WO2024106221A1 - Continuous casting nozzle - Google Patents

Continuous casting nozzle Download PDF

Info

Publication number
WO2024106221A1
WO2024106221A1 PCT/JP2023/039579 JP2023039579W WO2024106221A1 WO 2024106221 A1 WO2024106221 A1 WO 2024106221A1 JP 2023039579 W JP2023039579 W JP 2023039579W WO 2024106221 A1 WO2024106221 A1 WO 2024106221A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous casting
horizontal
nozzle
metal case
casting nozzle
Prior art date
Application number
PCT/JP2023/039579
Other languages
French (fr)
Japanese (ja)
Inventor
裕也 内田
卓也 岡田
貴宏 黒田
順也 矢野
覚 藤井
Original Assignee
黒崎播磨株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒崎播磨株式会社 filed Critical 黒崎播磨株式会社
Publication of WO2024106221A1 publication Critical patent/WO2024106221A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Definitions

  • the present invention relates to a continuous casting nozzle used in the continuous casting of steel.
  • the basic structure of a continuous casting nozzle that is applied to such a continuous casting nozzle replacement device can be broadly divided into two parts: a cylindrical nozzle body with a vertical inner hole through which the molten steel passes, and a flange portion with a horizontally enlarged cross-sectional area that is supported from below by a support device of the continuous casting nozzle replacement device in order to support the nozzle body against gravity and push it upward to contact the upper member (upper nozzle member).
  • the boundary portion where the cross-sectional area is enlarged is called the neck.
  • the neck is a structural stress concentration area and is known to be susceptible to cracks caused by thermal and mechanical stresses. Cracks in the neck are problematic for the service life of the submerged entry nozzle and for the quality of the steel.
  • the pressure level in the inner bore space becomes negative, which can cause air to be sucked in through the cracks in the neck, oxidizing the carbon components that make up the refractory and potentially resulting in steel leaks and contamination of the steel with oxygen.
  • Patent Document 4 proposes forming a horizontal suspension part on a metal case that is fitted to the outer periphery of the nozzle body with an adhesive such as mortar, and placing a metal ring in the gap with a triangular cross section between the tapered surface of the nozzle body and the suspension part of the metal case.
  • the problem that this invention aims to solve is to provide a continuous casting nozzle that can reduce stress concentration on the neck and prevent slippage.
  • a continuous casting nozzle including a nozzle body made of a refractory material having an inner hole through which molten steel passes in a vertical direction,
  • the nozzle body includes a flange portion at an upper end, the flange portion includes a tapered portion on an outer surface thereof that slopes downward toward the inner hole, and a horizontal portion on a lower surface thereof that extends horizontally from a lower end of the tapered portion toward the inner hole,
  • a metal case is included which covers an outer periphery of the flange portion, the metal case includes a horizontal plate portion facing the horizontal portion of the flange portion with a certain thickness of mortar interposed therebetween,
  • a continuous casting nozzle in which a pressing force from below is received by the horizontal plate portion of the metal case.
  • the continuous casting nozzle of the present invention can reduce stress concentration on the neck and prevent it from slipping down.
  • FIG. 1A and 1B show a continuous casting nozzle according to an embodiment of the present invention, in which FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along the line A-A of FIG.
  • FIG. 2 is a partial perspective view of an upper portion of the nozzle body of the continuous casting nozzle of FIG. 1 as viewed from below.
  • FIG. 2 is a partial cross-sectional view of an upper portion of a nozzle body of the continuous casting nozzle of FIG. 1 .
  • FIG. 2 is a partial cross-sectional view of an upper portion of a nozzle body of a conventional continuous casting nozzle.
  • FIG. 4 is a plan view of a continuous casting nozzle according to another embodiment of the present invention.
  • FIG. 1A and 1B are model diagrams for explaining the downward displacement of the nozzle body due to buckling of mortar, in which FIG. 1A is an embodiment of the present invention, and FIG. 6 is a graph showing a calculation example of stress generated in a neck portion of a nozzle body.
  • FIG. 1 shows a continuous casting nozzle according to one embodiment of the present invention, with FIG. 1(a) being a plan view and FIG. 1(b) being a cross-sectional view taken along the line A-A in FIG. 1(a). Note that FIG. 1(b) shows only the upper part of the continuous casting nozzle, with the lower part omitted.
  • FIG. 2 is a partial perspective view of the upper part of the nozzle body of the continuous casting nozzle of FIG. 1, as seen from below
  • FIG. 3 is a partial cross-sectional view of the upper part of the nozzle body of the continuous casting nozzle of FIG. 1.
  • the continuous casting nozzle 1 shown in FIG. 1 is a submerged nozzle used when injecting molten steel from a tundish facility into a mold in the continuous casting of steel, and is applied to the continuous casting nozzle exchange device described above.
  • the submerged nozzle 1 includes a nozzle body 2 made of a refractory material.
  • the nozzle body 2 has an inner hole 21 in the vertical direction, which is a passageway for molten steel, and includes a flange portion 22 at an upper end.
  • the flange portion 22 includes a lower flange portion 22a integrally formed with the nozzle body 2 from the same refractory material as the nozzle body 2, and an upper flange portion 22b formed from a refractory material different from that of the nozzle body 2.
  • the entire flange portion 22 may be integrally formed with the nozzle body 2 from the same refractory material as the nozzle body 2, or conversely, the entire flange portion 22 may be formed from a refractory material different from that of the nozzle body 2 and joined directly or via an adhesive to the nozzle body 2.
  • the flange portion 22 includes a tapered portion 221 on its outer surface that slopes downward toward the inner hole 21, and a horizontal portion 222 on its underside that extends horizontally from the lower end of the tapered portion 221 toward the inner hole 21.
  • the submerged nozzle 1 includes a metal case 3 that covers the outer periphery of the flange portion 22.
  • the outer periphery of the flange portion 22 is a general concept that refers to the outer surface and the lower surface described above.
  • the metal case 3 is arranged to cover the outer periphery of the flange portion 22 and the outer periphery of a portion of the nozzle body 2 below it. Note that in this embodiment, the upper end of the outer surface of the outer periphery of the flange portion 22 is exposed and not covered by the metal case 3, but the entire outer periphery of the flange portion 22 may be covered by the metal case 3.
  • the metal case 3 includes a horizontal plate portion 31 that faces the horizontal portion 222 of the flange portion 22 via a certain thickness of mortar 4.
  • the submerged nozzle 1 receives a pressing force from below at this horizontal plate portion 31.
  • the pressing force from below received by this horizontal plate portion 31 is transmitted to the horizontal portion 222 of the flange portion 22 via the mortar 4. This causes the submerged nozzle 1 to be pushed upward and come into contact with the upper member (upper nozzle member).
  • Figure 3 conceptually shows an upward pressing force F (hereinafter simply referred to as "force F”) acting from below on the horizontal portion 222 of the flange portion 22 of the nozzle body 2.
  • force F an upward pressing force acting from below on the horizontal portion 222 of the flange portion 22 of the nozzle body 2.
  • the horizontal portion 222 is present so as to extend horizontally from the lower end of the tapered portion 221 toward the inner hole 21. Therefore, compared to the nozzle body 2 of a conventional immersion nozzle that does not have a tapered portion as shown in Figure 4, the horizontal length L1 of the horizontal portion 222 on which force F acts is shorter by the horizontal length L2 of the tapered portion 221. Therefore, the stress (moment force) due to force F acting on the neck portion 23 of the nozzle body 2 is also reduced by that amount, and stress concentration on the neck portion 23 is alleviated.
  • the horizontal length L1 of the horizontal portion 222 is within a range of 20% to 80% of the total length L of L1 and the horizontal length L2 of the tapered portion 221. If L1 exceeds 80% of L, the effect of reducing the stress concentration on the neck portion 23 described above is unlikely to be noticeable. On the other hand, if L1 is less than 20% of L, the effect of suppressing the downward slippage of the nozzle body 2 described below is unlikely to be noticeable.
  • the total length L of the horizontal length L1 of the horizontal portion 222 and the horizontal length L2 of the tapered portion 221 is defined as the length on a horizontal line passing through the center 211 of the inner hole 21 in the region where the force point P on which the force F acts is located, which has the shortest length corresponding to L.
  • the submerged nozzle 1 of this embodiment is applied to the continuous casting nozzle replacing device as described above, there are two force points P where the force F acts, which are symmetrically opposed to each other across the inner hole 21 on the underside of the flange portion 22, which has a generally rectangular shape in plan view, as conceptually shown in Fig. 1(a).
  • the straight line X1 shown in Fig. 1(a) is the shortest straight line described above, and the total length L is the horizontal length L1 of the horizontal portion 222 on this straight line X1 and the horizontal length L2 of the tapered portion 221.
  • the force point P where the force F acts may exist in a ring shape surrounding the inner bore 21, as conceptually shown in Fig. 5.
  • the straight line X2 shown in Fig. 5 is the shortest straight line mentioned above, and the total length L is the horizontal length L1 of the horizontal portion 222 on this straight line X2 and the horizontal length L2 of the tapered portion 221.
  • L including L1 and L2 is determined in the region where the force point P on which the force F acts is present.
  • the length of L including L1 and L2 is an issue from the standpoint of stress concentration and the like because it is the region where the force point P is present.
  • the tapered portion 221 may be formed in a region corresponding to the region where the force point P is present.
  • the tapered portion 221 is formed only on one pair of outer surfaces corresponding to the region where the force point P is present, and no tapered portion is formed on the other pair of outer surfaces.
  • a tapered portion may also be formed on the other pair of outer surfaces.
  • mortar 4 is filled between the metal case 3 and the tapered portion 221.
  • This mortar 4 is made of the same material as the mortar 4 interposed between the horizontal plate portion 31 and the horizontal portion 222 of the metal case 3 and is integrated with the metal case 3. In this way, by filling the space between the metal case 3 and the tapered portion 221 with mortar 4, the outer periphery of the flange portion 22 can be stably covered by the metal case 3 without any gaps.
  • a ring-shaped metal member or ceramic member may be separately disposed between the metal case 3 and the tapered portion 221.
  • the portion facing the tapered portion 221 of the flange portion 22 is formed in a horizontal plate shape by extending the horizontal plate portion 31 that faces the horizontal portion 222 of the flange portion 22 via a certain thickness of mortar 4, but it may be formed in a tapered shape to follow the tapered portion 221 of the flange portion 22 as shown in Figure 6 (a) described later.
  • the tapered portion 221 is formed by a "flat surface", but is not limited thereto, and may be formed by, for example, a "curved surface” or a "step-like step surface”.
  • the "tapered portion” may be one that "inclines downward toward the inner hole".
  • the "tapered portion that slopes downward toward the inner hole” may be one that slopes downward toward the inner hole as a whole.
  • the tapered portion it is preferable that the tapered portion be formed by a "flat surface" as in this embodiment.
  • the flange portion 22 has a generally rectangular shape in plan view, but it can also be polygonal, elliptical, or circular.
  • the shape of the nozzle body 2 excluding the flange portion 22 in plan view is not limited to a circle, and can also be, for example, rectangular or elliptical.
  • FIG. 6 shows a model diagram for this purpose, with FIG. 6(a) being an embodiment of the present invention and FIG. 6(b) being a comparative example.
  • the horizontal length L1 of the horizontal portion 222 is 10 mm
  • the horizontal length L2 of the tapered portion 221 is 20 mm
  • the total length L of L1 and L2 is 30 mm
  • the height H of the tapered portion 221 is 75 mm
  • the thickness T of the mortar 4 interposed between the horizontal portion 222 and the horizontal plate portion 31 is 2 mm.
  • the nozzle body 2 will shift downward due to buckling of the mortar 4 to a large extent, and in the case of this comparative example, the calculated downward shift is 5.4 mm, which is more than twice that of the embodiment.
  • the problem of mortar buckling was not recognized in the past, the inventors' tests and studies revealed that mortar buckling is a major factor in the downward slippage of the nozzle body. Therefore, in the present invention, by providing the horizontal portion 222 together with the tapered portion 221, the effect of suppressing the downward slippage of the nozzle body 2 can be obtained.
  • Figure 7 shows the results of calculating the stress generated in the neck 23 by changing the ratio of the length L1 of the horizontal portion 222 to the total horizontal length L of the tapered portion 221 and the horizontal portion 222 in Figure 3.
  • the ratio of the length L1 of the horizontal portion 222 is 100%, it corresponds to the nozzle body 2 of the conventional submerged nozzle shown in Figure 4, and the vertical axis "neck stress index" in Figure 7 is an index in which the stress generated in the neck 23 when the ratio of L1 is 100% is set to 100.
  • Submerged nozzle nozzle for continuous casting
  • Nozzle body 21
  • Inner hole 211
  • Center of inner hole 22
  • Flange portion 22a
  • Lower flange portion 22b
  • Upper flange portion 221
  • Tapered portion 222
  • Horizontal portion 23
  • Neck portion 3
  • Metal case 31
  • Horizontal plate portion 4 Mortar P Point of force

