WO2024105770A1 - Factor behavior inference device, method, and program - Google Patents

Factor behavior inference device, method, and program Download PDF

Info

Publication number
WO2024105770A1
WO2024105770A1 PCT/JP2022/042372 JP2022042372W WO2024105770A1 WO 2024105770 A1 WO2024105770 A1 WO 2024105770A1 JP 2022042372 W JP2022042372 W JP 2022042372W WO 2024105770 A1 WO2024105770 A1 WO 2024105770A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing unit
lifestyle habits
lifestyle
variable
data
Prior art date
Application number
PCT/JP2022/042372
Other languages
French (fr)
Japanese (ja)
Inventor
登夢 冨永
修平 山本
健 倉島
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/042372 priority Critical patent/WO2024105770A1/en
Publication of WO2024105770A1 publication Critical patent/WO2024105770A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/105Human resources
    • G06Q10/1057Benefits or employee welfare, e.g. insurance, holiday or retirement packages

Definitions

  • One aspect of the present invention relates to a factor behavior estimation device, method, and program used to estimate behavior that is a factor affecting a user's health condition for each work style, for example.
  • Non-Patent Document 1 reports that a questionnaire survey of 13,989 Italians showed that people who started working from home due to COVID-19 had a lower level of severe sleep disorders than those who did not.
  • Non-Patent Document 2 suggests that the results of 988 responses collected through an online survey system showed that people who started working from home due to COVID-19 exercised more, ate less junk food, and spent more time talking with colleagues compared to before they started working from home, which contributed to improving their physical and mental well-being.
  • Non-Patent Documents 1 and 2 merely compare working styles and lifestyles between the period before and after the COVID-19 pandemic, and the analysis results do not allow us to know the impact of working from home or in the office on the relationship between daily lifestyle habits and health status. In other words, users cannot know what changes in their daily working styles will bring about in their lifestyle habits, or behavior, and what impact these changes in behavior will have on their health status.
  • This invention was made with the above in mind, and aims to provide technology that can estimate the behaviors that are factors that affect changes in a user's health condition for each work style.
  • one aspect of the factor behavior estimation device or factor behavior estimation method acquires data representing the health state, multiple lifestyle habits, and working style of a target user at predetermined fixed intervals, extracts features from each of the acquired data and sets these as first variables, and calculates a feature representative value for each working style from the features for each of the multiple lifestyle habits and sets this as a second variable. Then, by providing the first variable and the second variable to a model that represents the relationship between the health state and the multiple lifestyle habits for each working style, parameters that represent the degree of influence of the multiple lifestyle habits on changes in the health state for each working style are derived, and information that represents actions that are factors in changes in the health state for each working style is generated and output based on the derived parameters.
  • the importance of each lifestyle habit that affects health changes is estimated for each work style, and the estimated results are presented to the user.
  • This allows the user to identify lifestyle habits that should be taken into consideration in order to maintain their health, in other words, behaviors that are the cause of health changes, for each of their own work styles.
  • data on health status, lifestyle habits, and work styles is obtained at regular intervals, and the estimated results of the importance of each lifestyle habit are updated based on this data each time, making it possible to dynamically re-present to the user lifestyle habits that should be taken into consideration in accordance with health changes at regular intervals.
  • FIG. 1 is a diagram showing an example of a system including a factorial behavior inference device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of a hardware configuration of a factorial behavior inference device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing an example of a software configuration of the factor behavior inference device according to an embodiment of the present invention.
  • FIG. 4 is a flowchart showing an example of a process procedure and process contents of the factor behavior inference process executed by the control unit of the factor behavior inference device shown in FIG.
  • FIG. 5 is a flowchart showing an example of the process procedure and process contents of the model learning process from the process procedures shown in FIG. FIG.
  • FIG. 6 is a flowchart showing an example of the procedure and contents of a process for generating and outputting information representing a result of an inference of a factor behavior, among the procedures shown in FIG.
  • FIG. 7 is a diagram showing an example of information indicating the result of inference of the factor behavior generated by the process shown in FIG.
  • FIG. 1 is a diagram showing an example of a configuration of a factor behavior inference system according to an embodiment of the present invention.
  • the factor behavior inference system according to one embodiment of the present invention includes a factor behavior inference device SV, and enables transmission of information data via a network NW between this factor behavior inference device SV and user terminals UT1 to UTn used by a plurality of users who use the system.
  • User terminals UT1 to UTn are, for example, smartphones, tablet terminals or personal computers, and are equipped with communication tools such as a browser or mailer.
  • the user terminals UT1 to UTn each have a function according to an embodiment of the present invention to acquire data representing the user's health condition, lifestyle habits, and working patterns from sensors, and transmit each of the acquired data to the factor behavior estimation device SV via the network NW.
  • the user terminals UT1 to UTn also have a function to receive, via the network NW, information representing the factor behavior estimation results transmitted from the factor behavior estimation device SV.
  • the data representing the health condition includes, for example, weight, blood pressure, blood sugar level, etc., and is measured, for example, by a vital sensor built into the user terminals UT1 to UTn, or a vital sensor provided on a wearable terminal worn by the user.
  • the data representing lifestyle habits may include, for example, the number of steps taken, hours of sleep, amount of food eaten, and mood, and may be measured, for example, by an application program provided in the user terminals UT1 to UTn.
  • Data representing working patterns includes, for example, whether or not a person works each day, the start and end times of work, and the place of work. This data is, for example, entered by the user and managed by a scheduler provided in the user terminals UT1 to UTn.
  • the network NW comprises, for example, a wide area network with the Internet at its core, and an access network for accessing this wide area network.
  • the access network examples include a public communication network using wired or wireless connections, a Local Area Network (LAN) using wired or wireless connections, and a Cable Television (CATV) network.
  • LAN Local Area Network
  • CATV Cable Television
  • the network NW is composed of an in-house network such as a LAN or wireless LAN.
  • the factor behavior inference device SV is configured by, for example, a server computer located on the Web or on the cloud.
  • FIGS. 2 and 3 are block diagrams showing examples of the hardware and software configurations, respectively, of the factor behavior estimation device SV.
  • the causal behavior estimation device SV has a control unit 1 that uses a hardware processor such as a central processing unit (CPU).
  • a storage unit having a program storage unit 2 and a data storage unit 3, and a communication interface (hereinafter the interface will be abbreviated as I/F) unit 4 are connected to this control unit 1 via a bus 5.
  • I/F communication interface
  • the communication I/F unit 4 transmits and receives information data to and from the user terminals UT1 to UTn in accordance with the communication protocol defined by the network NW.
  • the program storage unit 2 is configured by combining, for example, a non-volatile memory such as a solid state drive (SSD) as a storage medium that can be written to and read from at any time, and a non-volatile memory such as a read only memory (ROM), and stores application programs necessary for executing various control processes according to one embodiment, in addition to middleware such as an operating system (OS).
  • OS operating system
  • the OS and each application program will be collectively referred to as the program.
  • the data storage unit 3 is, for example, a combination of a non-volatile memory such as an SSD, which can be written to and read from at any time, and a volatile memory such as a RAM (Random Access Memory), as a storage medium, and the storage area includes a health condition storage unit 31, a lifestyle habit storage unit 32, a work pattern storage unit 33, a learning model storage unit 34, and a parameter storage unit 35, as the main storage units required to implement one embodiment of this invention.
  • a non-volatile memory such as an SSD, which can be written to and read from at any time
  • a volatile memory such as a RAM (Random Access Memory)
  • the storage area includes a health condition storage unit 31, a lifestyle habit storage unit 32, a work pattern storage unit 33, a learning model storage unit 34, and a parameter storage unit 35, as the main storage units required to implement one embodiment of this invention.
  • the health condition memory unit 31, lifestyle habit memory unit 32, and work style memory unit 33 store data representing the health condition, lifestyle habit, and work style of each user acquired from the user terminals UT1 to UTn, in association with identification information of the user or the user terminals UT1 to UTn (hereinafter referred to as user ID).
  • the learning model storage unit 34 stores the learned data that constitutes the learning model.
  • the parameter storage unit 35 stores the learned parameters generated by the model learning process by the control unit 1 as an estimated result of the degree of influence of lifestyle habits on the health condition.
  • the control unit 1 includes a data acquisition processing unit 11, a model configuration processing unit 12, a data extraction processing unit 13, a variable configuration processing unit 14, a representative value calculation processing unit 15, a model learning processing unit 16, and a factor behavior estimation information output processing unit 17 as processing functions necessary to implement one embodiment of this invention.
  • Each of the processing units 11 to 17 of the control unit 1 is realized by having the hardware processor of the control unit 1 execute application programs stored in the program storage unit 2. Note that some or all of the processing units 11 to 17 may be realized using hardware such as an LSI (Large Scale Integration) or an ASIC (Application Specific Integrated Circuit).
  • the data acquisition processing unit 11 receives data representing health conditions, lifestyle habits, and working patterns transmitted, for example, daily, from the user terminals UT1 to UTn via the communication I/F unit 4, and stores the received data representing health conditions, lifestyle habits, and working patterns in the health condition memory unit 31, lifestyle habit memory unit 32, and working pattern memory unit 33, respectively, in association with the user ID of the sender.
  • the model configuration processing unit 12 receives data representing the model structure of the learning model, for example, from an administrator terminal (not shown) used by a system administrator, via the communication I/F unit 4. Then, it provides the received data representing the model structure to the model learning processing unit 16.
  • the data extraction processing unit 13 reads data representing the health condition, lifestyle habits, and working style for each user from the health condition storage unit 31, lifestyle habits storage unit 32, and working style storage unit 33. Then, it extracts sets of data that correspond in time from the read data.
  • the variable configuration processing unit 14 calculates the feature quantities for each of the data representing the time-corresponding health condition, lifestyle habits, and working patterns extracted by the data extraction processing unit 13. At this time, if multiple types of lifestyle habits are acquired, the variable configuration processing unit 14 calculates the feature quantities for each of the lifestyle habits. The variable configuration processing unit 14 then passes the calculated feature quantities for the health condition, lifestyle habits, and working patterns to the model learning processing unit 16.
  • the representative value calculation processing unit 15 receives the feature quantities related to each lifestyle habit from among the feature quantities related to the health state, lifestyle habits, and working style calculated by the variable configuration processing unit 14. Then, it calculates a representative value by working style for each of the received feature quantities related to each lifestyle habit.
  • the model learning processing unit 16 performs learning processing by inputting the feature quantities related to the health condition, lifestyle, and work style calculated by the variable configuration processing unit 14 and the representative values of the feature quantities of each lifestyle habit for each work style calculated by the representative value calculation processing unit 15 into the model structure provided by the model configuration processing unit 12, thereby calculating parameters corresponding to each lifestyle habit that affects changes in the health condition.
  • An example of the model learning processing will be explained in the operation example.
  • the model learning processing unit 16 then stores the calculated parameters corresponding to each of the lifestyle habits in the learning model storage unit 34 together with data representing the model structure when the parameters were obtained, each feature value related to the health condition, lifestyle habits, and working style, and a representative value of the feature value for each lifestyle habit. At the same time, the model learning processing unit 16 stores the parameters corresponding to each of the lifestyle habits in the parameter storage unit 35 as information representing an estimated result of the degree of influence of the lifestyle habits on the health condition.
