WO2024105332A1 - Inverseur de poussee comprenant une membrane d'obturation equipee d'un joint d'etancheite - Google Patents

Inverseur de poussee comprenant une membrane d'obturation equipee d'un joint d'etancheite Download PDF

Info

Publication number
WO2024105332A1
WO2024105332A1 PCT/FR2023/051785 FR2023051785W WO2024105332A1 WO 2024105332 A1 WO2024105332 A1 WO 2024105332A1 FR 2023051785 W FR2023051785 W FR 2023051785W WO 2024105332 A1 WO2024105332 A1 WO 2024105332A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
movable
reverser
membrane
thrust
Prior art date
Application number
PCT/FR2023/051785
Other languages
English (en)
Inventor
Patrick Gonidec
Patrick André Boileau
Julien CHANDELIER
François BELLET
Original Assignee
Safran Nacelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Nacelles filed Critical Safran Nacelles
Publication of WO2024105332A1 publication Critical patent/WO2024105332A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/64Reversing fan flow
    • F02K1/70Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing
    • F02K1/72Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing the aft end of the fan housing being movable to uncover openings in the fan housing for the reversed flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/601Fabrics

Definitions

  • TITLE THRUST REVERSING COMPRISING A SHUTTING MEMBRANE EQUIPPED WITH A SEAL
  • the invention relates to the field of nacelles and thrust reversers for aircraft propulsion units, and, more particularly, to solutions making it possible to ensure sealing between the fixed structure of the reverser and its mobile structure, when that -this occupies its forward direct thrust position.
  • Thrust reversers are devices that allow the air flow passing through the propulsion assembly to be deflected forward, so as to shorten landing distances and limit the use of the brakes on the landing gear.
  • the grid inverters currently used in the aeronautics sector generally include deflection grids integrated into a fixed structure of the inverter, intended to be connected to a turbomachine casing.
  • a mobile structure of the reverser comprises one or more movable reverser covers, and it is mounted movable in translation relative to the fixed structure between an advanced direct thrust position, and a rearward thrust reversal position.
  • the deflection grids are arranged in a cavity of the movable reverser covers, and they are isolated from the secondary flow of the propulsion assembly by a radially internal wall of the reverser covers.
  • the retracted thrust reversal position the retracted radially internal wall of the reverser covers defines an opening for passage of the secondary vein towards the deflection grids.
  • the diverter is generally also equipped with shutters, which, when deployed, at least partially close the secondary vein. In a known manner, this forces the air from the secondary flow to pass through the passage opening and to join the grilles, which then generate the forward counter-thrust air flow.
  • a seal is carried at the front of the movable cover, by the radially internal wall, so as to press against a deflection edge of the fixed structure of the reverser, when the movable structure adopts its forward direct thrust position. The seal is then located in an area located radially just below the inverter grids.
  • the sealing membrane travels between the deflection edge of the fixed structure, and the upstream end of the radially internal wall of the movable cover. This membrane then extends axially downstream, in the space defined radially between the radially internal wall of the movable cover, and the deflection grilles.
  • the seal solution as presented previously for the shutter flap design, turns out to be unsuitable for the deployable shutter membrane solution. Indeed, a transposition of the existing solution would lead the membrane to compress the seal and move it away from the deflection edge, which would make it ineffective.
  • the invention firstly relates to a thrust reverser for an aircraft propulsion unit, the reverser comprising a fixed structure equipped with a radially internal boundary wall of a vein secondary of the propulsion assembly intended to be crossed by a secondary flow, the reverser also comprising a mobile structure comprising at least one movable reverser cover having a cavity open towards the front and delimited between a radially external wall and a wall radially internal to the movable reverser cover, the movable structure being movable in translation relative to the fixed structure according to a longitudinal central axis of the reverser, between an advanced direct thrust position, and a rearward thrust reversal position in which the fixed structure and an upstream end of the retracted radially internal wall of the movable reverser cover reveal between them an air passage opening through the secondary vein, the thrust reverser also comprising means for closing the secondary vein, designed to deflect at least part of the secondary flow towards the passage opening, these means comprising at least one sealing membrane deployable in the secondary vein
  • said at least one membrane carries a first seal extending in a circumferential direction of the reverser, resting on the one hand against the fixed structure and on the other hand against the end upstream of the radially internal wall of the movable cover, when the movable structure occupies its advanced direct thrust position.
