WO2024105856A1 - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- WO2024105856A1 WO2024105856A1 PCT/JP2022/042733 JP2022042733W WO2024105856A1 WO 2024105856 A1 WO2024105856 A1 WO 2024105856A1 JP 2022042733 W JP2022042733 W JP 2022042733W WO 2024105856 A1 WO2024105856 A1 WO 2024105856A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- water
- air conditioner
- humidification
- refrigerant
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 201
- 239000003507 refrigerant Substances 0.000 claims abstract description 91
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 92
- 241000894006 Bacteria Species 0.000 description 14
- 238000000034 method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 230000001954 sterilising effect Effects 0.000 description 7
- 238000004659 sterilization and disinfection Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 208000007764 Legionnaires' Disease Diseases 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 241000589248 Legionella Species 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 235000014214 soft drink Nutrition 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0087—Indoor units, e.g. fan coil units with humidification means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/14—Heat exchangers specially adapted for separate outdoor units
- F24F1/18—Heat exchangers specially adapted for separate outdoor units characterised by their shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/36—Drip trays for outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/42—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger characterised by the use of the condensate, e.g. for enhanced cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
- F24F6/02—Air-humidification, e.g. cooling by humidification by evaporation of water in the air
- F24F6/08—Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
Definitions
- This disclosure relates to an air conditioner with a humidification function.
- An air conditioner with a humidification function can prevent the air in the room from drying out by operating the humidification function during air conditioning operation.
- an air conditioner with a humidification function that uses water generated by condensing water vapor contained in the outside air for humidification, and does not require the supply of moisture from outside, is disclosed.
- Section 4 Hygienic measures for hot water supply equipment
- Section 2 Structural and equipment measures
- [online] Ministry of Health, Labour and Welfare, [searched September 13, 2022]
- An air conditioner having a compressor, a flow path switching device, an indoor heat exchanger, a pressure reducer, and an outdoor heat exchanger, the compressor and the flow path switching device being provided in one of the refrigerant pipings connecting the indoor heat exchanger and the outdoor heat exchanger, the pressure reducer being provided in the other of the refrigerant pipings connecting the indoor heat exchanger and the outdoor heat exchanger, a refrigerant circuit, a water tank for storing water generated by cooling outdoor air by the outdoor heat exchanger, a bypass piping that branches off from a branching part provided in the refrigerant piping between the compressor and the indoor heat exchanger and is connected to a junction part provided in the refrigerant piping between the branching part and the pressure reducer, a bypass valve provided in the bypass piping and changing the flow rate of refrigerant flowing through the bypass piping, an accessory heat exchanger provided in the bypass piping and heating the water stored in the water tank to 55°C or higher, a humidification element installed at a position where water is
- an air conditioner that prevents the growth of bacteria in the humidification water while suppressing increases in power consumption.
- FIG. 1 is a schematic diagram showing an internal structure of an outdoor unit 110 according to a first embodiment. Schematic diagram of a refrigerant circuit of an air conditioner 1 according to embodiment 2. Schematic cross-sectional view of an outdoor unit 110 according to a third embodiment. 13 is a schematic cross-sectional view of an auxiliary heat exchanger 26 according to a fourth embodiment of the present invention; FIG. 13 is a schematic cross-sectional view of an auxiliary heat exchanger 26 according to a modification of the fourth embodiment.
- 13 is a schematic cross-sectional view of an outdoor unit 110 according to a fifth embodiment of the present invention
- 13 is a schematic cross-sectional view of an outdoor unit 110 according to a sixth embodiment of the present invention
- FIG. 1 is a schematic diagram of a refrigerant circuit of an air conditioner 1 according to embodiment 1.
- Fig. 2 is a schematic diagram showing the internal structure of an outdoor unit 110 according to embodiment 1.
- the air conditioner 1 according to the first embodiment includes a refrigerant circuit passing through an outdoor unit 110 and an indoor unit 120.
- the refrigerant circuit includes a compressor 11, a flow path switching device 12 that switches the inlet and outlet flow paths of the compressor 11, an indoor heat exchanger 14, a pressure reducing device 15, and an outdoor heat exchanger 17.
- the compressor 11 and the flow path switching device 12 are provided in one refrigerant pipe that connects the indoor heat exchanger 14 and the outdoor heat exchanger 17, and the pressure reducing device 15 is provided in the other refrigerant pipe that connects the indoor heat exchanger 14 and the outdoor heat exchanger 17.
- the refrigerant circuit shown in the first embodiment includes a bypass pipe 24 that connects a branching portion 22 provided in the refrigerant pipe between the compressor 11 and the indoor heat exchanger 14 and a junction portion 23 provided in the refrigerant pipe between the branching portion 22 and the pressure reducing device 15.
- a bypass valve 25 that changes the flow rate of the refrigerant flowing through the bypass pipe 24 and an auxiliary heat exchanger 26 are provided in the middle of the bypass pipe 24.
- the air conditioner shown in the first embodiment has a water tank 21 that stores water generated by cooling outdoor air with the outdoor heat exchanger 17 and condensing water vapor.
- the auxiliary heat exchanger 26 functions as a heating unit that heats the water stored in the water tank 21.
- the air conditioner is provided with a humidifier 130 that humidifies the room using the water in the water tank 21 that has been heated by the auxiliary heat exchanger 26, which is a heating unit.
- the outdoor unit 110 is provided with an outdoor fan 16 for supplying airflow to the outdoor heat exchanger 17, and the indoor unit 120 is provided with an indoor fan 13 for supplying airflow to the indoor heat exchanger 14.
- the controller 18 controls the devices that constitute the air conditioner 1, including the compressor 11, and controls the operation of each necessary device so that the air conditioner 1 operates toward the set indoor target temperature and target humidity.
- the controller 18 is shown in the outdoor unit 110, but the location of the controller 18 is not limited to the outdoor unit 110 as long as it can appropriately control the operation of each device, and a plurality of controllers may be installed.
- the humidifier 130 includes an air preheater 31, a humidifier element 32, an air heater 33, a humidifier fan 34, and a water supply regulator 37, and the humidifier 130 and the indoor unit 120 are connected by a humidifier duct 36.
- the drawings in this disclosure do not include a mechanism for supplying water to the water collection tank 21 from the outside, the water collection tank 21 may include a mechanism for supplying water from the outside.
- the heat of the refrigerant is released through the indoor heat exchanger 14, so that the air that has received the heat is blown into the room as warm air by the indoor fan 13.
- the operation of the devices constituting the air conditioner 1, including the compressor 11, is controlled by the controller 18, for example, so that the indoor temperature becomes a set target indoor temperature.
- the heating operation As in the heating operation, the high-temperature, high-pressure refrigerant discharged from the compressor 11 releases heat when condensing in the indoor heat exchanger 14, and the air that has received the heat is blown into the room, thereby warming the room.
- the condensed refrigerant is then decompressed in the pressure reducer 15, and becomes a low-temperature, low-pressure refrigerant, which flows through the outdoor heat exchanger 17.
- the low-temperature, low-pressure refrigerant absorbs heat from the outdoor air and evaporates, and the water vapor in the outdoor air that has lost heat becomes below the dew point temperature and condenses into water, which is then used as water for humidification.
- the operation of the outdoor unit 110 will be described more specifically with reference to FIG. 2.
- the outdoor air passes through the outdoor heat exchanger 17 in the direction indicated by the arrow A1, and heat exchange takes place between the outdoor air and the refrigerant.
- the water vapor in the outdoor air condenses into water, which adheres to the surface of the outdoor heat exchanger 17.
- Water adhering to the surface of the outdoor heat exchanger 17 flows down in the direction of the arrow W1 by gravity and accumulates in the water collection tank 21 through the water supply port 35.
- the water accumulated in the water collection tank 21 is supplied to the humidification element 32 after the water supply amount adjustment unit 37 adjusts the water amount.
- the humidification element 32 is located below the water supply amount adjustment unit 37, and by opening the water supply amount adjustment unit 37, the water in the water collection tank 21 flows down to the humidification element 32.
- the outside air is taken into the humidification device 130 as shown by the arrow A2, passes through the air preheater 31, the humidification element 32, and the air heater 33 in this order, and flows toward the room through the humidification duct 36.
- water is supplied to the humidification element 32, so that the air passing through the humidification element 32 is humidified, and the humidified air is supplied to the room through the humidification duct 36.
- the heating by the air preheater 31 the temperature of the air supplied to the humidification element 32 is changed, and the amount of saturated water vapor is adjusted. As a result, the amount of water vapor contained in the air humidified by passing through the humidification element 32 can be controlled.
- the humidity can be kept relatively low compared to unheated air. Furthermore, since the humidification duct 36 is heated, condensation is prevented from occurring on the inner surface of the humidification duct 36.
- an electric heater can be applied as the air preheater 31 and the air heater 33 to enable heating with good controllability, but this is not limited to an electric heater and other heating means may be used.
- Heat sterilization of water for humidification As described above, in an air conditioner having a humidifying function, it is required to prevent the growth of bacteria in the humidifying water so as not to pollute the air quality in the room.
- One of the methods for preventing the growth of bacteria in the humidifying water is sterilization by heating. For example, if Legionella bacteria, which are widely distributed in nature and require caution because they can cause pneumonia and the like when infected by humans, are used as an indicator, according to Non-Patent Documents 1, 2, and 3, it is said that the bacteria can be killed by setting the temperature of the water at 55°C or higher, and that it can be sterilized at a temperature of 60°C in 5 minutes.
- the heating time required for sterilization can be further shortened by increasing the heating temperature, and for example, at a temperature of 80°C, the effect can be obtained by heating for a few seconds. Therefore, it is effective to apply a heating treatment at 55°C or higher as a method for preventing the growth of bacteria in the humidifying water.
- the humidifying water is heated only by an electric heater, for example, electricity for the heating treatment is required in addition to the heating operation. Therefore, if the growth of bacteria in the humidifying water is prevented, the power consumption of the air conditioner as a whole increases.
- One method for preventing the growth of bacteria in the humidification water while suppressing the increase in the power consumption of the air conditioner is to heat the water by using the heat of the refrigerant.
- the humidification water stored in the water collection tank 21 can be heated by flowing a part of the high-temperature, high-pressure refrigerant flowing from the compressor 11 to the indoor heat exchanger 14 to the auxiliary heat exchanger 26 during heating operation. More specifically, first, the bypass valve 25 is opened, and a part of the high-temperature, high-pressure refrigerant discharged from the compressor 11 flows into the bypass piping 24.
- the high-temperature, high-pressure refrigerant that has flowed into the bypass piping 24 flows through the auxiliary heat exchanger 26 provided in the water collection tank 21, and heats the humidification water stored in the water collection tank 21. Therefore, by adjusting the opening degree of the bypass valve 25, the refrigerant required for the heating operation can be flowed to the indoor heat exchanger 14, while the refrigerant required for the heating process of the humidification water can be flowed to the auxiliary heat exchanger 26.
- the refrigerant that has passed through the auxiliary heat exchanger 26 joins with the refrigerant that has passed through the indoor heat exchanger 14 at the joining section 23 and flows to the pressure reducer 15.
- the flow of the refrigerant after the pressure reducer 15 is omitted because it is the same as that in the heating operation.
- the amount of water heated by the auxiliary heat exchanger 26 can be controlled by the controller 18 to control the opening degree of the bypass valve 25 and the amount of refrigerant discharged by the compressor 11 based on one or a combination of parameters related to the air conditioner 1, such as the amount of water stored in the water collection tank 21, the water temperature, the refrigerant temperature, and the flow rate of refrigerant required for the heating operation.
- the air conditioner 1 of embodiment 1 is capable of heating the water for humidification stored in the water collection tank 21 by flowing a portion of the high-temperature, high-pressure refrigerant flowing from the compressor 11 to the indoor heat exchanger 14 through the auxiliary heat exchanger 26 during heating operation, and is therefore an air conditioner that can use the heat of the refrigerant to heat the water for humidification while performing heating operation.
- An air conditioner configured in this manner can also use the heat of the refrigerant to heat the water for humidification, thereby suppressing the increase in power consumption associated with preventing the growth of bacteria in the water for humidification.
- the air conditioner shown in embodiment 1 it is possible to provide an air conditioner that prevents the growth of bacteria in the humidification water while suppressing increases in power consumption.
- FIG. 3 is a schematic diagram of a refrigerant circuit of the air conditioner 1 according to the second embodiment.
- the air conditioner 1 of the second embodiment differs from the first embodiment in that the junction 23 is provided between the branch 22 and the indoor heat exchanger 14.
- the junction 23 is provided between the branch 22 and the indoor heat exchanger 14, unlike the first embodiment, even if a part of the refrigerant flows to the auxiliary heat exchanger 26, the refrigerant that has passed through the auxiliary heat exchanger 26 can be merged with the refrigerant that has not passed through the auxiliary heat exchanger 26 at the junction 23 and flow to the indoor heat exchanger 14.
- the refrigerant circuit in this way, the heat of the refrigerant after heating the humidification water can be used for heating the room without being wasted.
- the air conditioner 1 of embodiment 2 is capable of heating the water for humidification stored in the water collection tank 21 by flowing a portion of the high-temperature, high-pressure refrigerant flowing from the compressor 11 to the indoor heat exchanger 14 through the auxiliary heat exchanger 26 during heating operation, and is therefore an air conditioner that can use the heat of the refrigerant to heat the water for humidification while performing heating operation.
- An air conditioner configured in this manner can also use the heat of the refrigerant to heat the humidification water, thereby suppressing the increase in power consumption that would be associated with preventing the growth of bacteria in the humidification water, and furthermore, the heat of the refrigerant after heating the humidification water can be used for heating operation.
- the air conditioner shown in embodiment 2 it is possible to provide an air conditioner that prevents the growth of bacteria in the humidification water while suppressing an increase in power consumption, and further allows the heat of the refrigerant after heating the humidification water to be used for heating operation.
- Embodiment 3. (Configuration of water collection tank and attached heat exchanger) 4 is a schematic cross-sectional view of the outdoor unit 110 according to embodiment 3.
- the cross-sectional position corresponds to the X-X cross section shown in FIG.
- the third embodiment is different from the first embodiment in that the auxiliary heat exchanger 26 constitutes the bottom of the water collection tank 21 as shown in Fig. 4.
