WO2016067904A1 - Resin particle dispersion and use thereof - Google Patents

Resin particle dispersion and use thereof Download PDF

Info

Publication number
WO2016067904A1
WO2016067904A1 PCT/JP2015/078860 JP2015078860W WO2016067904A1 WO 2016067904 A1 WO2016067904 A1 WO 2016067904A1 JP 2015078860 W JP2015078860 W JP 2015078860W WO 2016067904 A1 WO2016067904 A1 WO 2016067904A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
resin particles
resin particle
particle dispersion
resin
Prior art date
Application number
PCT/JP2015/078860
Other languages
French (fr)
Japanese (ja)
Inventor
啓彰 重田
徳村 幸子
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to JP2016556485A priority Critical patent/JP6636939B2/en
Publication of WO2016067904A1 publication Critical patent/WO2016067904A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a resin particle dispersion and use thereof.
  • the surface treatment of particles is mainly used to prevent particle blocking.
  • the particles are subjected to surface treatment with a nonionic substance, and redispersibility is expressed by coexisting an inorganic salt or an organic salt.
  • redispersibility is expressed by hydrophobizing the particles and using a specific surfactant in combination.
  • the surface treatment of the particles is costly and sticky, and there are limitations when developing products.
  • Patent Document 3 examples of using particles that are not subjected to surface treatment include Patent Document 3 and Patent Document 4.
  • Patent Document 4 it is said that the redispersibility is good by using particles having a true specific gravity of 1.3 or less. However, since the particles are light, the sedimentation is slowed down. The redispersibility after storage was insufficient.
  • Patent Document 4 redispersibility is achieved by blending 0.1 to 20% by weight of powder, 0.2 to 5.0% by weight of organic acid and / or salt thereof, and 55.0 to 99.7% by weight of alcohol.
  • redispersibility is achieved by blending 0.1 to 20% by weight of powder, 0.2 to 5.0% by weight of organic acid and / or salt thereof, and 55.0 to 99.7% by weight of alcohol.
  • the formulation of the product there may be cases where a sufficient effect cannot be obtained, and because there is a need for a higher alcohol concentration, there are restrictions on product development such as being limited to cosmetics for men. is there.
  • Japanese Unexamined Patent Publication No. 11-292738 Japanese Unexamined Patent Publication No. 2009-234994 Japanese Unexamined Patent Publication No. 6-271419 Japanese Unexamined Patent Publication No. 2001-354512
  • An object of the present invention is to provide a resin particle dispersion having redispersibility even after long-term storage, a method for producing the resin particle dispersion, and a cosmetic having redispersibility even after long-term storage.
  • the method for producing a resin particle dispersion of the present invention comprises the step (I) of dispersing a polymerizable component containing a polymerizable monomer in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant.
  • Step (II) for obtaining resin particles by polymerizing a functional component pulverization step (IV) for obtaining resin particle powder from an aqueous dispersion medium containing resin particles after Step (II), and after Step (IV)
  • At least one kind of resin It is a manufacturing method of a child dispersion.
  • the resin particles after step (IV) preferably have an average particle size of 0.1 to 100 ⁇ m and a bulk specific gravity of 0.8 or less.
  • the polymerizable monomer is a (meth) acrylic acid ester monomer, a carboxyl group-containing monomer, a styrene monomer, a nitrile monomer, a vinyl monomer, or an amide group-containing monomer. And at least one selected from maleimide monomers and vinylidene chloride.
  • the inorganic component is preferably at least one selected from colloidal silica, calcium phosphate, magnesium phosphate, magnesium hydroxide, calcium hydroxide, calcium carbonate, magnesium carbonate, calcium pyrophosphate and magnesium pyrophosphate.
  • the hydroxy acid is at least one selected from lactic acid, tartaric acid, citric acid and malic acid
  • the polyvalent carboxylic acid is selected from oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid and fumaric acid
  • the aminocarboxylic acid is ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, dihydroxyethylethylenediaminediacetic acid, 1,3-propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid and triethylenetetraamine hexaacetic acid. It is at least one selected from acetic acid, and the
  • the resin particle dispersion of the present invention is a resin particle dispersion obtained by blending resin particles, water, alcohol and an organic acid, wherein the resin particles have an average particle diameter of 0.1 to 100 ⁇ m, and the resin particles
  • the bulk specific gravity of the resin particles is 0.8% or less
  • the water-soluble substance content of the resin particles measured by the following measurement method is 0.2% by weight or less
  • the organic acid is a hydroxy acid, polyvalent carboxylic acid, amino Carboxylic acid, phenolsulfonic acid, salt partially neutralized with hydroxy acid, salt partially neutralized with polycarboxylic acid, salt partially neutralized with aminocarboxylic acid and phenolsulfonic acid
  • Method for measuring content of water-soluble substance 20 g of resin particles are precisely measured (A), added to 70 ml of ion-exchanged water and boiled for 5 minutes at 100 ° C. After cooling to 20 ° C., the volumetric flask and 20 ° C. (B) This dispersion is filtered through a membrane filter (made by Nitrocellulose, 0.02 ⁇ m mesh), and 40 ml of this filtrate is accurately collected using a whole pipette. Collect (C), transfer to a beaker that has been accurately weighed in advance (W 0 ), evaporate to dryness in a water bath, and dry for 1 hour at 110 ° C.
  • the resin particle dispersion of the present invention is a resin particle dispersion containing resin particles, water, alcohol and an organic acid, and the resin particles are polymerized in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant.
  • the resin particle dispersion of the present invention preferably has a volume ratio defined by the following mathematical formula (1) of 5 or more.
  • Volume ratio sedimentation layer volume / resin particle volume (1)
  • the sedimented bed volume means that 100 ml of the resin particle dispersion test solution is put into a 100 ml cylindrical graduated cylinder and left to stand at 25 ° C. for 3 months in a state covered with a parafilm.
  • the sediment volume formed from the settled particles is a value read from the scale of the graduated cylinder.
  • the resin particle volume is a value calculated from the following mathematical formula (2).
  • Resin particle volume resin particle weight / true specific gravity of resin particle (2)
  • the cosmetic of the present invention contains the resin particle dispersion.
  • the resin particle dispersion obtained by the method for producing a resin particle dispersion of the present invention has redispersibility even after long-term storage, it can be applied to cosmetic applications. Since the resin particle dispersion of the present invention has redispersibility even after long-term storage, it can be applied to cosmetic applications.
  • the cosmetic of the present invention is excellent in quality stability because the resin particles do not block even after long-term storage and have redispersibility.
  • the resin particle dispersion of the present invention contains water, alcohol and organic acid, and specific resin particles are dispersed. Hereinafter, each component will be described.
  • the resin particles are resin particles obtained by dispersing a polymerizable component containing a polymerizable monomer in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant, and polymerizing the polymerizable component.
  • a polymerizable component containing a polymerizable monomer in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant
  • suspension polymerization is performed using a water-soluble polymer such as polyvinyl alcohol or methyl cellulose as a dispersant.
  • resin particles produced using a water-soluble polymer as a dispersant have a part of the water-soluble polymer incorporated in the resin particle, so that the dispersant is completely removed even after washing. I can't. Alcohol permeates into the resin particles based on the remaining dispersant, and the resin particles swell so that the resin particles tend to aggregate to form a strong blocking.
  • the dispersing agent contains an inorganic component and a low molecular surfactant, the dispersing agent is hardly taken into the resin particles, so that the resin particles hardly aggregate even in the presence of alcohol.
  • the dispersant is composed of an inorganic component and a low molecular surfactant, since the dispersant is not taken into the resin particles, the accuracy with which the resin particles hardly aggregate even in the presence of alcohol is increased.
  • Examples of the polymerizable monomer include (meth) acrylic acid ester monomer, carboxyl group-containing monomer, styrene monomer, nitrile monomer, vinyl monomer, amide group-containing monomer , Maleimide monomers, and vinylidene chloride are preferable from the viewpoint of easily obtaining the effect of the present application.
  • methyl methacrylate and styrene whose safety has been confirmed are more preferable.
  • These monomers may be used alone or in combination of two or more.
  • (meth) acryl shall mean methacryl or acrylic.
  • a polymerizable component that essentially contains a polymerizable monomer is suspended in an aqueous medium that essentially contains a dispersant and then polymerized.
  • the polymerizable component may contain a polymerization initiator, a crosslinking agent, a pore-forming agent, and an encapsulating agent.
  • the polymerization initiator is not particularly limited, and a known polymerization initiator can be used.
  • organic peroxides such as dilauroyl peroxide and benzoyl peroxide; azo series such as 2,2′-azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile)
  • azo series such as 2,2′-azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile)
  • a polymerization initiator can be mentioned.
  • a cross-linking agent is a radical polymerizable monomer having two or more polymerizable double bonds.
  • aromatic divinyl compounds such as divinylbenzene; Allyl methacrylate, triacryl formal, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1 , 4-butanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, PEG # 200 di (meth) acrylate, PEG # 600 di (meth) acrylate, trimethylolpropane tri (meth) acrylate, Di (meth) acrylate compounds such as pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, etc. Give Door can be.
  • aromatic divinyl compounds such as divinylbenzene
  • the weight ratio of the crosslinking agent is preferably 0 to 40% by weight, more preferably 0.05 to 30% by weight, still more preferably 0.1 to 25% by weight, particularly preferably 0.5%, based on the polymerizable component. ⁇ 20% by weight. If the weight ratio of the cross-linking agent exceeds 40% by weight, a large amount of unreacted polymerizable monomer remains, which may impair the safety of the cosmetic.
  • the pore-forming agent is an organic solvent for making the resin particles into a hollow body, and there is no particular limitation as long as the polymerizable monomer before the reaction dissolves but the polymer after the polymerization does not dissolve.
  • the weight ratio of the pore former is preferably 30% by weight or less, more preferably 25% by weight or less, based on the polymerizable component. If the weight ratio of the pore former exceeds 30% by weight, the physical strength of the resin particles may be lowered. A preferred lower limit is 0% by weight.
  • the resin particles may be an encapsulated capsule type.
  • the encapsulating agent include cosmetic oils such as squalane, liquid paraffin, silicone oil and ester oil. Encapsulating cosmetic oil not only adds moisture retention and other effects to the resin particles, but also makes it possible to make the resin particles atypical, and the atypical particles have a lower bulk specific gravity and improve redispersibility. Therefore, it is preferable.
  • the average particle diameter of the resin particles is not particularly limited because it can be designed freely according to the use, but is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m, and particularly preferably 1.0 to 30 ⁇ m. If the thickness is less than 0.1 ⁇ m, the yield of the product may be significantly reduced, which may be disadvantageous in terms of cost. If the thickness is more than 100 ⁇ m, the product may have a rough feeling and the usability may be deteriorated.
  • the bulk specific gravity of the resin particles is a specific gravity calculated by filling the resin particles in a container whose volume is known, and dividing the weight of the resin particles by the volume of the container.
  • the bulk specific gravity is the volume of the particles between the resin particles. It includes the volume of the gap and the volume of the gap between the resin particles and the container.
  • a high bulk specific gravity indicates that the particles are densely packed, and a low bulk specific gravity indicates that the space other than the particles is wide.
  • the lighter the bulk specific gravity the fewer the contact points of the resin particles, the fewer the aggregation points, and the larger the space other than the resin particles in the sedimentation layer, the easier the liquid components flow when subjected to vibration. Therefore, the redispersibility is improved.
  • the bulk specific gravity of the resin particles is not particularly limited because it can be freely designed according to the use, but is preferably 0.8 or less, more preferably 0.77 or less, and even more preferably 0.75 or less, particularly preferably. Is 0.7 or less, most preferably 0.65 or less. When the bulk specific gravity exceeds 0.8, there are many contact points between the resin particles, and the particles tend to aggregate during long-term storage, which may reduce redispersibility. A preferred lower limit is 0.1. When the bulk specific gravity is 0.1 or less, since the resin particles are too light, miscibility may be impaired in the resin particle dispersion.
  • the water-soluble substance content of the resin particles is not particularly limited because it can be designed freely according to the use, but is preferably 0.2% by weight or less, more preferably 0.15% by weight or less, and still more preferably 0. .12% by weight or less, most preferably 0.10% by weight or less.
  • the water-soluble substance content exceeds 0.2% by weight, the resin particles are likely to swell, agglomerate, block, and the like due to alcohol, and the redispersibility may be lowered.
  • a preferred lower limit of the water-soluble substance content of the resin particles is 0% by weight.
  • the said resin particle here means the resin particle in the powder state after drying. A method for measuring the water-soluble substance content will be described later.
  • the shape of the resin particles examples include a spherical shape, a bowl shape, a bowl-elliptical shape, a surface irregularity shape, and a fine particle adhesion shape, and a plurality of resin particles can be combined.
  • the shape can be freely designed by adjusting the conditions during suspension polymerization by a known method. Moreover, if it is less than 50 weight% among resin particles, the particle
  • the shape of the resin particles can be freely selected from performances other than the redispersibility required for the resin particle dispersion. However, when the shape is spherical, it is preferable because a smooth feeling can be easily obtained when blended into a cosmetic.
  • the inorganic component is at least one selected from colloidal silica, calcium phosphate, magnesium phosphate, magnesium hydroxide, calcium hydroxide, calcium carbonate, magnesium carbonate, calcium pyrophosphate, and magnesium pyrophosphate, after completion of the suspension polymerization. This is preferable because it can be easily removed by adjusting the pH.
  • the weight ratio of the inorganic component is not particularly limited because it can be freely designed according to the use, but is preferably 1.0 to 80% by weight, more preferably 2.0 to 60% with respect to the polymerizable component. % By weight, more preferably 2.5 to 50% by weight, particularly preferably 3.0 to 40% by weight.
  • the weight ratio of the inorganic component When the weight ratio of the inorganic component is less than 1% by weight, the stability of the suspension is lowered, and the yield of the resin particles may be significantly lowered. When the weight ratio of the inorganic component exceeds 80% by weight, the viscosity of the suspension increases, which may make it difficult to control during polymerization.
  • the inorganic component can be dissolved after polymerization of the resin particles depending on the performance other than the redispersibility required for the resin particle dispersion.
  • the inorganic component is colloidal silica
  • the pH of the aqueous medium containing the resin particles obtained in the step (II) described later is adjusted to 10.5 or higher, and further heated to 50 ° C. or higher to colloidal silica. Dissolves well.
  • the inorganic component is calcium phosphate, magnesium phosphate, magnesium hydroxide, calcium hydroxide, calcium carbonate, magnesium carbonate, calcium pyrophosphate and magnesium pyrophosphate, an aqueous solution containing the resin particles obtained in step (II) described later
  • the inorganic component is ionically decomposed by adjusting the pH of the medium to less than 7.0.
  • the low molecular surfactant is a surfactant having a molecular weight of less than 1000.
  • Examples of the low molecular surfactant include a low molecular cationic surfactant, a low molecular anionic surfactant, a low molecular nonionic surfactant, and a low molecular amphoteric surfactant.
  • the low molecular surfactant is not particularly limited, and examples thereof include low molecular cationic surfactants such as N-hydroxyethylpropylalkylamide nitrate, lauryltrimethylammonium choloride, lauryldimethylbenzylammonium chloride; fatty acid salts, Low molecular weight anionic surfactants such as sulfate ester lauryl sulfate, polyoxyethylene secondary alkyl ether sulfate ester, sulfonate alkylbenzene sulfonate, dioctyl sulfosuccinate, phosphate ester salts; polyoxyethylene Alkyl ethers, polyoxyethylene styrenated phenol ethers, polyoxyethylene alkylamino ethers, polyethylene glycol fatty acid esters, polyoxyethylene polyoxy Propylene glycols, glycerin fatty acid esters, polyoxyethylene castor oils, sorbitan fatty acid est
  • the weight ratio of the low-molecular-weight surfactant is not particularly limited because it can be freely designed according to the use, but is preferably 10% by weight or less, more preferably 8.0% by weight or less, based on the polymerizable component. Particularly preferred is 5.0% by weight or less, and most preferred is 3.0% by weight or less. When the weight ratio of the low molecular surfactant exceeds 10% by weight, a large amount of fine particles are generated, and the yield of the resin particles may be significantly reduced. A preferred lower limit is 0% by weight.
  • the organic acid is an essential component for the resin particle dispersion of the present invention, and plays a role in preventing the alcohol from being immersed in the resin particle by adsorbing the organic acid to the resin particle.
  • the organic acid is not particularly limited for the above reasons, but is a hydroxy acid, a polyvalent carboxylic acid, an aminocarboxylic acid, a phenolsulfonic acid, a salt obtained by neutralizing a part of the hydroxy acid, or a polyvalent carboxylic acid.
  • a partially neutralized salt, a partially neutralized aminocarboxylic acid salt, and a partially neutralized phenolsulfonic acid salt is adsorbed to the resin particles. It is preferable because it is easy.
  • the hydroxy acid is preferably lactic acid, tartaric acid, citric acid, or malic acid.
  • the polyvalent carboxylic acid is preferably oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, or fumaric acid.
  • the aminocarboxylic acid is preferably ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, dihydroxyethylethylenediaminediacetic acid, 1,3-propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid and triethylenetetraaminehexaacetic acid.
  • the salt in which a part of the hydroxy acid is neutralized is preferably a salt in which a part of lactic acid, tartaric acid, citric acid or malic acid is neutralized.
  • the salt is not particularly limited as long as it is a salt in which a part of the hydroxy acid is neutralized, so that the effect of the present invention is exhibited for the above reasons, but as a neutralizing agent for a salt in which a part of the hydroxy acid is neutralized, L-arginine It is preferable to use one or more basic compounds selected from potassium hydroxide, sodium hydroxide, ammonia, 2-aminomethyl-1-propanol, 2-aminomethyl-propanediol and tris (hydroxymethyl) aminomethane.
  • the degree of neutralization of the salt in which a part of the hydroxy acid is neutralized is preferably 0.1 to 0.9 equivalent, more preferably 0.2 to 0.8 equivalent in terms of the number of neutralizing agent equivalents per equivalent of hydroxy acid.
  • 0.3 to 0.7 equivalent is more preferable, and 0.4 to 0.6 equivalent is particularly preferable.
  • at least one selected from monosodium citrate, disodium citrate, monopotassium citrate and dipotassium citrate is preferable from the viewpoint of safety and cost.
  • the salt in which a part of the polyvalent carboxylic acid is neutralized is preferably a salt in which a part of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid or fumaric acid is neutralized. If it is a salt in which a part of the polyvalent carboxylic acid is neutralized, the effect of the present application is exhibited for the above reasons, but there is no particular limitation.
  • the degree of neutralization of the salt in which a part of the polyvalent carboxylic acid is neutralized is preferably 0.1 to 0.9 equivalent in terms of the number of neutralizing agent equivalents relative to 1 equivalent of the polyvalent carboxylic acid, and preferably 0.2 to 0. 8 equivalents are more preferred, 0.3 to 0.7 equivalents are more preferred, and 0.4 to 0.6 equivalents are particularly preferred.
  • monosodium glutarate and monopotassium glutarate are preferable from the viewpoint of safety and cost.
  • Salts partially neutralized with aminocarboxylic acid are ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, dihydroxyethylethylenediaminediacetic acid, 1,3-propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid or triethylenetetraacetic acid.
  • a salt in which a part of amine hexaacetic acid is neutralized is preferred. If the salt is a partially neutralized salt of aminocarboxylic acid, the effect of the present invention is exhibited for the above reasons, and is not particularly limited.
  • L Use of one or more basic compounds selected from arginine, potassium hydroxide, sodium hydroxide, ammonia, 2-aminomethyl-1-propanol, 2-aminomethyl-propanediol and tris (hydroxymethyl) aminomethane preferable. Specific examples include 2 sodium dihydrogenethylenediaminetetraacetate or 2 potassium dihydrogenethylenediaminetetraacetate.
  • the degree of neutralization of the salt in which a part of the aminocarboxylic acid is neutralized is preferably 0.1 to 0.9 equivalent, preferably 0.2 to 0.8 equivalent in terms of the number of neutralizing agent equivalents per equivalent of aminocarboxylic acid.
  • the salt in which a part of phenolsulfonic acid is neutralized is preferably a salt in which part of phenolsulfonic acid or benzotriazolylbutylphenolsulfonic acid is neutralized. If the salt is obtained by neutralizing a part of phenolsulfonic acid, the effect of the present invention is exhibited for the above reasons, but the salt is not particularly limited, but sodium salt or zinc salt is preferable.
  • Specific examples include sodium phenol sulfonate, zinc phenol sulfonate, and sodium benzotriazolyl butyl phenol sulfonate.
  • As the degree of neutralization of the salt in which a part of the phenolsulfonic acid is neutralized it is preferable that only the sulfonic acid part is neutralized and the phenol part is not neutralized.
  • sodium phenolsulfonate or zinc phenolsulfonate is preferred from the standpoints of safety and cost.
  • water examples include tap water, ion-exchanged water, purified water, hard water, soft water, natural water, deep ocean water, electrolytic alkali ion water, electrolytic acid ion water, ion water, and cluster water. When used, these waters may be further sterilized by electron beam irradiation, UV irradiation, heat treatment, chlorination or the like. From the viewpoint of cost, tap water, ion exchange water or soft water is preferable.
  • Alcohol is an essential component for the resin particle dispersion of the present invention, and has a role of accelerating the volatilization of the liquid component and giving a refreshing feeling.
  • examples of the alcohol include ethanol and isopropyl alcohol. From the viewpoint of safety when used as a cosmetic, ethanol is preferable.
  • the weight ratio of the resin particles in the resin particle dispersion is preferably 1.0 to 10.0% by weight, more preferably 1.0 to 9.0% by weight, and further 1.0 to 8.0% by weight. 1.0 to 7.0% by weight is particularly preferable, and 1.0 to 6.0% by weight is most preferable. If it is less than 1.0% by weight, the resin particles may be insufficient and a smooth feeling may not be obtained. If it exceeds 10% by weight, there may be a powdery feeling with many resin particles.
  • the weight proportion of the alcohol in the resin particle dispersion is preferably 5.0 to 80% by weight, more preferably 6.0 to 70% by weight, even more preferably 7.0 to 60% by weight, and 8.0 to 50% by weight is particularly preferred, and 10 to 40% by weight is most preferred. If it is less than 5.0% by weight, the refreshing feeling may be insufficient. If it exceeds 80% by weight, the irritation by alcohol may be too strong.
  • the weight ratio of the organic acid in the resin particle dispersion is preferably 0.001 to 5.0% by weight, more preferably 0.002 to 4.8% by weight, and still more preferably 0.003 to 4.5%. % By weight, most preferably 0.005 to 4.0% by weight.
  • weight ratio of the organic acid in the resin particle dispersion is less than 0.001% by weight, the organic acid adsorbed on the resin particles is small and the resin particles may be aggregated.
  • the weight ratio of the organic acid in the resin particle dispersion exceeds 5.0% by weight, it is difficult to adjust the pH of the resin particle dispersion.
  • the method for producing a resin particle dispersion of the present invention comprises a step (I) of dispersing a polymerizable component in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant, and polymerizing the polymerizable component to obtain resin particles. It includes a obtaining step (II), a powdering step (IV) and a mixing step (V).
  • Step of dispersing polymerizable component (I) The step of dispersing the polymerizable component is a step of obtaining a suspension by dispersing an oily solution essentially containing the polymerizable component in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant. From the viewpoint of easily obtaining the effect of the present application, the step of dispersing in an aqueous dispersion medium comprising an inorganic component and a low molecular surfactant to obtain a suspension is preferable.
  • Examples of the method for suspending and dispersing the polymerizable component include, for example, a method of stirring with a homomixer (for example, manufactured by Primics), a homodisper (for example, manufactured by Primics), cleamics (manufactured by Mtechnics), or a static mixer.
  • a general dispersion method such as a method using a static dispersion device such as Noritake Engineering Co., Ltd., a membrane emulsification method, an ultrasonic dispersion method, a microchannel method, or the like can be given.
  • the step (II) for obtaining resin particles by polymerizing a polymerizable component is a step for obtaining resin particles by heating the suspension obtained in the step (I).
  • the polymerization temperature is freely set depending on the kind of the polymerization initiator, but is preferably controlled in the range of 40 to 100 ° C., more preferably 45 to 90 ° C., and particularly preferably 50 to 85 ° C.
  • the initial polymerization pressure is 0 to 5.0 MPa, more preferably 0.1 to 3.0 MPa, and particularly preferably 0.2 to 2.0 MPa in terms of gauge pressure.
  • Inorganic component dissolution step (III) According to the method for producing the resin particle dispersion of the present invention, according to the performance other than the redispersibility required for the resin particle dispersion, the inorganic material is added after the completion of the step (II) and before the powdering step (IV) which is the next step.
  • An inorganic component dissolving step (III) in which the component is dissolved to reduce the residual amount of the inorganic component can be included.
  • the operation method varies depending on the type of dispersant used.
  • the inorganic component is colloidal silica
  • the pH of the aqueous medium containing the resin particles obtained in the step (II) is adjusted to 10.5 or higher, heated to 50 ° C.
  • the inorganic component is calcium phosphate, magnesium phosphate, magnesium hydroxide, calcium hydroxide, calcium carbonate, magnesium carbonate, calcium pyrophosphate and magnesium pyrophosphate
  • the aqueous medium containing the resin particles obtained in step (II) The residual amount of the inorganic component can be reduced by adjusting the pH to 7.0 or less and carrying out the powdering step (IV) as the next step after the inorganic component dissolving step (III).
  • the method for producing a resin particle dispersion of the present invention includes a pulverization step (IV) for obtaining a powder of resin particles from an aqueous dispersion medium containing resin particles after the step (II).
  • the pulverization step (IV) includes a dehydration step (IV-1) and / or a drying step (IV-2).
  • the dehydration step (IV-1) can be performed by a general dehydration method such as suction filtration, pressure filtration, centrifugal dehydration, and centrifugal separation.
  • a wet powder of resin particles can be obtained by filtration or the like.
  • the wet powder is a powder composed of water and resin particles having a moisture content of preferably 5.0 to 60% by weight, more preferably 15 to 50% by weight, and most preferably 20 to 40% by weight.
  • purify a resin particle by adding water again to the obtained wet powder, and repeating dispersion
  • a centrifugal dehydrator or a filter press dehydrator is used, the resin particles can be easily washed and purified by adding water to the filtration chamber.
  • the drying step (IV-2) can be performed by a general powder drying method. For example, a shelf dryer (box-type dryer), a vacuum dryer, a freeze dryer, a flash dryer, a spray dryer, and the like.
  • a dehydration step (IV-1) may be included before the drying step (IV-2).
  • drying means that the amount of water in the resin particles is less than 5.0% by weight, preferably 2.0% by weight or less, more preferably 1.5% by weight or less.
  • the method for producing a resin particle dispersion of the present invention includes a mixing step (V) in which resin particles, water, alcohol, and organic acid are mixed to obtain a resin particle dispersion.
  • the mixing can be performed by a general mixing method. However, if the components become uneven or the resin particles agglomerate, the feeling of use of the resin particle dispersion may be affected. It is preferable to dissolve or disperse in water, and dissolve or disperse the components that are easily compatible with alcohol, and then combine them together.
  • the resin particle here is the wet powder obtained by the powdering process (IV) and / or the dried resin particle. When used in cosmetics, dry resin particles are preferred because bacteria may grow if moisture remains.
  • the cosmetic of the present invention contains the resin particle dispersion.
  • the cosmetic of the present invention can contain other components to the extent that the dispersibility of the resin particle dispersion is not impaired.
  • blending of other components other than the manufacturing method of the said resin particle dispersion can be manufactured by a well-known method.
  • ingredients include, for example, perfume such as l-menthol; humectants such as glycerin, polymeric glycols (eg, polyethylene glycol and polypropylene glycol), mannitol, sorbitol and 1,3-butylene glycol; pH adjustment such as trisodium citrate Adsorbent such as cyclodextrin, disinfectant such as sodium aspartate, isopropylmethylphenol and benzalkonium chloride; deodorant such as ethylhexyl glycerin; astringent such as zinc sulfate and polyaluminum chloride; spray-type cosmetics
  • those commonly used in cosmetics such as propellants such as LPG, butane, pentane and dimethyl ether, preservatives, pigments, dyes, ultraviolet absorbers, and medicinal ingredients can be used.
  • a surfactant may be added during the production of the resin particle dispersion.
  • the surfactant is not particularly limited, and for example, cationic surfactants such as N-hydroxyethylpropylalkylamide nitrate, lauryltrimethylammonium choloride, lauryldimethylbenzylammonium chloride, benzalkonium chloride, benzethonium chloride;
  • Anionic surfactants such as fatty acid salts, lauryl sulfate that is a sulfate ester salt, polyoxyethylene secondary alkyl ether sulfate ester salt, alkylbenzene sulfonate that is a sulfonate salt, dioctyl sulfosuccinate, and phosphate ester salts; Ethylene alkyl ethers, polyoxyethylene styrenated phenol ethers, polyoxyethylene alkyl amino
  • the cosmetic of the present invention is not particularly limited as long as it is a liquid cosmetic containing a resin particle dispersion, but includes cosmetics in general, such as quasi-drugs and pharmaceuticals, and can be selected according to the purpose. it can.
  • cosmetics in general, such as quasi-drugs and pharmaceuticals, and can be selected according to the purpose. it can.
  • Examples include shampoo, aerosol, pre-shave lotion, body lotion and the like.
  • the resin particles used for the measurement indicate dried resin particles unless otherwise specified.
  • Measurement of average particle size It was measured by a wet measurement method using a laser diffraction particle size distribution measuring apparatus (Microtrack 9320HRA ⁇ 100, manufactured by Nikkiso Co., Ltd.), and the value of D50 was defined as an average particle diameter.
  • the redispersibility evaluation of the settled particles was performed by the volume ratio of the sedimented layer volume formed from the particles calculated from the following mathematical formula (1) and the resin particle volume.
  • Volume ratio sedimentation layer volume / resin particle volume (1)
  • Settling layer volume 100 ml of the resin particle dispersion test solution is put into a 100 ml cylindrical graduated cylinder and left to stand at 25 ° C. for 3 months with the lid covered with parafilm. It was calculated by reading from the cylinder scale.
  • the resin particle volume was calculated from the following mathematical formula (2).
  • Resin particle volume resin particle weight / true specific gravity of resin particle (2)
  • the aqueous dispersion medium and oily mixture obtained above were stirred (5000 rpm ⁇ 5 min) with a TK homomixer 2.5 type (Primics) to prepare a suspension.
  • the suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen, then the initial reaction pressure was set to 0.3 MPa, and polymerization was performed at a polymerization temperature of 60 ° C. for 15 hours while stirring at 80 rpm.
  • An aqueous dispersion medium containing was obtained.
  • the aqueous dispersion medium containing the polymer particles obtained above was adjusted to pH 12 with potassium hydroxide and heated at 65 ° C. for 3 hours to dissolve silica. Subsequently, the pH was readjusted to 7, isolated by filtration and dried to obtain resin particles A (water content 1.1% by weight).
  • Table 1 shows the physical properties of the resin particles A.
  • aqueous dispersion medium and oily mixture obtained above were stirred (4000 rpm ⁇ 5 min) with a TK homomixer 2.5 type (Primics) to prepare a suspension.
  • the suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen, then the initial reaction pressure was set to 0.3 MPa, and polymerization was performed at a polymerization temperature of 60 ° C. for 15 hours while stirring at 80 rpm.
  • An aqueous dispersion medium containing was obtained.
  • the suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen, then the initial reaction pressure was set to 0.3 MPa, and polymerization was performed at a polymerization temperature of 60 ° C. for 15 hours while stirring at 80 rpm. An aqueous dispersion medium containing was obtained. Next, the pH was adjusted to 7, isolated by filtration, and dried to obtain resin particles C (water content 1.2% by weight). Table 1 shows the physical properties of the resin particles C.
  • Resin particles D were obtained in the same manner as in the particle production method example 2 except that the stirring condition for adjusting the suspension was changed to 4000 rpm ⁇ 5 min (moisture value 0.7 wt%).
  • the physical properties of the resin particles D are shown in Table 1.
  • Resin particles E were obtained in the same manner as in Example 1 of particle production except that the stirring conditions for adjusting the suspension were changed to 3000 rpm ⁇ 5 min (moisture value 1.0 wt%).
  • the physical properties of the resin particles E are shown in Table 1.
  • Resin particles F were obtained in the same manner as in the particle production method 1 except that the stirring condition for adjusting the suspension was changed to 2500 rpm ⁇ 5 min (moisture value 0.4 wt%).
  • the physical properties of the resin particles F are shown in Table 1.
  • Resin particles G were prepared by mixing 1 part of resin particles A and 99 parts of resin particles F (moisture value 0.5 wt%).
  • the aqueous dispersion medium and oily mixture obtained above were stirred (5000 rpm ⁇ 5 min) with a TK homomixer 2.5 type (Primics) to prepare a suspension.
  • the suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen, then the initial reaction pressure was set to 0.3 MPa, and polymerization was performed at a polymerization temperature of 60 ° C. for 15 hours while stirring at 80 rpm.
  • An aqueous dispersion medium containing was obtained.
  • the aqueous dispersion medium containing the resin particles obtained above was adjusted to pH 7 without dissolving the colloidal silica, and was isolated by filtration and dried to obtain resin particles H (water content 1.2% by weight).
  • Table 1 shows the physical properties of the resin particles H.
  • aqueous dispersion medium containing calcium phosphate was prepared by adding 10 parts of particulate calcium phosphate and 0.5 part of sodium lauryl sulfate as a low molecular anionic surfactant to 650 parts of ion-exchanged water. 190 parts of methyl methacrylate, 10 parts of ethylene glycol dimethacrylate, and 1 part of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved to obtain an oily mixture. The aqueous dispersion medium and oily mixture obtained above were stirred (5500 rpm ⁇ 5 min) with a TK homomixer 2.5 type (Primics) to prepare a suspension.
  • the suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen, then the initial reaction pressure was 0.3 MPa, and polymerization was performed at a polymerization temperature of 65 ° C. for 15 hours while stirring at 80 rpm.
  • An aqueous dispersion medium containing was obtained.
  • hydrochloric acid was added to the aqueous dispersion medium containing the polymer particles, and the pH of the aqueous dispersion medium was lowered to 2 to dissolve calcium phosphate. This was filtered and washed to remove calcium phosphate, then the pH was readjusted to 7, isolated by filtration and dried to obtain resin particles I (water content 0.6% by weight).
  • Table 1 shows the physical properties of the resin particles I.
  • Resin particles J were obtained in the same manner as in the particle production method 8 except that the calcium phosphate was changed to magnesium pyrophosphate (moisture value 0.7% by weight). Table 1 shows the physical properties of the resin particles J.
  • Examples 1 to 7 were mixed in the amounts shown in Table 2, Examples 8 to 14 were listed in Table 3, and Comparative Examples 1 to 5 were mixed in the amounts shown in Table 4.
  • resin particle dispersions were mixed. Was made. These resin particle dispersions were evaluated for redispersibility, and the results are shown in Tables 2 to 4.
  • Examples 5 and 7 are examples of cosmetics related to body lotions.
  • EDTA4H aqueous solution represents ethylenediaminetetraacetic acid
  • EDTA2H2Na aqueous solution represents ethylenediaminetetraacetic acid disodium 2 hydrogen
  • EDTA4Na represents ethylenediaminetetraacetic acid tetrasodium.
  • a 5% by weight aqueous methylcellulose solution is Methocel K-35LV manufactured by Dow.
  • the redispersibility was evaluated based on the volume ratio of the sedimented bed volume and the particle volume. The larger the volume ratio, the better the redispersibility. Three or more were regarded as “ ⁇ ”, less than three as “x”, and “ ⁇ ” or more as acceptable. Usually, the redispersibility evaluation is performed by shaking the resin particle dispersion by hand, but this evaluation has a problem that there are individual differences and the results are not constant. Is possible. When the volume ratio is 6 or more, the volume of the sedimentation layer is sufficiently large with respect to the particle volume. Therefore, the contact between the particles is small and blocking is difficult, and the redispersibility is kept good. The particles are evenly dispersed.
  • the volume ratio is less than 6 to 5 or more, although there is some blocking between particles, it is a category in which redispersion is relatively easy, and redispersion is possible with 4 to 10 vibrations.
  • the volume ratio is less than 5 to 3 or more, blocking of particles progresses with time, and redispersion requires labor to give vibrations of about 30 times.
  • the volume ratio is less than 3 the particles are densely packed, and it is difficult to re-disperse to the extent that the particles are firmly blocked over time and vibrate by hand.
  • Example 10 As can be seen from Tables 2 and 3, in Examples 1-14, water, alcohol and organic acid were included, and specific resin particles were dispersed. A resin particle dispersion in which particles were uniformly dispersed and excellent in redispersibility was obtained. Among them, in Example 10 using particles H having a low bulk specific gravity, the volume of the sedimentation layer was very large and the redispersibility was also good. On the other hand, in Example 9 in which the particles F having a high bulk specific gravity were used, the volume of the sedimentation layer was small in the examples.
  • Example 5 is a body lotion prescription (cosmetic). It was confirmed that there was no problem even if 1,3-butylene glycol as a humectant, 1-menthol as a fragrance, and trisodium citrate as a pH adjuster were added to the resin particle dispersion.
  • Example 7 methylcellulose was further added to the resin particle dispersion from Example 5, but the redispersibility of the resin particles was hardly affected. This is presumably because methylcellulose is not taken into the resin particles because methylcellulose is added after the resin particles are prepared.
  • Comparative Examples 1 to 5 when there is no organic acid (Comparative Example 1), when a completely neutralized organic acid is blended alone (Comparative Examples 2 and 4), the dispersant at the time of preparing the resin particles is When none of the inorganic component and the low molecular surfactant (Comparative Example 3), the volume ratio was less than 5.0, and it was difficult to redisperse the particles. For these reasons, particles prepared using a dispersant containing inorganic particles and / or a low molecular surfactant exhibit high redispersibility in the presence of an organic acid, and the redispersibility decreases as the bulk specific gravity decreases. Was found to improve.
  • the resin particle dispersion of the present invention has redispersibility even after long-term storage, it is suitably applied to cosmetics containing resin particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Birds (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cosmetics (AREA)
  • Polymerisation Methods In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Provided are: a resin particle dispersion in which the resin particles, even after long-term storage, have redispersibility; a process for producing the resin particle dispersion; and a cosmetic preparation in which the resin particles, even after long-term storage, have redispersibility. The process for producing the resin particle dispersion comprises: step (I) in which a polymerizable ingredient comprising a polymerizable monomer is dispersed in an aqueous dispersion medium containing an inorganic ingredient and a low-molecular surfactant; step (II) in which the polymerizable ingredient is polymerized to obtain resin particles; powder formation step (IV) in which after the step (II), a powder of the resin particles is obtained from the aqueous dispersion medium containing the resin particles; and mixing step (V) in which after the step (IV), the resin particles are mixed with water, an alcohol, and an organic acid to obtain a resin particle dispersion, the organic acid being a specific organic acid.

