WO2024106323A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2024106323A1
WO2024106323A1 PCT/JP2023/040536 JP2023040536W WO2024106323A1 WO 2024106323 A1 WO2024106323 A1 WO 2024106323A1 JP 2023040536 W JP2023040536 W JP 2023040536W WO 2024106323 A1 WO2024106323 A1 WO 2024106323A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
leg
side switching
power
shift amount
Prior art date
Application number
PCT/JP2023/040536
Other languages
French (fr)
Japanese (ja)
Inventor
山下貢
▲高▼橋亮平
高橋充
岩田裕貴
野村将彦
萩田和洋
▲高▼山雅貴
大沼喜也
宅間春介
Original Assignee
株式会社アイシン
長岡パワーエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン, 長岡パワーエレクトロニクス株式会社 filed Critical 株式会社アイシン
Publication of WO2024106323A1 publication Critical patent/WO2024106323A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a power supply device that charges and discharges a battery installed in a vehicle.
  • Patent documents 1-3 describe power conversion devices. Furthermore, patent documents 4 and 5 describe switching power supply devices. The power conversion devices of patent documents 1-3 and the switching power supply devices of patent documents 4 and 5 are used, for example, to output a DC voltage of a first voltage value capable of charging a battery, or to output a DC voltage of a second voltage value lower than the first voltage value.
  • Patent Documents 1-3 and the switching power supply devices of Patent Documents 4 and 5 are large in overall device size and cost.
  • the control becomes complicated and output cannot be easily achieved.
  • the power supply device has a first leg in which a high-side switching element and a low-side switching element are connected in series, and a second leg in which a high-side switching element and a low-side switching element are connected in series, which are arranged in parallel with each other, and includes an inverter that converts AC power to DC power, and a converter that is provided with an insulated multi-port transformer having a primary winding, a secondary winding, and a tertiary winding and converts the DC power from the inverter into DC power composed of a DC voltage of a first voltage value that charges a battery.
  • the converter has an input unit that oscillates the DC power from the inverter at a predetermined period and inputs it to the primary winding, a first conversion unit that converts the AC power generated in the secondary winding into DC power composed of a DC voltage of the first voltage value, and a second conversion unit that converts the AC power generated in the tertiary winding into DC power composed of a DC voltage of a second voltage value lower than the first voltage value, and the second conversion unit converts the AC power generated in the tertiary winding into DC power composed of a DC voltage of the second voltage value by synchronous rectification.
  • FIG. 2 is a circuit diagram showing a configuration of a power supply device.
  • 4 is a timing chart of the power supply device when charging the battery.
  • 10 is a diagram illustrating a positive current and a negative current flowing in a second conversion unit.
  • FIG. 1 is a timing chart of the power supply device when outputting DC power based on the output from the battery.
  • the power supply device is capable of charging and discharging a battery mounted on a vehicle, and can output DC power consisting of DC voltages with different voltage values from each of a number of terminals.
  • the power supply device 1 of this embodiment will be described below.
  • FIG. 1 is a circuit diagram of the power supply device 1. As shown in FIG. 1, the power supply device 1 is configured with an inverter 10, a converter 20, a reactor coil 30, and a control unit 50. Each functional unit is constructed with hardware or software, or both, with a CPU as the core component, in order to perform the processes related to the output of the DC power described above.
  • the inverter 10 converts AC power into DC power and outputs it.
  • AC power refers to power composed of an AC voltage whose voltage value oscillates at a predetermined cycle. Specifically, the AC voltage oscillates at a commercial frequency (e.g., 50 Hz or 60 Hz) and corresponds to an AC voltage of 200 V (effective value) taken from a commercial power source supplied in a single-phase three-wire system.
  • DC power refers to power composed of a DC voltage that has a constant voltage value (excluding ripple voltage) relative to a reference voltage.
  • the inverter 10 is supplied with AC power from a commercial power source.
  • the inverter 10 converts the AC power composed of such AC voltage into DC power including a DC voltage.
  • the inverter 10 is provided with a pair of output units 10A, 10B, and outputs the converted DC power to the converter 20 described later via the pair of output units 10A, 10B.
  • the inverter 10 has a first leg 11 and a second leg 12.
  • the first leg 11 and the second leg 12 are arranged in parallel with each other with respect to the output units 10A and 10B.
  • one end 11A of the first leg 11 and one end 12A of the second leg 12 are connected to the output unit 10A
  • the other end 11B of the first leg 11 and the other end 12B of the second leg 12 are connected to the output unit 10B.
  • the first leg 11 has a high-side switching element 11H and a low-side switching element 11L connected in series.
  • n-type MOS-FETs metal-oxide-semiconductor field-effect transistors
  • the drain terminal of the switching element 11H is connected to the end 11A
  • the source terminal is connected to the drain terminal of the switching element 11L.
  • the source terminal of the switching element 11L is connected to the end 11B.
  • the gate terminals of the switching elements 11H and 11L are connected to the control unit 50.
  • diodes 11HD and 11LD are provided between the source terminals and drain terminals of the switching elements 11H and 11L, with the anode terminals connected to the source terminals and the cathode terminals connected to the drain terminals.
  • the second leg 12 also has a high-side switching element 12H and a low-side switching element 12L connected in series.
  • n-type MOS-FETs are used for the switching elements 12H and 12L.
  • the drain terminal of the switching element 12H is connected to the end 12A, and the source terminal is connected to the drain terminal of the switching element 12L.
  • the source terminal of the switching element 12L is connected to the end 12B.
  • the gate terminals of the switching elements 12H and 12L are connected to the control unit 50.
  • Diodes 12HD and 12LD are provided between the source terminals and drain terminals of the switching elements 12H and 12L, with the anode terminals connected to the source terminals and the cathode terminals connected to the drain terminals.
  • a capacitor 15 is provided across output section 10A and output section 10B of inverter 10. Capacitor 15 smoothes the DC voltage converted by inverter 10.
  • the reactor coil 30 has one terminal 30B connected to a first node 11N between two switching elements (switching element 11H and switching element 11L) in the first leg 11.
  • the first node 11N between the two switching elements in the first leg 11 is a line (e.g., a wiring pattern on a board or a cable such as a harness) connecting the source terminal of switching element 11H and the drain terminal of switching element 11L.
  • a line e.g., a wiring pattern on a board or a cable such as a harness
  • the reactor coil 30 has two terminals 30A, 30B, and the terminal 30B is connected to the first node 11N.
  • the second node 12N between the two switching elements in the second leg 12 is a line (e.g., a wiring pattern on a board or a cable such as a harness) connecting the source terminal of the switching element 12H and the drain terminal of the switching element 12L. Of course, it may be the source terminal of the switching element 12H or the drain terminal of the switching element 12L.
  • the terminal 30A of the reactor coil 30 is connected to one terminal of the supply unit 2 to which AC power is supplied, and the other terminal of the supply unit 2 is connected to the second node 12N. Therefore, the inverter 10 converts AC power into DC power by the switching element 11H and switching element 11L of the first leg 11 and the switching element 12H and switching element 12L of the second leg 12.
  • the converter 20 converts the DC power from the inverter 10 into DC power composed of a DC voltage of a first voltage value capable of charging the battery 3.
  • the DC power from the inverter 10 is the DC power output from the output parts 10A and 10B of the inverter 10.
  • the battery 3 is a battery mounted on the vehicle that is charged by the power supply device 1, and is charged based on the DC power output from the converter 20.
  • the battery 3 is charged with a DC voltage of a predetermined voltage value, but the voltage value of the DC voltage that constitutes the DC power output from the inverter 10 is about the voltage value (200V) of the AC voltage input to the inverter 10.
  • the converter 20 boosts the voltage value of the DC voltage output from the inverter 10 to a DC voltage of a voltage value (equivalent to the "first voltage value", for example several hundred V) required for charging the battery 3.
  • the converter 20 of this embodiment has an input section 21, a first conversion section 22, a second conversion section 23, and a multi-port transformer (hereinafter referred to as "transformer") 24.
  • the transformer 24 is configured as an insulated type having a primary winding 24A, a secondary winding 24B, and a tertiary winding 24C.
  • the input unit 21 oscillates the DC power from the inverter 10 at a predetermined period and inputs it to the primary winding 24A.
  • the input unit 21 has a third leg 211 and a fourth leg 212, which are provided in parallel with each other with respect to the output units 10A and 10B. Therefore, one end 211A of the third leg 211 and one end 212A of the fourth leg 212 are connected to the output unit 10A, and the other end 211B of the third leg 211 and the other end 212B of the fourth leg 212 are connected to the output unit 10B.
  • the third leg 211 has a high-side switching element S1 (hereinafter referred to as “switching element S1”) and a low-side switching element S2 (hereinafter referred to as “switching element S2”) connected in series.
  • the switching elements S1 and S2 are n-type MOS-FETs.
  • the drain terminal of the switching element S1 is connected to the end 211A, and the source terminal is connected to the drain terminal of the switching element S2.
  • the source terminal of the switching element S2 is connected to the end 211B.
  • the gate terminals of the switching elements S1 and S2 are connected to the control unit 50.
  • diodes S1D and S2D are provided, with the anode terminal connected to the source terminal and the cathode terminal connected to the drain terminal.
  • the fourth leg 212 has a high-side switching element S3 (hereinafter referred to as “switching element S3”) and a low-side switching element S4 (hereinafter referred to as “switching element S4") connected in series.
  • the switching elements S3 and S4 are n-type MOS-FETs.
  • the drain terminal of the switching element S3 is connected to the end 212A, and the source terminal is connected to the drain terminal of the switching element S4.
  • the source terminal of the switching element S4 is connected to the end 212B.
  • the gate terminals of the switching elements S3 and S4 are connected to the control unit 50.
  • diodes S3D and S4D are provided, with the anode terminals connected to the source terminals and the cathode terminals connected to the drain terminals.
  • the primary winding 24A is provided across a third node 211N between two switching elements (switching element S1 and switching element S2) in the third leg 211 and a fourth node 212N between two switching elements (switching element S3 and switching element S4) in the fourth leg 212.
  • the winding start end of the primary winding 24A is connected to the third node 211N
  • the winding end end of the primary winding 24A is connected to the fourth node 212N.
  • the first conversion unit 22 converts the AC power generated in the secondary winding 24B into DC power composed of a DC voltage of a first voltage value.
  • the first conversion unit 22 has a fifth leg 221 and a sixth leg 222, and the fifth leg 221 and the sixth leg 222 are provided in parallel with each other with respect to the terminals 20A and 20B of the converter 20.
  • one end 221A of the fifth leg 221 and one end 222A of the sixth leg 222 are connected to the terminal 20A, and the other end 221B of the fifth leg 221 and the other end 222B of the sixth leg 222 are connected to the terminal 20B.
  • the fifth leg 221 has a high-side switching element S5 (hereinafter referred to as “switching element S5") and a low-side switching element S6 (hereinafter referred to as “switching element S6") connected in series.
  • the switching elements S5 and S6 are n-type MOS-FETs.
  • the drain terminal of the switching element S5 is connected to the end 221A, and the source terminal is connected to the drain terminal of the switching element S6.
  • the source terminal of the switching element S6 is connected to the end 221B.
  • the gate terminals of the switching elements S5 and S6 are connected to the control unit 50.
  • diodes S5D and S6D are provided, with the anode terminals connected to the source terminals and the cathode terminals connected to the drain terminals.
  • the sixth leg 222 has a high-side switching element S7 (hereinafter referred to as “switching element S7”) and a low-side switching element S8 (hereinafter referred to as “switching element S8”) connected in series.
  • the switching elements S7 and S8 are n-type MOS-FETs.
  • the drain terminal of the switching element S7 is connected to the end 222A, and the source terminal is connected to the drain terminal of the switching element S8.
  • the source terminal of the switching element S8 is connected to the end 222B.
  • the gate terminals of the switching elements S7 and S8 are connected to the control unit 50.
  • diodes S7D and S8D are provided, with the anode terminal connected to the source terminal and the cathode terminal connected to the drain terminal.
  • the secondary winding 24B described above is provided across a fifth node 221N between two switching elements (switching element S5 and switching element S6) in the fifth leg 221 and a sixth node 222N between two switching elements (switching element S7 and switching element S8) in the sixth leg 222.
  • the winding start end of the secondary winding 24B is connected to the fifth node 221N via the reactor L, and the winding end end of the secondary winding 24B is connected to the sixth node 222N.
  • a first capacitor 25 is provided across terminals 20A and 20B of the converter 20.
  • the first capacitor 25 smoothes the DC voltage that constitutes the AC power converted by the first conversion unit 22.
  • the second conversion unit 23 converts the AC power generated in the tertiary winding 24C into DC power composed of a DC voltage of a second voltage value (e.g., 12 V) lower than the first voltage value.
  • the tertiary winding 24C has a first tertiary winding 24CA and a second tertiary winding 24CB.
  • the first tertiary winding 24CA and the second tertiary winding 24CB are provided by connecting the end of the first tertiary winding 24CA to the beginning of the second tertiary winding 24CB.
  • a switching element (corresponding to the "first switching element") S9 with a drain terminal connected is provided at the beginning of the first tertiary winding 24CA, and a switching element (corresponding to the "second switching element") S10 with a drain terminal connected is provided at the end of the second tertiary winding 24CB.
  • the source terminal of the switching element S9 and the source terminal of the switching element S10 are connected to the terminal 20D.
  • the gate terminals of the switching elements S9 and S10 are connected to the control unit 50.
  • diodes S9D and S10D are provided, with the anode terminal connected to the source terminal and the cathode terminal connected to the drain terminal.
  • the winding end of the first tertiary winding 24CA and the winding start of the second tertiary winding 24CB are connected to one terminal of the third reactor coil 23L.
  • the other terminal of the third reactor coil 23L is connected to the terminal 20C.
  • the second conversion unit 23 is also provided with a diode 23D1 and a diode 23D2.
  • the anode terminal of the diode 23D1 is connected to the winding start of the first tertiary winding 24CA, and the anode terminal of the diode 23D2 is connected to the winding end of the second tertiary winding 24CB.
  • the cathode terminal of the diode 23D1 and the cathode terminal of the diode 23D2 are connected to each other and to the terminal 20C via the resistor R. Furthermore, the cathode terminal of the diode 23D1 and the cathode terminal of the diode 23D2 are connected to the terminal 20D via the capacitor 27. Therefore, the resistor R and the capacitor 27 form a snubber circuit. Furthermore, a second capacitor 26 is provided across terminals 20C and 20D.
  • the second conversion unit 23 converts the AC power generated in the tertiary winding 24C into DC power composed of a DC voltage of a second voltage value by synchronous rectification using switching elements S9 and S10.
  • the control unit 50 drives each of the multiple switching elements provided in the inverter 10. Specifically, the control unit 50 alternates between the open/closed state of the switching elements 11H and 12L and the open/closed state of the switching elements 11L and 12H. That is, the control unit 50 alternately drives the switching elements 11H and 11L of the first leg 11, and alternately drives the switching elements 12H and 12L at the system frequency of the second leg 12. This allows the inverter 10 to convert the AC power supplied from the supply unit 2 into DC power based on the driving of the switching elements of the first leg 11 and the second leg 12, as described above.
  • the control unit 50 also drives each of the multiple switching elements provided in the converter 20.
  • FIG. 2 shows a timing chart for charging the battery 3.
  • the control unit 50 drives the switching elements S1-S10 in accordance with the timing chart shown in FIG. 2.
  • the control unit 50 drives the switching elements S1-S10 while switching them sequentially between eight states, from state 1 to state 8.
  • the period t1-t9 corresponds to one cycle of control by the control unit 50.
  • the first state is the state between t1 and t2 in FIG. 2, and in this first state, the control unit 50 closes the switching elements S1, S3, S6, S7, S9, and S10, and opens the switching elements S2, S4, S5, and S8.
  • the second state is the state between t2 and t3 in FIG. 2, and in this second state, the control unit 50 closes the switching elements S1, S3, S5, S7, S9, and S10, and opens the switching elements S2, S4, S6, and S8.
  • the third state is the state between t3 and t4 in FIG. 2, and in this third state, the control unit 50 closes the switching elements S1, S4, S5, S7, and S10, and opens the switching elements S2, S3, S6, S8, and S9.
  • the fourth state is the state between t4 and t5 in FIG. 2, and in this fourth state, the control unit 50 closes the switching elements S1, S4, S5, S8, and S10, and opens the switching elements S2, S3, S6, S7, and S9.
  • the fifth state is the state between t5 and t6 in FIG. 2, and in this fifth state, the control unit 50 closes the switching elements S2, S4, S5, S8, S9, and S10, and opens the switching elements S1, S3, S6, and S7.
  • the sixth state is the state between t6 and t7 in FIG. 2, and in this sixth state, the control unit 50 closes the switching elements S2, S4, S6, S8, S9, and S10, and opens the switching elements S1, S3, S5, and S7.
  • the seventh state is the state between t7 and t8 in FIG. 2, and in this seventh state, the control unit 50 closes the switching elements S2, S3, S6, S8, and S9, and opens the switching elements S1, S4, S5, S7, and S10.
  • the eighth state is the state between t8 and t9 in FIG. 2, and in this eighth state, the control unit 50 closes the switching elements S2, S3, S6, S7, and S9, and opens the switching elements S1, S4, S5, S8, and S10.
  • the switching element S1 of the third leg 211 and the switching element S4 of the fourth leg 212 are shifted to the closed state by a preset first shift amount ⁇ 1. That is, in the example of FIG. 2, the switching element S1 of the third leg 211 is closed at t1, and then the switching element S4 of the fourth leg 212 is closed at t3 after the first shift amount ⁇ 1 has elapsed. Therefore, the switching element S1 of the third leg 211 and the switching element S4 of the fourth leg 212 are shifted to the open state by a shift amount ⁇ 1. That is, the switching element S1 of the third leg 211 is opened at t5, and then the switching element S4 of the fourth leg 212 is opened at t7 after the first shift amount ⁇ 1 has elapsed.
  • the switching element S2 of the third leg 211 and the switching element S3 of the fourth leg 212 are shifted to the closed state by the first shift amount ⁇ 1. That is, in the example of FIG. 2, the switching element S2 of the third leg 211 is closed at t5, and then the switching element S3 of the fourth leg 212 is closed at t7 after the first shift amount ⁇ 1 has elapsed. Therefore, the switching element S2 of the third leg 211 and the switching element S3 of the fourth leg 212 are shifted to the open state by the first shift amount ⁇ 1. That is, the switching element S2 of the third leg 211 is opened at t9, and then the switching element S3 of the fourth leg 212 is opened at t11 after the first shift amount ⁇ 1 has elapsed.
  • the switching element S5 of the fifth leg 221 and the switching element S8 of the sixth leg 222 are shifted to the closed state by the first shift amount ⁇ 1. That is, in the example of FIG. 2, the switching element S5 of the fifth leg 221 is closed at t2, and then the switching element S8 of the sixth leg 222 is closed at t4 after the first shift amount ⁇ 1 has elapsed. Therefore, the switching element S5 of the fifth leg 221 and the switching element S8 of the sixth leg 222 are shifted to the open state by the first shift amount ⁇ 1. That is, the switching element S5 of the fifth leg 221 is opened at t6, and then the switching element S8 of the sixth leg 222 is opened at t8 after the first shift amount ⁇ 1 has elapsed.
