JP4948070B2 - Air conditioning control method and air conditioner - Google Patents

Air conditioning control method and air conditioner Download PDF

Info

Publication number
JP4948070B2
JP4948070B2 JP2006205460A JP2006205460A JP4948070B2 JP 4948070 B2 JP4948070 B2 JP 4948070B2 JP 2006205460 A JP2006205460 A JP 2006205460A JP 2006205460 A JP2006205460 A JP 2006205460A JP 4948070 B2 JP4948070 B2 JP 4948070B2
Authority
JP
Japan
Prior art keywords
water
air
temperature
casing
washer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006205460A
Other languages
Japanese (ja)
Other versions
JP2008032303A (en
Inventor
允和 山形
正明 篠原
利壽 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Kubota Corp
Kubota Air Conditioner Ltd
Original Assignee
Sanki Engineering Co Ltd
Kubota Corp
Kubota Air Conditioner Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Kubota Corp, Kubota Air Conditioner Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2006205460A priority Critical patent/JP4948070B2/en
Publication of JP2008032303A publication Critical patent/JP2008032303A/en
Application granted granted Critical
Publication of JP4948070B2 publication Critical patent/JP4948070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Air Humidification (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は空調制御方法および空気調和機に関し、特にクリーンルーム用空気調和機、排熱利用エアワッシャ等の技術に係るものである。   The present invention relates to an air conditioning control method and an air conditioner, and particularly relates to technologies such as an air conditioner for a clean room and an air washer using exhaust heat.

従来、この種の技術には、例えば特許文献1に記載するものがある。これを図9および図10において説明する。図9において、ハウジング1の内部には、冷却コイル2、加熱コイル3、エアワッシャ4、露点計5を空気が通過する流れ方向に沿って設置しており、ハウジング1の外部に送風機6およびフィルタ7を設置している。   Conventionally, this type of technology includes, for example, one described in Patent Document 1. This will be described with reference to FIGS. In FIG. 9, a cooling coil 2, a heating coil 3, an air washer 4, and a dew point meter 5 are installed inside the housing 1 along the flow direction through which air passes, and a blower 6 and a filter are provided outside the housing 1. 7 is installed.

エアワッシャ4は、噴霧装置4aと、噴霧水を捕捉する捕捉部4bと、水槽4c、循環ポンプ等からなり、ハウジング1の内部で冷却コイル2の上流側に予熱コイル10を設置し、エアワッシャ4の下流側に除湿・再熱両用コイル12を設置している。   The air washer 4 includes a spraying device 4a, a capturing unit 4b for capturing sprayed water, a water tank 4c, a circulation pump, and the like. A preheating coil 10 is installed on the upstream side of the cooling coil 2 inside the housing 1, and an air washer. A dehumidifying / reheating coil 12 is installed on the downstream side of 4.

露点計5は、空調される室に至る前の処理済み空気の経路中において空気の露点温度を計るものであり、除湿・再熱両用コイル12より下流に設置している。温度センサ11は、エアワッシャ4での気液接触後の温度を計るものであり、エアワッシャ4と除湿・再熱両用コイル12の間に設置している。   The dew point meter 5 measures the dew point temperature of the air in the path of the processed air before reaching the air-conditioned room, and is installed downstream of the dehumidifying / reheating coil 12. The temperature sensor 11 measures the temperature after the gas-liquid contact with the air washer 4, and is installed between the air washer 4 and the dehumidifying / reheating coil 12.

予熱コイル10と除湿・再熱両用コイル12は水通路13、14を介して接続しており、水通路13にはインバータ制御ポンプ15と熱交換器16を介設し、熱交換器16は冷水管17を通る冷水で冷却運転を行う。   The preheating coil 10 and the dehumidifying / reheating coil 12 are connected via water passages 13 and 14, and the water passage 13 is provided with an inverter control pump 15 and a heat exchanger 16, and the heat exchanger 16 is cold water. Cooling operation is performed with cold water passing through the pipe 17.

この構成においては、外気が低温で乾燥する加湿期には、予熱コイル10で外気から得た冷熱を除湿・再熱両用コイル12に伝えて除湿作用を行ない、除湿によって得た熱を予熱コイル10に伝えて外気を予熱する。   In this configuration, during the humidification period when the outside air is dried at a low temperature, the cold heat obtained from the outside air by the preheating coil 10 is transmitted to the dehumidification / reheating coil 12 to perform dehumidification, and the heat obtained by the dehumidification is obtained. To preheat the outside air.

図10の空気線図は、加湿期におけるハウジング1の内部の各位置a〜fでの空気の状態を示すものである。図10において、点aの外気は予熱コイル10で点bまで加温され、更に加熱コイル3で23℃を大きく越えた温度の点cにまで加温される。その後に、エアワッシャ4により等エンタルピ線に沿って点dまで遷移する間に加湿量Aが加湿される。   The air diagram of FIG. 10 shows the state of air at the respective positions a to f inside the housing 1 during the humidification period. In FIG. 10, the outside air at the point a is heated to the point b by the preheating coil 10 and further heated to the point c at a temperature greatly exceeding 23 ° C. by the heating coil 3. Thereafter, the humidification amount A is humidified while the air washer 4 makes a transition to the point d along the isenthalpy line.

次に、除湿・再熱両用コイル12による除湿作用によって、飽和線に沿って点eに遷移し、クリーンルームへ送られる間に、送風機6の熱を受けて点fの状態となり、クリーンルームにおいて点gとなる。   Next, the dehumidifying action by the dehumidifying / reheating coil 12 makes a transition to the point e along the saturation line, and while being sent to the clean room, it receives the heat of the blower 6 and becomes a point f. It becomes.

また、特許文献2には空気導入側から空気導出側に向かって予熱コイル、エアワッシャ、冷却減湿コイルを備える空調装置が記載されており、予熱コイルは加熱熱媒に配管を介して連絡しており、エアワッシャは熱交換器を介装した水噴霧回路を有し、熱交換器は加熱媒体に配管を介して連絡し、冷却減湿コイルは冷却熱源に配管を介して連絡している。   Patent Document 2 describes an air conditioner including a preheating coil, an air washer, and a cooling and dehumidifying coil from the air introduction side to the air outlet side. The preheating coil communicates with the heating heat medium via a pipe. The air washer has a water spray circuit with a heat exchanger, the heat exchanger communicates with the heating medium via piping, and the cooling and dehumidification coil communicates with the cooling heat source via piping. .

この構成では、予熱コイルに加熱媒体から温水を供給して外気を加熱し、その後に加熱媒体の熱エネルギを熱交換器を介してエアワッシャの温水に変換し、その温水によって外気を加熱加湿する。
特開2002−267206号公報 特開平10−253095号公報
In this configuration, hot water is supplied from the heating medium to the preheating coil to heat the outside air, and then the heat energy of the heating medium is converted into the warm water of the air washer through the heat exchanger, and the outside air is heated and humidified by the hot water. .
JP 2002-267206 A JP-A-10-253095

上記の特許文献1の構成において、除湿・再熱両用コイル12へ送る水の温度は、給気の絶対湿度条件によって異なるものであり、給気の絶対湿度条件つまり露点温度に応じて調整している。加湿量の調整は加熱コイル3へ供給する温水供給量を制御することで行なっており、具体的にはエアワッシャ4の下流側での温度又は露点温度を指標として2方電動弁3aの開度を制御することによって行なっている。   In the configuration of the above-mentioned Patent Document 1, the temperature of water sent to the dehumidification / reheating coil 12 varies depending on the absolute humidity condition of the supply air, and is adjusted according to the absolute humidity condition of the supply air, that is, the dew point temperature. Yes. The amount of humidification is adjusted by controlling the amount of hot water supplied to the heating coil 3, and specifically, the opening degree of the two-way motor operated valve 3a with the temperature or dew point temperature downstream of the air washer 4 as an index. It is done by controlling.

ところで、ハウジング1を流れる空気は必ずしも一様な状態ではなく、その温度分布も均一ではない。このため、ハウジング1を流れる空気の温度や露点をハウジング1の一箇所の定点において計測する場合には、その計測値が計測対象の空気の全体的、あるいは平均的な状態を適正に示す指標である保証はない。   By the way, the air flowing through the housing 1 is not necessarily in a uniform state, and the temperature distribution is not uniform. For this reason, when the temperature or dew point of the air flowing through the housing 1 is measured at one fixed point of the housing 1, the measured value is an index that appropriately indicates the overall or average state of the air to be measured. There is no guarantee.

また、露点計は高価であり、精度を維持するためには定期的な校正が必要である。また、露点計に代えて湿度計を用い相対湿度を計測し、その計測値に基づいて制御する場合にあっても、上述した理由において、計測した相対湿度が計測対象の空気の全体的、あるいは平均的な状態を適正に示す指標である保証はない。   In addition, the dew point meter is expensive, and periodic calibration is necessary to maintain accuracy. In addition, even when the relative humidity is measured using a hygrometer instead of the dew point meter and the control is performed based on the measured value, the measured relative humidity is the whole of the air to be measured, There is no guarantee that it is a good indicator of the average condition.

本発明は上記の課題を解決するものであり、処理対象空気の状態を正確に計測し、必要とする絶対湿度を有する空気を得ることができる空調制御方法および空気調和機を提供することを目的とする。   An object of the present invention is to solve the above problems, and to provide an air conditioning control method and an air conditioner that can accurately measure the state of the air to be processed and obtain air having the required absolute humidity. And

上記課題を解決するために、本発明の空気制御方法は、ケーシング内に処理対象空気を通風する空気調和機において、ケーシングの空気導入部で空気温度調整手段により処理対象空気の空気温度を調整し、この処理対象空気に、ケーシング内の上流側位置でケーシングの高さ方向及び幅方向に所定間隔を空けて複数箇所に配置している噴霧手段から用水を噴霧し、ケーシング内の下流側位置で、ケーシング内の空気流路の流路断面積と実質的に等しい大きさの捕捉面を有して水膜効果による気液接触効率向上を図るワッシャメディアにより処理対象空気を実質的に飽和空気となすとともに、水温計測手段を構成する前記ワッシャメディアにより空気流路断面の各所を通過する処理対象空気の湿球温度と実質的に同じ温度となった用水を捕捉分離し、捕捉分離した用水をワッシャメディアの下端位置に配置した水温計測手段を構成する測定用の水槽に測定水として集め、その水温を水温計測手段を構成する水温計で計測し、集めた用水を噴霧手段に循環供給して等エンタルピー加湿し、測定水の水温が一定温度を維持するように、前記水温計測手段の計測値に基づいて空気温度調整手段を制御して処理対象空気の温度を調整することを特徴とする。 In order to solve the above problems, an air control method of the present invention is an air conditioner that ventilates air to be processed in a casing, and adjusts the air temperature of the air to be processed by an air temperature adjusting means at an air introduction part of the casing. The water to be treated is sprayed with water from spraying means arranged at a plurality of locations at predetermined intervals in the height direction and width direction of the casing at the upstream position in the casing, and at the downstream position in the casing. , substantially saturated higher processing target air washer media have capture surface of the flow passage cross-sectional area substantially equal to the size of the air passage in the casing reduce the gas-liquid contact efficiency due to water film effects together they form an air capture component the wet-bulb temperature substantially water became the same temperature of the processing target air passing through the various parts of the air flow path section by the washer media constituting the water temperature measuring means To collect the captured separated water as a water bath sample water for measurement constituting the water temperature measuring means disposed at the lower end position of the washer media, and measuring the water temperature at a water temperature meter which constitutes the water temperature measuring means, collected water for Circulating and supplying the spraying means to enthalpy humidify, and adjust the temperature of the air to be processed by controlling the air temperature adjusting means based on the measured value of the water temperature measuring means so that the water temperature of the measured water is kept constant It is characterized by doing.