Description

樹脂粒子分散液及びその利用Resin particle dispersion and use thereof
 本発明は、樹脂粒子分散液及びその利用に関する。 The present invention relates to a resin particle dispersion and use thereof.
 化粧料に粒子を使用することで触感の改善や有効成分の保持などの機能を持たせることは広く行われている。しかしながら液体化粧料に関しては、含有した粒子が沈降するため長期保存後に粒子がブロッキングしてしまうことが多く使用前に振って粒子を再分散する必要があり、特にアルコールを含む液体化粧料では粒子同士のブロッキングが強固なため再分散が困難であり品質安定性の問題から粒子の使用が制限されている。このため、粒子のブロッキングを防ぐことで再分散性を向上させることがこの分野での大きな技術課題となっている。 It is widely practiced to use particles in cosmetics to provide functions such as improved tactile feel and retention of active ingredients. However, for liquid cosmetics, the contained particles settle, so the particles often block after long-term storage, and it is necessary to re-disperse the particles before use, especially in liquid cosmetics containing alcohol. Because of the strong blocking, re-dispersion is difficult and the use of particles is limited due to the problem of quality stability. For this reason, improving the redispersibility by preventing particle blocking is a major technical problem in this field.
 現在は粒子のブロッキングを防ぐために粒子を表面処理することが主流となっている。たとえば、特許文献1では粒子を非イオン性物質で表面処理を行い、さらに無機塩もしくは有機塩を共存させることで再分散性を発現させている。特許文献2では粒子を疎水化処理し、さらに特定の界面活性剤を併用することで再分散性を発現させている。
しかしながら、粒子を表面処理することでコストがかかることやべたつき感があり製品展開する際に制限がかかっている。
At present, the surface treatment of particles is mainly used to prevent particle blocking. For example, in Patent Document 1, the particles are subjected to surface treatment with a nonionic substance, and redispersibility is expressed by coexisting an inorganic salt or an organic salt. In Patent Document 2, redispersibility is expressed by hydrophobizing the particles and using a specific surfactant in combination.
However, the surface treatment of the particles is costly and sticky, and there are limitations when developing products.
 表面処理を行わない粒子を使用する例としては特許文献3や特許文献4が挙げられる。特許文献3では真比重が1.3以下の粒子を使用することで再分散性が良いとしているが、粒子が軽いため沈降が遅くなる分、短期間の保管であれば効果は認められるものの長期の保管後での再分散性は不十分であった。また、特許文献4では粉体0.1~20重量%、有機酸及び/又はその塩0.2~5.0重量%、アルコール55.0~99.7重量%の配合で再分散性を発現させているが、製品の配合によっては十分な効果が得られない場合もあり、さらに高いアルコール濃度が必要なことで、男性向け化粧料に限られるなど製品展開に制限があるのが現状である。 Examples of using particles that are not subjected to surface treatment include Patent Document 3 and Patent Document 4. In Patent Document 3, it is said that the redispersibility is good by using particles having a true specific gravity of 1.3 or less. However, since the particles are light, the sedimentation is slowed down. The redispersibility after storage was insufficient. In Patent Document 4, redispersibility is achieved by blending 0.1 to 20% by weight of powder, 0.2 to 5.0% by weight of organic acid and / or salt thereof, and 55.0 to 99.7% by weight of alcohol. However, depending on the formulation of the product, there may be cases where a sufficient effect cannot be obtained, and because there is a need for a higher alcohol concentration, there are restrictions on product development such as being limited to cosmetics for men. is there.
 このように粒子を液体化粧料に配合させる要求はあるものの使用に際し制限があり十分に製品展開できているとは言えない。このため、粒子の再分散性と製品設計の自由度が高い処方が求められている。 Although there is a demand for blending particles into liquid cosmetics in this way, it cannot be said that the product has been fully developed due to limitations in use. For this reason, there is a demand for a formulation with high particle redispersibility and high degree of freedom in product design.
日本国特開平11-292738号公報Japanese Unexamined Patent Publication No. 11-292738 日本国特開2009-234994号公報Japanese Unexamined Patent Publication No. 2009-234994 日本国特開平6-271419号公報Japanese Unexamined Patent Publication No. 6-271419 日本国特開2001-354512号公報Japanese Unexamined Patent Publication No. 2001-354512
 本発明の目的は、長期保管後でも再分散性を有する樹脂粒子分散液及び樹脂粒子分散液を製造する方法と、長期保管後でも再分散性を有する化粧料とを提供することである。 An object of the present invention is to provide a resin particle dispersion having redispersibility even after long-term storage, a method for producing the resin particle dispersion, and a cosmetic having redispersibility even after long-term storage.
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定の樹脂粒子、水、アルコール及び有機酸分散液を特定の重量割合で含む樹脂粒子分散液の製造方法であれば、上記課題が解決できることを見出した。
 すなわち、本発明の樹脂粒子分散液の製造方法は、無機成分及び低分子界面活性剤を含む水性分散媒中に、重合性単量体を含む重合性成分を分散させる工程(I)、前記重合性成分を重合させて樹脂粒子を得る工程(II)、前記工程(II)後に樹脂粒子を含む水性分散媒から樹脂粒子の粉体を得る粉体化工程(IV)、前記工程(IV)後に前記樹脂粒子、水、アルコール、有機酸を混合し樹脂粒子分散液を得る混合工程(V)を含み、前記有機酸がヒドロキシ酸、多価カルボン酸、アミノカルボン酸、フェノールスルホン酸、ヒドロキシ酸の一部が中和された塩、多価カルボン酸の一部が中和された塩、アミノカルボン酸の一部が中和された塩及びフェノールスルホン酸の一部が中和された塩から選ばれる少なくとも1種である、樹脂粒子分散液の製造方法である。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a resin particle dispersion containing specific resin particles, water, alcohol and organic acid dispersion at a specific weight ratio. I found that the problem could be solved.
That is, the method for producing a resin particle dispersion of the present invention comprises the step (I) of dispersing a polymerizable component containing a polymerizable monomer in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant. Step (II) for obtaining resin particles by polymerizing a functional component, pulverization step (IV) for obtaining resin particle powder from an aqueous dispersion medium containing resin particles after Step (II), and after Step (IV) A mixing step (V) in which the resin particles, water, alcohol and organic acid are mixed to obtain a resin particle dispersion, wherein the organic acid is a hydroxy acid, polyvalent carboxylic acid, aminocarboxylic acid, phenolsulfonic acid or hydroxy acid; Select from partially neutralized salts, partially neutralized polycarboxylic acids, partially neutralized aminocarboxylic acids, and partially neutralized phenolsulfonic acids. At least one kind of resin It is a manufacturing method of a child dispersion.
 前記工程(II)後に前記無機成分を溶解する工程(III)をさらに含むと好ましい。
 工程(IV)後の前記樹脂粒子の平均粒子径が0.1~100μm、嵩比重が0.8以下であると好ましい。
 前記重合性単量体が、(メタ)アクリル酸エステル系単量体、カルボキシル基含有単量体、スチレン系単量体、ニトリル系単量体、ビニル系単量体、アミド基含有単量体、マレイミド系単量体及び塩化ビニリデンから選ばれる少なくとも1種であると好ましい。
 前記無機成分がコロイダルシリカ、リン酸カルシウム、リン酸マグネシウム、水酸化マグネシウム、水酸化カルシウム、炭酸カルシウム、炭酸マグネシウム、ピロリン酸カルシウム及びピロリン酸マグネシウムから選ばれる少なくとも1種であると好ましい。
 前記ヒドロキシ酸が乳酸、酒石酸、クエン酸及びリンゴ酸から選ばれる少なくとも1種であり、前記多価カルボン酸がシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸及びフマル酸から選ばれる少なくとも1種であり、前記アミノカルボン酸がエチレンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、ジヒドロキシエチルエチレンジアミン二酢酸、1,3-プロパンジアミン四酢酸、ジエチレントリアミン五酢酸及びトリエチレンテトラアミン六酢酸から選ばれる少なくとも1種であり、前記フェノールスルホン酸がフェノールスルホン酸、ベンゾトリアゾリルブチルフェノールスルホン酸から選ばれる少なくとも1種であると好ましい。
It is preferable to further include a step (III) of dissolving the inorganic component after the step (II).
The resin particles after step (IV) preferably have an average particle size of 0.1 to 100 μm and a bulk specific gravity of 0.8 or less.
The polymerizable monomer is a (meth) acrylic acid ester monomer, a carboxyl group-containing monomer, a styrene monomer, a nitrile monomer, a vinyl monomer, or an amide group-containing monomer. And at least one selected from maleimide monomers and vinylidene chloride.
The inorganic component is preferably at least one selected from colloidal silica, calcium phosphate, magnesium phosphate, magnesium hydroxide, calcium hydroxide, calcium carbonate, magnesium carbonate, calcium pyrophosphate and magnesium pyrophosphate.
The hydroxy acid is at least one selected from lactic acid, tartaric acid, citric acid and malic acid, and the polyvalent carboxylic acid is selected from oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid and fumaric acid And the aminocarboxylic acid is ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, dihydroxyethylethylenediaminediacetic acid, 1,3-propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid and triethylenetetraamine hexaacetic acid. It is at least one selected from acetic acid, and the phenolsulfonic acid is preferably at least one selected from phenolsulfonic acid and benzotriazolylbutylphenolsulfonic acid.
 本発明の樹脂粒子分散液は、樹脂粒子、水、アルコール及び有機酸を配合してなる樹脂粒子分散液であって、前記樹脂粒子の平均粒子径が0.1~100μmであり、前記樹脂粒子の嵩比重が0.8以下であり、下記測定方法で測定される前記樹脂粒子の水溶性物質含有量が0.2重量%以下であり、前記有機酸がヒドロキシ酸、多価カルボン酸、アミノカルボン酸、フェノールスルホン酸、ヒドロキシ酸の一部が中和された塩、多価カルボン酸の一部が中和された塩、アミノカルボン酸の一部が中和された塩及びフェノールスルホン酸の一部が中和された塩から選ばれる少なくとも1種である、樹脂粒子分散液である。
(水溶性物質含有量測定方法:樹脂粒子20gを精密に測定し(A)、70mlのイオン交換水に加えて5分間100℃で煮沸する。これを20℃に冷却後、メスフラスコと20℃のイオン交換水を用いて100mlに調整する(B)。この分散液をメンブレンフィルター(ニトロセルロール製、目開き0.02μm)にてろ過する。ホールピペットを用いてこのろ液40mlを正確に採取し(C)、あらかじめ重量を精密に測定していたビーカーに移し(W)、水浴上で蒸発乾固し、110℃で1時間乾燥させる。蒸発乾固の残分とビーカーが吸湿しないようにデシケーター内で室温まで冷却した後、再度ビーカーの重量を精密に測定した(W)場合に、下記数式(4)から算出した値を水溶性物質含有量とする。)
 水溶性物質含有量=(W-W)/{A×(C/B)}×100(重量%) (4)
The resin particle dispersion of the present invention is a resin particle dispersion obtained by blending resin particles, water, alcohol and an organic acid, wherein the resin particles have an average particle diameter of 0.1 to 100 μm, and the resin particles The bulk specific gravity of the resin particles is 0.8% or less, the water-soluble substance content of the resin particles measured by the following measurement method is 0.2% by weight or less, and the organic acid is a hydroxy acid, polyvalent carboxylic acid, amino Carboxylic acid, phenolsulfonic acid, salt partially neutralized with hydroxy acid, salt partially neutralized with polycarboxylic acid, salt partially neutralized with aminocarboxylic acid and phenolsulfonic acid It is a resin particle dispersion which is at least one member selected from partially neutralized salts.
(Method for measuring content of water-soluble substance: 20 g of resin particles are precisely measured (A), added to 70 ml of ion-exchanged water and boiled for 5 minutes at 100 ° C. After cooling to 20 ° C., the volumetric flask and 20 ° C. (B) This dispersion is filtered through a membrane filter (made by Nitrocellulose, 0.02 μm mesh), and 40 ml of this filtrate is accurately collected using a whole pipette. Collect (C), transfer to a beaker that has been accurately weighed in advance (W 0 ), evaporate to dryness in a water bath, and dry for 1 hour at 110 ° C. The residue from the evaporative dryness and the beaker do not absorb moisture Thus, after cooling to room temperature in the desiccator, when the weight of the beaker is precisely measured again (W 1 ), the value calculated from the following formula (4) is taken as the water-soluble substance content.)
Water-soluble substance content = (W 1 −W 0 ) / {A × (C / B)} × 100 (% by weight) (4)
 本発明の樹脂粒子分散液は、樹脂粒子、水、アルコール及び有機酸を含む樹脂粒子分散液であって、前記樹脂粒子が、無機成分及び低分子界面活性剤を含む水性分散媒中に、重合性単量体を含む重合性成分を分散させ、前記重合性成分を重合させて得られる樹脂粒子であり、前記有機酸がヒドロキシ酸、多価カルボン酸、アミノカルボン酸、ヒドロキシ酸の一部が中和された塩、多価カルボン酸の一部が中和された塩及びアミノカルボン酸の一部が中和された塩から選ばれる少なくとも1種である。 The resin particle dispersion of the present invention is a resin particle dispersion containing resin particles, water, alcohol and an organic acid, and the resin particles are polymerized in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant. Resin particles obtained by dispersing a polymerizable component containing a polymerizable monomer and polymerizing the polymerizable component, wherein the organic acid is a hydroxy acid, a polyvalent carboxylic acid, an aminocarboxylic acid, or a part of the hydroxy acid. It is at least one selected from a neutralized salt, a salt in which a part of a polycarboxylic acid is neutralized, and a salt in which a part of an aminocarboxylic acid is neutralized.
 本発明の樹脂粒子分散液は、下記数式(1)で定義される体積比が5以上であると好ましい。
 体積比=沈降層体積/樹脂粒子体積  (1)
(式(1)中、沈降層体積とは、樹脂粒子分散液の試験液100mlを100mlの円柱状のメスシリンダーに投入し、パラフィルムでフタをした状態で25℃、3ヶ月静置し、沈降した粒子から形成されている沈降層体積をメスシリンダーの目盛から読み取られる値である。樹脂粒子体積とは、下記数式(2)から算出した値である。)
 樹脂粒子体積=樹脂粒子重量/樹脂粒子の真比重  (2)
 本発明の化粧料は、上記樹脂粒子分散液を含む。
The resin particle dispersion of the present invention preferably has a volume ratio defined by the following mathematical formula (1) of 5 or more.
Volume ratio = sedimentation layer volume / resin particle volume (1)
(In the formula (1), the sedimented bed volume means that 100 ml of the resin particle dispersion test solution is put into a 100 ml cylindrical graduated cylinder and left to stand at 25 ° C. for 3 months in a state covered with a parafilm. (The sediment volume formed from the settled particles is a value read from the scale of the graduated cylinder. The resin particle volume is a value calculated from the following mathematical formula (2).)
Resin particle volume = resin particle weight / true specific gravity of resin particle (2)
The cosmetic of the present invention contains the resin particle dispersion.
 本発明の樹脂粒子分散液の製造方法で得られた樹脂粒子分散液は長期保管後でも再分散性を有するので、化粧料用途へ適用できる。本発明の樹脂粒子分散液は長期保管後でも再分散性を有するので、化粧料用途へ適用できる。本発明の化粧料は、長期保管後も樹脂粒子がブロッキングせず再分散性を有するため、品質安定性に優れる。 Since the resin particle dispersion obtained by the method for producing a resin particle dispersion of the present invention has redispersibility even after long-term storage, it can be applied to cosmetic applications. Since the resin particle dispersion of the present invention has redispersibility even after long-term storage, it can be applied to cosmetic applications. The cosmetic of the present invention is excellent in quality stability because the resin particles do not block even after long-term storage and have redispersibility.
 本発明の樹脂粒子分散液は、水、アルコール及び有機酸を含み、特定の樹脂粒子が分散しているものである。以下、各成分について説明する。 The resin particle dispersion of the present invention contains water, alcohol and organic acid, and specific resin particles are dispersed. Hereinafter, each component will be described.
(樹脂粒子)
 上記樹脂粒子は、無機成分及び低分子界面活性剤を含む水性分散媒中に、重合性単量体を含む重合性成分を分散させ、前記重合性成分を重合させて得られる樹脂粒子である。
 通常、水性分散媒中で重合性成分を分散させて行う重合(以後、懸濁重合ということがある。)は、ポリビニルアルコールやメチルセルロース等の水溶性高分子を分散剤として使用して行われることが多いが、水溶性高分子を分散剤として使用して作製された樹脂粒子は、一部の水溶性高分子を樹脂粒子内に取り込んでいるため、洗浄を行っても分散剤を完全に取り除くことができない。この取り残された分散剤を基点にアルコールが樹脂粒子内に浸透し、樹脂粒子が膨潤することで樹脂粒子同士が凝集しやすくなり、強固なブロッキングを形成するに至る。
 分散剤が無機成分及び低分子界面活性剤を含む場合は、樹脂粒子に分散剤が取り込まれにくくなるため、アルコール存在下でも樹脂粒子が凝集しにくくなる。分散剤が無機成分及び低分子界面活性剤からなる場合には、樹脂粒子に分散剤が取り込まれないため、アルコール存在下でも樹脂粒子が凝集しにくくなる精度が高まる。
(Resin particles)
The resin particles are resin particles obtained by dispersing a polymerizable component containing a polymerizable monomer in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant, and polymerizing the polymerizable component.
Usually, the polymerization performed by dispersing a polymerizable component in an aqueous dispersion medium (hereinafter sometimes referred to as suspension polymerization) is performed using a water-soluble polymer such as polyvinyl alcohol or methyl cellulose as a dispersant. However, resin particles produced using a water-soluble polymer as a dispersant have a part of the water-soluble polymer incorporated in the resin particle, so that the dispersant is completely removed even after washing. I can't. Alcohol permeates into the resin particles based on the remaining dispersant, and the resin particles swell so that the resin particles tend to aggregate to form a strong blocking.
When the dispersing agent contains an inorganic component and a low molecular surfactant, the dispersing agent is hardly taken into the resin particles, so that the resin particles hardly aggregate even in the presence of alcohol. When the dispersant is composed of an inorganic component and a low molecular surfactant, since the dispersant is not taken into the resin particles, the accuracy with which the resin particles hardly aggregate even in the presence of alcohol is increased.