  • the switching element S6 of the fifth leg 221 and the switching element S7 of the sixth leg 222 are shifted to the closed state by the first shift amount ⁇ 1. That is, in the example of FIG. 2, the switching element S6 of the fifth leg 221 is closed at t6, and then the switching element S7 of the sixth leg 222 is closed at t8 after the first shift amount ⁇ 1 has elapsed. Therefore, the switching element S6 of the fifth leg 221 and the switching element S7 of the sixth leg 222 are shifted to the open state by the first shift amount ⁇ 1. That is, in the example of FIG. 2, the switching element S6 of the fifth leg 221 is opened at t10, and then the switching element S7 of the sixth leg 222 is opened at t12 after the first shift amount ⁇ 1 has elapsed.
  • the switching element S5 of the fifth leg 221 is closed a second shift amount ⁇ 2 after the switching element S1 of the third leg 211 is closed.
  • the second shift amount ⁇ 2 is smaller than the first shift amount ⁇ 1.
  • the second shift amount ⁇ 2 can be set based on a power command value of the DC power output from the first conversion unit 22 and a power calculation value of the DC power output from the first conversion unit 22.
  • the power command value of the DC power output from the first conversion unit 22 is a command value requested from a higher-level system to the power supply device 1 (more specifically, the control unit 50) as the DC power to be output from the power supply device 1.
  • the control unit 50 sets a first voltage value of the DC voltage constituting the DC power output from the first conversion unit 22 based on the power command value, and sets a current value of the DC current output from the first conversion unit 22.
  • the second shift amount ⁇ 2 is set based on a pre-stored arithmetic expression so as to realize a current of this current value. This arithmetic expression is shown as the following equation (1).
  • V1 is the potential across both ends of the primary winding 24A
  • V2' is the potential across both ends of the secondary winding 24B and the reactor L (i.e., between the fifth node 221N and the sixth node 222N)
  • P is the output power
  • ⁇ 2 is the second shift amount
  • is the switching frequency of the switching element
  • L is the inductance value of the reactor L.
  • the power calculation value of the DC power output from the first conversion unit 22 is a calculation value calculated by multiplying the voltage value (preferably the first voltage value) of the DC voltage (output voltage) output from the first conversion unit 22 by the current value of the DC current (consumption current) output from the first conversion unit 22.
  • the voltage value (preferably the first voltage value) of the DC voltage (output voltage) output from the first conversion unit 22 is measured by a voltage sensor (e.g., a voltmeter) not shown, and the current value of the DC current (consumption current) output from the first conversion unit 22 is measured by a current sensor (e.g., an ammeter) not shown.
  • the control unit 50 can calculate the power calculation value based on these two detection results.
  • the control unit 50 controls the converter 20 by feedback control so that the power calculation value is equal to the power command value.
  • the second shift amount ⁇ 2 is set to half the first shift amount ⁇ 1. Therefore, as shown in FIG. 2, the switching element S5 of the fifth leg 221 is closed at t2, which is the second shift amount ⁇ 2 after t1 at which the switching element S1 of the third leg 211 is closed. Also, when the battery 3 is being charged, the switching element S5 of the fifth leg 221 is opened at the second shift amount ⁇ 2 after t5 at which the switching element S1 of the third leg 211 is opened. That is, when the battery 3 is being charged, as shown in FIG. 2, the switching element S5 of the fifth leg 221 is opened at t6, which is the second shift amount ⁇ 2 after t5 at which the switching element S1 of the third leg 211 is opened.
  • the switching element S7 of the sixth leg 222 When the battery 3 is being charged, the switching element S7 of the sixth leg 222 is closed the second shift amount ⁇ 2 after the switching element S3 of the fourth leg 212 is closed. That is, as shown in FIG. 2, the switching element S7 of the sixth leg 222 is closed at t8, which is the second shift amount ⁇ 2 after t7, when the switching element S3 of the fourth leg 212 is closed.
  • the switching element S7 of the sixth leg 222 is opened the second shift amount ⁇ 2 after t3, when the switching element S3 of the fourth leg 212 is opened. That is, when the battery 3 is being charged, as shown in FIG. 2, the switching element S7 of the sixth leg 222 is opened at t4, which is the second shift amount ⁇ 2 after t3, when the switching element S3 of the fourth leg 212 is opened.
  • the second conversion unit 23 is driven by synchronous rectification.
  • the switching element S9 and the switching element S10 are driven by synchronous rectification.
  • the switching element S9 is in an open state from t3 to t5
  • the switching element S10 is in an open state from t7 to t9.
  • a current having a waveform as indicated by I9 flows through the switching element S9
  • a current having a waveform as indicated by I10 flows through the switching element S10.
  • the control unit 50 closes the switching element S9, which is in the open state, when a forward current flows through the diode S9D.
  • the second conversion unit 23 rectifies the electrical energy stored in the second tertiary winding 24CB, a current flows through the third reactor coil 23L, the second capacitor 26, and the diode S10D.
  • the control unit 50 closes the switching element S10, which is in the open state, when a forward current flows through the diode S10D.
  • the power consumption of the diode S9D or the diode S10D is a value obtained by multiplying the current by the forward voltage.
  • the power consumption in switching element S9 or switching element S10 is the product of the square of the drain current and the on-resistance. Since the power consumption in switching element S9 or switching element S10 is sufficiently smaller than the power consumption in diode S9D or diode S10D, the loss is reduced and the decrease in efficiency (conversion efficiency) in second conversion unit 23 can be suppressed. Therefore, by driving second conversion unit 23 as described above, it is possible to output a voltage efficiently.
  • the positive current is the current flowing through the third reactor coil 23L, the second capacitor 26, and the switching element S9, or the current flowing through the third reactor coil 23L, the second capacitor 26, and the switching element S10.
  • FIG. 3A a positive current (I>0) and a negative current (I ⁇ 0) flow through the third reactor coil 23L.
  • the positive current is the current flowing through the third reactor coil 23L, the second capacitor 26, and the switching element S9, or the current flowing through the third reactor coil 23L, the second capacitor 26, and the switching element S10.
  • the negative current is the current flowing through the switching element S9, the second capacitor 26, and the third reactor coil 23L, or the current flowing through the switching element S10, the second capacitor 26, and the third reactor coil 23L.
  • the current in order for such a negative current to flow through the second conversion unit 23, the current must flow through switching element S9 and switching element S10, so in addition to diodes S9D and S10D, switching elements S9 and S10 are provided in the second conversion unit 23.
  • the second conversion unit 23 has a snubber circuit formed by the resistor R and the capacitor 27.
  • switching element S9 is open from t3 to t5, and switching element S10 is open from t7 to t9.
  • the second voltage value of the DC voltage output from the second conversion unit 23 can be changed depending on the period during which switching element S9 is open and the period during which switching element S10 is open.
  • the period during which switching element S9 is open and the period during which switching element S10 is open correspond to (carrier period/2) - first shift amount ⁇ 1. Therefore, in this embodiment, the DC voltage of the second voltage value can be controlled based on the first shift amount ⁇ 1.
  • the second conversion unit 23 can also generate DC power consisting of a DC voltage of a second voltage value based on the electrical energy stored in the battery 3.
  • the supply of DC power from the supply unit 2 is stopped, and the DC power of the battery 3 is transmitted from the secondary winding 24B of the transformer 24 to the primary winding 24A, and from the primary winding 24A to the tertiary winding 24C.
  • FIG. 4 shows a timing chart of the control unit 50 driving each of the multiple switching elements provided in the converter 20 when DC power is output from the second conversion unit 23 based on such DC power from the battery 3.
  • the control unit 50 drives the switching elements S1-S10 while switching them sequentially between eight states from the first state to the eighth state.
  • the first state in which DC power is output from the second conversion unit 23 based on DC power from the battery 3 is the state between t1 and t2 in FIG. 4.
  • the control unit 50 closes the switching elements S1, S3, S5, S7, S9, and S10, and opens the switching elements S2, S4, S6, and S8.
  • the second state is the state between t2 and t3 in FIG. 4, and in this second state, the control unit 50 closes the switching elements S1, S3, S5, S8, S9, and S10, and opens the switching elements S2, S4, S6, and S7.
  • the third state is the state between t3 and t4 in FIG. 4, and in this third state, the control unit 50 closes the switching elements S1, S4, S5, S8, and S10, and opens the switching elements S2, S3, S6, S7, and S9.
  • the fourth state is the state between t4 and t5 in FIG. 2, and in this fourth state, the control unit 50 closes the switching elements S1, S4, S6, S8, and S10, and opens the switching elements S2, S3, S5, S7, and S9.
  • the fifth state is the state between t5 and t6 in FIG. 2, and in this fifth state, the control unit 50 closes the switching elements S2, S4, S6, S8, S9, and S10, and opens the switching elements S1, S3, S5, and S7.
  • the sixth state is the state between t6 and t7 in FIG. 2, and in this sixth state, the control unit 50 closes the switching elements S2, S4, S6, S7, S9, and S10, and opens the switching elements S1, S3, S5, and S8.
  • the seventh state is the state between t7 and t8 in FIG. 2, and in this seventh state, the control unit 50 closes the switching elements S2, S3, S6, S7, and S9, and opens the switching elements S1, S4, S5, S8, and S10.
  • the eighth state is the state between t8 and t9 in FIG. 2, and in this eighth state, the control unit 50 closes the switching elements S2, S3, S5, S7, and S9, and opens the switching elements S1, S4, S6, S8, and S10.
  • Switching elements S1, S2, S3, and S4 are driven in the same manner as when charging battery 3 described above. That is, as shown in FIG. 4, switching element S1 of third leg 211 and switching element S4 of fourth leg 212 are shifted by a preset first shift amount ⁇ 1 to be in a closed state, and switching element S1 of third leg 211 and switching element S4 of fourth leg 212 are shifted by a first shift amount ⁇ 1 to be in an open state.
  • the switching element S2 of the third leg 211 and the switching element S3 of the fourth leg 212 are shifted by the first shift amount ⁇ 1 and are put into a closed state, and the switching element S2 of the third leg 211 and the switching element S3 of the fourth leg 212 are shifted by the first shift amount ⁇ 1 and are put into an open state.
  • the switching element S5 of the fifth leg 221 and the switching element S8 of the sixth leg 222 are shifted by the first shift amount ⁇ 1 and put into a closed state
  • the switching element S5 of the fifth leg 221 and the switching element S8 of the sixth leg 222 are shifted by the first shift amount ⁇ 1 and put into an open state.
  • the switching element S6 of the fifth leg 221 and the switching element S7 of the sixth leg 222 are shifted by the first shift amount ⁇ 1 and are put into a closed state, and the switching element S6 of the fifth leg 221 and the switching element S7 of the sixth leg 222 are shifted by the first shift amount ⁇ 1 and are put into an open state.
  • the switching element S5 of the fifth leg 221 When generating DC power consisting of a DC voltage of the second voltage value based on the electric energy charged in the battery 3, the switching element S5 of the fifth leg 221 is closed the second shift amount ⁇ 2 before the switching element S1 of the third leg 211 is closed. That is, as shown in FIG. 4, the switching element S5 of the fifth leg 221 is closed at t8, which is the second shift amount ⁇ 2 before t9, when the switching element S1 of the third leg 211 is closed. Also, the switching element S5 of the fifth leg 221 is opened the second shift amount ⁇ 2 before the switching element S1 of the third leg 211 is opened. That is, as shown in FIG. 4, the switching element S5 of the fifth leg 221 is opened at t4, which is the second shift amount ⁇ 2 before t5, when the switching element S1 of the third leg 211 is opened.
  • the switching element S7 of the sixth leg 222 is closed the second shift amount ⁇ 2 before the switching element S3 of the fourth leg 212 is closed. That is, as shown in FIG. 4, the switching element S7 of the sixth leg 222 is closed at t6, which is the second shift amount ⁇ 2 before t7, when the switching element S3 of the fourth leg 212 is closed. Also, the switching element S7 of the sixth leg 222 is opened the second shift amount ⁇ 2 before the switching element S3 of the fourth leg 212 is opened. That is, as shown in FIG. 4, the switching element S7 of the sixth leg 222 is opened at t10, which is the second shift amount ⁇ 2 before t9, when the switching element S3 of the fourth leg 212 is opened.
  • switching element S9 is open between t3 and t5
  • switching element S10 is open between t7 and t9.
  • the switching elements of the inverter 10 and the converter 20 are described as n-type MOS-FETs.
  • the switching elements may be p-type MOS-FETs or switching elements other than FETs (e.g., IGBTs or bipolar transistors).
  • the inverter 10 and converter 20 are described as converting AC power to DC power using switching elements, but the inverter 10 may also be configured to convert AC power to DC power using diodes.
  • control unit 50 drives the switching element in the first state to the eighth state, and each state is described. However, it is also possible to drive the switching element based on more than eight states from the first state to the eighth state, or based on seven states or less. In addition, the state of the switching element in each state is merely an example, and it is also possible to drive the switching element in a form different from that of the above embodiment.
  • the AC power supplied to the inverter 10 is described as AC power from a commercial power source, but the AC power supplied to the inverter 10 may be AC power different from the AC power of the commercial power source.
  • the tertiary winding 24C of the transformer 24 is described as being composed of a first tertiary winding 24CA and a second tertiary winding 24CB, but the tertiary winding 24C may be a single winding or may be three or more windings.
  • the average value of the composite current of the current flowing through the first tertiary winding 24CA and the current flowing through the second tertiary winding 24CB is zero.
  • the average value of the composite current of the current flowing through the first tertiary winding 24CA and the current flowing through the second tertiary winding 24CB does not have to be zero.
  • the current flowing through the first tertiary winding 24CA and the current flowing through the second tertiary winding 24CB may be a current in which a predetermined DC current is superimposed.
  • the DC voltage of the second voltage value is described as being controlled based on the first shift amount ⁇ 1, but the DC voltage of the second voltage value may also be controlled by, for example, feedback control.
  • the second shift amount ⁇ 2 is described as being set based on the power command value of the DC power output from the first conversion unit 22 and the power calculation value of the DC power output from the first conversion unit 22.
  • the second shift amount ⁇ 2 may be configured to be set in advance, or may be configured to be changed as appropriate depending on, for example, the type of load on the converter 20.
  • the characteristic configuration of the power supply device 1 is that a first leg 11 in which a high-side switching element 11H and a low-side switching element 11L are connected in series and a second leg 12 in which a high-side switching element 12H and a low-side switching element 12L are connected in series are provided in parallel with each other, an inverter 10 that converts AC power to DC power, and an isolated transformer (multi-port transformer) 24 having a primary winding 24A, a secondary winding 24B, and a tertiary winding 24C are provided, and the DC power from the inverter 10 is configured as a DC voltage of a first voltage value that charges a battery 3.
  • the converter 20 has an input section 21 that oscillates the DC power from the inverter 10 at a predetermined period and inputs it to the primary winding 24A, a first conversion section 22 that converts the AC power generated in the secondary winding 24B into DC power composed of a DC voltage of a first voltage value, and a second conversion section 23 that converts the AC power generated in the tertiary winding 24C into DC power composed of a DC voltage of a second voltage value lower than the first voltage value, and the second conversion section 23 converts the AC power generated in the tertiary winding 24C into DC power composed of a DC voltage of the second voltage value by synchronous rectification.
  • This characteristic configuration makes it possible to output DC power consisting of a DC voltage of a first voltage value from the first conversion unit 22 of the converter 20, and at the same time output DC power consisting of a DC voltage of a second voltage value from the second conversion unit 23. Furthermore, the above-mentioned characteristic configuration makes it possible to easily output DC power consisting of a DC voltage of a first voltage value and DC power consisting of a DC voltage of a second voltage value with a simple configuration.
  • the input section 21 includes a third leg 211 in which a high-side switching element S1 and a low-side switching element S2 are connected in series, and a fourth leg 212 in which a high-side switching element S3 and a low-side switching element S4 are connected in series, which are provided in parallel to each other;
  • the first conversion section 22 includes a fifth leg 221 in which a high-side switching element S5 and a low-side switching element S6 are connected in series, and a sixth leg 222 in which a high-side switching element S7 and a low-side switching element S8 are connected in series, which are provided in parallel to each other;
  • the high-side switching element S1 of the third leg 211 and the low-side switching element S4 of the fourth leg 212 are shifted by a preset first shift amount to be in a closed state;
  • the low-side switching element S2 of the third leg 211 and the fourth leg 212 are shifted by a preset first shift amount to be in a
  • the high-side switching element S3 of the fifth leg 221 and the low-side switching element S8 of the sixth leg 222 are closed with a shift of the first shift amount
  • the high-side switching element S5 of the fifth leg 221 and the low-side switching element S8 of the sixth leg 222 are closed with a shift of the first shift amount
  • the low-side switching element S6 of the fifth leg 221 and the high-side switching element S7 of the sixth leg 222 are closed with a shift of the first shift amount
  • the high-side switching element S5 of the fifth leg 221 is closed a second shift amount smaller than the first shift amount by which the high-side switching element S1 of the third leg 211 is closed
  • the high-side switching element SS7 of the sixth leg 222 is closed a second shift amount by which the high-side switching element S3 of the fourth leg 212 is closed.
  • the battery 3 can be charged based on the AC power supplied to the inverter 10, and at the same time, a DC voltage with a voltage value different from the DC voltage that charges the battery 3 can be supplied to a load other than the battery.
  • the input unit 21 includes a third leg 211 in which a high-side switching element S1 and a low-side switching element S2 are connected in series, and a fourth leg 212 in which a high-side switching element S3 and a low-side switching element S4 are connected in series, which are provided in parallel to each other;
  • the first conversion unit 22 includes a fifth leg 221 in which a high-side switching element S5 and a low-side switching element S6 are connected in series, and a sixth leg 222 in which a high-side switching element S7 and a low-side switching element S8 are connected in series, which are provided in parallel to each other;
  • the high-side switching element S1 of the third leg 211 and the low-side switching element S3 of the fourth leg 212 are shifted by a preset first shift amount to be in a closed state; and the low-side switching element S2 of the third leg 211 and the high-side switching element S3 of the fourth leg 212 are shifted by a first
  • the high-side switching element S5 of the fifth leg 221 and the low-side switching element S8 of the sixth leg 222 are closed with a shift of a first shift amount
  • the low-side switching element S6 of the fifth leg 221 and the high-side switching element S7 of the sixth leg 222 are closed with a shift of a first shift amount
  • the high-side switching element S5 of the fifth leg 221 is closed a second shift amount smaller than the first shift amount after the high-side switching element S1 of the third leg 211 is closed
  • the high-side switching element S7 of the sixth leg 222 is closed a second shift amount before the high-side switching element S3 of the fourth leg 212 is opened.
  • the tertiary winding 24C is composed of a first tertiary winding 24CA and a second tertiary winding 24CB, and the average value of the combined current of the current flowing through the first tertiary winding 24CA and the current flowing through the second tertiary winding 24CB can be set to zero.
  • the DC voltage of the second voltage value is controlled based on the first shift amount.
  • the output of the DC voltage of the second voltage value can also be performed based on the control of the output of the DC voltage of the first voltage value. Therefore, it is possible to output DC voltages of different voltage values with simple control.
  • the second shift amount is set based on the power command value of the DC power output from the first conversion unit 22 and the power calculation value of the DC power output from the first conversion unit 22.
  • the second shift amount can be easily set. Therefore, it is possible to output DC voltages of different voltage values with simple control.
  • the second shift amount is ⁇ 2
  • the switching frequency of the switching element is ⁇
  • the inductance value of the reactor is L
  • the second shift amount is It is preferable to set the value based on the above.
  • the second shift amount ⁇ 2 can be easily set using the potential V1 across the primary winding 24A, the potential V2' across the secondary winding 24B and the reactor, the output power P, the switching frequency ⁇ of the switching element, and the inductance value L of the reactor.