本発明の空気制御方法は、ケーシング内に処理対象空気を通風する空気調和機において、ケーシングの空気導入部で空気温度調整手段により加熱した処理対象空気に、用水温度調整手段により加熱した用水をケーシング内の上流側位置で、ケーシングの高さ方向及び幅方向に所定間隔を空けて複数箇所に配置している噴霧手段から噴霧し、ケーシング内の下流側位置で、ケーシング内の空気流路の流路断面積と実質的に等しい大きさの捕捉面を有し、水膜効果による気液接触効率向上を図るワッシャメディアにより処理対象空気を実質的に飽和空気となすとともに、水温計測手段を構成する前記ワッシャメディアにより空気流路断面の各所を通過する処理対象空気から用水を捕捉分離し、捕捉分離した用水をワッシャメディアの下端位置に配置した水温計測手段を構成する測定用の水槽に測定水として集め、その水温を水温計測手段を構成する水温計で計測し、集めた用水を用水温度調整手段で加熱して噴霧手段に循環供給して加熱加湿し、測定水の水温が一定温度を維持するように、前記水温計測手段の計測値に基づいて用水温度調整手段を制御してノズルから噴霧する用水の温度を調整することを特徴とする。 The air control method of the present invention is an air conditioner for passing air to be treated in a casing, wherein the water to be treated heated by the air temperature adjusting means at the air introduction part of the casing is treated with the water heated by the water temperature adjusting means. Sprayed from spraying means disposed at a plurality of positions at predetermined intervals in the height direction and width direction of the casing at the upstream position in the casing, and the flow of the air flow path in the casing at the downstream position in the casing. It has a trapping surface that is substantially the same size as the road cross-sectional area, and the water to be treated is made substantially saturated air by a washer media that improves the gas-liquid contact efficiency by the water film effect, and constitutes a water temperature measuring means the water from the processed air through the various parts of the air flow path section captures separated by said washer media distribution captured separated water to the lower end position of the washer media Was collected as a sample water in the aquarium for measurement constituting the water temperature measuring means, the water temperature was measured at a water temperature meter which constitutes the water temperature measuring means, the collected water is heated at a water temperature adjusting means is circulated and supplied to the spray means The temperature of the water to be sprayed from the nozzle is adjusted by controlling the water temperature adjusting means based on the measured value of the water temperature measuring means so that the temperature of the measured water is kept constant. To do.

本発明の空気調和機は、ケーシング内に処理対象空気を通風する空気調和機において、ケーシングの空気導入部から流入する処理対象空気の温度を調整する空気温度調整手段と、ケーシング内の上流側位置でケーシングの高さ方向及び幅方向に所定間隔を空けて複数箇所に配置され、空気温度調整手段により空気温度が調整された処理対象空気に用水を噴霧する噴霧手段と、ケーシング内の下流側位置で、ケーシング内の空気流路の流路断面積と実質的に等しい大きさの捕捉面で処理対象空気から用水を捕捉分離し、且つ処理対象空気を実質的に飽和空気となすように水膜効果による気液接触効率向上を図るワッシャメディアを備え、前記ワッシャメディアと、ワッシャメディアの下端位置に配置してワッシャメディアで捕捉分離した用水を測定水として集める測定用の水槽と、前記水槽に集めて水温を計測する水温計とで構成する水温計測手段を有し、水槽から用水を汲み出す供給ポンプと、噴霧手段に用水を供給する用水供給系と、水温計測手段の計測値が一定温度を維持するように前記水温計測手段の計測値に基づいて空気温度調整手段を制御して処理対象空気の温度を調整する制御手段とを備えることを特徴とする。 An air conditioner according to the present invention is an air conditioner for passing air to be processed into a casing, wherein an air temperature adjusting means for adjusting the temperature of the air to be processed flowing from the air introduction part of the casing, and an upstream position in the casing Spraying means for spraying water on the air to be treated, which is arranged at a plurality of positions at predetermined intervals in the height direction and width direction of the casing and whose air temperature is adjusted by the air temperature adjusting means, and a downstream position in the casing In the casing, the water film is captured and separated from the processing target air by a trapping surface having a size substantially equal to the cross-sectional area of the air flow path in the casing, and the processing target air is substantially saturated air. comprising a washer media to promote gas-liquid contact efficiency due to the effect, and the washer media, the water was trapped separated by washers media disposed in the lower end position of the washer media And aquarium for measurement collected as Teimizu has a water temperature measuring means consist of a water temperature meter for measuring the water temperature collected in the water tank, water supply and pumping supply pump water from the water tank, the water spray means A supply system; and a control unit that adjusts the temperature of the air to be processed by controlling the air temperature adjusting unit based on the measurement value of the water temperature measuring unit so that the measurement value of the water temperature measuring unit maintains a constant temperature. It is characterized by.

本発明の空気調和機は、ケーシング内に処理対象空気を通風する空気調和機において、ケーシング内の空気導入部から流入する処理対象空気を加熱する空気温度調整手段と、用水の温度を加熱する用水温度調整手段と、ケーシング内の上流側位置でケーシングの高さ方向及び幅方向に所定間隔を空けて複数箇所に配置され、空気温度調整手段で加熱した処理対象空気に、用水温度調整手段により加熱した用水を噴霧する噴霧手段と、ケーシング内の下流側位置でケーシング内の空気流路の流路断面積と実質的に等しい大きさの捕捉面により処理対象空気から用水を捕捉分離し、且つ処理対象空気を実質的に飽和空気となすように水膜効果による気液接触効率向上を図るワッシャメディアを備え、前記ワッシャメディアと、ワッシャメディアの下端位置に配置してワッシャメディアで捕捉分離した用水を測定水として集める測定用の水槽と、前記水槽に集めて水温を計測する水温計とで構成する水温計測手段を有し、水槽から用水を汲み出す供給ポンプと、用水温度調整手段を介して噴霧手段に用水を供給する用水供給系と、水温計測手段の計測値が一定温度を維持するように前記水温計測手段の計測値に基づいて用水温度調整手段を制御して用水の温度を調整する制御手段とを備えることを特徴とする。 The air conditioner according to the present invention is an air conditioner for ventilating the air to be treated in the casing, an air temperature adjusting means for heating the air to be treated flowing from the air introduction part in the casing, and water for heating the temperature of the water. Heated by the irrigation water temperature adjusting means to the air to be treated, which is arranged at a plurality of positions at predetermined intervals in the height direction and width direction of the casing at the upstream position in the casing and heated by the air temperature adjusting means. The water is captured and separated from the air to be treated by a spraying means for spraying the used water and a trapping surface having a size substantially equal to the cross-sectional area of the air flow path in the casing at a downstream position in the casing. comprising a washer media to promote gas-liquid contact efficiency by the water film effects so as to form a substantially saturated air target air, said washer media, the washer media And aquarium for measurement collecting water that captured separated by washers media as sample water by placing the end position, has a water temperature measuring means consist of a water temperature meter for measuring the water temperature collected in the water tank, the water from the water tank Based on the measured value of the water temperature measuring means, the supply pump for pumping out, the water supply system for supplying the water to the spraying means via the water temperature adjusting means, and the measured value of the water temperature measuring means maintain a constant temperature. And control means for adjusting the temperature of the water by controlling the temperature adjusting means.

また、ケーシングの空気導入部に湿式温度計が設けられ、制御手段は、湿球温度計の計測値に基づいて、あらかじめ定めた複数の目標湿球温度のうちからワッシャメディアを通過する処理対象空気の目標湿球温度を選択し、当該目標湿球温度と同じ温度に、測定水の水温を維持することを特徴とする。
また、ワッシャメディアの処理対象空気の通風方向下流側に冷却コイル、冷却コイルの下流側に乾球温度計が設けられ、乾球温度計の計測値を制御指標として冷却コイルへの冷水の供給が制御されることを特徴とする
Further, a wet thermometer is provided in the air introduction portion of the casing, and the control means is a processing target air that passes through the washer medium from among a plurality of predetermined wet bulb temperatures based on the measurement value of the wet bulb thermometer. The target wet bulb temperature is selected, and the water temperature of the measured water is maintained at the same temperature as the target wet bulb temperature .
In addition, a cooling coil is provided on the downstream side of the air to be treated of the washer media, and a dry bulb thermometer is provided on the downstream side of the cooling coil. The measured value of the dry bulb thermometer is used as a control index to supply cold water to the cooling coil. It is controlled .

上述した本発明の原理的な作用として、気液接触を充分に行なうことが可能なエアワッシャにおいて、ケーシング内に噴霧した用水の蒸発によって処理対象空気を加湿すると、用水に蒸発熱(気化熱)を奪われる処理対象空気は温度が低下し、相対湿度100%に漸近する。処理対象空気と接触した用水は実質的に加湿後の処理対象空気の露点温度(湿球温度)に等しくなる。この反応は加湿前処理対象空気の湿球温度と噴霧される用水温度との差が10℃以内であれば加熱加湿でも等エンタルピー加湿でも同様である。   As an above-described principle operation of the present invention, in an air washer capable of sufficient gas-liquid contact, if the air to be treated is humidified by evaporation of the water sprayed in the casing, the heat of evaporation (heat of vaporization) is generated in the water. The air to be treated is deprived of temperature and gradually approaches 100% relative humidity. The water in contact with the treatment target air is substantially equal to the dew point temperature (wet bulb temperature) of the treatment target air after humidification. This reaction is the same for both heating and equal enthalpy humidification as long as the difference between the wet bulb temperature of the pre-humidification target air and the sprayed water temperature is within 10 ° C.

このため、ケーシング内の処理対象空気に用水を噴霧して加湿し、処理対象空気から用水を捕捉分離し、捕捉分離した用水を測定水としてその水温を計測することで、飽和した処理対象空気の露点を正確に計測することができる。   For this reason, the water to be treated is sprayed and humidified on the air to be treated in the casing, and the water is captured and separated from the air to be treated. Dew point can be measured accurately.

等エンタルピー加湿では飽和空気の露点および絶対湿度が処理対象空気の加湿前の湿球温度(WB)に因って定まり、加湿前の湿球温度(WB)が高いほどに飽和空気の露点および絶対湿度が高くなる。   In isoenthalpy humidification, the dew point and absolute humidity of saturated air are determined by the wet bulb temperature (WB) of the air to be treated before humidification, and the higher the wet bulb temperature (WB) before humidification, the higher the dew point and absolute of the saturated air. Humidity increases.

加熱加湿では飽和空気の露点および絶対湿度が処理対象空気の加湿前の湿球温度(WB)および噴霧する用水の温度に因って定まり、加湿前の湿球温度(WB)が高いほどに飽和空気の露点および絶対湿度が高くなり、噴霧する用水の温度が高いほどに飽和空気の露点および絶対湿度が高くなる。   In heating and humidification, the dew point and absolute humidity of saturated air are determined by the wet bulb temperature (WB) before humidification of the air to be treated and the temperature of the water to be sprayed, and the higher the wet bulb temperature (WB) before humidification, the higher the saturation. The dew point and absolute humidity of air become higher, and the dew point and absolute humidity of saturated air become higher as the temperature of the sprayed water becomes higher.

加湿前の湿球温度(WB)は処理対象空気の加湿前の乾球温度(DB)および加湿前の絶対湿度に因って定まる。加湿前の絶対湿度を同条件とすると加湿前の乾球温度(DB)が高いほどに加湿前の湿球温度(WB)が高くなって飽和空気の露点および絶対湿度が高くなる。   The wet bulb temperature (WB) before humidification is determined by the dry bulb temperature (DB) of the air to be treated before humidification and the absolute humidity before humidification. Assuming that the absolute humidity before humidification is the same condition, the higher the dry bulb temperature (DB) before humidification, the higher the wet bulb temperature (WB) before humidification and the higher the dew point and absolute humidity of saturated air.

したがって、測定水の水温が一定温度を維持するように、空気温度調整手段による処理対象空気の温度調整もしくは用水温度調整手段による用水の温度調整を行うことによって、必要とする絶対湿度を有する空気を得ることができる。   Therefore, by adjusting the temperature of the air to be treated by the air temperature adjusting means or the temperature of the water by the water temperature adjusting means so that the water temperature of the measurement water is maintained at a constant temperature, the air having the required absolute humidity is obtained. Obtainable.

以下、本発明の実施の形態を図面に基づいて説明する。図1に示すように、空気調和機は、ケーシング50の内部に処理対象空気51の通風方向に沿って上流側から下流側へ順次に、空気温度調整手段をなす予冷、予熱コイル52とエアワッシャ53と冷却コイル54と再熱コイル55とファン装置56を配設し、ケーシング50の最上流側の空気導入部にフィルター(図示省略)を設けている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the air conditioner has a precooling and preheating coil 52 and an air washer that form air temperature adjusting means in the casing 50 in order from the upstream side to the downstream side along the ventilation direction of the processing target air 51. 53, a cooling coil 54, a reheating coil 55, and a fan device 56 are provided, and a filter (not shown) is provided in an air introduction portion on the most upstream side of the casing 50.