  • the factor behavior estimation information output processing unit 17 reads parameters corresponding to each lifestyle habit from the parameter storage unit 35, generates display data indicating the importance of each lifestyle habit with respect to changes in health status based on the parameters corresponding to each lifestyle habit that have been read, and transmits the generated display data from the communication I/F unit 4 to the corresponding user terminals UT1 to UTn.
  • An example of the factor behavior estimation process will also be described in the operation example.
  • the user terminals UT1 to UTn collect data on the user's daily health condition, lifestyle, and working style, for example, for each day, and obtain data representing the characteristics of each of the collected data, such as a representative value or average value, and transmit the obtained data together with the user ID to the factorial behavior inference device SV at a predetermined time every day.
  • the control unit 1 of the factor behavior inference device SV under the control of the data acquisition processing unit 11, receives the data on the health condition, lifestyle habits, and working style transmitted from the user terminals UT1 to UTn via the communication I/F unit 4.
  • the received data on the health condition, lifestyle habits, and working style is then stored sequentially by day in the health condition storage unit 31, lifestyle habit storage unit 32, and working style storage unit 33, respectively, in association with the user ID.
  • FIG. 4 is a flowchart showing an example of the process steps and process contents of the factor behavior inference process executed by the control unit 1 of the factor behavior inference device SV.
  • step S10 the control unit 1 of the factor behavior inference device SV reads data representing the health condition, lifestyle habits, and working style for each user from the health condition storage unit 31, lifestyle habit storage unit 32, and working style storage unit 33 under the control of the data extraction processing unit 13. Then, the control unit 1 organizes the temporal correspondence of each of the read data, and extracts a set of temporally corresponding data as an analysis target.
  • the data extraction processing unit 13 first reads data y i,t representing health condition, data x i,s,k representing lifestyle, and data w i,(us,ue) representing work style from the health condition memory unit 31, lifestyle habit memory unit 32, and work style memory unit 33, respectively.
  • the data extraction processing unit 13 extracts a set D In step S11, it is determined whether or not a set D of temporally corresponding data has been constructed. If a set D of temporally corresponding data has been constructed, the data extraction processing unit 13 passes the constructed set D to the variable construction processing unit 14 as preprocessed data in step S12.
  • variable construction processing unit 14 constructs, in step S13, variables to be trained into the learning model for each of health condition, lifestyle, and working style, for example, as follows:
  • variable construction processing unit 14 first calculates the difference between data y i,tj and y i,tj+1 representing two health conditions included in the analysis unit D ij.
  • the calculated result y i,j is set as the feature of the data representing the health condition.
  • a scale other than the above may be used as the feature as long as it represents the difference between y i,tj and y i,tj+1 , which are data representing two health conditions.
  • a i,j ⁇ x i,s,k
  • a measurement value related to a certain lifestyle habit per unit time acquired at time t j ⁇ s ⁇ t j+1 is expressed as The calculated x i,j,k is used as the feature quantity of lifestyle habit k.
  • a scale other than the above may be used for the feature amount of the data representing the lifestyle habits, as long as the scale expresses a representative value of the measurement values of a certain lifestyle habit k acquired at time tj ⁇ s ⁇ tj+1 of a certain user i, such as an average value of the measurement values. Also, a different scale may be used for each of a plurality of lifestyle habits.
  • D ij is a one-hot vector in which the element w i,j,c of c for which WTc is the longest is 1 and the other elements are 0.
  • variable configuration processing unit 14 then passes the calculated feature amount y i,j related to the health state, the feature amount x i,j,k related to each lifestyle habit k, and the feature amount w ij related to the working style to the model learning processing unit 16 .
  • step S14 the control unit 1 of the factor behavior inference device SV receives the feature amount x i,j,k calculated for each lifestyle habit from the variable configuration processing unit 14 under the control of the representative value calculation processing unit 15. Then, for each of the received feature amounts x i,j,k related to each lifestyle habit, a representative value by work type is calculated as follows.
  • the representative value calculation processing unit 15 calculates the average value of the feature quantities x i,j,k of the lifestyle habit data k of a certain user i in a certain work style W c as follows: It is calculated as follows.
  • the method for finding a representative value of the feature quantity of lifestyle habit data k for a certain working style wc of a certain user i is not limited to the above formula.
  • different methods may be used to calculate representative values for multiple lifestyle habits.
  • the representative value calculation processing unit 15 passes the calculated representative values of the features of each of the lifestyle habit data to the model learning processing unit 16.
  • step S16 the control unit 1 of the factorial behavior inference device SV executes a process of learning parameters corresponding to each lifestyle habit using the learning model under the control of the model learning processing unit 16 as follows.
  • FIG. 5 is a flowchart showing an example of the processing procedure and processing content executed by the model learning processing unit 16.
  • (2-4-1) Configuration of Model Structure Data representing the model structure is designated, for example, by a system administrator and transmitted from an administrator terminal.
  • the control unit 1 of the factorial behavior inference device SV receives the data representing the model structure from the model configuration processing unit 12 via the communication I/F unit 4, and passes it to the model learning processing unit 16.
  • step S161 the model learning processing unit 16 receives data representing the model structure from the model configuration processing unit 12.
  • the model structure As the model structure, the following model is used to learn the relationship between health status and lifestyle habits for each work style.
  • the relationship between the feature value y i,j related to the health status and the feature value x i,j,k related to each lifestyle habit k is expressed as follows using a parameter ⁇ : This is expressed as a regression model shown below.
  • the parameter ⁇ k has a different value ⁇ k,c depending on the work style w c.
  • the feature quantity x i,j,k related to the lifestyle with the work style w i,j,c 1 is associated with this ⁇ k,c .
  • the regression model representing the relationship between the feature value y i,j related to the health state and the feature value x i,j,k related to each lifestyle habit k is as follows: It can be expressed as follows.
  • step S162 the model learning processing unit 16 obtains the feature amount y i,j related to the health state, the feature amount x i,j,k related to each lifestyle habit k, and the feature amount w ij related to the working style from the variable configuration processing unit 14, and further obtains the representative value of the feature amount of each of the lifestyle habit data from the representative value calculation processing unit 15 in step S163.
  • step S164 the model learning processing unit 16 performs a learning process by inputting, as variables, each feature value related to the health condition, lifestyle, and work style obtained from the variable configuration processing unit 14 and the representative value of the feature value of each lifestyle for each work style obtained from the representative value calculation processing unit 15 into the model structure obtained from the model configuration processing unit 12, and thereby calculates a parameter ⁇ that indicates the degree of influence of each lifestyle on changes in the health condition as follows:
  • the model structure shown in equation (14) is expressed as follows: It is transformed as follows.
  • step S165 the model learning processing unit 16 stores the optimal parameters ⁇ corresponding to each of the lifestyle habits in the learning model storage unit 34 together with data representing the model structure when the parameters ⁇ were obtained, each feature value related to the health state, lifestyle habits, and working style, and a representative value of the feature value for each lifestyle habit.
  • step S166 the model learning processing unit 16 stores the calculated optimal parameters ⁇ corresponding to each of the lifestyle habits in the parameter storage unit 35 as estimated results of the degree of influence of each lifestyle habit on changes in health status by work style.
  • step S17 the control unit 1 of the factor behavior inference device SV generates display data indicating the importance of each lifestyle habit for each work style under the control of the factor behavior inference information output processing unit 17, and transmits the generated display data to the user terminals UT1 to UTn.
  • FIG. 6 is a flowchart showing an example of the processing procedure and processing contents of the factor behavior inference information output processing unit 17.
  • step S171 the factor behavior inference information output processing unit 17 reads the learned parameters ⁇ corresponding to each of the lifestyle habits from the parameter storage unit 35. Then, in step S172, the factor behavior inference information output processing unit 17 calculates the importance of each lifestyle habit with respect to the health status by work type based on the learned parameters ⁇ corresponding to each of the lifestyle habits that have been read.
  • the ratio of the absolute value of a parameter of a certain lifestyle habit k to the sum of the absolute values of the parameters corresponding to each lifestyle habit is defined as the importance of that lifestyle habit ⁇ k,c . (26) It is calculated as follows.
  • the factor behavior inference information output processing unit 17 generates display data in step S173 in order to present the calculation result of the importance ⁇ k,c of each lifestyle habit by each work style to the user.
  • FIG. 7 shows an example of display data generated for presenting the calculation results of the importance ⁇ k,c of each lifestyle habit for each work style to the user.
  • step S174 the factor behavior estimation information output processing unit 17 transmits the generated display data from the communication I/F unit 4 via the network NW to the user terminals UT1 to UTn of the target users.
  • the target users Based on the display data displayed on the user terminals UT1 to UTn, the target users can identify which of the four lifestyle habits above is the lifestyle habit that affects their own weight change, that is, the behavior that is the cause of health changes, based on its importance.
  • the factor behavior inference information output processing unit 17 transmits the calculation result of the importance ⁇ k,c of each lifestyle habit by work style directly as display data to the user terminals UT1 to UTn.
  • the present invention is not limited to this.
  • the factor behavior inference information output processing unit 17 may compare the calculated importance ⁇ k,c of each lifestyle habit with a preset threshold value, identify a lifestyle habit whose importance ⁇ k,c is equal to or greater than the threshold value, generate display data representing the identified lifestyle habit, and transmit the display data to the user terminals UT1 to UTn.
  • the factor behavior inference information output processing unit 17 may add the importance ⁇ k,c to the identified lifestyle habit.
  • the data acquisition processing unit 11 first acquires data representing the user's health condition and a plurality of lifestyle habits for each of the work styles (for example, when working from home and when working at the office), the data extraction processing unit 13 extracts sets of data corresponding in time from the above data, the variable configuration processing unit 14 obtains the feature values of each data constituting this set of data, and the representative value calculation processing unit 15 calculates the representative value of the feature values related to each lifestyle for each work style based on each obtained feature value. Then, the model learning processing unit 16 applies the feature values of each of the above data and their representative values to the model structure obtained by the model configuration processing unit 12 to learn parameters representing the importance of each lifestyle habit that affects changes in the user's health condition. Then, based on the learned parameters ⁇ corresponding to each lifestyle obtained by the above learning, the factor behavior estimation information output processing unit 17 generates display data representing the importance of each lifestyle for each work style and transmits it to the user terminals UT1 to UTn.
  • the processing functions of the factorial behavior inference device SV are provided in a server computer on the Web or cloud, but the processing functions of the factorial behavior inference device SV may be provided in a server computer located on a local area network such as a workplace or community, or in a personal computer shared by multiple users.
  • the functions of the factorial behavior inference device SV may be distributed among multiple server computers and personal computers used by users, etc.
  • this invention is not limited to the above-described embodiment as it is, and in the implementation stage, the components can be modified and embodied without departing from the gist of the invention.
  • various inventions can be formed by appropriately combining multiple components disclosed in the above-described embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, components from different embodiments may be appropriately combined.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