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)

Abstract

The present invention provides a continuous casting nozzle with which it is possible to mitigate concentrations of stress in the neck part and inhibit slippage. The present invention is a continuous casting nozzle 1 including a nozzle body 2 made of a refractory material having, in the vertical direction, an internal hole 21 through which molten steel passes, wherein the nozzle body 2 includes a flange part 22 at the upper end, the flange part 22 including, on the outer side surface thereof, a tapered part 221 that inclines downwards towards the internal hole 21, and on the lower surface thereof, a horizontal part 222 that extends horizontally from the lower end of the tapered part 221 towards the internal hole 21. The continuous casting nozzle 1 further includes a metal case 3 covering the outer periphery of the flange part 22, the metal case 3 including a horizontal plate part 31 that faces the horizontal part 222 of the flange part 22 with mortar 4 of a given thickness interposed therebetween, a pressing force from an outer lower direction being received by the horizontal plate part 31.

Description

連続鋳造用ノズルContinuous casting nozzle
 本発明は、鋼の連続鋳造に用いられる連続鋳造用ノズルに関する。 The present invention relates to a continuous casting nozzle used in the continuous casting of steel.
 連続鋳造用ノズルにおいては、溶鋼による損耗、溶鋼中の介在物、例えば非金属であるアルミナ粒子の付着と堆積による内孔閉塞に起因する耐用限界、割れや折損などが理由となる交換のために、鋼の連続鋳造作業を中断又は終了しなくてはならない。しかし操業効率向上の要求から長時間注入を実現する方法として、鋼の連続鋳造作業を中断することなく連続鋳造用ノズルを新しい連続鋳造用ノズルに交換する装置が導入されている(例えば特許文献1、2)。 In continuous casting nozzles, the continuous casting of steel must be interrupted or stopped in order to replace them due to wear caused by molten steel, wear limit caused by clogging of the inner hole due to adhesion and accumulation of inclusions in the molten steel, such as non-metallic alumina particles, cracking or breakage. However, in order to improve operational efficiency, a device has been introduced that can replace the continuous casting nozzle with a new one without interrupting the continuous casting of steel as a method of achieving long-term injection (for example, Patent Documents 1 and 2).
 このような連続鋳造用ノズル交換装置に適用される連続鋳造用ノズルの基本的な構造は、溶鋼通過経路である内孔を鉛直方向に有する筒状のノズル本体部と、このノズル本体部を重力に対して支え上方向に押し上げて上方の部材(上ノズル部材)と接触させるために連続鋳造用ノズル交換装置の支持具で下方から支持される、水平方向に断面積を拡大させたフランジ部との2つに大別でき、断面積が拡大する境界部分を首部と呼ぶ。 The basic structure of a continuous casting nozzle that is applied to such a continuous casting nozzle replacement device can be broadly divided into two parts: a cylindrical nozzle body with a vertical inner hole through which the molten steel passes, and a flange portion with a horizontally enlarged cross-sectional area that is supported from below by a support device of the continuous casting nozzle replacement device in order to support the nozzle body against gravity and push it upward to contact the upper member (upper nozzle member). The boundary portion where the cross-sectional area is enlarged is called the neck.
 首部は構造上の応力集中部であり、熱的応力と機械的応力が作用することで亀裂を生じ得ることが知られている。首部の亀裂は浸漬ノズルの耐用寿命と鋼の品質にとって問題となる。連続鋳造用ノズルの内孔に溶鋼が流れることで内孔空間の圧力レベルが負圧に傾く結果、首部の亀裂から空気を吸い込み、耐火物を構成する炭素成分を酸化させる結果として漏鋼を引き起こす可能性があり、また鋼を酸素で汚染する可能性がある。 The neck is a structural stress concentration area and is known to be susceptible to cracks caused by thermal and mechanical stresses. Cracks in the neck are problematic for the service life of the submerged entry nozzle and for the quality of the steel. When molten steel flows through the inner bore of a continuous casting nozzle, the pressure level in the inner bore space becomes negative, which can cause air to be sucked in through the cracks in the neck, oxidizing the carbon components that make up the refractory and potentially resulting in steel leaks and contamination of the steel with oxygen.
 そこで従来、上述のような首部への応力集中を緩和する観点からは、例えば特許文献3に開示されているように、連続鋳造用ノズル交換装置の支持具で下方から支持されるフランジ部の下面(支承面)を下向きに傾斜するテーパ面とするなどの対策が採られていた。 In the past, in order to alleviate the above-mentioned stress concentration on the neck, measures such as making the underside (support surface) of the flange part supported from below by the support fixture of the continuous casting nozzle replacement device into a downwardly tapered surface have been taken, as disclosed in Patent Document 3, for example.
 しかし、支承面をテーパ面とする構成の場合、例えば特許文献4で指摘されているように、連続鋳造用ノズルがテーパ面に沿って下方へずれ下がるという問題があった。これに対して特許文献4では、ノズル本体の外周にモルタル等の接着材を介して嵌着される金属ケースに水平面状の懸吊部を形成し、ノズル本体のテーパ面と金属ケースの懸吊部との間の断面三角形状の間隙内に金属製リングを介在させることが提案されている。 However, when the support surface is a tapered surface, there is a problem that the continuous casting nozzle slides downward along the tapered surface, as pointed out in Patent Document 4, for example. In response to this, Patent Document 4 proposes forming a horizontal suspension part on a metal case that is fitted to the outer periphery of the nozzle body with an adhesive such as mortar, and placing a metal ring in the gap with a triangular cross section between the tapered surface of the nozzle body and the suspension part of the metal case.
 しかし、本発明者らの試験によると、特許文献4の構成によっても依然として連続鋳造用ノズルのずれ下がりが生じることがわかった。
 なお、上述の首部への応力集中の問題や連続鋳造用ノズルのずれ下がりの問題は、連続鋳造用ノズル交換装置に適用される連続鋳造用ノズル、特に浸漬ノズルに限った問題ではなく、例えば特許文献5で指摘されているように、連続鋳造用ノズル交換装置に適用されない連続鋳造用ノズル、例えばロングノズルにおいても生じる問題である。
However, according to tests conducted by the present inventors, it was found that even with the configuration of Patent Document 4, the continuous casting nozzle still slipped downward.