また、空気調和機は、予冷、予熱コイル52の上流側に湿球温度(WB)を計測する温度測定手段をなす湿式温度計57を有し、冷却コイル54の下流側に乾球温度(DB)を計測する温度測定手段をなす第1の乾式温度計58を有し、ファン装置56の下流側に乾球温度(DB)を計測する温度測定手段をなす第2の乾式温度計59を有している。   The air conditioner also has a wet thermometer 57 serving as a temperature measuring means for measuring the wet bulb temperature (WB) upstream of the precooling and preheating coil 52, and a dry bulb temperature (DB) downstream of the cooling coil 54. ) Has a first dry thermometer 58 that serves as a temperature measuring means, and a second dry thermometer 59 that serves as a temperature measuring means that measures the dry bulb temperature (DB) is provided downstream of the fan device 56. is doing.

エアワッシャ53は、所定長さの水噴霧室60と噴霧手段をなす噴霧ノズル61と捕捉手段をなすワッシャメディア62を有しており、ワッシャメディア62を通過した後の処理対象空気51は気液接触により実質的に飽和空気となる。噴霧ノズル61は水噴霧室60の上流側位置で処理対象空気51に用水を噴霧するものであり、ケーシング50の高さ方向および幅方向に所定間隔をあけて複数箇所に配置している。噴霧ノズルの空気に対する方向は、並行流、直交流、対向流の何れでも良い。   The air washer 53 has a water spray chamber 60 having a predetermined length, a spray nozzle 61 that forms spray means, and a washer medium 62 that forms capture means. The air 51 to be treated after passing through the washer medium 62 is gas-liquid. The contact substantially becomes saturated air. The spray nozzle 61 sprays water to the processing target air 51 at a position upstream of the water spray chamber 60, and is arranged at a plurality of locations at predetermined intervals in the height direction and the width direction of the casing 50. The direction of the spray nozzle with respect to the air may be any of parallel flow, cross flow, and counter flow.

ワッシャメディア62は通気性を備え、水噴霧室60の下流側位置で気流中の噴霧水を捕捉分離し、ワッシャメディア62での水膜効果による気液接触の効率向上を図るものであり、ケーシング内の空気流路の流路断面積と実質的に等しい大きさの捕捉面を有する形状をなし、ポリ塩化ビニルデン系繊維やステンレスの線材等からなり、たとえば25mm〜50mm程度の厚みを有するマット状のものである。   The washer media 62 has air permeability, captures and separates spray water in the airflow at a position downstream of the water spray chamber 60, and improves the efficiency of gas-liquid contact by the water film effect in the washer media 62. It has a shape having a trapping surface having a size substantially equal to the cross-sectional area of the inner air flow path, is made of polyvinyl chloride fiber, stainless steel wire, etc., and has a mat shape with a thickness of, for example, about 25 mm to 50 mm belongs to.

エアワッシャ53は噴霧ノズル61およびワッシャメディア62の下方位置に水槽63を有し、水槽63は冷却コイル54の空気入口付近にまで及んでいる。各噴霧ノズル61に用水を供給する用水供給系64は基端側が水槽63に接続し、供給ポンプ65を備えており、用水温度調整手段をなす熱交換器66の二次側に用水供給系64が接続している。   The air washer 53 has a water tank 63 below the spray nozzle 61 and the washer medium 62, and the water tank 63 extends to the vicinity of the air inlet of the cooling coil 54. The water supply system 64 for supplying water to each spray nozzle 61 is connected to the water tank 63 at the base end side and is provided with a supply pump 65. The water supply system 64 is provided on the secondary side of the heat exchanger 66 forming the water temperature adjusting means. Is connected.

水槽63には用水の水温を計測する温度測定手段をなす水温計67を設けており、水温計67と、水槽63と、ワッシャメディア62によって水温計測手段を構成する。水温計測手段は、ワッシャメディア62によって処理対象空気51から捕捉分離した用水を測定水として水槽63に集め、その水温を水温計67で計測するものである。   The water tank 63 is provided with a water temperature meter 67 as temperature measuring means for measuring the water temperature of the irrigation water. The water temperature meter 67, the water tank 63, and the washer media 62 constitute water temperature measuring means. The water temperature measuring means collects the water captured and separated from the processing target air 51 by the washer media 62 in the water tank 63 as measurement water, and measures the water temperature with a water temperature meter 67.

本実施の形態では、水槽63における用水の水温を計測しているが、ワッシャメディア62の下端位置に測定用の水槽を別途に設け、この測定用の水槽にワッシャメディア62から流下する用水のみを測定水として集めてその水温を計測することも可能であり、測定精度の向上を図れる。   In the present embodiment, the water temperature of the water in the water tank 63 is measured. However, a water tank for measurement is separately provided at the lower end position of the washer medium 62, and only the water flowing down from the washer medium 62 is supplied to the water tank for measurement. It is also possible to collect the measurement water and measure the water temperature, so that the measurement accuracy can be improved.

予冷、予熱コイル52には熱媒体供給系68の送り管路68aおよび戻り管路68bを接続しており、戻り管路68bに電動式の流量調整バルブ69を設けている。流量調整バルブ69は開閉バルブとすることも可能である。   A feed pipe 68a and a return pipe 68b of a heat medium supply system 68 are connected to the precooling and preheating coil 52, and an electric flow rate adjusting valve 69 is provided in the return pipe 68b. The flow rate adjusting valve 69 may be an open / close valve.

熱媒体供給系68の送り管路68aおよび戻り管路68bには、冷水供給系70の送り管路70aおよび戻り管路70bがそれぞれ電動式もしくは電磁式の開閉バルブ71a、71bを介して接続するとともに、温水供給系72の送り管路72aおよび戻り管路72bがそれぞれ電動式もしくは電磁式の開閉バルブ73a、73bを介して接続している。   The feed pipe line 68a and the return pipe line 68b of the heat medium supply system 68 are connected to the feed pipe line 70a and the return pipe line 70b of the cold water supply system 70 through electric or electromagnetic open / close valves 71a and 71b, respectively. At the same time, the feed pipe 72a and the return pipe 72b of the hot water supply system 72 are connected to each other via electric or electromagnetic on-off valves 73a and 73b.

また、熱媒体供給系68の送り管路68aおよび戻り管路68bには、熱交換器66の一次側に接続する用水加熱媒体供給系75の送り管路75aおよび戻り管路75bが分岐接続しており、戻り管路75bに電動式の流量調整バルブ76を設けている。流量調整バルブ76は開閉バルブとすることも可能である。予冷、予熱コイル52は、予冷を必要としない空気調和機では予熱コイルだけの構成とすることも可能である。   Further, the feed pipe line 68a and the return pipe line 68b of the heat medium supply system 68 are branched and connected to the feed pipe line 75a and the return pipe line 75b of the water heating medium supply system 75 connected to the primary side of the heat exchanger 66. An electric flow rate adjusting valve 76 is provided in the return line 75b. The flow rate adjusting valve 76 may be an open / close valve. The pre-cooling and pre-heating coil 52 can be configured only by the pre-heating coil in an air conditioner that does not require pre-cooling.

冷却コイル54には冷水供給系77の送り管路77aおよび戻り管路77bが接続し、戻り管路77bに電動式の流量調整バルブ78を介装している。流量調整バルブ78には第1の乾式温度計58が接続し、第1の乾式温度計58の計測値に応じて流量調整バルブ78が開閉する。つまり、実質的な飽和空気を冷却コイル54で除湿した後は飽和状態での温度測定であるので、露点センサーでなく、乾式温度計58によって露点制御が可能となる。   A feed pipe 77a and a return pipe 77b of a cold water supply system 77 are connected to the cooling coil 54, and an electric flow rate adjusting valve 78 is interposed in the return pipe 77b. A first dry thermometer 58 is connected to the flow rate adjusting valve 78, and the flow rate adjusting valve 78 opens and closes according to the measured value of the first dry thermometer 58. That is, since the temperature is measured in a saturated state after dehumidifying substantially saturated air with the cooling coil 54, the dew point can be controlled not by the dew point sensor but by the dry thermometer 58.

再熱コイル55には温水供給系79の送り管路79aおよび戻り管路79bが接続し、戻り管路79bに電動式の流量調整バルブ80を介装している。流量調整バルブ80には第2の乾式温度計59が接続し、第2の乾式温度計59の計測値に応じて流量調整バルブ80が開閉する。再熱コイル55は電気ヒータとすることも可能であり、必ずしも設ける必要はない。   A feed pipe 79a and a return pipe 79b of the hot water supply system 79 are connected to the reheating coil 55, and an electric flow rate adjusting valve 80 is interposed in the return pipe 79b. A second dry thermometer 59 is connected to the flow rate adjusting valve 80, and the flow rate adjusting valve 80 opens and closes according to the measured value of the second dry thermometer 59. The reheating coil 55 can be an electric heater and is not necessarily provided.

制御手段をなす制御用コントローラ81には、湿式温度計57、水温計67、流量調整バルブ69、開閉バルブ71a、71b、開閉バルブ73a、73b、流量調整バルブ76が接続しており、制御用コントローラ81は水温計67の計測値が一定温度(目標値)を維持するように、流量調整バルブ69、76を開閉制御して処理対象空気51および用水の温度調整を行う。制御用コントローラ81には、測定水の一定温度(目標値)として所定の絶対湿度を有する空気の露点と同じ温度を設定する。   A wet-type thermometer 57, a water temperature gauge 67, a flow rate adjustment valve 69, on-off valves 71a and 71b, on-off valves 73a and 73b, and a flow rate adjustment valve 76 are connected to the control controller 81 serving as a control means. 81 adjusts the temperature of the processing target air 51 and the water by controlling the flow rate adjustment valves 69 and 76 so that the measured value of the water temperature gauge 67 maintains a constant temperature (target value). In the controller 81 for control, the same temperature as the dew point of air having a predetermined absolute humidity is set as a constant temperature (target value) of the measured water.

以下、上記した構成における作用を表1および図2〜図6に基づいて説明する。   Hereinafter, the operation of the above-described configuration will be described with reference to Table 1 and FIGS.

Figure 0004948070
(冷却シーズンのピーク期)
制御用コントローラ81は、ケーシング50の空気導入部に設けた湿式温度計57で計測する処理対象空気51の湿球温度が、ここでの例示として示すWB14℃以上である場合に冷却シーズンとしての運転を行い、湿球温度がここでの例示として示すWB19℃以上である場合に冷却シーズンのピーク期としての運転を行う。
Figure 0004948070
(Peak of cooling season)
The controller 81 for control is an operation as a cooling season when the wet bulb temperature of the processing target air 51 measured by the wet thermometer 57 provided in the air introduction part of the casing 50 is equal to or higher than WB14 ° C. shown here as an example. When the wet bulb temperature is WB 19 ° C. or higher shown as an example here, the operation as the peak period of the cooling season is performed.

このため、制御用コントローラ81は、開閉バルブ71a、71bを開栓するとともに、開閉バルブ73a、73bを閉栓し、冷水供給系70から冷水を予冷、予熱コイル52へ供給可能な状態において流量調整バルブ69を開栓して冷水を予冷、予熱コイル52へ供給する。   Therefore, the control controller 81 opens the on-off valves 71 a and 71 b and closes the on-off valves 73 a and 73 b so that the cold water can be precooled from the cold water supply system 70 and supplied to the preheating coil 52. 69 is opened, and the cold water is precooled and supplied to the preheating coil 52.

エアワッシャ53では、流量調整バルブ76を閉栓し、供給ポンプ65を運転して水槽63の用水を噴霧ノズル61に供給し、噴霧ノズル61から水噴霧室60に用水を噴霧する。噴霧した用水はワッシャメディア62により処理対象空気51から捕捉分離し、分離した用水はワッシャメディア62を伝って水槽63に流下させて再び水噴霧室60に噴霧し、用水が水噴霧室60と水槽63とを循環する。このため、用水は水噴霧室60の気中において処理対象空気51と接触することにより、その水温が処理対象空気51の湿球温度と実質的に同じ温度となって水槽63に流下する。   In the air washer 53, the flow rate adjustment valve 76 is closed, the supply pump 65 is operated to supply the water in the water tank 63 to the spray nozzle 61, and the water is sprayed from the spray nozzle 61 into the water spray chamber 60. The sprayed water is captured and separated from the processing target air 51 by the washer media 62, and the separated water is flowed down to the water tank 63 through the washer media 62 and sprayed again into the water spray chamber 60, and the water is sprayed into the water spray chamber 60 and the water tank. 63 and cycle. For this reason, the water is brought into contact with the processing target air 51 in the air of the water spray chamber 60, so that the water temperature becomes substantially the same as the wet bulb temperature of the processing target air 51 and flows down to the water tank 63.