- the water stored in the water collection tank 21 is heated at the bottom, so that the water with a higher temperature rises toward the water surface and the water with a relatively lower temperature falls, which is called convection heat transfer, and therefore there is no need to stir the water in the water collection tank 21.
- the water for humidification can be efficiently heated without adding a mechanism and power for stirring the water.
- the bottom is constituted by the auxiliary heat exchanger 26
- the auxiliary heat exchanger 26 is provided near the bottom of the water collection tank 21 and that the water at the bottom of the water collection tank 21 can be heated.
- the air conditioner 1 of embodiment 3 is an air conditioner that can generate convective heat transfer in the humidification water stored in the water collection tank 21 and heat it by configuring the bottom portion of the water collection tank 21 with an attached heat exchanger 26.
- An air conditioner configured in this manner can heat the water to be humidified by generating convective heat transfer without adding a mechanism or power for stirring the water in the water collection tank, thereby efficiently heating the water to be humidified.
- FIG. 5 is a schematic cross-sectional view of an auxiliary heat exchanger 26 according to the fourth embodiment.
- the auxiliary heat exchanger 26 is different from the first embodiment in that it is a flat multi-hole tube having a plate-like external shape.
- the flat multi-hole tube has a pressure resistance as a flow path through which the refrigerant flows, and has a heat transfer performance superior to that of a tube-type heat exchanger, so that the water for humidification can be heated more efficiently.
- the external shape is plate-like, it is easy to install it at the bottom of the water collection tank 21, so that the water for humidification can be heated efficiently as described above.
- a specific example of the material of the auxiliary heat exchanger 26 shown in the fourth embodiment is 1000-series aluminum, which has good thermal conductivity, and is also preferable as a material because it can be extruded and is easy to manufacture.
- the material of the auxiliary heat exchanger 26 is not limited to 1000-series aluminum, and other alloys of different specifications can be applied according to the pressure resistance of the refrigerant flow path required for the air conditioner to be applied.
- the air conditioner 1 of the fourth embodiment is an air conditioner to which the auxiliary heat exchanger 26 constituted by a flat multi-hole tube is applied.
- An air conditioner configured in this manner can obtain better heat transfer performance than a tubular heat exchanger, and can therefore perform heating treatment of water for humidification more efficiently.
- FIG. 6 is a schematic cross-sectional view of an auxiliary heat exchanger 26 according to a modified example of the fourth embodiment.
- the auxiliary heat exchanger 26 is different from the first embodiment in that, instead of the flat multi-hole tube having a plate-like external shape shown in the fourth embodiment, the auxiliary heat exchanger 26 is a member in which an inner fin made by pressing a plate material into a corrugated shape is surrounded by a roll-formed plate material and the ends are joined.
- the air conditioner according to the modified example of the fourth embodiment is an air conditioner to which the auxiliary heat exchanger 26 is applied, which is configured from a member formed by roll-forming the periphery of a corrugated inner fin.
- the air conditioner configured in this manner can obtain better heat transfer performance than a tubular heat exchanger, and can therefore perform heating of water for humidification more efficiently.
- Embodiment 5 (Use of an auxiliary heating unit independent of the refrigerant circuit) 7 is a schematic cross-sectional view of the outdoor unit 110 according to embodiment 5.
- the cross-sectional position corresponds to the X-X cross section shown in FIG.
- the fifth embodiment differs from the first embodiment in that an electric heater 38 is provided in the water collection tank 21 in addition to the auxiliary heat exchanger 26.
- the electric heater 38 can heat the water for humidification stored in the water collection tank 21.
- the water for humidification stored in the water collection tank 21 can be heated by only the auxiliary heat exchanger 26, by only the electric heater 38, or by both the auxiliary heat exchanger 26 and the electric heater 38.
- the electric heater 38 is provided as an auxiliary heating section independent of the refrigerant circuit, so that the amount of heat that is insufficient in the auxiliary heat exchanger 26 can be compensated for by the electric heater 38.
- the higher the heating temperature the shorter the treatment time.
- the electric heater 38 by using the electric heater 38 to increase the heating temperature and shorten the heating treatment time, the start of the humidification operation can be accelerated.
- the electric heater 38 has been given as an example of an auxiliary heating section independent of the refrigerant circuit, the present invention is not limited to this, and the same effect can be obtained as long as there is an auxiliary heating section independent of the refrigerant circuit.
- the air conditioner of the fifth embodiment is an air conditioner that includes the electric heater 38 in the water collection tank 21 in addition to the auxiliary heat exchanger 26 .
- the electric heater can be used as an auxiliary heating section independent of the refrigerant circuit.
- FIG. 8 is a schematic cross-sectional view of the outdoor unit 110 according to embodiment 6. The cross-sectional position corresponds to the X-X cross section shown in Fig. 2.
- Fig. 9 is a flow diagram showing an example of control of the air conditioner 1 according to embodiment 6.
- the sixth embodiment differs from the first embodiment in that a temperature sensor 39 is provided in the water collection tank 21 in addition to the auxiliary heat exchanger 26. By providing the temperature sensor 39, the temperature of the humidification water can be measured, and the amount of heating can be controlled appropriately according to the temperature of the humidification water. As an example, as shown in FIG.
- an electric heater 38 and a temperature sensor 39 are provided in the water collection tank 21 in addition to the auxiliary heat exchanger 26, and the operation thereof will be described below.
- a control example is shown in which the amount of humidification water in the water collection tank 21 and the amount of heating by the auxiliary heat exchanger 26 may vary depending on the operating status of the air conditioner and the temperature and humidity of the outside air, and therefore the amount of heating to be performed by the electric heater 38 is not constant. If the amount of heating by the electric heater 38 is too small, the water for humidification cannot be sufficiently heated, and the humidification operation may cause indoor pollution.
- the controller 18 judges the situation using the temperature measured by the temperature sensor 39, and appropriately controls each device based on the judgment result, thereby enabling more appropriate operation of the air conditioner.
- the heating operation is started (STEP 01), and the outdoor heat exchanger 17 is cooled to a temperature equal to or lower than the dew point temperature of the outdoor air (STEP 02).
- the outdoor dew point temperature is below freezing, the water vapor contained in the outdoor air forms frost on the surface of the outdoor heat exchanger 17 and adheres thereto.
- the frost is melted by the defrost operation (STEP 04), and the frost is stored in the water collection tank 21 as water for humidification (STEP 05).
- a so-called "reverse cycle defrost” method is generally used in which the refrigerant flows in the opposite direction to that during the heating operation, and the high-temperature, high-pressure refrigerant discharged from the compressor 11 is heated by flowing it through the outdoor heat exchanger 17.
- a method other than the "reverse cycle defrost” may be used.
- the temperature of the water in the water collection tank 21 measured by the temperature sensor 39 does not reach the preset heating temperature, it is determined that the heating by the auxiliary heat exchanger 26 alone is insufficient, and heating by the electric heater 38 is started (STEP 09). After starting heating by the electric heater 38, it is determined whether the temperature of the water in the water collection tank 21 measured by the temperature sensor 39 has reached the preset heating temperature (STEP 10). If the temperature of the water in the water collection tank 21 has reached the preset heating temperature, it is determined that the water in the water collection tank 21 has been heated, heating by the electric heater 38 is stopped (STEP 11), and the supply of water to the humidification element 32 is started (STEP 12).
- the process returns to STEP 09.
- the electric heater 38 has been described as an auxiliary heating unit independent of the refrigerant circuit, the present invention is not limited to this, and any auxiliary heating unit independent of the refrigerant circuit can provide the same effect.
- the method of estimating the water volume in the water collection tank 21 using the temperature sensor 39 has been described, this is not the only method that can be used as long as the water level can be estimated, and for example, a method of measuring the water level using a water immersion sensor may be used.
- the air conditioner 1 of the sixth embodiment is an air conditioner that includes the temperature sensor 39 in the water collection tank 21 in addition to the auxiliary heat exchanger 26 .
- An air conditioner configured in this manner can control the amount of heating according to the amount and temperature of water for humidification in the water collection tank, and therefore can heat the water for humidification reliably and efficiently.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Air Humidification (AREA)
Abstract
An air conditioner according to the present disclosure comprises: a refrigerant circuit including a compressor, a flow path switch, an indoor heat exchanger, a pressure reducer, and an outdoor heat exchanger, the compressor and the flow path switch being provided midway along one refrigerant pipe connecting the indoor heat exchanger and the outdoor heat exchanger, and the pressure reducer being provided midway along another refrigerant pipe connecting the indoor heat exchanger and the outdoor heat exchanger; a water collecting tank for collecting water generated by cooling outside air by means of the outdoor heat exchanger; a bypass pipe which branches from a branch portion provided in the refrigerant pipe between the compressor and the indoor heat exchanger, and which is connected to a merging portion provided in the refrigerant pipe between the branch portion and the pressure reducer; a bypass valve which is provided midway along the bypass pipe and which changes a flow rate of a refrigerant flowing through the bypass pipe; an auxiliary heat exchanger which is provided midway along the bypass pipe and which heats the water collected in the water collecting tank to 55°C or higher; a humidification element which is supplied with water from the water collecting tank; and a humidification duct which sends air that has been humidified by passing through the humidification element into a room.
Description
本開示は、加湿機能を有する空気調和機に関する。
This disclosure relates to an air conditioner with a humidification function.
加湿機能を備えた空気調和機は、空調運転時に加湿機能も動作させることにより、室内の空気の乾燥を抑制することが可能である。また、加湿機能を備えた空気調和機には、例えば特許文献1に示されるように、外気に含まれる水蒸気を凝縮して生成した水を加湿に用いることにより、水分を外部から供給する必要のない無給水方式の加湿機能を備えた空気調和機が開示されている。
An air conditioner with a humidification function can prevent the air in the room from drying out by operating the humidification function during air conditioning operation. In addition, as shown in Patent Document 1, for example, an air conditioner with a humidification function that uses water generated by condensing water vapor contained in the outside air for humidification, and does not require the supply of moisture from outside, is disclosed.
しかしながら、このような空気調和機においては、加湿した空気の空気質を維持するため、加湿用の水における細菌の繁殖防止が求められる。加湿用の水において細菌の繁殖を防止する方法の一つとしては、加熱による殺菌処理が有効であるものの、加熱処理に伴い消費電力が増大する。このため、加湿用の水における細菌の繁殖防止を図ると、空気調和機の消費電力が増大する、という課題があった。
However, in such air conditioners, in order to maintain the quality of the humidified air, it is necessary to prevent the growth of bacteria in the humidifying water. One effective method for preventing the growth of bacteria in the humidifying water is sterilization by heating, but the heating process increases power consumption. For this reason, there is an issue that preventing the growth of bacteria in the humidifying water increases the power consumption of the air conditioner.
圧縮機、流路切替器、室内熱交換器、減圧器及び室外熱交換器を有し、圧縮機及び流路切替器は、室内熱交換器と室外熱交換器とを接続する一方の冷媒配管の途中に設けられ、減圧器は、室内熱交換器と室外熱交換器とを接続するもう一方の冷媒配管の途中に設けられた冷媒回路と、室外熱交換器によって外気を冷却して生成された水を溜める集水槽と、圧縮機と室内熱交換器との間の冷媒配管に設けられた分岐部から分岐し、分岐部と減圧器との間の冷媒配管に設けられた合流部に接続されるバイパス配管と、バイパス配管の途中に設けられ、バイパス配管を流れる冷媒の流量を変更するバイパス弁と、バイパス配管の途中に設けられ、集水槽に溜められた水を55℃以上に加熱する付属熱交換器と、集水槽から水が供給される位置に設置された加湿エレメントと、加湿エレメントを通過することにより加湿された空気を室内に送るための加湿ダクトと、を備えた空気調和機。
An air conditioner having a compressor, a flow path switching device, an indoor heat exchanger, a pressure reducer, and an outdoor heat exchanger, the compressor and the flow path switching device being provided in one of the refrigerant pipings connecting the indoor heat exchanger and the outdoor heat exchanger, the pressure reducer being provided in the other of the refrigerant pipings connecting the indoor heat exchanger and the outdoor heat exchanger, a refrigerant circuit, a water tank for storing water generated by cooling outdoor air by the outdoor heat exchanger, a bypass piping that branches off from a branching part provided in the refrigerant piping between the compressor and the indoor heat exchanger and is connected to a junction part provided in the refrigerant piping between the branching part and the pressure reducer, a bypass valve provided in the bypass piping and changing the flow rate of refrigerant flowing through the bypass piping, an accessory heat exchanger provided in the bypass piping and heating the water stored in the water tank to 55°C or higher, a humidification element installed at a position where water is supplied from the water tank, and a humidification duct for sending air humidified by passing through the humidification element into the room.
本開示によれば、消費電力の増大を抑制しつつ、加湿用の水における細菌の繁殖防止を図った、空気調和機を提供することができる。
According to the present disclosure, it is possible to provide an air conditioner that prevents the growth of bacteria in the humidification water while suppressing increases in power consumption.
以下に、本開示に係る空気調和機の一例を示すが、以下に示す実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲で、任意に変形して実施することができる。また、便宜上、繰り返しの説明となる部分は省略する場合がある。
Below is an example of an air conditioner according to the present disclosure, but it is not limited to the embodiment shown below, and can be modified as desired without departing from the gist of the present disclosure. Also, for convenience, repeated explanations may be omitted.
実施の形態1.