The above-mentioned problems of stress concentration at the neck and of the continuous casting nozzle slipping down are not limited to continuous casting nozzles, particularly submerged nozzles, that are applied to a continuous casting nozzle replacement device. As pointed out in Patent Document 5, for example, these problems also occur in continuous casting nozzles that are not applied to a continuous casting nozzle replacement device, such as long nozzles.
特許第2793039号公報Japanese Patent No. 2793039 特公平4-50100号公報Japanese Patent Publication No. 4-50100 特許第5926230号公報Japanese Patent No. 5926230 特許第4097795号公報Patent No. 4097795 特許第2587873号公報Patent No. 2587873
 本発明が解決しようとする課題は、首部への応力集中を緩和できると共にずれ下がりを抑制できる連続鋳造用ノズルを提供することにある。 The problem that this invention aims to solve is to provide a continuous casting nozzle that can reduce stress concentration on the neck and prevent slippage.
 上記課題を解決するにあたり本発明者らは、まず連続鋳造用ノズルのずれ下がりの要因について詳細に検討した。この点、上述の特許文献4及び5では、専ら金属ケース(ノズルケース)や支持具(ホルダ)の熱膨張がずれ下がりの要因であるとされていたが、本発明者らの試験及び検討によると詳細は後述するが、ノズル本体と金属ケースとの間に介在するモルタルの座屈がずれ下がりの大きな要因であることが判明した。そして、本発明者らはこの要因分析を踏まえ、ずれ下がりの抑制と首部への応力集中の緩和とを両立することのできる連続鋳造用ノズルを実現するために更に試験及び検討を重ねた結果、本発明に想到するに至った。 In solving the above problem, the inventors first conducted a detailed study on the causes of slippage of a continuous casting nozzle. In this regard, the above-mentioned Patent Documents 4 and 5 state that the cause of slippage is solely the thermal expansion of the metal case (nozzle case) and the support (holder), but the inventors' tests and studies, which will be described in detail later, revealed that the main cause of slippage is buckling of the mortar interposed between the nozzle body and the metal case. Based on this analysis of the causes, the inventors conducted further tests and studies to realize a continuous casting nozzle that can both suppress slippage and reduce stress concentration in the neck, and as a result, they came up with the present invention.
 すなわち、本発明の一観点によれば次の連続鋳造用ノズルが提供される。
 溶鋼が通過する内孔を鉛直方向に有する耐火物からなるノズル本体を含む連続鋳造用ノズルであって、
 前記ノズル本体は上端にフランジ部を含み、
 前記フランジ部は、外側面に前記内孔側に向けて下向きに傾斜するテーパ部を含むと共に、下面に前記テーパ部の下端から前記内孔側に向けて水平方向に延びる水平部を含み、
 更に前記フランジ部の外周を覆う金属ケースを含み、
 前記金属ケースは、前記フランジ部の水平部と一定厚さのモルタルを介して対向する水平板部を含み、
 前記金属ケースの水平板部で外部下方からの押し付け力を受ける、連続鋳造用ノズル。
That is, according to one aspect of the present invention, there is provided the following continuous casting nozzle.
A continuous casting nozzle including a nozzle body made of a refractory material having an inner hole through which molten steel passes in a vertical direction,
The nozzle body includes a flange portion at an upper end,
the flange portion includes a tapered portion on an outer surface thereof that slopes downward toward the inner hole, and a horizontal portion on a lower surface thereof that extends horizontally from a lower end of the tapered portion toward the inner hole,
Further, a metal case is included which covers an outer periphery of the flange portion,
the metal case includes a horizontal plate portion facing the horizontal portion of the flange portion with a certain thickness of mortar interposed therebetween,
A continuous casting nozzle in which a pressing force from below is received by the horizontal plate portion of the metal case.
 本発明の連続鋳造用ノズルによれば、首部への応力集中を緩和できると共にずれ下がりを抑制できる。 The continuous casting nozzle of the present invention can reduce stress concentration on the neck and prevent it from slipping down.
本発明の一実施形態である連続鋳造用ノズルを示し、(a)は平面図、(b)は(a)のA-A方向断面図。1A and 1B show a continuous casting nozzle according to an embodiment of the present invention, in which FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along the line A-A of FIG. 図1の連続鋳造用ノズルのノズル本体上部を下方から見た部分的な斜視図。FIG. 2 is a partial perspective view of an upper portion of the nozzle body of the continuous casting nozzle of FIG. 1 as viewed from below. 図1の連続鋳造用ノズルのノズル本体上部の部分的な断面図。FIG. 2 is a partial cross-sectional view of an upper portion of a nozzle body of the continuous casting nozzle of FIG. 1 . 従来の連続鋳造用ノズルのノズル本体上部の部分的な断面図。FIG. 2 is a partial cross-sectional view of an upper portion of a nozzle body of a conventional continuous casting nozzle. 本発明の他の実施形態である連続鋳造用ノズルの平面図。FIG. 4 is a plan view of a continuous casting nozzle according to another embodiment of the present invention. モルタルの座屈によるノズル本体のずれ下がりを説明するためのモデル図で、(a)は本発明の実施例、(b)は比較例。1A and 1B are model diagrams for explaining the downward displacement of the nozzle body due to buckling of mortar, in which FIG. 1A is an embodiment of the present invention, and FIG. ノズル本体首部の発生応力の計算例を示すグラフ。6 is a graph showing a calculation example of stress generated in a neck portion of a nozzle body.
 図1に、本発明の一実施形態である連続鋳造用ノズルを示しており、同図(a)は平面図、同図(b)は同図(a)のA-A方向断面図である。なお、同図(b)では、連続鋳造用ノズルの下部を省略して上部のみを示している。また、図2は図1の連続鋳造用ノズルのノズル本体上部を下方から見た部分的な斜視図、図3は図1の連続鋳造用ノズルのノズル本体上部の部分的な断面図である。 FIG. 1 shows a continuous casting nozzle according to one embodiment of the present invention, with FIG. 1(a) being a plan view and FIG. 1(b) being a cross-sectional view taken along the line A-A in FIG. 1(a). Note that FIG. 1(b) shows only the upper part of the continuous casting nozzle, with the lower part omitted. FIG. 2 is a partial perspective view of the upper part of the nozzle body of the continuous casting nozzle of FIG. 1, as seen from below, and FIG. 3 is a partial cross-sectional view of the upper part of the nozzle body of the continuous casting nozzle of FIG. 1.
 図1に示している連続鋳造用ノズル1は、鋼の連続鋳造においてタンディッシュ設備からモールドへ溶鋼を注入する際に用いる浸漬ノズルであり、上述の連続鋳造用ノズル交換装置に適用されるものである。