制御用コントローラ81は、水温計67で計測する水温が19℃、つまり水噴霧室60における処理対象空気51の湿球温度がWB19℃となるように、流量調整バルブ69を開栓かつ開度を制御して予冷、予熱コイル52の運転を制御する。具体的には、水温計67で計測する水温が19℃以上、つまり水噴霧室60における処理対象空気51の湿球温度がWB19℃以上である場合に流量調整バルブ69を開栓し、水温計67で計測する水温が19℃以下、つまり水噴霧室60における処理対象空気51の湿球温度がWB19℃以下である場合に流量調整バルブ69を閉栓する。   The control controller 81 opens and opens the flow rate adjustment valve 69 so that the water temperature measured by the water thermometer 67 is 19 ° C., that is, the wet bulb temperature of the processing target air 51 in the water spray chamber 60 is WB 19 ° C. Control the operation of the pre-cooling and pre-heating coil 52. Specifically, when the water temperature measured by the water thermometer 67 is 19 ° C. or higher, that is, when the wet bulb temperature of the processing target air 51 in the water spray chamber 60 is WB 19 ° C. or higher, the flow rate adjustment valve 69 is opened, and the water thermometer When the water temperature measured at 67 is 19 ° C. or lower, that is, when the wet bulb temperature of the processing target air 51 in the water spray chamber 60 is WB 19 ° C. or lower, the flow rate adjusting valve 69 is closed.

図2の空気線図は、空気調和機を冷却シーズンのピーク期に運転する場合におけるケーシング50の各位置(1)〜(5)での処理対象空気51の状態を示している。ファン装置56の運転により、ケーシング50の空気導入部から流入する処理対象空気51は、予冷、予熱コイル52を通過し、その冷却によって減温および除湿される。つまり、図2に示すように、処理対象空気51は点(1)から点(2)に状態が遷移し、この間に除湿により絶対湿度が低下する。   The air diagram of FIG. 2 shows the state of the processing target air 51 at each position (1) to (5) of the casing 50 when the air conditioner is operated at the peak of the cooling season. By the operation of the fan device 56, the processing target air 51 flowing from the air introduction part of the casing 50 passes through the precooling and preheating coil 52 and is cooled and dehumidified by the cooling. That is, as shown in FIG. 2, the state of the processing target air 51 changes from the point (1) to the point (2), and the absolute humidity decreases during this period due to dehumidification.

湿球温度は、理想状態のコイルのバイパスファクターが0%の場合にWB19℃の飽和状態となり、バイパスファクターがある場合にWB19℃の湿球温度線上の飽和点に近い点(2)の空気状態となる。処理対象空気51は、エアワッシャ53の入口空気状態が飽和空気であればエアワッシャ53の噴霧によって状態が変わらず、エアワッシャ53の入口空気状態が飽和していない状態の空気であれば等湿球線上を移動して点(3)の実質的に飽和空気の状態となる。   When the bypass factor of the coil in the ideal state is 0%, the wet bulb temperature is saturated at WB 19 ° C., and when there is a bypass factor, the air condition at the point (2) near the saturation point on the wet bulb temperature line at WB 19 ° C. It becomes. The air to be treated 51 does not change its state due to the spraying of the air washer 53 if the inlet air state of the air washer 53 is saturated air, and is equihumid if the air state of the inlet air state of the air washer 53 is not saturated. Moving on the spherical line, the point (3) is substantially saturated.

よって、本実施の形態に示す空気調和機では、予冷、予熱コイル52で温度を調整した処理対象空気51に水噴霧室60の上流側位置で噴霧ノズル61から用水を噴霧し、水噴霧室60の下流側位置でワッシャメディア62により処理対象空気51から用水を捕捉分離し、捕捉分離した用水を測定水として水温計67で水温を計測し、測定水の水温が一定温度、ここでは湿球温度WB19℃を維持するように予冷、予熱コイル52で処理対象空気51の温度を調整する。   Therefore, in the air conditioner shown in the present embodiment, the water to be treated is sprayed from the spray nozzle 61 to the processing target air 51 whose temperature has been adjusted by the precooling and preheating coil 52 from the spray nozzle 61 at the upstream position of the water spray chamber 60. The water is captured and separated from the processing target air 51 by the washer media 62 at the downstream side of the water, and the water temperature is measured by a water temperature meter 67 using the captured and separated water as measurement water. The precooling and preheating coil 52 adjusts the temperature of the processing target air 51 so as to maintain WB 19 ° C.

エアワッシャ53を通過した処理対象空気51は冷却コイル54に流入する。冷却コイル54は、第1の乾式温度計58の計測値がDB12.5℃となるように、計測値を制御指標として流量調整バルブ78を開閉制御し、冷水供給系77による冷水の供給を制御して運転し、その冷却によって処理対象空気51を減温および除湿する。   The processing target air 51 that has passed through the air washer 53 flows into the cooling coil 54. The cooling coil 54 controls the flow adjustment valve 78 to open and close using the measured value as a control index so that the measured value of the first dry thermometer 58 becomes DB12.5 ° C., and controls the supply of cold water by the cold water supply system 77. The air to be treated 51 is reduced in temperature and dehumidified by the cooling.

つまり、図2に示すように、処理対象空気51は飽和空気線に沿って点(3)から点(4)に状態が遷移し、この間に乾球温度がDB12.5℃にまで低下するとともに、除湿により絶対湿度が低下して露点温度12.5℃の飽和空気となる。   That is, as shown in FIG. 2, the state of the processing target air 51 changes from the point (3) to the point (4) along the saturated air line, and during this time, the dry bulb temperature decreases to DB12.5 ° C. As a result of dehumidification, the absolute humidity is reduced to saturated air with a dew point temperature of 12.5 ° C.

再熱コイル55は、第2の乾式温度計59の計測値が、例えばDB23℃となるように、計測値を制御指標として流量調整バルブ80を開閉制御し、温水供給系79による温水の供給を制御して運転し、その加熱によって処理対象空気51を昇温させる。つまり、図2に示すように、処理対象空気51は絶対湿度を一定に保って点(4)から点(5)に状態が遷移し、乾球温度がDB23℃にまで上昇する。この第2の乾式温度計59の計測値の制御目標値は、DB23℃に限らず、室の負荷との関係で点(4)と同じ露点温度上のある設定値とする。
(冷却シーズンの中間期)
制御用コントローラ81は、ケーシング50の空気導入部に設けた湿式温度計57で計測する処理対象空気51の湿球温度がWB14℃以上である場合に冷却シーズンとしての運転を行い、湿球温度がWB19℃以下である場合に冷却シーズンの中間期としての運転を行う。
The reheating coil 55 controls the opening and closing of the flow rate adjustment valve 80 using the measured value as a control index so that the measured value of the second dry thermometer 59 becomes DB23 ° C., for example, and the hot water supply system 79 supplies hot water. It operates by controlling, and the processing target air 51 is heated by the heating. That is, as shown in FIG. 2, the state of the processing target air 51 is changed from the point (4) to the point (5) while keeping the absolute humidity constant, and the dry bulb temperature rises to DB23 ° C. The control target value of the measured value of the second dry thermometer 59 is not limited to DB23 ° C., but is a set value on the same dew point temperature as the point (4) in relation to the room load.
(The middle of the cooling season)
The controller 81 for control performs the operation as a cooling season when the wet bulb temperature of the processing target air 51 measured by the wet thermometer 57 provided in the air introduction part of the casing 50 is WB 14 ° C. or more, and the wet bulb temperature is When WB is 19 ° C. or lower, operation is performed as an intermediate period of the cooling season.

このため、制御用コントローラ81は、開閉バルブ71a、71bを開栓するとともに、開閉バルブ73a、73bを閉栓し、冷水供給系70から冷水を予冷、予熱コイル52へ供給可能な状態において流量調整バルブ69を閉栓して予冷、予熱コイル52への冷水の供給を停止する。   Therefore, the control controller 81 opens the on-off valves 71 a and 71 b and closes the on-off valves 73 a and 73 b so that the cold water can be precooled from the cold water supply system 70 and supplied to the preheating coil 52. 69 is closed to stop pre-cooling and supply of cold water to the pre-heating coil 52.

図3の空気線図は、空気調和機を冷却シーズンの中間期に運転する場合におけるケーシング50の各位置(1)〜(5)での処理対象空気51の状態を示している。ファン装置56の運転により、ケーシング50の空気導入部から流入する処理対象空気51は、予冷、予熱コイル52が運転を停止していることで、減温および除湿されることなく予冷、予熱コイル52を通過してエアワッシャ53に流入する。つまり、図3に示すように、処理対象空気51は点(2)が点(1)と同じ状態を維持する。   The air diagram of FIG. 3 shows the state of the processing target air 51 at each position (1) to (5) of the casing 50 when the air conditioner is operated in the middle of the cooling season. Due to the operation of the fan device 56, the processing target air 51 that flows in from the air introduction part of the casing 50 is precooled and preheated coil 52 without being decooled and dehumidified because the precooling and preheated coil 52 has stopped operating. And flows into the air washer 53. That is, as shown in FIG. 3, the processing target air 51 maintains the same state at the point (2) as the point (1).

エアワッシャ53では、流量調整バルブ76を閉栓し、供給ポンプ65を運転して水槽63の用水を噴霧ノズル61に供給し、噴霧ノズル61から噴霧する用水によって水噴霧室60の処理対象空気51を等エンタルピー加湿する。つまり、図3に示すように、処理対象空気51は点(2)から点(3)に遷移し、加湿飽和効率100%の場合は飽和空気となり、加湿飽和効率が100%に満たない場合は、飽和点に近い点の空気状態となる。   In the air washer 53, the flow rate adjustment valve 76 is closed, the supply pump 65 is operated to supply the water in the water tank 63 to the spray nozzle 61, and the processing target air 51 in the water spray chamber 60 is supplied by the water sprayed from the spray nozzle 61. Humidify with enthalpy. That is, as shown in FIG. 3, the processing target air 51 transitions from the point (2) to the point (3). When the humidification saturation efficiency is 100%, the processing target air 51 becomes saturated air, and the humidification saturation efficiency is less than 100%. It becomes an air state at a point close to the saturation point.

エアワッシャ53を通過した処理対象空気51は冷却コイル54に流入する。冷却コイル54は、第1の乾式温度計58の計測値がDB12.5℃となるように、計測値を制御指標として流量調整バルブ78を開閉制御し、冷水供給系77による冷水の供給を制御して運転し、その冷却によって処理対象空気51を減温および除湿する。つまり、図3に示すように、処理対象空気51は理想状態では飽和空気線に沿って点(3)から点(4)に状態が遷移し、点(3)が飽和点に近い場合は飽和空気線に漸近して点(4)に状態が遷移し、乾球温度がDB12.5℃にまで低下するとともに、除湿により絶対湿度が低下して露点温度12.5℃の飽和空気となる。   The processing target air 51 that has passed through the air washer 53 flows into the cooling coil 54. The cooling coil 54 controls the flow adjustment valve 78 to open and close using the measured value as a control index so that the measured value of the first dry thermometer 58 becomes DB12.5 ° C., and controls the supply of cold water by the cold water supply system 77. The air to be treated 51 is reduced in temperature and dehumidified by the cooling. That is, as shown in FIG. 3, in the ideal state, the processing target air 51 transitions from the point (3) to the point (4) along the saturated air line, and is saturated when the point (3) is close to the saturation point. Asymptotically approaching the air line, the state transitions to the point (4), the dry bulb temperature is lowered to DB12.5 ° C., and the absolute humidity is lowered by dehumidification to become saturated air having a dew point temperature of 12.5 ° C.

再熱コイル55は、第2の乾式温度計59の計測値がDB23℃となるように、計測値を制御指標として流量調整バルブ80を開閉制御し、温水供給系79による温水の供給を制御して運転し、その加熱によって処理対象空気51を昇温させる。つまり、図3に示すように、処理対象空気51は絶対湿度を一定に保って点(4)から点(5)に状態が遷移し、乾球温度がDB23℃にまで上昇する。
(加熱シーズンの中間期)
制御用コントローラ81は、ケーシング50の空気導入部に設けた湿式温度計57で計測する処理対象空気51の湿球温度がWB14℃以下である場合に加熱シーズンとしての運転を行う。
The reheating coil 55 controls the opening and closing of the flow rate adjustment valve 80 using the measured value as a control index so that the measured value of the second dry thermometer 59 becomes DB23 ° C., and controls the supply of hot water by the hot water supply system 79. The processing target air 51 is heated by the heating. That is, as shown in FIG. 3, the processing target air 51 changes its state from the point (4) to the point (5) while keeping the absolute humidity constant, and the dry bulb temperature rises to DB23 ° C.
(Interim heating season)
The controller 81 for control performs the operation as a heating season when the wet bulb temperature of the processing target air 51 measured by the wet thermometer 57 provided in the air introduction part of the casing 50 is WB14 ° C. or less.