  • the tertiary winding 24C is composed of a first tertiary winding 24CA and a second tertiary winding 24CB, and the first tertiary winding 24CA and the second tertiary winding 24CB are connected to each other at the end of the first tertiary winding 24CA and the beginning of the winding of the second tertiary winding 24CB, and the second conversion unit 23 is composed of a switching element (first switching element) S9 having a drain terminal connected to the beginning of the winding of the first tertiary winding 24CA, a switching element (second switching element) S10 having a drain terminal connected to the end of the winding of the second tertiary winding 24CB, and an anode terminal connected to the source terminal of the switching element S9, It may include a diode (first diode) S9D having a cathode terminal connected to the drain terminal of the switching
  • the power consumption in switching element S9 and switching element S10 is much smaller than the power consumption in diodes S9D and S10D, so the loss is small and the decrease in efficiency (conversion efficiency) in the second conversion unit 23 can be suppressed. Therefore, it is possible to output the voltage efficiently.
  • the switching element S9 and the switching element S10 are driven by synchronous rectification.
  • This configuration makes it possible to improve the efficiency of the second conversion unit 23 compared to when the second conversion unit 23 is driven by diode rectification. Furthermore, when no load is connected to the second conversion unit 23, it is possible to pass a positive current as shown in FIG. 3(B) or a negative current as shown in FIG. 3(C) through the second conversion unit 23, making it possible to make the average current value zero as shown in FIG. 3(A).
  • the second conversion unit 23 further includes a diode (third diode) 23D1 having an anode terminal connected to the winding start end of the first tertiary winding 24CA, a diode (fourth diode) 23D2 having an anode terminal connected to the winding end end of the second tertiary winding 24CB, a resistor R provided between the cathode terminal of the diode 23D1 and the cathode terminal of the diode 23D2 and the other terminal of the third reactor coil 23L, and a capacitor (second capacitor) 27 provided between the cathode terminal of the diode 23D1 and the source terminal of the switching element S9.
  • a diode (third diode) 23D1 having an anode terminal connected to the winding start end of the first tertiary winding 24CA
  • a diode (fourth diode) 23D2 having an anode terminal connected to the winding end end end of the second tertiary winding
  • the electrical energy stored in the first tertiary winding 24CA can be reduced by passing a current through the diode 23D1, resistor R, and third reactor coil 23L
  • the electrical energy stored in the second tertiary winding 24CB can be reduced by passing a current through the diode 23D2, resistor R, and third reactor coil 23L.
  • the present invention can be used in power supply devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A power supply device according to the present invention includes: an inverter in which a first leg having a switching element and a switching element and a second leg having a switching element and a switching element are provided in parallel with each other; and a converter provided with a multiport transformer having a primary winding, a secondary winding, and a tertiary winding. The converter includes an input unit that amplifies DC power from the inverter at a predetermined cycle and inputs the power to the primary winding, a first conversion unit that converts AC power generated in the secondary winding into DC power, and a second conversion unit that converts AC power generated in the tertiary winding into DC power. The second conversion unit converts AC power generated in the tertiary winding into DC power by means of synchronous rectification.

Description

電源装置Power Supplies
 本発明は、車両に搭載されるバッテリを充放電する電源装置に関する。 The present invention relates to a power supply device that charges and discharges a battery installed in a vehicle.
 従来、交流電力の入力に応じて、互いに異なる電圧値の直流電圧を出力する電源装置が利用されている。このような電源装置として、例えば下記に出典を示す特許文献1-5に記載のものがある。 Conventionally, power supply devices have been used that output DC voltages with different voltage values in response to AC power input. Examples of such power supply devices include those described in Patent Documents 1-5, the sources of which are shown below.
 特許文献1-3には電力変換装置が記載されている。また、特許文献4及び5にはスイッチング電源装置が記載されている。特許文献1-3の電力変換装置及び特許文献4及び5のスイッチング電源装置は、例えばバッテリを充電可能な第1電圧値の直流電圧の出力や、第1電圧値よりも低い第2電圧値の直流電圧の出力に利用される。 Patent documents 1-3 describe power conversion devices. Furthermore, patent documents 4 and 5 describe switching power supply devices. The power conversion devices of patent documents 1-3 and the switching power supply devices of patent documents 4 and 5 are used, for example, to output a DC voltage of a first voltage value capable of charging a battery, or to output a DC voltage of a second voltage value lower than the first voltage value.
特開2016-140126号公報JP 2016-140126 A 特開2016-158353号公報JP 2016-158353 A 国際公開2015/174331号公報International Publication No. 2015/174331 特開2008-206304号公報JP 2008-206304 A 特開2009-232502号公報JP 2009-232502 A
 特許文献1-3の電力変換装置や、特許文献4及び5のスイッチング電源装置は、装置全体のサイズが大きくなり、コストも高くなる。また、例えばマルチポートトランスを用いて互いに異なる電圧値の直流電圧を同時に出力する場合には、制御が複雑となり容易に出力することができない。 The power conversion devices of Patent Documents 1-3 and the switching power supply devices of Patent Documents 4 and 5 are large in overall device size and cost. In addition, for example, when using a multi-port transformer to simultaneously output DC voltages of different voltage values, the control becomes complicated and output cannot be easily achieved.
 そこで、容易に互いに異なる電圧値の直流電圧を出力することが可能な電源装置が求められる。 Therefore, there is a demand for a power supply device that can easily output DC voltages with different voltage values.
 本発明に係る電源装置の特徴構成は、ハイサイドのスイッチング素子及びローサイドのスイッチング素子が直列に接続された第1レグとハイサイドのスイッチング素子及びローサイドのスイッチング素子が直列に接続された第2レグとが互いに並列に設けられ、交流電力を直流電力に変換するインバータと、一次巻線、二次巻線、及び三次巻線を有する絶縁型のマルチポートトランスが設けられ、前記インバータからの前記直流電力を、バッテリを充電する第1電圧値の直流電圧で構成される直流電力に変換するコンバータと、を備え、前記コンバータは、前記インバータからの前記直流電力を所定の周期で振幅させて前記一次巻線に入力する入力部と、前記二次巻線に生じる交流電力を、前記第1電圧値の直流電圧で構成される直流電力に変換する第1変換部と、前記三次巻線に生じる交流電力を、前記第1電圧値よりも低い第2電圧値の直流電圧で構成される直流電力に変換する第2変換部と、を有し、前記第2変換部は、前記三次巻線に生じる交流電力を、同期整流により前記第2電圧値の直流電圧で構成される直流電力に変換する点にある。 The power supply device according to the present invention has a first leg in which a high-side switching element and a low-side switching element are connected in series, and a second leg in which a high-side switching element and a low-side switching element are connected in series, which are arranged in parallel with each other, and includes an inverter that converts AC power to DC power, and a converter that is provided with an insulated multi-port transformer having a primary winding, a secondary winding, and a tertiary winding and converts the DC power from the inverter into DC power composed of a DC voltage of a first voltage value that charges a battery. The converter has an input unit that oscillates the DC power from the inverter at a predetermined period and inputs it to the primary winding, a first conversion unit that converts the AC power generated in the secondary winding into DC power composed of a DC voltage of the first voltage value, and a second conversion unit that converts the AC power generated in the tertiary winding into DC power composed of a DC voltage of a second voltage value lower than the first voltage value, and the second conversion unit converts the AC power generated in the tertiary winding into DC power composed of a DC voltage of the second voltage value by synchronous rectification.
 このような特徴構成とすれば、コンバータの第1変換部から第1電圧値の直流電圧で構成される直流電力を出力すると同時に、第2変換部から第2電圧値の直流電圧で構成される直流電力を出力することが可能となる。また、上述した特徴構成によれば、第1電圧値の直流電圧で構成される直流電力の出力と、第2電圧値の直流電圧で構成される直流電力の出力とを、簡素な構成で容易に行うことが可能となる。 With such a characteristic configuration, it is possible to output DC power consisting of a DC voltage of a first voltage value from the first conversion unit of the converter, and at the same time output DC power consisting of a DC voltage of a second voltage value from the second conversion unit. Furthermore, with the above-mentioned characteristic configuration, it is possible to easily output DC power consisting of a DC voltage of a first voltage value and DC power consisting of a DC voltage of a second voltage value with a simple configuration.
は、電源装置の構成を示す回路図である。FIG. 2 is a circuit diagram showing a configuration of a power supply device. は、バッテリの充電時の電源装置のタイミングチャートである。4 is a timing chart of the power supply device when charging the battery. は、第2変換部に流れる正電流及び負電流を説明する図である。10 is a diagram illustrating a positive current and a negative current flowing in a second conversion unit. FIG. は、バッテリからの出力に基づいて直流電力を出力する時の電源装置のタイミングチャートである。1 is a timing chart of the power supply device when outputting DC power based on the output from the battery.
 本発明に係る電源装置は、車両に搭載されるバッテリを充放電することが可能であって、複数の端子の夫々から互いに異なる電圧値の直流電圧で構成される直流電力を出力することができる。以下、本実施形態の電源装置1について説明する。 The power supply device according to the present invention is capable of charging and discharging a battery mounted on a vehicle, and can output DC power consisting of DC voltages with different voltage values from each of a number of terminals. The power supply device 1 of this embodiment will be described below.
 図1は、電源装置1の回路図である。図1に示されるように、電源装置1は、インバータ10、コンバータ20、リアクトルコイル30、及び制御部50を備えて構成される。各機能部は、上述した直流電力の出力に係る処理を行うために、CPUを中核部材としてハードウェア又はソフトウェア或いはその両方で構築されている。 FIG. 1 is a circuit diagram of the power supply device 1. As shown in FIG. 1, the power supply device 1 is configured with an inverter 10, a converter 20, a reactor coil 30, and a control unit 50. Each functional unit is constructed with hardware or software, or both, with a CPU as the core component, in order to perform the processes related to the output of the DC power described above.
 インバータ10は、交流電力を直流電力に変換して出力する。本実施形態では、交流電力とは、電圧値が所定の周期で振幅する交流電圧から構成される電力をいう。具体的には、交流電圧は、商用周波数(例えば50Hzや60Hz)で振幅し、単相三線式で供給される商用電源から取り出した200V(実効値)の交流電圧が相当する。直流電力とは、基準電圧に対して一定の電圧値(リップル電圧は除く)となる直流電圧から構成される電力をいう。本実施形態では、インバータ10には商用電源による交流電力が供給される。インバータ10は、このような交流電圧で構成される交流電力を、直流電圧を含む直流電力に変換する。インバータ10は、一対の出力部10A,10Bが設けられており、変換した直流電力をこの一対の出力部10A,10Bを介して後述するコンバータ20に出力する。 The inverter 10 converts AC power into DC power and outputs it. In this embodiment, AC power refers to power composed of an AC voltage whose voltage value oscillates at a predetermined cycle. Specifically, the AC voltage oscillates at a commercial frequency (e.g., 50 Hz or 60 Hz) and corresponds to an AC voltage of 200 V (effective value) taken from a commercial power source supplied in a single-phase three-wire system. DC power refers to power composed of a DC voltage that has a constant voltage value (excluding ripple voltage) relative to a reference voltage. In this embodiment, the inverter 10 is supplied with AC power from a commercial power source. The inverter 10 converts the AC power composed of such AC voltage into DC power including a DC voltage. The inverter 10 is provided with a pair of output units 10A, 10B, and outputs the converted DC power to the converter 20 described later via the pair of output units 10A, 10B.
 インバータ10は、第1レグ11と第2レグ12とを有する。第1レグ11、及び第2レグ12は、出力部10A,10Bに対して互いに並列に設けられる。これにより、第1レグ11の一方の端部11Aと、第2レグ12の一方の端部12Aとが、出力部10Aに接続され、第1レグ11の他方の端部11Bと、第2レグ12の他方の端部12Bとが、出力部10Bに接続される。 The inverter 10 has a first leg 11 and a second leg 12. The first leg 11 and the second leg 12 are arranged in parallel with each other with respect to the output units 10A and 10B. As a result, one end 11A of the first leg 11 and one end 12A of the second leg 12 are connected to the output unit 10A, and the other end 11B of the first leg 11 and the other end 12B of the second leg 12 are connected to the output unit 10B.
 第1レグ11は、直列に接続されたハイサイドのスイッチング素子11H及びローサイドのスイッチング素子11Lを有する。本実施形態では、スイッチング素子11H及びスイッチング素子11Lは、n型MOS-FET(metal-oxide-semiconductor field-effect transistor)が用いられる。スイッチング素子11Hは、ドレーン端子が端部11Aに接続され、ソース端子がスイッチング素子11Lのドレーン端子に接続される。スイッチング素子11Lのソース端子は端部11Bに接続される。スイッチング素子11H及びスイッチング素子11Lの夫々のゲート端子は、制御部50に接続される。また、スイッチング素子11H及びスイッチング素子11Lの夫々のソース端子とドレーン端子との間には、アノード端子がソース端子に接続され、カソード端子がドレーン端子に接続されたダイオード11HD,11LDが設けられる。 The first leg 11 has a high-side switching element 11H and a low-side switching element 11L connected in series. In this embodiment, n-type MOS-FETs (metal-oxide-semiconductor field-effect transistors) are used for the switching elements 11H and 11L. The drain terminal of the switching element 11H is connected to the end 11A, and the source terminal is connected to the drain terminal of the switching element 11L. The source terminal of the switching element 11L is connected to the end 11B. The gate terminals of the switching elements 11H and 11L are connected to the control unit 50. In addition, diodes 11HD and 11LD are provided between the source terminals and drain terminals of the switching elements 11H and 11L, with the anode terminals connected to the source terminals and the cathode terminals connected to the drain terminals.
 また、第2レグ12は、直列に接続されたハイサイドのスイッチング素子12H及びローサイドのスイッチング素子12Lを有する。本実施形態では、スイッチング素子12H及びスイッチング素子12Lも、n型MOS-FETが用いられる。スイッチング素子12Hは、ドレーン端子が端部12Aに接続され、ソース端子がスイッチング素子12Lのドレーン端子に接続される。スイッチング素子12Lのソース端子は端部12Bに接続される。スイッチング素子12H及びスイッチング素子12Lの夫々のゲート端子は、制御部50に接続される。また、スイッチング素子12H及びスイッチング素子12Lの夫々のソース端子とドレーン端子との間には、アノード端子がソース端子に接続され、カソード端子がドレーン端子に接続されたダイオード12HD,12LDが設けられる。 The second leg 12 also has a high-side switching element 12H and a low-side switching element 12L connected in series. In this embodiment, n-type MOS-FETs are used for the switching elements 12H and 12L. The drain terminal of the switching element 12H is connected to the end 12A, and the source terminal is connected to the drain terminal of the switching element 12L. The source terminal of the switching element 12L is connected to the end 12B. The gate terminals of the switching elements 12H and 12L are connected to the control unit 50. Diodes 12HD and 12LD are provided between the source terminals and drain terminals of the switching elements 12H and 12L, with the anode terminals connected to the source terminals and the cathode terminals connected to the drain terminals.
 インバータ10の出力部10Aと出力部10Bとに亘ってコンデンサ15が設けられる。コンデンサ15は、インバータ10により変換された直流電圧を平滑する。 A capacitor 15 is provided across output section 10A and output section 10B of inverter 10. Capacitor 15 smoothes the DC voltage converted by inverter 10.
 リアクトルコイル30は、第1レグ11における2つのスイッチング素子(スイッチング素子11H及びスイッチング素子11L)の間の第1ノード11Nに一方の端子30Bが接続される。第1レグ11における2つのスイッチング素子の間の第1ノード11Nとは、スイッチング素子11Hのソース端子とスイッチング素子11Lのドレーン端子とを接続する線(例えば基板の配線パターンや、ハーネス等のケーブル)である。もちろん、スイッチング素子11Hのソース端子や、スイッチング素子11Lのドレーン端子であってもよい。リアクトルコイル30は2つの端子30A,30Bを有しており、端子30Bが第1ノード11Nに接続される。 The reactor coil 30 has one terminal 30B connected to a first node 11N between two switching elements (switching element 11H and switching element 11L) in the first leg 11. The first node 11N between the two switching elements in the first leg 11 is a line (e.g., a wiring pattern on a board or a cable such as a harness) connecting the source terminal of switching element 11H and the drain terminal of switching element 11L. Of course, it may be the source terminal of switching element 11H or the drain terminal of switching element 11L. The reactor coil 30 has two terminals 30A, 30B, and the terminal 30B is connected to the first node 11N.
 リアクトルコイル30の他方の端子30Aと第2レグ12における2つのスイッチング素子(スイッチング素子12H及びスイッチング素子12L)の間の第2ノード12Nとに亘って、交流電力が供給される。第2レグ12における2つのスイッチング素子の間の第2ノード12Nとは、スイッチング素子12Hのソース端子とスイッチング素子12Lのドレーン端子とを接続する線(例えば基板の配線パターンや、ハーネス等のケーブル)である。もちろん、スイッチング素子12Hのソース端子や、スイッチング素子12Lのドレーン端子であってもよい。リアクトルコイル30の端子30Aは交流電力が供給される供給部2の一方の端子に接続され、供給部2の他方の端子は第2ノード12Nに接続される。したがって、インバータ10は、第1レグ11が有するスイッチング素子11H及びスイッチング素子11Lと、第2レグ12が有するスイッチング素子12H及びスイッチング素子12Lとにより、交流電力を直流電力に変換する。 AC power is supplied across the other terminal 30A of the reactor coil 30 and a second node 12N between the two switching elements (switching element 12H and switching element 12L) in the second leg 12. The second node 12N between the two switching elements in the second leg 12 is a line (e.g., a wiring pattern on a board or a cable such as a harness) connecting the source terminal of the switching element 12H and the drain terminal of the switching element 12L. Of course, it may be the source terminal of the switching element 12H or the drain terminal of the switching element 12L. The terminal 30A of the reactor coil 30 is connected to one terminal of the supply unit 2 to which AC power is supplied, and the other terminal of the supply unit 2 is connected to the second node 12N. Therefore, the inverter 10 converts AC power into DC power by the switching element 11H and switching element 11L of the first leg 11 and the switching element 12H and switching element 12L of the second leg 12.
 コンバータ20は、インバータ10からの直流電力を、バッテリ3を充電可能な第1電圧値の直流電圧で構成される直流電力に変換する。インバータ10からの直流電力とは、インバータ10の出力部10A,10Bから出力される直流電力である。バッテリ3とは、電源装置1が充電する車両に搭載されるバッテリであって、コンバータ20から出力される直流電力に基づいて充電される。バッテリ3の充電は、所定の電圧値の直流電圧で行われるが、インバータ10から出力される直流電力を構成する直流電圧の電圧値は、インバータ10に入力される交流電圧の電圧値(200V)程度である。コンバータ20は、インバータ10から出力される直流電圧の電圧値を、バッテリ3の充電に必要な電圧値(「第1電圧値」に相当し、例えば数百V)の直流電圧に昇圧する。 The converter 20 converts the DC power from the inverter 10 into DC power composed of a DC voltage of a first voltage value capable of charging the battery 3. The DC power from the inverter 10 is the DC power output from the output parts 10A and 10B of the inverter 10. The battery 3 is a battery mounted on the vehicle that is charged by the power supply device 1, and is charged based on the DC power output from the converter 20. The battery 3 is charged with a DC voltage of a predetermined voltage value, but the voltage value of the DC voltage that constitutes the DC power output from the inverter 10 is about the voltage value (200V) of the AC voltage input to the inverter 10. The converter 20 boosts the voltage value of the DC voltage output from the inverter 10 to a DC voltage of a voltage value (equivalent to the "first voltage value", for example several hundred V) required for charging the battery 3.