One embodiment of this invention acquires, for each predetermined constant period, data representing a health state, a plurality of lifestyle habits, and a work pattern of a target user, extracts a feature amount from each of the acquired data, uses the feature amount as a first variable, calculates a feature amount representative value per work pattern from the feature amount for each of the plurality of lifestyle habits, and uses the feature amount representative value as a second variable. By giving the first variable and the second variable to a model indicating a relationship between the health state per work pattern and the plurality of lifestyle habits, a parameter representing the degree of influence of the plurality of lifestyle habits on a change in the health state per work pattern is derived, and, on the basis of the derived parameter, information indicating the behavior that becomes a factor in the change in the health state per work pattern is generated and output.

Description

要因行動推定装置、方法およびプログラムFactor behavior estimation device, method, and program
 この発明の一態様は、例えば勤務形態ごとにユーザの健康状態に影響を及ぼす要因となる行動を推定するために用いられる要因行動推定装置、方法およびプログラムに関する。 One aspect of the present invention relates to a factor behavior estimation device, method, and program used to estimate behavior that is a factor affecting a user's health condition for each work style, for example.
 新型コロナウイルス感染症(以下、COVID-19)による勤務形態の変化が、人々の生活習慣や健康管理行動に影響を及ぼしている。例えば、非特許文献1には、13,989名のイタリア人を対象としたアンケート調査から、COVID-19の影響で在宅勤務を開始した人はそうでない人と比べて睡眠障害の深刻レベルが低いことを報告されている。また、非特許文献2では、オンライン調査システムで収集した988件の回答結果から、COVID-19の影響で在宅勤務を開始した人は、在宅勤務を開始する前と比べ、運動量が増え、ジャンクフードの摂取量が減り、同僚との会話時間が増え、これがphysical well-beingとmental well-beingの向上に寄与したことが示唆されている。 Changes in working patterns due to the novel coronavirus disease (COVID-19) are affecting people's lifestyles and health management behaviors. For example, Non-Patent Document 1 reports that a questionnaire survey of 13,989 Italians showed that people who started working from home due to COVID-19 had a lower level of severe sleep disorders than those who did not. In addition, Non-Patent Document 2 suggests that the results of 988 responses collected through an online survey system showed that people who started working from home due to COVID-19 exercised more, ate less junk food, and spent more time talking with colleagues compared to before they started working from home, which contributed to improving their physical and mental well-being.
 これらの分析結果は、COVID-19が人々の生活や健康に及ぼした影響を理解する上で重要な知見である。 These analysis results provide important insights into understanding the impact of COVID-19 on people's lives and health.
 ところが、非特許文献1、2は、単にCOVIT-19が流行する前の期間と流行後の期間との間での勤務形態や生活形態を比較したものに過ぎず、その分析結果からでは毎日の生活習慣と健康状態の関係に在宅もしくは出社の勤務形態が及ぼす影響までは知ることができない。すなわち、ユーザの日ごとの勤務形態の違いが、生活習慣つまり行動にどのような変化をもたらすのか、そしてこの行動の変化が健康状態にどのような影響を及ぼすのかについて、ユーザは知ることができない。 However, Non-Patent Documents 1 and 2 merely compare working styles and lifestyles between the period before and after the COVID-19 pandemic, and the analysis results do not allow us to know the impact of working from home or in the office on the relationship between daily lifestyle habits and health status. In other words, users cannot know what changes in their daily working styles will bring about in their lifestyle habits, or behavior, and what impact these changes in behavior will have on their health status.
 この発明は上記事情に着目してなされたもので、勤務形態ごとにユーザの健康状態の変化に影響を及ぼす要因となる行動を推定できるようにした技術を提供しようとするものである。 This invention was made with the above in mind, and aims to provide technology that can estimate the behaviors that are factors that affect changes in a user's health condition for each work style.
 上記課題を解決するためにこの発明に係る要因行動推定装置又は要因行動推定方法の一態様は、予め設定された一定期間ごとに、対象ユーザの健康状態、複数の生活習慣および勤務形態を表すデータを取得し、取得した前記各データからそれぞれ特徴量を抽出してこれを第1の変数とすると共に、複数の前記生活習慣の各々についてその前記特徴量から勤務形態別の特徴量代表値を算出してこれを第2の変数とする。そして、前記勤務形態別の前記健康状態と複数の前記生活習慣との関係を表すモデルに、前記第1の変数および前記第2の変数を与えることで、前記勤務形態別の前記健康状態の変化に対する複数の前記生活習慣の影響度合いを表すパラメータを導出し、導出した前記パラメータに基づいて、前記勤務形態別に前記健康状態の変化の要因となる行動を表す情報を生成し、出力するようにしたものである。 In order to solve the above problem, one aspect of the factor behavior estimation device or factor behavior estimation method according to the present invention acquires data representing the health state, multiple lifestyle habits, and working style of a target user at predetermined fixed intervals, extracts features from each of the acquired data and sets these as first variables, and calculates a feature representative value for each working style from the features for each of the multiple lifestyle habits and sets this as a second variable. Then, by providing the first variable and the second variable to a model that represents the relationship between the health state and the multiple lifestyle habits for each working style, parameters that represent the degree of influence of the multiple lifestyle habits on changes in the health state for each working style are derived, and information that represents actions that are factors in changes in the health state for each working style is generated and output based on the derived parameters.
 この発明の一態様によれば、勤務形態別に健康変化に影響を及ぼす各生活習慣の重要度が推定され、その推定結果がユーザに提示される。このため、ユーザは自身の勤務形態ごとに、自身の健康維持のために留意すべき生活習慣、つまり健康変化の要因となる行動を特定することが可能となる。しかも、一定期間ごとに健康状態、生活習慣および勤務形態に関するデータが取得され、その都度これらのデータをもとに各生活習慣の重要度の推定結果が更新されるので、ユーザに対し一定期間ごとに健康変化に応じて留意すべき生活習慣を動的に提示し直すことが可能となる。 According to one aspect of the invention, the importance of each lifestyle habit that affects health changes is estimated for each work style, and the estimated results are presented to the user. This allows the user to identify lifestyle habits that should be taken into consideration in order to maintain their health, in other words, behaviors that are the cause of health changes, for each of their own work styles. Furthermore, data on health status, lifestyle habits, and work styles is obtained at regular intervals, and the estimated results of the importance of each lifestyle habit are updated based on this data each time, making it possible to dynamically re-present to the user lifestyle habits that should be taken into consideration in accordance with health changes at regular intervals.
 すなわちこの発明の一態様によれば、勤務形態ごとにユーザの健康状態の変化に影響を及ぼす要因となる行動を推定できるようにした技術を提供することができる。 In other words, according to one aspect of the present invention, it is possible to provide technology that can estimate the behaviors that are factors that affect changes in a user's health condition for each work style.
図1は、この発明の一実施形態に係る要因行動推定装置を備えたシステムの一例を示す図である。FIG. 1 is a diagram showing an example of a system including a factorial behavior inference device according to an embodiment of the present invention. 図2は、この発明の一実施形態に係る要因行動推定装置のハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a hardware configuration of a factorial behavior inference device according to an embodiment of the present invention. 図3は、この発明の一実施形態に係る要因行動推定装置のソフトウェア構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of a software configuration of the factor behavior inference device according to an embodiment of the present invention. 図4は、図3に示した要因行動推定装置の制御部が実行する要因行動推定処理の処理手順と処理内容の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of a process procedure and process contents of the factor behavior inference process executed by the control unit of the factor behavior inference device shown in FIG. 図5は、図4に示した処理手順のうちモデル学習処理の処理手順と処理内容の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the process procedure and process contents of the model learning process from the process procedures shown in FIG. 図6は、図4に示した処理手順のうち要因行動の推定結果を表す情報を生成および出力する処理の処理手順と処理内容の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of the procedure and contents of a process for generating and outputting information representing a result of an inference of a factor behavior, among the procedures shown in FIG. 図7は、図6に示した処理により生成される要因行動の推定結果を表す情報の一例を示す図である。FIG. 7 is a diagram showing an example of information indicating the result of inference of the factor behavior generated by the process shown in FIG.
 以下、図面を参照してこの発明に係わる実施形態を説明する。 Below, an embodiment of the present invention will be described with reference to the drawings.
 [一実施形態]
 (構成例)
 (1)システム
 図1は、この発明の一実施形態に係る要因行動推定システムの構成の一例を示す図である。 
 この発明の一実施形態に係る要因行動推定システムは、要因行動推定装置SVを備え、この要因行動推定装置SVと、当該システムを利用する複数のユーザがそれぞれ使用するユーザ端末UT1~UTnとの間で、ネットワークNWを介して情報データの伝送を可能にしたものである。
[One embodiment]
(Configuration example)
(1) System FIG. 1 is a diagram showing an example of a configuration of a factor behavior inference system according to an embodiment of the present invention.
The factor behavior inference system according to one embodiment of the present invention includes a factor behavior inference device SV, and enables transmission of information data via a network NW between this factor behavior inference device SV and user terminals UT1 to UTn used by a plurality of users who use the system.
 ユーザ端末UT1~UTnは、例えばスマートフォン、ダブレット型端末またはパーソナルコンピュータにより構成され、ブラウザまたはメーラ等の通信ツールを備える。 User terminals UT1 to UTn are, for example, smartphones, tablet terminals or personal computers, and are equipped with communication tools such as a browser or mailer.
 ユーザ端末UT1~UTnは、この発明の一実施形態に係る機能として、ユーザの健康状態を表すデータ、生活習慣を表すデータおよび勤務形態を表すデータをそれぞれセンサから取得し、取得した上記各データをネットワークNWを介して要因行動推定装置SVへ送信する機能を備える。また、ユーザ端末UT1~UTnは、要因行動推定装置SVから送信される要因行動推定結果を表す情報を、ネットワークNWを介して受信する機能を備える。 The user terminals UT1 to UTn each have a function according to an embodiment of the present invention to acquire data representing the user's health condition, lifestyle habits, and working patterns from sensors, and transmit each of the acquired data to the factor behavior estimation device SV via the network NW. The user terminals UT1 to UTn also have a function to receive, via the network NW, information representing the factor behavior estimation results transmitted from the factor behavior estimation device SV.
 健康状態を表すデータは、例えば体重、血圧、血糖値などからなり、例えばユーザ端末UT1~UTnに内蔵されるバイタルセンサ、またはユーザに装着されたウェアラブル端末に備えられるバイタルセンサにより測定される。 The data representing the health condition includes, for example, weight, blood pressure, blood sugar level, etc., and is measured, for example, by a vital sensor built into the user terminals UT1 to UTn, or a vital sensor provided on a wearable terminal worn by the user.
 生活習慣を表すデータは、例えば歩数、睡眠時間、食事量および気分を表すデータからなり、例えばユーザ端末UT1~UTnが備えるアプリケーション・プログラムにより測定される。 The data representing lifestyle habits may include, for example, the number of steps taken, hours of sleep, amount of food eaten, and mood, and may be measured, for example, by an application program provided in the user terminals UT1 to UTn.
 勤務形態を表すデータは、例えば日ごとの勤務の有無、勤務開始時刻および勤務終了時刻、勤務場所を含む。これらのデータは、例えばユーザにより入力され、ユーザ端末UT1~UTnが備えるスケジューラにより管理される。 Data representing working patterns includes, for example, whether or not a person works each day, the start and end times of work, and the place of work. This data is, for example, entered by the user and managed by a scheduler provided in the user terminals UT1 to UTn.
 なお、ネットワークNWは、例えばインターネットを中核とする広域ネットワークと、この広域ネットワークにアクセスするためのアクセスネットワークとを備える。アクセスネットワークとしては、例えば、有線または無線を使用する公衆通信ネットワーク、有線または無線を使用するLAN(Local Area Network)、CATV(Cable Television)ネットワークが使用される。また、システムが例えば企業内または事業所内で運用される場合、ネットワークNWはLANまたは無線LAN等の構内ネットワークにより構成される。 The network NW comprises, for example, a wide area network with the Internet at its core, and an access network for accessing this wide area network. Examples of the access network that can be used include a public communication network using wired or wireless connections, a Local Area Network (LAN) using wired or wireless connections, and a Cable Television (CATV) network. In addition, when the system is operated within a company or business establishment, for example, the network NW is composed of an in-house network such as a LAN or wireless LAN.
 (2)要因行動推定装置SV
 要因行動推定装置SVは、例えばWeb上またはクラウド上に配置されるサーバコンピュータにより構成される。
(2) Factor behavior estimation device SV
The factor behavior inference device SV is configured by, for example, a server computer located on the Web or on the cloud.
 図2および図3は、それぞれ要因行動推定装置SVのハードウェア構成およびソフトウェア構成の一例を示すブロック図である。 FIGS. 2 and 3 are block diagrams showing examples of the hardware and software configurations, respectively, of the factor behavior estimation device SV.
 要因行動推定装置SVは、中央処理ユニット(Central Processing Unit:CPU)等のハードウェアプロセッサを使用した制御部1を備える。そして、この制御部1に対し、プログラム記憶部2およびデータ記憶部3を有する記憶ユニットと、通信インタフェース(以後インタフェースをI/Fと略称する)部4とを、バス5を介して接続したものとなっている。 The causal behavior estimation device SV has a control unit 1 that uses a hardware processor such as a central processing unit (CPU). A storage unit having a program storage unit 2 and a data storage unit 3, and a communication interface (hereinafter the interface will be abbreviated as I/F) unit 4 are connected to this control unit 1 via a bus 5.