(全体構成)
図1は、実施の形態1に係る空気調和機1の冷媒回路の模式図である。図2は、実施の形態1に係る室外機110の内部構造を示す模式図である。
図1に示す通り、実施の形態1に係る空気調和機1は、室外機110と室内機120とを通る冷媒回路を備えている。冷媒回路は、圧縮機11、圧縮機11の入出流路を切り替えられる流路切替器12、室内熱交換器14、減圧器15及び室外熱交換器17を有している。圧縮機11及び流路切替器12は、室内熱交換器14と室外熱交換器17とを接続する一方の冷媒配管の途中に設けられ、減圧器15は、室内熱交換器14と室外熱交換器17とを接続するもう一方の冷媒配管の途中に設けられる。また、実施の形態1に示す冷媒回路は、圧縮機11と室内熱交換器14との間の冷媒配管に設けられた分岐部22と、分岐部22と減圧器15との間の冷媒配管に設けられた合流部23と、を接続するバイパス配管24が設けられている。バイパス配管24の途中には、バイパス配管24を流れる冷媒の流量を変更するバイパス弁25と、付属熱交換器26が設けられている。さらに、実施の形態1に示す空気調和機は、室外熱交換器17によって外気を冷却し、水蒸気を凝縮することで生成された水を溜める集水槽21を有している。付属熱交換器26は、集水槽21に溜められた水を加熱する加熱部として機能する。そして、加熱部である付属熱交換器26によって加熱処理された集水槽21の水を用い室内を加湿する、加湿装置130を備えている。さらに、室外機110には、室外熱交換器17に空気流を供給するための室外ファン16を備え、室内機120には、室内熱交換器14に空気流を供給するための室内ファン13を備える。制御器18は、圧縮機11をはじめとした空気調和機1を構成する機器を制御するものであり、例えば、空気調和機1の運転が、設定された室内の目標温度及び目標湿度に向かう運転となるよう、必要な各機器の動作を制御する。尚、図1では制御器18が室外機110の中に示しているが、各機器の動作を適切に制御可能であれば設置場所は室外機110に限定されるものではなく、また、複数個で構成されていても良い。加湿装置130は、空気予熱器31,加湿エレメント32、空気加熱器33、加湿ファン34及び供給水量調整部37を備えており、加湿装置130と室内機120とは、加湿ダクト36で接続されている。尚、本開示の図面においては、集水槽21に外部から給水できる機構を設けていないが、外部から給水可能な機構を有していても良い。Embodiment 1.
(overall structure)
Fig. 1 is a schematic diagram of a refrigerant circuit of anair conditioner 1 according to embodiment 1. Fig. 2 is a schematic diagram showing the internal structure of an outdoor unit 110 according to embodiment 1.
As shown in FIG. 1, theair conditioner 1 according to the first embodiment includes a refrigerant circuit passing through an outdoor unit 110 and an indoor unit 120. The refrigerant circuit includes a compressor 11, a flow path switching device 12 that switches the inlet and outlet flow paths of the compressor 11, an indoor heat exchanger 14, a pressure reducing device 15, and an outdoor heat exchanger 17. The compressor 11 and the flow path switching device 12 are provided in one refrigerant pipe that connects the indoor heat exchanger 14 and the outdoor heat exchanger 17, and the pressure reducing device 15 is provided in the other refrigerant pipe that connects the indoor heat exchanger 14 and the outdoor heat exchanger 17. In addition, the refrigerant circuit shown in the first embodiment includes a bypass pipe 24 that connects a branching portion 22 provided in the refrigerant pipe between the compressor 11 and the indoor heat exchanger 14 and a junction portion 23 provided in the refrigerant pipe between the branching portion 22 and the pressure reducing device 15. A bypass valve 25 that changes the flow rate of the refrigerant flowing through the bypass pipe 24 and an auxiliary heat exchanger 26 are provided in the middle of the bypass pipe 24. Furthermore, the air conditioner shown in the first embodiment has a water tank 21 that stores water generated by cooling outdoor air with the outdoor heat exchanger 17 and condensing water vapor. The auxiliary heat exchanger 26 functions as a heating unit that heats the water stored in the water tank 21. The air conditioner is provided with a humidifier 130 that humidifies the room using the water in the water tank 21 that has been heated by the auxiliary heat exchanger 26, which is a heating unit. Furthermore, the outdoor unit 110 is provided with an outdoor fan 16 for supplying airflow to the outdoor heat exchanger 17, and the indoor unit 120 is provided with an indoor fan 13 for supplying airflow to the indoor heat exchanger 14. The controller 18 controls the devices that constitute the air conditioner 1, including the compressor 11, and controls the operation of each necessary device so that the air conditioner 1 operates toward the set indoor target temperature and target humidity. 1, the controller 18 is shown in the outdoor unit 110, but the location of the controller 18 is not limited to the outdoor unit 110 as long as it can appropriately control the operation of each device, and a plurality of controllers may be installed. The humidifier 130 includes an air preheater 31, a humidifier element 32, an air heater 33, a humidifier fan 34, and a water supply regulator 37, and the humidifier 130 and the indoor unit 120 are connected by a humidifier duct 36. Although the drawings in this disclosure do not include a mechanism for supplying water to the water collection tank 21 from the outside, the water collection tank 21 may include a mechanism for supplying water from the outside.
(全体構成)
図1は、実施の形態1に係る空気調和機1の冷媒回路の模式図である。図2は、実施の形態1に係る室外機110の内部構造を示す模式図である。
図1に示す通り、実施の形態1に係る空気調和機1は、室外機110と室内機120とを通る冷媒回路を備えている。冷媒回路は、圧縮機11、圧縮機11の入出流路を切り替えられる流路切替器12、室内熱交換器14、減圧器15及び室外熱交換器17を有している。圧縮機11及び流路切替器12は、室内熱交換器14と室外熱交換器17とを接続する一方の冷媒配管の途中に設けられ、減圧器15は、室内熱交換器14と室外熱交換器17とを接続するもう一方の冷媒配管の途中に設けられる。また、実施の形態1に示す冷媒回路は、圧縮機11と室内熱交換器14との間の冷媒配管に設けられた分岐部22と、分岐部22と減圧器15との間の冷媒配管に設けられた合流部23と、を接続するバイパス配管24が設けられている。バイパス配管24の途中には、バイパス配管24を流れる冷媒の流量を変更するバイパス弁25と、付属熱交換器26が設けられている。さらに、実施の形態1に示す空気調和機は、室外熱交換器17によって外気を冷却し、水蒸気を凝縮することで生成された水を溜める集水槽21を有している。付属熱交換器26は、集水槽21に溜められた水を加熱する加熱部として機能する。そして、加熱部である付属熱交換器26によって加熱処理された集水槽21の水を用い室内を加湿する、加湿装置130を備えている。さらに、室外機110には、室外熱交換器17に空気流を供給するための室外ファン16を備え、室内機120には、室内熱交換器14に空気流を供給するための室内ファン13を備える。制御器18は、圧縮機11をはじめとした空気調和機1を構成する機器を制御するものであり、例えば、空気調和機1の運転が、設定された室内の目標温度及び目標湿度に向かう運転となるよう、必要な各機器の動作を制御する。尚、図1では制御器18が室外機110の中に示しているが、各機器の動作を適切に制御可能であれば設置場所は室外機110に限定されるものではなく、また、複数個で構成されていても良い。加湿装置130は、空気予熱器31,加湿エレメント32、空気加熱器33、加湿ファン34及び供給水量調整部37を備えており、加湿装置130と室内機120とは、加湿ダクト36で接続されている。尚、本開示の図面においては、集水槽21に外部から給水できる機構を設けていないが、外部から給水可能な機構を有していても良い。
(overall structure)
Fig. 1 is a schematic diagram of a refrigerant circuit of an
As shown in FIG. 1, the
(暖房運転)
まず、暖房運転の動作について説明する。暖房運転の場合には、図1のバイパス弁25は閉じた状態で、流路切替器12を図1の実線の状態とし、減圧器15を所定の開度に設定し、圧縮機11を起動する。圧縮機11から吐出された高温高圧の冷媒は、室内熱交換器14で凝縮した後、減圧器15によって減圧される。減圧された低温低圧の冷媒は、室外熱交換器17で蒸発した後、流路切替器12を通り圧縮機11に吸入される。室内熱交換器14で冷媒が凝縮する際、冷媒の熱は室内熱交換器14を介して放出されるので、熱を受け取った空気は、室内ファン13によって暖気として室内に送風される。圧縮機11をはじめとした空気調和機1を構成する機器の動作は、例えば、設定された目標の室内温度になるよう、制御器18によって制御される。 (Heating operation)
First, the operation of the heating operation will be described. In the case of the heating operation, thebypass valve 25 in Fig. 1 is closed, the flow path switching device 12 is in the state shown by the solid line in Fig. 1, the pressure reducing device 15 is set to a predetermined opening degree, and the compressor 11 is started. The high-temperature, high-pressure refrigerant discharged from the compressor 11 is condensed in the indoor heat exchanger 14 and then reduced in pressure by the pressure reducing device 15. The reduced-pressure, low-temperature, low-pressure refrigerant evaporates in the outdoor heat exchanger 17, passes through the flow path switching device 12, and is sucked into the compressor 11. When the refrigerant condenses in the indoor heat exchanger 14, the heat of the refrigerant is released through the indoor heat exchanger 14, so that the air that has received the heat is blown into the room as warm air by the indoor fan 13. The operation of the devices constituting the air conditioner 1, including the compressor 11, is controlled by the controller 18, for example, so that the indoor temperature becomes a set target indoor temperature.
まず、暖房運転の動作について説明する。暖房運転の場合には、図1のバイパス弁25は閉じた状態で、流路切替器12を図1の実線の状態とし、減圧器15を所定の開度に設定し、圧縮機11を起動する。圧縮機11から吐出された高温高圧の冷媒は、室内熱交換器14で凝縮した後、減圧器15によって減圧される。減圧された低温低圧の冷媒は、室外熱交換器17で蒸発した後、流路切替器12を通り圧縮機11に吸入される。室内熱交換器14で冷媒が凝縮する際、冷媒の熱は室内熱交換器14を介して放出されるので、熱を受け取った空気は、室内ファン13によって暖気として室内に送風される。圧縮機11をはじめとした空気調和機1を構成する機器の動作は、例えば、設定された目標の室内温度になるよう、制御器18によって制御される。 (Heating operation)
First, the operation of the heating operation will be described. In the case of the heating operation, the
(加湿暖房運転)
次に、加湿を伴う暖房運転、つまり加湿暖房運転の動作について説明する。暖房のための動作としては、暖房運転時と同様、圧縮機11から吐出された高温高圧の冷媒が、室内熱交換器14で凝縮する際に熱を放出し、熱を受け取った空気が室内に送風されることにより、室内を暖める。その後、凝縮した冷媒は、減圧器15で減圧され、低温低圧の冷媒となって室外熱交換器17を流れる。室外熱交換器17では、低温低圧の冷媒が外気から熱を吸収して蒸発し、熱を奪われた外気中の水蒸気は露点温度以下となって凝縮し、水となった後、加湿用の水として利用される。室外機110での動作について、図2を用いてより具体的に説明すると、外気は、矢印A1に示す方向に室外熱交換器17を通過し、外気と冷媒との間で熱交換が行われる。熱交換の結果、外気中の水蒸気が凝縮して水となり、室外熱交換器17の表面に付着する。室外熱交換器17の表面に付着した水は、重力によって矢印W1の方向に流下し、給水口35を経て集水槽21に溜まる。集水槽21に溜まった水は、供給水量調整部37で水量を調整して加湿エレメント32に供給される。図1及び図2に示す通り、加湿エレメント32は供給水量調整部37より下にあり、供給水量調整部37を開くことによって、集水槽21の水が加湿エレメント32に流れ落ちる。さらに、加湿ファン34が駆動することによって、矢印A2に示すように外気が加湿装置130に取り込まれ、空気予熱器31、加湿エレメント32、空気加熱器33の順に通過し、加湿ダクト36を通じて室内に向かって流れる。上述の通り、加湿エレメント32には水が供給されるため、加湿エレメント32を通過する空気が加湿され、加湿された空気は、加湿ダクト36を介して室内に供給される。空気予熱器31による加熱を制御することによって、加湿エレメント32に供給される空気の温度を変更し、飽和水蒸気量を調整する。結果、加湿エレメント32を通過することによって加湿された空気に含まれる水蒸気量を制御することができる。また、空気加熱器33によって、加湿ダクト36に送られる加湿した空気を加熱することにより、加熱されていない空気に比べて湿度を相対的に低く維持することができる。さらに、加湿ダクト36が加温されるため、36の内面に結露が生じることを防止する。尚、空気予熱器31、空気加熱器33としては、例えば、電気ヒータを適用することによって制御性良く加熱可能であるが、電気ヒータに限られるものではなく、他の加熱手段であっても良い。 (Humidifying and heating operation)
Next, the operation of the heating operation with humidification, that is, the humidification heating operation will be described. In the heating operation, as in the heating operation, the high-temperature, high-pressure refrigerant discharged from thecompressor 11 releases heat when condensing in the indoor heat exchanger 14, and the air that has received the heat is blown into the room, thereby warming the room. The condensed refrigerant is then decompressed in the pressure reducer 15, and becomes a low-temperature, low-pressure refrigerant, which flows through the outdoor heat exchanger 17. In the outdoor heat exchanger 17, the low-temperature, low-pressure refrigerant absorbs heat from the outdoor air and evaporates, and the water vapor in the outdoor air that has lost heat becomes below the dew point temperature and condenses into water, which is then used as water for humidification. The operation of the outdoor unit 110 will be described more specifically with reference to FIG. 2. The outdoor air passes through the outdoor heat exchanger 17 in the direction indicated by the arrow A1, and heat exchange takes place between the outdoor air and the refrigerant. As a result of the heat exchange, the water vapor in the outdoor air condenses into water, which adheres to the surface of the outdoor heat exchanger 17. Water adhering to the surface of the outdoor heat exchanger 17 flows down in the direction of the arrow W1 by gravity and accumulates in the water collection tank 21 through the water supply port 35. The water accumulated in the water collection tank 21 is supplied to the humidification element 32 after the water supply amount adjustment unit 37 adjusts the water amount. As shown in FIG. 1 and FIG. 2, the humidification element 32 is located below the water supply amount adjustment unit 37, and by opening the water supply amount adjustment unit 37, the water in the water collection tank 21 flows down to the humidification element 32. Furthermore, by driving the humidification fan 34, the outside air is taken into the humidification device 130 as shown by the arrow A2, passes through the air preheater 31, the humidification element 32, and the air heater 33 in this order, and flows toward the room through the humidification duct 36. As described above, water is supplied to the humidification element 32, so that the air passing through the humidification element 32 is humidified, and the humidified air is supplied to the room through the humidification duct 36. By controlling the heating by the air preheater 31, the temperature of the air supplied to the humidification element 32 is changed, and the amount of saturated water vapor is adjusted. As a result, the amount of water vapor contained in the air humidified by passing through the humidification element 32 can be controlled. In addition, by heating the humidified air sent to the humidification duct 36 by the air heater 33, the humidity can be kept relatively low compared to unheated air. Furthermore, since the humidification duct 36 is heated, condensation is prevented from occurring on the inner surface of the humidification duct 36. Note that, for example, an electric heater can be applied as the air preheater 31 and the air heater 33 to enable heating with good controllability, but this is not limited to an electric heater and other heating means may be used.