 本実施形態のコンバータ20は、入力部21、第1変換部22、第2変換部23、及びマルチポートトランス(以下「トランス」とする)24を有する。本実施形態では、トランス24は一次巻線24Aと二次巻線24Bと三次巻線24Cとを有する、絶縁型で構成される。 The converter 20 of this embodiment has an input section 21, a first conversion section 22, a second conversion section 23, and a multi-port transformer (hereinafter referred to as "transformer") 24. In this embodiment, the transformer 24 is configured as an insulated type having a primary winding 24A, a secondary winding 24B, and a tertiary winding 24C.
 入力部21は、インバータ10からの直流電力を、所定の周期で振幅させて一次巻線24Aに入力する。入力部21は、第3レグ211及び第4レグ212を有し、第3レグ211と第4レグ212とは、出力部10A,10Bに対して互いに並列に設けられる。したがって、第3レグ211の一方の端部211Aと、第4レグ212の一方の端部212Aとが、出力部10Aに接続され、第3レグ211の他方の端部211Bと、第4レグ212の他方の端部212Bとが、出力部10Bに接続される。 The input unit 21 oscillates the DC power from the inverter 10 at a predetermined period and inputs it to the primary winding 24A. The input unit 21 has a third leg 211 and a fourth leg 212, which are provided in parallel with each other with respect to the output units 10A and 10B. Therefore, one end 211A of the third leg 211 and one end 212A of the fourth leg 212 are connected to the output unit 10A, and the other end 211B of the third leg 211 and the other end 212B of the fourth leg 212 are connected to the output unit 10B.
 第3レグ211は、直列に接続されたハイサイドのスイッチング素子S1(以下「スイッチング素子S1」とする)及びローサイドのスイッチング素子S2(以下「スイッチング素子S2」とする)を有する。スイッチング素子S1及びスイッチング素子S2は、n型MOS-FETが用いられる。スイッチング素子S1は、ドレーン端子が端部211Aに接続され、ソース端子がスイッチング素子S2のドレーン端子に接続される。スイッチング素子S2のソース端子は端部211Bに接続される。スイッチング素子S1及びスイッチング素子S2の夫々のゲート端子は、制御部50に接続される。また、スイッチング素子S1及びスイッチング素子S2の夫々のソース端子とドレーン端子との間には、アノード端子がソース端子に接続され、カソード端子がドレーン端子に接続されたダイオードS1D,S2Dが設けられる。 The third leg 211 has a high-side switching element S1 (hereinafter referred to as "switching element S1") and a low-side switching element S2 (hereinafter referred to as "switching element S2") connected in series. The switching elements S1 and S2 are n-type MOS-FETs. The drain terminal of the switching element S1 is connected to the end 211A, and the source terminal is connected to the drain terminal of the switching element S2. The source terminal of the switching element S2 is connected to the end 211B. The gate terminals of the switching elements S1 and S2 are connected to the control unit 50. In addition, between the source terminal and drain terminal of the switching elements S1 and S2, diodes S1D and S2D are provided, with the anode terminal connected to the source terminal and the cathode terminal connected to the drain terminal.
 第4レグ212は、直列に接続されたハイサイドのスイッチング素子S3(以下「スイッチング素子S3」とする)及びローサイドのスイッチング素子S4(以下「スイッチング素子S4」とする)を有する。スイッチング素子S3及びスイッチング素子S4は、n型MOS-FETが用いられる。スイッチング素子S3は、ドレーン端子が端部212Aに接続され、ソース端子がスイッチング素子S4のドレーン端子に接続される。スイッチング素子S4のソース端子は端部212Bに接続される。スイッチング素子S3及びスイッチング素子S4の夫々のゲート端子は、制御部50に接続される。また、スイッチング素子S3及びスイッチング素子S4の夫々のソース端子とドレーン端子との間には、アノード端子がソース端子に接続され、カソード端子がドレーン端子に接続されたダイオードS3D,S4Dが設けられる。 The fourth leg 212 has a high-side switching element S3 (hereinafter referred to as "switching element S3") and a low-side switching element S4 (hereinafter referred to as "switching element S4") connected in series. The switching elements S3 and S4 are n-type MOS-FETs. The drain terminal of the switching element S3 is connected to the end 212A, and the source terminal is connected to the drain terminal of the switching element S4. The source terminal of the switching element S4 is connected to the end 212B. The gate terminals of the switching elements S3 and S4 are connected to the control unit 50. In addition, between the source terminals and drain terminals of the switching elements S3 and S4, diodes S3D and S4D are provided, with the anode terminals connected to the source terminals and the cathode terminals connected to the drain terminals.
 一次巻線24Aは、第3レグ211における2つのスイッチング素子(スイッチング素子S1及びスイッチング素子S2)の間の第3ノード211Nと、第4レグ212における2つのスイッチング素子(スイッチング素子S3及びスイッチング素子S4)の間の第4ノード212Nとに亘って設けられる。本実施形態では、一次巻線24Aの巻き始め端が第3ノード211Nに接続され、一次巻線24Aの巻き終わり端が第4ノード212Nに接続される。 The primary winding 24A is provided across a third node 211N between two switching elements (switching element S1 and switching element S2) in the third leg 211 and a fourth node 212N between two switching elements (switching element S3 and switching element S4) in the fourth leg 212. In this embodiment, the winding start end of the primary winding 24A is connected to the third node 211N, and the winding end end of the primary winding 24A is connected to the fourth node 212N.
 二次巻線24Bには、一次巻線24Aと二次巻線24Bとの巻数比に応じた電流(交番電流)が流れ、また、一次巻線24Aと二次巻線24Bとの巻数比に応じた電圧(交番電圧)が生じる。第1変換部22は、二次巻線24Bに生じる交流電力を、第1電圧値の直流電圧で構成される直流電力に変換する。第1変換部22は、第5レグ221及び第6レグ222を有し、第5レグ221と第6レグ222とは、コンバータ20の端子20A,20Bに対して互いに並列に設けられる。したがって、第5レグ221の一方の端部221Aと、第6レグ222の一方の端部222Aとが、端子20Aに接続され、第5レグ221の他方の端部221Bと、第6レグ222の他方の端部222Bとが、端子20Bに接続される。 A current (alternating current) according to the turn ratio between the primary winding 24A and the secondary winding 24B flows through the secondary winding 24B, and a voltage (alternating voltage) according to the turn ratio between the primary winding 24A and the secondary winding 24B is generated. The first conversion unit 22 converts the AC power generated in the secondary winding 24B into DC power composed of a DC voltage of a first voltage value. The first conversion unit 22 has a fifth leg 221 and a sixth leg 222, and the fifth leg 221 and the sixth leg 222 are provided in parallel with each other with respect to the terminals 20A and 20B of the converter 20. Therefore, one end 221A of the fifth leg 221 and one end 222A of the sixth leg 222 are connected to the terminal 20A, and the other end 221B of the fifth leg 221 and the other end 222B of the sixth leg 222 are connected to the terminal 20B.
 第5レグ221は、直列に接続されたハイサイドのスイッチング素子S5(以下「スイッチング素子S5」とする)及びローサイドのスイッチング素子S6(以下「スイッチング素子S6」とする)を有する。スイッチング素子S5及びスイッチング素子S6は、n型MOS-FETが用いられる。スイッチング素子S5は、ドレーン端子が端部221Aに接続され、ソース端子がスイッチング素子S6のドレーン端子に接続される。スイッチング素子S6のソース端子は端部221Bに接続される。スイッチング素子S5及びスイッチング素子S6の夫々のゲート端子は、制御部50に接続される。また、スイッチング素子S5及びスイッチング素子S6の夫々のソース端子とドレーン端子との間には、アノード端子がソース端子に接続され、カソード端子がドレーン端子に接続されたダイオードS5D,S6Dが設けられる。 The fifth leg 221 has a high-side switching element S5 (hereinafter referred to as "switching element S5") and a low-side switching element S6 (hereinafter referred to as "switching element S6") connected in series. The switching elements S5 and S6 are n-type MOS-FETs. The drain terminal of the switching element S5 is connected to the end 221A, and the source terminal is connected to the drain terminal of the switching element S6. The source terminal of the switching element S6 is connected to the end 221B. The gate terminals of the switching elements S5 and S6 are connected to the control unit 50. In addition, between the source terminals and drain terminals of the switching elements S5 and S6, diodes S5D and S6D are provided, with the anode terminals connected to the source terminals and the cathode terminals connected to the drain terminals.
 第6レグ222は、直列に接続されたハイサイドのスイッチング素子S7(以下「スイッチング素子S7」とする)及びローサイドのスイッチング素子S8(以下「スイッチング素子S8」とする)を有する。スイッチング素子S7及びスイッチング素子S8は、n型MOS-FETが用いられる。スイッチング素子S7は、ドレーン端子が端部222Aに接続され、ソース端子がスイッチング素子S8のドレーン端子に接続される。スイッチング素子S8のソース端子は端部222Bに接続される。スイッチング素子S7及びスイッチング素子S8の夫々のゲート端子は、制御部50に接続される。また、スイッチング素子S7及びスイッチング素子S8の夫々のソース端子とドレーン端子との間には、アノード端子がソース端子に接続され、カソード端子がドレーン端子に接続されたダイオードS7D,S8Dが設けられる。 The sixth leg 222 has a high-side switching element S7 (hereinafter referred to as "switching element S7") and a low-side switching element S8 (hereinafter referred to as "switching element S8") connected in series. The switching elements S7 and S8 are n-type MOS-FETs. The drain terminal of the switching element S7 is connected to the end 222A, and the source terminal is connected to the drain terminal of the switching element S8. The source terminal of the switching element S8 is connected to the end 222B. The gate terminals of the switching elements S7 and S8 are connected to the control unit 50. In addition, between the source terminal and drain terminal of the switching elements S7 and S8, diodes S7D and S8D are provided, with the anode terminal connected to the source terminal and the cathode terminal connected to the drain terminal.
 上述した二次巻線24Bは、第5レグ221における2つのスイッチング素子(スイッチング素子S5及びスイッチング素子S6)の間の第5ノード221Nと、第6レグ222における2つのスイッチング素子(スイッチング素子S7及びスイッチング素子S8)の間の第6ノード222Nとに亘って設けられる。本実施形態では、二次巻線24Bの巻き始め端が、リアクトルLを介して第5ノード221Nに接続され、二次巻線24Bの巻き終わり端が第6ノード222Nに接続される。 The secondary winding 24B described above is provided across a fifth node 221N between two switching elements (switching element S5 and switching element S6) in the fifth leg 221 and a sixth node 222N between two switching elements (switching element S7 and switching element S8) in the sixth leg 222. In this embodiment, the winding start end of the secondary winding 24B is connected to the fifth node 221N via the reactor L, and the winding end end of the secondary winding 24B is connected to the sixth node 222N.
 コンバータ20の端子20Aと端子20Bとに亘って第1コンデンサ25が設けられる。第1コンデンサ25は、第1変換部22により変換された交流電力を構成する直流電圧を平滑する。 A first capacitor 25 is provided across terminals 20A and 20B of the converter 20. The first capacitor 25 smoothes the DC voltage that constitutes the AC power converted by the first conversion unit 22.
 三次巻線24Cには、一次巻線24Aと三次巻線24Cとの巻数比に応じた電流(交番電流)が流れ、また、一次巻線24Aと三次巻線24Cとの巻数比に応じた電圧(交番電圧)が生じる。第2変換部23は、三次巻線24Cに生じる交流電力を、第1電圧値よりも低い第2電圧値(例えば12V)の直流電圧で構成される直流電力に変換する。 A current (alternating current) according to the turn ratio between the primary winding 24A and the tertiary winding 24C flows through the tertiary winding 24C, and a voltage (alternating voltage) according to the turn ratio between the primary winding 24A and the tertiary winding 24C is generated. The second conversion unit 23 converts the AC power generated in the tertiary winding 24C into DC power composed of a DC voltage of a second voltage value (e.g., 12 V) lower than the first voltage value.
 本実施形態では、三次巻線24Cは、第1三次巻線24CAと第2三次巻線24CBとを有する。第1三次巻線24CAと第2三次巻線24CBとは、第1三次巻線24CAの巻き終わり端と第2三次巻線24CBの巻き始め端とが接続して設けられる。第1三次巻線24CAの巻き始め端には、ドレーン端子が接続されたスイッチング素子(「第1スイッチング素子」に相当)S9が設けられ、第2三次巻線24CBの巻き終わり端には、ドレーン端子が接続されたスイッチング素子(「第2スイッチング素子」に相当)S10が設けられる。スイッチング素子S9のソース端子とスイッチング素子S10のソース端子とは端子20Dに接続される。スイッチング素子S9及びスイッチング素子S10の夫々のゲート端子は、制御部50に接続される。なお、スイッチング素子S9及びスイッチング素子S10の夫々のソース端子とドレーン端子との間には、アノード端子がソース端子に接続され、カソード端子がドレーン端子に接続されたダイオード(「第1ダイオード」, 「第2ダイオード」に相当)S9D,S10Dが設けられる。 In this embodiment, the tertiary winding 24C has a first tertiary winding 24CA and a second tertiary winding 24CB. The first tertiary winding 24CA and the second tertiary winding 24CB are provided by connecting the end of the first tertiary winding 24CA to the beginning of the second tertiary winding 24CB. A switching element (corresponding to the "first switching element") S9 with a drain terminal connected is provided at the beginning of the first tertiary winding 24CA, and a switching element (corresponding to the "second switching element") S10 with a drain terminal connected is provided at the end of the second tertiary winding 24CB. The source terminal of the switching element S9 and the source terminal of the switching element S10 are connected to the terminal 20D. The gate terminals of the switching elements S9 and S10 are connected to the control unit 50. In addition, between the source terminal and drain terminal of each of the switching elements S9 and S10, diodes S9D and S10D (corresponding to the "first diode" and "second diode") are provided, with the anode terminal connected to the source terminal and the cathode terminal connected to the drain terminal.
 第1三次巻線24CAの巻き終わり端及び第2三次巻線24CBの巻き始め端は、第3リアクトルコイル23Lの一方の端子に接続される。第3リアクトルコイル23Lの他方の端子は、端子20Cに接続される。また、第2変換部23は、ダイオード23D1とダイオード23D2とが設けられている。ダイオード23D1のアノード端子は、第1三次巻線24CAの巻き始め端に接続され、ダイオード23D2のアノード端子は、第2三次巻線24CBの巻き終わり端に接続される。また、ダイオード23D1のカソード端子とダイオード23D2のカソード端子とは互いに接続され、抵抗器Rを介して端子20Cに接続される。更に、ダイオード23D1のカソード端子とダイオード23D2のカソード端子とはコンデンサ27を介して端子20Dに接続される。したがって、抵抗器Rとコンデンサ27とでスナバ回路が形成されている。更に、端子20Cと端子20Dとに亘って第2コンデンサ26が設けられる。第2変換部23は、三次巻線24Cに生じる交流電力を、スイッチング素子S9とスイッチング素子S10とにより、同期整流により第2電圧値の直流電圧で構成される直流電力に変換する。 The winding end of the first tertiary winding 24CA and the winding start of the second tertiary winding 24CB are connected to one terminal of the third reactor coil 23L. The other terminal of the third reactor coil 23L is connected to the terminal 20C. The second conversion unit 23 is also provided with a diode 23D1 and a diode 23D2. The anode terminal of the diode 23D1 is connected to the winding start of the first tertiary winding 24CA, and the anode terminal of the diode 23D2 is connected to the winding end of the second tertiary winding 24CB. The cathode terminal of the diode 23D1 and the cathode terminal of the diode 23D2 are connected to each other and to the terminal 20C via the resistor R. Furthermore, the cathode terminal of the diode 23D1 and the cathode terminal of the diode 23D2 are connected to the terminal 20D via the capacitor 27. Therefore, the resistor R and the capacitor 27 form a snubber circuit. Furthermore, a second capacitor 26 is provided across terminals 20C and 20D. The second conversion unit 23 converts the AC power generated in the tertiary winding 24C into DC power composed of a DC voltage of a second voltage value by synchronous rectification using switching elements S9 and S10.
 制御部50は、インバータ10に設けられる複数のスイッチング素子の夫々を駆動する。具体的には、制御部50は、スイッチング素子11H及びスイッチング素子12Lの開閉状態と、スイッチング素子11L及びスイッチング素子12Hの開閉状態とを交互に切り替える。すなわち、制御部50は、第1レグ11はスイッチング素子11Hとスイッチング素子11Lとを交互に駆動して、第2レグ12は系統周波数でスイッチング素子12Hとスイッチング素子12Lとを交互に駆動する。これにより、上述したように、インバータ10が第1レグ11及び第2レグ12が有するスイッチング素子の駆動に基づいて供給部2から供給される交流電力を直流電力に変換することが可能となる。 The control unit 50 drives each of the multiple switching elements provided in the inverter 10. Specifically, the control unit 50 alternates between the open/closed state of the switching elements 11H and 12L and the open/closed state of the switching elements 11L and 12H. That is, the control unit 50 alternately drives the switching elements 11H and 11L of the first leg 11, and alternately drives the switching elements 12H and 12L at the system frequency of the second leg 12. This allows the inverter 10 to convert the AC power supplied from the supply unit 2 into DC power based on the driving of the switching elements of the first leg 11 and the second leg 12, as described above.
 また、制御部50は、コンバータ20に設けられる複数のスイッチング素子の夫々を駆動する。図2には、バッテリ3を充電する際のタイミングチャートが示される。制御部50は、図2に示されるタイミングチャートに沿ってスイッチング素子S1-S10を駆動する。本実施形態では、制御部50は、スイッチング素子S1-S10を、第1状態-第8状態の8個の状態に、順次、切り替えながら駆動する。図2の例では、t1-t9の期間が制御部50による制御上の1周期に相当する。 The control unit 50 also drives each of the multiple switching elements provided in the converter 20. FIG. 2 shows a timing chart for charging the battery 3. The control unit 50 drives the switching elements S1-S10 in accordance with the timing chart shown in FIG. 2. In this embodiment, the control unit 50 drives the switching elements S1-S10 while switching them sequentially between eight states, from state 1 to state 8. In the example of FIG. 2, the period t1-t9 corresponds to one cycle of control by the control unit 50.
 第1状態は図2のt1-t2の間の状態であり、この第1状態では、制御部50は、スイッチング素子S1,S3,S6,S7,S9,S10を閉状態にし、スイッチング素子S2,S4,S5,S8を開状態にする。 The first state is the state between t1 and t2 in FIG. 2, and in this first state, the control unit 50 closes the switching elements S1, S3, S6, S7, S9, and S10, and opens the switching elements S2, S4, S5, and S8.
 第2状態は図2のt2-t3の間の状態であり、この第2状態では、制御部50は、スイッチング素子S1,S3,S5,S7,S9,S10を閉状態にし、スイッチング素子S2,S4,S6,S8を開状態にする。 The second state is the state between t2 and t3 in FIG. 2, and in this second state, the control unit 50 closes the switching elements S1, S3, S5, S7, S9, and S10, and opens the switching elements S2, S4, S6, and S8.
 第3状態は図2のt3-t4の間の状態であり、この第3状態では、制御部50は、スイッチング素子S1,S4,S5,S7,S10を閉状態にし、スイッチング素子S2,S3,S6,S8,S9を開状態にする。 The third state is the state between t3 and t4 in FIG. 2, and in this third state, the control unit 50 closes the switching elements S1, S4, S5, S7, and S10, and opens the switching elements S2, S3, S6, S8, and S9.