 通信I/F部4は、制御部1の制御の下、ネットワークNWにより定義される通信プロトコルに従い、ユーザ端末UT1~UTnとの間で情報データの送受信を行う。 Under the control of the control unit 1, the communication I/F unit 4 transmits and receives information data to and from the user terminals UT1 to UTn in accordance with the communication protocol defined by the network NW.
 プログラム記憶部2は、例えば、記憶媒体としてSSD(Solid State Drive)等の随時書込みおよび読出しが可能な不揮発性メモリと、ROM(Read Only Memory)等の不揮発性メモリとを組み合わせて構成したもので、OS(Operating System)等のミドルウェアに加えて、一実施形態に係る各種制御処理を実行するために必要なアプリケーション・プログラムを格納する。なお、以後OSと各アプリケーション・プログラムとをまとめてプログラムと称する。 The program storage unit 2 is configured by combining, for example, a non-volatile memory such as a solid state drive (SSD) as a storage medium that can be written to and read from at any time, and a non-volatile memory such as a read only memory (ROM), and stores application programs necessary for executing various control processes according to one embodiment, in addition to middleware such as an operating system (OS). Note that hereinafter, the OS and each application program will be collectively referred to as the program.
 データ記憶部3は、例えば、記憶媒体として、SSD等の随時書込みおよび読出しが可能な不揮発性メモリと、RAM(Random Access Memory)等の揮発性メモリと組み合わせたもので、その記憶領域に、この発明の一実施形態を実施するために必要な主たる記憶部として、健康状態記憶部31と、生活習慣記憶部32と、勤務形態記憶部33と、学習モデル記憶部34と、パラメータ記憶部35とを備えている。 The data storage unit 3 is, for example, a combination of a non-volatile memory such as an SSD, which can be written to and read from at any time, and a volatile memory such as a RAM (Random Access Memory), as a storage medium, and the storage area includes a health condition storage unit 31, a lifestyle habit storage unit 32, a work pattern storage unit 33, a learning model storage unit 34, and a parameter storage unit 35, as the main storage units required to implement one embodiment of this invention.
 健康状態記憶部31、生活習慣記憶部32および勤務形態記憶部33は、それぞれ上記ユーザ端末UT1~UTnから取得した各ユーザの健康状態、生活習慣および勤務形態を表す各データを、ユーザまたはユーザ端末UT1~UTnの識別情報(以後ユーザIDと称する)と対応付けて記憶する。 The health condition memory unit 31, lifestyle habit memory unit 32, and work style memory unit 33 store data representing the health condition, lifestyle habit, and work style of each user acquired from the user terminals UT1 to UTn, in association with identification information of the user or the user terminals UT1 to UTn (hereinafter referred to as user ID).
 学習モデル記憶部34は、学習モデルを構成する学習済データを記憶する。 The learning model storage unit 34 stores the learned data that constitutes the learning model.
 パラメータ記憶部35は、制御部1によるモデル学習処理により生成された学習済パラメータを、健康状態に対する生活習慣の影響度合いの推定結果として記憶する。 The parameter storage unit 35 stores the learned parameters generated by the model learning process by the control unit 1 as an estimated result of the degree of influence of lifestyle habits on the health condition.
 制御部1は、この発明の一実施形態を実施するために必要な処理機能として、データ取得処理部11と、モデル構成処理部12と、データ抽出処理部13と、変数構成処理部14と、代表値計算処理部15と、モデル学習処理部16と、要因行動推定情報出力処理部17とを備える。 The control unit 1 includes a data acquisition processing unit 11, a model configuration processing unit 12, a data extraction processing unit 13, a variable configuration processing unit 14, a representative value calculation processing unit 15, a model learning processing unit 16, and a factor behavior estimation information output processing unit 17 as processing functions necessary to implement one embodiment of this invention.
 制御部1の上記各処理部11~17は、何れもプログラム記憶部2に格納されたアプリケーション・プログラムを、制御部1のハードウェアプロセッサに実行させることにより実現される。なお、上記処理部11~17の一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアを用いて実現されてもよい。 Each of the processing units 11 to 17 of the control unit 1 is realized by having the hardware processor of the control unit 1 execute application programs stored in the program storage unit 2. Note that some or all of the processing units 11 to 17 may be realized using hardware such as an LSI (Large Scale Integration) or an ASIC (Application Specific Integrated Circuit).
 データ取得処理部11は、ユーザ端末UT1~UTnから、例えば日ごとに送信される健康状態、生活習慣および勤務形態を表す各データを通信I/F部4を介して受信し、受信した上記健康状態、生活習慣および勤務形態を表す各データを、それぞれ健康状態記憶部31、生活習慣記憶部32および勤務形態記憶部33に、送信元のユーザIDと対応付けて記憶する。 The data acquisition processing unit 11 receives data representing health conditions, lifestyle habits, and working patterns transmitted, for example, daily, from the user terminals UT1 to UTn via the communication I/F unit 4, and stores the received data representing health conditions, lifestyle habits, and working patterns in the health condition memory unit 31, lifestyle habit memory unit 32, and working pattern memory unit 33, respectively, in association with the user ID of the sender.
 モデル構成処理部12は、学習モデルのモデル構造を表すデータを、例えばシステム管理者が使用する管理者端末(図示省略)から通信I/F部4を介して受信する。そして、受信した上記モデル構造を表すデータをモデル学習処理部16に与える。 The model configuration processing unit 12 receives data representing the model structure of the learning model, for example, from an administrator terminal (not shown) used by a system administrator, via the communication I/F unit 4. Then, it provides the received data representing the model structure to the model learning processing unit 16.
 データ抽出処理部13は、上記健康状態記憶部31、生活習慣記憶部32および勤務形態記憶部33から、それぞれユーザごとに健康状態、生活習慣および勤務形態を表す各データを読み込む。そして、読み込んだ上記各データのうち時間的に対応するデータの組を抽出する。 The data extraction processing unit 13 reads data representing the health condition, lifestyle habits, and working style for each user from the health condition storage unit 31, lifestyle habits storage unit 32, and working style storage unit 33. Then, it extracts sets of data that correspond in time from the read data.
 変数構成処理部14は、上記データ抽出処理部13により抽出された、時間的に対応する健康状態、生活習慣および勤務形態を表す各データから、それぞれその特徴量を算出する。このとき、複数種類の生活習慣が取得されている場合には、変数構成処理部14は上記各生活習慣の各々について特徴量を算出する。そして変数構成処理部14は、算出された上記健康状態、各生活習慣および勤務形態に関する各特徴量を、モデル学習処理部16に渡す。 The variable configuration processing unit 14 calculates the feature quantities for each of the data representing the time-corresponding health condition, lifestyle habits, and working patterns extracted by the data extraction processing unit 13. At this time, if multiple types of lifestyle habits are acquired, the variable configuration processing unit 14 calculates the feature quantities for each of the lifestyle habits. The variable configuration processing unit 14 then passes the calculated feature quantities for the health condition, lifestyle habits, and working patterns to the model learning processing unit 16.
 代表値計算処理部15は、上記変数構成処理部14により算出された健康状態、各生活習慣および勤務形態に関する各特徴量のうち、各生活習慣に関する特徴量を受け取る。そして、受け取った上記各生活習慣に関する特徴量の各々について、勤務形態別の代表値を計算する。 The representative value calculation processing unit 15 receives the feature quantities related to each lifestyle habit from among the feature quantities related to the health state, lifestyle habits, and working style calculated by the variable configuration processing unit 14. Then, it calculates a representative value by working style for each of the received feature quantities related to each lifestyle habit.
 モデル学習処理部16は、上記モデル構成処理部12から与えられたモデル構造に対し、上記変数構成処理部14により算出された上記健康状態、生活習慣および勤務形態に関する各特徴量と、上記代表値計算処理部15により算出された勤務形態ごとの各生活習慣の特徴量の代表値を入力して学習処理を行い、これにより健康状態の変化に影響を及ぼす各生活習慣に対応するパラメータを算出する。なお、モデル学習処理の一例は、動作例において説明する。 The model learning processing unit 16 performs learning processing by inputting the feature quantities related to the health condition, lifestyle, and work style calculated by the variable configuration processing unit 14 and the representative values of the feature quantities of each lifestyle habit for each work style calculated by the representative value calculation processing unit 15 into the model structure provided by the model configuration processing unit 12, thereby calculating parameters corresponding to each lifestyle habit that affects changes in the health condition. An example of the model learning processing will be explained in the operation example.
 そしてモデル学習処理部16は、算出した上記各生活習慣に対応するパラメータを、当該パラメータを得たときの上記モデル構造を表すデータ、上記健康状態、生活習慣および勤務形態に関する各特徴量、および上記生活習慣ごとの特徴量の代表値と共に、学習モデル記憶部34に記憶する。また、それと共にモデル学習処理部16は、上記各生活習慣に対応するパラメータを、健康状態に対する生活習慣の影響度合いの推定結果を表す情報としてパラメータ記憶部35に記憶する。 The model learning processing unit 16 then stores the calculated parameters corresponding to each of the lifestyle habits in the learning model storage unit 34 together with data representing the model structure when the parameters were obtained, each feature value related to the health condition, lifestyle habits, and working style, and a representative value of the feature value for each lifestyle habit. At the same time, the model learning processing unit 16 stores the parameters corresponding to each of the lifestyle habits in the parameter storage unit 35 as information representing an estimated result of the degree of influence of the lifestyle habits on the health condition.
 要因行動推定情報出力処理部17は、上記パラメータ記憶部35から各生活習慣に対応するパラメータを読み込み、読み込んだ上記各生活習慣に対応するパラメータに基づいて、健康状態の変化に対する各生活習慣の重要度を表す表示データを生成し、生成した上記表示データを、通信I/F部4から該当するユーザ端末UT1~UTnへ送信する。なお、要因行動推定処理の一例についても、動作例において説明する。 The factor behavior estimation information output processing unit 17 reads parameters corresponding to each lifestyle habit from the parameter storage unit 35, generates display data indicating the importance of each lifestyle habit with respect to changes in health status based on the parameters corresponding to each lifestyle habit that have been read, and transmits the generated display data from the communication I/F unit 4 to the corresponding user terminals UT1 to UTn. An example of the factor behavior estimation process will also be described in the operation example.
 (動作例)
 次に、以上のように構成された要因行動推定装置SVの動作例を説明する。
(Example of operation)
Next, an example of the operation of the factor behavior inference device SV configured as above will be described.
 (1)ユーザに係る各データの取得
 ユーザ端末UT1~UTnでは、例えば日ごとにユーザの1日の健康状態、生活習慣および勤務形態に関するデータをそれぞれ収集し、収集した各データからそれぞれその特徴を表すデータ、例えば代表値または平均値を求め、求めたデータを毎日の決められた時刻にユーザIDと共に要因行動推定装置SVへ送信する。
(1) Acquisition of Data Related to a User The user terminals UT1 to UTn collect data on the user's daily health condition, lifestyle, and working style, for example, for each day, and obtain data representing the characteristics of each of the collected data, such as a representative value or average value, and transmit the obtained data together with the user ID to the factorial behavior inference device SV at a predetermined time every day.
 これに対し、要因行動推定装置SVの制御部1は、データ取得処理部11の制御の下、ユーザ端末UT1~UTnから送信された上記健康状態、生活習慣および勤務形態に関するデータを通信I/F部4を介して受信する。そして、受信した上記健康状態、生活習慣および勤務形態に関するデータを、それぞれ健康状態記憶部31、生活習慣記憶部32および勤務形態記憶部33にユーザIDと対応付けた状態で日ごとに順次記憶する。 In response to this, the control unit 1 of the factor behavior inference device SV, under the control of the data acquisition processing unit 11, receives the data on the health condition, lifestyle habits, and working style transmitted from the user terminals UT1 to UTn via the communication I/F unit 4. The received data on the health condition, lifestyle habits, and working style is then stored sequentially by day in the health condition storage unit 31, lifestyle habit storage unit 32, and working style storage unit 33, respectively, in association with the user ID.
 (2)要因行動の推定
 要因行動推定装置SVの制御部1は、ユーザごとに、上記健康状態記憶部31、生活習慣記憶部32および勤務形態記憶部33に新たな1日のデータが記憶されるごとに、当該ユーザについて健康状態の変化に影響を及ぼす要因となる行動を推定する処理を、以下のように実行する。
(2) Estimation of Factor Behavior Each time new daily data is stored in the health condition storage unit 31, the lifestyle habit storage unit 32, and the work pattern storage unit 33 for each user, the control unit 1 of the factor behavior estimation device SV executes a process of estimating factor behaviors that affect changes in the health condition of that user as follows.
 図4は、要因行動推定装置SVの制御部1が実行する要因行動推定処理の処理手順と処理内容の一例を示すフローチャートである。 FIG. 4 is a flowchart showing an example of the process steps and process contents of the factor behavior inference process executed by the control unit 1 of the factor behavior inference device SV.
 (2-1)データ抽出処理
 要因行動推定装置SVの制御部1は、先ずステップS10において、データ抽出処理部13の制御の下、上記健康状態記憶部31、生活習慣記憶部32および勤務形態記憶部33から、それぞれユーザごとに健康状態、生活習慣および勤務形態を表す各データを読み込む。そして、読み込んだ上記各データの時間的な対応関係を整理して、時間的に対応するデータの組を分析対象として抽出する。
(2-1) Data Extraction Processing First, in step S10, the control unit 1 of the factor behavior inference device SV reads data representing the health condition, lifestyle habits, and working style for each user from the health condition storage unit 31, lifestyle habit storage unit 32, and working style storage unit 33 under the control of the data extraction processing unit 13. Then, the control unit 1 organizes the temporal correspondence of each of the read data, and extracts a set of temporally corresponding data as an analysis target.
 例えば、データ抽出処理部13は、まず健康状態記憶部31、生活習慣記憶部32および勤務形態記憶部33から、それぞれ健康状態を表すデータyi,t 、生活習慣を表すデータxi,s,k 、勤務形態を表すデータwi,(us,ue)を読み込む。 For example, the data extraction processing unit 13 first reads data y i,t representing health condition, data x i,s,k representing lifestyle, and data w i,(us,ue) representing work style from the health condition memory unit 31, lifestyle habit memory unit 32, and work style memory unit 33, respectively.
 ここで、あるユーザiの健康状態を表すデータの取得時刻をt=t0,t1,…,tTとして、
Figure JPOXMLDOC01-appb-M000001
 