 前記重合性単量体としては、(メタ)アクリル酸エステル系単量体、カルボキシル基含有単量体、スチレン系単量体、ニトリル系単量体、ビニル系単量体、アミド基含有単量体、マレイミド系単量体、塩化ビニリデンが、本願効果が得られやすい観点から好ましい。中でも、化粧料に使用される場合には、安全性が確認されているメタクリル酸メチル、スチレンがより好ましい。これらの単量体は1種又は2種以上を併用してもよい。なお、(メタ)アクリルとは、メタアクリル又はアクリルを意味するものとする。 Examples of the polymerizable monomer include (meth) acrylic acid ester monomer, carboxyl group-containing monomer, styrene monomer, nitrile monomer, vinyl monomer, amide group-containing monomer , Maleimide monomers, and vinylidene chloride are preferable from the viewpoint of easily obtaining the effect of the present application. Among these, when used in cosmetics, methyl methacrylate and styrene whose safety has been confirmed are more preferable. These monomers may be used alone or in combination of two or more. In addition, (meth) acryl shall mean methacryl or acrylic.
 前記懸濁重合は、重合性単量体を必須に含む重合性成分を、分散剤を必須に含む水性媒体中で懸濁させた後、重合するものである。重合性成分には、重合性単量体の他に、重合開始剤、架橋剤、造孔剤、内包剤を含んでいてもよい。
 重合開始剤は、特に限定はなく、公知の重合開始剤を用いることができる。例えば、過酸化ジラウロイルや過酸化ベンゾイルのような有機過酸化物類;2,2´-アゾビスイソブチロニトリルや2,2´-アゾビス(2,4-ジメチルバレロニトリル)のようなアゾ系重合開始剤を挙げることができる。
In the suspension polymerization, a polymerizable component that essentially contains a polymerizable monomer is suspended in an aqueous medium that essentially contains a dispersant and then polymerized. In addition to the polymerizable monomer, the polymerizable component may contain a polymerization initiator, a crosslinking agent, a pore-forming agent, and an encapsulating agent.
The polymerization initiator is not particularly limited, and a known polymerization initiator can be used. For example, organic peroxides such as dilauroyl peroxide and benzoyl peroxide; azo series such as 2,2′-azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile) A polymerization initiator can be mentioned.
 架橋剤とは重合性二重結合を2個以上有するラジカル重合性単量体であり、架橋剤を用いて重合させることにより、樹脂粒子の耐溶剤性が向上し高アルコール中でも形状を維持しやすくなる。架橋剤としては、特に限定はないが、たとえば、ジビニルベンゼン等の芳香族ジビニル化合物;メタクリル酸アリル、トリアクリルホルマール、トリアリルイソシアネート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、PEG#200ジ(メタ)アクリレート、PEG#600ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート等のジ(メタ)アクリレート化合物等を挙げることができる。 A cross-linking agent is a radical polymerizable monomer having two or more polymerizable double bonds. By polymerizing using a cross-linking agent, the solvent resistance of the resin particles is improved and the shape can be easily maintained even in high alcohol. Become. Although it does not specifically limit as a crosslinking agent, For example, aromatic divinyl compounds, such as divinylbenzene; Allyl methacrylate, triacryl formal, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1 , 4-butanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, PEG # 200 di (meth) acrylate, PEG # 600 di (meth) acrylate, trimethylolpropane tri (meth) acrylate, Di (meth) acrylate compounds such as pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, etc. Give Door can be.
 架橋剤の重量割合は、重合性成分に対して、好ましくは0~40重量%、より好ましくは0.05~30重量%、さらに好ましくは0.1~25重量%、特に好ましくは0.5~20重量%である。架橋剤の重量割合が40重量%を超えると、未反応の重合性単量体が多く残ってしまい化粧料の安全性が損なわれる恐れがある。 The weight ratio of the crosslinking agent is preferably 0 to 40% by weight, more preferably 0.05 to 30% by weight, still more preferably 0.1 to 25% by weight, particularly preferably 0.5%, based on the polymerizable component. ~ 20% by weight. If the weight ratio of the cross-linking agent exceeds 40% by weight, a large amount of unreacted polymerizable monomer remains, which may impair the safety of the cosmetic.
 造孔剤とは樹脂粒子を中空体とするための有機溶剤であり、反応前の重合性単量体は溶解するものの重合後のポリマーは溶解しない有機溶剤であれば特に限定はない。たとえば、ブタン、ペンタン、ヘキサン、ヘプタンなどが挙げられる。
 造孔剤の重量割合は、重合性成分に対して、好ましくは30重量%以下、さらに好ましくは25重量%以下である。造孔剤の重量割合が30重量%を超えると、樹脂粒子の物理的強度が低下してしまう可能性がある。好ましい下限値は0重量%である。
The pore-forming agent is an organic solvent for making the resin particles into a hollow body, and there is no particular limitation as long as the polymerizable monomer before the reaction dissolves but the polymer after the polymerization does not dissolve. For example, butane, pentane, hexane, heptane and the like can be mentioned.
The weight ratio of the pore former is preferably 30% by weight or less, more preferably 25% by weight or less, based on the polymerizable component. If the weight ratio of the pore former exceeds 30% by weight, the physical strength of the resin particles may be lowered. A preferred lower limit is 0% by weight.
 前記樹脂粒子は内包カプセルタイプでもよい。内包剤としてはスクワラン、流動パラフィン、シリコーンオイル、エステル油などの化粧油が挙げられる。化粧油を内包カプセル化することで保湿などの効果を樹脂粒子に追加するだけでなく、樹脂粒子を異型化させることが可能となり、異型粒子は後述する嵩比重が軽くなり再分散性が向上するため好ましい。 The resin particles may be an encapsulated capsule type. Examples of the encapsulating agent include cosmetic oils such as squalane, liquid paraffin, silicone oil and ester oil. Encapsulating cosmetic oil not only adds moisture retention and other effects to the resin particles, but also makes it possible to make the resin particles atypical, and the atypical particles have a lower bulk specific gravity and improve redispersibility. Therefore, it is preferable.
 前記樹脂粒子の平均粒子径は、用途に応じて自由に設計することができるため特に限定されないが、好ましくは0.1~100μm、より好ましくは0.5~50μm、特に好ましくは1.0~30μmである。0.1μm未満の場合は製品の歩留まりが著しく低下しコスト面で不利となる可能性があり、100μmより大きいと製品にざらつき感がでてしまい使用感が悪化する可能性がある。 The average particle diameter of the resin particles is not particularly limited because it can be designed freely according to the use, but is preferably 0.1 to 100 μm, more preferably 0.5 to 50 μm, and particularly preferably 1.0 to 30 μm. If the thickness is less than 0.1 μm, the yield of the product may be significantly reduced, which may be disadvantageous in terms of cost. If the thickness is more than 100 μm, the product may have a rough feeling and the usability may be deteriorated.
 樹脂粒子の嵩比重は体積が既知である容器に樹脂粒子を充填し、その樹脂粒子の重量を容器の体積で割ることで算出される比重であり、嵩比重は粒子の体積、樹脂粒子間の空隙の体積、樹脂粒子と容器間の空隙の体積を含んでいる。嵩比重が重いことは粒子が密に充填されていることを指し、嵩比重が軽いことは粒子以外の空間が広いことを指す。
 前記樹脂粒子分散液では嵩比重が軽いほど、樹脂粒子の接点が少なく凝集点が少なくなるとともに、沈降層内の樹脂粒子以外の空間が広いため振動を与えた際に液体成分が流動しやすくなるため再分散性が良くなる。
The bulk specific gravity of the resin particles is a specific gravity calculated by filling the resin particles in a container whose volume is known, and dividing the weight of the resin particles by the volume of the container. The bulk specific gravity is the volume of the particles between the resin particles. It includes the volume of the gap and the volume of the gap between the resin particles and the container. A high bulk specific gravity indicates that the particles are densely packed, and a low bulk specific gravity indicates that the space other than the particles is wide.
In the resin particle dispersion, the lighter the bulk specific gravity, the fewer the contact points of the resin particles, the fewer the aggregation points, and the larger the space other than the resin particles in the sedimentation layer, the easier the liquid components flow when subjected to vibration. Therefore, the redispersibility is improved.
 前記樹脂粒子の嵩比重は、用途に応じて自由に設計することができるため特に限定されないが、好ましくは0.8以下、より好ましくは0.77以下、さらに好ましくは0.75以下、特に好ましくは0.7以下、最も好ましくは0.65以下である。嵩比重が0.8を超える場合は、樹脂粒子同士の接点が多く、長期保管中に凝集しやすくなり再分散性が低下する可能性がある。
 好ましい下限値は、0.1である。嵩比重が0.1以下の場合、樹脂粒子が軽すぎるため樹脂粒子分散液中で混和性が損なわれる可能性がある。
The bulk specific gravity of the resin particles is not particularly limited because it can be freely designed according to the use, but is preferably 0.8 or less, more preferably 0.77 or less, and even more preferably 0.75 or less, particularly preferably. Is 0.7 or less, most preferably 0.65 or less. When the bulk specific gravity exceeds 0.8, there are many contact points between the resin particles, and the particles tend to aggregate during long-term storage, which may reduce redispersibility.
A preferred lower limit is 0.1. When the bulk specific gravity is 0.1 or less, since the resin particles are too light, miscibility may be impaired in the resin particle dispersion.
 前記樹脂粒子の水溶性物質含有量は用途に応じて自由に設計することができるため特に限定されないが、好ましくは0.2重量%以下、より好ましくは0.15重量%以下、さらに好ましくは0.12重量%以下、最も好ましくは0.10重量%以下である。水溶性物質含有量が0.2重量%を超える場合、樹脂粒子がアルコールにより膨潤、凝集、ブロッキングなどの現象を発生しやすくなり、再分散性が低下してしまう可能性がある。
 前記樹脂粒子の水溶性物質含有量の好ましい下限値は0重量%である。ここでいう前記樹脂粒子とは、乾燥後の粉体状態にある樹脂粒子のことをいう。水溶性物質含有量の測定方法は後述する。
The water-soluble substance content of the resin particles is not particularly limited because it can be designed freely according to the use, but is preferably 0.2% by weight or less, more preferably 0.15% by weight or less, and still more preferably 0. .12% by weight or less, most preferably 0.10% by weight or less. When the water-soluble substance content exceeds 0.2% by weight, the resin particles are likely to swell, agglomerate, block, and the like due to alcohol, and the redispersibility may be lowered.
A preferred lower limit of the water-soluble substance content of the resin particles is 0% by weight. The said resin particle here means the resin particle in the powder state after drying. A method for measuring the water-soluble substance content will be described later.
 樹脂粒子の形状は、球状、おわん状、お椀楕円状、表面凹凸状、微粒子付着状などが挙げられ、複数の樹脂粒子を組み合わせることも可能である。当該形状は、公知の方法により懸濁重合時の条件を調整することで自由に設計することができる。また樹脂粒子のうち50重量%未満であればナイロン、ウレタン、シリコーン、セルロールなどから構成される粒子を含んでいてもよい。
 樹脂粒子の形状は、樹脂粒子分散液に求める再分散性以外の性能から自由に選択することができるが、球状である場合、化粧料に配合した際にサラサラ感が得られやすいため好ましい。
Examples of the shape of the resin particles include a spherical shape, a bowl shape, a bowl-elliptical shape, a surface irregularity shape, and a fine particle adhesion shape, and a plurality of resin particles can be combined. The shape can be freely designed by adjusting the conditions during suspension polymerization by a known method. Moreover, if it is less than 50 weight% among resin particles, the particle | grains comprised from nylon, urethane, silicone, a cellulose, etc. may be included.
The shape of the resin particles can be freely selected from performances other than the redispersibility required for the resin particle dispersion. However, when the shape is spherical, it is preferable because a smooth feeling can be easily obtained when blended into a cosmetic.
 前記無機成分は、コロイダルシリカ、リン酸カルシウム、リン酸マグネシウム、水酸化マグネシウム、水酸化カルシウム、炭酸カルシウム、炭酸マグネシウム、ピロリン酸カルシウム及びピロリン酸マグネシウムから選ばれる少なくとも1種であると、前記懸濁重合完了後にpH調整することで簡単に取り除くことができるため好ましい。
 前記無機成分の重量割合は、用途に応じて自由に設計することができるため特に限定されないが、重合性成分に対して、好ましくは1.0~80重量%、より好ましくは2.0~60重量%、さらに好ましくは2.5~50重量%、特に好ましくは3.0~40重量%である。無機成分の重量割合が1重量%未満の場合、懸濁液の安定性が低下し樹脂粒子の歩留まりが著しく低下する可能性がある。無機成分の重量割合が80重量%を超える場合、懸濁液の粘度が増加し、重合時の制御が困難になる可能性がある。
 前記無機成分は樹脂粒子分散液に求める再分散性以外の性能に応じて、樹脂粒子の重合後に溶解させることも可能である。無機成分がコロイダルシリカである場合には、後述する工程(II)で得られた樹脂粒子を含む水性媒体のpHを10.5以上に調整し、さらに50℃以上に加温することでコロイダルシリカがよく溶解する。
 無機成分がリン酸カルシウム、リン酸マグネシウム、水酸化マグネシウム、水酸化カルシウム、炭酸カルシウム、炭酸マグネシウム、ピロリン酸カルシウム及びピロリン酸マグネシウムである場合には、後述する工程(II)で得られた樹脂粒子を含む水性媒体のpHを7.0未満に調整することで無機成分がイオン分解する。
The inorganic component is at least one selected from colloidal silica, calcium phosphate, magnesium phosphate, magnesium hydroxide, calcium hydroxide, calcium carbonate, magnesium carbonate, calcium pyrophosphate, and magnesium pyrophosphate, after completion of the suspension polymerization. This is preferable because it can be easily removed by adjusting the pH.
The weight ratio of the inorganic component is not particularly limited because it can be freely designed according to the use, but is preferably 1.0 to 80% by weight, more preferably 2.0 to 60% with respect to the polymerizable component. % By weight, more preferably 2.5 to 50% by weight, particularly preferably 3.0 to 40% by weight. When the weight ratio of the inorganic component is less than 1% by weight, the stability of the suspension is lowered, and the yield of the resin particles may be significantly lowered. When the weight ratio of the inorganic component exceeds 80% by weight, the viscosity of the suspension increases, which may make it difficult to control during polymerization.
The inorganic component can be dissolved after polymerization of the resin particles depending on the performance other than the redispersibility required for the resin particle dispersion. When the inorganic component is colloidal silica, the pH of the aqueous medium containing the resin particles obtained in the step (II) described later is adjusted to 10.5 or higher, and further heated to 50 ° C. or higher to colloidal silica. Dissolves well.
When the inorganic component is calcium phosphate, magnesium phosphate, magnesium hydroxide, calcium hydroxide, calcium carbonate, magnesium carbonate, calcium pyrophosphate and magnesium pyrophosphate, an aqueous solution containing the resin particles obtained in step (II) described later The inorganic component is ionically decomposed by adjusting the pH of the medium to less than 7.0.
 前記低分子界面活性剤とは、分子量が1000未満の界面活性剤である。低分子界面活性剤としては、低分子カチオン界面活性剤、低分子アニオン界面活性剤、低分子ノニオン界面活性剤、低分子両性界面活性剤が挙げられる。
 前記低分子界面活性剤としては、特に限定はないが、例えば、N-ヒドロキシエチルプロピルアルキルアマイドニトレート、ラウリルトリメチルアンモニウムコロライド、ラウリルジメチルベンジルアンモニウムクロライドなどの低分子カチオン界面活性剤;脂肪酸塩類、硫酸エステル塩であるラウリル硫酸塩、ポリオキシエチレンセカンダリーアルキルエーテル硫酸エステル塩、スルホン酸塩であるアルキルベンゼンスルホン酸塩、ジオクチルスルホコハク酸塩、リン酸エステル塩類などの低分子アニオン界面活性剤;ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンスチレン化フェノールエーテル類、ポリオキシエチレンアルキルアミノエーテル類、ポリエチレングリコール脂肪酸エステル類、ポリオキシエチレンポリオキシプロピレングリコール類、グリセリン脂肪酸エステル類、ポリオキシエチレンヒマシ油類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、脂肪酸アルカノールアミド類、ポリオキシエチレン脂肪酸アルカノールアミド類、アジピン酸-ジエタノールアミン縮合物などの低分子ノニオン界面活性剤;アルキルベタイン類、アミドプロピルベタイン類、アルキレンオキサイド付加物ベタイン類などの低分子両性界面活性剤が挙げられる。
The low molecular surfactant is a surfactant having a molecular weight of less than 1000. Examples of the low molecular surfactant include a low molecular cationic surfactant, a low molecular anionic surfactant, a low molecular nonionic surfactant, and a low molecular amphoteric surfactant.
The low molecular surfactant is not particularly limited, and examples thereof include low molecular cationic surfactants such as N-hydroxyethylpropylalkylamide nitrate, lauryltrimethylammonium choloride, lauryldimethylbenzylammonium chloride; fatty acid salts, Low molecular weight anionic surfactants such as sulfate ester lauryl sulfate, polyoxyethylene secondary alkyl ether sulfate ester, sulfonate alkylbenzene sulfonate, dioctyl sulfosuccinate, phosphate ester salts; polyoxyethylene Alkyl ethers, polyoxyethylene styrenated phenol ethers, polyoxyethylene alkylamino ethers, polyethylene glycol fatty acid esters, polyoxyethylene polyoxy Propylene glycols, glycerin fatty acid esters, polyoxyethylene castor oils, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, fatty acid alkanolamides, polyoxyethylene fatty acid alkanolamides, adipic acid-diethanolamine condensates, etc. Low molecular nonionic surfactants; low molecular amphoteric surfactants such as alkyl betaines, amidopropyl betaines, and alkylene oxide adduct betaines.
 前記低分子界面活性剤の重量割合は、用途に応じて自由に設計することができるため特に限定されないが、好ましくは重合性成分に対して10重量%以下、さらに好ましくは8.0重量%以下、特に好ましくは5.0重量%以下、最も好ましくは3.0重量%以下である。低分子界面活性剤の重量割合が10重量%を超える場合、微粒子が多く発生してしまい樹脂粒子の歩留まりが著しく低下する可能性がある。好ましい下限値は0重量%である。 The weight ratio of the low-molecular-weight surfactant is not particularly limited because it can be freely designed according to the use, but is preferably 10% by weight or less, more preferably 8.0% by weight or less, based on the polymerizable component. Particularly preferred is 5.0% by weight or less, and most preferred is 3.0% by weight or less. When the weight ratio of the low molecular surfactant exceeds 10% by weight, a large amount of fine particles are generated, and the yield of the resin particles may be significantly reduced. A preferred lower limit is 0% by weight.
(有機酸)
 有機酸は、本発明の樹脂粒子分散液に必須な成分であり、有機酸が樹脂粒子に吸着することでアルコールの樹脂粒子への浸漬を防ぐ役割を果している。
 前記有機酸としては、上記理由により特に限定されるものではないが、ヒドロキシ酸、多価カルボン酸、アミノカルボン酸、フェノールスルホン酸、ヒドロキシ酸の一部が中和された塩、多価カルボン酸の一部が中和された塩、アミノカルボン酸の一部が中和された塩及びフェノールスルホン酸の一部が中和された塩から選ばれる少なくとも1種であると、樹脂粒子に吸着しやすいため好ましい。
 一方で、前記有機酸のすべてのカルボキシル基が中和されている場合は、樹脂粒子への吸着性が低下し、アルコールの樹脂粒子への浸漬を防ぐことができず、樹脂粒子の強固な凝集を引き起こすため好ましくない。
(Organic acid)
The organic acid is an essential component for the resin particle dispersion of the present invention, and plays a role in preventing the alcohol from being immersed in the resin particle by adsorbing the organic acid to the resin particle.