次に、加湿を伴う暖房運転、つまり加湿暖房運転の動作について説明する。暖房のための動作としては、暖房運転時と同様、圧縮機11から吐出された高温高圧の冷媒が、室内熱交換器14で凝縮する際に熱を放出し、熱を受け取った空気が室内に送風されることにより、室内を暖める。その後、凝縮した冷媒は、減圧器15で減圧され、低温低圧の冷媒となって室外熱交換器17を流れる。室外熱交換器17では、低温低圧の冷媒が外気から熱を吸収して蒸発し、熱を奪われた外気中の水蒸気は露点温度以下となって凝縮し、水となった後、加湿用の水として利用される。室外機110での動作について、図2を用いてより具体的に説明すると、外気は、矢印A1に示す方向に室外熱交換器17を通過し、外気と冷媒との間で熱交換が行われる。熱交換の結果、外気中の水蒸気が凝縮して水となり、室外熱交換器17の表面に付着する。室外熱交換器17の表面に付着した水は、重力によって矢印W1の方向に流下し、給水口35を経て集水槽21に溜まる。集水槽21に溜まった水は、供給水量調整部37で水量を調整して加湿エレメント32に供給される。図1及び図2に示す通り、加湿エレメント32は供給水量調整部37より下にあり、供給水量調整部37を開くことによって、集水槽21の水が加湿エレメント32に流れ落ちる。さらに、加湿ファン34が駆動することによって、矢印A2に示すように外気が加湿装置130に取り込まれ、空気予熱器31、加湿エレメント32、空気加熱器33の順に通過し、加湿ダクト36を通じて室内に向かって流れる。上述の通り、加湿エレメント32には水が供給されるため、加湿エレメント32を通過する空気が加湿され、加湿された空気は、加湿ダクト36を介して室内に供給される。空気予熱器31による加熱を制御することによって、加湿エレメント32に供給される空気の温度を変更し、飽和水蒸気量を調整する。結果、加湿エレメント32を通過することによって加湿された空気に含まれる水蒸気量を制御することができる。また、空気加熱器33によって、加湿ダクト36に送られる加湿した空気を加熱することにより、加熱されていない空気に比べて湿度を相対的に低く維持することができる。さらに、加湿ダクト36が加温されるため、36の内面に結露が生じることを防止する。尚、空気予熱器31、空気加熱器33としては、例えば、電気ヒータを適用することによって制御性良く加熱可能であるが、電気ヒータに限られるものではなく、他の加熱手段であっても良い。 (Humidifying and heating operation)
Next, the operation of the heating operation with humidification, that is, the humidification heating operation will be described. In the heating operation, as in the heating operation, the high-temperature, high-pressure refrigerant discharged from the
(加湿用の水の加熱殺菌)
上述のように、加湿機能を有する空気調和機においては、室内の空気質を汚染しないよう、加湿用の水における細菌の繁殖防止が求められる。加湿用の水において細菌の繁殖を防止する方法の一つとしては、加熱による殺菌処理が有効である。例えば、自然界に広く生息し、人に感染すると肺炎等を引き起こすことで注意が必要なレジオネラ属菌を指標に考えると、被特許文献1、2及び3によれば、水の温度を55℃以上とすることで死滅させることができ、60℃の温度であれば5分間で殺菌できると言われている。また、非特許文献4によれば、加熱温度を高くすることで殺菌に必要な加熱時間はより短縮され、例えば、80℃の温度であれば数秒の加熱で効果が得られる。したがって、加湿用の水において細菌の繁殖を防止する方法としては、55℃以上の加熱処理が適用可能であることが有効である。しかしながら、加湿用の水に対して、例えば、電気ヒータのみで加熱処理を行うと、暖房運転に加えて加熱処理の電力も必要となる。このため、加湿用の水における細菌の繁殖防止を図ると、空気調和機全体としての消費電力が増大してしまう。 (Heat sterilization of water for humidification)
As described above, in an air conditioner having a humidifying function, it is required to prevent the growth of bacteria in the humidifying water so as not to pollute the air quality in the room. One of the methods for preventing the growth of bacteria in the humidifying water is sterilization by heating. For example, if Legionella bacteria, which are widely distributed in nature and require caution because they can cause pneumonia and the like when infected by humans, are used as an indicator, according toNon-Patent Documents 1, 2, and 3, it is said that the bacteria can be killed by setting the temperature of the water at 55°C or higher, and that it can be sterilized at a temperature of 60°C in 5 minutes. In addition, according to Non-Patent Document 4, the heating time required for sterilization can be further shortened by increasing the heating temperature, and for example, at a temperature of 80°C, the effect can be obtained by heating for a few seconds. Therefore, it is effective to apply a heating treatment at 55°C or higher as a method for preventing the growth of bacteria in the humidifying water. However, if the humidifying water is heated only by an electric heater, for example, electricity for the heating treatment is required in addition to the heating operation. Therefore, if the growth of bacteria in the humidifying water is prevented, the power consumption of the air conditioner as a whole increases.
上述のように、加湿機能を有する空気調和機においては、室内の空気質を汚染しないよう、加湿用の水における細菌の繁殖防止が求められる。加湿用の水において細菌の繁殖を防止する方法の一つとしては、加熱による殺菌処理が有効である。例えば、自然界に広く生息し、人に感染すると肺炎等を引き起こすことで注意が必要なレジオネラ属菌を指標に考えると、被特許文献1、2及び3によれば、水の温度を55℃以上とすることで死滅させることができ、60℃の温度であれば5分間で殺菌できると言われている。また、非特許文献4によれば、加熱温度を高くすることで殺菌に必要な加熱時間はより短縮され、例えば、80℃の温度であれば数秒の加熱で効果が得られる。したがって、加湿用の水において細菌の繁殖を防止する方法としては、55℃以上の加熱処理が適用可能であることが有効である。しかしながら、加湿用の水に対して、例えば、電気ヒータのみで加熱処理を行うと、暖房運転に加えて加熱処理の電力も必要となる。このため、加湿用の水における細菌の繁殖防止を図ると、空気調和機全体としての消費電力が増大してしまう。 (Heat sterilization of water for humidification)
As described above, in an air conditioner having a humidifying function, it is required to prevent the growth of bacteria in the humidifying water so as not to pollute the air quality in the room. One of the methods for preventing the growth of bacteria in the humidifying water is sterilization by heating. For example, if Legionella bacteria, which are widely distributed in nature and require caution because they can cause pneumonia and the like when infected by humans, are used as an indicator, according to
(付属熱交換器による加熱)
加湿用の水における細菌の繁殖防止を図りつつ、空気調和機の消費電力の増大を抑制する方法の一つとしては、冷媒の熱を利用した水の加熱処理が挙げられる。図1に示す構成の場合、暖房運転時に圧縮機11から室内熱交換器14に向かう高温高圧の冷媒の一部を付属熱交換器26に流すことによって、集水槽21に溜められた加湿用の水を加熱することができる。より具体的には、まず、バイパス弁25を開き、圧縮機11から吐出した高温高圧の冷媒の一部が、バイパス配管24に流れる。バイパス配管24に流入した高温高圧の冷媒は、集水槽21に設けられた付属熱交換器26を流れ、集水槽21に溜められた加湿用の水を加熱する。したがって、バイパス弁25の開度を調整することにより、暖房運転に必要な冷媒を室内熱交換器14に流しつつ、加湿用の水の加熱処理に必要な冷媒を付属熱交換器26に流すことができる。付属熱交換器26を経た冷媒は、室内熱交換器14を経た冷媒と合流部23で合流し、減圧器15へ流れる。減圧器15以降の冷媒の流れについては、暖房運転と同様のため省略する。尚、付属熱交換器26による水の加熱量は、集水槽21に溜まっている水量、水温、冷媒温度、暖房運転に必要な冷媒の流量等と言った空気調和機1に関するパラメータのうちの一つ又は複数の組み合わせに基づき、制御器18によってバイパス弁25の開度及び圧縮機11による冷媒の吐出量等を制御することができる。これにより、暖房運転に必要な冷媒の流量と、加湿用の水の加熱処理に必要な冷媒の流量とを調整することができるため、暖房運転を行いつつ、冷媒の熱を加湿用の水の加熱処理に使用することができる。つまり、冷媒の熱を加湿用の水の加熱処理にも使用することにより、加熱処理に要する消費電力を抑制できるため、空気調和機全体としての消費電力の増大を抑制することができる。 (Heated by attached heat exchanger)
One method for preventing the growth of bacteria in the humidification water while suppressing the increase in the power consumption of the air conditioner is to heat the water by using the heat of the refrigerant. In the case of the configuration shown in FIG. 1, the humidification water stored in thewater collection tank 21 can be heated by flowing a part of the high-temperature, high-pressure refrigerant flowing from the compressor 11 to the indoor heat exchanger 14 to the auxiliary heat exchanger 26 during heating operation. More specifically, first, the bypass valve 25 is opened, and a part of the high-temperature, high-pressure refrigerant discharged from the compressor 11 flows into the bypass piping 24. The high-temperature, high-pressure refrigerant that has flowed into the bypass piping 24 flows through the auxiliary heat exchanger 26 provided in the water collection tank 21, and heats the humidification water stored in the water collection tank 21. Therefore, by adjusting the opening degree of the bypass valve 25, the refrigerant required for the heating operation can be flowed to the indoor heat exchanger 14, while the refrigerant required for the heating process of the humidification water can be flowed to the auxiliary heat exchanger 26. The refrigerant that has passed through the auxiliary heat exchanger 26 joins with the refrigerant that has passed through the indoor heat exchanger 14 at the joining section 23 and flows to the pressure reducer 15. The flow of the refrigerant after the pressure reducer 15 is omitted because it is the same as that in the heating operation. The amount of water heated by the auxiliary heat exchanger 26 can be controlled by the controller 18 to control the opening degree of the bypass valve 25 and the amount of refrigerant discharged by the compressor 11 based on one or a combination of parameters related to the air conditioner 1, such as the amount of water stored in the water collection tank 21, the water temperature, the refrigerant temperature, and the flow rate of refrigerant required for the heating operation. This makes it possible to adjust the flow rate of refrigerant required for the heating operation and the flow rate of refrigerant required for the heating treatment of the water for humidification, so that the heat of the refrigerant can be used to heat the water for humidification while performing the heating operation. In other words, by using the heat of the refrigerant also for the heating treatment of the water for humidification, the power consumption required for the heating treatment can be suppressed, and the increase in power consumption of the air conditioner as a whole can be suppressed.
加湿用の水における細菌の繁殖防止を図りつつ、空気調和機の消費電力の増大を抑制する方法の一つとしては、冷媒の熱を利用した水の加熱処理が挙げられる。図1に示す構成の場合、暖房運転時に圧縮機11から室内熱交換器14に向かう高温高圧の冷媒の一部を付属熱交換器26に流すことによって、集水槽21に溜められた加湿用の水を加熱することができる。より具体的には、まず、バイパス弁25を開き、圧縮機11から吐出した高温高圧の冷媒の一部が、バイパス配管24に流れる。バイパス配管24に流入した高温高圧の冷媒は、集水槽21に設けられた付属熱交換器26を流れ、集水槽21に溜められた加湿用の水を加熱する。したがって、バイパス弁25の開度を調整することにより、暖房運転に必要な冷媒を室内熱交換器14に流しつつ、加湿用の水の加熱処理に必要な冷媒を付属熱交換器26に流すことができる。付属熱交換器26を経た冷媒は、室内熱交換器14を経た冷媒と合流部23で合流し、減圧器15へ流れる。減圧器15以降の冷媒の流れについては、暖房運転と同様のため省略する。尚、付属熱交換器26による水の加熱量は、集水槽21に溜まっている水量、水温、冷媒温度、暖房運転に必要な冷媒の流量等と言った空気調和機1に関するパラメータのうちの一つ又は複数の組み合わせに基づき、制御器18によってバイパス弁25の開度及び圧縮機11による冷媒の吐出量等を制御することができる。これにより、暖房運転に必要な冷媒の流量と、加湿用の水の加熱処理に必要な冷媒の流量とを調整することができるため、暖房運転を行いつつ、冷媒の熱を加湿用の水の加熱処理に使用することができる。つまり、冷媒の熱を加湿用の水の加熱処理にも使用することにより、加熱処理に要する消費電力を抑制できるため、空気調和機全体としての消費電力の増大を抑制することができる。 (Heated by attached heat exchanger)
One method for preventing the growth of bacteria in the humidification water while suppressing the increase in the power consumption of the air conditioner is to heat the water by using the heat of the refrigerant. In the case of the configuration shown in FIG. 1, the humidification water stored in the
以上のように、実施の形態1の空気調和機1は、暖房運転時に圧縮機11から室内熱交換器14に向かう高温高圧の冷媒の一部を付属熱交換器26に流すことによって、集水槽21に溜められた加湿用の水を加熱することができるため、暖房運転を行いつつ、冷媒の熱を加湿用の水の加熱処理に使用することができる空気調和機である。
このように構成された空気調和機は、冷媒の熱を加湿用の水の加熱処理にも使用することができるため、加湿用の水における細菌の繁殖防止に伴う消費電力の増大を抑制することができる。 As described above, theair conditioner 1 of embodiment 1 is capable of heating the water for humidification stored in the water collection tank 21 by flowing a portion of the high-temperature, high-pressure refrigerant flowing from the compressor 11 to the indoor heat exchanger 14 through the auxiliary heat exchanger 26 during heating operation, and is therefore an air conditioner that can use the heat of the refrigerant to heat the water for humidification while performing heating operation.
An air conditioner configured in this manner can also use the heat of the refrigerant to heat the water for humidification, thereby suppressing the increase in power consumption associated with preventing the growth of bacteria in the water for humidification.
このように構成された空気調和機は、冷媒の熱を加湿用の水の加熱処理にも使用することができるため、加湿用の水における細菌の繁殖防止に伴う消費電力の増大を抑制することができる。 As described above, the
An air conditioner configured in this manner can also use the heat of the refrigerant to heat the water for humidification, thereby suppressing the increase in power consumption associated with preventing the growth of bacteria in the water for humidification.
したがって、実施の形態1に示した空気調和機を適用することにより、消費電力の増大を抑制しつつ、加湿用の水における細菌の繁殖防止を図った、空気調和機を提供することができる。
Therefore, by applying the air conditioner shown in embodiment 1, it is possible to provide an air conditioner that prevents the growth of bacteria in the humidification water while suppressing increases in power consumption.