このため、制御用コントローラ81は、開閉バルブ71a、71bを閉栓するとともに、開閉バルブ73a、73bを開栓し、温水供給系72から温水(30℃程度)を予冷、予熱コイル52へ供給可能な状態において流量調整バルブ69を開栓かつ開度を制御して温水を予冷、予熱コイル52へ供給する。   For this reason, the controller 81 for control can close the on-off valves 71a and 71b and open the on-off valves 73a and 73b, and can supply hot water (about 30 ° C.) from the hot water supply system 72 to the preheating coil 52. In the state, the flow rate adjustment valve 69 is opened and the opening degree is controlled to precool the hot water and supply it to the preheating coil 52.

図4の空気線図は、空気調和機を加熱シーズンの中間期に運転する場合におけるケーシング50の各位置(1)〜(5)での処理対象空気51の状態を示している。ファン装置56の運転により、ケーシング50の空気導入部から流入する処理対象空気51は、予冷、予熱コイル52で加熱されて後にエアワッシャ53に流入する。つまり、図4に示すように、処理対象空気51は点(1)から点(2)に状態が遷移し、ここでの例示として示す乾球温度DB25℃で湿球温度WB13.5℃に制御される。この乾球温度DB25℃は一定でなく、空気導入部から流入する処理対象空気51の絶対湿度が高い場合には低い乾球温度において湿球温度WB13.5℃となり、絶対湿度が低い場合には高い乾球温度において湿球温度WB13.5℃となる。   The air diagram of FIG. 4 shows the state of the processing target air 51 at each position (1) to (5) of the casing 50 when the air conditioner is operated in the middle of the heating season. Due to the operation of the fan device 56, the processing target air 51 flowing from the air introduction portion of the casing 50 is heated by the precooling and preheating coil 52 and then flows into the air washer 53. That is, as shown in FIG. 4, the state of the processing target air 51 transitions from the point (1) to the point (2), and is controlled to the wet bulb temperature WB 13.5 ° C. with the dry bulb temperature DB 25 ° C. shown here as an example. Is done. The dry bulb temperature DB25 ° C. is not constant. When the absolute humidity of the processing target air 51 flowing from the air introduction unit is high, the wet bulb temperature WB is 13.5 ° C. at a low dry bulb temperature, and when the absolute humidity is low. The wet bulb temperature WB is 13.5 ° C. at a high dry bulb temperature.

エアワッシャ53では、流量調整バルブ76を閉栓し、供給ポンプ65を運転して水槽63の用水を噴霧ノズル61に供給し、噴霧ノズル61から噴霧する用水によって水噴霧室60の処理対象空気51を等エンタルピー加湿する。つまり、図4に示すように、処理対象空気51は等湿球温度線(WB13.5℃)に沿って点(2)から点(3)に遷移し、加湿飽和効率100%の場合は飽和空気となり、加湿飽和効率が100%に満たない場合は、飽和点に近い点の空気状態となる。   In the air washer 53, the flow rate adjustment valve 76 is closed, the supply pump 65 is operated to supply the water in the water tank 63 to the spray nozzle 61, and the processing target air 51 in the water spray chamber 60 is supplied by the water sprayed from the spray nozzle 61. Humidify with enthalpy. That is, as shown in FIG. 4, the processing target air 51 transitions from the point (2) to the point (3) along the iso-humid bulb temperature line (WB 13.5 ° C.), and is saturated when the humidification saturation efficiency is 100%. When it becomes air and humidification saturation efficiency is less than 100%, it will be in the air state of the point close | similar to a saturation point.

ワッシャメディア62により処理対象空気51から捕捉分離した用水はワッシャメディア62を伝って水槽63に流下させて再び水噴霧室60に噴霧し、水噴霧室60と水槽63とを循環させる。このため、用水は水噴霧室60の気中において処理対象空気51と接触することにより、その水温が処理対象空気51の湿球温度と実質的に同じ温度となって水槽63に流下する。   The water captured and separated from the processing target air 51 by the washer medium 62 is caused to flow down to the water tank 63 through the washer medium 62 and sprayed again in the water spray chamber 60, and the water spray chamber 60 and the water tank 63 are circulated. For this reason, the water is brought into contact with the processing target air 51 in the air of the water spray chamber 60, so that the water temperature becomes substantially the same as the wet bulb temperature of the processing target air 51 and flows down to the water tank 63.

制御用コントローラ81は、水温計67で計測する水温が13.5℃、つまり水噴霧室60の最下流位置であるワッシャメディア62を通過する処理対象空気51の湿球温度がWB13.5℃となるように、流量調整バルブ69を開閉制御して予冷、予熱コイル52の運転を制御する。具体的には、水温計67で計測する水温が13.5℃以上、つまり水噴霧室60における処理対象空気51の湿球温度がWB13.5℃以上である場合に流量調整バルブ69を閉栓し、水温計67で計測する水温が13.5℃以下、つまり水噴霧室60における処理対象空気51の湿球温度がWB13.5℃以下である場合に流量調整バルブ69を開栓かつ開度を制御する。   The control controller 81 has a water temperature measured by the water temperature meter 67 of 13.5 ° C., that is, the wet bulb temperature of the processing target air 51 passing through the washer medium 62 at the most downstream position of the water spray chamber 60 is WB 13.5 ° C. Thus, the flow adjustment valve 69 is controlled to be opened and closed to control the operation of the precooling and preheating coil 52. Specifically, when the water temperature measured by the water thermometer 67 is 13.5 ° C. or higher, that is, when the wet bulb temperature of the processing target air 51 in the water spray chamber 60 is WB 13.5 ° C. or higher, the flow rate adjustment valve 69 is closed. When the water temperature measured by the water thermometer 67 is 13.5 ° C. or lower, that is, when the wet bulb temperature of the processing target air 51 in the water spray chamber 60 is WB 13.5 ° C. or lower, the flow rate adjustment valve 69 is opened and the opening degree is adjusted. Control.

ここで、改めて本発明の原理的な作用を説明する。気液接触を充分に行なうことが可能なエアワッシャにおいて、ケーシング50の水噴霧室60に噴霧した用水の蒸発によって処理対象空気51を加湿すると、用水に蒸発熱(気化熱)を奪われる処理対象空気51は温度が低下して飽和空気に漸近し、処理対象空気51と接触した用水は実質的に処理対象空気51の露点温度(湿球温度)に等しくなる。   Here, the fundamental operation of the present invention will be described again. In an air washer capable of sufficient gas-liquid contact, when the processing target air 51 is humidified by evaporation of the water sprayed on the water spray chamber 60 of the casing 50, the processing target is deprived of the heat of evaporation (heat of vaporization). The temperature of the air 51 decreases asymptotically to saturated air, and the water that comes into contact with the processing target air 51 becomes substantially equal to the dew point temperature (wet bulb temperature) of the processing target air 51.

したがって、水噴霧室60で処理対象空気51に用水を噴霧して加湿し、処理対象空気51から用水を捕捉分離し、捕捉分離した用水を測定水としてその水温を水温計67で計測することで、飽和した処理対象空気51の露点を正確に計測することができる。   Therefore, the water to be treated is sprayed and humidified on the processing target air 51 in the water spray chamber 60, and the water is captured and separated from the processing target air 51, and the water temperature is measured by the thermometer 67 using the captured and separated water as measurement water. The dew point of the processing target air 51 that is saturated can be accurately measured.

このため、本実施の形態に示す空気調和機では、予冷、予熱コイル52で加熱した処理対象空気51に水噴霧室60の上流側位置で噴霧ノズル61から用水を噴霧し、水噴霧室60の下流側位置でワッシャメディア62により処理対象空気51から用水を捕捉分離し、捕捉分離した用水を測定水として水温を水温計67で計測し、測定水の水温が一定温度、ここでは湿球温度WB13.5℃を維持するように予冷、予熱コイル52によって処理対象空気51の温度を調整する。   For this reason, in the air conditioner shown in the present embodiment, the pre-cooling and pre-heating coil 52 sprays the water to be treated from the spray nozzle 61 at the upstream position of the water spray chamber 60 on the processing target air 51, Water is captured and separated from the processing target air 51 by the washer media 62 at a downstream position, and the water temperature is measured with a thermometer 67 using the captured and separated water as measurement water, and the water temperature of the measured water is a constant temperature, here the wet bulb temperature WB13. The temperature of the processing target air 51 is adjusted by the precooling and preheating coil 52 so as to maintain 5 ° C.

ところで、ケーシング50の水噴霧室60を流れる空気は必ずしも一様な状態ではなく、その温度分布も均一ではない。このため、ケーシング50を流れる空気の温度や露点をケーシング50の一箇所の定点において計測する場合には、その計測値が計測対象の空気の全体的、あるいは平均的な状態を適正に示す指標である保証はない。   By the way, the air flowing through the water spray chamber 60 of the casing 50 is not necessarily in a uniform state, and its temperature distribution is not uniform. For this reason, when the temperature or dew point of the air flowing through the casing 50 is measured at one fixed point in the casing 50, the measured value is an index that appropriately indicates the overall or average state of the air to be measured. There is no guarantee.

しかし、ワッシャメディア62はケーシング50の水噴霧室60における空気流路の流路断面積と実質的に等しい大きさの捕捉面を有するので、ワッシャメディア62で捕捉分離する用水は水噴霧室60の空気流路断面の各所における処理対象空気51の温度を反映するものとなり、捕捉分離した用水を集めて測定水としてその水温を水温計67で計測することで、処理対象空気51の全体的、あるいは平均的な状態を適正に示す指標となり、処理対象空気51の露点を正確に計測することができる。   However, since the washer medium 62 has a trapping surface having a size substantially equal to the cross-sectional area of the air flow path in the water spray chamber 60 of the casing 50, the water to be trapped and separated by the washer media 62 is stored in the water spray chamber 60. It reflects the temperature of the processing target air 51 in each part of the cross section of the air flow path, collects the collected and separated water, and measures the water temperature as the measuring water with the water temperature meter 67, so that the processing target air 51 as a whole or It becomes an index that appropriately indicates the average state, and the dew point of the processing target air 51 can be accurately measured.

本実施の形態では、水槽63における用水の水温を計測しているが、図7に示すように、ワッシャメディア62の下端位置に測定用の水槽82を別途に設け、この測定用の水槽82にワッシャメディア62から流下する用水のみを測定水として集めてその水温を計測することで測定精度が向上する。また、図8に示すように、水温計67は、水槽82における集水部(流出部)で計測することが望ましい。   In the present embodiment, the water temperature of the water in the water tank 63 is measured. As shown in FIG. 7, a water tank 82 for measurement is separately provided at the lower end position of the washer medium 62, and this water tank 82 for measurement is provided. Measurement accuracy is improved by collecting only the water flowing down from the washer media 62 as measurement water and measuring the water temperature. Further, as shown in FIG. 8, it is desirable that the water temperature meter 67 is measured at a water collection part (outflow part) in the water tank 82.

エアワッシャ53を通過した処理対象空気51は冷却コイル54に流入する。冷却コイル54は、第1の乾式温度計58の計測値がDB12.5℃となるように、計測値を制御指標として流量調整バルブ78を開閉制御し、冷水供給系77による冷水の供給を制御して運転し、その冷却によって処理対象空気51を減温および除湿する。つまり、図4に示すように、処理対象空気51は飽和空気線に沿って点(3)から点(4)に状態が遷移し、この間に乾球温度がDB12.5℃にまで低下するとともに、除湿により絶対湿度が低下して露点温度12.5℃の飽和空気となる。   The processing target air 51 that has passed through the air washer 53 flows into the cooling coil 54. The cooling coil 54 controls the flow adjustment valve 78 to open and close using the measured value as a control index so that the measured value of the first dry thermometer 58 becomes DB12.5 ° C., and controls the supply of cold water by the cold water supply system 77. The air to be treated 51 is reduced in temperature and dehumidified by the cooling. That is, as shown in FIG. 4, the state of the processing target air 51 changes from the point (3) to the point (4) along the saturated air line, and during this time, the dry bulb temperature decreases to DB12.5 ° C. As a result of dehumidification, the absolute humidity is reduced to saturated air with a dew point temperature of 12.5 ° C.

