキス類等の育毛薬剤、pH調整剤、香料等。これらを必要に応じて適宜配合し、目的とする剤形に応じて常法により製造することができる。
<Uses of the polymer particle-containing composition>
The composition of the present disclosure can be used, for example, as a cosmetic, a quasi-drug, a pharmaceutical, or a raw material thereof. For use as a cosmetic, the composition of the present disclosure can be blended with, as necessary, the following components, for example, within a range that does not substantially impair the effects of the present invention:
Liquid fats and oils such as olive oil, camellia oil, macadamia nut oil, castor oil, etc.; solid fats and oils; waxes such as carnauba wax, candelilla wax, jojoba oil, beeswax, lanolin, etc.; higher alcohols such as stearyl alcohol, cetanol, behenyl alcohol, isostearyl alcohol, etc.; higher fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, etc.; hydrocarbon oils such as liquid paraffin, paraffin, volatile isoparaffin, petrolatum, ceresin, microcrystalline wax, squalane, etc.; ester oils such as isopropyl myristate, 2-octyldodecyl myristate, cetyl 2-ethylhexanoate, diisostearyl malate, etc.; methylpolysiloxane, methylphenylpolysiloxane, Silicone oils or crosslinked silicones such as lysiloxane, methylhydrogenpolysiloxane, cyclomethicone, amino-modified or polyether-modified silicone oils; moisturizing agents such as glycerin, propylene glycol, dipropylene glycol, 1,3-butylene glycol, polyethylene glycol, sorbitol, sodium 2-pyrrolidone-5-carboxylate, and sodium hyaluronate; water-soluble polymers such as cationic polysaccharides such as cationic cellulose, cationic guar gum, and cationic locust bean gum, synthetic cationic polymers such as polyquaternium-7, and amphoteric polymers such as polyquaternium-39; trichlorocarbanilide, sulfur, zinc pyrithione, isopropyl methyl pheno anti-dandruff agents such as piroctone olamine; thickeners such as plant-based thickeners, microbial-based thickeners, animal-based thickeners, cellulose-based thickeners, starch-based thickeners, alginic acid-based thickeners, vinyl polymers, and high molecular weight polyethylene glycols; viscosity regulators; anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, opacifiers; sequestering agents; ultraviolet absorbers; antioxidants; preservatives such as methylparaben, ethylparaben, propylparaben, phenoxyethanol, sodium benzoate, 1,2-octanediol, and methylisothiazolinone; mica, talc, kaolin, calcium carbonate, magnesium carbonate, anhydrous silicic acid, aluminum oxide, barium sulfate, red iron oxide, yellow iron oxide, Powder components such as black iron oxide, chromium oxide, ultramarine, Prussian blue, carbon black, titanium dioxide, zinc oxide, titanium mica, fish scale foil, bismuth oxychloride, boron nitride, photochromic pigments, synthetic fluorine phlogopite, iron-containing synthetic fluorine phlogopite, fine particle composite powder, etc.; pigments such as Red No. 106, Orange No. 205, Yellow No. 4, Green No. 3, Blue No. 1, etc.; lower alcohols, polyhydric alcohols, sugars, amino acids, organic amines, polymer emulsions, various extracts, blood circulation promoters, local stimulants, hair follicle activators, antiandrogenic agents, antiseborrheic agents, keratolytic agents, bactericides, antioxidants, antioxidant assistants, anti-inflammatory agents, whitening agents, anti-wrinkle agents, astringents, antioxidants, active oxygen removers, skin nutrients, vitamins, hair growth agents such as herbal extracts, pH adjusters, fragrances, etc. These can be appropriately mixed as necessary and manufactured by conventional methods according to the desired dosage form.
 本開示の組成物には化粧料としての使用のため、化粧品の抗菌目的で使用される濃度範囲の水性アルコールを添加してもよい。水性アルコールの例としてはエタノール、1,2-ヘキサンジオール、1,2-ペンタンジオール、1,3-ブタンジオール、グリセリン及びジプロピレングリコールなどがあげられる。水性アルコールは抗菌目的のため、最小発育阻止濃度(MIC)(J Soc Cosmet Chem Japan 46 (2012)295-300. https://doi.org/10.5107/sccj.46.295.)に達する濃度で用いればよい。一方、水性アルコールはポリマー粒子の安定性が維持されDHHBの漏出を生じさせない濃度で用いることが好ましい。 For use as a cosmetic, the composition of the present disclosure may contain an aqueous alcohol in a concentration range used for antibacterial purposes in cosmetics. Examples of aqueous alcohol include ethanol, 1,2-hexanediol, 1,2-pentanediol, 1,3-butanediol, glycerin, and dipropylene glycol. For antibacterial purposes, the aqueous alcohol may be used at a concentration that reaches the minimum inhibitory concentration (MIC) (J Soc Cosmet Chem Japan 46 (2012) 295-300. https://doi.org/10.5107/sccj.46.295.). On the other hand, it is preferable to use the aqueous alcohol at a concentration that maintains the stability of the polymer particles and does not cause leakage of DHHB.
 本態様の組成物は、選択する剤形と形態に応じた方法に従って化粧料、医薬部外品、医薬品またはそれらの原料として製造することができる。例えば、本開示の組成物を化粧料、医薬部外品、医薬品として製造する場合には、上述の本態様の組成物の製造工程で上記のいずれか一つ以上の配合成分を加えてもよく、上述のように本態様の組成物を製造後、上記のいずれか一つ以上の配合成分または水またはエタノール等の溶剤を加えてもよい。少なくとも上述の本態様の組成物の製造において、安定なポリマー粒子となる重合反応後に溶剤を加えることが好ましい。典型的には、上記の必須配合成分と必要な選択的成分を、水等の溶剤に溶解させることにより製造される。化粧料の製品形態としては、乳液、ローション、クリーム、日焼け止め料、軟膏、パウダー、シート、またはスプレー等があげられる。一つの実施態様では、化粧料は皮膚用化粧料組成物とされる。他の一つの実施態様では、本化粧料は毛髪用化粧料組成物とされる。 The composition of this aspect can be manufactured as a cosmetic, quasi-drug, pharmaceutical, or raw material thereof according to a method that corresponds to the selected dosage form and form. For example, when the composition of the present disclosure is manufactured as a cosmetic, quasi-drug, or pharmaceutical, any one or more of the above-mentioned ingredients may be added in the manufacturing process of the composition of this aspect described above, or any one or more of the above-mentioned ingredients or a solvent such as water or ethanol may be added after the composition of this aspect is manufactured as described above. At least in the manufacturing of the composition of this aspect described above, it is preferable to add a solvent after the polymerization reaction that results in stable polymer particles. Typically, the composition is manufactured by dissolving the above-mentioned essential ingredients and necessary optional ingredients in a solvent such as water. Examples of the product form of the cosmetic include emulsion, lotion, cream, sunscreen, ointment, powder, sheet, or spray. In one embodiment, the cosmetic is a cosmetic composition for skin. In another embodiment, the cosmetic is a cosmetic composition for hair.