 第4状態は図2のt4-t5の間の状態であり、この第4状態では、制御部50は、スイッチング素子S1,S4,S5,S8,S10を閉状態にし、スイッチング素子S2,S3,S6,S7,S9を開状態にする。 The fourth state is the state between t4 and t5 in FIG. 2, and in this fourth state, the control unit 50 closes the switching elements S1, S4, S5, S8, and S10, and opens the switching elements S2, S3, S6, S7, and S9.
 第5状態は図2のt5-t6の間の状態であり、この第5状態では、制御部50は、スイッチング素子S2,S4,S5,S8,S9,S10を閉状態にし、スイッチング素子S1,S3,S6,S7を開状態にする。 The fifth state is the state between t5 and t6 in FIG. 2, and in this fifth state, the control unit 50 closes the switching elements S2, S4, S5, S8, S9, and S10, and opens the switching elements S1, S3, S6, and S7.
 第6状態は図2のt6-t7の間の状態であり、この第6状態では、制御部50は、スイッチング素子S2,S4,S6,S8,S9,S10を閉状態にし、スイッチング素子S1,S3,S5,S7を開状態にする。 The sixth state is the state between t6 and t7 in FIG. 2, and in this sixth state, the control unit 50 closes the switching elements S2, S4, S6, S8, S9, and S10, and opens the switching elements S1, S3, S5, and S7.
 第7状態は図2のt7-t8の間の状態であり、この第7状態では、制御部50は、スイッチング素子S2,S3,S6,S8,S9を閉状態にし、スイッチング素子S1,S4,S5,S7,S10を開状態にする。 The seventh state is the state between t7 and t8 in FIG. 2, and in this seventh state, the control unit 50 closes the switching elements S2, S3, S6, S8, and S9, and opens the switching elements S1, S4, S5, S7, and S10.
 第8状態は図2のt8-t9の間の状態であり、この第8状態では、制御部50は、スイッチング素子S2,S3,S6,S7,S9を閉状態にし、スイッチング素子S1,S4,S5,S8,S10を開状態にする。 The eighth state is the state between t8 and t9 in FIG. 2, and in this eighth state, the control unit 50 closes the switching elements S2, S3, S6, S7, and S9, and opens the switching elements S1, S4, S5, S8, and S10.
 ここで、理解を容易にするために、1周期におけるスイッチS1-S8の夫々が閉状態になる期間と、スイッチS1-S8の夫々が開状態になる期間とは互いに等しいものとする。 To make it easier to understand, it is assumed that the period during which each of the switches S1-S8 is in a closed state during one cycle is equal to the period during which each of the switches S1-S8 is in an open state.
 図2に示されるように、第3レグ211のスイッチング素子S1と第4レグ212のスイッチング素子S4とは、予め設定された第1シフト量θ1だけずらして閉状態にされる。すなわち、図2の例では、t1において第3レグ211のスイッチング素子S1が閉状態されてから、第1シフト量θ1だけ経過した後、t3において第4レグ212のスイッチング素子S4が閉状態にされる。したがって、第3レグ211のスイッチング素子S1と第4レグ212のスイッチング素子S4とは、第1シフト量θ1だけずれて開状態になる。すなわち、t5において第3レグ211のスイッチング素子S1が開状態されてから、第1シフト量θ1だけ経過した後、t7において第4レグ212のスイッチング素子S4が開状態にされる。 As shown in FIG. 2, the switching element S1 of the third leg 211 and the switching element S4 of the fourth leg 212 are shifted to the closed state by a preset first shift amount θ1. That is, in the example of FIG. 2, the switching element S1 of the third leg 211 is closed at t1, and then the switching element S4 of the fourth leg 212 is closed at t3 after the first shift amount θ1 has elapsed. Therefore, the switching element S1 of the third leg 211 and the switching element S4 of the fourth leg 212 are shifted to the open state by a shift amount θ1. That is, the switching element S1 of the third leg 211 is opened at t5, and then the switching element S4 of the fourth leg 212 is opened at t7 after the first shift amount θ1 has elapsed.
 また、第3レグ211のスイッチング素子S2と第4レグ212のスイッチング素子S3とは、第1シフト量θ1だけずらして閉状態にされる。すなわち、図2の例では、t5において第3レグ211のスイッチング素子S2が閉状態されてから、第1シフト量θ1だけ経過した後、t7において第4レグ212のスイッチング素子S3が閉状態にされる。したがって、第3レグ211のスイッチング素子S2と第4レグ212のスイッチング素子S3とは、第1シフト量θ1だけずれて開状態になる。すなわち、t9において第3レグ211のスイッチング素子S2が開状態されてから、第1シフト量θ1だけ経過した後、t11において第4レグ212のスイッチング素子S3が開状態にされる。 Furthermore, the switching element S2 of the third leg 211 and the switching element S3 of the fourth leg 212 are shifted to the closed state by the first shift amount θ1. That is, in the example of FIG. 2, the switching element S2 of the third leg 211 is closed at t5, and then the switching element S3 of the fourth leg 212 is closed at t7 after the first shift amount θ1 has elapsed. Therefore, the switching element S2 of the third leg 211 and the switching element S3 of the fourth leg 212 are shifted to the open state by the first shift amount θ1. That is, the switching element S2 of the third leg 211 is opened at t9, and then the switching element S3 of the fourth leg 212 is opened at t11 after the first shift amount θ1 has elapsed.
 また、第5レグ221のスイッチング素子S5と第6レグ222のスイッチング素子S8とは、第1シフト量θ1だけずらして閉状態にされる。すなわち、図2の例では、t2において第5レグ221のスイッチング素子S5が閉状態されてから、第1シフト量θ1だけ経過した後、t4において第6レグ222のスイッチング素子S8が閉状態にされる。したがって、第5レグ221のスイッチング素子S5と第6レグ222のスイッチング素子S8とは、第1シフト量θ1だけずれて開状態になる。すなわち、t6において第5レグ221のスイッチング素子S5が開状態されてから、第1シフト量θ1だけ経過した後、t8において第6レグ222のスイッチング素子S8が開状態にされる。 Furthermore, the switching element S5 of the fifth leg 221 and the switching element S8 of the sixth leg 222 are shifted to the closed state by the first shift amount θ1. That is, in the example of FIG. 2, the switching element S5 of the fifth leg 221 is closed at t2, and then the switching element S8 of the sixth leg 222 is closed at t4 after the first shift amount θ1 has elapsed. Therefore, the switching element S5 of the fifth leg 221 and the switching element S8 of the sixth leg 222 are shifted to the open state by the first shift amount θ1. That is, the switching element S5 of the fifth leg 221 is opened at t6, and then the switching element S8 of the sixth leg 222 is opened at t8 after the first shift amount θ1 has elapsed.
 更に、第5レグ221のスイッチング素子S6と第6レグ222のスイッチング素子S7とは、第1シフト量θ1だけずらして閉状態にされる。すなわち、図2の例では、t6において第5レグ221のスイッチング素子S6が閉状態されてから、第1シフト量θ1だけ経過した後、t8において第6レグ222のスイッチング素子S7が閉状態にされる。したがって、第5レグ221のスイッチング素子S6と第6レグ222のスイッチング素子S7とは、第1シフト量θ1だけずれて開状態になる。すなわち、図2の例では、t10において第5レグ221のスイッチング素子S6が開状態されてから、第1シフト量θ1だけ経過した後、t12において第6レグ222のスイッチング素子S7が開状態にされる。 Furthermore, the switching element S6 of the fifth leg 221 and the switching element S7 of the sixth leg 222 are shifted to the closed state by the first shift amount θ1. That is, in the example of FIG. 2, the switching element S6 of the fifth leg 221 is closed at t6, and then the switching element S7 of the sixth leg 222 is closed at t8 after the first shift amount θ1 has elapsed. Therefore, the switching element S6 of the fifth leg 221 and the switching element S7 of the sixth leg 222 are shifted to the open state by the first shift amount θ1. That is, in the example of FIG. 2, the switching element S6 of the fifth leg 221 is opened at t10, and then the switching element S7 of the sixth leg 222 is opened at t12 after the first shift amount θ1 has elapsed.
 また、バッテリ3の充電時は、第5レグ221のスイッチング素子S5は、第3レグ211のスイッチング素子S1が閉状態にされてから、第2シフト量θ2だけ後において閉状態にされる。第2シフト量θ2とは第1シフト量θ1よりも小さいものである。 When the battery 3 is being charged, the switching element S5 of the fifth leg 221 is closed a second shift amount θ2 after the switching element S1 of the third leg 211 is closed. The second shift amount θ2 is smaller than the first shift amount θ1.
 例えば、第2シフト量θ2は、第1変換部22から出力する直流電力の電力指令値と、第1変換部22から出力された直流電力の電力算定値とに基づいて設定することが可能である。第1変換部22から出力する直流電力の電力指令値とは、上位システムから電源装置1(詳しくは、制御部50)に、電源装置1から出力する直流電力として要求される指令値である。制御部50は、電力指令値により、第1変換部22から出力する直流電力を構成する直流電圧の第1電圧値を設定し、第1変換部22から出力する直流電流の電流値を設定する。この電流値の電流を実現するように、予め記憶されている演算式に基づいて、第2シフト量θ2を設定する。以下の(1)式としてこの演算式が示される。 For example, the second shift amount θ2 can be set based on a power command value of the DC power output from the first conversion unit 22 and a power calculation value of the DC power output from the first conversion unit 22. The power command value of the DC power output from the first conversion unit 22 is a command value requested from a higher-level system to the power supply device 1 (more specifically, the control unit 50) as the DC power to be output from the power supply device 1. The control unit 50 sets a first voltage value of the DC voltage constituting the DC power output from the first conversion unit 22 based on the power command value, and sets a current value of the DC current output from the first conversion unit 22. The second shift amount θ2 is set based on a pre-stored arithmetic expression so as to realize a current of this current value. This arithmetic expression is shown as the following equation (1).
Figure JPOXMLDOC01-appb-M000002
 ただし、V1は一次巻線24Aの両端の電位、V2´は二次巻線24B及びリアクトルLの両端(すなわち、第5ノード221Nと第6ノード222Nとの間)の電位、Pは出力電力、θ2は第2シフト量、ωはスイッチング素子のスイッチング周波数、LはリアクトルLのインダクタンス値である。
Figure JPOXMLDOC01-appb-M000002
where V1 is the potential across both ends of the primary winding 24A, V2' is the potential across both ends of the secondary winding 24B and the reactor L (i.e., between the fifth node 221N and the sixth node 222N), P is the output power, θ2 is the second shift amount, ω is the switching frequency of the switching element, and L is the inductance value of the reactor L.
 一方、第1変換部22から出力された直流電力の電力算定値とは、第1変換部22から出力される直流電圧(出力電圧)の電圧値(好ましくは第1電圧値)と、第1変換部22から出力される直流電流(消費電流)の電流値との積により算定した算定値である。 On the other hand, the power calculation value of the DC power output from the first conversion unit 22 is a calculation value calculated by multiplying the voltage value (preferably the first voltage value) of the DC voltage (output voltage) output from the first conversion unit 22 by the current value of the DC current (consumption current) output from the first conversion unit 22.
 第1変換部22から出力される直流電圧(出力電圧)の電圧値(好ましくは第1電圧値)は、図示しない電圧センサ(例えば電圧計)により計測し、第1変換部22から出力される直流電流(消費電流)の電流値は、図示しない電流センサ(例えば電流計)により計測するとよい。これら2つの検出結果に基づいて制御部50が電力算定値を算定することが可能である。制御部50は、電力算定値が電力指令値と等しくなるように、フィードバック制御によりコンバータ20を制御する。 The voltage value (preferably the first voltage value) of the DC voltage (output voltage) output from the first conversion unit 22 is measured by a voltage sensor (e.g., a voltmeter) not shown, and the current value of the DC current (consumption current) output from the first conversion unit 22 is measured by a current sensor (e.g., an ammeter) not shown. The control unit 50 can calculate the power calculation value based on these two detection results. The control unit 50 controls the converter 20 by feedback control so that the power calculation value is equal to the power command value.
 図2の例では、第2シフト量θ2は第1シフト量θ1の2分の1としている。したがって、図2に示されるように、第5レグ221のスイッチング素子S5は、第3レグ211のスイッチング素子S1が閉状態にされるt1よりも第2シフト量θ2だけ後のt2において閉状態にされる。また、バッテリ3の充電時は、第5レグ221のスイッチング素子S5は、第3レグ211のスイッチング素子S1が開状態にされる第2シフト量θ2だけ後において開状態にされる。すなわち、バッテリ3の充電時は、図2に示されるように、第5レグ221のスイッチング素子S5は、第3レグ211のスイッチング素子S1が開状態にされるt5よりも第2シフト量θ2だけ後のt6において開状態にされる。 In the example of FIG. 2, the second shift amount θ2 is set to half the first shift amount θ1. Therefore, as shown in FIG. 2, the switching element S5 of the fifth leg 221 is closed at t2, which is the second shift amount θ2 after t1 at which the switching element S1 of the third leg 211 is closed. Also, when the battery 3 is being charged, the switching element S5 of the fifth leg 221 is opened at the second shift amount θ2 after t5 at which the switching element S1 of the third leg 211 is opened. That is, when the battery 3 is being charged, as shown in FIG. 2, the switching element S5 of the fifth leg 221 is opened at t6, which is the second shift amount θ2 after t5 at which the switching element S1 of the third leg 211 is opened.
 また、バッテリ3の充電時は、第6レグ222のスイッチング素子S7は、第4レグ212のスイッチング素子S3が閉状態にされる第2シフト量θ2だけ後において閉状態にされる。すなわち、図2に示されるように、第6レグ222のスイッチング素子S7は、第4レグ212のスイッチング素子S3が閉状態にされるt7よりも第2シフト量θ2だけ後のt8において閉状態にされる。また、バッテリ3の充電時は、第6レグ222のスイッチング素子S7は、第4レグ212のスイッチング素子S3が開状態にされる第2シフト量θ2だけ後において開状態にされる。すなわち、バッテリ3の充電時は、図2に示されるように、第6レグ222のスイッチング素子S7は、第4レグ212のスイッチング素子S3が開状態にされるt3よりも第2シフト量θ2だけ後のt4において開状態にされる。 When the battery 3 is being charged, the switching element S7 of the sixth leg 222 is closed the second shift amount θ2 after the switching element S3 of the fourth leg 212 is closed. That is, as shown in FIG. 2, the switching element S7 of the sixth leg 222 is closed at t8, which is the second shift amount θ2 after t7, when the switching element S3 of the fourth leg 212 is closed. When the battery 3 is being charged, the switching element S7 of the sixth leg 222 is opened the second shift amount θ2 after t3, when the switching element S3 of the fourth leg 212 is opened. That is, when the battery 3 is being charged, as shown in FIG. 2, the switching element S7 of the sixth leg 222 is opened at t4, which is the second shift amount θ2 after t3, when the switching element S3 of the fourth leg 212 is opened.
 また、上述したように、第2変換部23は同期整流により駆動される。具体的には、スイッチング素子S9及びスイッチング素子S10が同期整流により駆動される。本実施形態では、図2に示されるように、スイッチング素子S9はt3からt5の間に亘って開状態とされ、スイッチング素子S10はt7からt9の間に亘って開状態とされる。これにより、図2に示されるように、スイッチング素子S9には、I9で示されるような波形の電流が流れ、スイッチング素子S10には、I10で示されるような波形の電流が流れる。 Furthermore, as described above, the second conversion unit 23 is driven by synchronous rectification. Specifically, the switching element S9 and the switching element S10 are driven by synchronous rectification. In this embodiment, as shown in FIG. 2, the switching element S9 is in an open state from t3 to t5, and the switching element S10 is in an open state from t7 to t9. As a result, as shown in FIG. 2, a current having a waveform as indicated by I9 flows through the switching element S9, and a current having a waveform as indicated by I10 flows through the switching element S10.
 例えば、第2変換部23が第1三次巻線24CAに蓄えられた電気エネルギーを整流する場合には、第3リアクトルコイル23L、第2コンデンサ26、ダイオードS9Dを介して電流が流れる。制御部50は、ダイオードS9Dにおいて順方向に電流が流れたタイミングで、開状態にあるスイッチング素子S9を閉状態にする。同様に、第2変換部23が第2三次巻線24CBに蓄えられた電気エネルギーを整流する場合には、第3リアクトルコイル23L、第2コンデンサ26、ダイオードS10Dを介して電流が流れる。制御部50は、ダイオードS10Dにおいて順方向に電流が流れたタイミングで、開状態にあるスイッチング素子S10を閉状態にする。ダイオードS9DやダイオードS10Dに順方向に電流が流れている場合、ダイオードS9DやダイオードS10Dにおける消費電力は、当該電流と順方向電圧との積からなる値となる。一方、スイッチング素子S9やスイッチング素子S10にドレーン電流が流れている場合、スイッチング素子S9やスイッチング素子S10における消費電力は、当該ドレーン電流の平方とオン抵抗との積からなる値となる。スイッチング素子S9やスイッチング素子S10における消費電力は、ダイオードS9DやダイオードS10Dにおける消費電力よりも十分に小さいため、損失が小さくなり、第2変換部23における効率(変換効率)の低下を抑制できる。したがって、上記のように第2変換部23を駆動することで、効率よく電圧を出力することが可能となる。 For example, when the second conversion unit 23 rectifies the electrical energy stored in the first tertiary winding 24CA, a current flows through the third reactor coil 23L, the second capacitor 26, and the diode S9D. The control unit 50 closes the switching element S9, which is in the open state, when a forward current flows through the diode S9D. Similarly, when the second conversion unit 23 rectifies the electrical energy stored in the second tertiary winding 24CB, a current flows through the third reactor coil 23L, the second capacitor 26, and the diode S10D. The control unit 50 closes the switching element S10, which is in the open state, when a forward current flows through the diode S10D. When a forward current flows through the diode S9D or the diode S10D, the power consumption of the diode S9D or the diode S10D is a value obtained by multiplying the current by the forward voltage. On the other hand, when a drain current flows through switching element S9 or switching element S10, the power consumption in switching element S9 or switching element S10 is the product of the square of the drain current and the on-resistance. Since the power consumption in switching element S9 or switching element S10 is sufficiently smaller than the power consumption in diode S9D or diode S10D, the loss is reduced and the decrease in efficiency (conversion efficiency) in second conversion unit 23 can be suppressed. Therefore, by driving second conversion unit 23 as described above, it is possible to output a voltage efficiently.