再熱コイル55は、第2の乾式温度計59の計測値がDB23℃となるように、計測値を制御指標として流量調整バルブ80を開閉制御し、温水供給系79による温水の供給を制御して運転し、その加熱によって処理対象空気51を昇温させる。つまり、図4に示すように、処理対象空気51は絶対湿度を一定に保って点(4)から点(5)に状態が遷移し、乾球温度がDB23℃にまで上昇する。
(加熱シーズンのピーク期)
制御用コントローラ81は、ケーシング50の空気導入部に設けた湿式温度計57で計測する処理対象空気51の湿球温度がWB14℃以下であり、中間期の運転では必要な絶対湿度を得ることができない場合には、加熱シーズンのピーク期の運転を行う。
The reheating coil 55 controls the opening and closing of the flow rate adjustment valve 80 using the measured value as a control index so that the measured value of the second dry thermometer 59 becomes DB23 ° C., and controls the supply of hot water by the hot water supply system 79. The processing target air 51 is heated by the heating. That is, as shown in FIG. 4, the state of the processing target air 51 is changed from the point (4) to the point (5) while keeping the absolute humidity constant, and the dry bulb temperature rises to DB23 ° C.
(Peak season of heating season)
The controller 81 for control has the wet-bulb temperature of the process target air 51 measured with the wet thermometer 57 provided in the air introduction part of the casing 50 below WB14 degreeC, and can obtain absolute humidity required in the operation | movement of an intermediate period. If this is not possible, operate during the peak season of the heating season.

例えば図6に示すように、取入外気が0℃DBで50%の相対湿度の場合、所定の湿球温度WB13.5℃を得るためには乾球温度でDB33℃に加熱する必要があり、温水供給系72の温水の温度(30℃程度)では、予冷、予熱コイル52において処理対象空気51が所定の湿球温度WB13.5℃に達せず、結果として水温計67で計測する水槽63の水温を13.5℃に維持することができず、等エンタルピー加湿では必要な絶対湿度を得ることができない場合には、加熱シーズンのピーク期としての運転として加熱加湿を行う。   For example, as shown in FIG. 6, when the intake outside air is 0 ° C. DB and 50% relative humidity, in order to obtain a predetermined wet bulb temperature WB 13.5 ° C., it is necessary to heat the dry bulb temperature to DB 33 ° C. At the temperature of the hot water in the hot water supply system 72 (about 30 ° C.), the pre-cooling and pre-heating coil 52 does not reach the predetermined wet bulb temperature WB 13.5 ° C. in the preheating coil 52, and as a result, the water tank 63 measured by the water temperature meter 67. When the water temperature cannot be maintained at 13.5 ° C. and the required absolute humidity cannot be obtained by equal enthalpy humidification, heating and humidification is performed as an operation as a peak period of the heating season.

このため、制御用コントローラ81は、開閉バルブ71a、71bを閉栓するとともに、開閉バルブ73a、73bを開栓し、温水供給系72から温水を予冷、予熱コイル52へ供給可能な状態において流量調整バルブ69を開栓して温水を予冷、予熱コイル52へ供給するとともに、流量調整バルブ76を開栓して温水を熱交換器66に供給し、用水供給系64を流れる用水を加熱し、噴霧ノズル61から噴霧する用水の温度を高める。   Therefore, the control controller 81 closes the on-off valves 71 a and 71 b and opens the on-off valves 73 a and 73 b so that warm water can be precooled from the hot water supply system 72 and supplied to the preheating coil 52. 69 is opened to precool the hot water and supply it to the preheating coil 52, and the flow rate adjusting valve 76 is opened to supply the hot water to the heat exchanger 66 to heat the water flowing through the water supply system 64, and the spray nozzle The temperature of the water sprayed from 61 is raised.

図5の空気線図は、空気調和機を加熱シーズンのピーク期に運転する場合におけるケーシング50の各位置(1)〜(5)での処理対象空気51の状態を示している。ファン装置56の運転により、ケーシング50の空気導入部から流入する処理対象空気51は、予冷、予熱コイル52で加熱されて後にエアワッシャ53に流入する。   The air diagram of FIG. 5 shows the state of the processing target air 51 at each position (1) to (5) of the casing 50 when the air conditioner is operated at the peak of the heating season. Due to the operation of the fan device 56, the processing target air 51 flowing from the air introduction portion of the casing 50 is heated by the precooling and preheating coil 52 and then flows into the air washer 53.

つまり、図5に示すように、処理対象空気51は点(1)から点(2)に状態が遷移し、ここでの例示として示す乾球温度DB25℃に達する。この乾球温度DB25℃では所定の湿球温度WB13.5℃とならない。   That is, as shown in FIG. 5, the state of the processing target air 51 changes from the point (1) to the point (2), and reaches the dry bulb temperature DB25 ° C. shown as an example here. At this dry bulb temperature DB of 25 ° C., the predetermined wet bulb temperature WB is not 13.5 ° C.

このため、エアワッシャ53では、流量調整バルブ76を開栓し、供給ポンプ65を運転して水槽63の用水を熱交換器66で加熱して噴霧ノズル61に供給し、噴霧ノズル61から噴霧する加熱した用水によって水噴霧室60の処理対象空気51を加熱加湿する。つまり、図5に示すように、処理対象空気51は点(2)から点(3)に遷移し、湿球温度WB13.5℃の飽和空気となる。   For this reason, in the air washer 53, the flow rate adjustment valve 76 is opened, the supply pump 65 is operated, the water in the water tank 63 is heated by the heat exchanger 66, supplied to the spray nozzle 61, and sprayed from the spray nozzle 61. The processing target air 51 in the water spray chamber 60 is heated and humidified with the heated water. That is, as shown in FIG. 5, the processing target air 51 transitions from the point (2) to the point (3) and becomes saturated air having a wet bulb temperature WB of 13.5 ° C.

ワッシャメディア62により処理対象空気51から捕捉分離した用水はワッシャメディア62を伝って水槽63に流下させて再び水噴霧室60に噴霧し、水噴霧室60と水槽63とを循環させる。このため、用水は水噴霧室60の気中において処理対象空気51と接触することにより、その水温が処理対象空気51の湿球温度と実質的に同じ温度となって水槽63に流下する。   The water captured and separated from the processing target air 51 by the washer medium 62 is caused to flow down to the water tank 63 through the washer medium 62 and sprayed again in the water spray chamber 60, and the water spray chamber 60 and the water tank 63 are circulated. For this reason, the water is brought into contact with the processing target air 51 in the air of the water spray chamber 60, so that the water temperature becomes substantially the same as the wet bulb temperature of the processing target air 51 and flows down to the water tank 63.

制御用コントローラ81は、水温計67で計測する水温が13.5℃、つまり水噴霧室60の最下流位置であるワッシャメディア62を通過する処理対象空気51の湿球温度がWB13.5℃となるように、流量調整バルブ76を開閉制御して熱交換器66の運転を制御し、噴霧ノズル61から噴霧する用水の温度を調整する。   The control controller 81 has a water temperature measured by the water temperature meter 67 of 13.5 ° C., that is, the wet bulb temperature of the processing target air 51 passing through the washer medium 62 at the most downstream position of the water spray chamber 60 is WB 13.5 ° C. As described above, the flow adjustment valve 76 is controlled to be opened and closed to control the operation of the heat exchanger 66, and the temperature of the water sprayed from the spray nozzle 61 is adjusted.

具体的には、水温計67で計測する水温が13.5℃以上、つまり水噴霧室60における処理対象空気51の湿球温度がWB13.5℃以上である場合に流量調整バルブ76を閉栓し、水温計67で計測する水温が13.5℃以下、つまり水噴霧室60における処理対象空気51の湿球温度がWB13.5℃以下である場合に流量調整バルブ76を開栓かつ開度を制御する。   Specifically, when the water temperature measured by the water thermometer 67 is 13.5 ° C. or higher, that is, when the wet bulb temperature of the processing target air 51 in the water spray chamber 60 is WB 13.5 ° C. or higher, the flow rate adjustment valve 76 is closed. When the water temperature measured by the water thermometer 67 is 13.5 ° C. or lower, that is, when the wet bulb temperature of the air 51 to be treated in the water spray chamber 60 is WB 13.5 ° C. or lower, the flow rate adjustment valve 76 is opened and the opening degree is adjusted. Control.

加熱した用水を水噴霧室60に噴霧して処理対象空気51を加熱加湿すると、処理対象空気51は用水の顕熱によって加熱される一方で、用水に蒸発熱(気化熱)を奪われ、飽和空気(露点)となるまで温度が低下し、処理対象空気51と接触した未蒸発の用水は実質的に処理対象空気51の露点温度(湿球温度)に等しくなる。   When the heated water is sprayed on the water spray chamber 60 and the processing target air 51 is heated and humidified, the processing target air 51 is heated by the sensible heat of the water, while the water is deprived of evaporation heat (heat of vaporization) and saturated. The temperature decreases until air (dew point) is reached, and the unevaporated water that has come into contact with the processing target air 51 becomes substantially equal to the dew point temperature (wet bulb temperature) of the processing target air 51.

したがって、水噴霧室60で処理対象空気51に加熱した用水を噴霧して加熱加湿し、処理対象空気51から用水を捕捉分離し、捕捉分離した用水を測定水としてその水温を水温計67で計測することで、飽和した処理対象空気51の露点を正確に計測することができる。   Therefore, the water to be treated is sprayed on the treatment target air 51 in the water spray chamber 60 to be heated and humidified, and the water is captured and separated from the treatment target air 51, and the water temperature is measured by the thermometer 67 using the captured and separated water as measurement water. By doing so, the dew point of the processing target air 51 that has been saturated can be accurately measured.

このため、本実施の形態に示す空気調和機では、予冷、予熱コイル52で加熱した処理対象空気51に熱交換器66で加熱した用水を水噴霧室60の上流側位置で噴霧ノズル61から噴霧し、水噴霧室60の下流側位置でワッシャメディア62により処理対象空気51から用水を捕捉分離し、捕捉分離した用水を測定水として水温を水温計67で計測し、測定水の水温が一定温度、ここでは湿球温度WB13.5℃を維持するように熱交換器66によって噴霧する用水の温度を調整する。   For this reason, in the air conditioner shown in the present embodiment, the water to be treated heated by the heat exchanger 66 is sprayed from the spray nozzle 61 at the upstream position of the water spray chamber 60 to the air to be treated 51 heated by the precooling and preheating coil 52. Then, the water is captured and separated from the processing target air 51 by the washer medium 62 at the downstream position of the water spray chamber 60, the water temperature is measured by the thermometer 67 using the captured and separated water as measurement water, and the water temperature of the measurement water is a constant temperature. Here, the temperature of the water sprayed by the heat exchanger 66 is adjusted so as to maintain the wet bulb temperature WB of 13.5 ° C.

エアワッシャ53を通過した処理対象空気51は冷却コイル54に流入する。冷却コイル54は、第1の乾式温度計58の計測値がDB12.5℃となるように、計測値を制御指標として流量調整バルブ78を開閉制御し、冷水供給系77による冷水の供給を制御して運転し、その冷却によって処理対象空気51を減温および除湿する。つまり、図5に示すように、処理対象空気51は飽和空気線に沿って点(3)から点(4)に状態が遷移し、この間に乾球温度がDB12.5℃にまで低下するとともに、除湿により絶対湿度が低下して露点温度12.5℃の飽和空気となる。   The processing target air 51 that has passed through the air washer 53 flows into the cooling coil 54. The cooling coil 54 controls the flow adjustment valve 78 to open and close using the measured value as a control index so that the measured value of the first dry thermometer 58 becomes DB12.5 ° C., and controls the supply of cold water by the cold water supply system 77. The air to be treated 51 is reduced in temperature and dehumidified by the cooling. That is, as shown in FIG. 5, the state of the processing target air 51 changes from the point (3) to the point (4) along the saturated air line, and during this time, the dry bulb temperature decreases to DB12.5 ° C. As a result of dehumidification, the absolute humidity is reduced to saturated air with a dew point temperature of 12.5 ° C.