The organic acid is not particularly limited for the above reasons, but is a hydroxy acid, a polyvalent carboxylic acid, an aminocarboxylic acid, a phenolsulfonic acid, a salt obtained by neutralizing a part of the hydroxy acid, or a polyvalent carboxylic acid. When at least one selected from a partially neutralized salt, a partially neutralized aminocarboxylic acid salt, and a partially neutralized phenolsulfonic acid salt is adsorbed to the resin particles. It is preferable because it is easy.
On the other hand, when all the carboxyl groups of the organic acid are neutralized, the adsorptivity to the resin particles is reduced, so that the immersion of alcohol into the resin particles cannot be prevented, and the resin particles are strongly agglomerated. This is not preferable because
 前記ヒドロキシ酸は、乳酸、酒石酸、クエン酸、リンゴ酸が好ましい。
 前記多価カルボン酸は、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸が好ましい。
 前記アミノカルボン酸は、エチレンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、ジヒドロキシエチルエチレンジアミン二酢酸、1,3-プロパンジアミン四酢酸、ジエチレントリアミン五酢酸及びトリエチレンテトラアミン六酢酸が好ましい。
 前記ヒドロキシ酸の一部が中和された塩は、乳酸、酒石酸、クエン酸又はリンゴ酸の一部が中和された塩が好ましい。ヒドロキシ酸の一部が中和された塩であれば上記理由から本願効果を発揮するため特に限定はされないが、ヒドロキシ酸の一部が中和された塩の中和剤としては、L-アルギニン、水酸化カリウム、水酸化ナトリウム、アンモニア、2-アミノメチル-1-プロパノール、2-アミノメチル-プロパンジオール及びトリス(ヒドロキシメチル)アミノメタンから選ばれる一種以上の塩基性化合物を用いることが好ましい。具体例としては、クエン酸1ナトリウム、クエン酸2ナトリウム、乳酸1ナトリウム、リンゴ酸1ナトリウム、クエン酸1カリウム、クエン酸2カリウム、乳酸1カリウム、リンゴ酸1カリウムが挙げられる。
 ヒドロキシ酸の一部が中和された塩の中和度としては、ヒドロキシ酸1当量に対する中和剤当量数で0.1~0.9当量が好ましく、0.2~0.8当量がより好ましく、0.3~0.7当量がさらに好ましく、0.4~0.6当量が特に好ましい。
 化粧料に使用する場合は、安全性やコストの面から、クエン酸1ナトリウム、クエン酸2ナトリウム、クエン酸1カリウム及びクエン酸2カリウムから選ばれる少なくとも1種が好ましい
The hydroxy acid is preferably lactic acid, tartaric acid, citric acid, or malic acid.
The polyvalent carboxylic acid is preferably oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, or fumaric acid.
The aminocarboxylic acid is preferably ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, dihydroxyethylethylenediaminediacetic acid, 1,3-propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid and triethylenetetraaminehexaacetic acid.
The salt in which a part of the hydroxy acid is neutralized is preferably a salt in which a part of lactic acid, tartaric acid, citric acid or malic acid is neutralized. The salt is not particularly limited as long as it is a salt in which a part of the hydroxy acid is neutralized, so that the effect of the present invention is exhibited for the above reasons, but as a neutralizing agent for a salt in which a part of the hydroxy acid is neutralized, L-arginine It is preferable to use one or more basic compounds selected from potassium hydroxide, sodium hydroxide, ammonia, 2-aminomethyl-1-propanol, 2-aminomethyl-propanediol and tris (hydroxymethyl) aminomethane. Specific examples include 1 sodium citrate, 2 sodium citrate, 1 sodium lactic acid, 1 sodium malate, 1 potassium citrate, 2 potassium citrate, 1 potassium lactic acid, and 1 potassium malate.
The degree of neutralization of the salt in which a part of the hydroxy acid is neutralized is preferably 0.1 to 0.9 equivalent, more preferably 0.2 to 0.8 equivalent in terms of the number of neutralizing agent equivalents per equivalent of hydroxy acid. Preferably, 0.3 to 0.7 equivalent is more preferable, and 0.4 to 0.6 equivalent is particularly preferable.
When used in cosmetics, at least one selected from monosodium citrate, disodium citrate, monopotassium citrate and dipotassium citrate is preferable from the viewpoint of safety and cost.
 多価カルボン酸の一部が中和された塩は、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸又はフマル酸の一部が中和された塩が好ましい。
 多価カルボン酸の一部が中和された塩であれば上記理由から本願効果を発揮するため特に限定はされないが、多価カルボン酸の一部が中和された塩の中和剤としては、L-アルギニン、水酸化カリウム、水酸化ナトリウム、アンモニア、2-アミノメチル-1-プロパノール、2-アミノメチル-プロパンジオール及びトリス(ヒドロキシメチル)アミノメタンから選ばれる一種以上の塩基性化合物を用いることが好ましい。具体例としては、コハク酸1ナトリウム、コハク酸1カリウム、グルタル酸1ナトリウム、グルタル酸1カリウムが挙げられる。
 多価カルボン酸の一部が中和された塩の中和度としては、多価カルボン酸1当量に対する中和剤当量数で0.1~0.9当量が好ましく、0.2~0.8当量がより好ましく、0.3~0.7当量がさらに好ましく、0.4~0.6当量が特に好ましい。
 化粧料に使用する場合は、安全性やコストの面からグルタル酸1ナトリウム、グルタル酸1カリウムが好ましい。
The salt in which a part of the polyvalent carboxylic acid is neutralized is preferably a salt in which a part of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid or fumaric acid is neutralized.
If it is a salt in which a part of the polyvalent carboxylic acid is neutralized, the effect of the present application is exhibited for the above reasons, but there is no particular limitation. One or more basic compounds selected from L-arginine, potassium hydroxide, sodium hydroxide, ammonia, 2-aminomethyl-1-propanol, 2-aminomethyl-propanediol and tris (hydroxymethyl) aminomethane It is preferable. Specific examples include monosodium succinate, monopotassium succinate, monosodium glutarate, and monopotassium glutarate.
The degree of neutralization of the salt in which a part of the polyvalent carboxylic acid is neutralized is preferably 0.1 to 0.9 equivalent in terms of the number of neutralizing agent equivalents relative to 1 equivalent of the polyvalent carboxylic acid, and preferably 0.2 to 0. 8 equivalents are more preferred, 0.3 to 0.7 equivalents are more preferred, and 0.4 to 0.6 equivalents are particularly preferred.
When used for cosmetics, monosodium glutarate and monopotassium glutarate are preferable from the viewpoint of safety and cost.
 アミノカルボン酸の一部が中和された塩は、エチレンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、ジヒドロキシエチルエチレンジアミン二酢酸、1,3-プロパンジアミン四酢酸、ジエチレントリアミン五酢酸又はトリエチレンテトラアミン六酢酸の一部が中和された塩が好ましい。
 アミノカルボン酸の一部が中和された塩であれば上記理由から本願効果を発揮するため特に限定はされないが、アミノカルボン酸の一部が中和された塩の中和剤としては、L-アルギニン、水酸化カリウム、水酸化ナトリウム、アンモニア、2-アミノメチル-1-プロパノール、2-アミノメチル-プロパンジオール及びトリス(ヒドロキシメチル)アミノメタンから選ばれる一種以上の塩基性化合物を用いることが好ましい。具体例としては、エチレンジアミン四酢酸2水素2ナトリウム又はエチレンジアミン四酢酸2水素2カリウムが挙げられる。
 アミノカルボン酸の一部が中和された塩の中和度としては、アミノカルボン酸1当量に対する中和剤当量数で0.1~0.9当量が好ましく、0.2~0.8当量がより好ましく、0.3~0.7当量がさらに好ましく、0.4~0.6当量が特に好ましい。
 化粧料に使用する場合は、安全性やコストの面からエチレンジアミン四酢酸2水素2ナトリウムが好ましい。
 フェノールスルホン酸の一部が中和された塩は、フェノールスルホン酸又はベンゾトリアゾリルブチルフェノールスルホン酸の一部が中和された塩が好ましい。
フェノールスルホン酸の一部が中和された塩であれば上記理由から本願効果を発揮するため特に限定はされないが、ナトリウム塩もしくは亜鉛塩が好ましい。具体例としてはフェノールスルホン酸ナトリウム、フェノールスルホン酸亜鉛、ベンゾトリアゾリルブチルフェノールスルホン酸ナトリウムが挙げられる。
 フェノールスルホン酸の一部が中和された塩の中和度としては、スルホン酸部分のみの中和でありフェノール部分は中和されていないことが好ましい。
 化粧料に使用する場合は、安全性やコストの面からフェノールスルホン酸ナトリウムもしくはフェノールスルホン酸亜鉛が好ましい。
Salts partially neutralized with aminocarboxylic acid are ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, dihydroxyethylethylenediaminediacetic acid, 1,3-propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid or triethylenetetraacetic acid. A salt in which a part of amine hexaacetic acid is neutralized is preferred.
If the salt is a partially neutralized salt of aminocarboxylic acid, the effect of the present invention is exhibited for the above reasons, and is not particularly limited. However, as a neutralizing agent for a salt partially neutralized with aminocarboxylic acid, L Use of one or more basic compounds selected from arginine, potassium hydroxide, sodium hydroxide, ammonia, 2-aminomethyl-1-propanol, 2-aminomethyl-propanediol and tris (hydroxymethyl) aminomethane preferable. Specific examples include 2 sodium dihydrogenethylenediaminetetraacetate or 2 potassium dihydrogenethylenediaminetetraacetate.
The degree of neutralization of the salt in which a part of the aminocarboxylic acid is neutralized is preferably 0.1 to 0.9 equivalent, preferably 0.2 to 0.8 equivalent in terms of the number of neutralizing agent equivalents per equivalent of aminocarboxylic acid. Is more preferable, 0.3 to 0.7 equivalent is more preferable, and 0.4 to 0.6 equivalent is particularly preferable.
When used in cosmetics, disodium ethylenediaminetetraacetic acid disodium is preferable from the viewpoint of safety and cost.
The salt in which a part of phenolsulfonic acid is neutralized is preferably a salt in which part of phenolsulfonic acid or benzotriazolylbutylphenolsulfonic acid is neutralized.
If the salt is obtained by neutralizing a part of phenolsulfonic acid, the effect of the present invention is exhibited for the above reasons, but the salt is not particularly limited, but sodium salt or zinc salt is preferable. Specific examples include sodium phenol sulfonate, zinc phenol sulfonate, and sodium benzotriazolyl butyl phenol sulfonate.
As the degree of neutralization of the salt in which a part of the phenolsulfonic acid is neutralized, it is preferable that only the sulfonic acid part is neutralized and the phenol part is not neutralized.
When used in cosmetics, sodium phenolsulfonate or zinc phenolsulfonate is preferred from the standpoints of safety and cost.
(水)
 水としては、水道水、イオン交換水、精製水の他、硬水、軟水、天然水、海洋深層水、電解アルカリイオン水、電解酸性イオン水、イオン水、クラスター水が挙げられるが、化粧料に用いる場合は、さらにこれらの水が電子線照射、UV照射、加熱処理、塩素処理などで殺菌されていてもよい。コストの関係から、水道水、イオン交換水又は軟水が好ましい。
(water)
Examples of water include tap water, ion-exchanged water, purified water, hard water, soft water, natural water, deep ocean water, electrolytic alkali ion water, electrolytic acid ion water, ion water, and cluster water. When used, these waters may be further sterilized by electron beam irradiation, UV irradiation, heat treatment, chlorination or the like. From the viewpoint of cost, tap water, ion exchange water or soft water is preferable.
(アルコール)
 アルコールは、本発明の樹脂粒子分散液に必須な成分であり、液体成分の揮発を速め、清涼感を与える役割がある。
 アルコールとしては、例えば、エタノール、イソプロピルアルコール等が挙げられるが、化粧料として使用する際の安全性の観点から、エタノールが好ましい。
(alcohol)
Alcohol is an essential component for the resin particle dispersion of the present invention, and has a role of accelerating the volatilization of the liquid component and giving a refreshing feeling.
Examples of the alcohol include ethanol and isopropyl alcohol. From the viewpoint of safety when used as a cosmetic, ethanol is preferable.
〔樹脂粒子分散液〕
 上記樹脂粒子分散液に占める上記樹脂粒子の重量割合は1.0~10.0重量%が好ましく、1.0~9.0重量%がより好ましく、1.0~8.0重量%がさらに好ましく、1.0~7.0重量%が特に好ましく、1.0~6.0重量%が最も好ましい。1.0重量%未満では、樹脂粒子が不足しサラサラ感が得られないことがある。10重量%超では、樹脂粒子が多く粉っぽい感触になることがある。
[Resin particle dispersion]
The weight ratio of the resin particles in the resin particle dispersion is preferably 1.0 to 10.0% by weight, more preferably 1.0 to 9.0% by weight, and further 1.0 to 8.0% by weight. 1.0 to 7.0% by weight is particularly preferable, and 1.0 to 6.0% by weight is most preferable. If it is less than 1.0% by weight, the resin particles may be insufficient and a smooth feeling may not be obtained. If it exceeds 10% by weight, there may be a powdery feeling with many resin particles.
 上記樹脂粒子分散液に占める上記アルコールの重量割合は5.0~80重量%が好ましく、6.0~70重量%がより好ましく、7.0~60重量%がさらにより好ましく、8.0~50重量%が特に好ましく、10~40重量%が最も好ましい。5.0重量%未満では、清涼感が不足することがある。80重量%超では、アルコールによる刺激が強くなりすぎることがある。 The weight proportion of the alcohol in the resin particle dispersion is preferably 5.0 to 80% by weight, more preferably 6.0 to 70% by weight, even more preferably 7.0 to 60% by weight, and 8.0 to 50% by weight is particularly preferred, and 10 to 40% by weight is most preferred. If it is less than 5.0% by weight, the refreshing feeling may be insufficient. If it exceeds 80% by weight, the irritation by alcohol may be too strong.
 上記樹脂粒子分散液に占める上記有機酸の重量割合は、好ましくは0.001~5.0重量%、より好ましくは0.002~4.8重量%、さらに好ましくは0.003~4.5重量%、最も好ましくは0.005~4.0重量%である。樹脂粒子分散液に占める有機酸の重量割合が0.001重量%未満の場合、樹脂粒子に吸着する有機酸が少なく、樹脂粒子が凝集してしまう可能性がある。樹脂粒子分散液に占める有機酸の重量割合が5.0重量%を超える場合、樹脂粒子分散液のpH調整が困難になる。 The weight ratio of the organic acid in the resin particle dispersion is preferably 0.001 to 5.0% by weight, more preferably 0.002 to 4.8% by weight, and still more preferably 0.003 to 4.5%. % By weight, most preferably 0.005 to 4.0% by weight. When the weight ratio of the organic acid in the resin particle dispersion is less than 0.001% by weight, the organic acid adsorbed on the resin particles is small and the resin particles may be aggregated. When the weight ratio of the organic acid in the resin particle dispersion exceeds 5.0% by weight, it is difficult to adjust the pH of the resin particle dispersion.
〔樹脂粒子分散液の製造方法〕
 本発明の樹脂粒子分散液の製造方法は、無機成分及び低分子界面活性剤を含む水性分散媒中に、重合性成分を分散させる工程(I)、前記重合性成分を重合させて樹脂粒子を得る工程(II)、粉体化工程(IV)及び混合工程(V)を含む。
[Method for producing resin particle dispersion]
The method for producing a resin particle dispersion of the present invention comprises a step (I) of dispersing a polymerizable component in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant, and polymerizing the polymerizable component to obtain resin particles. It includes a obtaining step (II), a powdering step (IV) and a mixing step (V).
(重合性成分を分散させる工程(I))
 重合性成分を分散させる工程とは重合性成分を必須とする油性溶液を別に用意した無機成分及び低分子界面活性剤を含む水性分散媒中に分散させ懸濁液を得る工程である。本願効果を得られ易い観点から、無機成分及び低分子界面活性剤からなる水性分散媒中に分散させ懸濁液を得る工程であると好ましい。
 重合性成分を懸濁分散させる方法としては、たとえば、ホモミキサー(たとえば、プライミクス社製)、ホモディスパー(たとえば、プライミクス社製)、クレアミクス(エムテクニック社製)等により攪拌する方法や、スタティックミキサー(たとえば、ノリタケエンジニアリング社製)等の静止型分散装置を用いる方法、膜乳化法、超音波分散法、マイクロチャネル法等の一般的な分散方法を挙げることができる。
(Step of dispersing polymerizable component (I))
The step of dispersing the polymerizable component is a step of obtaining a suspension by dispersing an oily solution essentially containing the polymerizable component in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant. From the viewpoint of easily obtaining the effect of the present application, the step of dispersing in an aqueous dispersion medium comprising an inorganic component and a low molecular surfactant to obtain a suspension is preferable.
Examples of the method for suspending and dispersing the polymerizable component include, for example, a method of stirring with a homomixer (for example, manufactured by Primics), a homodisper (for example, manufactured by Primics), cleamics (manufactured by Mtechnics), or a static mixer. For example, a general dispersion method such as a method using a static dispersion device such as Noritake Engineering Co., Ltd., a membrane emulsification method, an ultrasonic dispersion method, a microchannel method, or the like can be given.
(重合性成分を重合させて樹脂粒子を得る工程(II))
 重合性成分を重合させて樹脂粒子を得る工程(II)とは工程(I)で得られた懸濁液を加熱して樹脂粒子を得る工程である。
 重合温度は、重合開始剤の種類によって自由に設定されるが、好ましくは40~100℃、さらに好ましくは45~90℃、特に好ましくは50~85℃の範囲で制御される。重合初期圧力についてはゲージ圧で0~5.0MPa、さらに好ましくは0.1~3.0MPa、特に好ましくは0.2~2.0MPaの範囲である。
 重合反応中は、分散液を攪拌するのが好ましく、その攪拌は、たとえば、重合性成分の浮上や重合後の樹脂粒子の沈降を防止できる程度に緩く行えばよい。
(Step of obtaining resin particles by polymerizing polymerizable components (II))
The step (II) for obtaining resin particles by polymerizing a polymerizable component is a step for obtaining resin particles by heating the suspension obtained in the step (I).
The polymerization temperature is freely set depending on the kind of the polymerization initiator, but is preferably controlled in the range of 40 to 100 ° C., more preferably 45 to 90 ° C., and particularly preferably 50 to 85 ° C. The initial polymerization pressure is 0 to 5.0 MPa, more preferably 0.1 to 3.0 MPa, and particularly preferably 0.2 to 2.0 MPa in terms of gauge pressure.
During the polymerization reaction, it is preferable to stir the dispersion, and the stirring may be performed so gently as to prevent, for example, floating of the polymerizable component and sedimentation of the resin particles after polymerization.
(無機成分溶解工程(III))
 本発明の樹脂粒子分散液の製造方法は、樹脂粒子分散液に求める再分散性以外の性能に応じて、工程(II)終了後かつ次工程である粉体化工程(IV)前に前記無機成分を溶解させて前記無機成分の残存量を低減させる無機成分溶解工程(III)を含むことができる。
 溶解工程を行う場合、用いた分散剤の種類によって操作方法が異なる。
 無機成分がコロイダルシリカである場合には、工程(II)で得られた樹脂粒子を含む水性媒体のpHを10.5以上に調整し、50℃以上に加温した後に、次工程である粉体化工程(IV)を実施することで、無機成分の残存量を低減させることができる。
 無機成分がリン酸カルシウム、リン酸マグネシウム、水酸化マグネシウム、水酸化カルシウム、炭酸カルシウム、炭酸マグネシウム、ピロリン酸カルシウム及びピロリン酸マグネシウムである場合には、工程(II)で得られた樹脂粒子を含む水性媒体のpHを7.0以下に調整して無機成分溶解工程(III)後に、次工程である粉体化工程(IV)を実施することで、無機成分の残存量を低減させることができる。
(Inorganic component dissolution step (III))