 また、本態様の組成物は、化粧料、医薬部外品、または医薬品の原料として製造する場合には、本態様の組成物を、水、液体油脂、界面活性剤、または増粘剤等が含まれる水系媒体中に加えてよく、さらに加温、冷却、または撹拌等の処理を必要に応じて行うことで、化粧料、医薬部外品、または医薬品を製造し得る。 In addition, when the composition of this embodiment is produced as a raw material for cosmetics, quasi-drugs, or pharmaceuticals, the composition of this embodiment may be added to an aqueous medium containing water, liquid oils and fats, surfactants, thickeners, etc., and further processing such as heating, cooling, or stirring may be performed as necessary to produce the cosmetics, quasi-drugs, or pharmaceuticals.
 以下に実施例をあげて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量およびその割合、ならびに操作等は、本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。 The present invention will be explained in more detail below with reference to examples. The materials, reagents, amounts and proportions of substances, and operations shown in the following examples can be modified as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the following examples.
 以下の実施例および比較例において、ポリビニルアルコール(PVA)としては、日本酢ビ・ポバール株式会社製のPVA(商品名:JMR-3H、けん化度:78mol%、平均重合度:110)を使用した。また、2-[4-(ジエチルアミノ)-2-ヒドロキシベンゾイル]安息香酸ヘキシル(DHHB)としては、東京化成工業株式会社製のDHHBを使用した。また、ホモミキサーとしては、ラボリューションホモミクサーMARK II 2.5型(プライミクス株式会社製)を使用した。 In the following examples and comparative examples, the polyvinyl alcohol (PVA) used was PVA manufactured by Nippon Vinyl Acetate & Poval Co., Ltd. (product name: JMR-3H, degree of saponification: 78 mol%, average degree of polymerization: 110). The 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate (DHHB) used was DHHB manufactured by Tokyo Chemical Industry Co., Ltd. The homomixer used was a Laborution Homomixer MARK II 2.5 model (manufactured by Primix Corporation).
<実施例1~3ならびに比較例1および2>
実施例1:UV吸収剤DHHBを含んだカチオン性スチレン系ポリマー粒子SY032の合成
 45gのスチレンに15gのDHHBを溶かし込んだ。続いて、4.0gのPVAが溶解した水溶液20gをビーカーに入れ、さらに純水を170g添加した。ホモミキサーにPVA水溶液をセットし、2000rpmで撹拌しながらDHHBを含むスチレン溶液を加えた。得られた反応液は、さらに、撹拌の回転数を6000rpmに上げて10分間撹拌して乳化させた。乳化した反応液は、全体に10分間アルゴンガスを吹き込んだのち、邪魔板付きセパラブルフラスコ(容量300mL)に移し替えた。上記反応液に470mgのVA-044を添加した混合物を、メカニカルスターラーにて、120rpmで撹拌しながらマントルヒーターで80℃まで昇温した。反応2時間後に追加の470mgのVA-044を添加し、さらに2時間反応させ、反応生成物としてポリマー粒子組成物(SY032)を得た。
<Examples 1 to 3 and Comparative Examples 1 and 2>
Example 1: Synthesis of cationic styrene-based polymer particles SY032 containing UV absorber DHHB 15 g of DHHB was dissolved in 45 g of styrene. Then, 20 g of an aqueous solution in which 4.0 g of PVA was dissolved was placed in a beaker, and 170 g of pure water was added. The aqueous PVA solution was set in a homomixer, and a styrene solution containing DHHB was added while stirring at 2000 rpm. The resulting reaction solution was emulsified by stirring for 10 minutes at a stirring speed of 6000 rpm. The emulsified reaction solution was transferred to a separable flask (capacity 300 mL) with a baffle after blowing argon gas into the entire solution for 10 minutes. The mixture obtained by adding 470 mg of VA-044 to the above reaction solution was heated to 80 ° C. with a mantle heater while stirring at 120 rpm with a mechanical stirrer. After 2 hours of reaction, an additional 470 mg of VA-044 was added, and the reaction was continued for another 2 hours to obtain a polymer particle composition (SY032) as a reaction product.
実施例2:UV吸収剤DHHBを含んだカチオン性スチレン系ポリマー粒子SY034の合成(開始剤としてV-50を用いた場合)
 45gのスチレンに15gのDHHBを溶かし込んだ。続いて、4.0gのPVAが溶解した水溶液20gをビーカーに入れ、さらに純水を170g添加した。ホモミキサーにPVA水溶液をセットし、2000rpmで撹拌しながらDHHBを含むスチレン溶液を加えた。得られた反応液は、さらに、撹拌の回転数を6000rpmに上げ、10分間撹拌して乳化させた。乳化した反応液は、全体に10分間アルゴンガスを吹き込んだのち、邪魔板付きセパラブルフラスコ(容量300mL)に移し替えた。上記反応液に470mgのV-50を添加した混合物を、メカニカルスターラーにて、120rpmで撹拌しながらマントルヒーターで80℃まで昇温した。反応2時間後に追加の470mgのV-50を添加し、さらに2時間反応させ、反応生成物としてポリマー粒子組成物(SY034)を得た。
Example 2: Synthesis of cationic styrene-based polymer particles SY034 containing UV absorber DHHB (when V-50 is used as initiator)
15 g of DHHB was dissolved in 45 g of styrene. Then, 20 g of an aqueous solution in which 4.0 g of PVA was dissolved was placed in a beaker, and 170 g of pure water was added. The PVA aqueous solution was set in a homomixer, and the styrene solution containing DHHB was added while stirring at 2000 rpm. The resulting reaction solution was emulsified by increasing the stirring speed to 6000 rpm and stirring for 10 minutes. The emulsified reaction solution was transferred to a separable flask (capacity 300 mL) with a baffle after blowing argon gas into the entire solution for 10 minutes. The mixture obtained by adding 470 mg of V-50 to the above reaction solution was heated to 80 ° C. with a mantle heater while stirring at 120 rpm with a mechanical stirrer. After 2 hours of reaction, an additional 470 mg of V-50 was added, and the reaction was continued for another 2 hours, to obtain a polymer particle composition (SY034) as a reaction product.
