WO2024105756A1 - Radar signal processing device, radar device, and radar signal processing method - Google Patents

Radar signal processing device, radar device, and radar signal processing method Download PDF

Info

Publication number
WO2024105756A1
WO2024105756A1 PCT/JP2022/042303 JP2022042303W WO2024105756A1 WO 2024105756 A1 WO2024105756 A1 WO 2024105756A1 JP 2022042303 W JP2022042303 W JP 2022042303W WO 2024105756 A1 WO2024105756 A1 WO 2024105756A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
unit
signal
frequency
radar signal
Prior art date
Application number
PCT/JP2022/042303
Other languages
French (fr)
Japanese (ja)
Inventor
智也 山岡
聡 影目
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/042303 priority Critical patent/WO2024105756A1/en
Publication of WO2024105756A1 publication Critical patent/WO2024105756A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Definitions

  • This disclosure relates to a radar signal processing device, a radar device, and a radar signal processing method.
  • Pulse Doppler radar or synthetic aperture radar can also estimate a polynomial that gives a function of the phase by analyzing the phase of the radar signal reflected by the target and received. Using the estimated polynomial, it is possible to estimate the motion parameters of the target in ideal noise-free conditions.
  • the motion parameters are parameters related to the motion components of the target.
  • Non-Patent Document 1 cannot estimate the coefficients of each term of a polynomial with an accuracy that reaches the CRLB unless the radar signal has a relatively high S/N (signal to noise power ratio) of about 7 dB.
  • S/N signal to noise power ratio
  • FIG. 1 is a block diagram showing a configuration of a radar device according to a first embodiment
  • 1 is a block diagram showing a configuration of a radar signal processing device according to a first embodiment
  • 5 is a flowchart showing a process for generating processing target data in the radar signal processing device.
  • 4 is a flowchart showing a radar signal processing method according to the first embodiment.
  • 5A, 5B, 5C, 5D and 5E are diagrams showing characteristics of a signal processed by the radar signal processing method of FIG. 6A and 6B are blocks showing a hardware configuration for executing the functions of the radar signal processing device according to the first embodiment.
  • FIG. 11 is a block diagram showing a configuration of a radar device according to a second embodiment.
  • FIG. 11 is a block diagram showing a configuration of a radar signal processing device according to a second embodiment.
  • 10 is a flowchart showing a radar signal processing method according to a second embodiment.
  • the radar signal of a target received by a pulse Doppler radar at time t of the slow time is expressed by the following formula (1).
  • A is the amplitude of the received signal of the target.
  • r0 is the average distance between the radar and the target,
  • v0 is the average speed of the target,
  • a0 is the average acceleration of the target, and
  • j0 is the average jerk.
  • the jerk is the time derivative of the acceleration.
  • the dimension in the range direction is not taken into consideration.
  • the actual received signal r(t) contains a noise component n(t).
  • the received signal r(t) is converted into a signal R(f) shown in the following formula (3) by performing frequency conversion in the pulse direction.
  • the signal component of the target contained in the received signal r(t) is integrated in the Doppler frequency domain. This enhances the signal component of the target, making it possible to extract the target.
  • the signal component of the target is extracted based on the result of comparing the signal R(f) with a threshold value. By focusing on the Doppler frequency of the signal component of the target, the average velocity v 0 can be estimated as the motion parameter of the target.
  • a function ⁇ (t) indicating the amount of change in phase at time t is obtained.
  • a coefficient p k of the k-th degree term of the polynomial that gives the function ⁇ (t) is estimated.
  • the Doppler rate is given by the following equation (6):
  • vp is the moving speed of the platform
  • is the squint angle
  • is the wavelength
  • R0 is the closest distance between the radar and the target.
  • the Doppler rate assumes that the target is stationary.
  • the Doppler rate is expressed by the following equation (7):
  • the target's Doppler rate shown in the following equation (7) it is possible to estimate the target's velocity component in the azimuth direction.
  • the signal component of the target in the Doppler frequency domain obtained from the received signal having a Doppler rate is expressed by the following formula (8) by performing range compression on the received signal and further correcting range cell migration.
  • S(r, fd ) is the range-Doppler frequency component of the target signal.
  • r is the range
  • fd is the Doppler frequency.
  • A(r, fd ) is the amplitude fluctuation obtained by the range envelope obtained by range compression and the antenna pattern in the azimuth direction.
  • Kt is the Doppler rate including the velocity component in the azimuth direction of the target.
  • f0 is the center frequency.
  • ⁇ fd is a linear phase term generated according to the imaging position in the azimuth direction in the SAR image and the velocity component in the range direction
  • n(r, fd ) is a term representing the noise component.
  • the signal components of the target change as shown in the following equation (9).
  • the SAR image is generated by performing an azimuth inverse frequency transform on the signal components obtained in this way.
  • the signal components of the target are extracted from the SAR image, and the extracted signal components are subjected to azimuth FFT (frequency transformation) to obtain the Doppler frequency components of the target.
  • the phase of the Doppler frequency components of the target is unwrapped, and polynomial approximation is performed on the function ⁇ (t) obtained by unwrapping.
  • the polynomial obtained by polynomial approximation is found by the least squares method, and by using the above formula (9), the coefficient p2 of the second-order term of the polynomial shown in the following formula (10) is obtained.
  • Fig. 1 is a block diagram showing a configuration of a radar device 1 according to a first embodiment.
  • the radar device 1 is a device that is fixedly installed on the ground or installed on a platform such as an aircraft, for example, and estimates motion parameters of a target, and includes an antenna unit 2, a transmission/reception circuit 3, a storage device 4, and a radar signal processing device 5.
  • the antenna unit 2 includes a transmission element antenna that radiates radio waves of a transmission signal, and a reception element antenna that receives the incoming radio waves.
  • the antenna unit 2 includes one or more transmission element antennas and one or more reception element antennas.
  • one element antenna may function as both the transmission element antenna and the reception element antenna.
  • the transmission/reception circuit 3 transmits radio waves of a radar signal from the antenna unit 2, receives the radio waves arriving at the antenna unit 2, and generates a received signal of the radar signal.
  • the received signal generated by the transmission/reception circuit 3 is stored as raw data in the memory unit 41 provided in the memory unit 4.
  • the memory unit 4 is connected between the transmission/reception circuit 3 and the radar signal processing device 5 by wired communication or wireless communication.
  • the radar signal processing device 5 estimates the motion parameters of the target using the raw data stored in the memory unit 41. Note that the transmission/reception circuit 3 may output the raw data directly to the radar signal processing device 5 without going through the memory unit 4.
  • the transmission/reception circuit 3 includes a switching unit 31, an amplifier unit 32a, an amplifier unit 32b, a multiplier unit 33a, a multiplier unit 33b, an oscillator unit 34, a filter unit 35, an A/D converter unit 36, and a signal generator unit 37.
  • the switching unit 31 is a circuit that switches between transmission and reception. For example, during transmission, the switching unit 31 connects the transmitting element antenna in the antenna unit 2 to the amplifier unit 32a, and disconnects the receiving element antenna in the antenna unit 2 from the amplifier unit 32b. Furthermore, during reception, the switching unit 31 connects the receiving element antenna to the amplifier unit 32b, and disconnects the transmitting element antenna from the amplifier unit 32a.
  • the amplifier 32a amplifies the transmission signal.
  • the transmission signal amplified by the amplifier 32a is output to the antenna unit 2 via the switching unit 31.
  • the amplifier 32b acquires the radio signal received by the antenna unit 2 via the switching unit 31, amplifies the acquired signal, and outputs it to the multiplier 33b.
  • the multiplier 33a multiplies the signal generated by the signal generator 37 by the carrier wave generated by the oscillator 34.
  • the multiplier unit 33b multiplies the signal amplified by the amplifier unit 32b by the carrier wave generated by the oscillator unit 34.
  • the signal received by the antenna unit 2 is multiplied by a carrier wave, it becomes a signal whose frequency has been down-converted.
  • the oscillator unit 34 generates a carrier wave and outputs it to the multiplier unit 33a and the multiplier unit 33b.
  • the filter unit 35 suppresses signal components outside the used frequency band from the down-converted signal.
  • the A/D conversion unit 36 generates a received signal by analog/digital conversion of the signal that has passed through the filter unit 35.
  • the received signal converted into a digital signal by the A/D conversion unit 36 is stored in the storage unit 41 as raw data.
  • the A/D conversion unit 36 may directly output the raw data of the received signal to the radar signal processing device 5 .
  • the signal generating unit 37 generates a signal to be emitted as a radio wave of a transmission signal into the space in which the target exists. For example, the signal generating unit 37 generates a signal based on a pulse signal. Note that while FIG. 1 shows a case in which the transmission/reception circuit 3 includes the signal generating unit 37, the signal generating unit 37 may be included in a control device provided separately from the transmission/reception circuit 3.
  • Fig. 2 is a block diagram showing the configuration of the radar signal processing device 5 according to the first embodiment.
  • the radar signal processing device 5 includes a pulse compression unit 51, compensation units 52-1, 52-2, ..., 52-M, frequency conversion units 53-1, 53-2, ..., 53-M, averaging units 54-1, 54-2, ..., 54-M, a target extraction unit 55, a frequency inverse conversion unit 56, a phase extraction unit 57, a coefficient identification unit 58, and an estimation unit 59.
  • the pulse compression unit 51 inputs raw data from the memory unit 41 or the transmission/reception circuit 3, and performs pulse compression on the received signal, which is the raw data. For example, if the signal generation unit 37 generates a chirp pulse signal, the pulse compression unit 51 performs pulse compression on the received chirp pulse signal.
  • Compensation units 52-1, 52-2, ..., 52-M compensate for target motion components in the received signal.
  • M is an integer equal to or greater than 1.
  • compensation units 52-1, 52-2, ..., 52-M compensate for changes in the Doppler frequency domain caused by the generation of target motion components, thereby improving the power of the spectrum after the Doppler frequency.
  • the frequency conversion units 53-1, 53-2, ..., 53-M each perform frequency conversion on the input received signal. For example, the received signal is converted into a signal in the Doppler frequency domain by the frequency conversion units 53-1, 53-2, ..., 53-M.
  • the averaging units 54-1, 54-2, ..., 52-M perform averaging of the frequency-converted received signal. For example, the averaging units 54-1, 54-2, ..., 52-M perform moving averaging in the Doppler frequency direction on the received signal converted into a signal in the Doppler frequency domain.
  • the target extraction unit 55 extracts the target's signal components in the frequency domain from the frequency-converted received signal. For example, the target extraction unit 55 extracts the target's signal components in the Doppler frequency domain using a signal sequence obtained by averaging the received signal. Then, the target extraction unit 55 extracts, from among the signals obtained by averaging, the signal whose signal value is maximized due to the target's signal component.
  • the frequency inverse conversion unit 56 performs an inverse frequency conversion on the target signal components extracted by the target extraction unit 55. For example, the frequency inverse conversion unit 56 performs an inverse frequency conversion on the target signal components to convert them back into a time domain signal.
  • the phase extraction unit 57 extracts the phase of the target signal components inverse frequency converted by the frequency inverse conversion unit 56. For example, the phase extraction unit 57 unwraps the phase of the target signal components to obtain a phase function.
  • the coefficient identification unit 58 identifies the coefficients of the polynomial terms representing the motion parameters of the target by fitting the phase extracted by the phase extraction unit 57. For example, the coefficient identification unit 58 finds a polynomial that gives a function of the phase by fitting the extracted phase using the least squares method, and identifies the coefficients of each term of the found polynomial.
  • the estimation unit 59 estimates the motion parameters of the target using the coefficients of each term of the polynomial identified by the coefficient identification unit 58.
  • the radar signal processing device 5 reduces the influence of noise by frequency converting the received signal and integrating the signal components of the target. Therefore, the radar signal processing device 5 only needs to include the frequency conversion units 53-1, 53-2, ..., 53-M, the target extraction unit 55, the frequency inverse conversion unit 56, the phase extraction unit 57, the coefficient specification unit 58, and the estimation unit 59 among the components shown in Fig. 2, and does not need to include any other components.
  • the pulse compressor 51, the compensation units 52-1, 52-2, . . . , 52-M, and the averaging units 54-1, 54-2, . . . , 54-M may be provided in an external device capable of exchanging data with the radar signal processing device 5.
  • Fig. 3 is a flowchart showing the process of generating data to be processed by the radar signal processing device 5.
  • the signal generating unit 37 generates a signal based on a pulse signal (step ST1).
  • the signal generating unit 37 generates a chirp pulse signal as a signal to be transmitted, and outputs the signal to the multiplier 33a.
  • the signal generated by the signal generating unit 37 is not limited to a chirp pulse signal, but may be a simple pulse signal or another type of pulse signal.
  • the multiplier 33a upconverts the frequency of the signal generated by the signal generator 37 by multiplying the signal by the carrier wave generated by the oscillator 34 (step ST2).
  • the upconverted transmission signal is output to the amplifier 32a.
  • the amplifier 32a amplifies the power of the input transmission signal (step ST3).
  • the transmission signal amplified by the amplifier 32a is output to the switch 31.
  • the switch 31 connects the transmitting element antenna in the antenna unit 2 to the amplifier 32a.
  • the transmission signal is output from the amplifier 32a to the antenna unit 2 via the switch 31.
  • the antenna unit 2 radiates the transmission signal into space as radio waves (step ST4).
  • the radio waves of the transmission signal radiated into space are scattered or reflected by targets in space, and the scattered or reflected radio waves arrive at antenna unit 2.
  • Antenna unit 2 receives the arriving radio waves (step ST5).
  • switching unit 31 connects the receiving element antenna in antenna unit 2 to amplifier unit 32b. Therefore, the signal received as a radio wave by antenna unit 2 is output to amplifier unit 32b via switching unit 31.
  • Amplifier unit 32b amplifies the power of the input signal (step ST6).
  • the multiplier 33b multiplies the signal amplified by the amplifier 32b by the carrier wave generated by the oscillator 34, thereby down-converting the frequency of the signal (step ST7).
  • the filter unit 35 suppresses signal components outside the used frequency band from the signal down-converted by the multiplication unit 33b (step ST8).
  • the signal that has passed through the filter unit 35 is output to the A/D conversion unit 36.
  • the A/D conversion unit 36 performs A/D conversion on the signal that has passed through the filter unit 35 to generate a digital reception signal (step ST9).
  • the reception signal generated by the A/D conversion unit 36 is stored in the storage unit 41 as raw data.
  • Fig. 4 is a flow chart showing the radar signal processing method according to the first embodiment, showing the process of estimating the motion parameters of a target.
  • Fig. 5A, Fig. 5B, Fig. 5C, Fig. 5D and Fig. 5E are diagrams showing the characteristics of a signal processed by the radar signal processing method of Fig. 4.
  • the pulse compressing unit 51 performs pulse compression on the raw data acquired from the storage unit 41 (step ST1A).
  • the raw data corresponding to each signal received by the antenna unit 2 is designated as received signal s 0 (n, h), where n is the range cell number and h is the pulse number.
  • the pulse compressor 51 performs a frequency conversion in the range direction on the received signal s0 (n,h), multiplies the signal component obtained by this frequency conversion by a reference function for range compression, and then performs an inverse frequency conversion in the range direction.
  • the received signal s0 (n,h) becomes a pulse-compressed signal s1 (r,h), where r is a range bin.
  • the compensation units 52-1, 52-2, ..., 52-M compensate for the acceleration component of the pulse-compressed signal s 1 (r, h) (step ST2A).
  • the compensation units 52-1, 52-2, ..., 52-M prepare a 1 , ..., a m , ..., a M as candidates for the primary estimation result of the target acceleration, and compensate for the acceleration component according to the following formula (13).
  • s 2,m (r, h) is a signal obtained by compensating for the acceleration component of the pulse-compressed signal s 1 (r, h).
  • N h is the number of pulses
  • T is the pulse repetition period, and ⁇ is the wavelength of the signal.
  • the pulse-compressed signal s 1 (r, h) is compensated for the acceleration component to become a signal a having a waveform shown in Fig. 5A.
  • This signal a contains a target signal component and a noise component.
  • the signal s 2,m (r, h) reduces the spread of the target velocity component in the Doppler frequency domain due to the generation of the acceleration component. Therefore, the compensation units 52-1, 52-2, ..., 52-M compensate for the motion components such as acceleration of the pulse-compressed signal s 1 (r, h), thereby improving the power of the signal spectrum after frequency conversion by the frequency conversion units 53-1, 53-2, ..., 53-M.
  • a m in s 2,m (r, h) that shows a high peak power after frequency conversion is acceleration, other motion components may be used for compensation, or a plurality of motion components may be compensated for.
  • the frequency conversion units 53-1, 53-2, ..., 53-M perform frequency conversion in the pulse direction on the signal s 2,m (r, h) after compensation for the acceleration component, to generate a signal S 2,m (r, f) (step ST3A), where f is the Doppler frequency.
  • the signal S 2,m (r, f) has a spectrum b shown in Fig. 5B. As shown in Fig. 5B, the frequency band corresponding to the target signal component is a peak band.
  • the averaging units 54-1, 54-2, ..., 54-M perform moving averages in the Doppler frequency direction on the power components of the signal S 2,m (r, f) to generate a signal pm (r, f) (step ST4A). This reduces the influence of noise power components in the spectrum when extracting the target signal components from the Doppler frequency spectrum of the received signal.
  • the averaging units 54-1, 54-2, . . . , 54-M perform moving averaging for each pixel nw in the Doppler frequency direction on the power components of the signal S 2,m (r, f).
  • the value of nw may be any value, but may be set according to the following formula (14) and formula (15).
  • vreso is the velocity resolution.
  • nw is obtained by dividing the maximum value of the velocity spread due to acceleration remaining after acceleration compensation by the velocity resolution vreso , and rounding the obtained value to an integer value.
  • vreso is a measure of the width of the Doppler frequency spectrum. Here, it is assumed that am is set at equal intervals.
  • pm (r,f) obtained by performing moving average, noise is reduced due to the effect of moving average.
  • the averaging units 54-1, 54-2, ..., 54-M may use the signal sequence obtained by moving averaging as weights, and multiply S 2,m (r,f) by these weights to calculate pm (r,f).
  • moving averaging can suppress noise, if there is no target speed spread, the reduction in signal power becomes significant. Therefore, by multiplying the signal S 2,m (r,f) by the weights obtained by performing moving averaging, noise can be reduced because the weights are obtained by moving averaging.
  • pm (r,f) is calculated by multiplying the signal S 2,m (r,f) by the weights, it is also possible to mitigate the reduction in signal power.
  • the target extraction unit 55 acquires the maximum value pm (r,f) from among the multiple pm(r,f) calculated by each of the averaging units 54-1, 54-2, ..., 54-M, and acquires pmmax (r,f) having the maximum power from the acquired pm (r,f).
  • the target extraction unit 55 acquires the mmax corresponding to the Doppler frequency bin fmax , range bin rmax , and value of m of the signal pmmax(r,f) having the maximum power.
  • the primary estimation result of the acceleration component corresponding to mmax is denoted as a mmax .
  • the target extraction unit 55 extracts the target signal component from the signal S2 ,mmax ( rmax ,f) according to the following formula (16) (step ST5A).