実施の形態2.
(冷媒回路の変形例)
図3は、実施の形態2に係る空気調和機1の冷媒回路の模式図である。
実施の形態2の空気調和機1は、合流部23が、分岐部22と室内熱交換器14との間に設けられている点で、実施の形態1と異なる。合流部23が分岐部22と室内熱交換器14との間に設けられている場合、実施の形態1と異なり、冷媒の一部を付属熱交換器26に流した場合であっても、付属熱交換器26を経由した後の冷媒は、付属熱交換器26を経由しなかった冷媒と合流部23で合流し、室内熱交換器14へ流れることができる。このような冷媒回路を構成することにより、加湿用の水を加熱した後の冷媒の熱を無駄にすることなく、室内の暖房に使用することができる。 Embodiment 2.
(Modification of refrigerant circuit)
FIG. 3 is a schematic diagram of a refrigerant circuit of theair conditioner 1 according to the second embodiment.
Theair conditioner 1 of the second embodiment differs from the first embodiment in that the junction 23 is provided between the branch 22 and the indoor heat exchanger 14. When the junction 23 is provided between the branch 22 and the indoor heat exchanger 14, unlike the first embodiment, even if a part of the refrigerant flows to the auxiliary heat exchanger 26, the refrigerant that has passed through the auxiliary heat exchanger 26 can be merged with the refrigerant that has not passed through the auxiliary heat exchanger 26 at the junction 23 and flow to the indoor heat exchanger 14. By configuring the refrigerant circuit in this way, the heat of the refrigerant after heating the humidification water can be used for heating the room without being wasted.
(冷媒回路の変形例)
図3は、実施の形態2に係る空気調和機1の冷媒回路の模式図である。
実施の形態2の空気調和機1は、合流部23が、分岐部22と室内熱交換器14との間に設けられている点で、実施の形態1と異なる。合流部23が分岐部22と室内熱交換器14との間に設けられている場合、実施の形態1と異なり、冷媒の一部を付属熱交換器26に流した場合であっても、付属熱交換器26を経由した後の冷媒は、付属熱交換器26を経由しなかった冷媒と合流部23で合流し、室内熱交換器14へ流れることができる。このような冷媒回路を構成することにより、加湿用の水を加熱した後の冷媒の熱を無駄にすることなく、室内の暖房に使用することができる。 Embodiment 2.
(Modification of refrigerant circuit)
FIG. 3 is a schematic diagram of a refrigerant circuit of the
The
以上のように、実施の形態2の空気調和機1は、暖房運転時に圧縮機11から室内熱交換器14に向かう高温高圧の冷媒の一部を付属熱交換器26に流すことによって、集水槽21に溜められた加湿用の水を加熱することができるため、暖房運転を行いつつ、冷媒の熱を加湿用の水の加熱処理に使用することができる空気調和機である。
このように構成された空気調和機は、冷媒の熱を加湿用の水の加熱処理にも使用することができるため、加湿用の水における細菌の繁殖防止に伴う消費電力の増大を抑制することができ、さらに加湿用の水の加熱処理後の冷媒の熱を暖房運転に使用することができる。 As described above, theair conditioner 1 of embodiment 2 is capable of heating the water for humidification stored in the water collection tank 21 by flowing a portion of the high-temperature, high-pressure refrigerant flowing from the compressor 11 to the indoor heat exchanger 14 through the auxiliary heat exchanger 26 during heating operation, and is therefore an air conditioner that can use the heat of the refrigerant to heat the water for humidification while performing heating operation.
An air conditioner configured in this manner can also use the heat of the refrigerant to heat the humidification water, thereby suppressing the increase in power consumption that would be associated with preventing the growth of bacteria in the humidification water, and furthermore, the heat of the refrigerant after heating the humidification water can be used for heating operation.
このように構成された空気調和機は、冷媒の熱を加湿用の水の加熱処理にも使用することができるため、加湿用の水における細菌の繁殖防止に伴う消費電力の増大を抑制することができ、さらに加湿用の水の加熱処理後の冷媒の熱を暖房運転に使用することができる。 As described above, the
An air conditioner configured in this manner can also use the heat of the refrigerant to heat the humidification water, thereby suppressing the increase in power consumption that would be associated with preventing the growth of bacteria in the humidification water, and furthermore, the heat of the refrigerant after heating the humidification water can be used for heating operation.
したがって、実施の形態2に示した空気調和機を適用することにより、消費電力の増大を抑制しつつ、加湿用の水における細菌の繁殖防止を図り、さらに、加湿用の水の加熱後の冷媒の熱も暖房運転に使用可能な、空気調和機を提供することができる。
Therefore, by applying the air conditioner shown in embodiment 2, it is possible to provide an air conditioner that prevents the growth of bacteria in the humidification water while suppressing an increase in power consumption, and further allows the heat of the refrigerant after heating the humidification water to be used for heating operation.
実施の形態3.
(集水槽と付属熱交換器との構成)
図4は、実施の形態3に係る室外機110の断面模式図である。尚、断面の位置は、図2で示すところのX-X断面にあたる。
実施の形態3では、図4で示す通り、付属熱交換器26が集水槽21の底面部を構成していることを特徴とする点で、実施の形態1と異なる。この構成によれば、集水槽21に溜まった水は底面部で加熱されことから、温度が上昇した水は水面に向けて上昇し、相対的に温度の低い水が下降する流れ、いわゆる対流伝熱が生じるため、集水槽21内の水を撹拌する必要がない。結果、水を撹拌するための機構及び動力を付加することなく、効率的に加湿用の水の加熱処理を行うことができる。尚、実施の形態3では、底面部が付属熱交換器26によって構成された例を示したが、加湿用の水に対流伝熱が生じればよいため、必ずしも底面部が付属熱交換器26によって構成されている必要はなく、集水槽21内の底部近傍に付属熱交換器26を備え、集水槽21内の底部の水を加熱できる構成であればよい。 Embodiment 3.
(Configuration of water collection tank and attached heat exchanger)
4 is a schematic cross-sectional view of theoutdoor unit 110 according to embodiment 3. The cross-sectional position corresponds to the X-X cross section shown in FIG.
The third embodiment is different from the first embodiment in that theauxiliary heat exchanger 26 constitutes the bottom of the water collection tank 21 as shown in Fig. 4. According to this configuration, the water stored in the water collection tank 21 is heated at the bottom, so that the water with a higher temperature rises toward the water surface and the water with a relatively lower temperature falls, which is called convection heat transfer, and therefore there is no need to stir the water in the water collection tank 21. As a result, the water for humidification can be efficiently heated without adding a mechanism and power for stirring the water. In the third embodiment, an example in which the bottom is constituted by the auxiliary heat exchanger 26 is shown, but since it is sufficient that convection heat transfer occurs in the water for humidification, it is not necessarily required that the bottom is constituted by the auxiliary heat exchanger 26. It is sufficient that the auxiliary heat exchanger 26 is provided near the bottom of the water collection tank 21 and that the water at the bottom of the water collection tank 21 can be heated.
(集水槽と付属熱交換器との構成)
図4は、実施の形態3に係る室外機110の断面模式図である。尚、断面の位置は、図2で示すところのX-X断面にあたる。
実施の形態3では、図4で示す通り、付属熱交換器26が集水槽21の底面部を構成していることを特徴とする点で、実施の形態1と異なる。この構成によれば、集水槽21に溜まった水は底面部で加熱されことから、温度が上昇した水は水面に向けて上昇し、相対的に温度の低い水が下降する流れ、いわゆる対流伝熱が生じるため、集水槽21内の水を撹拌する必要がない。結果、水を撹拌するための機構及び動力を付加することなく、効率的に加湿用の水の加熱処理を行うことができる。尚、実施の形態3では、底面部が付属熱交換器26によって構成された例を示したが、加湿用の水に対流伝熱が生じればよいため、必ずしも底面部が付属熱交換器26によって構成されている必要はなく、集水槽21内の底部近傍に付属熱交換器26を備え、集水槽21内の底部の水を加熱できる構成であればよい。 Embodiment 3.
(Configuration of water collection tank and attached heat exchanger)
4 is a schematic cross-sectional view of the
The third embodiment is different from the first embodiment in that the
以上のように、実施の形態3の空気調和機1は、集水槽21内の底面部を付属熱交換器26で構成することにより、集水槽21に溜められた加湿用の水に対流伝熱を生じさせ、加熱することができる空気調和機である。
このように構成された空気調和機は、集水槽内の水を撹拌するための機構及び動力を付加することなく、加湿用の水に対流伝熱を生じさせ加熱することができるため、効率的に加湿用の水の加熱処理を行うことができる。 As described above, theair conditioner 1 of embodiment 3 is an air conditioner that can generate convective heat transfer in the humidification water stored in the water collection tank 21 and heat it by configuring the bottom portion of the water collection tank 21 with an attached heat exchanger 26.
An air conditioner configured in this manner can heat the water to be humidified by generating convective heat transfer without adding a mechanism or power for stirring the water in the water collection tank, thereby efficiently heating the water to be humidified.
このように構成された空気調和機は、集水槽内の水を撹拌するための機構及び動力を付加することなく、加湿用の水に対流伝熱を生じさせ加熱することができるため、効率的に加湿用の水の加熱処理を行うことができる。 As described above, the
An air conditioner configured in this manner can heat the water to be humidified by generating convective heat transfer without adding a mechanism or power for stirring the water in the water collection tank, thereby efficiently heating the water to be humidified.
したがって、実施の形態3に示した空気調和機を適用することにより、実施の形態1の効果に加え、さらに水を撹拌するための機構及び動力を付加することなく、効率的に加湿用の水の加熱処理を行える、空気調和機を提供することができる。
Therefore, by applying the air conditioner shown in embodiment 3, in addition to the effect of embodiment 1, it is possible to provide an air conditioner that can efficiently heat water for humidification without adding a mechanism or power for stirring the water.
実施の形態4.
(付属熱交換器の構造1)
図5は、実施の形態4に係る付属熱交換器26の断面模式図である。
実施の形態4では、図4及び図5に示す通り、付属熱交換器26は板状の外観形状を有した扁平多穴管であることを特徴とする点で、実施の形態1と異なる。この構成によれば、扁平多穴管であることによって、冷媒が流れる流路として耐圧を有しつつ、チューブ式熱交換器よりも優れた伝熱性能を得られるため、より効率的に加湿用の水の加熱が可能である。さらに、板状の外観形状であることから、集水槽21の底部への設置が容易であるため、上述の通り効率的に加湿用の水の加熱処理を行うことができる。また、実施の形態4に示す付属熱交換器26の材質の具体例としては、例えば、熱伝導性が良好な1000系アルミニウムなどが挙げられ、これは、押出成形が可能で製造性にも優れている点でも材料として好ましい。ただし、付属熱交換器26の材質として1000系アルミニウムに限定するものではなく、適用する空気調和機で求められる冷媒の流路の耐圧等に合わせて、他の仕様の合金も適用可能である。 Embodiment 4.
(Structure of accessory heat exchanger 1)
FIG. 5 is a schematic cross-sectional view of anauxiliary heat exchanger 26 according to the fourth embodiment.
In the fourth embodiment, as shown in Figs. 4 and 5, theauxiliary heat exchanger 26 is different from the first embodiment in that it is a flat multi-hole tube having a plate-like external shape. According to this configuration, the flat multi-hole tube has a pressure resistance as a flow path through which the refrigerant flows, and has a heat transfer performance superior to that of a tube-type heat exchanger, so that the water for humidification can be heated more efficiently. Furthermore, since the external shape is plate-like, it is easy to install it at the bottom of the water collection tank 21, so that the water for humidification can be heated efficiently as described above. In addition, a specific example of the material of the auxiliary heat exchanger 26 shown in the fourth embodiment is 1000-series aluminum, which has good thermal conductivity, and is also preferable as a material because it can be extruded and is easy to manufacture. However, the material of the auxiliary heat exchanger 26 is not limited to 1000-series aluminum, and other alloys of different specifications can be applied according to the pressure resistance of the refrigerant flow path required for the air conditioner to be applied.
(付属熱交換器の構造1)
図5は、実施の形態4に係る付属熱交換器26の断面模式図である。
実施の形態4では、図4及び図5に示す通り、付属熱交換器26は板状の外観形状を有した扁平多穴管であることを特徴とする点で、実施の形態1と異なる。この構成によれば、扁平多穴管であることによって、冷媒が流れる流路として耐圧を有しつつ、チューブ式熱交換器よりも優れた伝熱性能を得られるため、より効率的に加湿用の水の加熱が可能である。さらに、板状の外観形状であることから、集水槽21の底部への設置が容易であるため、上述の通り効率的に加湿用の水の加熱処理を行うことができる。また、実施の形態4に示す付属熱交換器26の材質の具体例としては、例えば、熱伝導性が良好な1000系アルミニウムなどが挙げられ、これは、押出成形が可能で製造性にも優れている点でも材料として好ましい。ただし、付属熱交換器26の材質として1000系アルミニウムに限定するものではなく、適用する空気調和機で求められる冷媒の流路の耐圧等に合わせて、他の仕様の合金も適用可能である。 Embodiment 4.
(Structure of accessory heat exchanger 1)
FIG. 5 is a schematic cross-sectional view of an
In the fourth embodiment, as shown in Figs. 4 and 5, the
以上のように、実施の形態4の空気調和機1は、扁平多穴管によって構成された付属熱交換器26を適用した、空気調和機である。
このように構成された空気調和機は、チューブ式熱交換器よりも優れた伝熱性能を得られるため、より効率的に加湿用の水の加熱処理を行うことができる。 As described above, theair conditioner 1 of the fourth embodiment is an air conditioner to which the auxiliary heat exchanger 26 constituted by a flat multi-hole tube is applied.
An air conditioner configured in this manner can obtain better heat transfer performance than a tubular heat exchanger, and can therefore perform heating treatment of water for humidification more efficiently.
このように構成された空気調和機は、チューブ式熱交換器よりも優れた伝熱性能を得られるため、より効率的に加湿用の水の加熱処理を行うことができる。 As described above, the
An air conditioner configured in this manner can obtain better heat transfer performance than a tubular heat exchanger, and can therefore perform heating treatment of water for humidification more efficiently.