 また、本実施形態の第2変換部23は、端子20Cと端子20Dとの間に負荷が接続されていない場合には、第3リアクトルコイル23Lに流れる電流(平均値)を零にする必要がある。このとき、第3リアクトルコイル23Lには、図3の(A)に示されるように、正電流(I>0)と負電流(I<0)とが流れる。正電流は、図3の(B)に示されるように、第3リアクトルコイル23L、第2コンデンサ26、スイッチング素子S9を介して流れる電流や、第3リアクトルコイル23L、第2コンデンサ26、スイッチング素子S10を介して流れる電流である。負電流は、図3の(C)に示されるように、スイッチング素子S9、第2コンデンサ26、第3リアクトルコイル23Lを介して流れる電流や、スイッチング素子S10、第2コンデンサ26、第3リアクトルコイル23Lを介して流れる電流である。特に、このような負電流を第2変換部23に流れるようにするには、スイッチング素子S9やスイッチング素子S10を介して電流が流れる必要があるため、ダイオードS9DやダイオードS10Dだけでなく、第2変換部23にスイッチング素子S9やスイッチング素子S10が設けられる。 In addition, in the second conversion unit 23 of this embodiment, when no load is connected between the terminals 20C and 20D, it is necessary to make the current (average value) flowing through the third reactor coil 23L zero. At this time, as shown in FIG. 3A, a positive current (I>0) and a negative current (I<0) flow through the third reactor coil 23L. As shown in FIG. 3B, the positive current is the current flowing through the third reactor coil 23L, the second capacitor 26, and the switching element S9, or the current flowing through the third reactor coil 23L, the second capacitor 26, and the switching element S10. As shown in FIG. 3C, the negative current is the current flowing through the switching element S9, the second capacitor 26, and the third reactor coil 23L, or the current flowing through the switching element S10, the second capacitor 26, and the third reactor coil 23L. In particular, in order for such a negative current to flow through the second conversion unit 23, the current must flow through switching element S9 and switching element S10, so in addition to diodes S9D and S10D, switching elements S9 and S10 are provided in the second conversion unit 23.
 また、上述したように、第2変換部23には、抵抗器Rとコンデンサ27とでスナバ回路が形成されている。これにより、スイッチング素子S9及びスイッチング素子S10の双方が開状態であるときに、第1三次巻線24CAに蓄えられた電気エネルギーを、ダイオード23D1、抵抗器R、第3リアクトルコイル23Lを介して電流を流すことで低減でき、第2三次巻線24CBに蓄えられた電気エネルギーを、ダイオード23D2、抵抗器R、第3リアクトルコイル23Lを介して電流を流すことで低減できる。 As described above, the second conversion unit 23 has a snubber circuit formed by the resistor R and the capacitor 27. As a result, when both the switching element S9 and the switching element S10 are in the open state, the electrical energy stored in the first tertiary winding 24CA can be reduced by passing a current through the diode 23D1, the resistor R, and the third reactor coil 23L, and the electrical energy stored in the second tertiary winding 24CB can be reduced by passing a current through the diode 23D2, the resistor R, and the third reactor coil 23L.
 また、上述したように、スイッチング素子S9はt3からt5の間に亘って開状態とされ、スイッチング素子S10はt7からt9の間に亘って開状態とされる。第2変換部23から出力される直流電圧の第2電圧値は、スイッチング素子S9が開状態とされる期間、及びスイッチング素子S10が開状態とされる期間により変更することが可能である。このスイッチング素子S9が開状態にされる期間、及びスイッチング素子S10が開状態にされる期間は、(キャリア周期/2)-第1シフト量θ1に相当する。したがって、本実施形態では、第2電圧値の直流電圧は、第1シフト量θ1に基づいて制御することが可能である。 As described above, switching element S9 is open from t3 to t5, and switching element S10 is open from t7 to t9. The second voltage value of the DC voltage output from the second conversion unit 23 can be changed depending on the period during which switching element S9 is open and the period during which switching element S10 is open. The period during which switching element S9 is open and the period during which switching element S10 is open correspond to (carrier period/2) - first shift amount θ1. Therefore, in this embodiment, the DC voltage of the second voltage value can be controlled based on the first shift amount θ1.
 ここで、第2変換部23はバッテリ3に充電されている電気エネルギーに基づいて第2電圧値の直流電圧で構成される直流電力を生成することも可能である。この場合には、供給部2からの直流電力の供給が停止され、バッテリ3の直流電力がトランス24の二次巻線24Bから一次巻線24Aに電力伝送され、一次巻線24Aから三次巻線24Cへ電力伝送される。このようなバッテリ3からの直流電力に基づいて、第2変換部23から直流電力を出力する場合における、制御部50によるコンバータ20に設けられる複数のスイッチング素子の夫々を駆動するタイミングチャートが図4に示される。この場合も、制御部50は、スイッチング素子S1-S10を、第1状態-第8状態の8個の状態に、順次、切り替えながら駆動する。 Here, the second conversion unit 23 can also generate DC power consisting of a DC voltage of a second voltage value based on the electrical energy stored in the battery 3. In this case, the supply of DC power from the supply unit 2 is stopped, and the DC power of the battery 3 is transmitted from the secondary winding 24B of the transformer 24 to the primary winding 24A, and from the primary winding 24A to the tertiary winding 24C. FIG. 4 shows a timing chart of the control unit 50 driving each of the multiple switching elements provided in the converter 20 when DC power is output from the second conversion unit 23 based on such DC power from the battery 3. In this case, the control unit 50 drives the switching elements S1-S10 while switching them sequentially between eight states from the first state to the eighth state.
 バッテリ3からの直流電力に基づいて、第2変換部23から直流電力を出力する場合における第1状態は図4のt1-t2の間の状態であり、この第1状態では、制御部50は、スイッチング素子S1,S3,S5,S7,S9,S10を閉状態にし、スイッチング素子S2,S4,S6,S8を開状態にする。 The first state in which DC power is output from the second conversion unit 23 based on DC power from the battery 3 is the state between t1 and t2 in FIG. 4. In this first state, the control unit 50 closes the switching elements S1, S3, S5, S7, S9, and S10, and opens the switching elements S2, S4, S6, and S8.
 第2状態は図4のt2-t3の間の状態であり、この第2状態では、制御部50は、スイッチング素子S1,S3,S5,S8,S9,S10を閉状態にし、スイッチング素子S2,S4,S6,S7を開状態にする。 The second state is the state between t2 and t3 in FIG. 4, and in this second state, the control unit 50 closes the switching elements S1, S3, S5, S8, S9, and S10, and opens the switching elements S2, S4, S6, and S7.
 第3状態は図4のt3-t4の間の状態であり、この第3状態では、制御部50は、スイッチング素子S1,S4,S5,S8,S10を閉状態にし、スイッチング素子S2,S3,S6,S7,S9を開状態にする。 The third state is the state between t3 and t4 in FIG. 4, and in this third state, the control unit 50 closes the switching elements S1, S4, S5, S8, and S10, and opens the switching elements S2, S3, S6, S7, and S9.
 第4状態は図2のt4-t5の間の状態であり、この第4状態では、制御部50は、スイッチング素子S1,S4,S6,S8,S10を閉状態にし、スイッチング素子S2,S3,S5,S7,S9を開状態にする。 The fourth state is the state between t4 and t5 in FIG. 2, and in this fourth state, the control unit 50 closes the switching elements S1, S4, S6, S8, and S10, and opens the switching elements S2, S3, S5, S7, and S9.
 第5状態は図2のt5-t6の間の状態であり、この第5状態では、制御部50は、スイッチング素子S2,S4,S6,S8,S9,S10を閉状態にし、スイッチング素子S1,S3,S5,S7を開状態にする。 The fifth state is the state between t5 and t6 in FIG. 2, and in this fifth state, the control unit 50 closes the switching elements S2, S4, S6, S8, S9, and S10, and opens the switching elements S1, S3, S5, and S7.
 第6状態は図2のt6-t7の間の状態であり、この第6状態では、制御部50は、スイッチング素子S2,S4,S6,S7,S9,S10を閉状態にし、スイッチング素子S1,S3,S5,S8を開状態にする。 The sixth state is the state between t6 and t7 in FIG. 2, and in this sixth state, the control unit 50 closes the switching elements S2, S4, S6, S7, S9, and S10, and opens the switching elements S1, S3, S5, and S8.
 第7状態は図2のt7-t8の間の状態であり、この第7状態では、制御部50は、スイッチング素子S2,S3,S6,S7,S9を閉状態にし、スイッチング素子S1,S4,S5,S8,S10を開状態にする。 The seventh state is the state between t7 and t8 in FIG. 2, and in this seventh state, the control unit 50 closes the switching elements S2, S3, S6, S7, and S9, and opens the switching elements S1, S4, S5, S8, and S10.
 第8状態は図2のt8-t9の間の状態であり、この第8状態では、制御部50は、スイッチング素子S2,S3,S5,S7,S9を閉状態にし、スイッチング素子S1,S4,S6,S8,S10を開状態にする。 The eighth state is the state between t8 and t9 in FIG. 2, and in this eighth state, the control unit 50 closes the switching elements S2, S3, S5, S7, and S9, and opens the switching elements S1, S4, S6, S8, and S10.
 ここで、理解を容易にするために、1周期におけるスイッチS1-S8の夫々が閉状態になる期間と、スイッチS1-S8の夫々が開状態になる期間とは互いに等しいものとする。 To make it easier to understand, it is assumed that the period during which each of the switches S1-S8 is in a closed state during one cycle is equal to the period during which each of the switches S1-S8 is in an open state.
 スイッチング素子S1、スイッチング素子S2、スイッチング素子S3、及びスイッチング素子S4は、上述したバッテリ3の充電時と同様に駆動される。すなわち、図4に示されるように、第3レグ211のスイッチング素子S1と第4レグ212のスイッチング素子S4とは、予め設定された第1シフト量θ1だけずらして閉状態にされ、第3レグ211のスイッチング素子S1と第4レグ212のスイッチング素子S4とは、第1シフト量θ1だけずれて開状態にされる。 Switching elements S1, S2, S3, and S4 are driven in the same manner as when charging battery 3 described above. That is, as shown in FIG. 4, switching element S1 of third leg 211 and switching element S4 of fourth leg 212 are shifted by a preset first shift amount θ1 to be in a closed state, and switching element S1 of third leg 211 and switching element S4 of fourth leg 212 are shifted by a first shift amount θ1 to be in an open state.
 また、第3レグ211のスイッチング素子S2と第4レグ212のスイッチング素子S3とは、第1シフト量θ1だけずらして閉状態にされ、第3レグ211のスイッチング素子S2と第4レグ212のスイッチング素子S3とは、第1シフト量θ1だけずれて開状態にされる。 Furthermore, the switching element S2 of the third leg 211 and the switching element S3 of the fourth leg 212 are shifted by the first shift amount θ1 and are put into a closed state, and the switching element S2 of the third leg 211 and the switching element S3 of the fourth leg 212 are shifted by the first shift amount θ1 and are put into an open state.
 また、第5レグ221のスイッチング素子S5と第6レグ222のスイッチング素子S8とは、第1シフト量θ1だけずらして閉状態にされ、第5レグ221のスイッチング素子S5と第6レグ222のスイッチング素子S8とは、第1シフト量θ1だけずれて開状態にされる。 Furthermore, the switching element S5 of the fifth leg 221 and the switching element S8 of the sixth leg 222 are shifted by the first shift amount θ1 and put into a closed state, and the switching element S5 of the fifth leg 221 and the switching element S8 of the sixth leg 222 are shifted by the first shift amount θ1 and put into an open state.
 更に、第5レグ221のスイッチング素子S6と第6レグ222のスイッチング素子S7とは、第1シフト量θ1だけずらして閉状態にされ、第5レグ221のスイッチング素子S6と第6レグ222のスイッチング素子S7とは、第1シフト量θ1だけずれて開状態にされる。 Furthermore, the switching element S6 of the fifth leg 221 and the switching element S7 of the sixth leg 222 are shifted by the first shift amount θ1 and are put into a closed state, and the switching element S6 of the fifth leg 221 and the switching element S7 of the sixth leg 222 are shifted by the first shift amount θ1 and are put into an open state.
 また、バッテリ3に充電された電気エネルギーに基づいて第2電圧値の直流電圧で構成される直流電力を生成する時は、第5レグ221のスイッチング素子S5は、第3レグ211のスイッチング素子S1が閉状態にされてから、第2シフト量θ2だけ前において閉状態にされる。すなわち、図4に示されるように、第5レグ221のスイッチング素子S5は、第3レグ211のスイッチング素子S1が閉状態にされるt9から第2シフト量θ2だけ前のt8において閉状態にされる。また、第5レグ221のスイッチング素子S5は、第3レグ211のスイッチング素子S1が開状態にされる第2シフト量θ2だけ前において開状態にされる。すなわち、図4に示されるように、第5レグ221のスイッチング素子S5は、第3レグ211のスイッチング素子S1が開状態にされるt5から第2シフト量θ2だけ前のt4において開状態にされる。 When generating DC power consisting of a DC voltage of the second voltage value based on the electric energy charged in the battery 3, the switching element S5 of the fifth leg 221 is closed the second shift amount θ2 before the switching element S1 of the third leg 211 is closed. That is, as shown in FIG. 4, the switching element S5 of the fifth leg 221 is closed at t8, which is the second shift amount θ2 before t9, when the switching element S1 of the third leg 211 is closed. Also, the switching element S5 of the fifth leg 221 is opened the second shift amount θ2 before the switching element S1 of the third leg 211 is opened. That is, as shown in FIG. 4, the switching element S5 of the fifth leg 221 is opened at t4, which is the second shift amount θ2 before t5, when the switching element S1 of the third leg 211 is opened.
 また、第6レグ222のスイッチング素子S7は、第4レグ212のスイッチング素子S3が閉状態にされてから、第2シフト量θ2だけ前において閉状態にされる。すなわち、図4に示されるように、第6レグ222のスイッチング素子S7は、第4レグ212のスイッチング素子S3が閉状態にされるt7から第2シフト量θ2だけ前のt6において閉状態にされる。また、第6レグ222のスイッチング素子S7は、第4レグ212のスイッチング素子S3が開状態にされる第2シフト量θ2だけ前において開状態にされる。すなわち、図4に示されるように、第6レグ222のスイッチング素子S7は、第4レグ212のスイッチング素子S3が開状態にされるt9から第2シフト量θ2だけ前のt10において開状態にされる。 Also, the switching element S7 of the sixth leg 222 is closed the second shift amount θ2 before the switching element S3 of the fourth leg 212 is closed. That is, as shown in FIG. 4, the switching element S7 of the sixth leg 222 is closed at t6, which is the second shift amount θ2 before t7, when the switching element S3 of the fourth leg 212 is closed. Also, the switching element S7 of the sixth leg 222 is opened the second shift amount θ2 before the switching element S3 of the fourth leg 212 is opened. That is, as shown in FIG. 4, the switching element S7 of the sixth leg 222 is opened at t10, which is the second shift amount θ2 before t9, when the switching element S3 of the fourth leg 212 is opened.
 また、図4に示されるように、スイッチング素子S9はt3からt5の間に亘って開状態とされ、スイッチング素子S10はt7からt9の間に亘って開状態とされる。これにより、バッテリ3に充電された電気エネルギーに基づいて第2電圧値の直流電圧で構成される直流電力を生成する時も、バッテリ3を充電する時と同様に、図4に示されるように、スイッチング素子S9には、I9で示されるような波形の電流が流れ、スイッチング素子S10には、I10で示されるような波形の電流が流れる。したがって、第1三次巻線24CAを流れる電流と第2三次巻線24CBを流れる電流との合成電流の平均値が零に設定可能である。 Also, as shown in FIG. 4, switching element S9 is open between t3 and t5, and switching element S10 is open between t7 and t9. As a result, when generating DC power consisting of a DC voltage of the second voltage value based on the electrical energy stored in battery 3, a current having a waveform as shown by I9 flows through switching element S9, and a current having a waveform as shown by I10 flows through switching element S10, as shown in FIG. 4, in the same way as when charging battery 3. Therefore, the average value of the combined current of the current flowing through first tertiary winding 24CA and the current flowing through second tertiary winding 24CB can be set to zero.
 以上のように構成することで、交流電力により電源装置1によりバッテリ3を充電する際に、バッテリ3を充電することが可能な第1電圧値の直流電圧で構成される直流電圧を出力すると共に、第2電圧値の直流電圧値で構成される直流電圧を出力することが可能となる。また、バッテリ3からの直流電力により、第2電圧値の直流電圧値で構成される直流電圧を出力することが可能となる。 By configuring as described above, when the power supply device 1 charges the battery 3 with AC power, it is possible to output a DC voltage consisting of a DC voltage of a first voltage value capable of charging the battery 3, and to output a DC voltage consisting of a DC voltage value of a second voltage value. In addition, it is possible to output a DC voltage consisting of a DC voltage value of the second voltage value using DC power from the battery 3.
〔その他の実施形態〕
 上記実施形態では、インバータ10及びコンバータ20が有するスイッチング素子が、n型MOS-FETであるとして説明したが、スイッチング素子はp型MOS-FETでもよいし、FETとは異なるスイッチング素子(例えばIGBTやバイポーラトランジスタ)であってもよい。
Other embodiments
In the above embodiment, the switching elements of the inverter 10 and the converter 20 are described as n-type MOS-FETs. However, the switching elements may be p-type MOS-FETs or switching elements other than FETs (e.g., IGBTs or bipolar transistors).
 上記実施形態では、インバータ10及びコンバータ20がスイッチング素子により交流電力を直流電力に変換するとして説明したが、インバータ10はダイオードにより交流電力を直流電力に変換するように構成してもよい。 In the above embodiment, the inverter 10 and converter 20 are described as converting AC power to DC power using switching elements, but the inverter 10 may also be configured to convert AC power to DC power using diodes.
 上記実施形態では、制御部50がスイッチング素子を第1状態-第8状態により駆動し、夫々の状態を挙げて説明した。しかしながら、第1状態-第8状態の8個の状態よりも多い状態に基づいて駆動することも可能であるし、7個以下の状態に基づいて駆動することも可能である。また、夫々の状態におけるスイッチング素子の状態は例示であって、上記実施形態とは異なる形態でスイッチング素子を駆動することも可能である。 In the above embodiment, the control unit 50 drives the switching element in the first state to the eighth state, and each state is described. However, it is also possible to drive the switching element based on more than eight states from the first state to the eighth state, or based on seven states or less. In addition, the state of the switching element in each state is merely an example, and it is also possible to drive the switching element in a form different from that of the above embodiment.
 上記実施形態では、インバータ10に供給される交流電力は、商用電源による交流電力であるとして説明したが、インバータ10に供給される交流電力は、商用電源の交流電力とは異なる交流電力であってもよい。 In the above embodiment, the AC power supplied to the inverter 10 is described as AC power from a commercial power source, but the AC power supplied to the inverter 10 may be AC power different from the AC power of the commercial power source.
 上記実施形態では、トランス24の三次巻線24Cは、第1三次巻線24CAと第2三次巻線24CBとから構成されるとして説明したが、三次巻線24Cは1つの巻線であってもよいし、3つ以上の巻線であってもよい。 In the above embodiment, the tertiary winding 24C of the transformer 24 is described as being composed of a first tertiary winding 24CA and a second tertiary winding 24CB, but the tertiary winding 24C may be a single winding or may be three or more windings.
 上記実施形態では、第1三次巻線24CAを流れる電流と第2三次巻線24CBを流れる電流との合成電流の平均値が零であるとして説明したが、第1三次巻線24CAを流れる電流と第2三次巻線24CBを流れる電流との合成電流の平均値は零でなくてもよく、例えば第1三次巻線24CAを流れる電流と第2三次巻線24CBを流れる電流とが、所定の直流電流に重畳されたような電流であってもよい。 In the above embodiment, it has been described that the average value of the composite current of the current flowing through the first tertiary winding 24CA and the current flowing through the second tertiary winding 24CB is zero. However, the average value of the composite current of the current flowing through the first tertiary winding 24CA and the current flowing through the second tertiary winding 24CB does not have to be zero. For example, the current flowing through the first tertiary winding 24CA and the current flowing through the second tertiary winding 24CB may be a current in which a predetermined DC current is superimposed.
 上記実施形態では、第2電圧値の直流電圧は、第1シフト量θ1に基づいて制御されるとして説明したが、第2電圧値の直流電圧は、例えばフィードバック制御により制御してもよい。 In the above embodiment, the DC voltage of the second voltage value is described as being controlled based on the first shift amount θ1, but the DC voltage of the second voltage value may also be controlled by, for example, feedback control.