  • fw is the Doppler frequency width corresponding to the Doppler frequency bin number nw .
  • N the number of frequency conversion points (number of FFT points)
  • the noise power is reduced to nw /N.
  • the length of the signal component cut out by the target extraction unit 55 is nw .
  • the cut-out length itself may be any length.
  • the target extraction unit 55 sets the value of 0 to components other than the target signal component to produce a spectrum c. That is, although the target is extracted in D(f), 0 is inserted in sections other than the extracted section, reducing unnecessary signals such as noise. This makes it possible to estimate high-order movement parameters such as speed, acceleration, and jerk with high accuracy even if the received signal has a low S/N ratio.
  • the frequency inverse conversion unit 56 performs an inverse frequency conversion on D(f) calculated by the target extraction unit 55 to generate a signal d(t) (step ST6A). As described above, the noise components are reduced, so that the signal d(t) becomes the signal d with the waveform shown in FIG. 5D.
  • the signal d contains the target signal components, but the noise components are reduced.
  • the phase extraction unit 57 unwraps the phase of the signal d(t) to generate a phase function ⁇ (t) (step ST7A). For example, the phase extraction unit 57 calculates the distance change characteristic ⁇ r(t) expressed by the following equation (17) for the function ⁇ (t). By analyzing this phase ⁇ r(t), information on the change in the relative distance between the radar and the target can be obtained.
  • the phase ⁇ r(t) becomes a signal e with a waveform shown in FIG. 5E.
  • the coefficient specifying unit 58 performs fitting on ⁇ r(t) by the least squares method (step ST8A), thereby obtaining a polynomial that gives the function ⁇ (t) and specifying the coefficient p k of the kth degree term of the polynomial.
  • the estimation unit 59 uses coefficients p1 , p2 , and p3 among the coefficients pk of the kth degree term of the polynomial to estimate the estimated velocity v est , estimated acceleration a est , and estimated jerk j est of the target according to the following equations (18), (19), and (20) (step ST9A).
  • the coefficient specifying unit 58 may use other fitting methods for fitting ⁇ r(t) instead of the least squares method, as long as the same effect as above can be obtained.
  • the estimation unit 59 outputs the estimated speed v est , the estimated acceleration a est and the estimated jerk j est to complete the movement.
  • the processing has been limited to one range bin r max , but the estimation accuracy may be improved by estimating the motion parameters in multiple range bins and calculating the average or median of the obtained values.
  • the estimated motion parameters are velocity, acceleration, and jerk, higher-order motion components may also be estimated.
  • the radar signal processing device 5 includes a processing circuit for executing the processes from step ST1A to step ST9A shown in Fig. 4.
  • the processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in a memory.
  • FIG. 6A is a block diagram showing a hardware configuration that realizes the functions of the radar signal processing device 5.
  • FIG. 6B is a block diagram showing a hardware configuration that executes software that realizes the functions of the radar signal processing device 5.
  • the input interface 100 is an interface that relays data that the radar signal processing device 5 acquires from the memory unit 41.
  • the output interface 101 is an interface that relays the estimation results of the target motion parameters that are output from the estimation unit 59 to an external device.
  • the processing circuit 102 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the functions of the pulse compression unit 51, the compensation units 52-1, 52-2, ..., 52-M, the frequency conversion units 53-1, 53-2, ..., 53-M, the averaging units 54-1, 54-2, ..., 54-M, the target extraction unit 55, the frequency inverse conversion unit 56, the phase extraction unit 57, the coefficient identification unit 58, and the estimation unit 59 provided in the radar signal processing device 5 may be realized by separate processing circuits, or these functions may be realized together by a single processing circuit.
  • the processing circuit is the processor 103 shown in FIG. 6B
  • the functions of the pulse compression unit 51, compensation units 52-1, 52-2, ..., 52-M, frequency conversion units 53-1, 53-2, ..., 53-M, averaging units 54-1, 54-2, ..., 54-M, target extraction unit 55, frequency inverse conversion unit 56, phase extraction unit 57, coefficient identification unit 58, and estimation unit 59 provided in the radar signal processing device 5 are realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in the memory 104.
  • the processor 103 reads out and executes the programs stored in the memory 104 to realize the functions of the pulse compression unit 51, compensation units 52-1, 52-2, ..., 52-M, frequency conversion units 53-1, 53-2, ..., 53-M, averaging units 54-1, 54-2, ..., 54-M, target extraction unit 55, frequency inverse conversion unit 56, phase extraction unit 57, coefficient identification unit 58 and estimation unit 59 provided in the radar signal processing device 5.
  • the radar signal processing device 5 includes a memory 104 for storing a program that, when executed by the processor 103, results in the processing of steps ST1A to ST9A shown in FIG. 4 being performed.
  • These programs cause the computer to execute the procedures or methods of processing performed by the pulse compression unit 51, the compensation unit 52-1, 52-2, ..., 52-M, the frequency conversion unit 53-1, 53-2, ..., 53-M, the averaging unit 54-1, 54-2, ..., 54-M, the target extraction unit 55, the frequency inverse conversion unit 56, the phase extraction unit 57, the coefficient specification unit 58, and the estimation unit 59.
  • the memory 104 may be a computer-readable storage medium that stores programs for causing the computer to function as the pulse compression unit 51, the compensation unit 52-1, 52-2, ..., 52-M, the frequency conversion unit 53-1, 53-2, ..., 53-M, the averaging unit 54-1, 54-2, ..., 54-M, the target extraction unit 55, the frequency inverse conversion unit 56, the phase extraction unit 57, the coefficient specification unit 58, and the estimation unit 59.
  • Memory 104 may be, for example, a non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically-EPROM) (registered trademark), a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory)
  • EEPROM Electrical-EPROM
  • Some of the functions of the pulse compression unit 51, compensation unit 52-1, 52-2, ..., 52-M, frequency conversion unit 53-1, 53-2, ..., 53-M, averaging unit 54-1, 54-2, ..., 54-M, target extraction unit 55, frequency inverse conversion unit 56, phase extraction unit 57, coefficient identification unit 58 and estimation unit 59 provided in the radar signal processing device 5 may be realized by dedicated hardware, and other functions may be realized by software or firmware.
  • the functions of the pulse compression unit 51, the compensation units 52-1, 52-2, ..., 52-M, the frequency conversion units 53-1, 53-2, ..., 53-M, and the averaging units 54-1, 54-2, ..., 54-M may be realized by the processing circuit 102, which is dedicated hardware, and the functions of the target extraction unit 55, the frequency inverse conversion unit 56, the phase extraction unit 57, the coefficient identification unit 58, and the estimation unit 59 may be realized by the processor 103 reading and executing a program stored in the memory 104.
  • the processing circuit can realize the above functions by hardware, software, firmware, or a combination of these.
  • the radar signal processing device 5 includes frequency conversion units 53-1, 53-2, ..., 53-M that frequency convert the radar signal, a target extraction unit 55 that extracts a target signal component in the frequency domain from the frequency-converted radar signal, a frequency inverse conversion unit 56 that inversely converts the target signal component, a phase extraction unit 57 that extracts the phase of the inversely frequency-converted target signal component, a coefficient specification unit 58 that specifies a coefficient of a polynomial term that represents a motion parameter related to the target motion component by fitting the extracted phase, and an estimation unit 59 that estimates the target motion parameter using the coefficient of each term of the specified polynomial.
  • the radar signal processing device 5 can estimate the target motion parameter while reducing the influence of noise. Furthermore, by applying the radar signal processing device 5 to a pulse Doppler radar, it is possible to estimate high-order movement parameters such as the acceleration and jerk of a target with high accuracy while reducing the effects of noise contained in the received signal. In conventional techniques, it was only possible to estimate motion parameters at intervals equal to the compensation amount for compensating for the signal with the motion components of the target. However, the radar signal processing device 5 frequency-converts the received signal to reduce the effects of noise, and then analyzes the phase of the target's signal components. This makes it possible to estimate the motion parameters of the target with high accuracy by interpolating the conventional compensation intervals.
  • the phase extraction unit 57 unwraps the phase of the target signal component. This makes it possible to calculate a function that indicates the phase of the target signal component.
  • the target extraction unit 55 sets zero values to components other than the target signal components. In this way, noise reduction is performed by inserting zeros in the frequency domain, and averaging is not used, so that no signal information is lost and it is possible to estimate the motion parameters with high accuracy. This is equivalent to arranging filters that reduce noise on a Doppler frequency filter in parallel on the signal, selecting the most reliable signal from among multiple noise-reduced signals, and analyzing the phase. Noise is reduced by extracting the target signal components and inserting zero values into other bands, so it is possible to achieve reliable estimation of motion parameters without increasing the amount of calculation.
  • the coefficient determination unit 58 fits the extracted phase using the least squares method. This makes it possible to calculate a polynomial that gives a function of the phase.
  • the radar signal processing device 5 includes compensation units 52-1, 52-2, ..., 52-M that compensate for the target motion components in the radar signal. By compensating the received signal with the target motion components, it is possible to improve the power of the spectrum of the received signal after frequency conversion.
  • the radar signal processing device 5 includes averaging units 54-1, 54-2, ..., 54-M that perform averaging of the frequency-converted radar signal.
  • the target extraction unit 55 uses the signal sequence obtained by averaging the radar signal to extract the target signal components in the frequency domain. This reduces the influence of noise power components in the spectrum, making it easier to identify the target signal components from the Doppler frequency spectrum of the received signal.
  • the target extraction unit 55 extracts the signal components of the target using a signal obtained by multiplying the radar signal by the signal sequence. In this way, by multiplying the radar signal by the signal sequence obtained by the averaging process as a weight, it is possible to mitigate the reduction in signal power.
  • the radar device 1 includes an antenna unit 2, a transmission/reception circuit 3 that transmits radio waves of a radar signal from the antenna unit 2 and receives the radio waves arriving at the antenna unit 2 to generate a received signal of the radar signal, and a radar signal processing device 5 that inputs the received signal and estimates motion parameters related to the motion components of the target extracted from the received signal. This allows the radar device 1 to estimate the motion parameters of the target while reducing the effects of noise.
  • the radar signal processing method includes a step in which frequency conversion units 53-1, 53-2, ..., 53-M frequency convert the radar signal, a step in which a target extraction unit 55 extracts a target signal component in the frequency domain from the frequency-converted radar signal, a step in which a frequency inverse conversion unit 56 inversely frequency converts the target signal component, a step in which a phase extraction unit 57 extracts the phase of the inverse frequency-converted target signal component, a step in which a coefficient identification unit 58 identifies coefficients of polynomial terms representing motion parameters related to the target motion components by fitting the extracted phase, and a step in which an estimation unit 59 estimates the target motion parameters using the identified coefficients of each term of the polynomial.
  • Fig. 7 is a block diagram showing the configuration of a radar device 1A according to embodiment 2.
  • the radar device 1A is a device that is provided on a moving platform such as an aircraft or an artificial satellite, estimates motion parameters of a target, and includes an antenna unit 2, a transmission/reception circuit 3A, a storage device 4A, and a radar signal processing device 5A.
  • the radar device 1A may be configured by providing the antenna unit 2, the transmission/reception circuit 3A, and the memory device 4A on a platform, providing a radar signal processing device 5A as a ground station, and connecting the platform and the ground station via a communication line.
  • the transmission/reception circuit 3A includes a switching unit 31, amplifiers 32a and 32b, multipliers 33a and 33b, an oscillator 34, a filter unit 35, an A/D converter 36, a signal generator 37, and an image generator 38.
  • the image generator 38 generates an SAR image using the received signal, which is a digital signal converted by the A/D converter 36.
  • a method for generating an SAR image is described in, for example, Reference 1. (Reference 1) I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data. Norwood, MA: Artech House, 2005.
  • the storage device 4A includes a storage unit 41A.
  • the storage unit 41A stores SAR images.
  • the radar signal processing device 5A extracts target signal components from the SAR images stored in the storage unit 41A.
  • the radar signal processing device 5A may also extract target signal components from SAR images acquired directly from the transmission/reception circuit 3A.
  • Fig. 8 is a block diagram showing the configuration of a radar signal processing device 5A according to embodiment 2.
  • the radar signal processing device 5A includes a target extraction unit 55A, a frequency conversion unit 60, a phase extraction unit 57A, a coefficient specification unit 58A, and an estimation unit 59A.
  • the functions of the target extraction unit 55A, frequency conversion unit 60, phase extraction unit 57A, coefficient specification unit 58A, and estimation unit 59A included in the radar signal processing device 5A are realized by a processing circuit. That is, the radar signal processing device 5A includes a processing circuit for executing the processes from step ST1B to step ST6B shown in Fig. 9 described later.
  • the processing circuit may be dedicated hardware, or may be a CPU that executes a program stored in a memory.
  • the target extraction unit 55A extracts the target signal components from the SAR image.
  • the frequency conversion unit 60 performs frequency conversion on the target signal components extracted by the target extraction unit 55A.
  • the phase extraction unit 57A extracts the phase of the target signal components frequency converted by the frequency conversion unit 60.
  • the coefficient identification unit 58A identifies the coefficients of the polynomial terms that represent the motion parameters related to the motion components of the target by fitting the phases extracted by the phase extraction unit 57A.
  • the estimation unit 59A estimates the motion parameters of the target using the coefficients of the polynomial terms identified by the coefficient identification unit 58A.
  • FIG. 9 is a flowchart showing a radar signal processing method according to the second embodiment.
  • the target extraction unit 55A detects moving targets from the SAR image using a method such as CFAR (constant false alarm rate) or MTI (moving target indicator) (step ST1B).
  • the range bin is r
  • the azimuth bin is a
  • the pixel of the SAR image is i(r, a).
  • the range bin with the maximum power is designated as r max and the azimuth bin as a max .
  • the target extraction unit 55A extracts a signal sequence d(a) corresponding to the signal component of the target, which is expressed by the following formula (21), from the SAR image (step ST2B), where c is a constant that determines the sample length for extracting the azimuth bin.
  • d(a) is the target signal component with reduced noise and clutter due to the insertion of zero values. If c is large, unwanted components such as noise or clutter will be mixed in, reducing reliability, but if it is small, the number of sample points will be small, reducing reliability, so it must be set appropriately. For the set c, the length for extracting azimuth bins is determined to be 2c+1.
  • the frequency conversion unit 60 performs azimuth frequency conversion on the signal sequence d(a) to generate S(f) (step ST3B).
  • the second-order component of the phase term of the signal sequence S(f) is given the characteristics expressed by the above formula (9) due to the target's speed in the azimuth direction.
  • the phase extraction unit 57A extracts and unwraps the phase term of the signal sequence S(f) to calculate the phase sequence ⁇ (f) (step ST4B).
  • the coefficient specifying unit 58A performs the least squares method to perform polynomial approximation on the phase sequence ⁇ (f) to derive the quadratic coefficient p2 (step ST5B).
  • the end of the sequence is the end of the antenna pattern in the azimuth direction, and may be excluded because it has a poor signal-to-noise power ratio. Furthermore, as long as the same effect as above can be obtained, a fitting method other than the least squares method may be used.
  • the estimation unit 59A uses the above equations (11) and (12) from the quadratic coefficient p2 to calculate v est , which is the estimated velocity value in the azimuth direction of the target (step ST6B).
  • the estimation accuracy may be improved by estimating the motion parameters in a plurality of range bins and finding the average or median of the obtained values.
  • the radar signal processing device 5A includes a target extraction unit 55A that extracts the signal components of the target from the SAR image, a frequency conversion unit 60 that frequency converts the extracted signal components of the target, a phase extraction unit 57A that extracts the phase of the frequency-converted signal components of the target, a coefficient identification unit 58A that identifies the coefficients of the polynomial terms that represent the motion parameters related to the motion components of the target by fitting the extracted phase, and an estimation unit 59A that estimates the motion parameters of the target using the coefficients of each term of the identified polynomial.
  • This allows the radar signal processing device 5 to extract the target from the SAR image while reducing the influence of noise, and to estimate the motion parameters of the target. Furthermore, even if there is only one SAR image, it is possible to estimate the velocity in the azimuth direction of the detected target while reducing the influence of noise.
  • the phase extraction unit 57A unwraps the phase of the target signal component. This makes it possible to calculate a function that indicates the phase of the target signal component.
  • the coefficient determination unit 58A fits the extracted phase using the least squares method. This makes it possible to calculate a polynomial that gives a function of the phase.
  • the radar device 1A includes an antenna unit 2, a transmission/reception circuit 3A that transmits radar signal radio waves from the antenna unit 2 and receives the radio waves arriving at the antenna unit to generate a SAR image, and a radar signal processing device 5A that inputs the SAR image and estimates motion parameters related to the motion components of the target extracted from the SAR image. This allows the radar device 1A to estimate the motion parameters of the target from the SAR image while reducing the effects of noise.
  • the radar signal processing method includes a step in which a target extraction unit 55A extracts a signal component of the target from a SAR image, a step in which a frequency conversion unit 60 frequency converts the extracted signal component of the target, a step in which a phase extraction unit 57A extracts the phase of the frequency-converted signal component of the target, a step in which a coefficient identification unit 58A identifies coefficients of polynomial terms expressing motion parameters related to the motion components of the target by fitting the extracted phase, and a step in which an estimation unit 59A estimates the motion parameters of the target using the coefficients of each term of the identified polynomial. This makes it possible to estimate the motion parameters of the target from the SAR image while reducing the effects of noise.
  • the radar signal processing device can be used, for example, in various radar devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A radar signal processing device (5) comprises: a frequency conversion unit (53-1, 53-2... 53-M) that performs frequency conversion of a radar signal; a target extraction unit (55) that extracts a target signal component in the frequency range from the frequency-converted radar signal; an inverse frequency conversion unit (56) that performs inverse frequency conversion of the target signal component; a phase extraction unit (57) that extracts the phase of the inverse-frequency-converted target signal component; a coefficient identification unit (58) that fits the extracted phase to identify a coefficient of a term of a polynomial representing a movement parameter relating to a target movement component; and an estimation unit (59) that uses the identified coefficient of each term of the polynomial to estimate a target movement parameter.