したがって、実施の形態4に示した空気調和機を適用することにより、実施の形態1の効果に加え、より熱伝導性に優れた付属熱交換器を構成できるため、より効率的に加湿用の水の加熱処理を行える、空気調和機を提供することができる。
Therefore, by applying the air conditioner shown in embodiment 4, in addition to the effects of embodiment 1, it is possible to configure an auxiliary heat exchanger with superior thermal conductivity, and therefore it is possible to provide an air conditioner that can more efficiently heat the water for humidification.
実施の形態4の変形例.
(付属熱交換器の構造2)
図6は、実施の形態4の変形例に係る付属熱交換器26の断面模式図である。
実施の形態4の変形例では、図4及び図6に示す通り、付属熱交換器26は、実施の形態4で示した板状の外観形状を有した扁平多穴管の代わりに、板材を波型にプレス加工したインナーフィンの周囲をロールホーミングした板材で取り囲み端部を接合した部材であることを特徴とする点で、実施の形態1と異なる。この構成によれば、実施の形態4と同様に、チューブ式熱交換器よりも優れた伝熱性能を得られるため、より効率的に加湿用の水の加熱が可能である。さらに、板状の外観形状であることから、集水槽21の底部への設置が容易であるため、上述の通り効率的に加湿用の水の加熱処理を行うことができる。 A modified example of embodiment 4.
(Structure of accessory heat exchanger 2)
FIG. 6 is a schematic cross-sectional view of anauxiliary heat exchanger 26 according to a modified example of the fourth embodiment.
In the modified example of the fourth embodiment, as shown in Fig. 4 and Fig. 6, theauxiliary heat exchanger 26 is different from the first embodiment in that, instead of the flat multi-hole tube having a plate-like external shape shown in the fourth embodiment, the auxiliary heat exchanger 26 is a member in which an inner fin made by pressing a plate material into a corrugated shape is surrounded by a roll-formed plate material and the ends are joined. With this configuration, as in the fourth embodiment, a heat transfer performance superior to that of a tube-type heat exchanger can be obtained, and the water for humidification can be heated more efficiently. Furthermore, since the external shape is plate-like, it is easy to install it at the bottom of the water collection tank 21, and the water for humidification can be heated efficiently as described above.
(付属熱交換器の構造2)
図6は、実施の形態4の変形例に係る付属熱交換器26の断面模式図である。
実施の形態4の変形例では、図4及び図6に示す通り、付属熱交換器26は、実施の形態4で示した板状の外観形状を有した扁平多穴管の代わりに、板材を波型にプレス加工したインナーフィンの周囲をロールホーミングした板材で取り囲み端部を接合した部材であることを特徴とする点で、実施の形態1と異なる。この構成によれば、実施の形態4と同様に、チューブ式熱交換器よりも優れた伝熱性能を得られるため、より効率的に加湿用の水の加熱が可能である。さらに、板状の外観形状であることから、集水槽21の底部への設置が容易であるため、上述の通り効率的に加湿用の水の加熱処理を行うことができる。 A modified example of embodiment 4.
(Structure of accessory heat exchanger 2)
FIG. 6 is a schematic cross-sectional view of an
In the modified example of the fourth embodiment, as shown in Fig. 4 and Fig. 6, the
以上のように、実施の形態4の変形例の空気調和機は、波型のインナーフィンの周囲をロールホーミングした部材によって構成された付属熱交換器26を適用した、空気調和機である。
このように構成された空気調和機は、実施の形態4と同様に、チューブ式熱交換器よりも優れた伝熱性能を得られるため、より効率的に加湿用の水の加熱処理を行うことができる。 As described above, the air conditioner according to the modified example of the fourth embodiment is an air conditioner to which theauxiliary heat exchanger 26 is applied, which is configured from a member formed by roll-forming the periphery of a corrugated inner fin.
As in the fourth embodiment, the air conditioner configured in this manner can obtain better heat transfer performance than a tubular heat exchanger, and can therefore perform heating of water for humidification more efficiently.
このように構成された空気調和機は、実施の形態4と同様に、チューブ式熱交換器よりも優れた伝熱性能を得られるため、より効率的に加湿用の水の加熱処理を行うことができる。 As described above, the air conditioner according to the modified example of the fourth embodiment is an air conditioner to which the
As in the fourth embodiment, the air conditioner configured in this manner can obtain better heat transfer performance than a tubular heat exchanger, and can therefore perform heating of water for humidification more efficiently.
したがって、実施の形態4の変形例に示した空気調和機を適用することにより、実施の形態1の効果に加え、より熱伝導性に優れた付属熱交換器を構成できるため、より効率的に加湿用の水の加熱処理を行える、空気調和機を提供することができる。
Therefore, by applying the air conditioner shown in the modified example of embodiment 4, in addition to the effects of embodiment 1, it is possible to configure an auxiliary heat exchanger with superior thermal conductivity, thereby providing an air conditioner that can more efficiently heat water for humidification.
実施の形態5.
(冷媒回路から独立した補助加熱部の併用)
図7は、実施の形態5に係る室外機110の断面模式図である。尚、断面の位置は、図2で示すところのX-X断面にあたる。
実施の形態5では、図7に示す通り、付属熱交換器26に加え、集水槽21内に電気ヒータ38を備えることを特徴とする点で、実施の形態1と異なる。電気ヒータ38は、集水槽21内に溜めた加湿用の水を加熱することができる。つまり、実施の形態5では、集水槽21内に溜めた加湿用の水の加熱処理を、付属熱交換器26のみによる加熱処理、電気ヒータ38のみによる加熱処理、付属熱交換器26と電気ヒータ38との両方を用いた加熱処理ができる。実施の形態1に示した構成での暖房運転においては、室内空気の目標温度と現在室温との差が大きく、室内の空気を速やかに加温する必要がある場合、高温高圧の冷媒の大部分を室内熱交換器14に流す必要が生じるため、付属熱交換器26に供給される冷媒が低下し、付属熱交換器26だけでは加湿用の水を十分に加熱処理することができない。また、室内空気の目標温度と現在室温との差がほとんどなく、且つ集水槽21内の水量が十分なため室外熱交換器17で加湿用の水を生成する必要がない場合、加湿用の水を加熱するためだけに冷媒回路を運転することになり、かえって消費電力のロスが生じる。さらに、室内空気の目標温度と現在室温との差がほとんどなく、且つ外気の湿度も露点温度も高い場合、圧縮機11から吐出される冷媒の温度が十分でなく、付属熱交換器26に供給される熱量が低下した結果、加湿用の水を十分に加熱処理できない状態が生じ得る。このように、付属熱交換器26だけでは加湿用の水を十分に加熱処理できない場合、冷媒回路から独立した補助加熱部として電気ヒータ38を有する構成とすることで、付属熱交換器26で不足する熱量を電気ヒータ38によって補うことができる。加えて、加熱処理による殺菌においては、加熱温度が高温であるほど処理時間を短縮することができることから、電気ヒータ38を用いて加熱温度を高くし、加熱処理の時間を短縮することによって、加湿運転の開始を早めることができる。
尚、冷媒回路から独立した補助加熱部として電気ヒータ38を挙げたが、これに限るものではなく、冷媒回路から独立した補助加熱部を有していれば同等の効果を得られる。 Embodiment 5.
(Use of an auxiliary heating unit independent of the refrigerant circuit)
7 is a schematic cross-sectional view of theoutdoor unit 110 according to embodiment 5. The cross-sectional position corresponds to the X-X cross section shown in FIG.
As shown in Fig. 7, the fifth embodiment differs from the first embodiment in that anelectric heater 38 is provided in the water collection tank 21 in addition to the auxiliary heat exchanger 26. The electric heater 38 can heat the water for humidification stored in the water collection tank 21. In other words, in the fifth embodiment, the water for humidification stored in the water collection tank 21 can be heated by only the auxiliary heat exchanger 26, by only the electric heater 38, or by both the auxiliary heat exchanger 26 and the electric heater 38. In the heating operation with the configuration shown in the first embodiment, when the difference between the target temperature of the indoor air and the current room temperature is large and the indoor air needs to be heated quickly, it becomes necessary to flow most of the high-temperature, high-pressure refrigerant to the indoor heat exchanger 14, so that the refrigerant supplied to the auxiliary heat exchanger 26 decreases, and the water for humidification cannot be sufficiently heated by only the auxiliary heat exchanger 26. In addition, when there is almost no difference between the target temperature of the indoor air and the current room temperature, and the amount of water in the water collection tank 21 is sufficient and there is no need to generate water for humidification in the outdoor heat exchanger 17, the refrigerant circuit operates only to heat the water for humidification, which results in a loss of power consumption. Furthermore, when there is almost no difference between the target temperature of the indoor air and the current room temperature, and the humidity and dew point temperature of the outdoor air are high, the temperature of the refrigerant discharged from the compressor 11 is not sufficient, and the amount of heat supplied to the auxiliary heat exchanger 26 decreases, which may result in a state in which the water for humidification cannot be sufficiently heated. In this way, when the water for humidification cannot be sufficiently heated by the auxiliary heat exchanger 26 alone, the electric heater 38 is provided as an auxiliary heating section independent of the refrigerant circuit, so that the amount of heat that is insufficient in the auxiliary heat exchanger 26 can be compensated for by the electric heater 38. In addition, in sterilization by heat treatment, the higher the heating temperature, the shorter the treatment time. Therefore, by using the electric heater 38 to increase the heating temperature and shorten the heating treatment time, the start of the humidification operation can be accelerated.
Although theelectric heater 38 has been given as an example of an auxiliary heating section independent of the refrigerant circuit, the present invention is not limited to this, and the same effect can be obtained as long as there is an auxiliary heating section independent of the refrigerant circuit.
(冷媒回路から独立した補助加熱部の併用)
図7は、実施の形態5に係る室外機110の断面模式図である。尚、断面の位置は、図2で示すところのX-X断面にあたる。
実施の形態5では、図7に示す通り、付属熱交換器26に加え、集水槽21内に電気ヒータ38を備えることを特徴とする点で、実施の形態1と異なる。電気ヒータ38は、集水槽21内に溜めた加湿用の水を加熱することができる。つまり、実施の形態5では、集水槽21内に溜めた加湿用の水の加熱処理を、付属熱交換器26のみによる加熱処理、電気ヒータ38のみによる加熱処理、付属熱交換器26と電気ヒータ38との両方を用いた加熱処理ができる。実施の形態1に示した構成での暖房運転においては、室内空気の目標温度と現在室温との差が大きく、室内の空気を速やかに加温する必要がある場合、高温高圧の冷媒の大部分を室内熱交換器14に流す必要が生じるため、付属熱交換器26に供給される冷媒が低下し、付属熱交換器26だけでは加湿用の水を十分に加熱処理することができない。また、室内空気の目標温度と現在室温との差がほとんどなく、且つ集水槽21内の水量が十分なため室外熱交換器17で加湿用の水を生成する必要がない場合、加湿用の水を加熱するためだけに冷媒回路を運転することになり、かえって消費電力のロスが生じる。さらに、室内空気の目標温度と現在室温との差がほとんどなく、且つ外気の湿度も露点温度も高い場合、圧縮機11から吐出される冷媒の温度が十分でなく、付属熱交換器26に供給される熱量が低下した結果、加湿用の水を十分に加熱処理できない状態が生じ得る。このように、付属熱交換器26だけでは加湿用の水を十分に加熱処理できない場合、冷媒回路から独立した補助加熱部として電気ヒータ38を有する構成とすることで、付属熱交換器26で不足する熱量を電気ヒータ38によって補うことができる。加えて、加熱処理による殺菌においては、加熱温度が高温であるほど処理時間を短縮することができることから、電気ヒータ38を用いて加熱温度を高くし、加熱処理の時間を短縮することによって、加湿運転の開始を早めることができる。
尚、冷媒回路から独立した補助加熱部として電気ヒータ38を挙げたが、これに限るものではなく、冷媒回路から独立した補助加熱部を有していれば同等の効果を得られる。 Embodiment 5.
(Use of an auxiliary heating unit independent of the refrigerant circuit)
7 is a schematic cross-sectional view of the
As shown in Fig. 7, the fifth embodiment differs from the first embodiment in that an
Although the
以上のように、実施の形態5の空気調和機は、付属熱交換器26に加え、集水槽21内に電気ヒータ38を備えた空気調和機である。
このように構成された空気調和機は、付属熱交換器だけでは加熱の能力が十分でない場合が生じても、冷媒回路から独立した補助加熱部として電気ヒータを補助的に用いることができる。 As described above, the air conditioner of the fifth embodiment is an air conditioner that includes theelectric heater 38 in the water collection tank 21 in addition to the auxiliary heat exchanger 26 .
In an air conditioner configured in this manner, even if the heating capacity of the auxiliary heat exchanger alone is insufficient, the electric heater can be used as an auxiliary heating section independent of the refrigerant circuit.
このように構成された空気調和機は、付属熱交換器だけでは加熱の能力が十分でない場合が生じても、冷媒回路から独立した補助加熱部として電気ヒータを補助的に用いることができる。 As described above, the air conditioner of the fifth embodiment is an air conditioner that includes the
In an air conditioner configured in this manner, even if the heating capacity of the auxiliary heat exchanger alone is insufficient, the electric heater can be used as an auxiliary heating section independent of the refrigerant circuit.
したがって、実施の形態5に示した空気調和機を適用することにより、実施の形態1の効果に加え、冷媒回路から独立した補助加熱部を備えるため、付属熱交換器だけでは加熱の能力が十分でない場合であっても、より効率的に加湿用の水の加熱処理を行える、空気調和機を提供することができる。
Therefore, by applying the air conditioner shown in embodiment 5, in addition to the effects of embodiment 1, it is possible to provide an air conditioner that is equipped with an auxiliary heating section independent of the refrigerant circuit, and that can more efficiently heat the water for humidification even when the heating capacity of the attached heat exchanger alone is insufficient.
実施の形態6.