 この浸漬ノズル1は、耐火物からなるノズル本体2を含む。ノズル本体2は、鉛直方向に溶鋼通過経路である内孔21を有すると共に、上端にフランジ部22を含む。本実施形態においてフランジ部22は、ノズル本体2と同じ耐火物で一体的に形成された下部フランジ部22aと、ノズル本体2と異なる耐火物で形成された上部フランジ部22bとからなるが、フランジ部22全体をノズル本体2と同じ耐火物で一体的に形成してもよいし、逆に、フランジ部22全体をノズル本体2と異なる耐火物で形成し、ノズル本体2に直接接合又は接着剤を介して接合してもよい。
 いずれにしてもフランジ部22は、外側面に内孔21側に向けて下向きに傾斜するテーパ部221を含むと共に、下面にテーパ部221の下端から内孔21側に向けて水平方向に延びる水平部222を含む。
The continuous casting nozzle 1 shown in FIG. 1 is a submerged nozzle used when injecting molten steel from a tundish facility into a mold in the continuous casting of steel, and is applied to the continuous casting nozzle exchange device described above.
The submerged nozzle 1 includes a nozzle body 2 made of a refractory material. The nozzle body 2 has an inner hole 21 in the vertical direction, which is a passageway for molten steel, and includes a flange portion 22 at an upper end. In this embodiment, the flange portion 22 includes a lower flange portion 22a integrally formed with the nozzle body 2 from the same refractory material as the nozzle body 2, and an upper flange portion 22b formed from a refractory material different from that of the nozzle body 2. However, the entire flange portion 22 may be integrally formed with the nozzle body 2 from the same refractory material as the nozzle body 2, or conversely, the entire flange portion 22 may be formed from a refractory material different from that of the nozzle body 2 and joined directly or via an adhesive to the nozzle body 2.
In any case, the flange portion 22 includes a tapered portion 221 on its outer surface that slopes downward toward the inner hole 21, and a horizontal portion 222 on its underside that extends horizontally from the lower end of the tapered portion 221 toward the inner hole 21.
 浸漬ノズル1は、フランジ部22の外周を覆う金属ケース3を含む。ここで、フランジ部22の外周とは、上述の外側面と下面を総称する概念である。本実施形態において金属ケース3は、フランジ部22の外周、及びその下方のノズル本体2の一部の外周を覆うように配置されている。なお、本実施形態ではフランジ部22の外周において外側面の上端部は金属ケース3で覆われておらず露出しているが、フランジ部22の外周全体を金属ケース3で覆うようにしてもよい。 The submerged nozzle 1 includes a metal case 3 that covers the outer periphery of the flange portion 22. Here, the outer periphery of the flange portion 22 is a general concept that refers to the outer surface and the lower surface described above. In this embodiment, the metal case 3 is arranged to cover the outer periphery of the flange portion 22 and the outer periphery of a portion of the nozzle body 2 below it. Note that in this embodiment, the upper end of the outer surface of the outer periphery of the flange portion 22 is exposed and not covered by the metal case 3, but the entire outer periphery of the flange portion 22 may be covered by the metal case 3.
 図1(b)に表れているように金属ケース3は、フランジ部22の水平部222と一定厚さのモルタル4を介して対向する水平板部31を含む。浸漬ノズル1は、この水平板部31で外部下方からの押し付け力を受ける。この水平板部31で受けた外部下方からの押し付け力は、モルタル4を介してフランジ部22の水平部222へ伝達される。これにより、浸漬ノズル1が上方向に押し上げられ上方の部材(上ノズル部材)と接触する。 As shown in FIG. 1(b), the metal case 3 includes a horizontal plate portion 31 that faces the horizontal portion 222 of the flange portion 22 via a certain thickness of mortar 4. The submerged nozzle 1 receives a pressing force from below at this horizontal plate portion 31. The pressing force from below received by this horizontal plate portion 31 is transmitted to the horizontal portion 222 of the flange portion 22 via the mortar 4. This causes the submerged nozzle 1 to be pushed upward and come into contact with the upper member (upper nozzle member).
 図3には、ノズル本体2のフランジ部22の水平部222へ作用する外部下方からの上向きの押し付け力F(以下、単に「力F」という。)を概念的に示している。上述の通り水平部222は、テーパ部221の下端から内孔21側に向けて水平方向に延びるように存在するから、図4に示している、テーパ部を有しない従来の浸漬ノズルのノズル本体2と比較して、力Fが作用する水平部222の水平方向の長さL1は、テーパ部221の水平方向の長さL2の分だけ短くなる。そのため、ノズル本体2の首部23に作用する、力Fによる応力(モーメント力)もその分低減し、首部23への応力集中が緩和される。 Figure 3 conceptually shows an upward pressing force F (hereinafter simply referred to as "force F") acting from below on the horizontal portion 222 of the flange portion 22 of the nozzle body 2. As described above, the horizontal portion 222 is present so as to extend horizontally from the lower end of the tapered portion 221 toward the inner hole 21. Therefore, compared to the nozzle body 2 of a conventional immersion nozzle that does not have a tapered portion as shown in Figure 4, the horizontal length L1 of the horizontal portion 222 on which force F acts is shorter by the horizontal length L2 of the tapered portion 221. Therefore, the stress (moment force) due to force F acting on the neck portion 23 of the nozzle body 2 is also reduced by that amount, and stress concentration on the neck portion 23 is alleviated.
 ここで、水平部222の水平方向の長さL1は、このL1とテーパ部221の水平方向の長さL2との合計長さLに対して、20%以上80%以下の範囲内にあることが好ましい。L1がLの80%を超えると、上述の首部23への応力集中の緩和効果が顕著には表れにくい。一方、L1がLの20%未満になると、後述するノズル本体2のずれ下がりの抑制効果が顕著には表れにくい。 Here, it is preferable that the horizontal length L1 of the horizontal portion 222 is within a range of 20% to 80% of the total length L of L1 and the horizontal length L2 of the tapered portion 221. If L1 exceeds 80% of L, the effect of reducing the stress concentration on the neck portion 23 described above is unlikely to be noticeable. On the other hand, if L1 is less than 20% of L, the effect of suppressing the downward slippage of the nozzle body 2 described below is unlikely to be noticeable.
 次に、L1及びL2を含むLの定義(決定方法)について、特に図1(a)及び図5を参照しつつ説明する。本発明において水平部222の水平方向の長さL1とテーパ部221の水平方向の長さL2との合計長さLは、力Fの作用する力点部Pが存在する領域において、内孔21の中心211を通る水平方向の直線のうちLに対応する長さが最短となる直線上における長さとする。
 例えば本実施形態の浸漬ノズル1は、上述の通り連続鋳造用ノズル交換装置に適用されるから、力Fの作用する力点部Pは、図1(a)に概念的に示しているように平面視略四角形状のフランジ部22の下面において内孔21を挟むように対向して対称に2箇所存在する。このような場合、図1(a)中に示す直線X1が上述の最短となる直線であり、この直線X1上における水平部222の水平方向の長さL1とテーパ部221の水平方向の長さL2との合計長さがLである。