Description

レーダ信号処理装置、レーダ装置およびレーダ信号処理方法Radar signal processing device, radar device, and radar signal processing method
 本開示は、レーダ信号処理装置、レーダ装置およびレーダ信号処理方法に関する。 This disclosure relates to a radar signal processing device, a radar device, and a radar signal processing method.
 パルスドップラーレーダまたは合成開口レーダ(Synthetic Aperture Radar;以下、SARと記載する。)は、目標で反射して受信されたレーダ信号の位相を解析することにより、当該位相の関数を与える多項式を推定することも可能である。推定した多項式を用いることにより、雑音のない理想状態における目標の運動パラメータの推定が可能である。ここで、運動パラメータとは、目標の運動成分に関するパラメータである。 Pulse Doppler radar or synthetic aperture radar (SAR) can also estimate a polynomial that gives a function of the phase by analyzing the phase of the radar signal reflected by the target and received. Using the estimated polynomial, it is possible to estimate the motion parameters of the target in ideal noise-free conditions. Here, the motion parameters are parameters related to the motion components of the target.
 ただし、レーダ信号には一般的に過大な雑音が含まれており、レーダ信号の位相の解析が困難である場合が多い。例えば、非特許文献1に記載される離散多項式位相変換(Discrete Polynomial-phase Transform;以下、DPTと記載する。)は、レーダ信号の位相の関数を与える多項式の各項の係数を、クラメール-ラオ バウンド(Cramer-Rao Bound;以下、CRLBと記載する。)に漸近する精度で推定することが可能である。 However, radar signals generally contain excessive noise, and analyzing the phase of a radar signal is often difficult. For example, the discrete polynomial-phase transform (DPT) described in Non-Patent Document 1 makes it possible to estimate the coefficients of each term of a polynomial that gives a function of the phase of a radar signal with an accuracy that asymptotically approaches the Cramer-Rao Bound (CRLB).
 非特許文献1に記載される従来の技術は、レーダ信号のS/N(Signal to Noise power ratio)が7dB程度の比較的に高い値でないと、多項式の各項の係数をCRLBに達する精度で推定することができない。すなわち、従来の技術では、レーダ信号に過大な雑音が含まれていると、位相の関数を与える多項式を高い精度で推定できず、当該多項式を用いた目標の運動パラメータの推定ができないという課題があった。 The conventional technology described in Non-Patent Document 1 cannot estimate the coefficients of each term of a polynomial with an accuracy that reaches the CRLB unless the radar signal has a relatively high S/N (signal to noise power ratio) of about 7 dB. In other words, with the conventional technology, if the radar signal contains excessive noise, the polynomial that gives the phase function cannot be estimated with high accuracy, and the target motion parameters cannot be estimated using the polynomial.
 本開示は上記課題を解決するものであり、雑音の影響を低減させて目標の運動パラメータを推定することができる、レーダ信号処理装置、レーダ装置およびレーダ信号処理方法を得ることを目的とする。 The present disclosure aims to solve the above problems and provide a radar signal processing device, a radar device, and a radar signal processing method that can estimate target motion parameters while reducing the effects of noise.
 本開示に係るレーダ信号処理装置は、レーダ信号に対して周波数変換により積分を行う周波数変換部と、周波数変換されたレーダ信号から、周波数領域における目標の信号成分を抽出する目標抽出部と、目標の信号成分を逆周波数変換する周波数逆変換部と、逆周波数変換された目標の信号成分の位相を抽出する位相抽出部と、抽出された位相をフィッティングすることで、目標の運動成分に関する運動パラメータを表す多項式の項の係数を特定する係数特定部と、特定された多項式の各項の係数を用いて、目標の運動パラメータを推定する推定部と、を備える。 The radar signal processing device according to the present disclosure includes a frequency conversion unit that performs integration on the radar signal by frequency conversion, a target extraction unit that extracts the target's signal components in the frequency domain from the frequency-converted radar signal, a frequency inverse conversion unit that performs inverse frequency conversion on the target's signal components, a phase extraction unit that extracts the phase of the inverse-frequency-converted target's signal components, a coefficient identification unit that identifies coefficients of polynomial terms that represent motion parameters related to the target's motion components by fitting the extracted phase, and an estimation unit that estimates the target's motion parameters using the coefficients of each term of the identified polynomial.
 本開示によれば、周波数変換して信号を積分することにより、当該信号に含まれる目標の信号成分を強調させることができるので、目標の信号成分の他に信号に含まれる雑音の影響を低減させることができる。これにより、本開示に係るレーダ信号処理装置は、雑音の影響を低減させて目標の運動パラメータを推定することができる。 According to the present disclosure, by frequency converting and integrating a signal, it is possible to emphasize the target signal components contained in the signal, thereby reducing the effects of noise contained in the signal in addition to the target signal components. As a result, the radar signal processing device according to the present disclosure can estimate the motion parameters of a target while reducing the effects of noise.
実施の形態1に係るレーダ装置の構成を示すブロック図である。1 is a block diagram showing a configuration of a radar device according to a first embodiment; 実施の形態1に係るレーダ信号処理装置の構成を示すブロック図である。1 is a block diagram showing a configuration of a radar signal processing device according to a first embodiment; レーダ信号処理装置の処理対象データを生成する処理を示すフローチャートである。5 is a flowchart showing a process for generating processing target data in the radar signal processing device. 実施の形態1に係るレーダ信号処理方法を示すフローチャートである。4 is a flowchart showing a radar signal processing method according to the first embodiment. 図5A、図5B、図5C、図5Dおよび図5Eは、図4のレーダ信号処理方法で処理された信号の特性を示す図である。5A, 5B, 5C, 5D and 5E are diagrams showing characteristics of a signal processed by the radar signal processing method of FIG. 図6Aおよび図6Bは、実施の形態1に係るレーダ信号処理装置の機能を実行するハードウェア構成を示すブロックである。6A and 6B are blocks showing a hardware configuration for executing the functions of the radar signal processing device according to the first embodiment. 実施の形態2に係るレーダ装置の構成を示すブロック図である。FIG. 11 is a block diagram showing a configuration of a radar device according to a second embodiment. 実施の形態2に係るレーダ信号処理装置の構成を示すブロック図である。FIG. 11 is a block diagram showing a configuration of a radar signal processing device according to a second embodiment. 実施の形態2に係るレーダ信号処理方法を示すフローチャートである。10 is a flowchart showing a radar signal processing method according to a second embodiment.
 パルスドップラーレーダにより受信されたスロータイムの時刻tにおける目標のレーダ信号は、下記式(1)で表現される。下記式(1)において、Aは目標の受信信号の振幅である。rはレーダと目標との間の平均距離であり、vは目標の平均速度であり、aは目標の平均加速度であり、jは平均躍度である。躍度は、加速度を時間微分したものである。なお、以下の説明において、レンジ方向の次元は考慮しないものとする。

Figure JPOXMLDOC01-appb-I000001
The radar signal of a target received by a pulse Doppler radar at time t of the slow time is expressed by the following formula (1). In the following formula (1), A is the amplitude of the received signal of the target. r0 is the average distance between the radar and the target, v0 is the average speed of the target, a0 is the average acceleration of the target, and j0 is the average jerk. The jerk is the time derivative of the acceleration. In the following explanation, the dimension in the range direction is not taken into consideration.

Figure JPOXMLDOC01-appb-I000001
 しかしながら、下記式(2)に示すように、実際の受信信号r(t)には、雑音成分n(t)が含まれる。

Figure JPOXMLDOC01-appb-I000002
However, as shown in the following equation (2), the actual received signal r(t) contains a noise component n(t).

Figure JPOXMLDOC01-appb-I000002
 受信信号r(t)に対してパルス方向の周波数変換を行うことにより、下記式(3)に示す信号R(f)に変換される。信号R(f)では、受信信号r(t)に含まれる目標の信号成分がドップラー周波数領域において積分されている。これにより、目標の信号成分が強調され、目標を抽出できるようになる。下記式(3)において、R(f)=F[ ](f)は、時刻tから周波数fへの周波数変換を表す記号である。信号R(f)と閾値とを比較した結果に基づいて、目標の信号成分が抽出される。目標の信号成分のドップラー周波数に着目することにより、目標の運動パラメータとして平均速度vを推定することができる。

Figure JPOXMLDOC01-appb-I000003
The received signal r(t) is converted into a signal R(f) shown in the following formula (3) by performing frequency conversion in the pulse direction. In the signal R(f), the signal component of the target contained in the received signal r(t) is integrated in the Doppler frequency domain. This enhances the signal component of the target, making it possible to extract the target. In the following formula (3), R(f)=F t [ ](f) is a symbol representing frequency conversion from time t to frequency f. The signal component of the target is extracted based on the result of comparing the signal R(f) with a threshold value. By focusing on the Doppler frequency of the signal component of the target, the average velocity v 0 can be estimated as the motion parameter of the target.

Figure JPOXMLDOC01-appb-I000003
 積分された目標の信号成分を抽出することにより、不要信号である雑音を、大幅に低減することができる。目標の信号成分が存在する区間外に0値を挿入(設定)することで、信号R(f)は信号R’(f)となる。さらに、信号R’(f)を逆周波数変換することにより、信号s’(t)となる。信号s’(t)は、信号s(t)と比べて、目標の信号成分が残余している一方で、不要信号成分が大幅に低減されている。 By extracting the integrated target signal components, it is possible to significantly reduce noise, which is an unwanted signal. By inserting (setting) a zero value outside the interval in which the target signal components exist, signal R(f) becomes signal R'(f). Furthermore, by performing an inverse frequency conversion on signal R'(f), it becomes signal s'(t). Compared to signal s(t), signal s'(t) retains the target signal components while the unwanted signal components are significantly reduced.
 信号s’(t)の位相系列をアンラップしながら抽出することにより、時刻tにおける位相の変化量を示す関数θ(t)が得られる。関数θ(t)により得られる値を、例えば最小二乗法によるフィッティングで多項式近似を行うことにより、関数θ(t)を与える多項式のk次項の係数pが推定される。下記式(4)および下記式(5)に従い、係数pを用いることにより、目標の平均加速度aおよび平均躍度jを推定することが可能である。ドップラー周波数領域における目標の信号成分の抽出の過程で、不要信号が低減されているので、目標の運動パラメータを精度よく推定することができる。

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005
By extracting the phase sequence of the signal s'(t) while unwrapping it, a function θ(t) indicating the amount of change in phase at time t is obtained. By performing polynomial approximation on the value obtained by the function θ(t) by, for example, fitting using the least squares method, a coefficient p k of the k-th degree term of the polynomial that gives the function θ(t) is estimated. By using the coefficient p k according to the following formulas (4) and (5), it is possible to estimate the average acceleration a 0 and average jerk j 0 of the target. Since unnecessary signals are reduced in the process of extracting the signal components of the target in the Doppler frequency domain, the motion parameters of the target can be estimated with high accuracy.

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005
 次に、SARにおけるアジマス方向の速度推定について説明する。
 ドップラー率は、下記式(6)によって与えられる。下記式(6)において、vは、プラットフォームの移動速度である。θはスクイント角である。λは波長であり、Rはレーダと目標との最近接距離である。ドップラー率は、目標が静止していることが前提である。

Figure JPOXMLDOC01-appb-I000006
Next, the estimation of velocity in the azimuth direction by the SAR will be described.
The Doppler rate is given by the following equation (6): In the following equation (6), vp is the moving speed of the platform, θ is the squint angle, λ is the wavelength, and R0 is the closest distance between the radar and the target. The Doppler rate assumes that the target is stationary.

Figure JPOXMLDOC01-appb-I000006
 上記式(6)に対して目標のアジマス方向の速度vを導入することにより、ドップラー率は、下記式(7)で表される。下記式(7)に示す目標のドップラー率を用いることにより、目標のアジマス方向の速度成分を推定することが可能である。

Figure JPOXMLDOC01-appb-I000007
By introducing the target's velocity in the azimuth direction, vt, into the above equation (6), the Doppler rate is expressed by the following equation (7): By using the target's Doppler rate shown in the following equation (7), it is possible to estimate the target's velocity component in the azimuth direction.

Figure JPOXMLDOC01-appb-I000007
 ドップラー率を有する受信信号から得られるドップラー周波数領域における目標の信号成分は、上記受信信号に対してレンジ圧縮を行い、さらにレンジセルマイグレーションを補正することにより、下記式(8)で表される。下記式(8)において、S(r,f)は、目標の信号のレンジ―ドップラー周波数成分である。rは、レンジであり、fは、ドップラー周波数である。A(r,f)は、レンジ圧縮して得られるレンジの包絡線とアジマス方向のアンテナパターンとにより得られる振幅変動である。Kは、目標のアジマス方向の速度成分が含まれるドップラー率である。fは、中心周波数である。αfは、SAR画像内のアジマス方向の結像位置とレンジ方向の速度成分とに応じて発生する線形位相項であり、n(r,f)は、雑音成分を表す項である。

Figure JPOXMLDOC01-appb-I000008
The signal component of the target in the Doppler frequency domain obtained from the received signal having a Doppler rate is expressed by the following formula (8) by performing range compression on the received signal and further correcting range cell migration. In the following formula (8), S(r, fd ) is the range-Doppler frequency component of the target signal. r is the range, and fd is the Doppler frequency. A(r, fd ) is the amplitude fluctuation obtained by the range envelope obtained by range compression and the antenna pattern in the azimuth direction. Kt is the Doppler rate including the velocity component in the azimuth direction of the target. f0 is the center frequency. αfd is a linear phase term generated according to the imaging position in the azimuth direction in the SAR image and the velocity component in the range direction, and n(r, fd ) is a term representing the noise component.