  • the invention thus satisfactorily responds to the need expressed previously, by proposing a simple, reliable and efficient solution, in which the first seal is carried by the membrane itself.
  • this solution fulfills the desired sealing function in the advanced thrust reversal position, it also allows, in this same position, to participate in the stabilization of the membrane.
  • the invention preferably provides at least one of the following optional technical characteristics, taken individually or in combination.
  • the first seal is located radially outwards relative to a zone of minimum spacing between the fixed structure and the upstream end of the radially internal wall, or radially inwards relative to this zone of minimum spacing, or even straddling this same zone by extending radially on either side of it.
  • the first seal is located radially outwards relative to the minimum spacing zone, and said at least one sealing membrane also carries a member for reconstituting the secondary vein extending along the circumferential direction, by being located radially inwards relative to the minimum spacing zone so as to fill all or part of a cavity between the fixed structure and the upstream end of the radially internal wall, when the structure mobile occupies its forward direct pushing position.
  • vein reconstitution organ makes it possible to limit the size of the aforementioned cavity, or even to eliminate it entirely. This improves aerodynamic performance by reducing pressure losses on the secondary flow.
  • the combination of the first seal and the member for reconstituting the vein further improves the maintenance in the membrane, in the advanced direct pushing position of the mobile structure of the reverser.
  • the vein reconstitution member comprises at least one reinforcing insert along a surface of this member which delimits the secondary vein radially inwards, when the mobile structure occupies its advanced direct thrust position.
  • This makes it possible to further promote aerodynamic continuity or a significant aerodynamic continuity of this surface of the reconstitution member with the fixed structure and/or with the upstream end of the radially internal wall of the movable cover, always in order to limit losses loads at the junction between these two elements.
  • the member for reconstituting the vein forms a second seal bearing on the one hand against the fixed structure, and on the other hand against the upstream end of the radially internal wall, when the mobile structure occupies its forward direct thrust position.
  • the organ reconstituting the vein is located on the side of a surface oriented towards the front of the obturation membrane.
  • the vein reconstitution member is located on one side of the obturation membrane, and the latter also carries, on the opposite side, an additional vein reconstitution member. This further enhances the aerodynamic aspects.
  • vein reconstitution organ can be applied to the first seal.
  • organ reconstituting the vein is for example segmented in the circumferential direction, although it could be continuous over the entire length of the membrane, without departing from the scope of the invention.
  • this is what is preferably provided for the first seal, namely continuous all along the membrane which carries it, in the circumferential direction.
  • the first seal is located on the side of a surface facing the front of the sealing membrane.
  • An integration of the opposite side is also possible here, without departing from the scope of the invention.
  • the first seal bears on the one hand against a deflection edge of the fixed structure, and on the other hand against the upstream end, preferably rounded, of the radially internal wall, when the structure mobile occupies its forward direct pushing position.
  • At least one of the two circumferential ends of the first seal bears circumferentially against an end seal carried by a guiding member of the membrane secured to the movable cover, when the movable structure occupies its forward direct thrust position.
  • the end seal bears circumferentially against a fixed seal carried by the fixed structure, when the mobile structure occupies its advanced direct thrust position.
  • the fixed structure of the inverter comprises at least one deflection grid arranged, in the advanced direct thrust position of the mobile structure, in the cavity of the movable cover, being isolated from the secondary vein by the radially internal wall of the reverser cover.
  • the deflection grid(s) could be integrated into the mobile structure of the inverter, without departing from the scope of the invention.
  • the invention also relates to a propulsion assembly for an aircraft, comprising a turbomachine and a nacelle comprising at least one fan cowl, as well as a thrust reverser as described above.