と定義すると、分析単位Di,j は、
Figure JPOXMLDOC01-appb-M000002
 
のように構成される。但し、(j=0,…,T-1)である。
Here, the acquisition times of data representing the health condition of a certain user i are t=t 0 , t 1 , . . . , t T .
Figure JPOXMLDOC01-appb-M000001

Then, the analysis unit D i,j is
Figure JPOXMLDOC01-appb-M000002

where j=0,...,T-1.
 これは、あるユーザiの連続して取得された2つの健康状態を表すデータがあるとき、それらの取得時刻tj とtj+1 との間に取得された生活習慣を表すデータの集合Aijと勤務形態を表すデータの集合Bijとを対応付けて、分析単位Dijとして構成する手順を表すものである。 This represents a procedure for associating a set of data A ij representing lifestyle habits and a set of data B ij representing working patterns acquired between acquisition times t j and t j+1 of two consecutive health conditions of a user i, and constructing them as an analysis unit D ij .
 データ抽出処理部13は、上記分析単位Dijを要素に持つ集合D
Figure JPOXMLDOC01-appb-M000003
 
を構成できたか否かをステップS11で判定する。そして、時間的に対応するデータの集合Dを構成できた場合には、データ抽出処理部13は、上記構成した集合Dを前処理済のデータとしてステップS12により変数構成処理部14に渡す。
The data extraction processing unit 13 extracts a set D
Figure JPOXMLDOC01-appb-M000003

In step S11, it is determined whether or not a set D of temporally corresponding data has been constructed. If a set D of temporally corresponding data has been constructed, the data extraction processing unit 13 passes the constructed set D to the variable construction processing unit 14 as preprocessed data in step S12.
 これに対し、D=φだった場合、つまり時間的に対応するデータの集合Dを構成できなかった場合、データ抽出処理部13は、ステップS17による要因行動推定結果の出力処理に移行する。 On the other hand, if D = φ, that is, if a temporally corresponding data set D cannot be constructed, the data extraction processing unit 13 proceeds to output processing of the factor behavior estimation result in step S17.
 (2-2)変数の構成
 上記データ抽出処理部13から上記データ集合Dを受け取ると、変数構成処理部14はステップS13において、学習モデルに学習させるための変数を、健康状態、生活習慣および勤務形態の各々について、例えば以下のように構成する。
(2-2) Variable Construction When the data set D is received from the data extraction processing unit 13, the variable construction processing unit 14 constructs, in step S13, variables to be trained into the learning model for each of health condition, lifestyle, and working style, for example, as follows:
 (2-2-1)健康状態に関する変数
 変数構成処理部14は、先ず分析単位Dij に含まれる2つの健康状態を表すデータyi,tjとyi,tj+1との差分を
Figure JPOXMLDOC01-appb-M000004
 
により算出し、算出した結果yi,j を健康状態を表すデータの特徴量とする。但し、2つの健康状態を表すデータであるyi,tj とyi,tj+1 との差分を表現する尺度であれば、特徴量としては上記以外の尺度が用いられてもよい。
(2-2-1) Variables related to health conditions The variable construction processing unit 14 first calculates the difference between data y i,tj and y i,tj+1 representing two health conditions included in the analysis unit D ij.
Figure JPOXMLDOC01-appb-M000004

The calculated result y i,j is set as the feature of the data representing the health condition. However, a scale other than the above may be used as the feature as long as it represents the difference between y i,tj and y i,tj+1 , which are data representing two health conditions.
 (2-2-2)生活習慣に関する変数
 変数構成処理部14は、次に分析単位Dij に対応する
     Ai,j ={xi,s,k |tj <s<tj+1,k∈K}
に対して、あるユーザiの時刻tj <s<tj+1 に取得された単位時間当たりのある生活習慣に関する測定値を、
Figure JPOXMLDOC01-appb-M000005
 
により算出し、算出したxi,j,k を生活習慣kの特徴量とする。
(2-2-2) Variables Related to Lifestyle Habits The variable construction processing unit 14 next constructs A i,j = {x i,s,k |t j <s<t j+1 , k ∈ K} corresponding to the analysis unit D ij .
For a certain user i, a measurement value related to a certain lifestyle habit per unit time acquired at time t j <s <t j+1 is expressed as
Figure JPOXMLDOC01-appb-M000005

The calculated x i,j,k is used as the feature quantity of lifestyle habit k.
 但し、例えば測定値の平均値のように、あるユーザiの時刻tj <s<tj+1 に取得されたある生活習慣kの測定値の代表的な値を表現する尺度であれば、生活習慣を表すデータの特徴量は上記以外の尺度が使用されてもよい。また、複数の生活習慣の各々について異なる尺度が用いられてもよい。 However, a scale other than the above may be used for the feature amount of the data representing the lifestyle habits, as long as the scale expresses a representative value of the measurement values of a certain lifestyle habit k acquired at time tj < s < tj+1 of a certain user i, such as an average value of the measurement values. Also, a different scale may be used for each of a plurality of lifestyle habits.
 (2-2-3)勤務形態に関する変数
 変数構成処理部14は、最後に勤務形態に関するデータの特徴量を以下のように算出する。 
 例えば、勤務形態がc種類(w={w1,…,wc })あるとする。この場合、変数構成処理部14は、分析単位Dij に対応するBij に含まれる勤務形態データにおいて、勤務時間をc種類の勤務形態ごとに集計したとき、最も長い時間を取得した勤務形態をDij の勤務形態とする。
(2-2-3) Variables Related to Working Styles Finally, the variable configuration processing unit 14 calculates the feature quantities of the data related to working styles as follows.
For example, suppose there are c types of work styles (w = { w1 , ..., wc }). In this case, the variable construction processing unit 14 counts the work hours for each of the c types of work styles in the work style data included in Bij corresponding to the analysis unit Dij , and determines the work style that has the longest time as the work style of Dij .
 なお、Bij に含まれている勤務形態データから、各勤務形態の測定時間の合計WTc は、
Figure JPOXMLDOC01-appb-M000006
                                      (7)
として算出される。但し、c=1,…,Cである。
From the work style data included in B ij , the total measurement time WTc for each work style is calculated as follows:
Figure JPOXMLDOC01-appb-M000006
(7)
where c=1, . . . , C.
 この(7) 式に基づき、Dij の勤務形態を、
Figure JPOXMLDOC01-appb-M000007
                                      (8)
 
のように構成する。但し、
Figure JPOXMLDOC01-appb-M000008
 
である。ここで、wijは、WTc が最長であるcの要素wi,j,c が1、それ以外の要素が0であるone-hotベクトルとなる。
Based on this equation (7), the working style of D ij is as follows:
Figure JPOXMLDOC01-appb-M000007
(8)

The structure is as follows. However,
Figure JPOXMLDOC01-appb-M000008

Here, w ij is a one-hot vector in which the element w i,j,c of c for which WTc is the longest is 1 and the other elements are 0.
 そして変数構成処理部14は、算出された上記健康状態に関する特徴量yi,j 、各生活習慣kに関する特徴量xi,j,k および勤務形態に関する特徴量wijを、モデル学習処理部16に渡す。 The variable configuration processing unit 14 then passes the calculated feature amount y i,j related to the health state, the feature amount x i,j,k related to each lifestyle habit k, and the feature amount w ij related to the working style to the model learning processing unit 16 .
 (2-3)各生活習慣に関する特徴量の代表値の算出
 要因行動推定装置SVの制御部1は、続いてステップS14において、代表値計算処理部15の制御の下、上記変数構成処理部14から上記各生活習慣について算出された特徴量xi,j,kを受け取る。そして、受け取った上記各生活習慣に関する特徴量xi,j,kの各々について、勤務形態別の代表値を以下のように計算する。
(2-3) Calculation of Representative Value of Feature Amount Related to Each Lifestyle Habit Subsequently, in step S14, the control unit 1 of the factor behavior inference device SV receives the feature amount x i,j,k calculated for each lifestyle habit from the variable configuration processing unit 14 under the control of the representative value calculation processing unit 15. Then, for each of the received feature amounts x i,j,k related to each lifestyle habit, a representative value by work type is calculated as follows.
 すなわち、生活習慣データの特徴量の分布は勤務形態ごとに異なるため、その違いをモデル学習時に統制させる必要がある。そこで、代表値計算処理部15は、あるユーザiのある勤務形態Wc における生活習慣データkの特徴量xi,j,k の平均値を、
Figure JPOXMLDOC01-appb-M000009
 