Figure JPOXMLDOC01-appb-I000008
 受信信号に対して、アジマス圧縮のための参照関数を乗算することにより、目標の信号成分は、下記式(9)に示すように変化する。下記式(9)において、Kは、参照関数のドップラー率である。目標がアジマス方向に速度成分を有していない場合、K=Kとなるので、ドップラー周波数成分の位相項の2次の成分が消失する。このため、目標がSAR画像上で理想的に結像する。このように得られた信号成分に対してアジマス逆周波数変換を行うことにより、SAR画像が生成される。

Figure JPOXMLDOC01-appb-I000009
By multiplying the received signal by a reference function for azimuth compression, the signal components of the target change as shown in the following equation (9). In the following equation (9), K o is the Doppler rate of the reference function. If the target does not have a velocity component in the azimuth direction, K t =K 0 , and the second-order component of the phase term of the Doppler frequency component disappears. As a result, the target is ideally imaged on the SAR image. The SAR image is generated by performing an azimuth inverse frequency transform on the signal components obtained in this way.

Figure JPOXMLDOC01-appb-I000009
 SAR画像から目標の信号成分を抽出し、抽出した信号成分に対してアジマスFFT(周波数変換)を行うことにより、目標のドップラー周波数成分が得られる。この目標のドップラー周波数成分の位相をアンラップし、アンラップにより得られた関数θ(t)に対して多項式近似を行う。多項式近似により得られた多項式を最小二乗法によって求め、上記式(9)を用いることにより、下記式(10)に示す多項式の2次の項の係数pが得られる。

Figure JPOXMLDOC01-appb-I000010
The signal components of the target are extracted from the SAR image, and the extracted signal components are subjected to azimuth FFT (frequency transformation) to obtain the Doppler frequency components of the target. The phase of the Doppler frequency components of the target is unwrapped, and polynomial approximation is performed on the function θ(t) obtained by unwrapping. The polynomial obtained by polynomial approximation is found by the least squares method, and by using the above formula (9), the coefficient p2 of the second-order term of the polynomial shown in the following formula (10) is obtained.

Figure JPOXMLDOC01-appb-I000010
 関数θ(t)を与える多項式の2次の項の係数pと目標のアジマス方向の速度vとは、一定の関係を有している。上記式(10)が示す係数pを用いることにより、下記式(11)に示す目標のアジマス方向の速度vestを推定することができる。なお、下記式(11)において、Kは、下記式(12)で表される。

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012
There is a certain relationship between the coefficient p2 of the quadratic term of the polynomial that gives the function θ(t) and the target velocity vt in the azimuth direction. By using the coefficient p2 shown in the above formula (10), it is possible to estimate the target velocity vest in the azimuth direction shown in the following formula (11). In the following formula (11), Kt is expressed by the following formula (12).

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012
実施の形態1.
 図1は、実施の形態1に係るレーダ装置1の構成を示すブロック図である。図1において、レーダ装置1は、例えば地上に固定的に設けられたり、航空機などのプラットフォームに備えられたりして、目標の運動パラメータを推定する装置であり、アンテナ部2、送受信回路3、記憶装置4、およびレーダ信号処理装置5を備える。アンテナ部2は、送信信号の電波を放射する送信用の素子アンテナと、到来した電波を受信する受信用の素子アンテナと、を備える。例えば、アンテナ部2は、送信用の素子アンテナと受信用の素子アンテナとをそれぞれ1つまたは複数備える。また、送信用の素子アンテナと受信用の素子アンテナの機能を一つの素子アンテナが兼務してもよい。
Embodiment 1.
Fig. 1 is a block diagram showing a configuration of a radar device 1 according to a first embodiment. In Fig. 1, the radar device 1 is a device that is fixedly installed on the ground or installed on a platform such as an aircraft, for example, and estimates motion parameters of a target, and includes an antenna unit 2, a transmission/reception circuit 3, a storage device 4, and a radar signal processing device 5. The antenna unit 2 includes a transmission element antenna that radiates radio waves of a transmission signal, and a reception element antenna that receives the incoming radio waves. For example, the antenna unit 2 includes one or more transmission element antennas and one or more reception element antennas. In addition, one element antenna may function as both the transmission element antenna and the reception element antenna.
 送受信回路3は、アンテナ部2からレーダ信号の電波を送信させ、アンテナ部2に到来した電波を受信してレーダ信号の受信信号を生成する。送受信回路3が生成した受信信号は、記憶装置4が備える記憶部41に生データとして記憶される。記憶装置4は、送受信回路3とレーダ信号処理装置5との間で有線通信または無線通信により接続されている。レーダ信号処理装置5は、記憶部41に記憶された生データを用いて、目標の運動パラメータを推定する。なお、送受信回路3は、記憶装置4を介さず、レーダ信号処理装置5に直接生データを出力してもよい。 The transmission/reception circuit 3 transmits radio waves of a radar signal from the antenna unit 2, receives the radio waves arriving at the antenna unit 2, and generates a received signal of the radar signal. The received signal generated by the transmission/reception circuit 3 is stored as raw data in the memory unit 41 provided in the memory unit 4. The memory unit 4 is connected between the transmission/reception circuit 3 and the radar signal processing device 5 by wired communication or wireless communication. The radar signal processing device 5 estimates the motion parameters of the target using the raw data stored in the memory unit 41. Note that the transmission/reception circuit 3 may output the raw data directly to the radar signal processing device 5 without going through the memory unit 4.
 送受信回路3は、図1に示すように、切り換え部31、増幅部32a、増幅部32b、乗算部33a、乗算部33b、発振部34、フィルタ部35、A/D変換部36、および信号生成部37を備える。切り換え部31は、送受信を切り換える回路である。例えば、切り換え部31は、送信時にはアンテナ部2における送信用の素子アンテナと増幅部32aとを接続して、アンテナ部2における受信用の素子アンテナと増幅部32bとの接続を切る。さらに、切り換え部31は、受信時には受信用の素子アンテナと増幅部32bとを接続して、送信用の素子アンテナと増幅部32aとの接続を切る。 As shown in FIG. 1, the transmission/reception circuit 3 includes a switching unit 31, an amplifier unit 32a, an amplifier unit 32b, a multiplier unit 33a, a multiplier unit 33b, an oscillator unit 34, a filter unit 35, an A/D converter unit 36, and a signal generator unit 37. The switching unit 31 is a circuit that switches between transmission and reception. For example, during transmission, the switching unit 31 connects the transmitting element antenna in the antenna unit 2 to the amplifier unit 32a, and disconnects the receiving element antenna in the antenna unit 2 from the amplifier unit 32b. Furthermore, during reception, the switching unit 31 connects the receiving element antenna to the amplifier unit 32b, and disconnects the transmitting element antenna from the amplifier unit 32a.
 増幅部32aは、送信信号を増幅する。増幅部32aが増幅した送信信号は、切り換え部31を介して、アンテナ部2に出力される。増幅部32bは、切り換え部31を介してアンテナ部2が受信した電波信号を取得し、取得した信号を増幅して乗算部33bに出力する。乗算部33aは、信号生成部37が生成した信号に対して、発振部34が生成した搬送波を乗算する。 The amplifier 32a amplifies the transmission signal. The transmission signal amplified by the amplifier 32a is output to the antenna unit 2 via the switching unit 31. The amplifier 32b acquires the radio signal received by the antenna unit 2 via the switching unit 31, amplifies the acquired signal, and outputs it to the multiplier 33b. The multiplier 33a multiplies the signal generated by the signal generator 37 by the carrier wave generated by the oscillator 34.
 信号生成部37が生成した信号は、搬送波が乗算されると、周波数がアップコンバードされた送信信号となる。乗算部33bは、増幅部32bが増幅した信号に対して、発振部34が生成した搬送波を乗算する。アンテナ部2が受信した信号は、搬送波が乗算されると、周波数がダウンコンバートされた信号となる。発振部34は、搬送波を生成して乗算部33aおよび乗算部33bに出力する。 When the signal generated by the signal generating unit 37 is multiplied by a carrier wave, it becomes a transmission signal whose frequency has been up-converted. The multiplier unit 33b multiplies the signal amplified by the amplifier unit 32b by the carrier wave generated by the oscillator unit 34. When the signal received by the antenna unit 2 is multiplied by a carrier wave, it becomes a signal whose frequency has been down-converted. The oscillator unit 34 generates a carrier wave and outputs it to the multiplier unit 33a and the multiplier unit 33b.
 フィルタ部35は、ダウンコンバートされた信号のうち、使用周波数帯域外の信号成分を抑圧する。A/D変換部36は、フィルタ部35を通過した信号をアナログ/デジタル変換することにより受信信号を生成する。A/D変換部36によってデジタル信号に変換された受信信号は、生データとして記憶部41に格納される。
 また、A/D変換部36は、受信信号の生データをレーダ信号処理装置5へ直接出力してもよい。
The filter unit 35 suppresses signal components outside the used frequency band from the down-converted signal. The A/D conversion unit 36 generates a received signal by analog/digital conversion of the signal that has passed through the filter unit 35. The received signal converted into a digital signal by the A/D conversion unit 36 is stored in the storage unit 41 as raw data.
In addition, the A/D conversion unit 36 may directly output the raw data of the received signal to the radar signal processing device 5 .
 信号生成部37は、目標が存在する空間に送信信号の電波として放射される信号を生成する。例えば、信号生成部37は、パルス信号に基づいて信号を生成する。なお、図1では、送受信回路3が信号生成部37を備える場合を示したが、信号生成部37は、送受信回路3とは別に設けられた制御装置が備えてもよい。 The signal generating unit 37 generates a signal to be emitted as a radio wave of a transmission signal into the space in which the target exists. For example, the signal generating unit 37 generates a signal based on a pulse signal. Note that while FIG. 1 shows a case in which the transmission/reception circuit 3 includes the signal generating unit 37, the signal generating unit 37 may be included in a control device provided separately from the transmission/reception circuit 3.
 図2は、実施の形態1に係るレーダ信号処理装置5の構成を示すブロック図である。図2に示すように、レーダ信号処理装置5は、パルス圧縮部51、補償部52-1,52-2,・・・,52-M、周波数変換部53-1,53-2,・・・,53-M、平均部54-1,54-2,・・・,54-M、目標抽出部55、周波数逆変換部56、位相抽出部57、係数特定部58および推定部59を備える。 Fig. 2 is a block diagram showing the configuration of the radar signal processing device 5 according to the first embodiment. As shown in Fig. 2, the radar signal processing device 5 includes a pulse compression unit 51, compensation units 52-1, 52-2, ..., 52-M, frequency conversion units 53-1, 53-2, ..., 53-M, averaging units 54-1, 54-2, ..., 54-M, a target extraction unit 55, a frequency inverse conversion unit 56, a phase extraction unit 57, a coefficient identification unit 58, and an estimation unit 59.
 パルス圧縮部51は、記憶部41または送受信回路3から生データを入力し、生データである受信信号に対してパルス圧縮を行う。例えば、信号生成部37が、チャープパルスの信号を生成した場合、パルス圧縮部51は、チャープパルスの受信信号に対してパルス圧縮を行う。 The pulse compression unit 51 inputs raw data from the memory unit 41 or the transmission/reception circuit 3, and performs pulse compression on the received signal, which is the raw data. For example, if the signal generation unit 37 generates a chirp pulse signal, the pulse compression unit 51 performs pulse compression on the received chirp pulse signal.
 補償部52-1,52-2,・・・,52-Mは、受信信号における目標の運動成分を補償する。Mは、1以上の整数である。例えば、補償部52-1,52-2,・・・,52-Mが、目標の運動成分の発生によるドップラー周波数領域上での変化を補償することにより、ドップラー周波数後のスペクトルの電力が改善される。 Compensation units 52-1, 52-2, ..., 52-M compensate for target motion components in the received signal. M is an integer equal to or greater than 1. For example, compensation units 52-1, 52-2, ..., 52-M compensate for changes in the Doppler frequency domain caused by the generation of target motion components, thereby improving the power of the spectrum after the Doppler frequency.
 周波数変換部53-1,53-2,・・・,53-Mは、それぞれ、入力した受信信号を周波数変換する。例えば、受信信号は、周波数変換部53-1,53-2,・・・,53-Mによってドップラー周波数領域の信号に変換される。平均部54-1,54-2,・・・,52-Mは、周波数変換された受信信号の平均処理を行う。例えば、平均部54-1,54-2,・・・,52-Mは、ドップラー周波数領域の信号に変換された受信信号に対して、ドップラー周波数方向に移動平均を行う。 The frequency conversion units 53-1, 53-2, ..., 53-M each perform frequency conversion on the input received signal. For example, the received signal is converted into a signal in the Doppler frequency domain by the frequency conversion units 53-1, 53-2, ..., 53-M. The averaging units 54-1, 54-2, ..., 52-M perform averaging of the frequency-converted received signal. For example, the averaging units 54-1, 54-2, ..., 52-M perform moving averaging in the Doppler frequency direction on the received signal converted into a signal in the Doppler frequency domain.
 目標抽出部55は、周波数変換された受信信号から、周波数領域における目標の信号成分を抽出する。例えば、目標抽出部55は、受信信号の平均処理により得られた信号系列を用いて、ドップラー周波数領域における目標の信号成分を抽出する。そして、目標抽出部55は、平均処理により得られた信号のうち、目標の信号成分に起因して信号値が最大となったものを抽出する。 The target extraction unit 55 extracts the target's signal components in the frequency domain from the frequency-converted received signal. For example, the target extraction unit 55 extracts the target's signal components in the Doppler frequency domain using a signal sequence obtained by averaging the received signal. Then, the target extraction unit 55 extracts, from among the signals obtained by averaging, the signal whose signal value is maximized due to the target's signal component.
 周波数逆変換部56は、目標抽出部55によって抽出された目標の信号成分を逆周波数変換する。例えば、周波数逆変換部56は、目標の信号成分に周波数逆変換を行い、時間領域の信号に戻す。位相抽出部57は、周波数逆変換部56によって逆周波数変換された目標の信号成分の位相を抽出する。例えば、位相抽出部57は、目標の信号成分の位相をアンラップして、位相の関数を取得する。 The frequency inverse conversion unit 56 performs an inverse frequency conversion on the target signal components extracted by the target extraction unit 55. For example, the frequency inverse conversion unit 56 performs an inverse frequency conversion on the target signal components to convert them back into a time domain signal. The phase extraction unit 57 extracts the phase of the target signal components inverse frequency converted by the frequency inverse conversion unit 56. For example, the phase extraction unit 57 unwraps the phase of the target signal components to obtain a phase function.
 係数特定部58は、位相抽出部57によって抽出された位相をフィッティングすることで、目標の運動パラメータを表す多項式の項の係数を特定する。例えば、係数特定部58は、抽出された位相を最小二乗法によりフィッティングすることで、位相の関数を与える多項式を求め、求めた多項式の各項の係数を特定する。推定部59は、係数特定部58によって特定された前記多項式の各項の係数を用いて、目標の運動パラメータを推定する。 The coefficient identification unit 58 identifies the coefficients of the polynomial terms representing the motion parameters of the target by fitting the phase extracted by the phase extraction unit 57. For example, the coefficient identification unit 58 finds a polynomial that gives a function of the phase by fitting the extracted phase using the least squares method, and identifies the coefficients of each term of the found polynomial. The estimation unit 59 estimates the motion parameters of the target using the coefficients of each term of the polynomial identified by the coefficient identification unit 58.
 なお、レーダ信号処理装置5は、受信信号を周波数変換して目標の信号成分を積分することにより、雑音の影響を低減するものである。このため、レーダ信号処理装置5には、図2に示した構成要素のうち、周波数変換部53-1,53-2,・・・,53-M、目標抽出部55、周波数逆変換部56、位相抽出部57、係数特定部58および推定部59を備えていればよく、これら以外の構成要素は備えていなくてもよい。
 また、パルス圧縮部51、補償部52-1,52-2,・・・,52-M、および平均部54-1,54-2,・・・,54-Mは、レーダ信号処理装置5とデータのやり取りが可能な外部装置が備えてもよい。
The radar signal processing device 5 reduces the influence of noise by frequency converting the received signal and integrating the signal components of the target. Therefore, the radar signal processing device 5 only needs to include the frequency conversion units 53-1, 53-2, ..., 53-M, the target extraction unit 55, the frequency inverse conversion unit 56, the phase extraction unit 57, the coefficient specification unit 58, and the estimation unit 59 among the components shown in Fig. 2, and does not need to include any other components.
In addition, the pulse compressor 51, the compensation units 52-1, 52-2, . . . , 52-M, and the averaging units 54-1, 54-2, . . . , 54-M may be provided in an external device capable of exchanging data with the radar signal processing device 5.
 レーダ信号処理装置5の処理対象データである生データ(受信信号)を生成する処理を詳細に説明する。図3は、レーダ信号処理装置5の処理対象データを生成する処理を示すフローチャートである。まず、信号生成部37が、パルス信号に基づいて信号を生成する(ステップST1)。例えば、信号生成部37は、送信すべき信号としてチャープパルス信号を生成し、乗算部33aに出力する。
 なお、信号生成部37が生成する信号は、チャープパルス信号に限定されるものではなく、単純なパルス信号であってもよいし、そのほかのパルス信号であってもよい。
The process of generating raw data (received signals) which is data to be processed by the radar signal processing device 5 will be described in detail. Fig. 3 is a flowchart showing the process of generating data to be processed by the radar signal processing device 5. First, the signal generating unit 37 generates a signal based on a pulse signal (step ST1). For example, the signal generating unit 37 generates a chirp pulse signal as a signal to be transmitted, and outputs the signal to the multiplier 33a.
It should be noted that the signal generated by the signal generating unit 37 is not limited to a chirp pulse signal, but may be a simple pulse signal or another type of pulse signal.
 乗算部33aは、信号生成部37が生成した信号に対し、発振部34が生成した搬送波を乗算することにより、当該信号の周波数をアップコンバードする(ステップST2)。アップコンバードされた送信信号は、増幅部32aに出力される。増幅部32aは、入力した送信信号の電力を増幅する(ステップST3)。増幅部32aが増幅した送信信号は切り換え部31に出力される。送信時、切り換え部31は、アンテナ部2における送信用の素子アンテナと増幅部32aとを接続している。これにより、送信信号は、切り換え部31を介して増幅部32aからアンテナ部2へ出力される。アンテナ部2は、送信信号を電波として空間に放射する(ステップST4)。 The multiplier 33a upconverts the frequency of the signal generated by the signal generator 37 by multiplying the signal by the carrier wave generated by the oscillator 34 (step ST2). The upconverted transmission signal is output to the amplifier 32a. The amplifier 32a amplifies the power of the input transmission signal (step ST3). The transmission signal amplified by the amplifier 32a is output to the switch 31. During transmission, the switch 31 connects the transmitting element antenna in the antenna unit 2 to the amplifier 32a. As a result, the transmission signal is output from the amplifier 32a to the antenna unit 2 via the switch 31. The antenna unit 2 radiates the transmission signal into space as radio waves (step ST4).
 空間に放射された送信信号の電波は、空間に存在する目標で散乱または反射され、散乱または反射された電波がアンテナ部2に到来する。アンテナ部2は、到来した電波を受信する(ステップST5)。受信時、切り換え部31は、アンテナ部2における受信用の素子アンテナと増幅部32bとを接続している。このため、アンテナ部2が電波として受信した信号は、切り換え部31を介して増幅部32bに出力される。増幅部32bは、入力した信号の電力を増幅する(ステップST6)。 The radio waves of the transmission signal radiated into space are scattered or reflected by targets in space, and the scattered or reflected radio waves arrive at antenna unit 2. Antenna unit 2 receives the arriving radio waves (step ST5). During reception, switching unit 31 connects the receiving element antenna in antenna unit 2 to amplifier unit 32b. Therefore, the signal received as a radio wave by antenna unit 2 is output to amplifier unit 32b via switching unit 31. Amplifier unit 32b amplifies the power of the input signal (step ST6).
 乗算部33bは、増幅部32bが増幅した信号に対し、発振部34が生成した搬送波を乗算することにより、当該信号の周波数をダウンコンバートする(ステップST7)。
 フィルタ部35は、乗算部33bによりダウンコンバートされた信号のうち、使用周波数帯域外の信号成分を抑圧する(ステップST8)。フィルタ部35を通過した信号は、A/D変換部36に出力される。A/D変換部36は、フィルタ部35を通過した信号をA/D変換し、デジタル信号の受信信号を生成する(ステップST9)。A/D変換部36が生成した受信信号は、生データとして記憶部41に格納される。
The multiplier 33b multiplies the signal amplified by the amplifier 32b by the carrier wave generated by the oscillator 34, thereby down-converting the frequency of the signal (step ST7).
The filter unit 35 suppresses signal components outside the used frequency band from the signal down-converted by the multiplication unit 33b (step ST8). The signal that has passed through the filter unit 35 is output to the A/D conversion unit 36. The A/D conversion unit 36 performs A/D conversion on the signal that has passed through the filter unit 35 to generate a digital reception signal (step ST9). The reception signal generated by the A/D conversion unit 36 is stored in the storage unit 41 as raw data.
 次に、実施の形態1に係るレーダ信号処理方法について説明する。
 図4は、実施の形態1に係るレーダ信号処理方法を示すフローチャートであり、目標の運動パラメータを推定する処理を示している。図5A、図5B、図5C、図5Dおよび図5Eは、図4のレーダ信号処理方法で処理された信号の特性を示す図である。
 信号生成部37が生成した信号がチャープパルスである場合に、パルス圧縮部51は、記憶部41から取得した生データに対してパルス圧縮を行う(ステップST1A)。
 アンテナ部2が受信した信号にそれぞれ対応する生データを受信信号s(n,h)とする。ここで、nはレンジセル番号であり、hはパルス番号である。
Next, the radar signal processing method according to the first embodiment will be described.
Fig. 4 is a flow chart showing the radar signal processing method according to the first embodiment, showing the process of estimating the motion parameters of a target. Fig. 5A, Fig. 5B, Fig. 5C, Fig. 5D and Fig. 5E are diagrams showing the characteristics of a signal processed by the radar signal processing method of Fig. 4.
When the signal generated by the signal generating unit 37 is a chirp pulse, the pulse compressing unit 51 performs pulse compression on the raw data acquired from the storage unit 41 (step ST1A).
The raw data corresponding to each signal received by the antenna unit 2 is designated as received signal s 0 (n, h), where n is the range cell number and h is the pulse number.
 例えば、パルス圧縮部51は、受信信号s(n,h)に対してレンジ方向の周波数変換を行い、この周波数変換により得られた信号成分にレンジ圧縮用の参照関数を乗算し、続いて、レンジ方向の逆周波数変換を行う。これにより、受信信号s(n,h)は、パルス圧縮済み信号s(r,h)となる。ここで、rはレンジビンである。 For example, the pulse compressor 51 performs a frequency conversion in the range direction on the received signal s0 (n,h), multiplies the signal component obtained by this frequency conversion by a reference function for range compression, and then performs an inverse frequency conversion in the range direction. As a result, the received signal s0 (n,h) becomes a pulse-compressed signal s1 (r,h), where r is a range bin.
 補償部52-1,52-2,・・・,52-Mは、パルス圧縮済み信号s(r,h)に対して加速度成分を補償する(ステップST2A)。例えば、補償部52-1,52-2,・・・,52-Mは、目標の加速度の一次推定結果の候補としてa,・・・,a,・・・,aを用意しておき、下記式(13)に従って加速度成分を補償する。下記式(13)において、s2,m(r,h)は、パルス圧縮済み信号s(r,h)の加速度成分を補償して得られる信号である。Nはパルス数、Tはパルス繰り返し周期、λは、信号の波長である。
 パルス圧縮済み信号s(r,h)は加速度成分を補償することにより、図5Aに示す波形の信号aとなる。この信号aには、目標の信号成分と雑音成分とが含まれる。