(温度センサの追加)
図8は、実施の形態6に係る室外機110の断面模式図である。尚、断面の位置は、図2で示すところのX-X断面にあたる。図9は、実施の形態6に係る空気調和機1の制御例を示すフロー図である。
実施の形態6では、付属熱交換器26に加え、集水槽21内に温度センサ39を備えることを特徴とする点で、実施の形態1と異なる。温度センサ39を備えることにより、加湿用の水の温度を測定することができるため、加湿用の水温に応じて加熱量を過不足なく制御することができる。例として、図8に示す通り、付属熱交換器26に加え、集水槽21内に電気ヒータ38と温度センサ39とを備えた構成にて、その動作の説明を以下に示す。図8に示す構成では、温度センサ39を用いて測定した加湿用の水の温度に応じて、加湿用の水の加熱処理を行う制御例を示す。例えば、空気調和機の運転状況や外気の温度及び湿度の変化に伴い、集水槽21内の加湿用の水量及び付属熱交換器26による加熱量には変動が生じる得るため、電気ヒータ38によって加熱すべき加熱量も一定ではない。電気ヒータ38による加熱量が過小な場合は、加湿用の水を十分に加熱処理できず、加湿運転によって室内の汚染を生じさせ得る。一方で、電気ヒータ38による加熱量が過大な場合は、加湿用の水が沸騰することによる水量の不足や、電気ヒータ38が水面から露出した状態で加熱を継続し、過昇温となることによって機器の不具合の原因となる可能性がある。そこで、制御器18において温度センサ39による温度の測定値を用いた状況判断を行い、判断結果に基づいて各機器を適切に制御することで、空気調和機としてより適切な運転が可能である。簡単な例としては、温度センサ39で測定される温度が、付属熱交換器26に供給される冷媒の温度から一定の範囲内であるか否かによって、加湿用の水量が温度センサ39の設置された位置に達しているか否かを判断することができ、温度センサ39で測定される温度が、加熱処理として設定された温度以上か否かによって、電気ヒータ38による加熱の要否を判断することができる。さらに、各判断結果に基づいて、圧縮機11、室外熱交換器17、付属熱交換器26及び電気ヒータ38をはじめとした空気調和機を構成する各機器の動作を制御することで、より適切でより効率的な運転ができる。
次に、実施の形態6に係る空気調和機1の制御例を、図9のフロー図を用いて説明する。まず、暖房運転を開始し(STEP01)、室外熱交換器17を外気の露点温度以下に冷却する(STEP02)。外気露点温度が氷点下の場合には、外気に含まれる水蒸気が室外熱交換器17の表面で霜となって付着するので、デフロスト運転(STEP04)によって霜を融解させ、集水槽21に加湿用の水としてためる(STEP05)。ここで、デフロスト運転の方法としては、冷媒の流れを暖房運転時とは逆方向とし、圧縮機11から吐出される高温高圧の冷媒を室外熱交換器17に流すことで加熱する所謂「逆サイクルデフロスト」の方法が一般的であるが、霜を融解できれば良いため、「逆サイクルデフロスト」以外の方法を用いても良い。集水槽21へ加湿用の水の蓄積が開始したら、付属熱交換器26に高温高圧の冷媒の供給を開始する(STEP06)。次に、温度センサ39の測定値と付属熱交換器26に供給した冷媒の温度との差が、予め設定した範囲内であるか否かによって、加湿運転に十分な水量がたまっているか否かを判断する(STEP07)。これは、集水槽21の水面が上昇して温度センサ39に水面が達すると、温度センサ39によって測定される温度が付属熱交換器26に供給した冷媒の温度に近づくことを利用しており、温度センサ39の測定値と付属熱交換器26に供給した冷媒の温度との差が、予め設定した範囲内に入ることにより、集水槽21に溜まった水が温度センサ39の位置に達しているとみなし、加湿運転に十分な水量があると判断する。続いて、温度センサ39によって測定した集水槽21内の水の温度が、予め設定した加熱温度に到達しているか否かを判定する(STEP08)。予め設定した加熱温度に到達している場合は、集水槽21内の水は加熱処理済みと判断し、電気ヒータ38による加熱は行わずに、加湿エレメント32へ水の供給を開始する(STEP12)。温度センサ39によって測定される集水槽21内の水の温度が、予め設定した加熱温度に到達していない場合は、付属熱交換器26による加熱だけでは不足と判断し、電気ヒータ38による加熱を開始する(STEP09)。電気ヒータ38による加熱を開始した後、温度センサ39によって測定される集水槽21内の水の温度が、予め設定した加熱温度に到達しているか否かを判定する(STEP10)。集水槽21内の水の温度が、予め設定した加熱温度に到達している場合は、集水槽21内の水は加熱処理済みと判断して、電気ヒータ38による加熱を停止し(STEP11)、加湿エレメント32へ水の供給を開始する(STEP12)。集水槽21内の水の温度が、予め設定した加熱温度に到達していない場合は、電気ヒータ38による加熱を継続する必要があるため、STEP09に戻る。このように、温度センサ39による温度測定値を基に制御器18によって空気調和機1を制御することにより、電気ヒータ38による加熱量を過不足なく制御し、加湿用の水の加熱処理を行うことができる。
尚、冷媒回路から独立した補助加熱部として電気ヒータ38を挙げたが、これに限るものではなく、冷媒回路から独立した補助加熱部を有していれば同等の効果を得られる。また、温度センサ39によって集水槽21の水量を推定する方法を挙げたが、この方法に限らず水位を推定できれば良いので、例えば、浸水センサを用いて水位を測定する方法等を用いても良い。 Embodiment 6.
(Temperature sensor added)
Fig. 8 is a schematic cross-sectional view of theoutdoor unit 110 according to embodiment 6. The cross-sectional position corresponds to the X-X cross section shown in Fig. 2. Fig. 9 is a flow diagram showing an example of control of the air conditioner 1 according to embodiment 6.
The sixth embodiment differs from the first embodiment in that atemperature sensor 39 is provided in the water collection tank 21 in addition to the auxiliary heat exchanger 26. By providing the temperature sensor 39, the temperature of the humidification water can be measured, and the amount of heating can be controlled appropriately according to the temperature of the humidification water. As an example, as shown in FIG. 8, an electric heater 38 and a temperature sensor 39 are provided in the water collection tank 21 in addition to the auxiliary heat exchanger 26, and the operation thereof will be described below. In the configuration shown in FIG. 8, a control example is shown in which the amount of humidification water in the water collection tank 21 and the amount of heating by the auxiliary heat exchanger 26 may vary depending on the operating status of the air conditioner and the temperature and humidity of the outside air, and therefore the amount of heating to be performed by the electric heater 38 is not constant. If the amount of heating by the electric heater 38 is too small, the water for humidification cannot be sufficiently heated, and the humidification operation may cause indoor pollution. On the other hand, if the amount of heating by the electric heater 38 is excessive, the amount of water for humidification may be insufficient due to boiling of the water for humidification, or the electric heater 38 may continue heating while exposed from the water surface, resulting in an overheating, which may cause malfunction of the device. Therefore, the controller 18 judges the situation using the temperature measured by the temperature sensor 39, and appropriately controls each device based on the judgment result, thereby enabling more appropriate operation of the air conditioner. As a simple example, it is possible to judge whether the amount of water for humidification has reached the position where the temperature sensor 39 is installed depending on whether the temperature measured by the temperature sensor 39 is within a certain range from the temperature of the refrigerant supplied to the auxiliary heat exchanger 26, and whether heating by the electric heater 38 is necessary depending on whether the temperature measured by the temperature sensor 39 is equal to or higher than the temperature set as the heating process. Furthermore, it is possible to operate more appropriately and efficiently by controlling the operation of each device constituting the air conditioner, including the compressor 11, the outdoor heat exchanger 17, the auxiliary heat exchanger 26, and the electric heater 38, based on each judgment result.
Next, a control example of theair conditioner 1 according to the sixth embodiment will be described with reference to the flow chart of FIG. 9. First, the heating operation is started (STEP 01), and the outdoor heat exchanger 17 is cooled to a temperature equal to or lower than the dew point temperature of the outdoor air (STEP 02). When the outdoor dew point temperature is below freezing, the water vapor contained in the outdoor air forms frost on the surface of the outdoor heat exchanger 17 and adheres thereto. The frost is melted by the defrost operation (STEP 04), and the frost is stored in the water collection tank 21 as water for humidification (STEP 05). Here, as a method of defrost operation, a so-called "reverse cycle defrost" method is generally used in which the refrigerant flows in the opposite direction to that during the heating operation, and the high-temperature, high-pressure refrigerant discharged from the compressor 11 is heated by flowing it through the outdoor heat exchanger 17. However, as long as it is sufficient to melt the frost, a method other than the "reverse cycle defrost" may be used. When the accumulation of water for humidification begins in the water collection tank 21, the supply of high-temperature, high-pressure refrigerant to the auxiliary heat exchanger 26 is started (STEP 06). Next, it is determined whether or not a sufficient amount of water has accumulated for humidification operation, depending on whether or not the difference between the measured value of the temperature sensor 39 and the temperature of the refrigerant supplied to the auxiliary heat exchanger 26 is within a preset range (STEP 07). This is based on the fact that when the water level in the water collection tank 21 rises and reaches the temperature sensor 39, the temperature measured by the temperature sensor 39 approaches the temperature of the refrigerant supplied to the auxiliary heat exchanger 26. When the difference between the measured value of the temperature sensor 39 and the temperature of the refrigerant supplied to the auxiliary heat exchanger 26 falls within a preset range, it is determined that the water accumulated in the water collection tank 21 has reached the position of the temperature sensor 39, and it is determined that there is a sufficient amount of water for humidification operation. Next, it is determined whether or not the temperature of the water in the water collection tank 21 measured by the temperature sensor 39 has reached a preset heating temperature (STEP 08). If it has reached the preset heating temperature, it is determined that the water in the water collection tank 21 has been heated, and the supply of water to the humidification element 32 is started without heating by the electric heater 38 (STEP 12). If the temperature of the water in the water collection tank 21 measured by the temperature sensor 39 does not reach the preset heating temperature, it is determined that the heating by the auxiliary heat exchanger 26 alone is insufficient, and heating by the electric heater 38 is started (STEP 09). After starting heating by the electric heater 38, it is determined whether the temperature of the water in the water collection tank 21 measured by the temperature sensor 39 has reached the preset heating temperature (STEP 10). If the temperature of the water in the water collection tank 21 has reached the preset heating temperature, it is determined that the water in the water collection tank 21 has been heated, heating by the electric heater 38 is stopped (STEP 11), and the supply of water to the humidification element 32 is started (STEP 12). If the temperature of the water in the water collection tank 21 has not reached the preset heating temperature, it is necessary to continue heating by the electric heater 38, so the process returns to STEP 09. In this way, by controlling the air conditioner 1 by the controller 18 based on the temperature measurement value by the temperature sensor 39, the amount of heating by the electric heater 38 can be controlled without excess or deficiency, and the water for humidification can be heated.
Although theelectric heater 38 has been described as an auxiliary heating unit independent of the refrigerant circuit, the present invention is not limited to this, and any auxiliary heating unit independent of the refrigerant circuit can provide the same effect. Also, although the method of estimating the water volume in the water collection tank 21 using the temperature sensor 39 has been described, this is not the only method that can be used as long as the water level can be estimated, and for example, a method of measuring the water level using a water immersion sensor may be used.
(温度センサの追加)
図8は、実施の形態6に係る室外機110の断面模式図である。尚、断面の位置は、図2で示すところのX-X断面にあたる。図9は、実施の形態6に係る空気調和機1の制御例を示すフロー図である。
実施の形態6では、付属熱交換器26に加え、集水槽21内に温度センサ39を備えることを特徴とする点で、実施の形態1と異なる。温度センサ39を備えることにより、加湿用の水の温度を測定することができるため、加湿用の水温に応じて加熱量を過不足なく制御することができる。例として、図8に示す通り、付属熱交換器26に加え、集水槽21内に電気ヒータ38と温度センサ39とを備えた構成にて、その動作の説明を以下に示す。図8に示す構成では、温度センサ39を用いて測定した加湿用の水の温度に応じて、加湿用の水の加熱処理を行う制御例を示す。例えば、空気調和機の運転状況や外気の温度及び湿度の変化に伴い、集水槽21内の加湿用の水量及び付属熱交換器26による加熱量には変動が生じる得るため、電気ヒータ38によって加熱すべき加熱量も一定ではない。電気ヒータ38による加熱量が過小な場合は、加湿用の水を十分に加熱処理できず、加湿運転によって室内の汚染を生じさせ得る。一方で、電気ヒータ38による加熱量が過大な場合は、加湿用の水が沸騰することによる水量の不足や、電気ヒータ38が水面から露出した状態で加熱を継続し、過昇温となることによって機器の不具合の原因となる可能性がある。そこで、制御器18において温度センサ39による温度の測定値を用いた状況判断を行い、判断結果に基づいて各機器を適切に制御することで、空気調和機としてより適切な運転が可能である。簡単な例としては、温度センサ39で測定される温度が、付属熱交換器26に供給される冷媒の温度から一定の範囲内であるか否かによって、加湿用の水量が温度センサ39の設置された位置に達しているか否かを判断することができ、温度センサ39で測定される温度が、加熱処理として設定された温度以上か否かによって、電気ヒータ38による加熱の要否を判断することができる。さらに、各判断結果に基づいて、圧縮機11、室外熱交換器17、付属熱交換器26及び電気ヒータ38をはじめとした空気調和機を構成する各機器の動作を制御することで、より適切でより効率的な運転ができる。
次に、実施の形態6に係る空気調和機1の制御例を、図9のフロー図を用いて説明する。まず、暖房運転を開始し(STEP01)、室外熱交換器17を外気の露点温度以下に冷却する(STEP02)。外気露点温度が氷点下の場合には、外気に含まれる水蒸気が室外熱交換器17の表面で霜となって付着するので、デフロスト運転(STEP04)によって霜を融解させ、集水槽21に加湿用の水としてためる(STEP05)。ここで、デフロスト運転の方法としては、冷媒の流れを暖房運転時とは逆方向とし、圧縮機11から吐出される高温高圧の冷媒を室外熱交換器17に流すことで加熱する所謂「逆サイクルデフロスト」の方法が一般的であるが、霜を融解できれば良いため、「逆サイクルデフロスト」以外の方法を用いても良い。集水槽21へ加湿用の水の蓄積が開始したら、付属熱交換器26に高温高圧の冷媒の供給を開始する(STEP06)。次に、温度センサ39の測定値と付属熱交換器26に供給した冷媒の温度との差が、予め設定した範囲内であるか否かによって、加湿運転に十分な水量がたまっているか否かを判断する(STEP07)。これは、集水槽21の水面が上昇して温度センサ39に水面が達すると、温度センサ39によって測定される温度が付属熱交換器26に供給した冷媒の温度に近づくことを利用しており、温度センサ39の測定値と付属熱交換器26に供給した冷媒の温度との差が、予め設定した範囲内に入ることにより、集水槽21に溜まった水が温度センサ39の位置に達しているとみなし、加湿運転に十分な水量があると判断する。続いて、温度センサ39によって測定した集水槽21内の水の温度が、予め設定した加熱温度に到達しているか否かを判定する(STEP08)。予め設定した加熱温度に到達している場合は、集水槽21内の水は加熱処理済みと判断し、電気ヒータ38による加熱は行わずに、加湿エレメント32へ水の供給を開始する(STEP12)。温度センサ39によって測定される集水槽21内の水の温度が、予め設定した加熱温度に到達していない場合は、付属熱交換器26による加熱だけでは不足と判断し、電気ヒータ38による加熱を開始する(STEP09)。電気ヒータ38による加熱を開始した後、温度センサ39によって測定される集水槽21内の水の温度が、予め設定した加熱温度に到達しているか否かを判定する(STEP10)。集水槽21内の水の温度が、予め設定した加熱温度に到達している場合は、集水槽21内の水は加熱処理済みと判断して、電気ヒータ38による加熱を停止し(STEP11)、加湿エレメント32へ水の供給を開始する(STEP12)。集水槽21内の水の温度が、予め設定した加熱温度に到達していない場合は、電気ヒータ38による加熱を継続する必要があるため、STEP09に戻る。このように、温度センサ39による温度測定値を基に制御器18によって空気調和機1を制御することにより、電気ヒータ38による加熱量を過不足なく制御し、加湿用の水の加熱処理を行うことができる。
尚、冷媒回路から独立した補助加熱部として電気ヒータ38を挙げたが、これに限るものではなく、冷媒回路から独立した補助加熱部を有していれば同等の効果を得られる。また、温度センサ39によって集水槽21の水量を推定する方法を挙げたが、この方法に限らず水位を推定できれば良いので、例えば、浸水センサを用いて水位を測定する方法等を用いても良い。 Embodiment 6.