により算出する。
In other words, since the distribution of the feature quantities of the lifestyle habit data differs for each work style, it is necessary to control the difference during model learning. Therefore, the representative value calculation processing unit 15 calculates the average value of the feature quantities x i,j,k of the lifestyle habit data k of a certain user i in a certain work style W c as follows:
Figure JPOXMLDOC01-appb-M000009

It is calculated as follows.
 但し、あるユーザiのある勤務形態wc における生活習慣データkの特徴量の代表的な値を求める手法は、上記式に限らない。また、複数の生活習慣に対し異なる手法を用いてそれぞれの代表値を算出するようにしてもよい。 However, the method for finding a representative value of the feature quantity of lifestyle habit data k for a certain working style wc of a certain user i is not limited to the above formula. In addition, different methods may be used to calculate representative values for multiple lifestyle habits.
 代表値計算処理部15は、算出した上記各生活習慣データの特徴量の代表値を、モデル学習処理部16に渡す。 The representative value calculation processing unit 15 passes the calculated representative values of the features of each of the lifestyle habit data to the model learning processing unit 16.
 (2-4)学習モデルによる学習
 要因行動推定装置SVの制御部1は、次にステップS16において、モデル学習処理部16の制御の下、学習モデルを使用して各生活習慣に対応するパラメータを学習する処理を、以下のように実行する。
(2-4) Learning Using the Learning Model Next, in step S16, the control unit 1 of the factorial behavior inference device SV executes a process of learning parameters corresponding to each lifestyle habit using the learning model under the control of the model learning processing unit 16 as follows.
 図5は、モデル学習処理部16が実行する処理手順と処理内容の一例を示すフローチャートである。 FIG. 5 is a flowchart showing an example of the processing procedure and processing content executed by the model learning processing unit 16.
 (2-4-1)モデル構造の構成
 モデル構造を表すデータは、例えばシステム管理者により指定され、管理者端末から送信される。これに対し、要因行動推定装置SVの制御部1は、上記モデル構造を表すデータを、モデル構成処理部12により通信I/F部4を介して受信し、モデル学習処理部16に渡す。
(2-4-1) Configuration of Model Structure Data representing the model structure is designated, for example, by a system administrator and transmitted from an administrator terminal. In response to this, the control unit 1 of the factorial behavior inference device SV receives the data representing the model structure from the model configuration processing unit 12 via the communication I/F unit 4, and passes it to the model learning processing unit 16.
 モデル学習処理部16は、先ずステップS161において、上記モデル構成処理部12からモデル構造を表すデータを受け取る。 First, in step S161, the model learning processing unit 16 receives data representing the model structure from the model configuration processing unit 12.
 モデル構造としては、勤務形態ごとに健康状態と生活習慣との関係性を学習すべく、以下のモデルが使用される。この例では、健康状態に関する特徴量yi,j と各生活習慣kに関する特徴量xi,j,k との関係を、パラメータθを用いて、
Figure JPOXMLDOC01-appb-M000010
 
で示す回帰モデルとして表現する。
As the model structure, the following model is used to learn the relationship between health status and lifestyle habits for each work style. In this example, the relationship between the feature value y i,j related to the health status and the feature value x i,j,k related to each lifestyle habit k is expressed as follows using a parameter θ:
Figure JPOXMLDOC01-appb-M000010

This is expressed as a regression model shown below.
 ここで、パラメータθk が勤務形態wc に応じて異なる値θk,c を示すと仮定する。このθk,c に対して勤務形態wi,j,c =1である生活習慣に関する特徴量xi,j,k を対応させることを考慮すると、
Figure JPOXMLDOC01-appb-M000011
 
と表現できる。
Here, it is assumed that the parameter θ k has a different value θ k,c depending on the work style w c. Considering that the feature quantity x i,j,k related to the lifestyle with the work style w i,j,c =1 is associated with this θ k,c ,
Figure JPOXMLDOC01-appb-M000011

This can be expressed as follows.
 さらに、勤務形態に対する生活習慣に関する特徴量xi,j,k の分布の違いを統制するため、当該生活習慣に関する特徴量xi,j,k の代表値を利用して
Figure JPOXMLDOC01-appb-M000012
 
とする。
Furthermore, in order to control the difference in distribution of the lifestyle feature x i,j,k for each work style, the representative value of the lifestyle feature x i,j,k is used.
Figure JPOXMLDOC01-appb-M000012

Let us assume that.
 従って、健康状態に関する特徴量yi,j と各生活習慣kに関する特徴量xi,j,k との関係を表す回帰モデルは、
Figure JPOXMLDOC01-appb-M000013
 
のように表現できる。
Therefore, the regression model representing the relationship between the feature value y i,j related to the health state and the feature value x i,j,k related to each lifestyle habit k is as follows:
Figure JPOXMLDOC01-appb-M000013

It can be expressed as follows.
 なお、この例では、一般的に最も解釈性の高い数理モデルとして線形回帰モデルを採用した場合について説明したが、ユーザに対して各生活習慣の特徴量としての重要度を勤務形態ごとに表現できる機械学習モデルであれば、その他のどのような数理モデルでも採用可能である。 In this example, we have explained the case where a linear regression model is used as the mathematical model with the highest interpretability, but any other mathematical model can be used as long as it is a machine learning model that can express to the user the importance of each lifestyle habit as a feature for each working style.
 (2-4-2)パラメータの学習
 次にモデル学習処理部16は、ステップS162において、上記変数構成処理部14から上記健康状態に関する特徴量yi,j 、各生活習慣kに関する特徴量xi,j,k および勤務形態に関する特徴量wijを取得し、さらにステップS163において、代表値計算処理部15から上記各生活習慣データの特徴量の代表値を取得する。
(2-4-2) Parameter Learning Next, in step S162, the model learning processing unit 16 obtains the feature amount y i,j related to the health state, the feature amount x i,j,k related to each lifestyle habit k, and the feature amount w ij related to the working style from the variable configuration processing unit 14, and further obtains the representative value of the feature amount of each of the lifestyle habit data from the representative value calculation processing unit 15 in step S163.
 そして、モデル学習処理部16は、ステップS164において、上記モデル構成処理部12から取得したモデル構造に対し、上記変数構成処理部14から取得した健康状態、生活習慣および勤務形態に関する各特徴量と、上記代表値計算処理部15から取得した勤務形態ごとの各生活習慣の特徴量の代表値を変数として入力して学習処理を行い、これにより健康状態の変化に対する各生活習慣の影響度合いを表すパラメータθを、以下のように算出する。 Then, in step S164, the model learning processing unit 16 performs a learning process by inputting, as variables, each feature value related to the health condition, lifestyle, and work style obtained from the variable configuration processing unit 14 and the representative value of the feature value of each lifestyle for each work style obtained from the representative value calculation processing unit 15 into the model structure obtained from the model configuration processing unit 12, and thereby calculates a parameter θ that indicates the degree of influence of each lifestyle on changes in the health condition as follows:
 ここでは、最も代表的な手法である最小二乗法を用いて学習を行う場合を例にとって説明する。 Here, we will use an example of learning using the least squares method, which is the most common method.
 先ず、a,…,an を要素に持つベクトルa=(a,…,an )を、{ai }iと表記する。そして、式(14)に示したモデル構造を、
Figure JPOXMLDOC01-appb-M000014
 
のように変形する。
First, a vector a=(a 0 ,...,a n ) having elements a 0 ,...,a n is expressed as {a i } i . Then, the model structure shown in equation (14) is expressed as follows:
Figure JPOXMLDOC01-appb-M000014

It is transformed as follows.
 ここで、
Figure JPOXMLDOC01-appb-M000015
 
とすると、式(15)は
          y=XT Θ+e
と表される。
here,
Figure JPOXMLDOC01-appb-M000015

Then, equation (15) becomes y=X T Θ+e
This is expressed as:
 最小二乗法では、上式の誤差項eを最小化するパラメータΘを算出する。
 ここで、yの推定値をy^=XT Θとすると、誤差項eは
          e=y-y^=y-XT Θ                (20)
となり、以下の最適化問題
Figure JPOXMLDOC01-appb-M000016
                                     (21)
を解くことによって、所望のパラメータを得ることができる。
In the least squares method, a parameter Θ that minimizes the error term e in the above equation is calculated.
Here, if the estimated value of y is y^=X T Θ, the error term e is e=y-y^=y-X T Θ (20)
Then, the following optimization problem is
Figure JPOXMLDOC01-appb-M000016
(twenty one)
The desired parameters can be obtained by solving
 これは、損失関数をL(Θ)=(y-XT Θ)T (y-XT Θ)とし、この損失関数のΘに関する勾配が0となる点を探せばよい。したがって、
Figure JPOXMLDOC01-appb-M000017
 
より、最適なパラメータΘを
Figure JPOXMLDOC01-appb-M000018
                                     (25)
として得ることができる。
This can be done by setting the loss function as L(Θ)=(y−X T Θ) T (y−X T Θ) and searching for the point where the gradient of this loss function with respect to Θ is 0.
Figure JPOXMLDOC01-appb-M000017