Figure JPOXMLDOC01-appb-I000013
The compensation units 52-1, 52-2, ..., 52-M compensate for the acceleration component of the pulse-compressed signal s 1 (r, h) (step ST2A). For example, the compensation units 52-1, 52-2, ..., 52-M prepare a 1 , ..., a m , ..., a M as candidates for the primary estimation result of the target acceleration, and compensate for the acceleration component according to the following formula (13). In the following formula (13), s 2,m (r, h) is a signal obtained by compensating for the acceleration component of the pulse-compressed signal s 1 (r, h). N h is the number of pulses, T is the pulse repetition period, and λ is the wavelength of the signal.
The pulse-compressed signal s 1 (r, h) is compensated for the acceleration component to become a signal a having a waveform shown in Fig. 5A. This signal a contains a target signal component and a noise component.

Figure JPOXMLDOC01-appb-I000013
 信号s2,m(r,h)は、目標の加速度の一次推定結果の候補が平均加速度aに近い値を有する場合、加速度成分の発生によるドップラー周波数領域上での目標の速度成分の広がりが軽減される。そこで、補償部52-1,52-2,・・・,52-Mが、パルス圧縮済み信号s(r,h)を加速度等の運動成分を補償することにより、周波数変換部53-1,53-2,・・・,53-Mによる周波数変換後の信号スペクトルの電力が改善される。
 また、周波数変換後に高いピーク電力を示すs2,m(r,h)におけるaを、平均加速度aに近い値を有する加速度成分の推定結果の候補とすることも可能である。
 なお、補償を行う運動成分を加速度としたが、その他の運動成分で補償してもよいし、複数の運動成分を補償してもよい。
When a candidate for the primary estimation result of the target acceleration has a value close to the average acceleration a 0 , the signal s 2,m (r, h) reduces the spread of the target velocity component in the Doppler frequency domain due to the generation of the acceleration component. Therefore, the compensation units 52-1, 52-2, ..., 52-M compensate for the motion components such as acceleration of the pulse-compressed signal s 1 (r, h), thereby improving the power of the signal spectrum after frequency conversion by the frequency conversion units 53-1, 53-2, ..., 53-M.
Moreover, it is also possible to set a m in s 2,m (r, h) that shows a high peak power after frequency conversion as a candidate for an estimation result of an acceleration component having a value close to the average acceleration a 0 .
Although the motion component to be compensated for is acceleration, other motion components may be used for compensation, or a plurality of motion components may be compensated for.
 周波数変換部53-1,53-2,・・・,53-Mは、加速度成分の補償が行われた信号にs2,m(r,h)にパルス方向の周波数変換を行い、信号S2,m(r,f)を生成する(ステップST3A)。ここで、fはドップラー周波数である。
 信号S2,m(r,f)は、図5Bに示すスペクトルbとなる。図5Bに示すように、目標の信号成分に対応する周波数帯域がピーク帯域となっている。
The frequency conversion units 53-1, 53-2, ..., 53-M perform frequency conversion in the pulse direction on the signal s 2,m (r, h) after compensation for the acceleration component, to generate a signal S 2,m (r, f) (step ST3A), where f is the Doppler frequency.
The signal S 2,m (r, f) has a spectrum b shown in Fig. 5B. As shown in Fig. 5B, the frequency band corresponding to the target signal component is a peak band.
 続いて、平均部54-1,54-2,・・・,54-Mが、信号S2,m(r,f)の電力成分についてドップラー周波数方向に移動平均を行うことにより、信号p(r,f)を生成する(ステップST4A)。これにより、受信信号のドップラー周波数スペクトルから、目標の信号成分を抽出する際に、スペクトルにおける雑音電力成分の影響が低減される。 Next, the averaging units 54-1, 54-2, ..., 54-M perform moving averages in the Doppler frequency direction on the power components of the signal S 2,m (r, f) to generate a signal pm (r, f) (step ST4A). This reduces the influence of noise power components in the spectrum when extracting the target signal components from the Doppler frequency spectrum of the received signal.
 例えば、平均部54-1,54-2,・・・,54-Mは、信号S2,m(r,f)の電力成分についてドップラー周波数方向にピクセルnごとの移動平均を行う。
 なお、nの値は任意の大きさでよいが、下記式(14)および下記式(15)に従って、nを設定してもよい。下記式(14)および下記式(15)において、vresoは速度分解能である。また、nは加速度補償後に残余する加速度による速度広がりの最大値を速度分解能vresoで除算し、得られた値を四捨五入して整数値にしたものである。vresoは、ドップラー周波数スペクトルの幅の目安となる。ここでは、aが等間隔に設定されているものとしている。移動平均を行って得られるp(r,f)は、移動平均の効果によって雑音が低減されている。

Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015
For example, the averaging units 54-1, 54-2, . . . , 54-M perform moving averaging for each pixel nw in the Doppler frequency direction on the power components of the signal S 2,m (r, f).
The value of nw may be any value, but may be set according to the following formula (14) and formula (15). In the following formula (14) and formula (15), vreso is the velocity resolution. Also, nw is obtained by dividing the maximum value of the velocity spread due to acceleration remaining after acceleration compensation by the velocity resolution vreso , and rounding the obtained value to an integer value. vreso is a measure of the width of the Doppler frequency spectrum. Here, it is assumed that am is set at equal intervals. In pm (r,f) obtained by performing moving average, noise is reduced due to the effect of moving average.

Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015
 なお、平均部54-1,54-2,・・・,54-Mは、移動平均して得られた信号系列を重みとし、これらの重みをS2,m(r,f)に乗算してp(r,f)を算出してもよい。移動平均を行うと雑音が抑圧できるが、目標の速度広がりがない場合は、信号電力の低下が顕著となる。そこで、移動平均を行って得られる重みを信号S2,m(r,f)に乗算することにより、重みが移動平均によって得られていることから雑音を低減できる。さらに、信号S2,m(r,f)に重みを乗算してp(r,f)を算出しているので、信号電力の低減を緩和することも可能である。 In addition, the averaging units 54-1, 54-2, ..., 54-M may use the signal sequence obtained by moving averaging as weights, and multiply S 2,m (r,f) by these weights to calculate pm (r,f). Although performing moving averaging can suppress noise, if there is no target speed spread, the reduction in signal power becomes significant. Therefore, by multiplying the signal S 2,m (r,f) by the weights obtained by performing moving averaging, noise can be reduced because the weights are obtained by moving averaging. Furthermore, since pm (r,f) is calculated by multiplying the signal S 2,m (r,f) by the weights, it is also possible to mitigate the reduction in signal power.
 目標抽出部55は、平均部54-1,54-2,・・・,54-Mのそれぞれが算出した複数のp(r,f)のうち、最大値のp(r,f)を取得し、取得したp(r,f)の中で最大電力を有するpmmax(r,f)を求める。ここで、目標抽出部55は、最大電力を有する信号pmmax(r,f)のドップラー周波数ビンfmax、レンジビンrmax、およびmの値に対応するmmaxを求める。mmaxに対応する加速度成分の一次推定結果をammaxとする。 The target extraction unit 55 acquires the maximum value pm (r,f) from among the multiple pm(r,f) calculated by each of the averaging units 54-1, 54-2, ..., 54-M, and acquires pmmax (r,f) having the maximum power from the acquired pm (r,f). Here, the target extraction unit 55 acquires the mmax corresponding to the Doppler frequency bin fmax , range bin rmax , and value of m of the signal pmmax(r,f) having the maximum power. The primary estimation result of the acceleration component corresponding to mmax is denoted as a mmax .
 さらに、目標抽出部55は、下記式(16)に従って、信号S2,mmax(rmax,f)から、目標の信号成分を抽出する(ステップST5A)。下記式(16)において、fは、ドップラー周波数ビン数nに対応するドップラー周波数幅である。また、周波数変換ポイント数(FFTポイント数)をNとした場合に、雑音電力はn/Nに低減する。なお、目標抽出部55による信号成分の切り出しの長さはnである。ただし、切り出しの長さ自体は、任意の長さであってもよい。

Figure JPOXMLDOC01-appb-I000016
Furthermore, the target extraction unit 55 extracts the target signal component from the signal S2 ,mmax ( rmax ,f) according to the following formula (16) (step ST5A). In the following formula (16), fw is the Doppler frequency width corresponding to the Doppler frequency bin number nw . Furthermore, when the number of frequency conversion points (number of FFT points) is N, the noise power is reduced to nw /N. The length of the signal component cut out by the target extraction unit 55 is nw . However, the cut-out length itself may be any length.

Figure JPOXMLDOC01-appb-I000016
 下記式(16)では、図5Cに示すように、目標抽出部55が目標の信号成分以外の成分に0値が設定されたスペクトルcとなる。すなわち、D(f)は目標が抽出されているものの、抽出された区間以外には0が挿入され、雑音などの不要信号が低減される。
これにより、受信信号が低S/Nであっても、精度よく、速度、加速度および躍度といった、高次の運動パラメータを推定することができる。
In the following formula (16), as shown in Fig. 5C, the target extraction unit 55 sets the value of 0 to components other than the target signal component to produce a spectrum c. That is, although the target is extracted in D(f), 0 is inserted in sections other than the extracted section, reducing unnecessary signals such as noise.
This makes it possible to estimate high-order movement parameters such as speed, acceleration, and jerk with high accuracy even if the received signal has a low S/N ratio.
 周波数逆変換部56は、目標抽出部55が算出したD(f)を逆周波数変換し、信号d(t)を生成する(ステップST6A)。上述したように、雑音成分が低減されるので、信号d(t)は、図5Dに示す波形の信号dとなる。信号dには、目標の信号成分が含まれるが、雑音成分は少なくなっている。 The frequency inverse conversion unit 56 performs an inverse frequency conversion on D(f) calculated by the target extraction unit 55 to generate a signal d(t) (step ST6A). As described above, the noise components are reduced, so that the signal d(t) becomes the signal d with the waveform shown in FIG. 5D. The signal d contains the target signal components, but the noise components are reduced.
 位相抽出部57は、信号d(t)の位相をアンラップして、位相の関数θ(t)を生成する(ステップST7A)。例えば、位相抽出部57は、関数θ(t)に対して、下記式(17)で表される距離変化特性Δr(t)を算出する。この位相Δr(t)を解析することにより、レーダと目標との相対距離の変化についての情報が得られる。位相Δr(t)は、図5Eに示す波形の信号eとなる。

Figure JPOXMLDOC01-appb-I000017
The phase extraction unit 57 unwraps the phase of the signal d(t) to generate a phase function θ(t) (step ST7A). For example, the phase extraction unit 57 calculates the distance change characteristic Δr(t) expressed by the following equation (17) for the function θ(t). By analyzing this phase Δr(t), information on the change in the relative distance between the radar and the target can be obtained. The phase Δr(t) becomes a signal e with a waveform shown in FIG. 5E.