  • FIG. 1 is a schematic half-view in longitudinal section of a propulsion assembly, comprising a thrust reverser according to a preferred embodiment of the invention, shown in direct thrust configuration;
  • FIG. 2 is a schematic half-view in longitudinal section of the reverser fitted to the propulsion assembly shown in Figure 1, with the reverser shown in direct thrust configuration;
  • FIG. 3 is a half-schematic view of the reverser shown in Figure 2, represented in thrust reversal configuration;
  • FIG. 3A is a half-schematic view similar to that of the previous figure, with the inverter presented according to an alternative embodiment
  • FIG. 4 is a perspective view of the reverser shown in Figures 2 and 3, shown in direct thrust configuration;
  • FIG. 5 is a perspective view of the reverser shown in Figure 4, shown in thrust reversal configuration
  • FIG. 6 is an enlarged and more detailed partial view of a part of the diverter shown in the preceding figures, showing the first seal carried by the shutter membrane, with the diverter being in an intermediate configuration between the direct thrust configuration and the reverse thrust configuration;
  • FIG. 7 is a view similar to that of the previous figure, with the reverser shown in direct thrust configuration
  • FIG. 8 is a view similar to that of Figure 7, with the first seal presented according to an alternative embodiment
  • FIG. 9 shows the first joint of the embodiment of Figure 8, in the unstressed state
  • FIG. 10 is a view similar to that of Figure 8, with the membrane equipped with more than one organ for reconstituting the vein;
  • FIG. 11 shows the first joint and the vein reconstitution member of the embodiment of Figure 10, in the non-constrained state
  • FIG. 12 is a view similar to that of Figure 10, with the first seal and the vein reconstitution member presented according to an alternative embodiment
  • FIG. 13 shows the first joint and the vein reconstitution member of the embodiment of Figure 12, in the non-constrained state
  • FIG. 14 is a view similar to that of Figure 12, with the membrane equipped with more than one additional vein reconstitution member;
  • FIG. 15 shows the first joint, the vein reconstitution member, and the additional vein reconstitution member of the embodiment of Figure 14, in the unconstrained state;
  • FIG. 16 shows a partial perspective view of the reverser shown in Figure 14, with the membrane deployed as arranged in the thrust reversal configuration
  • FIG. 17 is a view similar to that of Figure 7, with the first seal presented in an alternative embodiment
  • FIG. 18 shows the first joint of Figure 17, in the unstressed state
  • FIG. 19 is a perspective view showing a circumferential end of a movable cover of the inverter shown in Figure 10;
  • FIG. 20 is a perspective view showing the circumferential end of the movable reverser cover of Figure 19, cooperating with the fixed structure of the reverser;
  • FIG. 21 is a perspective view similar to that of Figure 20, to which the sealing membrane has also been added;
  • FIG. 22 is a perspective view similar to that of Figure 21, on which a deflection edge of the fixed structure of the inverter has also been added, in transparency.
  • FIG. 1 shows an aircraft propulsion assembly 1, having a longitudinal central axis Al.
  • upstream and downstream are defined relative to a general direction SI of flow of gases through the propulsion assembly 1, along the axis Al when it generates thrust. These terms “upstream” and “downstream” could respectively be substituted by the terms “front” and “rear”, with the same meaning.
  • the propulsion assembly 1 comprises a turbomachine 2, a nacelle 3 as well as a mast (not shown), intended to connect the propulsion assembly 1 to a wing (not shown) of the aircraft.
  • the turbomachine 2 is in this example a dual-flow, dual-body turbojet comprising, from front to rear, a fan 5, a low-pressure compressor 6, a high-pressure compressor 7, a combustion chamber 8, a high pressure turbine 9 and a low pressure turbine 10. Compressors 6 and 7, combustion chamber 8 and turbines 9 and 10 form a gas generator.
  • the turbojet 2 is equipped with a fan casing 11 connected to the gas generator by structural arms 12.
  • the nacelle 3 comprises a front section forming an air inlet 13, a middle section which comprises two fan cowls 14 enveloping the fan casing 11, and a rear section 15.
  • an air flow 20 enters the propulsion assembly 1 via the air inlet 13, passes through the fan 5, then divides into a primary flow 20A and a secondary flow 20B.
  • the primary flow 20A flows in a primary gas circulation vein 21A passing through the gas generator.
  • the secondary flow 20B flows in a secondary stream 21B surrounding the gas generator.
  • the secondary vein 21B is delimited radially towards the interior by a fixed internal fairing which surrounds the gas generator.
  • the fixed internal fairing comprises a first section 17 belonging to the middle section 14, and a second section 18 extending rearwardly from the first section 17, so as to form a part of the rear section 15
  • This second section 18 is an integral part of a fixed structure of a thrust reverser which will be described below. This same section will subsequently be called wall 18 for radially internal delimitation of secondary vein 21B.