Therefore, the optimal parameter Θ is
Figure JPOXMLDOC01-appb-M000018
(twenty five)
can be obtained as:
 モデル学習処理部16は、ステップS165において、上記各生活習慣に対応する最適パラメータΘを、当該パラメータΘを得たときの上記モデル構造を表すデータ、上記健康状態、生活習慣および勤務形態に関する各特徴量、および上記生活習慣ごとの特徴量の代表値と共に、学習モデル記憶部34に記憶する。 In step S165, the model learning processing unit 16 stores the optimal parameters Θ corresponding to each of the lifestyle habits in the learning model storage unit 34 together with data representing the model structure when the parameters Θ were obtained, each feature value related to the health state, lifestyle habits, and working style, and a representative value of the feature value for each lifestyle habit.
 またモデル学習処理部16は、ステップS166において、算出された上記各生活習慣に対応する最適パラメータΘを、勤務形態別の健康状態の変化に対する各生活習慣の影響度合いの推定結果としてパラメータ記憶部35に記憶する。 In addition, in step S166, the model learning processing unit 16 stores the calculated optimal parameters Θ corresponding to each of the lifestyle habits in the parameter storage unit 35 as estimated results of the degree of influence of each lifestyle habit on changes in health status by work style.
 (3)推定結果の出力
 要因行動推定装置SVの制御部1は、最後にステップS17において、要因行動推定情報出力処理部17の制御の下、勤務形態別の各生活習慣の重要度を表す表示データを生成し、生成した表示データをユーザ端末UT1~UTnに向けて送信する。
(3) Output of inference results Finally, in step S17, the control unit 1 of the factor behavior inference device SV generates display data indicating the importance of each lifestyle habit for each work style under the control of the factor behavior inference information output processing unit 17, and transmits the generated display data to the user terminals UT1 to UTn.
 図6は、要因行動推定情報出力処理部17の処理手順と処理内容の一例を示すフローチャートである。 FIG. 6 is a flowchart showing an example of the processing procedure and processing contents of the factor behavior inference information output processing unit 17.
 すなわち、要因行動推定情報出力処理部17は、先ずステップS171において、パラメータ記憶部35から上記各生活習慣に対応する学習済パラメータΘを読み込む。そして要因行動推定情報出力処理部17は、ステップS172において、読み込んだ上記各生活習慣に対応する学習済パラメータΘに基づいて、勤務形態別の健康状態に対する各生活習慣の重要度を算出する。 In other words, first, in step S171, the factor behavior inference information output processing unit 17 reads the learned parameters Θ corresponding to each of the lifestyle habits from the parameter storage unit 35. Then, in step S172, the factor behavior inference information output processing unit 17 calculates the importance of each lifestyle habit with respect to the health status by work type based on the learned parameters Θ corresponding to each of the lifestyle habits that have been read.
 例えば、ある勤務形態wc において、各生活習慣に対応するパラメータの絶対値の総和に対するある生活習慣kが持つパラメータの絶対値の割合を、その生活習慣の重要度πk,c とし、これを例えば
Figure JPOXMLDOC01-appb-M000019
                                     (26)
により算出する。
For example, in a certain work pattern w c , the ratio of the absolute value of a parameter of a certain lifestyle habit k to the sum of the absolute values of the parameters corresponding to each lifestyle habit is defined as the importance of that lifestyle habit π k,c .
Figure JPOXMLDOC01-appb-M000019
(26)
It is calculated as follows.
 以下のその具体例を述べる。いま、健康状態として1日の体重変化を想定し、生活習慣として運動、食事、睡眠、気分を想定したとする。また、勤務形態としては「在宅」、「出社」の2つの形態を想定する。この場合、要因行動推定情報出力処理部17による上記計算の結果、勤務形態別の各生活習慣の重要度πk,c は、例えば
 π(運動,在宅)=0.50,π(食事,在宅)=0.30,π(睡眠,在宅)=0.15,π(気分,在宅)=0.05
 π(運動,出社)=0.15,π(食事,出社)=0.30,π(睡眠,出社)=0.30,π(気分,出社) =0.25
のように算出される。
A specific example is given below. Let us assume that the health condition is a daily weight change, and that the lifestyle habits are exercise, diet, sleep, and mood. In addition, two work styles are assumed: "at home" and "going to work." In this case, as a result of the above calculation by the factor behavior estimation information output processing unit 17, the importance π k,c of each lifestyle habit by work style is, for example, π (exercise, at home) = 0.50, π (diet, at home) = 0.30, π (sleep, at home) = 0.15, π (mood, at home) = 0.05.
π(exercise, going to work) = 0.15, π(meal, going to work) = 0.30, π(sleep, going to work) = 0.30, π(mood, going to work) = 0.25
It is calculated as follows:
 要因行動推定情報出力処理部17は、上記勤務形態別の各生活習慣の重要度πk,c の算出結果をユーザに提示するために、ステップS173において表示データを生成する。
 図7は、上記勤務形態別の各生活習慣の重要度πk,c の算出結果をユーザに提示するために生成された表示データの一例を示すものである。
The factor behavior inference information output processing unit 17 generates display data in step S173 in order to present the calculation result of the importance π k,c of each lifestyle habit by each work style to the user.
FIG. 7 shows an example of display data generated for presenting the calculation results of the importance π k,c of each lifestyle habit for each work style to the user.
 要因行動推定情報出力処理部17は、最後にステップS174において、生成した上記表示データを、通信I/F部4からネットワークNWを介して対象ユーザのユーザ端末UT1~UTnに向け送信する。対象ユーザは、ユーザ端末UT1~UTnに表示された上記表示データをもとに、自身の体重変化に影響を及ぼす生活習慣、つまり健康変化の要因となる行動が、上記4種類の生活習慣のうちのいずれであるかを、その重要度により特定することが可能となる。 Finally, in step S174, the factor behavior estimation information output processing unit 17 transmits the generated display data from the communication I/F unit 4 via the network NW to the user terminals UT1 to UTn of the target users. Based on the display data displayed on the user terminals UT1 to UTn, the target users can identify which of the four lifestyle habits above is the lifestyle habit that affects their own weight change, that is, the behavior that is the cause of health changes, based on its importance.
 なお、ユーザに対し、勤務形態別に健康状態の変化に影響を及ぼす重要な生活習慣を提示するという目的を達成できるのであれば、例えば重要度πk,c を棒グラフにより表すといった別の手法が用いられてもよい。 Note that, as long as the purpose of presenting to the user important lifestyle habits that affect changes in health status according to work style can be achieved, another method may be used, such as showing the importance level π k,c by a bar graph.
 また、以上の例では、要因行動推定情報出力処理部17が、勤務形態別の各生活習慣の重要度πk,c の算出結果をそのまま表示データとしてユーザ端末UT1~UTnへ送信する場合を例にとって説明した。しかし、それに限らず、要因行動推定情報出力処理部17が、例えば算出された上記各生活習慣の重要度πk,c を予め設定されたしきい値と比較して、重要度πk,c が上記しきい値以上となる生活習慣を特定し、特定した上記生活習慣を表す表示データを生成してユーザ端末UT1~UTnへ送信するようにしてもよい。また、その際要因行動推定情報出力処理部17は、特定した生活習慣にその重要度πk,c を付記するようにしてもよい。 In the above example, the factor behavior inference information output processing unit 17 transmits the calculation result of the importance π k,c of each lifestyle habit by work style directly as display data to the user terminals UT1 to UTn. However, the present invention is not limited to this. For example, the factor behavior inference information output processing unit 17 may compare the calculated importance π k,c of each lifestyle habit with a preset threshold value, identify a lifestyle habit whose importance π k,c is equal to or greater than the threshold value, generate display data representing the identified lifestyle habit, and transmit the display data to the user terminals UT1 to UTn. In addition, the factor behavior inference information output processing unit 17 may add the importance π k,c to the identified lifestyle habit.
 (作用・効果)
 以上述べたように一実施形態では、先ずデータ取得処理部11により、勤務形態(例えば在宅時と出社時)の各々について、ユーザの健康状態と、複数の生活習慣を表すデータを取得し、データ抽出処理部13により上記各データのうち時間的に対応するデータの組を抽出して、このデータの組を構成する各データの特徴量を変数構成処理部14により求め、求めた各特徴量をもとに勤務形態別に各生活習慣に関する特徴量の代表値を代表値計算処理部15により算出する。そして、モデル学習処理部16により、モデル構成処理部12により取得したモデル構造に、上記各データの特徴量およびその代表値を適用して、ユーザの健康状態の変化に影響を及ぼす各生活習慣の重要度を表すパラメータを学習する。そして、上記学習により得られた、各生活習慣に対応する学習済パラメータΘをもとに、要因行動推定情報出力処理部17により勤務形態別に各生活習慣の重要度を表す表示データを生成してユーザ端末UT1~UTnへ送信するようにしている。
(Action and Effects)
As described above, in one embodiment, the data acquisition processing unit 11 first acquires data representing the user's health condition and a plurality of lifestyle habits for each of the work styles (for example, when working from home and when working at the office), the data extraction processing unit 13 extracts sets of data corresponding in time from the above data, the variable configuration processing unit 14 obtains the feature values of each data constituting this set of data, and the representative value calculation processing unit 15 calculates the representative value of the feature values related to each lifestyle for each work style based on each obtained feature value. Then, the model learning processing unit 16 applies the feature values of each of the above data and their representative values to the model structure obtained by the model configuration processing unit 12 to learn parameters representing the importance of each lifestyle habit that affects changes in the user's health condition. Then, based on the learned parameters Θ corresponding to each lifestyle obtained by the above learning, the factor behavior estimation information output processing unit 17 generates display data representing the importance of each lifestyle for each work style and transmits it to the user terminals UT1 to UTn.
 従って、一定期間ごとに勤務形態別に健康変化に影響を及ぼす各生活習慣の重要度が推定され、その推定結果がユーザに提示される。このため、ユーザは一定期間ごとに、自身の勤務形態において健康維持のために留意すべき生活習慣、つまり健康変化の要因となる行動を特定することが可能となる。 Therefore, the importance of each lifestyle habit that affects health changes is estimated for each working style for each fixed period, and the estimated results are presented to the user. This allows the user to identify the lifestyle habits they should pay attention to in order to maintain their health for their own working style, that is, the behaviors that are the cause of health changes, for each fixed period.
 [その他の実施形態]
 前記一実施形態では、要因行動推定装置SVの処理機能をWebまたはクラウド上のサーバコンピュータに備えた場合を例にとって説明したが、例えば職場やコミュニティ等のローカルエリアネットワーク上に配置されたサーバコンピュータや、複数のユーザが共有するパーソナルコンピュータ等に設けるようにしてもよい。また、上記要因行動推定装置SVの機能を、複数のサーバコンピュータと、ユーザ等が使用するパーソナルコンピュータとに分散配置するようにしてもよい。
[Other embodiments]
In the embodiment, the processing functions of the factorial behavior inference device SV are provided in a server computer on the Web or cloud, but the processing functions of the factorial behavior inference device SV may be provided in a server computer located on a local area network such as a workplace or community, or in a personal computer shared by multiple users. The functions of the factorial behavior inference device SV may be distributed among multiple server computers and personal computers used by users, etc.
 その他、健康状態の種類、推定対象となる生活習慣の種類、勤務形態の種類、その各データの特徴量の算出手法、学習モデルの構造、ユーザに提示する表示データの構成等についても、この発明の要旨を逸脱しない範囲で種々変形して実施可能である。 Other aspects of the invention may be modified in various ways without departing from the spirit and scope of the invention, including the type of health condition, the type of lifestyle to be estimated, the type of working style, the method for calculating the features of each of the data, the structure of the learning model, and the configuration of the display data presented to the user.
 以上、この発明の実施形態を詳細に説明してきたが、前述までの説明はあらゆる点においてこの発明の例示に過ぎない。この発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。つまり、この発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。 Although the embodiments of the present invention have been described in detail above, the above description is merely an example of the present invention in every respect. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention. In other words, when implementing the present invention, specific configurations according to the embodiments may be appropriately adopted.
 要するにこの発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。 In short, this invention is not limited to the above-described embodiment as it is, and in the implementation stage, the components can be modified and embodied without departing from the gist of the invention. Furthermore, various inventions can be formed by appropriately combining multiple components disclosed in the above-described embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, components from different embodiments may be appropriately combined.
 SV…要因行動推定装置
 UT1~UTn…ユーザ端末
 NW…ネットワーク
 1…制御部
 2…プログラム記憶部
 3…データ記憶部
 4…通信I/F部
 5…バス
 11…データ取得処理部
 12…モデル構成処理部
 13…データ抽出処理部
 14…変数構成処理部
 15…代表値計算処理部
 16…モデル学習処理部
 17…要因行動推定情報出力処理部
 31…健康状態記憶部
 32…生活習慣記憶部
 33…勤務形態記憶部
 34…学習モデル記憶部
 35…パラメータ記憶部
SV...factorial behavior inference device UT1 to UTn...user terminal NW...network 1...control unit 2...program storage unit 3...data storage unit 4...communication I/F unit 5...bus 11...data acquisition processing unit 12...model configuration processing unit 13...data extraction processing unit 14...variable configuration processing unit 15...representative value calculation processing unit 16...model learning processing unit 17...factorial behavior inference information output processing unit 31...health condition storage unit 32...lifestyle storage unit 33...work pattern storage unit 34...learning model storage unit 35...parameter storage unit

Claims (7)