Figure JPOXMLDOC01-appb-I000017
 続いて、係数特定部58は、Δr(t)に対して、最小二乗法によるフィッティングを行う(ステップST8A)。これにより、関数θ(t)を与える多項式が得られ、多項式のk次の項の係数pが特定される。 Next, the coefficient specifying unit 58 performs fitting on Δr(t) by the least squares method (step ST8A), thereby obtaining a polynomial that gives the function θ(t) and specifying the coefficient p k of the kth degree term of the polynomial.
 推定部59は、多項式のk次の項の係数pのうち、係数p、pおよびpを用い、下記式(18)、下記式(19)および下記式(20)に従って目標の推定速度vest、推定加速度aestおよび推定躍度jestを推定する(ステップST9A)。

Figure JPOXMLDOC01-appb-I000018

Figure JPOXMLDOC01-appb-I000019

Figure JPOXMLDOC01-appb-I000020
The estimation unit 59 uses coefficients p1 , p2 , and p3 among the coefficients pk of the kth degree term of the polynomial to estimate the estimated velocity v est , estimated acceleration a est , and estimated jerk j est of the target according to the following equations (18), (19), and (20) (step ST9A).

Figure JPOXMLDOC01-appb-I000018

Figure JPOXMLDOC01-appb-I000019

Figure JPOXMLDOC01-appb-I000020
 なお、係数特定部58は、上記と同様の効果が得られるのであれば、Δr(t)のフィッティングには最小二乗法を用いず、他のフィッティング方法を用いてもよい。
 推定部59は、推定速度vest、推定加速度aestおよび推定躍度jestを出力して、動作を完了する。
It should be noted that the coefficient specifying unit 58 may use other fitting methods for fitting Δr(t) instead of the least squares method, as long as the same effect as above can be obtained.
The estimation unit 59 outputs the estimated speed v est , the estimated acceleration a est and the estimated jerk j est to complete the movement.
 これまでの説明では、レンジビンrmaxの1レンジビンに限定して処理を解説したが、複数のレンジビンで運動パラメータの推定を行い、得られた値の平均値または中間値を求めて、推定精度を向上させてもよい。 In the above explanation, the processing has been limited to one range bin r max , but the estimation accuracy may be improved by estimating the motion parameters in multiple range bins and calculating the average or median of the obtained values.
 また、一連のパルス列を一括して処理したが、分割して処理を行って、得られる結果を合成してもよい。 In addition, although the series of pulse trains is processed all at once, it is also possible to process them separately and then combine the results.
 さらに、推定する運動パラメータを、速度、加速度および躍度としたが、これらよりも高次の運動成分を推定してもよい。 Furthermore, although the estimated motion parameters are velocity, acceleration, and jerk, higher-order motion components may also be estimated.
 次に、レーダ信号処理装置5の機能を実現するハードウェア構成について説明する。
 レーダ信号処理装置5が備えるパルス圧縮部51、補償部52-1,52-2,・・・,52-M、周波数変換部53-1,53-2,・・・,53-M、平均部54-1,54-2,・・・,54-M、目標抽出部55、周波数逆変換部56、位相抽出部57、係数特定部58および推定部59の機能は、処理回路により実現される。すなわち、レーダ信号処理装置5は、図4に示したステップST1AからステップST9Aまでの処理を実行するための処理回路を備える。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
Next, a hardware configuration for realizing the functions of the radar signal processing device 5 will be described.
The functions of the pulse compression unit 51, the compensation units 52-1, 52-2, ..., 52-M, the frequency conversion units 53-1, 53-2, ..., 53-M, the averaging units 54-1, 54-2, ..., 54-M, the target extraction unit 55, the frequency inverse conversion unit 56, the phase extraction unit 57, the coefficient specification unit 58, and the estimation unit 59 included in the radar signal processing device 5 are realized by processing circuits. That is, the radar signal processing device 5 includes a processing circuit for executing the processes from step ST1A to step ST9A shown in Fig. 4. The processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in a memory.
 図6Aは、レーダ信号処理装置5の機能を実現するハードウェア構成を示すブロック図である。図6Bは、レーダ信号処理装置5の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。図6Aおよび図6Bにおいて、入力インタフェース100は、レーダ信号処理装置5が記憶部41から取得するデータを中継するインタフェースである。出力インタフェース101は、推定部59から外部装置へ出力される目標の運動パラメータの推定結果を中継するインタフェースである。 FIG. 6A is a block diagram showing a hardware configuration that realizes the functions of the radar signal processing device 5. FIG. 6B is a block diagram showing a hardware configuration that executes software that realizes the functions of the radar signal processing device 5. In FIGS. 6A and 6B, the input interface 100 is an interface that relays data that the radar signal processing device 5 acquires from the memory unit 41. The output interface 101 is an interface that relays the estimation results of the target motion parameters that are output from the estimation unit 59 to an external device.
 処理回路が図6Aに示す専用のハードウェアの処理回路102である場合、処理回路102は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものが該当する。レーダ信号処理装置5が備えるパルス圧縮部51、補償部52-1,52-2,・・・,52-M、周波数変換部53-1,53-2,・・・,53-M、平均部54-1,54-2,・・・,54-M、目標抽出部55、周波数逆変換部56、位相抽出部57、係数特定部58および推定部59の機能を、別々の処理回路で実現してもよく、これらの機能をまとめて一つの処理回路で実現してもよい。 When the processing circuit is the dedicated hardware processing circuit 102 shown in FIG. 6A, the processing circuit 102 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these. The functions of the pulse compression unit 51, the compensation units 52-1, 52-2, ..., 52-M, the frequency conversion units 53-1, 53-2, ..., 53-M, the averaging units 54-1, 54-2, ..., 54-M, the target extraction unit 55, the frequency inverse conversion unit 56, the phase extraction unit 57, the coefficient identification unit 58, and the estimation unit 59 provided in the radar signal processing device 5 may be realized by separate processing circuits, or these functions may be realized together by a single processing circuit.
 処理回路が図6Bに示すプロセッサ103である場合、レーダ信号処理装置5が備えるパルス圧縮部51、補償部52-1,52-2,・・・,52-M、周波数変換部53-1,53-2,・・・,53-M、平均部54-1,54-2,・・・,54-M、目標抽出部55、周波数逆変換部56、位相抽出部57、係数特定部58および推定部59の機能は、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせにより実現される。なお、ソフトウェアまたはファームウェアは、プログラムとして記述されてメモリ104に記憶される。 When the processing circuit is the processor 103 shown in FIG. 6B, the functions of the pulse compression unit 51, compensation units 52-1, 52-2, ..., 52-M, frequency conversion units 53-1, 53-2, ..., 53-M, averaging units 54-1, 54-2, ..., 54-M, target extraction unit 55, frequency inverse conversion unit 56, phase extraction unit 57, coefficient identification unit 58, and estimation unit 59 provided in the radar signal processing device 5 are realized by software, firmware, or a combination of software and firmware. The software or firmware is written as a program and stored in the memory 104.
 プロセッサ103は、メモリ104に記憶されたプログラムを読み出して実行することにより、レーダ信号処理装置5が備えるパルス圧縮部51、補償部52-1,52-2,・・・,52-M、周波数変換部53-1,53-2,・・・,53-M、平均部54-1,54-2,・・・,54-M、目標抽出部55、周波数逆変換部56、位相抽出部57、係数特定部58および推定部59の機能を実現する。例えば、レーダ信号処理装置5は、プロセッサ103によって実行されるときに図4に示したステップST1AからステップST9Aの処理が結果的に実行されるプログラムを記憶するためのメモリ104を備えている。これらのプログラムは、パルス圧縮部51、補償部52-1,52-2,・・・,52-M、周波数変換部53-1,53-2,・・・,53-M、平均部54-1,54-2,・・・,54-M、目標抽出部55、周波数逆変換部56、位相抽出部57、係数特定部58および推定部59が行う処理の手順または方法を、コンピュータに実行させるものである。メモリ104は、コンピュータを、パルス圧縮部51、補償部52-1,52-2,・・・,52-M、周波数変換部53-1,53-2,・・・,53-M、平均部54-1,54-2,・・・,54-M、目標抽出部55、周波数逆変換部56、位相抽出部57、係数特定部58および推定部59として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。 The processor 103 reads out and executes the programs stored in the memory 104 to realize the functions of the pulse compression unit 51, compensation units 52-1, 52-2, ..., 52-M, frequency conversion units 53-1, 53-2, ..., 53-M, averaging units 54-1, 54-2, ..., 54-M, target extraction unit 55, frequency inverse conversion unit 56, phase extraction unit 57, coefficient identification unit 58 and estimation unit 59 provided in the radar signal processing device 5. For example, the radar signal processing device 5 includes a memory 104 for storing a program that, when executed by the processor 103, results in the processing of steps ST1A to ST9A shown in FIG. 4 being performed. These programs cause the computer to execute the procedures or methods of processing performed by the pulse compression unit 51, the compensation unit 52-1, 52-2, ..., 52-M, the frequency conversion unit 53-1, 53-2, ..., 53-M, the averaging unit 54-1, 54-2, ..., 54-M, the target extraction unit 55, the frequency inverse conversion unit 56, the phase extraction unit 57, the coefficient specification unit 58, and the estimation unit 59. The memory 104 may be a computer-readable storage medium that stores programs for causing the computer to function as the pulse compression unit 51, the compensation unit 52-1, 52-2, ..., 52-M, the frequency conversion unit 53-1, 53-2, ..., 53-M, the averaging unit 54-1, 54-2, ..., 54-M, the target extraction unit 55, the frequency inverse conversion unit 56, the phase extraction unit 57, the coefficient specification unit 58, and the estimation unit 59.
 メモリ104は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)(登録商標)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。 Memory 104 may be, for example, a non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically-EPROM) (registered trademark), a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, etc.
 レーダ信号処理装置5が備えるパルス圧縮部51、補償部52-1,52-2,・・・,52-M、周波数変換部53-1,53-2,・・・,53-M、平均部54-1,54-2,・・・,54-M、目標抽出部55、周波数逆変換部56、位相抽出部57、係数特定部58および推定部59の機能の一部を、専用のハードウェアで実現し、他の一部はソフトウェアまたはファームウェアで実現してもよい。例えば、パルス圧縮部51、補償部52-1,52-2,・・・,52-M、周波数変換部53-1,53-2,・・・,53-M、平均部54-1,54-2,・・・,54-Mの各機能は専用のハードウェアである処理回路102により実現し、目標抽出部55、周波数逆変換部56、位相抽出部57、係数特定部58および推定部59の各機能は、プロセッサ103がメモリ104に記憶されたプログラムを読み出して実行することにより実現してもよい。このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせにより上記機能を実現することが可能である。 Some of the functions of the pulse compression unit 51, compensation unit 52-1, 52-2, ..., 52-M, frequency conversion unit 53-1, 53-2, ..., 53-M, averaging unit 54-1, 54-2, ..., 54-M, target extraction unit 55, frequency inverse conversion unit 56, phase extraction unit 57, coefficient identification unit 58 and estimation unit 59 provided in the radar signal processing device 5 may be realized by dedicated hardware, and other functions may be realized by software or firmware. For example, the functions of the pulse compression unit 51, the compensation units 52-1, 52-2, ..., 52-M, the frequency conversion units 53-1, 53-2, ..., 53-M, and the averaging units 54-1, 54-2, ..., 54-M may be realized by the processing circuit 102, which is dedicated hardware, and the functions of the target extraction unit 55, the frequency inverse conversion unit 56, the phase extraction unit 57, the coefficient identification unit 58, and the estimation unit 59 may be realized by the processor 103 reading and executing a program stored in the memory 104. In this way, the processing circuit can realize the above functions by hardware, software, firmware, or a combination of these.
 以上のように、実施の形態1に係るレーダ信号処理装置5は、レーダ信号を周波数変換する周波数変換部53-1,53-2,・・・,53-Mと、周波数変換されたレーダ信号から、周波数領域における目標の信号成分を抽出する目標抽出部55と、目標の信号成分を逆周波数変換する周波数逆変換部56と、逆周波数変換された目標の信号成分の位相を抽出する位相抽出部57と、抽出された位相をフィッティングすることにより、目標の運動成分に関する運動パラメータを表す多項式の項の係数を特定する係数特定部58と、特定された多項式の各項の係数を用いて、目標の運動パラメータを推定する推定部59を備える。周波数変換して信号を積分することにより、当該信号に含まれる目標の信号成分を強調させることができるので、目標の信号成分の他に信号に含まれる雑音の影響を低減させることが可能である。これにより、レーダ信号処理装置5は、雑音の影響を低減させて目標の運動パラメータを推定することができる。
 また、レーダ信号処理装置5をパルスドップラーレーダに適用することにより、目標の加速度および躍度といった高次の運動パラメータを、受信信号に含まれる雑音の影響を低減しながら高精度に推定することができる。
 従来の技術では、目標の運動成分で信号を補償する補償量の間隔でしか運動パラメータを推定できなかったが、レーダ信号処理装置5は、受信信号を周波数変換して雑音の影響を低減してから目標の信号成分の位相を解析するので、従来の補償間隔を補間するように目標の運動パラメータを高精度に推定することができる。
As described above, the radar signal processing device 5 according to the first embodiment includes frequency conversion units 53-1, 53-2, ..., 53-M that frequency convert the radar signal, a target extraction unit 55 that extracts a target signal component in the frequency domain from the frequency-converted radar signal, a frequency inverse conversion unit 56 that inversely converts the target signal component, a phase extraction unit 57 that extracts the phase of the inversely frequency-converted target signal component, a coefficient specification unit 58 that specifies a coefficient of a polynomial term that represents a motion parameter related to the target motion component by fitting the extracted phase, and an estimation unit 59 that estimates the target motion parameter using the coefficient of each term of the specified polynomial. By frequency converting and integrating the signal, the target signal component included in the signal can be emphasized, so that it is possible to reduce the influence of noise included in the signal in addition to the target signal component. As a result, the radar signal processing device 5 can estimate the target motion parameter while reducing the influence of noise.
Furthermore, by applying the radar signal processing device 5 to a pulse Doppler radar, it is possible to estimate high-order movement parameters such as the acceleration and jerk of a target with high accuracy while reducing the effects of noise contained in the received signal.
In conventional techniques, it was only possible to estimate motion parameters at intervals equal to the compensation amount for compensating for the signal with the motion components of the target. However, the radar signal processing device 5 frequency-converts the received signal to reduce the effects of noise, and then analyzes the phase of the target's signal components. This makes it possible to estimate the motion parameters of the target with high accuracy by interpolating the conventional compensation intervals.
 実施の形態1に係るレーダ信号処理装置5において、位相抽出部57は、目標の信号成分の位相をアンラップする。これにより、目標の信号成分の位相を示す関数を算出することができる。 In the radar signal processing device 5 according to the first embodiment, the phase extraction unit 57 unwraps the phase of the target signal component. This makes it possible to calculate a function that indicates the phase of the target signal component.
 実施の形態1に係るレーダ信号処理装置5において、目標抽出部55は、目標の信号成分以外の成分に0値を設定する。このように、雑音の低減を周波数領域の0挿入によって行い、平均処理を用いていないので、信号の情報が欠損せず、高精度に運動パラメータを推定が可能となる。これは、信号にドップラー周波数フィルタ上の雑音を低減するフィルタを並列に並べて、雑音が低減された複数の信号の中から、最も信頼性の高い信号を選んで位相を解析する処理と等価である。目標の信号成分を抽出し、それ以外の帯域に0値を挿入することで雑音を低減するので、演算量の増大を伴うことなく、信頼性の高い運動パラメータの推定を実現できる。 In the radar signal processing device 5 according to the first embodiment, the target extraction unit 55 sets zero values to components other than the target signal components. In this way, noise reduction is performed by inserting zeros in the frequency domain, and averaging is not used, so that no signal information is lost and it is possible to estimate the motion parameters with high accuracy. This is equivalent to arranging filters that reduce noise on a Doppler frequency filter in parallel on the signal, selecting the most reliable signal from among multiple noise-reduced signals, and analyzing the phase. Noise is reduced by extracting the target signal components and inserting zero values into other bands, so it is possible to achieve reliable estimation of motion parameters without increasing the amount of calculation.
 実施の形態1に係るレーダ信号処理装置5において、係数特定部58は、抽出された位相を最小二乗法によりフィッティングする。これにより、位相の関数を与える多項式を算出することができる。 In the radar signal processing device 5 according to the first embodiment, the coefficient determination unit 58 fits the extracted phase using the least squares method. This makes it possible to calculate a polynomial that gives a function of the phase.
 実施の形態1に係るレーダ信号処理装置5において、レーダ信号における目標の運動成分を補償する補償部52-1,52-2,・・・,52-Mを備える。目標の運動成分で受信信号を補償することにより、周波数変換後の受信信号のスペクトルの電力を改善することができる。 The radar signal processing device 5 according to the first embodiment includes compensation units 52-1, 52-2, ..., 52-M that compensate for the target motion components in the radar signal. By compensating the received signal with the target motion components, it is possible to improve the power of the spectrum of the received signal after frequency conversion.
 実施の形態1に係るレーダ信号処理装置5は、周波数変換されたレーダ信号の平均処理を行う平均部54-1,54-2,・・・,54-Mを備える。目標抽出部55は、レーダ信号の平均処理により得られた信号系列を用いて、周波数領域における目標の信号成分を抽出する。これにより、スペクトルにおける雑音電力成分の影響が低減され、受信信号のドップラー周波数スペクトルから、目標の信号成分を特定しやすくなる。 The radar signal processing device 5 according to the first embodiment includes averaging units 54-1, 54-2, ..., 54-M that perform averaging of the frequency-converted radar signal. The target extraction unit 55 uses the signal sequence obtained by averaging the radar signal to extract the target signal components in the frequency domain. This reduces the influence of noise power components in the spectrum, making it easier to identify the target signal components from the Doppler frequency spectrum of the received signal.
 実施の形態1に係るレーダ信号処理装置5において、目標抽出部55は、信号系列をレーダ信号に乗算した信号を用いて、目標の信号成分を抽出する。このように、レーダ信号に、平均処理により得られた信号系列を重みとして乗算することにより、信号電力の低減を緩和することができる。 In the radar signal processing device 5 according to the first embodiment, the target extraction unit 55 extracts the signal components of the target using a signal obtained by multiplying the radar signal by the signal sequence. In this way, by multiplying the radar signal by the signal sequence obtained by the averaging process as a weight, it is possible to mitigate the reduction in signal power.
 実施の形態1に係るレーダ装置1は、アンテナ部2と、アンテナ部2からレーダ信号の電波を送信させ、アンテナ部2に到来した電波を受信してレーダ信号の受信信号を生成する送受信回路3と、受信信号を入力して、受信信号から抽出した目標の運動成分に関する運動パラメータを推定するレーダ信号処理装置5とを備える。これにより、レーダ装置1は、雑音の影響を低減させて目標の運動パラメータを推定することができる。 The radar device 1 according to the first embodiment includes an antenna unit 2, a transmission/reception circuit 3 that transmits radio waves of a radar signal from the antenna unit 2 and receives the radio waves arriving at the antenna unit 2 to generate a received signal of the radar signal, and a radar signal processing device 5 that inputs the received signal and estimates motion parameters related to the motion components of the target extracted from the received signal. This allows the radar device 1 to estimate the motion parameters of the target while reducing the effects of noise.
 実施の形態1に係るレーダ信号処理方法は、周波数変換部53-1,53-2,・・・,53-Mが、レーダ信号を周波数変換するステップと、目標抽出部55が、周波数変換されたレーダ信号から、周波数領域における目標の信号成分を抽出するステップと、周波数逆変換部56が、目標の信号成分を逆周波数変換するステップと、位相抽出部57が、逆周波数変換された目標の信号成分の位相を抽出するステップと、係数特定部58が、抽出された位相をフィッティングすることで、目標の運動成分に関する運動パラメータを表す多項式の項の係数を特定するステップと、推定部59が、特定された多項式の各項の係数を用いて、目標の運動パラメータを推定するステップとを備える。当該方法をレーダ信号処理装置5が実行することにより、雑音の影響を低減させて目標の運動パラメータを推定することができる。 The radar signal processing method according to the first embodiment includes a step in which frequency conversion units 53-1, 53-2, ..., 53-M frequency convert the radar signal, a step in which a target extraction unit 55 extracts a target signal component in the frequency domain from the frequency-converted radar signal, a step in which a frequency inverse conversion unit 56 inversely frequency converts the target signal component, a step in which a phase extraction unit 57 extracts the phase of the inverse frequency-converted target signal component, a step in which a coefficient identification unit 58 identifies coefficients of polynomial terms representing motion parameters related to the target motion components by fitting the extracted phase, and a step in which an estimation unit 59 estimates the target motion parameters using the identified coefficients of each term of the polynomial. By having the radar signal processing device 5 execute this method, it is possible to estimate the target motion parameters while reducing the effects of noise.
実施の形態2.
 図7は、実施の形態2に係るレーダ装置1Aの構成を示すブロック図である。図7において、図1と同一の構成要素には同一の符号を付与しており、重複した説明を省略する。図7において、レーダ装置1Aは、例えば、航空機または人工衛星など移動するプラットフォームに備えられ、目標の運動パラメータを推定する装置であり、アンテナ部2、送受信回路3A、記憶装置4A、およびレーダ信号処理装置5Aを備える。
 また、レーダ装置1Aは、プラットフォームにアンテナ部2、送受信回路3Aおよび記憶装置4Aを設け、地上局としてレーダ信号処理装置5Aを設けて、プラットフォームと地上局との間を通信回線で接続したものであってもよい。
Embodiment 2.
Fig. 7 is a block diagram showing the configuration of a radar device 1A according to embodiment 2. In Fig. 7, the same components as those in Fig. 1 are given the same reference numerals, and duplicated explanations will be omitted. In Fig. 7, the radar device 1A is a device that is provided on a moving platform such as an aircraft or an artificial satellite, estimates motion parameters of a target, and includes an antenna unit 2, a transmission/reception circuit 3A, a storage device 4A, and a radar signal processing device 5A.
In addition, the radar device 1A may be configured by providing the antenna unit 2, the transmission/reception circuit 3A, and the memory device 4A on a platform, providing a radar signal processing device 5A as a ground station, and connecting the platform and the ground station via a communication line.
 送受信回路3Aは、図7に示すように、切り換え部31、増幅部32a、増幅部32b、乗算部33a、乗算部33b、発振部34、フィルタ部35、A/D変換部36、信号生成部37、および画像生成部38を備える。画像生成部38は、A/D変換部36が変換したデジタル信号の受信信号を用いてSAR画像を生成する。SAR画像の生成方法は、例えば、参考文献1に記載されている。
(参考文献1)
 I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data. Norwood, MA: Artech House, 2005.
7, the transmission/reception circuit 3A includes a switching unit 31, amplifiers 32a and 32b, multipliers 33a and 33b, an oscillator 34, a filter unit 35, an A/D converter 36, a signal generator 37, and an image generator 38. The image generator 38 generates an SAR image using the received signal, which is a digital signal converted by the A/D converter 36. A method for generating an SAR image is described in, for example, Reference 1.
(Reference 1)
I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data. Norwood, MA: Artech House, 2005.
 記憶装置4Aは、記憶部41Aを備える。記憶部41AにはSAR画像が格納される。レーダ信号処理装置5Aは、記憶部41Aに格納されたSAR画像から目標の信号成分を抽出する。また、レーダ信号処理装置5Aは、送受信回路3Aから直接取得したSAR画像から目標の信号成分を抽出してもよい。 The storage device 4A includes a storage unit 41A. The storage unit 41A stores SAR images. The radar signal processing device 5A extracts target signal components from the SAR images stored in the storage unit 41A. The radar signal processing device 5A may also extract target signal components from SAR images acquired directly from the transmission/reception circuit 3A.
 図8は、実施の形態2に係るレーダ信号処理装置5Aの構成を示すブロック図である。図8に示すように、レーダ信号処理装置5Aは、目標抽出部55A、周波数変換部60、位相抽出部57A、係数特定部58A、および推定部59Aを備える。
 なお、レーダ信号処理装置5Aが備える目標抽出部55A、周波数変換部60、位相抽出部57A、係数特定部58Aおよび推定部59Aの機能は処理回路により実現される。すなわち、レーダ信号処理装置5Aは、後述する図9に示したステップST1BからステップST6Bまでの処理を実行するための処理回路を備える。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPUであってもよい。
Fig. 8 is a block diagram showing the configuration of a radar signal processing device 5A according to embodiment 2. As shown in Fig. 8, the radar signal processing device 5A includes a target extraction unit 55A, a frequency conversion unit 60, a phase extraction unit 57A, a coefficient specification unit 58A, and an estimation unit 59A.
The functions of the target extraction unit 55A, frequency conversion unit 60, phase extraction unit 57A, coefficient specification unit 58A, and estimation unit 59A included in the radar signal processing device 5A are realized by a processing circuit. That is, the radar signal processing device 5A includes a processing circuit for executing the processes from step ST1B to step ST6B shown in Fig. 9 described later. The processing circuit may be dedicated hardware, or may be a CPU that executes a program stored in a memory.
 目標抽出部55Aは、SAR画像から目標の信号成分を抽出する。周波数変換部60は、目標抽出部55Aによって抽出された目標の信号成分を周波数変換する。位相抽出部57Aは、周波数変換部60により周波数変換された目標の信号成分の位相を抽出する。 The target extraction unit 55A extracts the target signal components from the SAR image. The frequency conversion unit 60 performs frequency conversion on the target signal components extracted by the target extraction unit 55A. The phase extraction unit 57A extracts the phase of the target signal components frequency converted by the frequency conversion unit 60.
 係数特定部58Aは、位相抽出部57Aにより抽出された位相をフィッティングすることで、目標の運動成分に関する運動パラメータを表す多項式の項の係数を特定する。推定部59Aは、係数特定部58Aにより特定された多項式の各項の係数を用いて目標の運動パラメータを推定する。 The coefficient identification unit 58A identifies the coefficients of the polynomial terms that represent the motion parameters related to the motion components of the target by fitting the phases extracted by the phase extraction unit 57A. The estimation unit 59A estimates the motion parameters of the target using the coefficients of the polynomial terms identified by the coefficient identification unit 58A.
 図9は、実施の形態2に係るレーダ信号処理方法を示すフローチャートである。
 目標抽出部55Aは、CFAR(constant false alarm rate)またはMTI(moving target indicator)といった手法を用いて、SAR画像の中から移動目標を検出する(ステップST1B)。ここで、レンジビンをrとし、アジマスビンをaとし、SAR画像の画素をi(r,a)とする。
 SAR画像から抽出した目標に対応するもののうち、最大電力を有するレンジビンをrmaxとし、アジマスビンをamaxとする。
FIG. 9 is a flowchart showing a radar signal processing method according to the second embodiment.
The target extraction unit 55A detects moving targets from the SAR image using a method such as CFAR (constant false alarm rate) or MTI (moving target indicator) (step ST1B). Here, the range bin is r, the azimuth bin is a, and the pixel of the SAR image is i(r, a).
Among those corresponding to the target extracted from the SAR image, the range bin with the maximum power is designated as r max and the azimuth bin as a max .
 目標抽出部55Aは、SAR画像から、下記式(21)で表される、目標の信号成分に対応する信号列d(a)を抽出する(ステップST2B)。下記式(21)において、cは、アジマスビンを抽出するサンプル長を決定する定数である。