According to the method for producing the resin particle dispersion of the present invention, according to the performance other than the redispersibility required for the resin particle dispersion, the inorganic material is added after the completion of the step (II) and before the powdering step (IV) which is the next step. An inorganic component dissolving step (III) in which the component is dissolved to reduce the residual amount of the inorganic component can be included.
When performing the dissolution step, the operation method varies depending on the type of dispersant used.
When the inorganic component is colloidal silica, the pH of the aqueous medium containing the resin particles obtained in the step (II) is adjusted to 10.5 or higher, heated to 50 ° C. or higher, and then the powder in the next step By carrying out the soaking step (IV), the remaining amount of the inorganic component can be reduced.
When the inorganic component is calcium phosphate, magnesium phosphate, magnesium hydroxide, calcium hydroxide, calcium carbonate, magnesium carbonate, calcium pyrophosphate and magnesium pyrophosphate, the aqueous medium containing the resin particles obtained in step (II) The residual amount of the inorganic component can be reduced by adjusting the pH to 7.0 or less and carrying out the powdering step (IV) as the next step after the inorganic component dissolving step (III).
(粉体化工程(IV))
 本発明の樹脂粒子分散液の製造方法は、工程(II)後に樹脂粒子を含む水性分散媒から樹脂粒子の粉体を得る粉体化工程(IV)を含む。
粉体化工程(IV)は、脱水工程(IV-1)及び/又は乾燥工程(IV-2)を含む。
 脱水工程(IV-1)は、吸引ろ過、加圧ろ過、遠心脱水、遠心分離など一般的な脱水方法で行うことができる。脱水工程(IV-1)では、濾過等により、樹脂粒子の湿粉を得ることができる。湿粉とは、水分率が好ましくは5.0~60重量%、更に好ましくは15~50重量%、最も好ましくは20~40重量%の水分と樹脂粒子からなる粉体である。また、得られた湿粉に再び水を加え、分散、脱水を繰り返すことで、樹脂粒子を精製することも可能である。
 特に、遠心脱水機やフィルタープレス脱水機を使用した場合、濾過室に水を追加することで容易に樹脂粒子を水洗、精製することができる。
 乾燥工程(IV-2)は、一般的な粉体の乾燥方法で行うことが可能であり、たとえば棚乾燥機(箱型乾燥機)、減圧乾燥機、凍結乾燥機、気流乾燥機、スプレードライで乾燥する方法などが挙げられる。乾燥工程(IV-2)前に脱水工程(IV-1)を含んでもよい。
 ここでいう乾燥とは、樹脂粒子に対する水分量を5.0重量%未満、好ましくは2.0重量%以下、さらに好ましくは1.5重量%以下にすることをいう。
 工程(IV-1)で得られた樹脂粒子を用いて工程(V)を行うことも可能だが、化粧料に使用する場合、水分が残存していると細菌類が増殖してしまう恐れがあるため、工程(IV-2)を行うことが好ましい。
(Powdering process (IV))
The method for producing a resin particle dispersion of the present invention includes a pulverization step (IV) for obtaining a powder of resin particles from an aqueous dispersion medium containing resin particles after the step (II).
The pulverization step (IV) includes a dehydration step (IV-1) and / or a drying step (IV-2).
The dehydration step (IV-1) can be performed by a general dehydration method such as suction filtration, pressure filtration, centrifugal dehydration, and centrifugal separation. In the dehydration step (IV-1), a wet powder of resin particles can be obtained by filtration or the like. The wet powder is a powder composed of water and resin particles having a moisture content of preferably 5.0 to 60% by weight, more preferably 15 to 50% by weight, and most preferably 20 to 40% by weight. Moreover, it is also possible to refine | purify a resin particle by adding water again to the obtained wet powder, and repeating dispersion | distribution and dehydration.
In particular, when a centrifugal dehydrator or a filter press dehydrator is used, the resin particles can be easily washed and purified by adding water to the filtration chamber.
The drying step (IV-2) can be performed by a general powder drying method. For example, a shelf dryer (box-type dryer), a vacuum dryer, a freeze dryer, a flash dryer, a spray dryer, and the like. The method of drying with is mentioned. A dehydration step (IV-1) may be included before the drying step (IV-2).
The term “drying” as used herein means that the amount of water in the resin particles is less than 5.0% by weight, preferably 2.0% by weight or less, more preferably 1.5% by weight or less.
Although it is possible to perform the step (V) using the resin particles obtained in the step (IV-1), there is a risk that bacteria will grow if moisture remains when used in cosmetics. Therefore, it is preferable to perform the step (IV-2).
(混合工程(V))
 本発明の樹脂粒子分散液の製造方法は、樹脂粒子、水、アルコール、有機酸を混合し樹脂粒子分散液を得る混合工程(V)を含む。当該混合は、一般的な混合方法によって行うことができるが、成分の不均一化や樹脂粒子の凝集が起こると樹脂粒子分散液の使用感に影響が出る恐れがあるため、水になじみやすい成分は水に溶解又は分散し、アルコールになじみやすい成分はアルコールに溶解又は分散したのち、両者を合せることが好ましい。なお、ここでいう樹脂粒子は、粉体化工程(IV)で得られた湿粉及び/又は乾燥した樹脂粒子である。化粧料に使用する場合、水分が残存していると細菌類が増殖してしまう恐れがあるため、乾燥した樹脂粒子が好ましい。
(Mixing step (V))
The method for producing a resin particle dispersion of the present invention includes a mixing step (V) in which resin particles, water, alcohol, and organic acid are mixed to obtain a resin particle dispersion. The mixing can be performed by a general mixing method. However, if the components become uneven or the resin particles agglomerate, the feeling of use of the resin particle dispersion may be affected. It is preferable to dissolve or disperse in water, and dissolve or disperse the components that are easily compatible with alcohol, and then combine them together. In addition, the resin particle here is the wet powder obtained by the powdering process (IV) and / or the dried resin particle. When used in cosmetics, dry resin particles are preferred because bacteria may grow if moisture remains.
〔化粧料〕
 本発明の化粧料は、上記樹脂粒子分散液を含む。
 本発明の化粧料は、樹脂粒子分散液の分散性を阻害しない程度に、その他成分を含むことができる。本発明の化粧料の製造方法について、上記樹脂粒子分散液の製造方法以外のその他成分の配合は、公知の方法で製造することができる。
[Cosmetics]
The cosmetic of the present invention contains the resin particle dispersion.
The cosmetic of the present invention can contain other components to the extent that the dispersibility of the resin particle dispersion is not impaired. About the manufacturing method of the cosmetics of this invention, the mixing | blending of other components other than the manufacturing method of the said resin particle dispersion can be manufactured by a well-known method.
 その他成分は、例えば、l―メントールなどの香料;グリセリン、ポリマー性グリコール(例えばポリエチレングリコール及びポリプロピレングリコール)、マンニトール、ソルビトール及び1,3-ブチレングリコールなどの保湿剤;クエン酸3ナトリウムなどのpH調整剤、シクロデキストリンなどの吸着剤、アスパラギン酸ナトリウム、イソプロピルメチルフェノール及び塩化ベンザルコニウムなどの殺菌剤;エチルヘキシルグリセリンなどの消臭剤;硫酸亜鉛、ポリ塩化アルミニウムなどの収れん剤;スプレータイプの化粧料に使用する場合はLPG、ブタン、ペンタン、ジメチルエーテルなどの噴射剤、防腐剤、顔料、色素、紫外線吸収剤、薬効成分など、化粧料に一般的に使用されているものが挙げられる。
 また樹脂粒子の分散性を補助するため、樹脂粒子分散液の製造時に界面活性剤を配合しても良い。界面活性剤としては、特に限定はないが、例えば、N-ヒドロキシエチルプロピルアルキルアマイドニトレート、ラウリルトリメチルアンモニウムコロライド、ラウリルジメチルベンジルアンモニウムクロライド、塩化ベンザルコニウム、塩化ベンゼトニウムなどのカチオン界面活性剤;脂肪酸塩類、硫酸エステル塩であるラウリル硫酸塩、ポリオキシエチレンセカンダリーアルキルエーテル硫酸エステル塩、スルホン酸塩であるアルキルベンゼンスルホン酸塩、ジオクチルスルホコハク酸塩、リン酸エステル塩類などのアニオン界面活性剤;ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンスチレン化フェノールエーテル類、ポリオキシエチレンアルキルアミノエーテル類、ポリエチレングリコール脂肪酸エステル類、ポリオキシエチレンポリオキシプロピレングリコール類、グリセリン脂肪酸エステル類、ポリオキシエチレンヒマシ油類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、脂肪酸アルカノールアミド類、ポリオキシエチレン脂肪酸アルカノールアミド類、アジピン酸-ジエタノールアミン縮合物などのノニオン界面活性剤;アルキルベタイン類、アミドプロピルベタイン類、アルキレンオキサイド付加物ベタイン類、などの両性界面活性剤;メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、カルボキシメチルセルロース、ポリビニルピロリドン、ポリビニルアルコールなどの水溶性高分子が挙げられる。
Other ingredients include, for example, perfume such as l-menthol; humectants such as glycerin, polymeric glycols (eg, polyethylene glycol and polypropylene glycol), mannitol, sorbitol and 1,3-butylene glycol; pH adjustment such as trisodium citrate Adsorbent such as cyclodextrin, disinfectant such as sodium aspartate, isopropylmethylphenol and benzalkonium chloride; deodorant such as ethylhexyl glycerin; astringent such as zinc sulfate and polyaluminum chloride; spray-type cosmetics In the case of use in the above, those commonly used in cosmetics such as propellants such as LPG, butane, pentane and dimethyl ether, preservatives, pigments, dyes, ultraviolet absorbers, and medicinal ingredients can be used.
Moreover, in order to assist the dispersibility of the resin particles, a surfactant may be added during the production of the resin particle dispersion. The surfactant is not particularly limited, and for example, cationic surfactants such as N-hydroxyethylpropylalkylamide nitrate, lauryltrimethylammonium choloride, lauryldimethylbenzylammonium chloride, benzalkonium chloride, benzethonium chloride; Anionic surfactants such as fatty acid salts, lauryl sulfate that is a sulfate ester salt, polyoxyethylene secondary alkyl ether sulfate ester salt, alkylbenzene sulfonate that is a sulfonate salt, dioctyl sulfosuccinate, and phosphate ester salts; Ethylene alkyl ethers, polyoxyethylene styrenated phenol ethers, polyoxyethylene alkyl amino ethers, polyethylene glycol fatty acid esters, polyols Siethylene polyoxypropylene glycols, glycerin fatty acid esters, polyoxyethylene castor oils, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, fatty acid alkanolamides, polyoxyethylene fatty acid alkanolamides, adipic acid-diethanolamine Nonionic surfactants such as condensates; amphoteric surfactants such as alkylbetaines, amidopropylbetaines, alkylene oxide adduct betaines; methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, carboxymethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol And water-soluble polymers such as
 本発明の化粧料は、樹脂粒子分散液を含む液状化粧料であれば特に限定されないが、医薬部外品、医薬品等、化粧料全般を包含するものであり、目的に応じて選択することができる。例えば、乳液、化粧水、制汗剤、パック類、ひげ剃り用クリーム、マニキュア化粧品、洗髪用化粧品、染毛料、美容液、整髪料、日焼け止め製品、サンタン製品、クレンジング料、メーキャップ化粧料、ボディシャンプー、エアゾール、プレシェーブローション、ボディーローション等の形態が挙げられる。 The cosmetic of the present invention is not particularly limited as long as it is a liquid cosmetic containing a resin particle dispersion, but includes cosmetics in general, such as quasi-drugs and pharmaceuticals, and can be selected according to the purpose. it can. For example, milky lotion, lotion, antiperspirant, packs, shave cream, nail polish cosmetics, hair washing cosmetics, hair dyes, essences, hair styling products, sunscreen products, suntan products, cleansing products, makeup cosmetics, body Examples include shampoo, aerosol, pre-shave lotion, body lotion and the like.
 以下、測定に用いた樹脂粒子は、特別な記載がない限り、乾燥した樹脂粒子を示す。
〔平均粒子径の測定〕
 レーザー回折式粒度分布測定装置(マイクロトラック9320HRA×100、日機装社製)の湿式測定法により測定し、D50の値を平均粒子径とした。
Hereinafter, the resin particles used for the measurement indicate dried resin particles unless otherwise specified.
(Measurement of average particle size)
It was measured by a wet measurement method using a laser diffraction particle size distribution measuring apparatus (Microtrack 9320HRA × 100, manufactured by Nikkiso Co., Ltd.), and the value of D50 was defined as an average particle diameter.
〔再分散性評価〕
 沈降した粒子の再分散性評価は下記数式(1)から算出される粒子から形成される沈降層体積と樹脂粒子体積の体積比にて行った。
 体積比=沈降層体積/樹脂粒子体積  (1)
(沈降層体積)
 樹脂粒子分散液の試験液100mlを100mlの円柱状のメスシリンダーに投入し、パラフィルムでフタをした状態で25℃、3ヶ月静置し、沈降した粒子から形成されている沈降層体積をメスシリンダーの目盛から読み取ることで算出した。
(粒子体積)
 樹脂粒子体積は下記数式(2)から算出した
  樹脂粒子体積=樹脂粒子重量/樹脂粒子の真比重  (2)
(Redispersibility evaluation)
The redispersibility evaluation of the settled particles was performed by the volume ratio of the sedimented layer volume formed from the particles calculated from the following mathematical formula (1) and the resin particle volume.
Volume ratio = sedimentation layer volume / resin particle volume (1)
(Settling layer volume)
100 ml of the resin particle dispersion test solution is put into a 100 ml cylindrical graduated cylinder and left to stand at 25 ° C. for 3 months with the lid covered with parafilm. It was calculated by reading from the cylinder scale.
(Particle volume)
The resin particle volume was calculated from the following mathematical formula (2). Resin particle volume = resin particle weight / true specific gravity of resin particle (2)
〔樹脂粒子の真比重測定〕
 100mlメスフラスコの重量を量り(a)、次に試料を1部メスフラスコに加え重量を量る(b)。これにイソプロピルアルコールを100mlの標線まで正確に加え全重量を量る(c)。これとは別に、メスフラスコの空重量を量り(x)、これにイソプロピルアルコールを標線まで正確に加え全重量を量る(y)。これらの値を下記数式(3)に当てはめ比重を算出する。
  真比重=(b-a)×(y-x)/{100(y-x)-(c-b)}  (3)
[Measurement of true specific gravity of resin particles]
The 100 ml volumetric flask is weighed (a), then the sample is added to a 1 part volumetric flask and weighed (b). To this, isopropyl alcohol is accurately added up to the 100 ml mark and the total weight is measured (c). Separately, an empty weight of the volumetric flask is weighed (x), and isopropyl alcohol is accurately added to the marked line to measure the total weight (y). These values are applied to the following mathematical formula (3) to calculate the specific gravity.
True specific gravity = (b−a) × (y−x) / {100 (y−x) − (c−b)} (3)
〔樹脂粒子の嵩比重の測定〕
 多機能型粉体物性測定器(マルチテスターMT-1001k型、セイシン企業社製)の固め嵩比重測定法により測定した。
〔樹脂粒子の水分の測定〕
 カールフィッシャー水分計(MKA-510N型、京都電子工業株式会社製)を用いて測定した。
[Measurement of bulk specific gravity of resin particles]
The measurement was performed by a solid bulk specific gravity measurement method of a multi-functional type powder physical property measuring device (multi tester MT-1001k type, manufactured by Seishin Enterprise Co., Ltd.).
[Measurement of water content of resin particles]
It was measured using a Karl Fischer moisture meter (MKA-510N type, manufactured by Kyoto Electronics Industry Co., Ltd.).
〔水溶性物質含有量の測定法〕
 樹脂粒子20gを精密に測定し(A)、70mlのイオン交換水に加えて5分間100℃で煮沸する。これを20℃に冷却後、メスフラスコと20℃のイオン交換水を用いて100mlに調整する(B)。この分散液をメンブレンフィルター(ニトロセルロール製、目開き0.02μm)にてろ過する。ホールピペットを用いてこのろ液40mlを正確に採取し(C)、あらかじめ重量を精密に測定していたビーカーに移し(W)、水浴上で蒸発乾固し、110℃で1時間乾燥させる。蒸発乾固の残分とビーカーが吸湿しないようにデシケーター内で室温まで冷却した後、再度ビーカーの重量を精密に測定した(W)。
これらの値を下記数式(4)に当てはめ水溶性物質含有量を算出する。
 水溶性物質含有量=(W-W)/{A×(C/B)}×100(重量%) (4)
[Measurement of water-soluble substance content]
20 g of resin particles are accurately measured (A) and added to 70 ml of ion exchange water and boiled at 100 ° C. for 5 minutes. After cooling to 20 ° C., the volume is adjusted to 100 ml using a volumetric flask and 20 ° C. ion-exchanged water (B). The dispersion is filtered through a membrane filter (Nitrocellulose, mesh opening 0.02 μm). Using a whole pipette, accurately collect 40 ml of this filtrate (C), transfer to a beaker whose weight has been accurately measured in advance (W 0 ), evaporate to dryness on a water bath, and dry at 110 ° C. for 1 hour. . After cooling to room temperature in a desiccator so that the evaporation residue and the beaker do not absorb moisture, the weight of the beaker was again accurately measured (W 1 ).
These values are applied to the following mathematical formula (4) to calculate the water-soluble substance content.
Water-soluble substance content = (W 1 −W 0 ) / {A × (C / B)} × 100 (% by weight) (4)
(樹脂粒子の製法例1)
 イオン交換水600部に、低分子ノニオン界面活性剤であるアジピン酸-ジエタノールアミン縮合物(濃度50重量%)1部、コロイダルシリカ(スノーテックスST-20、濃度20重量%、日産化学社製)30部を加えて混合した後、pHを3に調整することで水性分散媒を得た。
 メチルメタクリレート190部、エチレングリコールジメタクリレート10部、ジラウリルパーオキシド1部を混合、溶解し油性混合物とした。
 上記で得られた水性分散媒及び油性混合物をTKホモミキサー2.5型(プライミクス社)で攪拌(5000rpm×5min)して懸濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.3MPaにし、80rpmで攪拌しつつ重合温度60℃で15時間重合を行い、樹脂粒子を含む水性分散媒を得た。
 上記で得られた重合粒子を含む水性分散媒を水酸化カリウムにてpHを12に調整し65℃で3時間加温しシリカを溶解させた。次いでpHを7に再調整し、濾過で単離、乾燥して樹脂粒子Aを得た(水分1.1重量%)。樹脂粒子Aの物性は表1に示す。
(Production example 1 of resin particles)
1 part adipic acid-diethanolamine condensate (concentration 50% by weight) as a low molecular nonionic surfactant, 600 parts ion-exchanged water, colloidal silica (Snowtex ST-20, concentration 20% by weight, manufactured by Nissan Chemical Co., Ltd.) 30 After adding a part and mixing, pH was adjusted to 3 and the aqueous dispersion medium was obtained.
190 parts of methyl methacrylate, 10 parts of ethylene glycol dimethacrylate and 1 part of dilauryl peroxide were mixed and dissolved to obtain an oily mixture.
The aqueous dispersion medium and oily mixture obtained above were stirred (5000 rpm × 5 min) with a TK homomixer 2.5 type (Primics) to prepare a suspension. The suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen, then the initial reaction pressure was set to 0.3 MPa, and polymerization was performed at a polymerization temperature of 60 ° C. for 15 hours while stirring at 80 rpm. An aqueous dispersion medium containing was obtained.