 一方、連続鋳造用ノズル交換装置に適用されない連続鋳造用ノズル、例えばロングノズルの場合、力Fの作用する力点部Pは、図5に概念的に示しているように内孔21を囲むようにリング状に存在する場合がある。このような場合、図5中に示す直線X2が上述の最短となる直線であり、この直線X2上における水平部222の水平方向の長さL1とテーパ部221の水平方向の長さL2との合計長さがLである。
Next, the definition (determination method) of L including L1 and L2 will be described with particular reference to Figures 1(a) and 5. In the present invention, the total length L of the horizontal length L1 of the horizontal portion 222 and the horizontal length L2 of the tapered portion 221 is defined as the length on a horizontal line passing through the center 211 of the inner hole 21 in the region where the force point P on which the force F acts is located, which has the shortest length corresponding to L.
For example, since the submerged nozzle 1 of this embodiment is applied to the continuous casting nozzle replacing device as described above, there are two force points P where the force F acts, which are symmetrically opposed to each other across the inner hole 21 on the underside of the flange portion 22, which has a generally rectangular shape in plan view, as conceptually shown in Fig. 1(a). In such a case, the straight line X1 shown in Fig. 1(a) is the shortest straight line described above, and the total length L is the horizontal length L1 of the horizontal portion 222 on this straight line X1 and the horizontal length L2 of the tapered portion 221.
On the other hand, in the case of a continuous casting nozzle not applied to the continuous casting nozzle replacing device, such as a long nozzle, the force point P where the force F acts may exist in a ring shape surrounding the inner bore 21, as conceptually shown in Fig. 5. In such a case, the straight line X2 shown in Fig. 5 is the shortest straight line mentioned above, and the total length L is the horizontal length L1 of the horizontal portion 222 on this straight line X2 and the horizontal length L2 of the tapered portion 221.
 このように本発明においてL1及びL2を含むLは、力Fの作用する力点部Pが存在する領域において決定する。L1及びL2を含むLの長さが応力集中等の観点から問題になるのは、力点部Pが存在する領域であるからである。また、同様の観点からテーパ部221は、力点部Pが存在する領域に対応する領域に形成しておけばよい。例えば本実施形態の浸漬ノズル1では、図1(a)等に表れているように、力点部Pが存在する領域に対応する一方の一対の外側面にのみテーパ部221を形成し、他方の一対の外側面にはテーパ部を形成していない。無論、他方の一対の外側面にもテーパ部を形成してもよい。 In this way, in the present invention, L including L1 and L2 is determined in the region where the force point P on which the force F acts is present. The length of L including L1 and L2 is an issue from the standpoint of stress concentration and the like because it is the region where the force point P is present. From a similar standpoint, the tapered portion 221 may be formed in a region corresponding to the region where the force point P is present. For example, in the immersion nozzle 1 of this embodiment, as shown in FIG. 1(a) etc., the tapered portion 221 is formed only on one pair of outer surfaces corresponding to the region where the force point P is present, and no tapered portion is formed on the other pair of outer surfaces. Of course, a tapered portion may also be formed on the other pair of outer surfaces.
 図1(b)に表れているように、本実施形態の浸漬ノズル1において金属ケース3とテーパ部221との間にはモルタル4が充填されている。このモルタル4は金属ケース3の水平板部31と水平部222との間に介在するモルタル4と同材質で一体化している。このように、金属ケース3とテーパ部221との間にモルタル4を充填することで、金属ケース3によってフランジ部22の外周を隙間なく安定して覆うことができる。なお、金属ケース3とテーパ部221との間にはモルタル4に代えて、リング状の金属製部材やセラミック製部材を別途配置してもよい。ただし、金属ケース3によってフランジ部22の外周を覆う際の作業性や安定性の観点からは、本実施形態のように金属ケース3とフランジ部22の外周との間には、その全体にモルタル4を充填することが好ましい。すなわち、フランジ部22の外周にモルタル4を塗布し、その後、金属ケース3を装着することで、金属ケース3とフランジ部22の外周との間の全体にモルタル4を充填することができる。 1(b), in the submerged nozzle 1 of this embodiment, mortar 4 is filled between the metal case 3 and the tapered portion 221. This mortar 4 is made of the same material as the mortar 4 interposed between the horizontal plate portion 31 and the horizontal portion 222 of the metal case 3 and is integrated with the metal case 3. In this way, by filling the space between the metal case 3 and the tapered portion 221 with mortar 4, the outer periphery of the flange portion 22 can be stably covered by the metal case 3 without any gaps. Note that, instead of mortar 4, a ring-shaped metal member or ceramic member may be separately disposed between the metal case 3 and the tapered portion 221. However, from the viewpoint of workability and stability when covering the outer periphery of the flange portion 22 with the metal case 3, it is preferable to fill the entire space between the metal case 3 and the outer periphery of the flange portion 22 with mortar 4 as in this embodiment. In other words, by applying mortar 4 to the outer periphery of the flange portion 22 and then attaching the metal case 3, the entire space between the metal case 3 and the outer periphery of the flange portion 22 can be filled with mortar 4.
 なお、本実施形態の金属ケース3においてフランジ部22のテーパ部221と対向する部分は、フランジ部22の水平部222と一定厚さのモルタル4を介して対向する水平板部31を延長して水平板状に形成しているが、後述する図6(a)に示しているようにフランジ部22のテーパ部221に倣うようにテーパ状に形成してもよい。
 また、本実施形態においてテーパ部221は「平面」により形成したが、これには限定されず、例えば「曲面」により形成してもよく、「階段状の段差面」により形成してもよい。いずれにしても本発明において「テーパ部」とは、「内孔側に向けて下向きに傾斜する」ものであればよい。また、「内孔側に向けて下向きに傾斜するテーパ部」とは、そのテーパ部の全体として内孔側に向けて下向きに傾斜するものであればよい。ただし、テーパ部の形成の容易性等を考慮すると、テーパ部は本実施形態のように「平面」により形成することが好ましい。
In the metal case 3 of this embodiment, the portion facing the tapered portion 221 of the flange portion 22 is formed in a horizontal plate shape by extending the horizontal plate portion 31 that faces the horizontal portion 222 of the flange portion 22 via a certain thickness of mortar 4, but it may be formed in a tapered shape to follow the tapered portion 221 of the flange portion 22 as shown in Figure 6 (a) described later.