比較例1:UV吸収剤DHHBを含んだカチオン性アクリル酸ブチルポリマー粒子SY036の合成
 45gのtertブチルアクリレートに15gのDHHBを溶かし込んだ。続いて、4.0gのPVAが溶解した水溶液20gをビーカーに入れ、さらに純水を170g添加した。ホモミキサーにPVA水溶液をセットし、2000rpmで撹拌しながらDHHBを含むtertブチルアクリレート溶液を加えた。得られた反応液は、さらに、撹拌の回転数を6000rpmに上げ、10分間撹拌して乳化させた。乳化した反応液は全体に10分間アルゴンガスを吹き込んだのち、邪魔板付きセパラブルフラスコ(容量300mL)に移し替えた。上記反応液に470mgのVA-044を添加した混合物を、メカニカルスターラーにて、120rpmで撹拌しながらマントルヒーターで80℃まで昇温した。反応2時間後に追加の470mgのVA-044を添加し、さらに2時間反応させ、反応生成物としてポリマー粒子組成物(SY036)を得た。
Comparative Example 1: Synthesis of cationic butyl acrylate polymer particles SY036 containing UV absorber DHHB 15 g of DHHB was dissolved in 45 g of tert-butyl acrylate. Then, 20 g of an aqueous solution in which 4.0 g of PVA was dissolved was placed in a beaker, and 170 g of pure water was added. The PVA aqueous solution was set in a homomixer, and a tert-butyl acrylate solution containing DHHB was added while stirring at 2000 rpm. The resulting reaction solution was further emulsified by increasing the stirring speed to 6000 rpm and stirring for 10 minutes. The emulsified reaction solution was transferred to a separable flask (capacity 300 mL) with a baffle after blowing argon gas into the entire solution for 10 minutes. The mixture in which 470 mg of VA-044 was added to the above reaction solution was heated to 80 ° C. with a mantle heater while stirring at 120 rpm with a mechanical stirrer. After 2 hours of reaction, an additional 470 mg of VA-044 was added, and the reaction was continued for another 2 hours to obtain a polymer particle composition (SY036) as a reaction product.
実施例3:UV吸収剤DHHBを含んだカチオン性メタクリル酸メチルポリマー粒子SY038の合成
 45gのメタクリル酸メチルに15gのDHHBを溶かし込んだ。続いて、4.0gのPVAが溶解した水溶液20gをビーカーに入れ、さらに純水を170g添加した。ホモミキサーにPVA水溶液をセットし、2000rpmで撹拌しながらDHHBを含むメタクリル酸メチル溶液を加えた。得られた反応液は、さらに、撹拌の回転数を6000rpmに上げ、10分間撹拌して乳化させた。乳化した反応液は全体に10分間アルゴンガスを吹き込んだのち、邪魔板付きセパラブルフラスコ(容量300mL)に移し替えた。上記反応液に470mgのVA-044を添加した混合物を、メカニカルスターラーにて、120rpmで撹拌しながらマントルヒーターで80℃まで昇温した。反応2時間後に追加の470mgのVA-044を添加し、さらに2時間反応させ、反応生成物としてポリマー粒子組成物(SY038)を得た。
Example 3: Synthesis of cationic methyl methacrylate polymer particles SY038 containing UV absorber DHHB 15 g of DHHB was dissolved in 45 g of methyl methacrylate. Then, 20 g of an aqueous solution in which 4.0 g of PVA was dissolved was placed in a beaker, and 170 g of pure water was added. The PVA aqueous solution was set in a homomixer, and the methyl methacrylate solution containing DHHB was added while stirring at 2000 rpm. The resulting reaction solution was further emulsified by increasing the stirring speed to 6000 rpm and stirring for 10 minutes. The emulsified reaction solution was transferred to a separable flask (capacity 300 mL) with a baffle after blowing argon gas into the entire solution for 10 minutes. The mixture in which 470 mg of VA-044 was added to the above reaction solution was heated to 80 ° C. with a mantle heater while stirring at 120 rpm with a mechanical stirrer. After 2 hours of reaction, an additional 470 mg of VA-044 was added, and the reaction was continued for another 2 hours to obtain a polymer particle composition (SY038) as a reaction product.
比較例2:UV吸収剤DHHBを含んだカチオン性スチレン系ポリマー粒子SY039の合成
 45gのスチレンに15gのDHHBを溶かし込んだ。続いて、邪魔板付きセパラブルフラスコ(容量300mL)に4.0gのPVAが溶解した水溶液20gをビーカーに入れ、さらに純水を170g添加した。さらにDHHBを含むスチレン溶液を加えた。得られた反応液全体に、450rpmで撹拌しながら、10分間アルゴンガスを吹き込み、470mgのVA-044を添加した。メカニカルスターラーにて、450rpmで撹拌しながらマントルヒーターで80℃まで昇温した。反応2時間後に追加の470mgのVA-044を添加し、さらに2時間反応させ、反応生成物としてポリマー粒子組成物(SY039)を得た。
Comparative Example 2: Synthesis of cationic styrene-based polymer particles SY039 containing UV absorber DHHB 15 g of DHHB was dissolved in 45 g of styrene. Then, 20 g of an aqueous solution in which 4.0 g of PVA was dissolved in a separable flask (capacity 300 mL) with a baffle was placed in a beaker, and 170 g of pure water was added. A styrene solution containing DHHB was further added. While stirring at 450 rpm, argon gas was blown into the entire reaction solution obtained for 10 minutes, and 470 mg of VA-044 was added. The mixture was heated to 80 ° C. with a mantle heater while stirring at 450 rpm with a mechanical stirrer. After 2 hours of reaction, an additional 470 mg of VA-044 was added, and the reaction was continued for another 2 hours to obtain a polymer particle composition (SY039) as a reaction product.