The aqueous dispersion medium containing the polymer particles obtained above was adjusted to pH 12 with potassium hydroxide and heated at 65 ° C. for 3 hours to dissolve silica. Subsequently, the pH was readjusted to 7, isolated by filtration and dried to obtain resin particles A (water content 1.1% by weight). Table 1 shows the physical properties of the resin particles A.
(樹脂粒子の製法例2)
 イオン交換水560部に、塩化マグネシウム・六水和物70部及び低分子両性界面活性剤であるN-ラウリル-N,N-ビス(POE(2))アミノ酢酸ベタイン水溶液(濃度40重量%)1.5部を加えた後、pHが9~10.5程度になるよう水酸化ナトリウム水溶液(濃度30重量%)100部を徐々に滴下し、微粒子状の水酸化マグネシウムを含有する水性分散媒を調製した。
メチルメタクリレート190部、エチレングリコールジメタクリレート10部、ジラウリルパーオキシド1部を混合、溶解し油性混合物とした。
 上記で得られた水性分散媒及び油性混合物をTKホモミキサー2.5型(プライミクス社)で攪拌(4000rpm×5min)して懸濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.3MPaにし、80rpmで攪拌しつつ重合温度60℃で15時間重合を行い、樹脂粒子を含む水性分散媒を得た。
 重合工程後、重合粒子を含む水性分散媒に硫酸を加え、水性分散媒のpHを4に低下させて水酸化マグネシウムを溶解させた。次いでpHを7に再調整し、濾過で単離、乾燥して樹脂粒子Bを得た(水分値0.4重量%)。樹脂粒子Bの物性は表1に示す。
(Production Example 2 of resin particles)
In 560 parts of ion-exchanged water, 70 parts of magnesium chloride hexahydrate and a low molecular amphoteric surfactant N-lauryl-N, N-bis (POE (2)) aminoacetic acid betaine aqueous solution (concentration 40% by weight) After 1.5 parts are added, 100 parts of an aqueous sodium hydroxide solution (concentration: 30% by weight) is gradually added dropwise so that the pH is about 9 to 10.5, and an aqueous dispersion medium containing finely divided magnesium hydroxide is added. Was prepared.
190 parts of methyl methacrylate, 10 parts of ethylene glycol dimethacrylate and 1 part of dilauryl peroxide were mixed and dissolved to obtain an oily mixture.
The aqueous dispersion medium and oily mixture obtained above were stirred (4000 rpm × 5 min) with a TK homomixer 2.5 type (Primics) to prepare a suspension. The suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen, then the initial reaction pressure was set to 0.3 MPa, and polymerization was performed at a polymerization temperature of 60 ° C. for 15 hours while stirring at 80 rpm. An aqueous dispersion medium containing was obtained.
After the polymerization step, sulfuric acid was added to the aqueous dispersion medium containing the polymer particles, and the pH of the aqueous dispersion medium was lowered to 4 to dissolve magnesium hydroxide. Subsequently, the pH was readjusted to 7, isolated by filtration and dried to obtain resin particles B (moisture value 0.4% by weight). Table 1 shows the physical properties of the resin particles B.
(樹脂粒子の製法例3)
 イオン交換水495部を70℃に加温しながら水溶性高分子であるメチルセルロース(メトセルK-35LV、ダウ社製)5部を溶解させ、完全に溶解した後に冷却して水性分散媒を調製した。
 メチルメタクリレート190部、エチレングリコールジメタクリレート10部、ジラウリルパーオキシド1部を混合、溶解し油性混合物とした。
 上記で得られた水性分散媒及び油性混合物をTKホモミキサー2.5型(プライミクス社)で攪拌(5000rpm×5min)して懸濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.3MPaにし、80rpmで攪拌しつつ重合温度60℃で15時間重合を行い、樹脂粒子を含む水性分散媒を得た。
 次いでpHを7に調整し、濾過で単離、乾燥して樹脂粒子Cを得た(水分1.2重量%)。樹脂粒子Cの物性は表1に示す。
(Production Example 3 of Resin Particles)
While heating 495 parts of ion-exchanged water to 70 ° C., 5 parts of methylcellulose (Methocel K-35LV, manufactured by Dow), which is a water-soluble polymer, was dissolved, completely dissolved and then cooled to prepare an aqueous dispersion medium. .
190 parts of methyl methacrylate, 10 parts of ethylene glycol dimethacrylate and 1 part of dilauryl peroxide were mixed and dissolved to obtain an oily mixture.
The aqueous dispersion medium and oily mixture obtained above were stirred (5000 rpm × 5 min) with a TK homomixer 2.5 type (Primics) to prepare a suspension. The suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen, then the initial reaction pressure was set to 0.3 MPa, and polymerization was performed at a polymerization temperature of 60 ° C. for 15 hours while stirring at 80 rpm. An aqueous dispersion medium containing was obtained.
Next, the pH was adjusted to 7, isolated by filtration, and dried to obtain resin particles C (water content 1.2% by weight). Table 1 shows the physical properties of the resin particles C.
(樹脂粒子の製法例4)
 粒子の製法例2のうち、懸濁液を調整する際の攪拌条件を4000rpm×5minに変更した以外は同様に行うことで樹脂粒子Dを得た(水分値0.7重量%)。樹脂粒子Dの物性は表1に示す。
(Production Example 4 of Resin Particles)
Resin particles D were obtained in the same manner as in the particle production method example 2 except that the stirring condition for adjusting the suspension was changed to 4000 rpm × 5 min (moisture value 0.7 wt%). The physical properties of the resin particles D are shown in Table 1.
(樹脂粒子の製法例5)
 粒子の製法例1のうち、懸濁液を調整する際の攪拌条件を3000rpm×5minに変更した以外は同様に行うことで樹脂粒子Eを得た(水分値1.0重量%)。樹脂粒子Eの物性は表1に示す。
(Production Example 5 of resin particles)
Resin particles E were obtained in the same manner as in Example 1 of particle production except that the stirring conditions for adjusting the suspension were changed to 3000 rpm × 5 min (moisture value 1.0 wt%). The physical properties of the resin particles E are shown in Table 1.
(樹脂粒子の製法例6)
 粒子の製法例1のうち、懸濁液を調整する際の攪拌条件を2500rpm×5minに変更した以外は同様に行うことで樹脂粒子Fを得た(水分値0.4重量%)。樹脂粒子Fの物性は表1に示す。
 樹脂粒子Gは樹脂粒子Aを1部、樹脂粒子Fを99部、混合することで作製した(水分値0.5重量%)。
(樹脂粒子の製法例7)
 イオン交換水600部に、低分子ノニオン界面活性剤であるアジピン酸-ジエタノールアミン縮合物(濃度50重量%)1部、コロイダルシリカ(スノーテックスST-20、濃度20重量%、日産化学社製)25部を加えて混合した後、pHを3に調整することで水性分散媒を得た。
 メチルメタクリレート165部、エチレングリコールジメタクリレート20部、ジラウリルパーオキシド1部、流動パラフィン15部を混合、溶解し油性混合物とした。
 上記で得られた水性分散媒及び油性混合物をTKホモミキサー2.5型(プライミクス社)で攪拌(5000rpm×5min)して懸濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.3MPaにし、80rpmで攪拌しつつ重合温度60℃で15時間重合を行い、樹脂粒子を含む水性分散媒を得た。
 コロイダルシリカは溶解させずに上記で得られた樹脂粒子を含む水性分散媒をpH7に調整し、濾過で単離、乾燥して樹脂粒子Hを得た(水分値1.2重量%)。樹脂粒子Hの物性は表1に示す。
(樹脂粒子の製法例8)
 イオン交換水650部に、微粒子状のリン酸カルシウム10部及び低分子アニオン界面活性剤であるラウリル硫酸ナトリウム0.5部を加えてリン酸カルシウムを含有する水性分散媒を調製した。
メチルメタクリレート190部、エチレングリコールジメタクリレート10部、2,2´-アゾビス(2,4-ジメチルバレロニトリル)1部を混合、溶解し油性混合物とした。
 上記で得られた水性分散媒及び油性混合物をTKホモミキサー2.5型(プライミクス社)で攪拌(5500rpm×5min)して懸濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.3MPaにし、80rpmで攪拌しつつ重合温度65℃で15時間重合を行い、樹脂粒子を含む水性分散媒を得た。
 重合工程後、重合粒子を含む水性分散媒に塩酸を加え、水性分散媒のpHを2に低下させてリン酸カルシウムを溶解させた。これを濾過、洗浄にてリン酸カルシウムを除去した後、pHを7に再調整し、濾過で単離、乾燥して樹脂粒子Iを得た(水分値0.6重量%)。樹脂粒子Iの物性は表1に示す。
(樹脂粒子の製法例9)
 粒子の製法例8のうち、リン酸カルシウムをピロリン酸マグネシウムに変更した以外は同様に行うことで樹脂粒子Jを得た(水分値0.7重量%)。樹脂粒子Jの物性は表1に示す。
(Production Example 6 of Resin Particles)
Resin particles F were obtained in the same manner as in the particle production method 1 except that the stirring condition for adjusting the suspension was changed to 2500 rpm × 5 min (moisture value 0.4 wt%). The physical properties of the resin particles F are shown in Table 1.
Resin particles G were prepared by mixing 1 part of resin particles A and 99 parts of resin particles F (moisture value 0.5 wt%).
(Production Example 7 of Resin Particles)
1 part of adipic acid-diethanolamine condensate (concentration 50% by weight) which is a low molecular nonionic surfactant, 600 parts of ion-exchanged water, colloidal silica (Snowtex ST-20, concentration 20% by weight, manufactured by Nissan Chemical Co., Ltd.) 25 After adding a part and mixing, pH was adjusted to 3 and the aqueous dispersion medium was obtained.
165 parts of methyl methacrylate, 20 parts of ethylene glycol dimethacrylate, 1 part of dilauryl peroxide and 15 parts of liquid paraffin were mixed and dissolved to obtain an oily mixture.
The aqueous dispersion medium and oily mixture obtained above were stirred (5000 rpm × 5 min) with a TK homomixer 2.5 type (Primics) to prepare a suspension. The suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen, then the initial reaction pressure was set to 0.3 MPa, and polymerization was performed at a polymerization temperature of 60 ° C. for 15 hours while stirring at 80 rpm. An aqueous dispersion medium containing was obtained.
The aqueous dispersion medium containing the resin particles obtained above was adjusted to pH 7 without dissolving the colloidal silica, and was isolated by filtration and dried to obtain resin particles H (water content 1.2% by weight). Table 1 shows the physical properties of the resin particles H.
(Production Example 8 of Resin Particles)
An aqueous dispersion medium containing calcium phosphate was prepared by adding 10 parts of particulate calcium phosphate and 0.5 part of sodium lauryl sulfate as a low molecular anionic surfactant to 650 parts of ion-exchanged water.
190 parts of methyl methacrylate, 10 parts of ethylene glycol dimethacrylate, and 1 part of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved to obtain an oily mixture.
The aqueous dispersion medium and oily mixture obtained above were stirred (5500 rpm × 5 min) with a TK homomixer 2.5 type (Primics) to prepare a suspension. The suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen, then the initial reaction pressure was 0.3 MPa, and polymerization was performed at a polymerization temperature of 65 ° C. for 15 hours while stirring at 80 rpm. An aqueous dispersion medium containing was obtained.
After the polymerization step, hydrochloric acid was added to the aqueous dispersion medium containing the polymer particles, and the pH of the aqueous dispersion medium was lowered to 2 to dissolve calcium phosphate. This was filtered and washed to remove calcium phosphate, then the pH was readjusted to 7, isolated by filtration and dried to obtain resin particles I (water content 0.6% by weight). Table 1 shows the physical properties of the resin particles I.
(Production Example 9 of Resin Particles)
Resin particles J were obtained in the same manner as in the particle production method 8 except that the calcium phosphate was changed to magnesium pyrophosphate (moisture value 0.7% by weight). Table 1 shows the physical properties of the resin particles J.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔実施例及び比較例〕
 実施例1~7は表2、実施例8~14は表3、比較例1~5は表4に示した配合量で各原料を混合し、超音波を5分かけることで樹脂粒子分散液を作製した。これらの樹脂粒子分散液について再分散性評価を行い、その結果を表2~4に示した。
 実施例5及び7は、ボディーローションに係る化粧料の実施例である。
 表2~4中、EDTA4H水溶液は、エチレンジアミン4酢酸を示し、EDTA2H2Na水溶液は、エチレンジアミン4酢酸2ナトリウム2水素を示し、EDTA4Naは、エチレンジアミン4酢酸4ナトリウムを示す。5重量%メチルセルロース水溶液は、ダウ社製、メトセルK-35LVである。
[Examples and Comparative Examples]
Examples 1 to 7 were mixed in the amounts shown in Table 2, Examples 8 to 14 were listed in Table 3, and Comparative Examples 1 to 5 were mixed in the amounts shown in Table 4. By applying ultrasonic waves for 5 minutes, resin particle dispersions were mixed. Was made. These resin particle dispersions were evaluated for redispersibility, and the results are shown in Tables 2 to 4.
Examples 5 and 7 are examples of cosmetics related to body lotions.
In Tables 2 to 4, EDTA4H aqueous solution represents ethylenediaminetetraacetic acid, EDTA2H2Na aqueous solution represents ethylenediaminetetraacetic acid disodium 2 hydrogen, and EDTA4Na represents ethylenediaminetetraacetic acid tetrasodium. A 5% by weight aqueous methylcellulose solution is Methocel K-35LV manufactured by Dow.
 沈降層体積と粒子体積による体積比で再分散性評価を行ったが、体積比が大きいほど再分散性が良く6以上を「◎」とし、6未満~5以上を「○」、5未満~3以上を「△」、3未満を「×」とし、「○」以上を合格とした。
通常、再分散性評価は実際に手で樹脂粒子分散液を振ることで行うが、この評価は個人差があり、結果が一定しないことが問題であったが、当評価法では定量的な評価が可能である。
 体積比が6以上の場合は粒子体積に対し沈降層の体積が十分に大きい、このため粒子同士の接触が少なくブロッキングしにくくなり再分散性が良好のまま保たれ、1~3回振るだけで粒子が均一に分散する。
The redispersibility was evaluated based on the volume ratio of the sedimented bed volume and the particle volume. The larger the volume ratio, the better the redispersibility. Three or more were regarded as “Δ”, less than three as “x”, and “◯” or more as acceptable.
Usually, the redispersibility evaluation is performed by shaking the resin particle dispersion by hand, but this evaluation has a problem that there are individual differences and the results are not constant. Is possible.
When the volume ratio is 6 or more, the volume of the sedimentation layer is sufficiently large with respect to the particle volume. Therefore, the contact between the particles is small and blocking is difficult, and the redispersibility is kept good. The particles are evenly dispersed.
 体積比が6未満~5以上の場合は若干の粒子同士のブロッキングはあるものの、比較的容易に再分散が可能な範疇であり、4~10回の振動で再分散が可能である。
体積比が5未満~3以上の場合は粒子同士のブロッキングが経時的に進行し、再分散には30回程度の振動を与える労力が必要になる。
 体積比が3未満の場合は粒子が密に充填されており、時間の経過とともに強固にブロッキングしてしまい手で振動させる程度では再分散させることが難しい。
When the volume ratio is less than 6 to 5 or more, although there is some blocking between particles, it is a category in which redispersion is relatively easy, and redispersion is possible with 4 to 10 vibrations.
When the volume ratio is less than 5 to 3 or more, blocking of particles progresses with time, and redispersion requires labor to give vibrations of about 30 times.
When the volume ratio is less than 3, the particles are densely packed, and it is difficult to re-disperse to the extent that the particles are firmly blocked over time and vibrate by hand.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2、3から分かるように、実施例1~14では、水、アルコール及び有機酸を含み、特定の樹脂粒子が分散しているため、体積比はどれも5以上を示し、どれも容易に粒子が均一に分散し、再分散性に優れる樹脂粒子分散液が得られた。その中でも嵩比重の軽い粒子Hを使用した実施例10では沈降層の体積が非常に大きく再分散性も良好であった。一方で嵩比重が重い粒子Fを使用した実施例9では実施例の中では沈降層の体積が小さい結果となった。 As can be seen from Tables 2 and 3, in Examples 1-14, water, alcohol and organic acid were included, and specific resin particles were dispersed. A resin particle dispersion in which particles were uniformly dispersed and excellent in redispersibility was obtained. Among them, in Example 10 using particles H having a low bulk specific gravity, the volume of the sedimentation layer was very large and the redispersibility was also good. On the other hand, in Example 9 in which the particles F having a high bulk specific gravity were used, the volume of the sedimentation layer was small in the examples.
 実施例5はボディーローションの処方(化粧料)である。樹脂粒子分散液に、保湿剤として1,3-ブチレングリコール、香料としてl-メントール、pH調整剤としてクエン酸3ナトリウムを加えても問題ないことが確認された。 Example 5 is a body lotion prescription (cosmetic). It was confirmed that there was no problem even if 1,3-butylene glycol as a humectant, 1-menthol as a fragrance, and trisodium citrate as a pH adjuster were added to the resin particle dispersion.
 実施例7では実施例5からさらにメチルセルロースを樹脂粒子分散液に添加したが、樹脂粒子の再分散性にはほとんど影響しなかった。これは樹脂粒子作製後にメチルセルロースを添加しているため、樹脂粒子内部にメチルセルロースが取り込まれることがないためと考えられる。 In Example 7, methylcellulose was further added to the resin particle dispersion from Example 5, but the redispersibility of the resin particles was hardly affected. This is presumably because methylcellulose is not taken into the resin particles because methylcellulose is added after the resin particles are prepared.
 一方、比較例1~5では、有機酸がない場合(比較例1)、完全中和されている有機酸を単独で配合した場合(比較例2及び4)、樹脂粒子作製時の分散剤が無機成分及び低分子界面活性剤のいずれにも該当しない場合(比較例3)には、体積比はどれも5.0未満を示し、粒子を再分散させることは難しかった。
 これらのことから無機粒子及び/又は低分子界面活性剤を含む分散剤を用いて作製した粒子は、有機酸が共存することで高い再分散性が発現し、さらに嵩比重が軽いほど再分散性が向上することが判明した。
On the other hand, in Comparative Examples 1 to 5, when there is no organic acid (Comparative Example 1), when a completely neutralized organic acid is blended alone (Comparative Examples 2 and 4), the dispersant at the time of preparing the resin particles is When none of the inorganic component and the low molecular surfactant (Comparative Example 3), the volume ratio was less than 5.0, and it was difficult to redisperse the particles.
For these reasons, particles prepared using a dispersant containing inorganic particles and / or a low molecular surfactant exhibit high redispersibility in the presence of an organic acid, and the redispersibility decreases as the bulk specific gravity decreases. Was found to improve.
 本発明の樹脂粒子分散液は、長期保管後でも再分散性を有するため、樹脂粒子を含む化粧料に好適に適用される。 Since the resin particle dispersion of the present invention has redispersibility even after long-term storage, it is suitably applied to cosmetics containing resin particles.