(Temperature sensor added)
Fig. 8 is a schematic cross-sectional view of the
The sixth embodiment differs from the first embodiment in that a
Next, a control example of the
Although the
以上のように、実施の形態6の空気調和機1は、付属熱交換器26に加え、集水槽21内に温度センサ39を備えた空気調和機である。
このように構成された空気調和機は、集水槽内の加湿用の水量及び水温に応じて、加熱量を制御できるため、確実且つより効率的に加湿用の水の加熱処理を行うことができる。 As described above, theair conditioner 1 of the sixth embodiment is an air conditioner that includes the temperature sensor 39 in the water collection tank 21 in addition to the auxiliary heat exchanger 26 .
An air conditioner configured in this manner can control the amount of heating according to the amount and temperature of water for humidification in the water collection tank, and therefore can heat the water for humidification reliably and efficiently.
このように構成された空気調和機は、集水槽内の加湿用の水量及び水温に応じて、加熱量を制御できるため、確実且つより効率的に加湿用の水の加熱処理を行うことができる。 As described above, the
An air conditioner configured in this manner can control the amount of heating according to the amount and temperature of water for humidification in the water collection tank, and therefore can heat the water for humidification reliably and efficiently.
したがって、実施の形態6に示した空気調和機を適用することにより、実施の形態1の効果に加え、温度センサから得られた情報に基づいて加熱量を制御できるため、確実且つより効率的に加湿用の水の加熱処理を行える、空気調和機を提供することができる。
Therefore, by applying the air conditioner shown in embodiment 6, in addition to the effect of embodiment 1, it is possible to provide an air conditioner that can reliably and more efficiently heat the water for humidification because the amount of heating can be controlled based on information obtained from the temperature sensor.
1 空気調和機
11 圧縮機
12 流路切替器
13 室内ファン
14 室内熱交換器
15 減圧器
16 室外ファン
17 室外熱交換器
18 制御器
21 集水槽
22 分岐部
23 合流部
24 バイパス配管
25 バイパス弁
26 付属熱交換器
31 空気予熱器
32 加湿エレメント
33 空気加熱器
34 加湿ファン
35 給水口
36 加湿ダクト
37 供給水量調整部
38 電気ヒータ
39 温度センサ
110 室外機
120 室内機
130 加湿装置Reference Signs List 1 Air conditioner 11 Compressor 12 Flow path switch 13 Indoor fan 14 Indoor heat exchanger 15 Pressure reducer 16 Outdoor fan 17 Outdoor heat exchanger 18 Controller 21 Water collection tank 22 Branching section 23 Junction section 24 Bypass piping 25 Bypass valve 26 Auxiliary heat exchanger 31 Air preheater 32 Humidification element 33 Air heater 34 Humidification fan 35 Water supply port 36 Humidification duct 37 Supply water amount adjustment section 38 Electric heater 39 Temperature sensor 110 Outdoor unit 120 Indoor unit 130 Humidification device
11 圧縮機
12 流路切替器
13 室内ファン
14 室内熱交換器
15 減圧器
16 室外ファン
17 室外熱交換器
18 制御器
21 集水槽
22 分岐部
23 合流部
24 バイパス配管
25 バイパス弁
26 付属熱交換器
31 空気予熱器
32 加湿エレメント
33 空気加熱器
34 加湿ファン
35 給水口
36 加湿ダクト
37 供給水量調整部
38 電気ヒータ
39 温度センサ
110 室外機
120 室内機
130 加湿装置
Claims (10)
- 圧縮機、流路切替器、室内熱交換器、減圧器及び室外熱交換器を有し、前記圧縮機及び前記流路切替器は、前記室内熱交換器と前記室外熱交換器とを接続する一方の冷媒配管の途中に設けられ、前記減圧器は、前記室内熱交換器と前記室外熱交換器とを接続するもう一方の冷媒配管の途中に設けられた冷媒回路と、
前記室外熱交換器によって外気を冷却して生成された水を溜める集水槽と、
前記圧縮機と前記室内熱交換器との間の冷媒配管に設けられた分岐部から分岐し、前記分岐部と前記減圧器との間の冷媒配管に設けられた合流部に接続されるバイパス配管と、
前記バイパス配管の途中に設けられ、前記バイパス配管を流れる冷媒の流量を変更するバイパス弁と、
前記バイパス配管の途中に設けられ、前記集水槽に溜められた水を55℃以上に加熱する付属熱交換器と、
前記集水槽から水が供給される位置に設置された加湿エレメントと、
前記加湿エレメントを通過することにより加湿された空気を室内に送るための加湿ダクトと、
を備えた空気調和機。 a refrigerant circuit including a compressor, a flow path switching device, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger, the compressor and the flow path switching device being provided in one of the refrigerant pipings connecting the indoor heat exchanger and the outdoor heat exchanger, and the pressure reducing device being provided in the other of the refrigerant pipings connecting the indoor heat exchanger and the outdoor heat exchanger;
a water collection tank for storing water generated by cooling the outdoor air by the outdoor heat exchanger;
a bypass pipe that branches off from a branching portion provided in the refrigerant pipe between the compressor and the indoor heat exchanger and is connected to a junction portion provided in the refrigerant pipe between the branching portion and the pressure reducer;
a bypass valve provided in the bypass pipe to change a flow rate of the refrigerant flowing through the bypass pipe;
an auxiliary heat exchanger provided in the bypass piping and configured to heat the water stored in the water collection tank to 55°C or higher;
a humidification element disposed at a position where water is supplied from the water collecting tank;
a humidification duct for sending air humidified by passing through the humidification element into a room;
An air conditioner equipped with - 前記合流部は、前記分岐部と前記室内熱交換器との間に設けられた、
請求項1に記載の空気調和機。 The junction is provided between the branch and the indoor heat exchanger.
The air conditioner according to claim 1. - 前記合流部は、前記室内熱交換器と前記減圧器との間に設けられた、
請求項1に記載の空気調和機。 The junction is provided between the indoor heat exchanger and the pressure reducer.
The air conditioner according to claim 1. - 前記付属熱交換器は、前記集水槽の底部に設けられた、
請求項1から請求項3のうちいずれか1項に記載された空気調和機。 The auxiliary heat exchanger is provided at the bottom of the water collection tank.
An air conditioner according to any one of claims 1 to 3. - 前記付属熱交換器は、扁平多穴管の構造を有する、
請求項1から請求項4のうちいずれか1項に記載された空気調和機。 The auxiliary heat exchanger has a flat multi-hole tube structure;
An air conditioner according to any one of claims 1 to 4. - 前記付属熱交換器は、波型のインナーフィンの周囲をロールホーミングした構造を有する、
請求項1から請求項4のうちいずれか1項に記載された空気調和機。 The auxiliary heat exchanger has a structure in which the periphery of a corrugated inner fin is roll-formed.
An air conditioner according to any one of claims 1 to 4. - 前記集水槽に溜められた水を加熱する、前記冷媒回路から独立した補助加熱部を備える、
請求項1から請求項6のうちいずれか1項に記載された空気調和機。 An auxiliary heating unit that heats the water stored in the water collection tank and is independent of the refrigerant circuit.
An air conditioner according to any one of claims 1 to 6. - 前記補助加熱部は電気ヒータである、
請求項7に記載された空気調和機。 The auxiliary heating unit is an electric heater.
8. An air conditioner according to claim 7. - 前記加湿エレメントに供給される水量を調整する供給水量調整部を備えた、
請求項1から請求項8のうちいずれか1項に記載された空気調和機。 A water supply amount adjusting unit is provided to adjust the amount of water supplied to the humidification element.
An air conditioner according to any one of claims 1 to 8. - 前記集水槽に溜められた水の温度を測定する温度センサを備え、
前記温度センサによる水温の測定値に基づき、水温が55℃以上の所定の温度となるよう制御器が加熱量を制御する、
請求項1から請求項9のうちいずれか1項に記載された空気調和機。 A temperature sensor is provided to measure the temperature of the water stored in the water tank;
Based on the water temperature measured by the temperature sensor, the controller controls the amount of heating so that the water temperature becomes a predetermined temperature of 55°C or higher.
An air conditioner according to any one of claims 1 to 9.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/042733 WO2024105856A1 (en) | 2022-11-17 | 2022-11-17 | Air conditioner |
JP2023530186A JP7490143B1 (en) | 2022-11-17 | 2022-11-17 | Air conditioners |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/042733 WO2024105856A1 (en) | 2022-11-17 | 2022-11-17 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024105856A1 true WO2024105856A1 (en) | 2024-05-23 |
Family
ID=91084069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042733 WO2024105856A1 (en) | 2022-11-17 | 2022-11-17 | Air conditioner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7490143B1 (en) |
WO (1) | WO2024105856A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59118933U (en) * | 1983-01-31 | 1984-08-10 | 三菱電機株式会社 | air conditioner |
JP2006322649A (en) * | 2005-05-18 | 2006-11-30 | Rinnai Corp | Cogeneration system |
JP2008144991A (en) * | 2006-12-06 | 2008-06-26 | Hitachi Appliances Inc | Heat pump-type air conditioner |
JP2013257079A (en) * | 2012-06-13 | 2013-12-26 | Corona Corp | Air conditioner |
JP2015072102A (en) * | 2013-10-03 | 2015-04-16 | 三菱電機株式会社 | Water heater |
WO2022219747A1 (en) * | 2021-04-14 | 2022-10-20 | 三菱電機株式会社 | Air conditioner |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002031378A (en) | 2000-05-09 | 2002-01-31 | Daikin Ind Ltd | Air conditioner |
JP2008190789A (en) | 2007-02-05 | 2008-08-21 | Daikin Ind Ltd | Air conditioner |
JP2010078280A (en) | 2008-09-29 | 2010-04-08 | Panasonic Corp | Air conditioner |
JP2010096395A (en) | 2008-10-15 | 2010-04-30 | Toshiba Carrier Corp | Air conditioner |
-
2022
- 2022-11-17 WO PCT/JP2022/042733 patent/WO2024105856A1/en unknown
- 2022-11-17 JP JP2023530186A patent/JP7490143B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59118933U (en) * | 1983-01-31 | 1984-08-10 | 三菱電機株式会社 | air conditioner |
JP2006322649A (en) * | 2005-05-18 | 2006-11-30 | Rinnai Corp | Cogeneration system |
JP2008144991A (en) * | 2006-12-06 | 2008-06-26 | Hitachi Appliances Inc | Heat pump-type air conditioner |
JP2013257079A (en) * | 2012-06-13 | 2013-12-26 | Corona Corp | Air conditioner |
JP2015072102A (en) * | 2013-10-03 | 2015-04-16 | 三菱電機株式会社 | Water heater |
WO2022219747A1 (en) * | 2021-04-14 | 2022-10-20 | 三菱電機株式会社 | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP7490143B1 (en) | 2024-05-24 |
JPWO2024105856A1 (en) | 2024-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106196528B (en) | Air conditioner and its control method | |
JP5958503B2 (en) | Room temperature adjustment system | |
KR101578532B1 (en) | Energy-saving dehumidification air handling unit | |
US5267450A (en) | Air conditioning apparatus | |
US8517356B2 (en) | Ventilation device and controlling method of the same | |
JP4224409B2 (en) | Hot water supply system using natural energy | |
US20080157411A1 (en) | Device and Method for Humidifying an Air Flow | |
JP5391785B2 (en) | Air conditioning system | |
JP4948070B2 (en) | Air conditioning control method and air conditioner | |
JP5387789B2 (en) | Air conditioner | |
US20130239601A1 (en) | Heat pump with downstream sensor for multilevel control of a supplemental heating element | |
JP6180858B2 (en) | Storage | |
JP2010203699A (en) | Air conditioning device | |
JP2008170015A (en) | Refrigeration cycle device with warm water container | |
JP7490143B1 (en) | Air conditioners | |
JP2018096664A (en) | Air conditioning system | |
US20140116068A1 (en) | Auxiliary Heat Exchangers | |
CN106403107A (en) | Air conditioner and control method thereof | |
CN104344550B (en) | Heat pump water heater group | |
JP4593689B1 (en) | Precision air conditioner | |
CN108387074B (en) | Heat pump drying equipment | |
KR100813555B1 (en) | Thermo-hygrostat | |
JP2021017994A (en) | Temperature/humidity control device | |
JP2006017369A5 (en) | ||
JP4462462B2 (en) | Air conditioning and heat storage system using body heat storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22965832 Country of ref document: EP Kind code of ref document: A1 |