評価
 実施例1~3ならびに比較例1および2にて得られたポリマー粒子組成物(反応生成物)を、それぞれ、反応容器から測定容器[マイクロチューブ(材質:ポリプロピレン製、容量:1.5mL、エッペンドルフ株式会社製)]に移し、乾熱乾燥して、それぞれのポリマー粒子組成物における乾燥質量を算出した。
 それぞれのポリマー粒子組成物のDHHB含有量については「衛生試験法・注解2015」(日本薬学会編,金原出版(2015年))を参考に以下の通り測定した。ポリマー粒子組成物を遠心操作(20400G、10分)して沈殿物を回収した。回収物をテトラヒドロフランで希釈後、クロロホルムでDHHBを抽出し、高速液体クロマトグラフィー(HPLC)で定量分析を行った。DHHBは350nmの吸光度を指標に検出した。
The polymer particle compositions (reaction products) obtained in Evaluation Examples 1 to 3 and Comparative Examples 1 and 2 were each transferred from the reaction vessel to a measurement vessel [microtube (material: polypropylene, capacity: 1.5 mL, manufactured by Eppendorf Co., Ltd.)] and dried with dry heat to calculate the dry mass of each polymer particle composition.
The DHHB content of each polymer particle composition was measured as follows, with reference to "Hygienic Test Methods - Commentary 2015" (edited by the Pharmaceutical Society of Japan, Kanehara Publishing (2015)). The polymer particle composition was centrifuged (20400G, 10 minutes) to recover the precipitate. After diluting the recovered material with tetrahydrofuran, DHHB was extracted with chloroform and quantitatively analyzed by high performance liquid chromatography (HPLC). DHHB was detected using the absorbance at 350 nm as an index.
 ポリマー粒子組成物に含まれるポリマー粒子の平均粒子径は、ゼータサイザーナノZSP(マルバーン社)で動的光散乱法により測定した。PdIは、ゼータサイザーナノZSP(マルバーン社)で測定した。平均ゼータ電位は、ゼータサイザーナノZSP(マルバーン社)で測定した。測定はすべて25℃で行い、水の粘度は0.89mPa・s-1、比誘電率は78.5であった。ゼータ電位の計算にはヘンリーの関数(1.5)を用いた。
 経時安定性は、製造直後のサンプルをガラス瓶に移し替え、2週間室温で保管した後、以下の評価基準により評価した。
(評価基準)
A:5回以下の振とうを行ったときに、目視により製造直後との変化が認められない
B:5回を超えて15回以下の振とうを行ったときに、目視により製造直後との変化が認められない
C:15回を超える振とうを行ったときに、目視により製造直後との変化が認められる
The average particle size of the polymer particles contained in the polymer particle composition was measured by dynamic light scattering using a Zetasizer Nano ZSP (Malvern Instruments). PdI was measured using a Zetasizer Nano ZSP (Malvern Instruments). The average zeta potential was measured using a Zetasizer Nano ZSP (Malvern Instruments). All measurements were performed at 25° C., and the viscosity of water was 0.89 mPa·s −1 and the relative dielectric constant was 78.5. Henry's function (1.5) was used to calculate the zeta potential.
The stability over time was evaluated by transferring a sample immediately after production into a glass bottle, storing it at room temperature for 2 weeks, and then evaluating the stability over time according to the following criteria.
(Evaluation criteria)
A: When shaken 5 times or less, no visual change from immediately after manufacture is observed. B: When shaken 5 times or more but not more than 15 times, no visual change from immediately after manufacture is observed. C: When shaken more than 15 times, a visual change from immediately after manufacture is observed.
 実施例1~3ならびに比較例1および2の組成物の製造時の仕込み量および製造工程、ならびに得られた組成物の測定結果を表1に示す。 Table 1 shows the amounts of ingredients and manufacturing processes used to manufacture the compositions of Examples 1 to 3 and Comparative Examples 1 and 2, as well as the measurement results of the resulting compositions.
 表1中、各値は以下の式で算出されたものである。
*1:ポリマー粒子組成物の固形分濃度(質量%)=〔ポリマー粒子組成物の乾燥質量〕/〔ポリマー粒子組成物の質量〕×100
*2:ポリマー粒子組成物の固形分収率(質量%)=〔ポリマー粒子組成物の乾燥質量〕/〔仕込みのDHHB+仕込みのモノマー+仕込みのPVAの総質量〕×100
*3:ポリマー粒子組成物中のDHHB含有量(質量%)=〔ポリマー粒子組成物の遠心操作後の沈殿物中のDHHBの質量〕/〔ポリマー粒子組成物の質量〕×100
*4:ポリマー粒子組成物へのDHHB取込率(質量%)=〔ポリマー粒子組成物の遠心操作後の沈殿物中のDHHBの質量〕/〔仕込みのDHHB質量〕×100
*5:ポリマー転化率(質量%)=〔ポリマー粒子組成物の乾燥質量から仕込みのPVA質量およびポリマー粒子組成物の遠心操作後の沈殿物中のDHHBの質量を差し引いた質量〕/〔仕込みのモノマー質量〕×100
*6:ポリマー粒子組成物中のDHHB/ポリマーの割合(質量%)=〔ポリマー粒子組成物の遠心操作後の沈殿物中のDHHBの質量〕/〔仕込みのモノマー質量×ポリマー転化率〕×100
*7:ポリマー粒子組成物の固形分中のDHHB含有量(質量%)=〔ポリマー粒子組成物の遠心操作後の沈殿物中のDHHBの質量〕/〔ポリマー粒子組成物の乾燥質量〕×100
In Table 1, each value was calculated using the following formula.