Claims (10)

  1.  無機成分及び低分子界面活性剤を含む水性分散媒中に、重合性単量体を含む重合性成分を分散させる工程(I)、
    前記重合性成分を重合させて樹脂粒子を得る工程(II)、
    前記工程(II)後に樹脂粒子を含む水性分散媒から樹脂粒子の粉体を得る粉体化工程(IV)、
    前記工程(IV)後に前記樹脂粒子、水、アルコール、有機酸を混合し樹脂粒子分散液を得る混合工程(V)を含み、
     前記有機酸がヒドロキシ酸、多価カルボン酸、アミノカルボン酸、フェノールスルホン酸、ヒドロキシ酸の一部が中和された塩、多価カルボン酸の一部が中和された塩、アミノカルボン酸の一部が中和された塩及びフェノールスルホン酸の一部が中和された塩から選ばれる少なくとも1種である、樹脂粒子分散液の製造方法。
    A step (I) of dispersing a polymerizable component containing a polymerizable monomer in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant;
    Step (II) of polymerizing the polymerizable component to obtain resin particles;
    A pulverization step (IV) for obtaining a powder of resin particles from an aqueous dispersion medium containing the resin particles after the step (II);
    Including the mixing step (V) of mixing the resin particles, water, alcohol and organic acid after the step (IV) to obtain a resin particle dispersion;
    The organic acid is a hydroxy acid, a polyvalent carboxylic acid, an amino carboxylic acid, a phenol sulfonic acid, a salt partially neutralized with a hydroxy acid, a salt partially neutralized with a polycarboxylic acid, an amino carboxylic acid A method for producing a resin particle dispersion, which is at least one selected from a partially neutralized salt and a salt partially neutralized with phenolsulfonic acid.
  2.  前記工程(II)後に前記無機成分を溶解する工程(III)をさらに含む、請求項1に記載の樹脂粒子分散液の製造方法。 The method for producing a resin particle dispersion according to claim 1, further comprising a step (III) of dissolving the inorganic component after the step (II).
  3.  工程(IV)後の前記樹脂粒子の平均粒子径が0.1~100μm、嵩比重が0.8以下である、請求項1又は2に記載の樹脂粒子分散液の製造方法。 The method for producing a resin particle dispersion according to claim 1 or 2, wherein the resin particles after step (IV) have an average particle diameter of 0.1 to 100 µm and a bulk specific gravity of 0.8 or less.
  4.  前記重合性単量体が、(メタ)アクリル酸エステル系単量体、カルボキシル基含有単量体、スチレン系単量体、ニトリル系単量体、ビニル系単量体、アミド基含有単量体、マレイミド系単量体及び塩化ビニリデンから選ばれる少なくとも1種である、請求項1~3のいずれかに記載の樹脂粒子分散液の製造方法。 The polymerizable monomer is a (meth) acrylic acid ester monomer, a carboxyl group-containing monomer, a styrene monomer, a nitrile monomer, a vinyl monomer, or an amide group-containing monomer. The method for producing a resin particle dispersion according to any one of claims 1 to 3, which is at least one selected from maleimide monomers and vinylidene chloride.
  5.  前記無機成分がコロイダルシリカ、リン酸カルシウム、リン酸マグネシウム、水酸化マグネシウム、水酸化カルシウム、炭酸カルシウム、炭酸マグネシウム、ピロリン酸カルシウム及びピロリン酸マグネシウムから選ばれる少なくとも1種である、請求項1~4のいずれかに記載の樹脂粒子分散液の製造方法。 5. The inorganic component according to claim 1, wherein the inorganic component is at least one selected from colloidal silica, calcium phosphate, magnesium phosphate, magnesium hydroxide, calcium hydroxide, calcium carbonate, magnesium carbonate, calcium pyrophosphate and magnesium pyrophosphate. A method for producing the resin particle dispersion according to 1.
  6.  前記ヒドロキシ酸が乳酸、酒石酸、クエン酸及びリンゴ酸から選ばれる少なくとも1種であり、前記多価カルボン酸がシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸及びフマル酸から選ばれる少なくとも1種であり、前記アミノカルボン酸がエチレンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、ジヒドロキシエチルエチレンジアミン二酢酸、1,3-プロパンジアミン四酢酸、ジエチレントリアミン五酢酸及びトリエチレンテトラアミン六酢酸から選ばれる少なくとも1種であり、前記フェノールスルホン酸がフェノールスルホン酸、ベンゾトリアゾリルブチルフェノールスルホン酸から選ばれる少なくとも1種である、請求項1~5のいずれかに記載の樹脂粒子分散液の製造方法。 The hydroxy acid is at least one selected from lactic acid, tartaric acid, citric acid and malic acid, and the polyvalent carboxylic acid is selected from oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid and fumaric acid And the aminocarboxylic acid is ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, dihydroxyethylethylenediaminediacetic acid, 1,3-propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid and triethylenetetraamine hexaacetic acid. The resin particle fraction according to claim 1, wherein the resin particle fraction is at least one selected from acetic acid, and the phenolsulfonic acid is at least one selected from phenolsulfonic acid and benzotriazolylbutylphenolsulfonic acid. Method of manufacturing a liquid.
  7.  樹脂粒子、水、アルコール及び有機酸を配合してなる樹脂粒子分散液であって、
    前記樹脂粒子の平均粒子径が0.1~100μmであり、前記樹脂粒子の嵩比重が0.8以下であり、
     下記測定方法で測定される前記樹脂粒子の水溶性物質含有量が0.2重量%以下であり、
    前記有機酸がヒドロキシ酸、多価カルボン酸、アミノカルボン酸、フェノールスルホン酸、ヒドロキシ酸の一部が中和された塩、多価カルボン酸の一部が中和された塩、アミノカルボン酸の一部が中和された塩及びフェノールスルホン酸の一部が中和された塩から選ばれる少なくとも1種である、樹脂粒子分散液。
    (水溶性物質含有量測定方法:樹脂粒子20gを精密に測定し(A)、70mlのイオン交換水に加えて5分間100℃で煮沸する。これを20℃に冷却後、メスフラスコと20℃のイオン交換水を用いて100mlに調整する(B)。この分散液をメンブレンフィルター(ニトロセルロール製、目開き0.02μm)にてろ過する。ホールピペットを用いてこのろ液40mlを正確に採取し(C)、あらかじめ重量を精密に測定していたビーカーに移し(W)、水浴上で蒸発乾固し、110℃で1時間乾燥させる。蒸発乾固の残分とビーカーが吸湿しないようにデシケーター内で室温まで冷却した後、再度ビーカーの重量を精密に測定した(W)場合に、下記数式(4)から算出した値を水溶性物質含有量とする。)
     水溶性物質含有量=(W-W)/{A×(C/B)}×100(重量%) (4)
    A resin particle dispersion obtained by blending resin particles, water, alcohol and organic acid,
    The average particle diameter of the resin particles is 0.1 to 100 μm, the bulk specific gravity of the resin particles is 0.8 or less,
    The water-soluble substance content of the resin particles measured by the following measurement method is 0.2% by weight or less,
    The organic acid is a hydroxy acid, a polyvalent carboxylic acid, an amino carboxylic acid, a phenol sulfonic acid, a salt partially neutralized with a hydroxy acid, a salt partially neutralized with a polycarboxylic acid, an amino carboxylic acid A resin particle dispersion which is at least one selected from a partially neutralized salt and a partially neutralized salt of phenolsulfonic acid.
    (Method for measuring content of water-soluble substance: 20 g of resin particles are precisely measured (A), added to 70 ml of ion-exchanged water and boiled for 5 minutes at 100 ° C. After cooling to 20 ° C., the volumetric flask and 20 ° C. (B) This dispersion is filtered through a membrane filter (made by Nitrocellulose, 0.02 μm mesh), and 40 ml of this filtrate is accurately collected using a whole pipette. Collect (C), transfer to a beaker that has been accurately weighed in advance (W 0 ), evaporate to dryness in a water bath, and dry for 1 hour at 110 ° C. The residue from the evaporative dryness and the beaker do not absorb moisture Thus, after cooling to room temperature in the desiccator, when the weight of the beaker is precisely measured again (W 1 ), the value calculated from the following formula (4) is taken as the water-soluble substance content.)
    Water-soluble substance content = (W 1 −W 0 ) / {A × (C / B)} × 100 (% by weight) (4)
  8.  樹脂粒子、水、アルコール及び有機酸を含む樹脂粒子分散液であって、
    前記樹脂粒子が、無機成分及び低分子界面活性剤を含む水性分散媒中に、重合性単量体を含む重合性成分を分散させ、前記重合性成分を重合させて得られる樹脂粒子であり、
    前記有機酸がヒドロキシ酸、多価カルボン酸、アミノカルボン酸、ヒドロキシ酸の一部が中和された塩、多価カルボン酸の一部が中和された塩及びアミノカルボン酸の一部が中和された塩から選ばれる少なくとも1種である、
    樹脂粒子分散液。
    A resin particle dispersion containing resin particles, water, alcohol and organic acid,
    The resin particles are resin particles obtained by dispersing a polymerizable component containing a polymerizable monomer in an aqueous dispersion medium containing an inorganic component and a low molecular surfactant, and polymerizing the polymerizable component.
    The organic acid is a hydroxy acid, a polyvalent carboxylic acid, an amino carboxylic acid, a salt in which a part of the hydroxy acid is neutralized, a salt in which a part of the polyvalent carboxylic acid is neutralized, and a part of the amino carboxylic acid. At least one selected from a salt that has been summed,
    Resin particle dispersion.
  9.  下記数式(1)で定義される体積比が5以上である、請求項7又は8に記載の樹脂粒子分散液。
     体積比=沈降層体積/樹脂粒子体積  (1)
    (式(1)中、沈降層体積とは、樹脂粒子分散液の試験液100mlを100mlの円柱状のメスシリンダーに投入し、パラフィルムでフタをした状態で25℃、3ヶ月静置し、沈降した粒子から形成されている沈降層体積をメスシリンダーの目盛から読み取られる値である。樹脂粒子体積とは、下記数式(2)から算出した値である。)
     樹脂粒子体積=樹脂粒子重量/樹脂粒子の真比重  (2)
    The resin particle dispersion according to claim 7 or 8, wherein the volume ratio defined by the following formula (1) is 5 or more.
    Volume ratio = sedimentation layer volume / resin particle volume (1)
    (In the formula (1), the sedimented bed volume means that 100 ml of the resin particle dispersion test solution is put into a 100 ml cylindrical graduated cylinder and left to stand at 25 ° C. for 3 months in a state covered with a parafilm. (The sediment volume formed from the settled particles is a value read from the scale of the graduated cylinder. The resin particle volume is a value calculated from the following mathematical formula (2).)
    Resin particle volume = resin particle weight / true specific gravity of resin particle (2)
  10.  請求項7~9のいずれかに記載の樹脂粒子分散液を含む、化粧料。 A cosmetic comprising the resin particle dispersion according to any one of claims 7 to 9.
PCT/JP2015/078860 2014-10-31 2015-10-13 Resin particle dispersion and use thereof WO2016067904A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016556485A JP6636939B2 (en) 2014-10-31 2015-10-13 Resin particle dispersion and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014222152 2014-10-31
JP2014-222152 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016067904A1 true WO2016067904A1 (en) 2016-05-06