Figure JPOXMLDOC01-appb-I000021
The target extraction unit 55A extracts a signal sequence d(a) corresponding to the signal component of the target, which is expressed by the following formula (21), from the SAR image (step ST2B), where c is a constant that determines the sample length for extracting the azimuth bin.

Figure JPOXMLDOC01-appb-I000021
 d(a)は、0値の挿入を行っていることから、雑音とクラッタとが低減された目標の信号成分である。cは、大きければ雑音またはクラッタなどの不要成分が混入して信頼性が下がるが、小さいとサンプル点数が少ないことから信頼性が低下するので、適切に与えられる必要がある。設定されたcに対してアジマスビンを抽出する長さは2c+1と決定される。 d(a) is the target signal component with reduced noise and clutter due to the insertion of zero values. If c is large, unwanted components such as noise or clutter will be mixed in, reducing reliability, but if it is small, the number of sample points will be small, reducing reliability, so it must be set appropriately. For the set c, the length for extracting azimuth bins is determined to be 2c+1.
 周波数変換部60は、信号列d(a)に対してアジマス周波数変換を行って、S(f)を生成する(ステップST3B)。信号列S(f)の位相項の2次成分には、目標のアジマス方向の速度に起因して、上記式(9)で表される特性が与えられている。 The frequency conversion unit 60 performs azimuth frequency conversion on the signal sequence d(a) to generate S(f) (step ST3B). The second-order component of the phase term of the signal sequence S(f) is given the characteristics expressed by the above formula (9) due to the target's speed in the azimuth direction.
 位相抽出部57Aは、信号列S(f)の位相項を抽出してアンラップを行い、位相列θ(f)を算出する(ステップST4B)。
 係数特定部58Aは、位相列θ(f)に対して多項式近似を行うための最小二乗法を行い、2次の係数pを導出する(ステップST5B)。なお、系列の端は、アジマス方向のアンテナパターンの端であり、信号対雑音電力比が悪いので、除外してもよい。
 また、上記と同様の効果が得られるのであれば、最小二乗法以外のフィッティング手法であってもよい。
 推定部59Aは、2次の係数pより、上記式(11)および上記式(12)を用い、目標のアジマス方向の速度推定値であるvestを算出する(ステップST6B)。
The phase extraction unit 57A extracts and unwraps the phase term of the signal sequence S(f) to calculate the phase sequence θ(f) (step ST4B).
The coefficient specifying unit 58A performs the least squares method to perform polynomial approximation on the phase sequence θ(f) to derive the quadratic coefficient p2 (step ST5B). Note that the end of the sequence is the end of the antenna pattern in the azimuth direction, and may be excluded because it has a poor signal-to-noise power ratio.
Furthermore, as long as the same effect as above can be obtained, a fitting method other than the least squares method may be used.
The estimation unit 59A uses the above equations (11) and (12) from the quadratic coefficient p2 to calculate v est , which is the estimated velocity value in the azimuth direction of the target (step ST6B).
 なお、レンジビンrmaxの1レンジビンに限定して処理を説明したが、複数のレンジビンで運動パラメータの推定を行い、得られた値の平均値または中間値を求めて、推定精度を向上させてもよい。 Although the processing has been described with reference to only one range bin r max , the estimation accuracy may be improved by estimating the motion parameters in a plurality of range bins and finding the average or median of the obtained values.
 以上のように、実施の形態2に係るレーダ信号処理装置5Aは、SAR画像から目標の信号成分を抽出する目標抽出部55Aと、抽出された目標の信号成分を周波数変換する周波数変換部60と、周波数変換された目標の信号成分の位相を抽出する位相抽出部57Aと、抽出された位相をフィッティングすることで、目標の運動成分に関する運動パラメータを表す多項式の項の係数を特定する係数特定部58Aと、特定された多項式の各項の係数を用いて、目標の運動パラメータを推定する推定部59Aを備える。これにより、レーダ信号処理装置5は、SAR画像から雑音の影響を低減させて目標を抽出することができ、目標の運動パラメータを推定することができる。さらに、SAR画像が1枚であっても、検出された目標について、雑音の影響を低減して、アジマス方向の速度を推定することが可能である。 As described above, the radar signal processing device 5A according to the second embodiment includes a target extraction unit 55A that extracts the signal components of the target from the SAR image, a frequency conversion unit 60 that frequency converts the extracted signal components of the target, a phase extraction unit 57A that extracts the phase of the frequency-converted signal components of the target, a coefficient identification unit 58A that identifies the coefficients of the polynomial terms that represent the motion parameters related to the motion components of the target by fitting the extracted phase, and an estimation unit 59A that estimates the motion parameters of the target using the coefficients of each term of the identified polynomial. This allows the radar signal processing device 5 to extract the target from the SAR image while reducing the influence of noise, and to estimate the motion parameters of the target. Furthermore, even if there is only one SAR image, it is possible to estimate the velocity in the azimuth direction of the detected target while reducing the influence of noise.
 実施の形態2に係るレーダ信号処理装置5Aにおいて、位相抽出部57Aは、目標の信号成分の位相をアンラップする。これにより、目標の信号成分の位相を示す関数を算出することができる。 In the radar signal processing device 5A according to the second embodiment, the phase extraction unit 57A unwraps the phase of the target signal component. This makes it possible to calculate a function that indicates the phase of the target signal component.
 実施の形態2に係るレーダ信号処理装置5Aにおいて、係数特定部58Aは、抽出された位相を最小二乗法によりフィッティングする。これにより、位相の関数を与える多項式を算出することができる。 In the radar signal processing device 5A according to the second embodiment, the coefficient determination unit 58A fits the extracted phase using the least squares method. This makes it possible to calculate a polynomial that gives a function of the phase.
 実施の形態2に係るレーダ装置1Aは、アンテナ部2と、アンテナ部2からレーダ信号の電波を送信させ、アンテナ部に到来した電波を受信してSAR画像を生成する送受信回路3Aと、SAR画像を入力して、SAR画像から抽出した目標の運動成分に関する運動パラメータを推定するレーダ信号処理装置5Aを備える。これにより、レーダ装置1Aは、雑音の影響を低減させてSAR画像から目標の運動パラメータを推定することができる。 The radar device 1A according to the second embodiment includes an antenna unit 2, a transmission/reception circuit 3A that transmits radar signal radio waves from the antenna unit 2 and receives the radio waves arriving at the antenna unit to generate a SAR image, and a radar signal processing device 5A that inputs the SAR image and estimates motion parameters related to the motion components of the target extracted from the SAR image. This allows the radar device 1A to estimate the motion parameters of the target from the SAR image while reducing the effects of noise.
 実施の形態2に係るレーダ信号処理方法は、目標抽出部55Aが、SAR画像から目標の信号成分を抽出するステップと、周波数変換部60が、抽出された目標の信号成分を周波数変換するステップと、位相抽出部57Aが、周波数変換された目標の信号成分の位相を抽出するステップと、係数特定部58Aが、抽出された位相をフィッティングすることで、目標の運動成分に関する運動パラメータを表す多項式の項の係数を特定するステップと、推定部59Aが、特定された多項式の各項の係数を用いて、目標の運動パラメータを推定するステップを備える。これにより、雑音の影響を低減させてSAR画像から目標の運動パラメータを推定することができる。 The radar signal processing method according to the second embodiment includes a step in which a target extraction unit 55A extracts a signal component of the target from a SAR image, a step in which a frequency conversion unit 60 frequency converts the extracted signal component of the target, a step in which a phase extraction unit 57A extracts the phase of the frequency-converted signal component of the target, a step in which a coefficient identification unit 58A identifies coefficients of polynomial terms expressing motion parameters related to the motion components of the target by fitting the extracted phase, and a step in which an estimation unit 59A estimates the motion parameters of the target using the coefficients of each term of the identified polynomial. This makes it possible to estimate the motion parameters of the target from the SAR image while reducing the effects of noise.
 なお、各実施の形態の組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。 It is possible to combine the embodiments, modify any of the components in each embodiment, or omit any of the components in each embodiment.
 本開示に係るレーダ信号処理装置は、例えば、各種のレーダ装置に利用可能である。 The radar signal processing device according to the present disclosure can be used, for example, in various radar devices.
 1,1A レーダ装置、2 アンテナ部、3,3A 送受信回路、4、4A 記憶装置、5,5A レーダ信号処理装置、31 切り換え部、32a,32b 増幅部、33a,33b 乗算部、34 発振部、35 フィルタ部、36 A/D変換部、37 信号生成部、38 画像生成部、41,41A 記憶部、51 パルス圧縮部、52-1,52-2,・・・,52-M 補償部、53-1,53-1,・・・,53-M,60 周波数変換部、54-1,54-2,・・・,54-M 平均部、55,55A 目標抽出部、56 周波数逆変換部、57,57A 位相抽出部、58,58A 係数特定部、59,59A 推定部、100 入力インタフェース、101 出力インタフェース、102 処理回路、103 プロセッサ、104 メモリ。 1, 1A radar device, 2 antenna section, 3, 3A transmission/reception circuit, 4, 4A storage device, 5, 5A radar signal processing device, 31 switching section, 32a, 32b amplifier section, 33a, 33b multiplication section, 34 oscillation section, 35 filter section, 36 A/D conversion section, 37 signal generation section, 38 image generation section, 41, 41A storage section, 51 pulse compression section, 52-1, 52-2, ..., 52-M Compensation unit, 53-1, 53-1, ..., 53-M, 60 Frequency conversion unit, 54-1, 54-2, ..., 54-M Averaging unit, 55, 55A Target extraction unit, 56 Frequency inverse conversion unit, 57, 57A Phase extraction unit, 58, 58A Coefficient identification unit, 59, 59A Estimation unit, 100 Input interface, 101 Output interface, 102 Processing circuit, 103 Processor, 104 Memory.