 上記実施形態では、第2シフト量θ2は、第1変換部22から出力する直流電力の電力指令値と、第1変換部22から出力された直流電力の電力算定値とに基づいて設定されるとして説明した。しかしながら、第2シフト量θ2は、予め設定しておくように構成してもよいし、例えばコンバータ20の負荷の種類に応じて適宜、変更するように構成することも可能である。 In the above embodiment, the second shift amount θ2 is described as being set based on the power command value of the DC power output from the first conversion unit 22 and the power calculation value of the DC power output from the first conversion unit 22. However, the second shift amount θ2 may be configured to be set in advance, or may be configured to be changed as appropriate depending on, for example, the type of load on the converter 20.
〔上記実施形態の概要〕
 以下、上記において説明した電源装置1の概要について説明する。
[Summary of the above embodiment]
The power supply device 1 described above will now be outlined.
(1)本発明に係る電源装置1の特徴構成は、ハイサイドのスイッチング素子11H及びローサイドのスイッチング素子11Lが直列に接続された第1レグ11とハイサイドのスイッチング素子12H及びローサイドのスイッチング素子12Lが直列に接続された第2レグ12とが互いに並列に設けられ、交流電力を直流電力に変換するインバータ10と、一次巻線24A、二次巻線24B、及び三次巻線24Cを有する絶縁型のトランス(マルチポートトランス)24が設けられ、インバータ10からの直流電力を、バッテリ3を充電する第1電圧値の直流電圧で構成される直流電力に変換するコンバータ20と、を備え、コンバータ20は、インバータ10からの直流電力を所定の周期で振幅させて一次巻線24Aに入力する入力部21と、二次巻線24Bに生じる交流電力を、第1電圧値の直流電圧で構成される直流電力に変換する第1変換部22と、三次巻線24Cに生じる交流電力を、第1電圧値よりも低い第2電圧値の直流電圧で構成される直流電力に変換する第2変換部23と、を有し、第2変換部23は、三次巻線24Cに生じる交流電力を、同期整流により第2電圧値の直流電圧で構成される直流電力に変換する点にある。 (1) The characteristic configuration of the power supply device 1 according to the present invention is that a first leg 11 in which a high-side switching element 11H and a low-side switching element 11L are connected in series and a second leg 12 in which a high-side switching element 12H and a low-side switching element 12L are connected in series are provided in parallel with each other, an inverter 10 that converts AC power to DC power, and an isolated transformer (multi-port transformer) 24 having a primary winding 24A, a secondary winding 24B, and a tertiary winding 24C are provided, and the DC power from the inverter 10 is configured as a DC voltage of a first voltage value that charges a battery 3. The converter 20 has an input section 21 that oscillates the DC power from the inverter 10 at a predetermined period and inputs it to the primary winding 24A, a first conversion section 22 that converts the AC power generated in the secondary winding 24B into DC power composed of a DC voltage of a first voltage value, and a second conversion section 23 that converts the AC power generated in the tertiary winding 24C into DC power composed of a DC voltage of a second voltage value lower than the first voltage value, and the second conversion section 23 converts the AC power generated in the tertiary winding 24C into DC power composed of a DC voltage of the second voltage value by synchronous rectification.
 本特徴構成によれば、コンバータ20の第1変換部22から第1電圧値の直流電圧で構成される直流電力を出力すると同時に、第2変換部23から第2電圧値の直流電圧で構成される直流電力を出力することが可能となる。また、上述した特徴構成によれば、第1電圧値の直流電圧で構成される直流電力の出力と、第2電圧値の直流電圧で構成される直流電力の出力とを、簡素な構成で容易に行うことが可能となる。 This characteristic configuration makes it possible to output DC power consisting of a DC voltage of a first voltage value from the first conversion unit 22 of the converter 20, and at the same time output DC power consisting of a DC voltage of a second voltage value from the second conversion unit 23. Furthermore, the above-mentioned characteristic configuration makes it possible to easily output DC power consisting of a DC voltage of a first voltage value and DC power consisting of a DC voltage of a second voltage value with a simple configuration.
(2)(1)に記載の電源装置1において、入力部21は、ハイサイドのスイッチング素子S1及びローサイドのスイッチング素子S2が直列に接続された第3レグ211とハイサイドのスイッチング素子S3及びローサイドのスイッチング素子S4が直列に接続された第4レグ212とが互いに並列に設けられ、第1変換部22は、ハイサイドのスイッチング素子S5及びローサイドのスイッチング素子S6が直列に接続された第5レグ221とハイサイドのスイッチング素子S7及びローサイドのスイッチング素子S8が直列に接続された第6レグ222とが互いに並列に設けられ、第3レグ211のハイサイドのスイッチング素子S1と第4レグ212のローサイドのスイッチング素子S4とが予め設定された第1シフト量だけずらして閉状態にされ、第3レグ211のローサイドのスイッチング素子S2と第4レグ212のハイサイドのスイッチング素子S3とが第1シフト量だけずらして閉状態にされ、第5レグ221のハイサイドのスイッチング素子S5と第6レグ222のローサイドのスイッチング素子S8とが第1シフト量だけずらして閉状態にされ、第5レグ221のローサイドのスイッチング素子S6と第6レグ222のハイサイドのスイッチング素子S7とが第1シフト量だけずらして閉状態にされ、バッテリ3の充電時は、第5レグ221のハイサイドのスイッチング素子S5は、第3レグ211のハイサイドのスイッチング素子S1が閉状態にされる第1シフト量よりも小さい第2シフト量だけ後において閉状態にされ、第6レグ222のハイサイドのスイッチング素子SS7は、第4レグ212のハイサイドのスイッチング素子S3が閉状態にされる第2シフト量だけ後において閉状態にされると好適である。 (2) In the power supply device 1 described in (1), the input section 21 includes a third leg 211 in which a high-side switching element S1 and a low-side switching element S2 are connected in series, and a fourth leg 212 in which a high-side switching element S3 and a low-side switching element S4 are connected in series, which are provided in parallel to each other; the first conversion section 22 includes a fifth leg 221 in which a high-side switching element S5 and a low-side switching element S6 are connected in series, and a sixth leg 222 in which a high-side switching element S7 and a low-side switching element S8 are connected in series, which are provided in parallel to each other; the high-side switching element S1 of the third leg 211 and the low-side switching element S4 of the fourth leg 212 are shifted by a preset first shift amount to be in a closed state; and the low-side switching element S2 of the third leg 211 and the fourth leg 212 are shifted by a preset first shift amount to be in a closed state. The high-side switching element S3 of the fifth leg 221 and the low-side switching element S8 of the sixth leg 222 are closed with a shift of the first shift amount, the high-side switching element S5 of the fifth leg 221 and the low-side switching element S8 of the sixth leg 222 are closed with a shift of the first shift amount, the low-side switching element S6 of the fifth leg 221 and the high-side switching element S7 of the sixth leg 222 are closed with a shift of the first shift amount, and when charging the battery 3, the high-side switching element S5 of the fifth leg 221 is closed a second shift amount smaller than the first shift amount by which the high-side switching element S1 of the third leg 211 is closed, and the high-side switching element SS7 of the sixth leg 222 is closed a second shift amount by which the high-side switching element S3 of the fourth leg 212 is closed.
 本構成によれば、インバータ10に供給される交流電力に基づいて、バッテリ3の充電を行うと同時に、バッテリ3を充電する直流電圧の電圧値とは異なる電圧値の直流電圧を、バッテリとは異なる負荷に対して供給することができる。 With this configuration, the battery 3 can be charged based on the AC power supplied to the inverter 10, and at the same time, a DC voltage with a voltage value different from the DC voltage that charges the battery 3 can be supplied to a load other than the battery.
(3)(1)に記載の電源装置1において、入力部21は、ハイサイドのスイッチング素子S1及びローサイドのスイッチング素子S2が直列に接続された第3レグ211とハイサイドのスイッチング素子S3及びローサイドのスイッチング素子S4が直列に接続された第4レグ212とが互いに並列に設けられ、第1変換部22は、ハイサイドのスイッチング素子S5及びローサイドのスイッチング素子S6が直列に接続された第5レグ221とハイサイドのスイッチング素子S7及びローサイドのスイッチング素子S8が直列に接続された第6レグ222とが互いに並列に設けられ、第3レグ211のハイサイドのスイッチング素子S1と第4レグ212のローサイドのスイッチング素子S3とが予め設定された第1シフト量だけずらして閉状態にされ、第3レグ211のローサイドのスイッチング素子S2と第4レグ212のハイサイドのスイッチング素子S3とが第1シフト量だけずらして閉状態にされ、第5レグ221のハイサイドのスイッチング素子S5と第6レグ222のローサイドのスイッチング素子S8とが第1シフト量だけずらして閉状態にされ、第5レグ221のローサイドのスイッチング素子S6と第6レグ222のハイサイドのスイッチング素子S7とが第1シフト量だけずらして閉状態にされ、第2変換部23が、バッテリ3に充電された電気エネルギーに基づいて第2電圧値の直流電圧で構成される直流電力を生成する時は、第5レグ221のハイサイドのスイッチング素子S5は、第3レグ211のハイサイドのスイッチング素子S1が閉状態にされてから、第1シフト量よりも小さい第2シフト量だけ前において閉状態にされ、第6レグ222のハイサイドのスイッチング素子S7は、第4レグ212のハイサイドのスイッチング素子S3が開状態にされてから、第2シフト量だけ前において閉状態にされると好適である。 (3) In the power supply device 1 described in (1), the input unit 21 includes a third leg 211 in which a high-side switching element S1 and a low-side switching element S2 are connected in series, and a fourth leg 212 in which a high-side switching element S3 and a low-side switching element S4 are connected in series, which are provided in parallel to each other; the first conversion unit 22 includes a fifth leg 221 in which a high-side switching element S5 and a low-side switching element S6 are connected in series, and a sixth leg 222 in which a high-side switching element S7 and a low-side switching element S8 are connected in series, which are provided in parallel to each other; the high-side switching element S1 of the third leg 211 and the low-side switching element S3 of the fourth leg 212 are shifted by a preset first shift amount to be in a closed state; and the low-side switching element S2 of the third leg 211 and the high-side switching element S3 of the fourth leg 212 are shifted by a first shift amount to be in a closed state. When the second conversion unit 23 generates DC power consisting of a DC voltage of a second voltage value based on the electric energy stored in the battery 3, the high-side switching element S5 of the fifth leg 221 and the low-side switching element S8 of the sixth leg 222 are closed with a shift of a first shift amount, the low-side switching element S6 of the fifth leg 221 and the high-side switching element S7 of the sixth leg 222 are closed with a shift of a first shift amount, and the high-side switching element S5 of the fifth leg 221 is closed a second shift amount smaller than the first shift amount after the high-side switching element S1 of the third leg 211 is closed, and the high-side switching element S7 of the sixth leg 222 is closed a second shift amount before the high-side switching element S3 of the fourth leg 212 is opened.
 本構成によれば、インバータ10に交流電力が供給されていない場合において、バッテリ3に充電されている電気エネルギーに基づいて、バッテリ3の出力電圧の電圧値とは異なる電圧値の直流電圧を、バッテリ3とは異なる負荷に対して供給することができる。 With this configuration, when AC power is not being supplied to the inverter 10, a DC voltage with a voltage value different from the voltage value of the output voltage of the battery 3 can be supplied to a load other than the battery 3 based on the electrical energy stored in the battery 3.
(4)(1)又は(2)に記載の電源装置1において、三次巻線24Cは、第1三次巻線24CAと第2三次巻線24CBとから構成され、第1三次巻線24CAを流れる電流と第2三次巻線24CBを流れる電流との合成電流の平均値が零にも設定可能とする。 (4) In the power supply device 1 described in (1) or (2), the tertiary winding 24C is composed of a first tertiary winding 24CA and a second tertiary winding 24CB, and the average value of the combined current of the current flowing through the first tertiary winding 24CA and the current flowing through the second tertiary winding 24CB can be set to zero.
(5)(2)又は(3)に記載の電源装置1において、第2電圧値の直流電圧は、第1シフト量に基づいて制御されると好適である。 (5) In the power supply device 1 described in (2) or (3), it is preferable that the DC voltage of the second voltage value is controlled based on the first shift amount.
 本構成によれば、第2電圧値の直流電圧の出力も、第1電圧値の直流電圧の出力の制御に基づいて行うことができる。したがって、互いに異なる電圧値の直流電圧を簡素な制御で出力することが可能となる。 With this configuration, the output of the DC voltage of the second voltage value can also be performed based on the control of the output of the DC voltage of the first voltage value. Therefore, it is possible to output DC voltages of different voltage values with simple control.
(6)(2)又は(3)に記載の電源装置1において、第2シフト量は、第1変換部22から出力する直流電力の電力指令値と、第1変換部22から出力された直流電力の電力算定値とに基づいて設定されると好適である。 (6) In the power supply device 1 described in (2) or (3), it is preferable that the second shift amount is set based on the power command value of the DC power output from the first conversion unit 22 and the power calculation value of the DC power output from the first conversion unit 22.
 本構成によれば、第2シフト量の設定を容易に行うことができる。したがって、互いに異なる電圧値の直流電圧を簡素な制御で出力することが可能となる。 With this configuration, the second shift amount can be easily set. Therefore, it is possible to output DC voltages of different voltage values with simple control.
(7)(2)又は(3)に記載の電源装置1において、一次巻線24Aの両端の電位をV1、二次巻線24B及びリアクトルの両端の電位をV2´、出力電力をP、第2シフト量をθ2、スイッチング素子のスイッチング周波数をω、リアクトルのインダクタンス値をLとすると、
第2シフト量は、
Figure JPOXMLDOC01-appb-M000003
に基づいて設定されると好適である。
(7) In the power supply device 1 described in (2) or (3), assuming that the potential across the primary winding 24A is V1, the potential across the secondary winding 24B and the reactor is V2', the output power is P, the second shift amount is θ2, the switching frequency of the switching element is ω, and the inductance value of the reactor is L,
The second shift amount is
Figure JPOXMLDOC01-appb-M000003
It is preferable to set the value based on the above.
 本構成によれば、一次巻線24Aの両端の電位V1、二次巻線24B及びリアクトルの両端の電位V2´、出力電力P、スイッチング素子のスイッチング周波数ω、及びリアクトルのインダクタンス値Lにより、第2シフト量θ2を容易に設定することが可能となる。 With this configuration, the second shift amount θ2 can be easily set using the potential V1 across the primary winding 24A, the potential V2' across the secondary winding 24B and the reactor, the output power P, the switching frequency ω of the switching element, and the inductance value L of the reactor.
(8)(1)又は(2)に記載の電源装置1において、三次巻線24Cは、第1三次巻線24CAと第2三次巻線24CBとから構成され、第1三次巻線24CAと第2三次巻線24CBとは、第1三次巻線24CAの巻き終わり端と第2三次巻線24CBの巻き始め端とが互いに接続されており、第2変換部23は、第1三次巻線24CAの巻き始め端にドレーン端子が接続されたスイッチング素子(第1スイッチング素子)S9と、第2三次巻線24CBの巻き終わり端にドレーン端子が接続されたスイッチング素子(第2スイッチング素子)S10と、スイッチング素子S9のソース端子にアノード端子が接続され、スイッチング素子S9のドレーン端子にカソード端子が接続されたダイオード(第1ダイオード)S9Dと、スイッチング素子S10のソース端子にアノード端子が接続され、スイッチング素子S10のドレーン端子にカソード端子が接続されたダイオード(第2ダイオード)S10Dと、第1三次巻線24CAの巻き終わり端に一方の端子が接続される第3リアクトルコイル(リアクトルコイル)23Lと、第3リアクトルコイル23Lの他方の端子とスイッチング素子S9のソース端子及びスイッチング素子S10のソース端子とに亘って設けられる第2コンデンサ(第1コンデンサ)26とを含むことが可能である。 (8) In the power supply device 1 described in (1) or (2), the tertiary winding 24C is composed of a first tertiary winding 24CA and a second tertiary winding 24CB, and the first tertiary winding 24CA and the second tertiary winding 24CB are connected to each other at the end of the first tertiary winding 24CA and the beginning of the winding of the second tertiary winding 24CB, and the second conversion unit 23 is composed of a switching element (first switching element) S9 having a drain terminal connected to the beginning of the winding of the first tertiary winding 24CA, a switching element (second switching element) S10 having a drain terminal connected to the end of the winding of the second tertiary winding 24CB, and an anode terminal connected to the source terminal of the switching element S9, It may include a diode (first diode) S9D having a cathode terminal connected to the drain terminal of the switching element S9, a diode (second diode) S10D having an anode terminal connected to the source terminal of the switching element S10 and a cathode terminal connected to the drain terminal of the switching element S10, a third reactor coil (reactor coil) 23L having one terminal connected to the winding end of the first tertiary winding 24CA, and a second capacitor (first capacitor) 26 provided across the other terminal of the third reactor coil 23L and the source terminal of the switching element S9 and the source terminal of the switching element S10.
 本構成によれば、スイッチング素子S9やスイッチング素子S10における消費電力は、ダイオードS9DやダイオードS10Dにおける消費電力よりも十分に小さいため、損失が小さくなり、第2変換部23における効率(変換効率)の低下を抑制できる。したがって、効率よく電圧を出力することが可能となる。 With this configuration, the power consumption in switching element S9 and switching element S10 is much smaller than the power consumption in diodes S9D and S10D, so the loss is small and the decrease in efficiency (conversion efficiency) in the second conversion unit 23 can be suppressed. Therefore, it is possible to output the voltage efficiently.
(9)(8)に記載の電源装置1において、スイッチング素子S9及びスイッチング素子S10は、同期整流により駆動されると好適である。 In the power supply device 1 described in (9) and (8), it is preferable that the switching element S9 and the switching element S10 are driven by synchronous rectification.
 本構成によれば、第2変換部23をダイオード整流により駆動した場合に比べて、第2変換部23の効率を向上することが可能となる。また、第2変換部23に負荷が接続されていない場合において、図3の(B)に示されるような正電流や、図3の(C)に示されるような負電流を、第2変換部23に流し、図3の(A)に示されるように電流の平均値を零にすることが可能となる。 This configuration makes it possible to improve the efficiency of the second conversion unit 23 compared to when the second conversion unit 23 is driven by diode rectification. Furthermore, when no load is connected to the second conversion unit 23, it is possible to pass a positive current as shown in FIG. 3(B) or a negative current as shown in FIG. 3(C) through the second conversion unit 23, making it possible to make the average current value zero as shown in FIG. 3(A).
(10)(9)に記載の電源装置1において、第2変換部23は、アノード端子が第1三次巻線24CAの巻き始め端に接続されたダイオード(第3ダイオード)23D1と、アノード端子が第2三次巻線24CBの巻き終わり端に接続されたダイオード(第4ダイオード)23D2と、ダイオード23D1のカソード端子及びダイオード23D2のカソード端子と第3リアクトルコイル23Lの他方の端子とに亘って設けられる抵抗器Rと、ダイオード23D1のカソード端子とスイッチング素子S9のソース端子とに亘って設けられるコンデンサ(第2コンデンサ)27とを更に含むと好適である。 (10) In the power supply device 1 described in (9), it is preferable that the second conversion unit 23 further includes a diode (third diode) 23D1 having an anode terminal connected to the winding start end of the first tertiary winding 24CA, a diode (fourth diode) 23D2 having an anode terminal connected to the winding end end of the second tertiary winding 24CB, a resistor R provided between the cathode terminal of the diode 23D1 and the cathode terminal of the diode 23D2 and the other terminal of the third reactor coil 23L, and a capacitor (second capacitor) 27 provided between the cathode terminal of the diode 23D1 and the source terminal of the switching element S9.