*1: Solid content concentration (mass%) of polymer particle composition = [dry mass of polymer particle composition] / [mass of polymer particle composition] x 100
*2: Solid content yield (mass%) of polymer particle composition = [dry mass of polymer particle composition] / [total mass of charged DHHB + charged monomer + charged PVA] × 100
*3: DHHB content (mass%) in polymer particle composition=[mass of DHHB in the precipitate after centrifugation of polymer particle composition]/[mass of polymer particle composition]×100
*4: DHHB incorporation rate (mass%) in polymer particle composition = [mass of DHHB in the precipitate after centrifugation of polymer particle composition] / [mass of DHHB charged] x 100
*5: Polymer conversion rate (mass%)=[mass obtained by subtracting the mass of PVA charged and the mass of DHHB in the precipitate after centrifugation of the polymer particle composition from the dry mass of the polymer particle composition]/[mass of monomer charged]×100
*6: Ratio of DHHB/polymer in polymer particle composition (mass%)=[mass of DHHB in the precipitate after centrifugation of polymer particle composition]/[mass of charged monomer×polymer conversion rate]×100
*7: DHHB content (mass%) in the solid content of the polymer particle composition = [mass of DHHB in the precipitate after centrifugation of the polymer particle composition] / [dry mass of the polymer particle composition] × 100
 実施例1の組成物中のDHHBの含有量は6.2質量%と高く、経時安定性も良好であった。実施例2の組成物中のDHHBの含有量は5.8質量%と高く、経時安定性も良好であった。比較例1では、製造時のモノマーに、tertブチルアクリレートを用いた。得られた組成物中のDHHBの含有量は5.6質量%と高かったが経時安定性は不良であった。実施例3の組成物中のDHHBの含有量は5.8質量%と高く、経時安定性も良好であった。比較例2の組成物は経時安定性には優れたものの、比較例2の組成物中のDHHBの含有量は3.8質量%であり、5.5質量%未満であった。比較例2においては、その製造において、撹拌して乳化物を得る工程を含んでいなかった。用いたビーカー壁面に反応液から析出したDHHBの固着が見られ、DHHBの取込率は63質量%であった。 The content of DHHB in the composition of Example 1 was high at 6.2% by mass, and the stability over time was also good. The content of DHHB in the composition of Example 2 was high at 5.8% by mass, and the stability over time was also good. In Comparative Example 1, tert-butyl acrylate was used as the monomer during production. The content of DHHB in the obtained composition was high at 5.6% by mass, but the stability over time was poor. The content of DHHB in the composition of Example 3 was high at 5.8% by mass, and the stability over time was also good. Although the composition of Comparative Example 2 had excellent stability over time, the content of DHHB in the composition of Comparative Example 2 was 3.8% by mass, which was less than 5.5% by mass. In Comparative Example 2, the production did not include a step of stirring to obtain an emulsion. DHHB precipitated from the reaction solution was found to adhere to the wall of the beaker used, and the uptake rate of DHHB was 63% by mass.
<実施例11~12および比較例11>
 表2に記載の量のスチレンに15gのDHHBを溶かし込んだ。PVA水溶液(2wt%、189g)を500mLのポリプロピレン製ディスポーザブルカップに加えた後、2000rpmで攪拌しながら、DHHBを含むスチレン溶液を、PVA水溶液にゆっくりと加えた。得られた反応液は、さらに、撹拌の回転数を6000rpmに上げて10分間撹拌して乳化させた。なお、ポリスチレンを使用する実施例12においては、重量平均分子量が50000のポリスチレン(Polysciences, Inc.(米国))をスチレンモノマーに一晩4℃で撹拌しながら溶解させた。
<Examples 11 to 12 and Comparative Example 11>
15 g of DHHB was dissolved in the amount of styrene listed in Table 2. After adding a PVA aqueous solution (2 wt%, 189 g) to a 500 mL polypropylene disposable cup, the styrene solution containing DHHB was slowly added to the PVA aqueous solution while stirring at 2000 rpm. The resulting reaction solution was further emulsified by stirring for 10 minutes at a stirring speed of 6000 rpm. In Example 12 using polystyrene, polystyrene with a weight average molecular weight of 50,000 (Polysciences, Inc. (USA)) was dissolved in styrene monomer overnight at 4° C. while stirring.
 乳化した反応液は、全体に10分間アルゴンガスを吹き込んだのち、邪魔板付きセパラブルフラスコ(容量300mL)に移し替えた。その後、反応液の温度を上げ、1gの水に溶解したラジカル開始剤VA-044(470mg)を添加し、60℃で4時間表2に示す回転数にて撹拌した。反応終了後、すべての反応液を25℃に冷却し、特性を評価した。結果を表2に示す。 Argon gas was blown into the emulsified reaction liquid for 10 minutes, and then the liquid was transferred to a separable flask (volume 300 mL) equipped with a baffle. The temperature of the reaction liquid was then increased, and radical initiator VA-044 (470 mg) dissolved in 1 g of water was added, followed by stirring at 60°C for 4 hours at the rotation speed shown in Table 2. After the reaction was completed, all reaction liquids were cooled to 25°C, and the characteristics were evaluated. The results are shown in Table 2.
ポリマー粒子組成物のポリマー濃度(質量%)=ポリマー粒子組成物の固形分濃度(質量%)-ポリマー粒子組成物中のDHHB含有量(質量%) Polymer concentration (mass%) of polymer particle composition=solids concentration (mass%) of polymer particle composition−DHHB content (mass%) in polymer particle composition
 表2の比較例11および実施例12を比較すると分かるように、乳化前にスチレンモノマーにポリスチレンを溶解させることで、ポリマー粒子組成物におけるDHHB含有量が増加した。ポリスチレンの添加によって油滴の安定性が増すことについての報告が既にある(Langmuir. 19 (2003) 4063-4069. https://doi.org/10.1021/la020749i)ことを考慮すると、ポリスチレンの添加によるスチレンモノマー液滴の安定化によってDHHBの取込が促進されていることが示唆される。実施例12ではスチレンモノマーがほぼ完全にポリマーに変換され、DHHBがほぼ完全に粒子に取り込まれた。 As can be seen by comparing Comparative Example 11 and Example 12 in Table 2, dissolving polystyrene in styrene monomer before emulsification increased the DHHB content in the polymer particle composition. Considering that it has already been reported that the addition of polystyrene increases the stability of oil droplets (Langmuir. 19 (2003) 4063-4069. https://doi.org/10.1021/la020749i), it is suggested that the incorporation of DHHB is promoted by stabilizing the styrene monomer droplets by the addition of polystyrene. In Example 12, the styrene monomer was almost completely converted to polymer, and DHHB was almost completely incorporated into the particles.