  1.  予め設定された一定期間ごとに、対象ユーザの健康状態、複数の生活習慣および勤務形態を表すデータを取得する第1の処理部と、
     前記健康状態、複数の前記生活習慣および前記勤務形態を表す各データからそれぞれ特徴量を抽出し、抽出した前記特徴量を第1の変数として出力する第2の処理部と、
     複数の前記生活習慣の各々について、その前記特徴量から勤務形態別の特徴量代表値を算出し、算出した前記特徴量代表値を第2の変数として出力する第3の処理部と、
     前記勤務形態別の前記健康状態と複数の前記生活習慣との関係を表すモデルに、前記第1の変数および前記第2の変数を与えることで、前記勤務形態別の前記健康状態の変化に対する複数の前記生活習慣の影響度合いを表すパラメータを導出する第4の処理部と、
     前記パラメータに基づいて、前記勤務形態別に前記健康状態の変化の要因となる行動を表す情報を生成し、出力する第5の処理部と
     を具備する要因行動推定装置。
    A first processing unit that acquires data representing a health condition, a plurality of lifestyle habits, and a working style of a target user at a predetermined fixed period;
    a second processing unit that extracts feature amounts from each of the data representing the health condition, the plurality of lifestyle habits, and the working pattern, and outputs the extracted feature amounts as a first variable;
    a third processing unit that calculates a representative value of characteristic amounts for each of the plurality of lifestyle habits from the characteristic amounts and outputs the calculated representative value of characteristic amounts as a second variable;
    a fourth processing unit that derives a parameter that represents a degree of influence of the plurality of lifestyle habits on a change in the health state by the work style by applying the first variable and the second variable to a model that represents a relationship between the health state by the work style and the plurality of lifestyle habits;
    a fifth processing unit that generates and outputs information indicating behaviors that are factors that cause changes in the health state for each of the work styles based on the parameters.
  2.  前記健康状態、複数の前記生活習慣および前記勤務形態を表す前記データのうち、時間的に対応する前記データの組を抽出する第6の処理部を、さらに具備し、
     前記第2の処理部は、抽出された前記データの組について当該組を構成する前記データからそれぞれ前記特徴量を抽出し、抽出した前記特徴量を前記第1の変数として出力する、請求項1に記載の要因行動推定装置。
    A sixth processing unit extracts a set of the data that correspond in time from the data representing the health condition, the plurality of lifestyle habits, and the working style,
    2. The factor behavior inference device according to claim 1, wherein the second processing unit extracts the feature amount from each of the data constituting the extracted data set, and outputs the extracted feature amount as the first variable.
  3.  前記第4の処理部は、前記勤務形態別の前記健康状態と複数の前記生活習慣との関係を表すモデルとして線形回帰モデルを用い、前記パラメータを最小二乗法を用いて算出する、請求項1に記載の要因行動推定装置。 The factor behavior inference device according to claim 1, wherein the fourth processing unit uses a linear regression model as a model representing the relationship between the health state by the work type and the plurality of lifestyle habits, and calculates the parameters using the least squares method.
  4.  前記第5の処理部は、前記勤務形態別に、複数の前記生活習慣の前記パラメータの絶対値の総和に対する個々の前記生活習慣の前記パラメータの絶対値の割合を、個々の前記生活習慣の重要度を表す情報として算出し、算出した個々の前記生活習慣の重要度を表す情報を前記健康状態の変化の要因となる行動を表す情報として出力する、請求項1に記載の要因行動推定装置。 The factor behavior inference device according to claim 1, wherein the fifth processing unit calculates, for each of the work styles, a ratio of the absolute value of the parameter of each of the lifestyle habits to the sum of the absolute values of the parameters of the plurality of lifestyle habits as information representing the importance of each of the lifestyle habits, and outputs the calculated information representing the importance of each of the lifestyle habits as information representing behavior that is a factor in the change in the health state.
  5.  前記第5の処理部は、前記勤務形態別に、複数の前記生活習慣の前記パラメータの絶対値の総和に対する個々の前記生活習慣の前記パラメータの絶対値の割合を、個々の前記生活習慣の重要度を表す情報として算出し、算出した前記重要度が予め設定されたしきい値以上となる前記生活習慣を、前記健康状態の変化の要因となる行動を表す情報として出力する、請求項1に記載の要因行動推定装置。 The factor behavior inference device according to claim 1, wherein the fifth processing unit calculates, for each of the work styles, a ratio of the absolute value of the parameter of each of the lifestyle habits to the sum of the absolute values of the parameters of the plurality of lifestyle habits as information representing the importance of each of the lifestyle habits, and outputs the lifestyle habits whose calculated importance is equal to or exceeds a preset threshold as information representing behavior that is a factor in the change in the health state.
  6.  プロセッサと記憶媒体とを備える情報処理装置が実行する要因行動推定方法であって、
     予め設定された一定期間ごとに、対象ユーザの健康状態、複数の生活習慣および勤務形態を表すデータを取得する過程と、
     前記健康状態、複数の前記生活習慣および前記勤務形態を表す各データからそれぞれ特徴量を抽出し、抽出した前記特徴量を第1の変数として出力する過程と、
     複数の前記生活習慣の各々について、その前記特徴量から勤務形態別の特徴量代表値を算出し、算出した前記特徴量代表値を第2の変数として出力する過程と、
     前記勤務形態別の前記健康状態と複数の前記生活習慣との関係を表すモデルに、前記第1の変数および前記第2の変数を与えることで、前記勤務形態別の前記健康状態の変化に対する複数の前記生活習慣の影響度合いを表すパラメータを導出する過程と、
     前記パラメータに基づいて、前記勤務形態別に前記健康状態の変化の要因となる行動を表す情報を生成し、出力する過程と
     を備える要因行動推定方法。
    A factor behavior inference method executed by an information processing device including a processor and a storage medium,
    acquiring data representing the health condition, a plurality of lifestyle habits, and working patterns of the target user at predetermined intervals;
    extracting feature values from each of the data representing the health condition, the plurality of lifestyle habits, and the working pattern, and outputting the extracted feature values as a first variable;
    calculating a representative value of characteristic amounts for each of the plurality of lifestyle habits based on the characteristic amounts, and outputting the calculated representative value of characteristic amounts as a second variable;
    a step of deriving a parameter representing a degree of influence of the plurality of lifestyle habits on a change in the health state by the working style by applying the first variable and the second variable to a model representing a relationship between the health state by the working style and the plurality of lifestyle habits;
    generating and outputting information indicating behavior that is a factor of a change in the health state for each work style based on the parameters.
  7.  請求項1乃至5のいずれかに記載の要因行動推定装置が具備する各処理部が行う処理の少なくとも1つを、前記要因行動推定装置が備えるプロセッサに実行させるプログラム。 A program that causes a processor provided in the factor behavior inference device to execute at least one of the processes performed by each processing unit provided in the factor behavior inference device described in any one of claims 1 to 5.
PCT/JP2022/042372 2022-11-15 2022-11-15 Factor behavior inference device, method, and program WO2024105770A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042372 WO2024105770A1 (en) 2022-11-15 2022-11-15 Factor behavior inference device, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042372 WO2024105770A1 (en) 2022-11-15 2022-11-15 Factor behavior inference device, method, and program

Publications (1)

Publication Number Publication Date
WO2024105770A1 true WO2024105770A1 (en) 2024-05-23

Family

ID=91083966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042372 WO2024105770A1 (en) 2022-11-15 2022-11-15 Factor behavior inference device, method, and program

Country Status (1)

Country Link
WO (1) WO2024105770A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197240A (en) * 2000-12-25 2002-07-12 Casio Comput Co Ltd Telecommuter management unit and system, and computer readable storage medium
JP2009140167A (en) * 2007-12-05 2009-06-25 Yahoo Japan Corp Health management support device and health management support program
JP2011164670A (en) * 2010-02-04 2011-08-25 Hitachi Ltd System, method and program for supporting improvement of lifestyle habit
JP2013121440A (en) * 2011-12-12 2013-06-20 Jvc Kenwood Corp Health management system
JP2017040981A (en) * 2015-08-17 2017-02-23 国立大学法人東北大学 Health information processing device, health information processing method, health information processing program, health information display device, health information display method, and health information display program
JP2017111559A (en) * 2015-12-15 2017-06-22 大和ハウス工業株式会社 Health support system
JP2018169861A (en) * 2017-03-30 2018-11-01 株式会社タニタ Information processing device, information processing method and program
JP2019067447A (en) * 2016-02-11 2019-04-25 糧三 齋藤 Cancer prevention/amelioration advising device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197240A (en) * 2000-12-25 2002-07-12 Casio Comput Co Ltd Telecommuter management unit and system, and computer readable storage medium
JP2009140167A (en) * 2007-12-05 2009-06-25 Yahoo Japan Corp Health management support device and health management support program
JP2011164670A (en) * 2010-02-04 2011-08-25 Hitachi Ltd System, method and program for supporting improvement of lifestyle habit
JP2013121440A (en) * 2011-12-12 2013-06-20 Jvc Kenwood Corp Health management system
JP2017040981A (en) * 2015-08-17 2017-02-23 国立大学法人東北大学 Health information processing device, health information processing method, health information processing program, health information display device, health information display method, and health information display program
JP2017111559A (en) * 2015-12-15 2017-06-22 大和ハウス工業株式会社 Health support system
JP2019067447A (en) * 2016-02-11 2019-04-25 糧三 齋藤 Cancer prevention/amelioration advising device
JP2018169861A (en) * 2017-03-30 2018-11-01 株式会社タニタ Information processing device, information processing method and program

Similar Documents

Publication Publication Date Title
Morgan et al. Rerandomization to balance tiers of covariates
US20100332842A1 (en) Determining a mood of a user based on biometric characteristic(s) of the user in an online system
Zhang Generalized linear mixed models with varying coefficients for longitudinal data
JP5507607B2 (en) Content providing apparatus, low rank approximate matrix generating apparatus, content providing method, low rank approximate matrix generating method, and program
JP6421421B2 (en) Annotation information adding program and information processing apparatus
JP2016536691A (en) Agent system having natural conversation ability with user, agent control method, agent control program, and recording medium
JP2019063027A (en) Menstrual type identification system and program
Gallis et al. xtgeebcv: A command for bias-corrected sandwich variance estimation for GEE analyses of cluster randomized trials
AU2014202622B2 (en) Information processing apparatus and program
Ciarleglio et al. Constructing treatment decision rules based on scalar and functional predictors when moderators of treatment effect are unknown
WO2024105770A1 (en) Factor behavior inference device, method, and program
Blaydes et al. Political cultures: measuring values heterogeneity
Huang et al. Estimating individualized treatment rules with risk constraint
JPWO2019058479A1 (en) Knowledge acquisition device, knowledge acquisition method, and program
JP5291625B2 (en) Method and apparatus for deriving a probabilistic model from a deterministic model
Hao et al. Modeling social learning on consumers’ long-term usage of a mobile technology: a Bayesian estimation of a Bayesian learning model
JP6751955B1 (en) Learning method, evaluation device, and evaluation system
Wu et al. Nonparametric estimation for time-varying transformation models with longitudinal data
Sato et al. Probabilistic graphic models applied to identification of diseases
JP6804489B2 (en) Information providing device and information providing method
Sofrygin et al. Conducting simulations in causal inference with networks-based structural equation models
EP4372626A1 (en) Information processing program, method for processing information, and information processing apparatus
Yu et al. Inference on moderation effect with third-variable effect analysis–application to explore the trend of racial disparity in oncotype dx test for breast cancer treatment
JP7496923B1 (en) Information processing device, information processing method, and program
Meissen et al. (Predictable) performance bias in unsupervised anomaly detection