In addition, in this embodiment, the tapered portion 221 is formed by a "flat surface", but is not limited thereto, and may be formed by, for example, a "curved surface" or a "step-like step surface". In any case, in the present invention, the "tapered portion" may be one that "inclines downward toward the inner hole". In addition, the "tapered portion that slopes downward toward the inner hole" may be one that slopes downward toward the inner hole as a whole. However, in consideration of the ease of forming the tapered portion, it is preferable that the tapered portion be formed by a "flat surface" as in this embodiment.
 また、本実施形態においてフランジ部22の平面視形状は略四角形状としたが、多角形、楕円形又は円形とすることもできる。更に、フランジ部22を除いたノズル本体2の平面視形状も円形には限定されず、例えば矩形又は楕円形とすることもできる。 In addition, in this embodiment, the flange portion 22 has a generally rectangular shape in plan view, but it can also be polygonal, elliptical, or circular. Furthermore, the shape of the nozzle body 2 excluding the flange portion 22 in plan view is not limited to a circle, and can also be, for example, rectangular or elliptical.
 まず、モルタルの座屈によるノズル本体のずれ下がりについて説明する。図6に、そのためのモデル図を示し、同図(a)は本発明の実施例、同図(b)は比較例である。同図(a)に示す実施例では、水平部222の水平方向の長さL1を10mm、テーパ部221の水平方向の長さL2を20mm、L1とL2との合計長さLを30mmとし、また、テーパ部221の高さHを75mm、水平部222と水平板部31との間に介在するモルタル4の厚さTを2mmとしている。このような形態において、図示しない上方の部材(上ノズル部材)との接触による反力として、ノズル本体2に鉛直方向下向きの力が作用するとモルタル4が座屈し、ノズル本体2がずれ下がる。ただし、この実施例の場合、水平部222が存在するから、ノズル本体2のずれ下がりはモルタル4の厚さT、すなわち2mmで納まることになる。一方、同図(b)に示す比較例の場合、テーパ部221のみで水平部222が存在しない。そうすると、テーパ部221においてモルタル4の鉛直方向の厚さが大きいことから、モルタル4の座屈によるノズル本体2のずれ下がりが大きくなり、この比較例の場合、計算上5.4mmとなり実施例の2倍以上となる。
 このようなモルタルの座屈の問題は、従来認識されていなかったが、本発明者らの試験及び検討によると、このようなモルタルの座屈がノズル本体のずれ下がりの大きな要因であることが判明した。そこで本発明では、テーパ部221と共に水平部222を設けることで、ノズル本体2のずれ下がりの抑制効果が得られる。
First, the downward slippage of the nozzle body due to buckling of the mortar will be described. FIG. 6 shows a model diagram for this purpose, with FIG. 6(a) being an embodiment of the present invention and FIG. 6(b) being a comparative example. In the embodiment shown in FIG. 6(a), the horizontal length L1 of the horizontal portion 222 is 10 mm, the horizontal length L2 of the tapered portion 221 is 20 mm, the total length L of L1 and L2 is 30 mm, the height H of the tapered portion 221 is 75 mm, and the thickness T of the mortar 4 interposed between the horizontal portion 222 and the horizontal plate portion 31 is 2 mm. In this form, when a vertically downward force acts on the nozzle body 2 as a reaction force due to contact with an upper member (upper nozzle member) not shown, the mortar 4 buckles and the nozzle body 2 slips downward. However, in this embodiment, since the horizontal portion 222 exists, the downward slippage of the nozzle body 2 is contained within the thickness T of the mortar 4, that is, 2 mm. On the other hand, in the comparative example shown in FIG. 6(b), only the tapered portion 221 does not exist and the horizontal portion 222 does not exist. In this case, since the vertical thickness of the mortar 4 is large at the tapered portion 221, the nozzle body 2 will shift downward due to buckling of the mortar 4 to a large extent, and in the case of this comparative example, the calculated downward shift is 5.4 mm, which is more than twice that of the embodiment.
Although the problem of mortar buckling was not recognized in the past, the inventors' tests and studies revealed that mortar buckling is a major factor in the downward slippage of the nozzle body. Therefore, in the present invention, by providing the horizontal portion 222 together with the tapered portion 221, the effect of suppressing the downward slippage of the nozzle body 2 can be obtained.
 次に、首部への応力集中の抑制効果について説明する。図7に、図3においてテーパ部221と水平部222との水平方向の合計長さLに対する水平部222の長さL1の割合を変化させて、それぞれ首部23に発生する応力を計算した結果を示している。ここで、水平部222の長さL1の割合が100%の場合は、図4に示した従来の浸漬ノズルのノズル本体2に相当し、図7の縦軸「首部応力指数」とは、L1の割合が100%の場合における首部23の発生応力を100とする指数である。図7から明らかなように、水平部222の長さL1の割合が低いほど、言い換えればテーパ部221の長さL2の割合が高いほど、首部23に発生する応力が低くなることが確認された。すなわち、テーパ部221を設けることで、首部への応力集中の抑制効果が得られることが確認された。 Next, the effect of suppressing stress concentration on the neck will be described. Figure 7 shows the results of calculating the stress generated in the neck 23 by changing the ratio of the length L1 of the horizontal portion 222 to the total horizontal length L of the tapered portion 221 and the horizontal portion 222 in Figure 3. Here, when the ratio of the length L1 of the horizontal portion 222 is 100%, it corresponds to the nozzle body 2 of the conventional submerged nozzle shown in Figure 4, and the vertical axis "neck stress index" in Figure 7 is an index in which the stress generated in the neck 23 when the ratio of L1 is 100% is set to 100. As is clear from Figure 7, it was confirmed that the lower the ratio of the length L1 of the horizontal portion 222, in other words, the higher the ratio of the length L2 of the tapered portion 221, the lower the stress generated in the neck 23. In other words, it was confirmed that the provision of the tapered portion 221 provides an effect of suppressing stress concentration on the neck.
 1 浸漬ノズル(連続鋳造用ノズル)
 2 ノズル本体
 21 内孔
 211 内孔の中心
 22 フランジ部
 22a 下部フランジ部
 22b 上部フランジ部
 221 テーパ部
 222 水平部
 23 首部
 3 金属ケース
 31 水平板部
 4 モルタル
 P 力点部
1. Submerged nozzle (nozzle for continuous casting)
2 Nozzle body 21 Inner hole 211 Center of inner hole 22 Flange portion 22a Lower flange portion 22b Upper flange portion 221 Tapered portion 222 Horizontal portion 23 Neck portion 3 Metal case 31 Horizontal plate portion 4 Mortar P Point of force