<参考例1>
 ポリスチレンとして重量平均分子量が300000のポリスチレン(東洋スチレン株式会社)を用いた以外は実施例12と同様に調製した参考例S1のポリマー粒子組成物(表3)(20mg)を1.5mLチューブに加え、エタノール(10質量%)、2.1,2-ヘキサンジオール(5質量%)、1,2-ペンタンジオール(10質量%)、または1,3-ブタンジオール(20質量%)を加えた。最終的なポリマー粒子(0.05質量%)とアルコール含量を調整するため、混合物に水を加えた。その後、サンプルを50℃で24時間インキュベートし、20400gで45分間遠心した。遠心分離後、上清(150μL)をアセトニトリル(850μL)で希釈した。
<Reference Example 1>
The polymer particle composition of Reference Example S1 (Table 3) (20 mg) prepared in the same manner as in Example 12 except that polystyrene having a weight average molecular weight of 300,000 (Toyo Styrene Co., Ltd.) was used as the polystyrene was added to a 1.5 mL tube, and ethanol (10% by mass), 2.1,2-hexanediol (5% by mass), 1,2-pentanediol (10% by mass), or 1,3-butanediol (20% by mass) was added. Water was added to the mixture to adjust the final polymer particles (0.05% by mass) and alcohol content. The sample was then incubated at 50°C for 24 hours and centrifuged at 20,400 g for 45 minutes. After centrifugation, the supernatant (150 μL) was diluted with acetonitrile (850 μL).
 陽性対照は以下のように調製した。参考例S1のポリマー粒子組成物(20mg)とTHF(100μL)を1.5mLチューブ中でよく混合した。次にクロロホルム(600μL)を加え、15分間超音波処理を行った。超音波処理したサンプル(10μL)をアセトニトリル(990μL)で希釈した。調製したサンプルはすべて、孔径0.2μmのPTFE(ポリテトラフルオロエチレン)メンブレンフィルターでろ過した。 The positive control was prepared as follows: The polymer particle composition of Reference Example S1 (20 mg) and THF (100 μL) were mixed thoroughly in a 1.5 mL tube. Chloroform (600 μL) was then added and ultrasonicated for 15 minutes. The ultrasonicated sample (10 μL) was diluted with acetonitrile (990 μL). All prepared samples were filtered through a PTFE (polytetrafluoroethylene) membrane filter with a pore size of 0.2 μm.
 各アルコールおよび陽性対照を含む上澄み液中のDHHB含量は、ポリマー粒子組成物のDHHB含有量を求める際と同様にHPLCによって測定した。HPLC分析に基づき、アルコール水溶液中のDHHBの相対量「(アルコール水溶液中のDHHB含量)/(陽性対照中のDHHB含量)」を算出した。図1に示すようにどの溶液からもDHHBは検出されず、ポリマー粒子からDHHBが漏出していないことが示された。 The DHHB content in the supernatant containing each alcohol and the positive control was measured by HPLC in the same manner as when determining the DHHB content in the polymer particle composition. Based on the HPLC analysis, the relative amount of DHHB in the alcohol aqueous solution was calculated as "(DHHB content in alcohol aqueous solution)/(DHHB content in positive control)". As shown in Figure 1, DHHB was not detected in any of the solutions, indicating that DHHB had not leaked from the polymer particles.
<参考例2>
 参考例S1のポリマー粒子組成物と同様の手順で表3に示す参考例S2のポリマー粒子組成物を調製した。
 ブリーチした毛髪(白髪)を、参考例S1のポリマー粒子組成物、水、および参考例S2のポリマー粒子組成物に10分間浸した。次いで、処理した毛髪を5分間水に浸して3回洗浄し、余分な粒子を除去し、室温で乾燥させた。乾燥した毛髪を走査型電子顕微鏡(SEM、Nova NanoSEM 450、FEI社、米国)を用いて観察するために1cmに切断し、SEM測定を行った。各乾燥毛髪試料をカーボンテープに直接貼り付け、SEMで観察した。加速電圧500V、倍率2000倍(図2A~C)または8000倍(図2D)で観測した。得られた画像はNaviCam(株式会社ソニーコンピュータサイエンス研究所)を用いて解析した。
<Reference Example 2>
The polymer particle composition of Reference Example S2 shown in Table 3 was prepared in the same manner as in the preparation of the polymer particle composition of Reference Example S1.
Bleached hair (white hair) was immersed in the polymer particle composition of Reference Example S1, water, and the polymer particle composition of Reference Example S2 for 10 minutes. The treated hair was then washed three times by immersing it in water for 5 minutes to remove excess particles, and dried at room temperature. The dried hair was cut into 1 cm pieces for observation using a scanning electron microscope (SEM, Nova NanoSEM 450, FEI, USA), and SEM measurements were performed. Each dried hair sample was directly attached to carbon tape and observed with SEM. Observation was performed at an acceleration voltage of 500 V and a magnification of 2000 times (Figures 2A-C) or 8000 times (Figure 2D). The obtained images were analyzed using NaviCam (Sony Computer Science Laboratories, Inc.).