Claims (14)

  1.  レーダ信号を周波数変換する周波数変換部と、
     周波数変換された前記レーダ信号から、周波数領域における目標の信号成分を抽出する目標抽出部と、
     前記目標の信号成分を逆周波数変換する周波数逆変換部と、
     逆周波数変換された前記目標の信号成分の位相を抽出する位相抽出部と、
     抽出された位相をフィッティングすることで、前記目標の運動成分に関する運動パラメータを表す多項式の項の係数を特定する係数特定部と、
     特定された前記多項式の各項の係数を用いて、前記目標の運動パラメータを推定する推定部と、を備えた
     ことを特徴とするレーダ信号処理装置。
    a frequency conversion unit that converts the frequency of a radar signal;
    a target extraction unit that extracts a signal component of a target in a frequency domain from the frequency-converted radar signal;
    a frequency inverse transform unit that inversely frequency-transforms the target signal component;
    a phase extraction unit for extracting a phase of the inverse frequency converted signal component of the target;
    a coefficient specifying unit that specifies coefficients of polynomial terms that represent motion parameters related to the motion components of the target by fitting the extracted phase;
    an estimation unit that estimates a motion parameter of the target by using a coefficient of each term of the identified polynomial.
  2.  前記位相抽出部は、前記目標の信号成分の位相をアンラップする
     ことを特徴とする請求項1に記載のレーダ信号処理装置。
    The radar signal processing device according to claim 1 , wherein the phase extraction unit unwraps a phase of the signal component of the target.
  3.  前記目標抽出部は、前記目標の信号成分以外の成分に0値を設定する
     ことを特徴とする請求項1または請求項2に記載のレーダ信号処理装置。
    The radar signal processing device according to claim 1 or 2, wherein the target extraction unit sets a value of 0 to components other than the signal components of the target.
  4.  前記係数特定部は、抽出された位相を最小二乗法によりフィッティングする
     ことを特徴とする請求項1から請求項3のいずれか1項に記載のレーダ信号処理装置。
    The radar signal processing device according to claim 1 , wherein the coefficient specifying unit performs fitting of the extracted phase by a least squares method.
  5.  前記レーダ信号における前記目標の運動成分を補償する補償部を備えた
     ことを特徴とする請求項1から請求項4のいずれか1項に記載のレーダ信号処理装置。
    5. The radar signal processing device according to claim 1, further comprising a compensating unit that compensates for a motion component of the target in the radar signal.
  6.  周波数変換された前記レーダ信号の平均処理を行う平均部を備え、
     前記目標抽出部は、前記レーダ信号の平均処理により得られた信号系列を用いて、周波数領域における前記目標の信号成分を抽出する
     ことを特徴とする請求項3に記載のレーダ信号処理装置。
    an averaging unit that performs averaging of the frequency-converted radar signal;
    4. The radar signal processing device according to claim 3, wherein the target extraction unit extracts a signal component of the target in a frequency domain by using a signal sequence obtained by averaging the radar signal.
  7.  前記目標抽出部は、前記信号系列を前記レーダ信号に乗算した信号を用いて、前記目標の信号成分を抽出する
     ことを特徴とする請求項6に記載のレーダ信号処理装置。
    7. The radar signal processing device according to claim 6, wherein the target extraction unit extracts a signal component of the target by using a signal obtained by multiplying the radar signal by the signal sequence.
  8.  SAR画像から目標の信号成分を抽出する目標抽出部と、
     抽出された前記目標の信号成分を周波数変換する周波数変換部と、
     周波数変換された前記目標の信号成分の位相を抽出する位相抽出部と、
     抽出された位相をフィッティングすることで、前記目標の運動成分に関する運動パラメータを表す多項式の項の係数を特定する係数特定部と、
     特定された前記多項式の各項の係数を用いて、前記目標の運動パラメータを推定する推定部と、を備えた
     ことを特徴とするレーダ信号処理装置。
    a target extraction unit that extracts a signal component of a target from a SAR image;
    a frequency conversion unit that converts the frequency of the extracted signal component of the target;
    a phase extraction unit for extracting a phase of the frequency-converted signal component of the target;
    a coefficient specifying unit that specifies coefficients of polynomial terms that represent motion parameters related to the motion components of the target by fitting the extracted phase;
    an estimation unit that estimates a motion parameter of the target by using a coefficient of each term of the identified polynomial.
  9.  前記位相抽出部は、前記目標の信号成分の位相をアンラップする
     ことを特徴とする請求項8に記載のレーダ信号処理装置。
    The radar signal processing device according to claim 8 , wherein the phase extraction unit unwraps the phase of the signal component of the target.
  10.  前記係数特定部は、抽出された位相を最小二乗法によりフィッティングする
     ことを特徴とする請求項8または請求項9に記載のレーダ信号処理装置。
    The radar signal processing device according to claim 8 or 9, wherein the coefficient specifying unit performs fitting of the extracted phase by a least squares method.
  11.  アンテナ部と、
     前記アンテナ部から前記レーダ信号の電波を送信させ、前記アンテナ部に到来した電波を受信して前記レーダ信号の受信信号を生成する送受信回路と、
     前記受信信号を入力して、前記受信信号から抽出した前記目標の運動成分に関する運動パラメータを推定する請求項1から請求項7のいずれか1項に記載のレーダ信号処理装置と、を備えた
     ことを特徴とするレーダ装置。
    An antenna portion;
    a transmission/reception circuit that causes the antenna unit to transmit radio waves of the radar signal and receives the radio waves arriving at the antenna unit to generate a received signal of the radar signal;
    8. A radar device comprising: a radar signal processing device according to claim 1 , which receives the received signal and estimates a motion parameter related to a motion component of the target extracted from the received signal.
  12.  アンテナ部と、
     前記アンテナ部からレーダ信号の電波を送信させ、前記アンテナ部に到来した電波を受信して前記SAR画像を生成する送受信回路と、
     前記SAR画像を入力して、前記SAR画像から抽出した前記目標の運動成分に関する運動パラメータを推定する請求項8から請求項10のいずれか1項に記載のレーダ信号処理装置と、を備えた
     ことを特徴とするレーダ装置。
    An antenna portion;
    a transmission/reception circuit that causes the antenna unit to transmit radio waves of a radar signal and receives the radio waves arriving at the antenna unit to generate the SAR image;
    11. A radar device comprising: a radar signal processing device according to claim 8, which receives the SAR image and estimates motion parameters relating to motion components of the target extracted from the SAR image.
  13.  レーダ信号処理装置のレーダ信号処理方法であって、
     周波数変換部が、レーダ信号を周波数変換するステップと、
     目標抽出部が、周波数変換された前記レーダ信号から、周波数領域における目標の信号成分を抽出するステップと、
     周波数逆変換部が、前記目標の信号成分を逆周波数変換するステップと、
     位相抽出部が、逆周波数変換された前記目標の信号成分の位相を抽出するステップと、
     係数特定部が、抽出された位相をフィッティングすることで、前記目標の運動成分に関する運動パラメータを表す多項式の項の係数を特定するステップと、
     推定部が、特定された前記多項式の各項の係数を用いて、前記目標の運動パラメータを推定するステップと、を備えた
     ことを特徴とするレーダ信号処理方法。
    A radar signal processing method for a radar signal processing device, comprising:
    A frequency conversion unit converts the frequency of a radar signal;
    A target extraction unit extracts a signal component of a target in a frequency domain from the frequency-converted radar signal;
    A step in which a frequency inverse transform unit inversely frequency transforms the target signal component;
    A phase extraction unit extracts a phase of the inverse frequency converted target signal component;
    A step in which a coefficient specifying unit specifies coefficients of polynomial terms representing motion parameters related to the motion components of the target by fitting the extracted phase;
    an estimation unit estimating a motion parameter of the target by using a coefficient of each term of the identified polynomial.
  14.  レーダ信号処理装置のレーダ信号処理方法であって、
     目標抽出部が、SAR画像から目標の信号成分を抽出するステップと、
     周波数変換部が、抽出された前記目標の信号成分を周波数変換するステップと、
     位相抽出部が、周波数変換された前記目標の信号成分の位相を抽出するステップと、
     係数特定部が、抽出された位相をフィッティングすることで、前記目標の運動成分に関する運動パラメータを表す多項式の項の係数を特定するステップと、
     推定部が、特定された前記多項式の各項の係数を用いて、前記目標の運動パラメータを推定するステップと、を備えた
     ことを特徴とするレーダ信号処理方法。
    A radar signal processing method for a radar signal processing device, comprising:
    A step in which a target extraction unit extracts a signal component of a target from a SAR image;
    A step of a frequency conversion unit frequency converting the extracted signal component of the target;
    A phase extraction unit extracts a phase of the frequency-converted target signal component;
    A step in which a coefficient specifying unit specifies coefficients of polynomial terms representing motion parameters related to the motion components of the target by fitting the extracted phase;
    an estimation unit estimating a motion parameter of the target by using a coefficient of each term of the identified polynomial.
PCT/JP2022/042303 2022-11-15 2022-11-15 Radar signal processing device, radar device, and radar signal processing method WO2024105756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042303 WO2024105756A1 (en) 2022-11-15 2022-11-15 Radar signal processing device, radar device, and radar signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042303 WO2024105756A1 (en) 2022-11-15 2022-11-15 Radar signal processing device, radar device, and radar signal processing method

Publications (1)

Publication Number Publication Date
WO2024105756A1 true WO2024105756A1 (en) 2024-05-23

Family

ID=91083993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042303 WO2024105756A1 (en) 2022-11-15 2022-11-15 Radar signal processing device, radar device, and radar signal processing method

Country Status (1)

Country Link
WO (1) WO2024105756A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301584A (en) * 1991-03-29 1992-10-26 Mitsubishi Electric Corp Pulse doppler radar equipment
JP2004198275A (en) * 2002-12-19 2004-07-15 Mitsubishi Electric Corp Synthetic aperture radar system, and image reproducing method
JP2005009979A (en) * 2003-06-18 2005-01-13 Toshiba Corp Pulse radar device and signal processing method therefor
WO2015064467A1 (en) * 2013-10-30 2015-05-07 三菱電機株式会社 Radar system and radar-signal processing device
WO2017103973A1 (en) * 2015-12-14 2017-06-22 三菱電機株式会社 Synthetic aperture radar device
JP2019152500A (en) * 2018-03-01 2019-09-12 株式会社東芝 Radar system and radar signal processing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301584A (en) * 1991-03-29 1992-10-26 Mitsubishi Electric Corp Pulse doppler radar equipment
JP2004198275A (en) * 2002-12-19 2004-07-15 Mitsubishi Electric Corp Synthetic aperture radar system, and image reproducing method
JP2005009979A (en) * 2003-06-18 2005-01-13 Toshiba Corp Pulse radar device and signal processing method therefor
WO2015064467A1 (en) * 2013-10-30 2015-05-07 三菱電機株式会社 Radar system and radar-signal processing device
WO2017103973A1 (en) * 2015-12-14 2017-06-22 三菱電機株式会社 Synthetic aperture radar device
JP2019152500A (en) * 2018-03-01 2019-09-12 株式会社東芝 Radar system and radar signal processing method therefor

Similar Documents

Publication Publication Date Title
EP2998763B1 (en) Phase calibration of a stepped-chirp signal for a synthetic aperture radar
CN108051809B (en) Moving target imaging method and device based on Radon transformation and electronic equipment
US9335409B2 (en) Bistatic inverse synthetic aperture radar imaging
Kirkland Imaging moving targets using the second-order keystone transform
US10107895B2 (en) Amplitude calibration of a stepped-chirp signal for a synthetic aperture radar
van Dorp et al. High resolution radar imaging using coherent multiband processing techniques
US9329264B2 (en) SAR image formation
Vu et al. RFI suppression in ultrawideband SAR using an adaptive line enhancer
US8760340B2 (en) Processing radar return signals to detect targets
CN111142105A (en) ISAR imaging method for complex moving target
CN106597443B (en) Low frequency diameter radar image compares cancellation radio frequency interference suppressing method
JP5044358B2 (en) Radar equipment
JP5489813B2 (en) Radar image processing device
JP2004198275A (en) Synthetic aperture radar system, and image reproducing method
WO2024105756A1 (en) Radar signal processing device, radar device, and radar signal processing method
JP6367134B2 (en) Radar apparatus and radar signal processing method
Ashry et al. Comparative analysis between SAR pulse compression techniques
CN115755046A (en) Extended PFA algorithm for imaging large azimuth width of stripe SAR
JP5930139B1 (en) Passive radar equipment
CN109343057B (en) CS imaging method and device for nonlinear frequency modulation SAR
Potsis et al. Comparison of chirp scaling and wavenumber domain algorithms for airborne low-frequency SAR data processing
JP7499995B1 (en) Radar signal processing device, radar signal processing method, and radar device
KR20150055279A (en) Vehicle radar using azimuth high resolution processing algorithm and operating method thereof
JP2005017143A (en) Meteorological radar signal processor
Tan et al. SAR Azimuth Low Sidelobe Window Function Design