Claims (3)

  1.  溶鋼が通過する内孔を鉛直方向に有する耐火物からなるノズル本体を含む連続鋳造用ノズルであって、
     前記ノズル本体は上端にフランジ部を含み、
     前記フランジ部は、外側面に前記内孔側に向けて下向きに傾斜するテーパ部を含むと共に、下面に前記テーパ部の下端から前記内孔側に向けて水平方向に延びる水平部を含み、
     更に前記フランジ部の外周を覆う金属ケースを含み、
     前記金属ケースは、前記フランジ部の水平部と一定厚さのモルタルを介して対向する水平板部を含み、
     前記金属ケースの水平板部で外部下方からの押し付け力を受ける、連続鋳造用ノズル。
    A continuous casting nozzle including a nozzle body made of a refractory material having an inner hole through which molten steel passes in a vertical direction,
    The nozzle body includes a flange portion at an upper end,
    the flange portion includes a tapered portion on an outer surface thereof that slopes downward toward the inner hole, and a horizontal portion on a lower surface thereof that extends horizontally from a lower end of the tapered portion toward the inner hole,
    Further, a metal case is included which covers an outer periphery of the flange portion,
    the metal case includes a horizontal plate portion facing the horizontal portion of the flange portion with a certain thickness of mortar interposed therebetween,
    A continuous casting nozzle in which a pressing force from below is received by the horizontal plate portion of the metal case.
  2.  前記テーパ部と前記水平部との水平方向の合計長さに対して、前記水平部の水平方向の長さが20%以上80%以下の範囲内にある、請求項1に記載の連続鋳造用ノズル。 The continuous casting nozzle according to claim 1, wherein the horizontal length of the horizontal portion is within a range of 20% to 80% of the total horizontal length of the tapered portion and the horizontal portion.
  3.  前記金属ケースと前記テーパ部との間にモルタルが充填されている、請求項1又は2に記載の連続鋳造用ノズル。 The continuous casting nozzle according to claim 1 or 2, wherein mortar is filled between the metal case and the tapered portion.
PCT/JP2023/039579 2022-11-14 2023-11-02 Continuous casting nozzle WO2024106221A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-182054 2022-11-14
JP2022182054A JP7461442B1 (en) 2022-11-14 2022-11-14 Continuous casting nozzle