 図2は、水(図2A)、参考例S1のポリマー粒子組成物(図2B)、および参考例S2のポリマー粒子組成物(図2C)で処理した毛髪のSEM画像を示し、図2Dは、図2Bに示す正方形枠内の拡大画像を示す。毛髪の特徴的な鱗片状の表面構造が、図2A~Dで確認でき、図2Bおよび図2Dでは毛髪表面の広い範囲にわたって粒子が確認できる。図2Dで観察された10個の粒子から測定された粒子径は263±19nmであり、動的光散乱法による測定で得られた粒子径とほぼ同じであった。一方、図2Aおよび図2Cでは粒子構造は観察されなかった。すなわち、参考例S1のポリマー粒子組成物中のポリマー粒子(カチオン性)は毛髪に強く吸着し、参考例S2のポリマー粒子組成物のポリマー粒子(アニオン性)は毛髪に吸着しないことが確認された。 2 shows SEM images of hair treated with water (FIG. 2A), the polymer particle composition of Reference Example S1 (FIG. 2B), and the polymer particle composition of Reference Example S2 (FIG. 2C), and FIG. 2D shows an enlarged image of the square frame shown in FIG. 2B. The characteristic scale-like surface structure of hair can be seen in FIGS. 2A-D, and particles can be seen over a wide area of the hair surface in FIGS. 2B and 2D. The particle diameter measured from the 10 particles observed in FIG. 2D was 263±19 nm, which was almost the same as the particle diameter obtained by measurement using the dynamic light scattering method. On the other hand, no particle structure was observed in FIGS. 2A and 2C. That is, it was confirmed that the polymer particles (cationic) in the polymer particle composition of Reference Example S1 were strongly adsorbed to hair, and the polymer particles (anionic) in the polymer particle composition of Reference Example S2 were not adsorbed to hair.

Claims (21)

  1. 成分A:2-[4-(ジエチルアミノ)-2-ヒドロキシベンゾイル]安息香酸ヘキシル、
    成分B:ガラス転移温度80℃以上のホモポリマーを形成できるモノマー由来の繰り返し単位を含むポリマー、および
    成分C:ポリビニルアルコール
    を含むポリマー粒子、ならびに

    を含む組成物であって、
    前記ポリマー粒子の平均粒子径が350nm以下であり、
    前記ポリマー粒子の動的光散乱法による多分散性指数PdIが0.2以下であり、
    前記組成物中の成分Aの含有量が5.5質量%以上である組成物。
    Component A: 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate,
    A composition comprising: component B: a polymer containing a repeating unit derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80° C. or higher; and component C: polymer particles containing polyvinyl alcohol; and water,
    The average particle size of the polymer particles is 350 nm or less,
    The polydispersity index PdI of the polymer particles as measured by a dynamic light scattering method is 0.2 or less;
    The content of component A in the composition is 5.5 mass% or more.
  2. 成分Aの含有量が成分Bの含有量に対し26~67質量%である、請求項1に記載の組成物。 The composition according to claim 1, wherein the content of component A is 26 to 67 mass% relative to the content of component B.
  3. 前記モノマーがスチレンまたはメタクリル酸メチルである、請求項1に記載の組成物。 The composition of claim 1, wherein the monomer is styrene or methyl methacrylate.
  4. 成分Bがカチオン性の官能基を有するポリマーである、請求項1に記載の組成物。 The composition according to claim 1, wherein component B is a polymer having a cationic functional group.
  5. 前記ポリマー粒子中の成分Aの含有量が20質量%以上である、請求項1に記載の組成物。 The composition according to claim 1, wherein the content of component A in the polymer particles is 20% by mass or more.
  6. 界面活性剤を実質的に含まない、請求項1に記載の組成物。 The composition of claim 1, which is substantially free of surfactants.
  7. 成分A:2-[4-(ジエチルアミノ)-2-ヒドロキシベンゾイル]安息香酸ヘキシル、
    成分B:ガラス転移温度80℃以上のホモポリマーを形成できるモノマー由来の繰り返し単位を含むポリマー、および
    成分C:ポリビニルアルコール
    を含むポリマー粒子を含む組成物であって、前記ポリマー粒子の平均粒子径が350nm以下であり、
    成分Aの含有量が成分Bの含有量に対し、26~67質量%であり、
    前記ポリマー粒子の動的光散乱法による多分散性指数PdIが0.2以下である、組成物。
    Component A: 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate,
    A composition comprising: component B: a polymer containing a repeating unit derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80° C. or higher; and component C: polymer particles containing polyvinyl alcohol, wherein the polymer particles have an average particle size of 350 nm or less;
    The content of component A is 26 to 67% by mass relative to the content of component B,
    The composition, wherein the polymer particles have a polydispersity index PdI of 0.2 or less as measured by a dynamic light scattering method.
  8. 前記モノマーがスチレンまたはメタクリル酸メチルである、請求項7に記載の組成物。 The composition of claim 7, wherein the monomer is styrene or methyl methacrylate.
  9. 成分Bがカチオン性の官能基を有するポリマーである、請求項7に記載の組成物。 The composition according to claim 7, wherein component B is a polymer having a cationic functional group.
  10. 成分A:2-[4-(ジエチルアミノ)-2-ヒドロキシベンゾイル]安息香酸ヘキシル、
    成分B:ガラス転移温度80℃以上のホモポリマーを形成できるモノマー由来の繰り返し単位を含むポリマー、および
    成分C:ポリビニルアルコール
    を含むポリマー粒子を含む組成物の製造方法であって、
    成分A、前記モノマー、成分C、および水を少なくとも含む反応液を乳化する工程、ならびに
    前記乳化と同時にまたは前記乳化の後に前記モノマーの重合反応を行なう工程
    を含む、製造方法。
    Component A: 2-[4-(diethylamino)-2-hydroxybenzoyl]hexyl benzoate,
    A method for producing a composition comprising component B: a polymer containing a repeating unit derived from a monomer capable of forming a homopolymer having a glass transition temperature of 80° C. or higher, and component C: polymer particles containing polyvinyl alcohol, the method comprising the steps of:
    The production method includes a step of emulsifying a reaction liquid containing at least component A, the monomer, component C, and water, and a step of carrying out a polymerization reaction of the monomer simultaneously with or after the emulsification.
  11. 前記重合反応の開始前の反応液に含まれる前記モノマーの全質量が成分Aの全質量の1.5~3.9倍であり、前記水の全質量が成分Aの全質量の10~15倍である、請求項10に記載の製造方法。 The method according to claim 10, wherein the total mass of the monomers contained in the reaction solution before the start of the polymerization reaction is 1.5 to 3.9 times the total mass of component A, and the total mass of the water is 10 to 15 times the total mass of component A.