Family

ID=55857245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078860 WO2016067904A1 (en) 2014-10-31 2015-10-13 Resin particle dispersion and use thereof

Country Status (2)

Country Link
JP (1) JP6636939B2 (en)
WO (1) WO2016067904A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017109930A (en) * 2015-12-14 2017-06-22 花王株式会社 Liquid skin cosmetic composition
JP2018062504A (en) * 2016-10-13 2018-04-19 株式会社コーセー Oily cosmetic composition
JP2021094502A (en) * 2019-12-13 2021-06-24 株式会社日本触媒 Hollow resin particle and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354512A (en) * 2000-06-13 2001-12-25 Kanebo Ltd Cosmetic
JP2008527094A (en) * 2005-01-06 2008-07-24 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing aqueous composite particle dispersion
JP2013227561A (en) * 2012-03-29 2013-11-07 Sekisui Plastics Co Ltd Resin particle and coating material and external preparation containing the resin particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354512A (en) * 2000-06-13 2001-12-25 Kanebo Ltd Cosmetic
JP2008527094A (en) * 2005-01-06 2008-07-24 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing aqueous composite particle dispersion
JP2013227561A (en) * 2012-03-29 2013-11-07 Sekisui Plastics Co Ltd Resin particle and coating material and external preparation containing the resin particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017109930A (en) * 2015-12-14 2017-06-22 花王株式会社 Liquid skin cosmetic composition
JP2018062504A (en) * 2016-10-13 2018-04-19 株式会社コーセー Oily cosmetic composition
JP2021094502A (en) * 2019-12-13 2021-06-24 株式会社日本触媒 Hollow resin particle and method for producing the same
JP7464385B2 (en) 2019-12-13 2024-04-09 株式会社日本触媒 Hollow resin particles and method for producing same

Also Published As

Publication number Publication date
JP6636939B2 (en) 2020-01-29
JPWO2016067904A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6598781B2 (en) Hybrid microcapsule
TWI532778B (en) Superabsorbent polymers with rapid absorption properties and process for production thereof
JP2006161026A (en) Organic solvent-swelling micro gel and method for producing the same
JP6360642B1 (en) Method for producing microcapsules
JP2006161027A (en) Organic solvent-swelling micro gel and method for producing the same
KR101689620B1 (en) Porous resin particle, method for producing same, dispersion liquid, and application thereof
JP3708531B2 (en) Thickener and cosmetics containing the same
WO2009134875A2 (en) Composition and method for cream bleach product
EP2265701B1 (en) Foam manipulation compositions containing fine particles
AU2010232221A1 (en) Solid powder cosmetic and method for producing the same
KR101876749B1 (en) Composite particles, method for producing same, and use thereof
JP6820951B2 (en) Composition containing latex particles and UV absorber
JP2006131887A (en) Surface treated powder and cosmetic containing the same
WO2007037211A1 (en) Polyamide porous spherical particle
JP4805713B2 (en) Surface-treated powder for cosmetics and cosmetics containing the same
JP6636939B2 (en) Resin particle dispersion and its use
JP2017114802A (en) Microcapsule and method for producing the same
JP3669898B2 (en) Spherical resin particles, method for producing the same, and external preparation
KR100970123B1 (en) Thickener, cosmetic preparation containing the same, and process for producing the same
TW201729789A (en) Emulsion type cosmetic composition comprising inorganic UV blocking agent and method for preparing same
JPWO2017204281A1 (en) Concave and convexity correction cosmetic
JP2003146826A (en) Particle and method for producing the same
JP5881341B2 (en) Method for producing composite fine particles
JP4424677B2 (en) Thickener
WO2021132728A1 (en) Method for producing microcapsules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556485

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854801

Country of ref document: EP

Kind code of ref document: A1