 本構成によれば、スイッチング素子S9及びスイッチング素子S10の双方が開状態である場合であっても、第1三次巻線24CAに蓄えられた電気エネルギーを、ダイオード23D1、抵抗器R、第3リアクトルコイル23Lを介して電流を流すことで低減でき、第2三次巻線24CBに蓄えられた電気エネルギーを、ダイオード23D2、抵抗器R、第3リアクトルコイル23Lを介して電流を流すことで低減できる。 With this configuration, even when both switching element S9 and switching element S10 are in the open state, the electrical energy stored in the first tertiary winding 24CA can be reduced by passing a current through the diode 23D1, resistor R, and third reactor coil 23L, and the electrical energy stored in the second tertiary winding 24CB can be reduced by passing a current through the diode 23D2, resistor R, and third reactor coil 23L.
 本発明は、電源装置に用いることが可能である。 The present invention can be used in power supply devices.
 1:電源装置、3:バッテリ、10:インバータ、11:第1レグ、11H:スイッチング素子、11L:スイッチング素子、12:第2レグ、12H:スイッチング素子、12L:スイッチング素子、20:コンバータ、21:入力部、22:第1変換部、23:第2変換部、23D1:ダイオード(第3ダイオード)、23D2:ダイオード(第4ダイオード)、23L:第3リアクトルコイル(リアクトルコイル)、24:トランス(マルチポートトランス)、24A:一次巻線、24B:二次巻線、24C:三次巻線、24CA:第1三次巻線、24CB:第2三次巻線、26:第2コンデンサ(第1コンデンサ)、27:コンデンサ(第2コンデンサ)、211:第3レグ、212:第4レグ、221:第5レグ、222:第6レグ、S1:スイッチング素子、S2:スイッチング素子、S3:スイッチング素子、S4:スイッチング素子、S5:スイッチング素子、S6:スイッチング素子、S7:スイッチング素子、S8:スイッチング素子、S9:スイッチング素子(第1スイッチング素子)、S9D:ダイオード(第1ダイオード)、S10:スイッチング素子(第2スイッチング素子)、S10D:ダイオード(第2ダイオード) 1: Power supply, 3: Battery, 10: Inverter, 11: First leg, 11H: Switching element, 11L: Switching element, 12: Second leg, 12H: Switching element, 12L: Switching element, 20: Converter, 21: Input section, 22: First conversion section, 23: Second conversion section, 23D1: Diode (third diode), 23D2: Diode (fourth diode), 23L: Third reactor coil (reactor coil), 24: Transformer (multi-port transformer), 24A: Primary winding, 24B: Secondary winding, 24C: Tertiary winding, 24CA: First tertiary winding, 24CB: Second tertiary Winding, 26: second capacitor (first capacitor), 27: capacitor (second capacitor), 211: third leg, 212: fourth leg, 221: fifth leg, 222: sixth leg, S1: switching element, S2: switching element, S3: switching element, S4: switching element, S5: switching element, S6: switching element, S7: switching element, S8: switching element, S9: switching element (first switching element), S9D: diode (first diode), S10: switching element (second switching element), S10D: diode (second diode)

Claims (10)

  1.  ハイサイドのスイッチング素子及びローサイドのスイッチング素子が直列に接続された第1レグとハイサイドのスイッチング素子及びローサイドのスイッチング素子が直列に接続された第2レグとが互いに並列に設けられ、交流電力を直流電力に変換するインバータと、
     一次巻線、二次巻線、及び三次巻線を有する絶縁型のマルチポートトランスが設けられ、前記インバータからの前記直流電力を、バッテリを充電する第1電圧値の直流電圧で構成される直流電力に変換するコンバータと、を備え、
     前記コンバータは、前記インバータからの前記直流電力を所定の周期で振幅させて前記一次巻線に入力する入力部と、前記二次巻線に生じる交流電力を、前記第1電圧値の直流電圧で構成される直流電力に変換する第1変換部と、前記三次巻線に生じる交流電力を、前記第1電圧値よりも低い第2電圧値の直流電圧で構成される直流電力に変換する第2変換部と、を有し、
     前記第2変換部は、前記三次巻線に生じる交流電力を、同期整流により前記第2電圧値の直流電圧で構成される直流電力に変換する電源装置。
    an inverter in which a first leg in which a high-side switching element and a low-side switching element are connected in series and a second leg in which a high-side switching element and a low-side switching element are connected in series are provided in parallel with each other, and which converts AC power into DC power;
    a converter that is provided with an insulated multi-port transformer having a primary winding, a secondary winding, and a tertiary winding, and that converts the DC power from the inverter into DC power configured with a DC voltage of a first voltage value for charging a battery;
    the converter has an input unit that amplifies the DC power from the inverter at a predetermined period and inputs it to the primary winding, a first conversion unit that converts the AC power generated in the secondary winding into DC power composed of a DC voltage of the first voltage value, and a second conversion unit that converts the AC power generated in the tertiary winding into DC power composed of a DC voltage of a second voltage value lower than the first voltage value,
    The second conversion unit is a power supply device that converts the AC power generated in the tertiary winding into DC power constituted by a DC voltage of the second voltage value by synchronous rectification.
  2.  前記入力部は、ハイサイドのスイッチング素子及びローサイドのスイッチング素子が直列に接続された第3レグとハイサイドのスイッチング素子及びローサイドのスイッチング素子が直列に接続された第4レグとが互いに並列に設けられ、
     前記第1変換部は、ハイサイドのスイッチング素子及びローサイドのスイッチング素子が直列に接続された第5レグとハイサイドのスイッチング素子及びローサイドのスイッチング素子が直列に接続された第6レグとが互いに並列に設けられ、
     前記第3レグの前記ハイサイドのスイッチング素子と前記第4レグの前記ローサイドのスイッチング素子とが予め設定された第1シフト量だけずらして閉状態にされ、
     前記第3レグの前記ローサイドのスイッチング素子と前記第4レグの前記ハイサイドのスイッチング素子とが前記第1シフト量だけずらして閉状態にされ、
     前記第5レグの前記ハイサイドのスイッチング素子と前記第6レグの前記ローサイドのスイッチング素子とが前記第1シフト量だけずらして閉状態にされ、
     前記第5レグの前記ローサイドのスイッチング素子と前記第6レグの前記ハイサイドのスイッチング素子とが前記第1シフト量だけずらして閉状態にされ、
     前記バッテリの充電時は、前記第5レグの前記ハイサイドのスイッチング素子は、前記第3レグの前記ハイサイドのスイッチング素子が閉状態にされる、前記第1シフト量よりも小さい第2シフト量だけ後において閉状態にされ、前記第6レグの前記ハイサイドのスイッチング素子は、前記第4レグの前記ハイサイドのスイッチング素子が閉状態にされる前記第2シフト量だけ後において閉状態にされる請求項1に記載の電源装置。
    the input unit includes a third leg in which a high-side switching element and a low-side switching element are connected in series, and a fourth leg in which a high-side switching element and a low-side switching element are connected in series, the third leg being provided in parallel with the fourth leg;
    The first conversion unit includes a fifth leg in which a high-side switching element and a low-side switching element are connected in series, and a sixth leg in which a high-side switching element and a low-side switching element are connected in series, the fifth leg being provided in parallel with the high-side switching element and the low-side switching element;
    the high-side switching element of the third leg and the low-side switching element of the fourth leg are shifted by a preset first shift amount to be in a closed state;
    the low-side switching element of the third leg and the high-side switching element of the fourth leg are closed with a shift of the first shift amount;
    the high-side switching element of the fifth leg and the low-side switching element of the sixth leg are closed with a shift of the first shift amount;
    the low-side switching element of the fifth leg and the high-side switching element of the sixth leg are closed with a shift of the first shift amount;
    2. The power supply device according to claim 1, wherein, during charging of the battery, the high-side switching element of the fifth leg is closed a second shift amount smaller than the first shift amount after the high-side switching element of the third leg is closed, and the high-side switching element of the sixth leg is closed a second shift amount after the high-side switching element of the fourth leg is closed.
  3.  前記入力部は、ハイサイドのスイッチング素子及びローサイドのスイッチング素子が直列に接続された第3レグとハイサイドのスイッチング素子及びローサイドのスイッチング素子が直列に接続された第4レグとが互いに並列に設けられ、
     前記第1変換部は、ハイサイドのスイッチング素子及びローサイドのスイッチング素子が直列に接続された第5レグとハイサイドのスイッチング素子及びローサイドのスイッチング素子が直列に接続された第6レグとが互いに並列に設けられ、
     前記第3レグの前記ハイサイドのスイッチング素子と前記第4レグの前記ローサイドのスイッチング素子とが予め設定された第1シフト量だけずらして閉状態にされ、
     前記第3レグの前記ローサイドのスイッチング素子と前記第4レグの前記ハイサイドのスイッチング素子とが前記第1シフト量だけずらして閉状態にされ、
     前記第5レグの前記ハイサイドのスイッチング素子と前記第6レグの前記ローサイドのスイッチング素子とが前記第1シフト量だけずらして閉状態にされ、
     前記第5レグの前記ローサイドのスイッチング素子と前記第6レグの前記ハイサイドのスイッチング素子とが前記第1シフト量だけずらして閉状態にされ、
     前記第2変換部が、前記バッテリに充電された電気エネルギーに基づいて前記第2電圧値の直流電圧で構成される直流電力を生成する時は、前記第5レグの前記ハイサイドのスイッチング素子は、前記第3レグの前記ハイサイドのスイッチング素子が閉状態にされてから、前記第1シフト量よりも小さい第2シフト量だけ前において閉状態にされ、前記第6レグの前記ハイサイドのスイッチング素子は、前記第4レグの前記ハイサイドのスイッチング素子が閉状態にされ、前記第2シフト量だけ前において閉状態にされる請求項1に記載の電源装置。
    the input unit includes a third leg in which a high-side switching element and a low-side switching element are connected in series, and a fourth leg in which a high-side switching element and a low-side switching element are connected in series, the third leg being provided in parallel with the fourth leg;
    The first conversion unit includes a fifth leg in which a high-side switching element and a low-side switching element are connected in series, and a sixth leg in which a high-side switching element and a low-side switching element are connected in series, the fifth leg being provided in parallel with the high-side switching element and the low-side switching element;
    the high-side switching element of the third leg and the low-side switching element of the fourth leg are shifted by a preset first shift amount to be in a closed state;
    the low-side switching element of the third leg and the high-side switching element of the fourth leg are closed with a shift of the first shift amount;
    the high-side switching element of the fifth leg and the low-side switching element of the sixth leg are closed with a shift of the first shift amount;
    the low-side switching element of the fifth leg and the high-side switching element of the sixth leg are closed with a shift of the first shift amount;
    2. The power supply device according to claim 1, wherein, when the second conversion unit generates DC power constituted by a DC voltage of the second voltage value based on the electrical energy charged in the battery, the high-side switching element of the fifth leg is closed a second shift amount smaller than the first shift amount after the high-side switching element of the third leg is closed, and the high-side switching element of the sixth leg is closed a second shift amount before the high-side switching element of the fourth leg is closed.
  4.  前記三次巻線は、第1三次巻線と第2三次巻線とから構成され、前記第1三次巻線を流れる電流と前記第2三次巻線を流れる電流との合成電流の平均値が零にも設定可能な請求項1又は2に記載の電源装置。 The power supply device according to claim 1 or 2, wherein the tertiary winding is composed of a first tertiary winding and a second tertiary winding, and the average value of the combined current of the current flowing through the first tertiary winding and the current flowing through the second tertiary winding can be set to zero.
  5.  前記第2電圧値の直流電圧は、前記第1シフト量に基づいて制御される請求項2又は3に記載の電源装置。 The power supply device according to claim 2 or 3, wherein the DC voltage of the second voltage value is controlled based on the first shift amount.
  6.  前記第2シフト量は、前記第1変換部から出力する直流電力の電力指令値と、前記第1変換部から出力された直流電力の電力算定値とに基づいて設定される請求項2又は3に記載の電源装置。 The power supply device according to claim 2 or 3, wherein the second shift amount is set based on a power command value of the DC power output from the first conversion unit and a power calculation value of the DC power output from the first conversion unit.
  7.  一次巻線の両端の電位をV1、二次巻線及びリアクトルの両端の電位をV2´、出力電力をP、第2シフト量をθ2、スイッチング素子のスイッチング周波数をω、リアクトルのインダクタンス値をLとすると、
     前記第2シフト量は、
    Figure JPOXMLDOC01-appb-M000001
    に基づいて設定される請求項2又は3に記載の電源装置。
    If the potential across the primary winding is V1, the potential across the secondary winding and the reactor is V2', the output power is P, the second shift amount is θ2, the switching frequency of the switching element is ω, and the inductance value of the reactor is L, then:
    The second shift amount is
    Figure JPOXMLDOC01-appb-M000001
    The power supply device according to claim 2 or 3, which is set based on the above.
  8.  前記三次巻線は、第1三次巻線と第2三次巻線とから構成され、
     前記第1三次巻線と前記第2三次巻線とは、前記第1三次巻線の巻き終わり端と前記第2三次巻線の巻き始め端とが互いに接続されており、
     前記第2変換部は、前記第1三次巻線の巻き始め端にドレーン端子が接続された第1スイッチング素子と、前記第2三次巻線の巻き終わり端にドレーン端子が接続された第2スイッチング素子と、前記第1スイッチング素子のソース端子にアノード端子が接続され、前記第1スイッチング素子のドレーン端子にカソード端子が接続された第1ダイオードと、前記第2スイッチング素子のソース端子にアノード端子が接続され、前記第2スイッチング素子のドレーン端子にカソード端子が接続された第2ダイオードと、前記第1三次巻線の巻き終わり端に一方の端子が接続されるリアクトルコイルと、前記リアクトルコイルの他方の端子と前記第1スイッチング素子のソース端子及び前記第2スイッチング素子のソース端子とに亘って設けられる第1コンデンサとを含む請求項1又は2に記載の電源装置。
    the tertiary winding is composed of a first tertiary winding and a second tertiary winding,
    The first tertiary winding and the second tertiary winding are connected to each other at a winding end of the first tertiary winding and a winding start end of the second tertiary winding,
    3. The power supply device according to claim 1, wherein the second conversion unit includes: a first switching element having a drain terminal connected to a winding start end of the first tertiary winding; a second switching element having a drain terminal connected to a winding end end of the second tertiary winding; a first diode having an anode terminal connected to a source terminal of the first switching element and a cathode terminal connected to a drain terminal of the first switching element; a second diode having an anode terminal connected to a source terminal of the second switching element and a cathode terminal connected to a drain terminal of the second switching element; a reactor coil having one terminal connected to the winding end end of the first tertiary winding; and a first capacitor provided across the other terminal of the reactor coil and the source terminal of the first switching element and the source terminal of the second switching element.
  9.  前記第1スイッチング素子及び前記第2スイッチング素子は、前記同期整流により駆動される請求項8に記載の電源装置。 The power supply device according to claim 8, wherein the first switching element and the second switching element are driven by the synchronous rectification.
  10.  前記第2変換部は、アノード端子が前記第1三次巻線の巻き始め端に接続された第3ダイオードと、アノード端子が前記第2三次巻線の巻き終わり端に接続された第4ダイオードと、前記第3ダイオードのカソード端子及び前記第4ダイオードのカソード端子と前記リアクトルコイルの他方の端子とに亘って設けられる抵抗器と、前記第3ダイオードのカソード端子と前記第1スイッチング素子のソース端子とに亘って設けられる第2コンデンサとを更に含む請求項9に記載の電源装置。 The power supply device according to claim 9, wherein the second conversion unit further includes a third diode having an anode terminal connected to the winding start end of the first tertiary winding, a fourth diode having an anode terminal connected to the winding end end of the second tertiary winding, a resistor provided between the cathode terminal of the third diode, the cathode terminal of the fourth diode, and the other terminal of the reactor coil, and a second capacitor provided between the cathode terminal of the third diode and the source terminal of the first switching element.
PCT/JP2023/040536 2022-11-16 2023-11-10 Power supply device WO2024106323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-183718 2022-11-16
JP2022183718 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024106323A1 true WO2024106323A1 (en) 2024-05-23

Family

ID=91084651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040536 WO2024106323A1 (en) 2022-11-16 2023-11-10 Power supply device

Country Status (1)

Country Link
WO (1) WO2024106323A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016158353A (en) * 2015-02-24 2016-09-01 三菱電機株式会社 Power conversion device
JP2020028216A (en) * 2018-08-10 2020-02-20 シェンヂェン ヴイマックス ニュー エネルギー カンパニー リミテッドShenzhen VMAX New Energy Co.,Ltd. Phase shift control method for charging circuit
JP6964825B1 (en) * 2020-12-08 2021-11-10 三菱電機株式会社 Power conversion unit and power conversion device
JP6996661B1 (en) * 2020-02-21 2022-01-17 住友電気工業株式会社 Power converter, vehicle including it and control method
JP2022011002A (en) * 2020-06-29 2022-01-17 シャープ株式会社 Power regenerative snubber circuit and power supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016158353A (en) * 2015-02-24 2016-09-01 三菱電機株式会社 Power conversion device
JP2020028216A (en) * 2018-08-10 2020-02-20 シェンヂェン ヴイマックス ニュー エネルギー カンパニー リミテッドShenzhen VMAX New Energy Co.,Ltd. Phase shift control method for charging circuit
JP6996661B1 (en) * 2020-02-21 2022-01-17 住友電気工業株式会社 Power converter, vehicle including it and control method
JP2022011002A (en) * 2020-06-29 2022-01-17 シャープ株式会社 Power regenerative snubber circuit and power supply
JP6964825B1 (en) * 2020-12-08 2021-11-10 三菱電機株式会社 Power conversion unit and power conversion device

Similar Documents

Publication Publication Date Title
JP6706811B2 (en) Snubber circuit and power conversion system using the same
US9825547B2 (en) Unidirectional isolated multi-level DC-DC converter and method thereof
JP5855133B2 (en) Charger
WO2019082018A1 (en) Merged voltage-divider forward converter
US9209698B2 (en) Electric power conversion device
JPH10271703A (en) Converter circuit for battery charger
Rehlaender et al. Dual interleaved 3.6 kW LLC converter operating in half-bridge, full-bridge and phase-shift mode as a single-stage architecture of an automotive on-board DC-DC converter
US10917004B2 (en) Snubber circuit and power conversion system using same
US20140361619A1 (en) Power device
WO2024106323A1 (en) Power supply device
KR102414467B1 (en) DC-DC Converters, and Methods for Operating DC-DC Converters
WO2015011972A1 (en) Power conversion device
JP2020018037A (en) Power element driving device
CN111669054B (en) Switching power supply device
US10348209B2 (en) Output voltage responsive isolated DC to DC converter in full and half bridge modes
WO2024106382A1 (en) Power supply device
JP7035407B2 (en) Power converter
KR101975139B1 (en) Voltage balance correction circuit
JP2023114686A (en) power converter
US10651741B2 (en) Serial input power converter
JP2024079026A (en) Power Supplies
JP6171701B2 (en) Power converter
KR102515718B1 (en) Battery charger with very side charge voltage range
JP2024079027A (en) Power Supplies
WO2024106151A1 (en) Power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891472

Country of ref document: EP

Kind code of ref document: A1