  12. 前記反応液が前記重合反応の開始から完了までの間に希釈されない、請求項10に記載の製造方法。 The method of claim 10, wherein the reaction solution is not diluted between the start and completion of the polymerization reaction.
  13. 前記乳化が10分以上および6000rpm以上の条件からなる撹拌により行なわれる、請求項10に記載の製造方法。 The method of claim 10, wherein the emulsification is carried out by stirring for 10 minutes or more at 6000 rpm or more.
  14. 前記重合反応が重合開始剤の存在下で行なわれる、請求項10~13のいずれか一項に記載の製造方法。 The method according to any one of claims 10 to 13, wherein the polymerization reaction is carried out in the presence of a polymerization initiator.
  15. 前記乳化前の反応液が重合開始剤を含まず、さらに前記乳化後の前記反応液に重合開始剤が添加される工程を含む、請求項10~13のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 10 to 13, wherein the reaction liquid before emulsification does not contain a polymerization initiator, and further includes a step of adding a polymerization initiator to the reaction liquid after the emulsification.
  16. 前記ポリマー粒子が前記繰り返し単位および前記重合開始剤の残基を有するポリマーを含む、請求項14に記載の製造方法。 The method of claim 14, wherein the polymer particles include a polymer having the repeating units and a residue of the polymerization initiator.
  17. 前記残基がカチオン性の官能基を有する残基である、請求項16に記載の製造方法。 The method according to claim 16, wherein the residue is a residue having a cationic functional group.
  18. 前記乳化前の反応液が成分Bを含む、請求項10~13のいずれか一項に記載の製造方法。 The method according to any one of claims 10 to 13, wherein the reaction liquid before emulsification contains component B.
  19. 前記モノマーがスチレンであり、成分Bがポリスチレンである、請求項18に記載の製造方法。 The method of claim 18, wherein the monomer is styrene and component B is polystyrene.
  20. 前記組成物が請求項1~9のいずれか一項に記載の組成物である、請求項10~13のいずれか一項に記載の製造方法。 The method according to any one of claims 10 to 13, wherein the composition is a composition according to any one of claims 1 to 9.
  21. 前記反応液の成分Aの含有量に対する前記組成物の成分Aの含有量が70質量%以上である、請求項10~13のいずれか一項に記載の製造方法。 The method according to any one of claims 10 to 13, wherein the content of component A in the composition relative to the content of component A in the reaction liquid is 70 mass% or more.
PCT/JP2023/040850 2022-11-15 2023-11-14 Composition containing polymer particles and production method for composition containing polymer particles WO2024106407A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-182487 2022-11-15
JP2022182487 2022-11-15
US202363483108P 2023-02-03 2023-02-03
US63/483,108 2023-02-03

Publications (1)

Publication Number Publication Date
WO2024106407A1 true WO2024106407A1 (en) 2024-05-23

Family

ID=91084848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040850 WO2024106407A1 (en) 2022-11-15 2023-11-14 Composition containing polymer particles and production method for composition containing polymer particles

Country Status (1)

Country Link
WO (1) WO2024106407A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091307A (en) * 2007-10-10 2009-04-30 Shiseido Co Ltd Ultraviolet-absorbing powder and cosmetic comprising the same
JP2021088555A (en) * 2019-11-27 2021-06-10 キリンホールディングス株式会社 Ultraviolet-absorbing cationic polymer particle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091307A (en) * 2007-10-10 2009-04-30 Shiseido Co Ltd Ultraviolet-absorbing powder and cosmetic comprising the same
JP2021088555A (en) * 2019-11-27 2021-06-10 キリンホールディングス株式会社 Ultraviolet-absorbing cationic polymer particle

Similar Documents

Publication Publication Date Title
WO2016098456A1 (en) Copolymer and oily gelling agent
JP3362785B2 (en) COMPOSITIONS CONTAINING POLYMER HAVING STAR STRUCTURE, THE POLYMERS AND THEIR USE
JP2006161027A (en) Organic solvent-swelling micro gel and method for producing the same
JP2006161026A (en) Organic solvent-swelling micro gel and method for producing the same
JP3708531B2 (en) Thickener and cosmetics containing the same
CN108348443A (en) Oil-in-water packet powder type composition
JP2009540030A (en) Bleed-resistant colored fine particles
Zhang et al. Influence of the hydrophilic moiety of polymeric surfactant on their surface activity and physical stability of pesticide suspension concentrate
JP2004522833A (en) Dispersion stabilized at a temperature of 4 to 50 ° C. by a polymer comprising water-soluble units and units having an LCST
BRPI0800462B1 (en) Aqueous liquid household composition and methods for cleaning fabrics and for producing a liquid household composition
JP2021088554A (en) Ultraviolet-absorbing skin/hair cosmetic composition
JP2021088555A (en) Ultraviolet-absorbing cationic polymer particle
Rymaruk et al. Oil-in-oil pickering emulsions stabilized by diblock copolymer nanoparticles
CN100579507C (en) Tickener, cosmetic preparation containing the same, and process for producing the same
WO2024106407A1 (en) Composition containing polymer particles and production method for composition containing polymer particles
TW201729789A (en) Emulsion type cosmetic composition comprising inorganic UV blocking agent and method for preparing same
JPH09501196A (en) Process for producing gel-form aqueous composition, and composition obtainable by this process, in particular vesicles, especially compositions containing liposomes
KR20060044690A (en) Complex emulsions of perfluoropolyethers
Khan et al. Synthesis and micellization of a novel diblock copolymer of poly (N-isopropylacrylamide)-b-SGLCP and its application in stability of 5CB droplets in aqueous medium
WO2016067904A1 (en) Resin particle dispersion and use thereof
JP2007112801A (en) Cosmetic composition containing statistical polymer with linear main chain of ethylene nature
JP7154089B2 (en) Skin cosmetic composition
JP4424677B2 (en) Thickener
JP4133740B2 (en) Composition for scalp and hair
JP2014507461A (en) Cosmetic preparation containing a water-insoluble amphiphilic copolymer as a thickener