Publications (1)

Publication Number Publication Date
WO2024106221A1 true WO2024106221A1 (en) 2024-05-23

Family

ID=90474125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039579 WO2024106221A1 (en) 2022-11-14 2023-11-02 Continuous casting nozzle

Country Status (2)

Country Link
JP (1) JP7461442B1 (en)
WO (1) WO2024106221A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128282A1 (en) * 2008-04-16 2009-10-22 品川白煉瓦株式会社 Immersion nozzle for continuous casting
WO2011121721A1 (en) * 2010-03-30 2011-10-06 明智セラミックス株式会社 Cast nozzle
JP2014513633A (en) * 2011-05-16 2014-06-05 ベスビウス グループ,ソシエテ アノニム Foolproof nozzle changer and nozzle unit
WO2015129423A1 (en) * 2014-02-25 2015-09-03 黒崎播磨株式会社 Submerged nozzle
CN213350812U (en) * 2020-09-11 2021-06-04 柳州钢铁股份有限公司 Tundish safety plug for lower nozzle of slab caster

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128282A1 (en) * 2008-04-16 2009-10-22 品川白煉瓦株式会社 Immersion nozzle for continuous casting
WO2011121721A1 (en) * 2010-03-30 2011-10-06 明智セラミックス株式会社 Cast nozzle
JP2014513633A (en) * 2011-05-16 2014-06-05 ベスビウス グループ,ソシエテ アノニム Foolproof nozzle changer and nozzle unit
WO2015129423A1 (en) * 2014-02-25 2015-09-03 黒崎播磨株式会社 Submerged nozzle
CN213350812U (en) * 2020-09-11 2021-06-04 柳州钢铁股份有限公司 Tundish safety plug for lower nozzle of slab caster

Also Published As

Publication number Publication date
JP7461442B1 (en) 2024-04-03
JP2024071220A (en) 2024-05-24

Similar Documents

Publication Publication Date Title
JP6465854B2 (en) Metal flow impact pad and tundish diffuser
AU2004205428B2 (en) Pouring nozzle, pushing device for a pouring nozzle and casting installation
WO2024106221A1 (en) Continuous casting nozzle
EP3112050B1 (en) Submerged nozzle
CN1069243C (en) Tundish impact pad
EP1149649A1 (en) Exchangeable continous casting nozzle
CN108778564B (en) Nozzle structure
US20100219212A1 (en) Upper nozzle
RU2466825C2 (en) Teeming nozzle for continuous casting
JP4705438B2 (en) Sealing method and structure of nozzle joint in continuous casting equipment for steel
JP2000343208A (en) Sliding immersed nozzle
WO2024048381A1 (en) Immersion nozzle
RU133762U1 (en) GLASS-DISPENSER
US20130284770A1 (en) Sliding nozzle plate and sliding nozzle device using the same
WO2011121721A1 (en) Cast nozzle
CN211661078U (en) Long-life right angle cushion cap immersion nozzle
JP5440933B2 (en) Immersion nozzle and continuous casting method using the same
JP2008178899A (en) Immersion nozzle for continuous casting
JP2019524450A (en) Tundish funnel
KR20190129252A (en) Gasket for a collector nozzle
JP2017136598A (en) Sliding gate plate
JP4460859B2 (en) Sliding nozzle plate for molten metal
JP2008132504A (en) Tundish for continuous casting
JPH08132195A (en) Nozzle for continuous casting