再熱コイル55は、第2の乾式温度計59の計測値がDB23℃となるように、計測値を制御指標として流量調整バルブ80を開閉制御し、温水供給系79による温水の供給を制御して運転し、その加熱によって処理対象空気51を昇温させる。つまり、図5に示すように、処理対象空気51は絶対湿度を一定に保って点(4)から点(5)に状態が遷移し、乾球温度がDB23℃にまで上昇する。   The reheating coil 55 controls the opening and closing of the flow rate adjustment valve 80 using the measured value as a control index so that the measured value of the second dry thermometer 59 becomes DB23 ° C., and controls the supply of hot water by the hot water supply system 79. The processing target air 51 is heated by the heating. That is, as shown in FIG. 5, the processing target air 51 changes its state from the point (4) to the point (5) while keeping the absolute humidity constant, and the dry bulb temperature rises to DB23 ° C.

以上のように本実施の形態における空気調和機では、湿式温度計57で処理対象空気51の温度を計測し、計測した湿球温度値と設定値との比較において冷水供給系70と温水供給系72を切り換えることにより、冷却シーズンの中間期と加熱シーズンの中間期とのはざ間において、温水と冷水の適切な切り替えを自動的に行なうことができる。   As described above, in the air conditioner in the present embodiment, the temperature of the processing target air 51 is measured by the wet thermometer 57, and the cold water supply system 70 and the hot water supply system are compared in the comparison between the measured wet bulb temperature value and the set value. By switching 72, it is possible to automatically perform appropriate switching between hot water and cold water between the intermediate period of the cooling season and the intermediate period of the heating season.

用水を熱交換器66で加熱し、噴霧ノズル61から温水噴霧することで、冷凍機などの低い温度(30℃程度)の排熱を有効に活用することができる。また、一つのコイルである予冷、予熱コイル52を予冷と予熱に兼用することで、空気抵抗を減じて圧力損失を低減できる。   By heating the water with the heat exchanger 66 and spraying with hot water from the spray nozzle 61, exhaust heat at a low temperature (about 30 ° C.) such as a refrigerator can be effectively utilized. Further, by using the pre-cooling and pre-heating coil 52, which is a single coil, for both pre-cooling and pre-heating, air resistance can be reduced and pressure loss can be reduced.

処理対象空気51の計測は、温度分布が必ずしも均一でなく、正確な計測が困難であるが、空気の湿球温度と実質的に同じ温度の水槽63の水温は正確に安定して計測でき、的確な制御を行なえる。また、ケーシング50の水噴霧室60における空気流路の流路断面積と実質的に等しい大きさの捕捉面を有するワッシャメディア62で用水を捕捉分離することで、用水は水噴霧室60の空気流路断面の各所における処理対象空気51の温度を反映するものとなり、捕捉分離した用水を集めて測定水としてその水温を水温計67で計測することで、水温は処理対象空気51の全体的、あるいは平均的な状態を適正に示す指標となり、処理対象空気51の露点を正確に計測することができる。よって、露点センサーを使用せずに、温水噴霧のエアワッシャを活用した空調制御を安定して行なうことができ、初期費用、メンテナンス費用が軽減できる。また、確実に露点となった飽和空気を冷却コイル54で除湿するので、冷却コイル54の出口の空気は相対湿度100%となり、乾球温度と露点温度が等しくなる。よって、センサーとして乾式温度計58を使用でき、メンテナンスが不要となる。   The measurement of the processing target air 51 is not necessarily uniform in temperature distribution, and accurate measurement is difficult, but the water temperature of the water tank 63 having substantially the same temperature as the wet bulb temperature of air can be measured accurately and stably. Accurate control is possible. In addition, the water is captured and separated by the washer media 62 having a capture surface having a size substantially equal to the cross-sectional area of the air flow path in the water spray chamber 60 of the casing 50, so that the water is the air in the water spray chamber 60. It reflects the temperature of the processing target air 51 in each part of the cross section of the flow path, collects the collected and separated water, and measures the water temperature as measurement water with the water temperature gauge 67, so that the water temperature is the entire processing target air 51, Or it becomes a parameter | index which shows an average state appropriately, and the dew point of the process target air 51 can be measured correctly. Therefore, air conditioning control using a hot water spray air washer can be stably performed without using a dew point sensor, and initial costs and maintenance costs can be reduced. Further, since the saturated air that has surely reached the dew point is dehumidified by the cooling coil 54, the air at the outlet of the cooling coil 54 has a relative humidity of 100%, and the dry bulb temperature and the dew point temperature are equal. Therefore, the dry thermometer 58 can be used as a sensor, and maintenance is unnecessary.

実施の形態に記載した各温度は、点(5)の出口空気条件がDB23℃、50〜55%RHの場合および水が30℃程度であることを与条件としたが、これに限られるものではない。   Each temperature described in the embodiment is based on the condition that the outlet air condition at point (5) is DB23 ° C., 50 to 55% RH, and water is about 30 ° C. However, the temperature is limited to this. is not.

本発明の実施の形態における空気調和機を示す模式図The schematic diagram which shows the air conditioner in embodiment of this invention 同実施の形態の空気調和機における冷却シーズンのピーク期の運転を示す空気線図Airline diagram showing operation in peak season of cooling season in air conditioner of same embodiment 同実施の形態の空気調和機における冷却シーズンの中間期の運転を示す空気線図Air line diagram showing the operation in the middle of the cooling season in the air conditioner of the embodiment 同実施の形態の空気調和機における加熱シーズンの中間期の運転を示す空気線図Air line diagram showing operation in the middle of the heating season in the air conditioner of the embodiment 同実施の形態の空気調和機における加熱シーズンのピーク期の運転を示す空気線図Airline diagram showing operation in peak season of heating season in air conditioner of same embodiment 同実施の形態の空気調和機における加熱シーズンのピーク期を等エンタルピー加湿で運転する場合の空気線図Airline diagram when operating at peak time of heating season with equal enthalpy humidification in the air conditioner of the embodiment 本発明の他の実施の形態における水槽の構造を示す模式図The schematic diagram which shows the structure of the water tank in other embodiment of this invention 本発明の他の実施の形態における水槽の構造を示す模式図The schematic diagram which shows the structure of the water tank in other embodiment of this invention 従来の空気調和機を示す模式図Schematic diagram showing a conventional air conditioner 同空気調和機における冷却シーズンの運転を示す空気線図Air diagram showing the cooling season operation of the air conditioner

符号の説明Explanation of symbols

50 ケーシング
51 処理対象空気
52 予冷、予熱コイル
53 エアワッシャ
54 冷却コイル
55 再熱コイル
56 ファン装置
57 湿式温度計
58 第1の乾式温度計
59 第2の乾式温度計
60 水噴霧室
61 噴霧ノズル
62 ワッシャメディア
63 水槽
64 用水供給系
65 供給ポンプ
66 熱交換器
67 水温計
68 熱媒体供給系
68a 送り管路
68b 戻り管路
69 流量調整バルブ
70 冷水供給系
70a 送り管路
70b 戻り管路
71a、71b 開閉バルブ
72 温水供給系
72a 送り管路
72b 戻り管路
73a、73b 開閉バルブ
75 用水加熱媒体供給系
75a 送り管路
75b 戻り管路
76 流量調整バルブ
77 冷水供給系
77a 送り管路
77b 戻り管路
78 流量調整バルブ
79 温水供給系
79a 送り管路
79b 戻り管路
80 流量調整バルブ
81 制御用コントローラ
82 水槽
50 Casing 51 Air to be Processed 52 Precooling, Preheating Coil 53 Air Washer 54 Cooling Coil 55 Reheating Coil 56 Fan Device 57 Wet Thermometer 58 First Dry Thermometer 59 Second Dry Thermometer 60 Water Spray Chamber 61 Spray Nozzle 62 Washer media 63 Water tank 64 Water supply system 65 Supply pump 66 Heat exchanger 67 Water temperature meter 68 Heat medium supply system 68a Feeding line 68b Return line 69 Flow control valve 70 Cold water supply system 70a Feeding line 70b Return line 71a, 71b Open / close valve 72 Hot water supply system 72a Feed line 72b Return line 73a, 73b Open / close valve 75 Water heating medium supply system 75a Feed line 75b Return line 76 Flow rate adjustment valve 77 Cold water supply system 77a Feed line 77b Return line 78 Flow adjustment valve 79 Hot water supply system 79a Feed pipe Path 79b Return line 80 Flow rate adjustment valve 81 Controller 82 Water tank

Claims (7)

ケーシング内に処理対象空気を通風する空気調和機において、
ケーシングの空気導入部で空気温度調整手段により処理対象空気の空気温度を調整し、この処理対象空気に、ケーシング内の上流側位置でケーシングの高さ方向及び幅方向に所定間隔を空けて複数箇所に配置している噴霧手段から用水を噴霧し、
ケーシング内の下流側位置で、ケーシング内の空気流路の流路断面積と実質的に等しい大きさの捕捉面を有して水膜効果による気液接触効率向上を図るワッシャメディアにより処理対象空気を実質的に飽和空気となすとともに、水温計測手段を構成する前記ワッシャメディアにより空気流路断面の各所を通過する処理対象空気の湿球温度と実質的に同じ温度となった用水を捕捉分離し、
捕捉分離した用水をワッシャメディアの下端位置に配置した水温計測手段を構成する測定用の水槽に測定水として集め、その水温を水温計測手段を構成する水温計で計測し、
集めた用水を噴霧手段に循環供給して等エンタルピー加湿し、
測定水の水温が一定温度を維持するように、前記水温計測手段の計測値に基づいて空気温度調整手段を制御して処理対象空気の温度を調整することを特徴とする空調制御方法。
In the air conditioner that ventilates the air to be treated in the casing,
The air temperature of the air to be treated is adjusted by the air temperature adjusting means at the air introduction part of the casing, and the air to be treated is arranged at a plurality of locations at predetermined positions in the height direction and width direction of the casing at the upstream position in the casing. Spray water from the spraying means placed in
Downstream position in the casing, more processing washer media have capture surface of the flow passage cross-sectional area substantially equal to the size of the air passage in the casing reduce the gas-liquid contact efficiency due to water film effects The target air is substantially saturated air, and the water that has reached substantially the same temperature as the wet bulb temperature of the target air that passes through the various sections of the air flow path is captured by the washer media that constitutes the water temperature measurement means. Separate and
Collect the collected water as measurement water in the water tank for measurement that constitutes the water temperature measurement means arranged at the lower end position of the washer media, measure the water temperature with the water thermometer that constitutes the water temperature measurement means ,
Circulate and supply the collected water to the spraying means to humidify the enthalpy,
An air conditioning control method comprising: adjusting an air temperature adjusting unit by controlling an air temperature adjusting unit based on a measurement value of the water temperature measuring unit so that a water temperature of the measurement water is maintained at a constant temperature.
ケーシング内に処理対象空気を通風する空気調和機において、
ケーシングの空気導入部で空気温度調整手段により加熱した処理対象空気に、用水温度調整手段により加熱した用水をケーシング内の上流側位置で、ケーシングの高さ方向及び幅方向に所定間隔を空けて複数箇所に配置している噴霧手段から噴霧し、
ケーシング内の下流側位置で、ケーシング内の空気流路の流路断面積と実質的に等しい大きさの捕捉面を有し、水膜効果による気液接触効率向上を図るワッシャメディアにより処理対象空気を実質的に飽和空気となすとともに、水温計測手段を構成する前記ワッシャメディアにより空気流路断面の各所を通過する処理対象空気から用水を捕捉分離し、
捕捉分離した用水をワッシャメディアの下端位置に配置した水温計測手段を構成する測定用の水槽に測定水として集め、その水温を水温計測手段を構成する水温計で計測し、
集めた用水を用水温度調整手段で加熱して噴霧手段に循環供給して加熱加湿し、
測定水の水温が一定温度を維持するように、前記水温計測手段の計測値に基づいて用水温度調整手段を制御してノズルから噴霧する用水の温度を調整することを特徴とする空調制御方法。
In the air conditioner that ventilates the air to be treated in the casing,
The processing target air heated by the air temperature adjusting means at the air introduction part of the casing is mixed with the water heated by the water temperature adjusting means at predetermined positions in the casing height direction and width direction at the upstream side position in the casing. Spray from the spraying means located in the place,
Air to be treated by a washer media that has a trapping surface that is substantially equal to the cross-sectional area of the air flow path in the casing at the downstream side in the casing and that improves the gas-liquid contact efficiency by the water film effect. Is substantially saturated air, and captures and separates the water from the air to be processed that passes through each part of the cross section of the air flow path by the washer media constituting the water temperature measuring means ,
Collect the collected water as measurement water in the water tank for measurement that constitutes the water temperature measurement means arranged at the lower end position of the washer media, measure the water temperature with the water thermometer that constitutes the water temperature measurement means ,
The collected water is heated by the water temperature adjusting means, circulated and supplied to the spraying means, and heated and humidified.
An air conditioning control method, wherein the temperature of the water sprayed from the nozzle is adjusted by controlling the water temperature adjusting means based on the measurement value of the water temperature measuring means so that the water temperature of the measured water is maintained at a constant temperature.
空気温度調整手段で空気温度を調整する前の処理対象空気の湿球温度に基づいて、あらかじめ定めた複数の目標湿球温度のうちからワッシャメディアを通過する処理対象空気の目標湿球温度を選択し、当該目標湿球温度と同じ温度に、測定水の水温を維持することを特徴とする請求項1又は2に記載の空調制御方法。 Based on the wet bulb temperature of the target air before the air temperature is adjusted by the air temperature adjusting means, the target wet bulb temperature of the target air passing through the washer medium is selected from a plurality of predetermined target wet bulb temperatures. And the water temperature of measurement water is maintained at the same temperature as the said target wet-bulb temperature, The air-conditioning control method of Claim 1 or 2 characterized by the above-mentioned. ケーシング内に処理対象空気を通風する空気調和機において、
ケーシングの空気導入部から流入する処理対象空気の温度を調整する空気温度調整手段と、
ケーシング内の上流側位置でケーシングの高さ方向及び幅方向に所定間隔を空けて複数箇所に配置され、空気温度調整手段により空気温度が調整された処理対象空気に用水を噴霧する噴霧手段と、
ケーシング内の下流側位置で、ケーシング内の空気流路の流路断面積と実質的に等しい大きさの捕捉面で処理対象空気から用水を捕捉分離し、且つ処理対象空気を実質的に飽和空気となすように水膜効果による気液接触効率向上を図るワッシャメディアを備え、
前記ワッシャメディアと、ワッシャメディアの下端位置に配置してワッシャメディアで捕捉分離した用水を測定水として集める測定用の水槽と、前記水槽に集めて水温を計測する水温計とで構成する水温計測手段を有し、
水槽から用水を汲み出す供給ポンプと、噴霧手段に用水を供給する用水供給系と、水温計測手段の計測値が一定温度を維持するように前記水温計測手段の計測値に基づいて空気温度調整手段を制御して処理対象空気の温度を調整する制御手段とを備えることを特徴とする空気調和機。
In the air conditioner that ventilates the air to be treated in the casing,
An air temperature adjusting means for adjusting the temperature of the air to be treated flowing from the air introduction part of the casing;
Spraying means for spraying water to the processing target air, which is arranged at a plurality of locations at predetermined intervals in the height direction and width direction of the casing at an upstream position in the casing, and whose air temperature is adjusted by the air temperature adjusting means;
At the downstream side in the casing, the water to be treated is captured and separated from the processing target air by a trapping surface having a size substantially equal to the cross-sectional area of the air flow path in the casing, and the processing target air is substantially saturated air. Equipped with a washer media that improves the gas-liquid contact efficiency by the water film effect,
Water temperature measuring means comprising the washer medium, a measuring water tank that is disposed at the lower end position of the washer medium and collects water collected and separated by the washer medium as measurement water, and a thermometer that collects water in the water tank and measures the water temperature Have
A supply pump for pumping water from the water tank, a water supply system for supplying water to the spraying means, and an air temperature adjusting means based on the measured value of the water temperature measuring means so that the measured value of the water temperature measuring means maintains a constant temperature And an air conditioner characterized by comprising control means for adjusting the temperature of the air to be treated.
ケーシング内に処理対象空気を通風する空気調和機において、
ケーシング内の空気導入部から流入する処理対象空気を加熱する空気温度調整手段と、
用水の温度を加熱する用水温度調整手段と、
ケーシング内の上流側位置でケーシングの高さ方向及び幅方向に所定間隔を空けて複数箇所に配置され、空気温度調整手段で加熱した処理対象空気に、用水温度調整手段により加熱した用水を噴霧する噴霧手段と、
ケーシング内の下流側位置でケーシング内の空気流路の流路断面積と実質的に等しい大きさの捕捉面により処理対象空気から用水を捕捉分離し、且つ処理対象空気を実質的に飽和空気となすように水膜効果による気液接触効率向上を図るワッシャメディアを備え、
前記ワッシャメディアと、ワッシャメディアの下端位置に配置してワッシャメディアで捕捉分離した用水を測定水として集める測定用の水槽と、前記水槽に集めて水温を計測する水温計とで構成する水温計測手段を有し、
水槽から用水を汲み出す供給ポンプと、用水温度調整手段を介して噴霧手段に用水を供給する用水供給系と、水温計測手段の計測値が一定温度を維持するように前記水温計測手段の計測値に基づいて用水温度調整手段を制御して用水の温度を調整する制御手段とを備えることを特徴とする空気調和機。
In the air conditioner that ventilates the air to be treated in the casing,
An air temperature adjusting means for heating the air to be treated flowing from the air introduction part in the casing;
Water temperature adjusting means for heating the water temperature;
The water heated by the water temperature adjusting means is sprayed on the air to be treated, which is arranged at a plurality of positions at predetermined intervals in the height direction and width direction of the casing at the upstream position in the casing and heated by the air temperature adjusting means. Spraying means;
The water to be treated is captured and separated from the processing target air by a capturing surface having a size substantially equal to the cross-sectional area of the air flow path in the casing at a downstream position in the casing, and the processing target air is substantially saturated air. It has a washer media that improves the gas-liquid contact efficiency by the water film effect.
Water temperature measuring means comprising the washer medium, a measuring water tank that is disposed at the lower end position of the washer medium and collects water collected and separated by the washer medium as measurement water, and a thermometer that collects water in the water tank and measures the water temperature Have
And pumping supply pump water from the water tank, and water supply system for supplying water to the atomizing means via a water temperature adjusting means, the measurement value of the water temperature measuring means such that the measured value of the water temperature measuring means for maintaining a constant temperature An air conditioner comprising: control means for adjusting the temperature of the water by controlling the water temperature adjusting means based on the above .
ケーシングの空気導入部に湿式温度計が設けられ、
制御手段は、
湿球温度計の計測値に基づいて、あらかじめ定めた複数の目標湿球温度のうちからワッシャメディアを通過する処理対象空気の目標湿球温度を選択し、当該目標湿球温度と同じ温度に、測定水の水温を維持することを特徴とする請求項4又は5に記載の空気調和機。
A wet thermometer is provided in the air introduction part of the casing,
The control means
Based on the measurement value of the wet bulb thermometer, select the target wet bulb temperature of the air to be processed that passes through the washer media from a plurality of predetermined wet bulb temperatures, and set the same temperature as the target wet bulb temperature. The air conditioner according to claim 4 or 5, wherein the temperature of the measurement water is maintained.
ワッシャメディアの処理対象空気の通風方向下流側に冷却コイル、冷却コイルの下流側に乾球温度計が設けられ、乾球温度計の計測値を制御指標として冷却コイルへの冷水の供給が制御されることを特徴とする請求項4〜6の何れか1項に記載の空気調和機。 A cooling coil is installed on the downstream side of the flow direction of the air to be treated by the washer media, and a dry bulb thermometer is installed on the downstream side of the cooling coil, and the supply of cold water to the cooling coil is controlled using the measured value of the dry bulb thermometer as a control index. The air conditioner according to any one of claims 4 to 6, characterized in that:
JP2006205460A 2006-07-28 2006-07-28 Air conditioning control method and air conditioner Active JP4948070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006205460A JP4948070B2 (en) 2006-07-28 2006-07-28 Air conditioning control method and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006205460A JP4948070B2 (en) 2006-07-28 2006-07-28 Air conditioning control method and air conditioner

Publications (2)

Publication Number Publication Date
JP2008032303A JP2008032303A (en) 2008-02-14
JP4948070B2 true JP4948070B2 (en) 2012-06-06

Family

ID=39121923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006205460A Active JP4948070B2 (en) 2006-07-28 2006-07-28 Air conditioning control method and air conditioner

Country Status (1)

Country Link
JP (1) JP4948070B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5217701B2 (en) * 2008-07-04 2013-06-19 日産自動車株式会社 Air conditioning system
GB0818372D0 (en) * 2008-10-08 2008-11-12 Grid Xitek Ltd Air cleaning apparatus
JP5511595B2 (en) * 2010-09-01 2014-06-04 株式会社クボタ Air conditioner and outside air cooling operation method
WO2012077201A1 (en) * 2010-12-08 2012-06-14 三菱電機株式会社 Ventilation and air-conditioning device
CN102279067B (en) * 2011-04-01 2013-03-06 重庆大学 Method and device for metering cooling capacity and heating capacity at tail end of fan coil of central air-conditioning system
JP2018013255A (en) * 2016-07-19 2018-01-25 積水化学工業株式会社 Air conditioning system
JP7443275B2 (en) * 2021-02-19 2024-03-05 ダイキン工業株式会社 air treatment equipment
IT202100027206A1 (en) * 2021-10-22 2023-04-22 Mitsubishi Electric Hydronics & It Cooling Systems S P A METHOD OF CONTROL OF THE TEMPERATURE AND HUMIDITY OF A FLOW OF CONDITIONED AND DEHUMIDIFIED AIR IN AN AIR CONDITIONING SYSTEM AND AIR CONDITIONING SYSTEM USING THE METHOD

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2910946B2 (en) * 1991-08-09 1999-06-23 高砂熱学工業株式会社 Air purification harmony device
US5390505A (en) * 1993-07-23 1995-02-21 Baltimore Aircoil Company, Inc. Indirect contact chiller air-precooler method and apparatus
JP2642880B2 (en) * 1994-08-26 1997-08-20 工業技術院長 How to calibrate the flow meter
JPH0886466A (en) * 1994-09-16 1996-04-02 Mazda Motor Corp Air conditioner for application chamber
CA2181510A1 (en) * 1995-07-27 1997-01-28 Daniel M. St. Louis Adiabatic saturator and method for conditioning an air stream
JPH09303843A (en) * 1996-05-13 1997-11-28 Taikisha Ltd Method for removing gaseous contamination component
JPH10253095A (en) * 1997-03-17 1998-09-25 Sanki Eng Co Ltd Air conditioner
JPH10300173A (en) * 1997-04-21 1998-11-13 Orion Mach Co Ltd Operation for constant-temperature and constant humidity air supply device
JP3797010B2 (en) * 1999-04-02 2006-07-12 トヨタ自動車株式会社 Air conditioning method
JP3827486B2 (en) * 1999-09-29 2006-09-27 三機工業株式会社 Air washer
JP4583637B2 (en) * 2001-03-13 2010-11-17 高砂熱学工業株式会社 Air purification air conditioner
JP2003068340A (en) * 2001-08-24 2003-03-07 Sanki Eng Co Ltd Gas supply apparatus and inspection system

Also Published As

Publication number Publication date
JP2008032303A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4948070B2 (en) Air conditioning control method and air conditioner
KR101182064B1 (en) Air conditioning system
US20060273183A1 (en) Method of dehumidifying an indoor space using outdoor air
KR101578532B1 (en) Energy-saving dehumidification air handling unit
KR101209335B1 (en) Air cooling and heating apparatus
KR101549691B1 (en) Energy-saving type thermo-hygrostat
CN109990390A (en) The method and apparatus of energy-efficient air-conditioning and heat exchange
CN110249185A (en) The control method of air processor, the control device of air processor, air treatment system and air processor
JP2006300392A (en) Air-conditioning heat source facility for clean room
KR101840588B1 (en) Air conditioning plant using heat pipe
WO2011060676A1 (en) Integrated solution dehumidification air conditioner
JP3450147B2 (en) Air conditioner
CN110595005A (en) Unit control method and device based on heat recovery and heat exchange quantity and air conditioning unit
CN206430288U (en) Shunting water-cooling type thermostatic and humidistatic air conditioning unit
JP3942820B2 (en) Humidification method for air conditioning
KR102173029B1 (en) Air conditioner having oxygenation and fine dust removal
JP2005207712A (en) Air conditioner
JP2010043769A (en) Humidifying device
JP2001324193A (en) Device and method for introducing fresh air
CN103090490B (en) A kind of air moistening system
CN109425065A (en) A kind of operating room purification air-conditioning unit
JP6980236B2 (en) Air conditioning equipment
TWM395137U (en) Energy-saving washing device used in air conditioning
JP4593689B1 (en) Precision air conditioner
JP3588765B2 (en) Humidifier

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4948070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250