  • the secondary vein 21B is delimited by the fan casing 11, and, in the configuration of Figure 1, by one or more movable reverser covers 33 forming a part of the rear section 15 of the nacelle 3, and which will be described later. More precisely, between the fan casing 11 and the inverter covers 33, there is provided an outer shell 40 of an intermediate casing 42, the latter comprising the aforementioned structural arms 12, the radially outer end of which is fixed on this ferrule 40. This therefore also contributes to delimiting the secondary vein 21B radially outwards, being located in the downstream axial extension of the fan casing 11.
  • the nacelle 3 therefore comprises a thrust reverser 30 centered on the axis Al and comprising on the one hand a fixed structure 31 secured to the fan casing 11, and on the other hand a structure 29 movable relative to the fixed structure 31.
  • the fixed structure 31 comprises for example a front frame 46 which connects it fixedly to the fan casing 11, preferably via a knife flange assembly located downstream of the outer shroud. 11.
  • This front frame 46 contains a streamlined aerodynamic portion called deflection edge 46B, which guides the reverse jet flow.
  • the fixed structure 31 also comprises a plurality of deflection grids 32 arranged adjacent to each other around the axis Al, in a circumferential direction Tl of the inverter 30 and the propulsion assembly 1.
  • the mobile structure 29 comprises the aforementioned movable inverter covers 33, for example two covers 33 each extending over an angular amplitude of approximately 180°.
  • This configuration with two covers 33 is particularly well suited in the case of a nacelle design in which the covers/walls 18 are also mounted articulated, the inverter 30 then having a so-called “D” architecture, known under the name Anglo-Saxon “D-Duct”.
  • D Anglo-Saxon
  • Each movable inverter cover 33 comprises a radially external wall 50, forming an external aerodynamic surface of the inverter and the nacelle, this surface being embraced by the external air.
  • Each cover 33 also includes a radially internal wall 52 participating in the delimitation of the secondary vein 21B radially outwards. This wall 52 is located in the downstream continuity of the deflection edge 46 B.
  • the two walls 50, 52 define a cavity 54 open axially towards the upstream, at the upstream end of the reverser cover 33.
  • Figure 1 shows the reverser 30 in a forward thrust configuration, called “direct jet”, corresponding to a standard flight configuration.
  • the covers 33 of the mobile structure 29 are in a closed position, called the advanced thrust or “direct jet” position, in which these reverser covers 33 are supported on the fixed structure 31, in particular on the deflection edge 46B forming an integral part of the latter.
  • the upstream end 52a of the radially internal wall 52 of each cover 33 bears axially against the deflection edge 46B, here via a sealing system specific to the invention, and which will be described below.
  • the mobile structure 29 is thus movable in translation relative to the fixed structure 31 along the axis Al of the reverser, between the advanced direct thrust position shown in Figure 1, and a rearward thrust reversal position which will be described later.
  • the deflection grids 32 are arranged in the cavity 54 of the inverter covers 33, being isolated from the secondary vein 21B by the radially internal wall 52 of these sliding covers 29 inverter.
  • This wall 52 forming the external wall of the secondary vein, is also called internal acoustic panel.
  • FIG. 3 it is shown that the panel internal acoustic rearward 52 of the movable inverter covers reveals upstream a passage opening 56 of the secondary vein 21B towards the deflection grids 32.
  • the opening 56 is therefore also delimited upstream by the deflection edge 46B, which flares radially outwards towards the rear, to channel a flow of air intended to pass through the grilles 32 when the mobile system is in this rearward thrust reversal position.
  • the deflection edge 46B gradually moves away from the axis Al going from front to rear, to guide/deflect the air towards the grilles 32 in thrust reversal configuration.
  • the passage opening 56 is delimited in particular by the upstream end 52a of the radially internal wall 52.
  • the diverter 30 comprises in this preferred embodiment one or more shutter membranes 58.
  • the membrane 58 can be made of a material known to those skilled in the art for this type of application. For example, it may be a non-impregnated fabric, for example aramid fibers.
  • the membrane 58 can also be made using a composite material whose matrix is particularly flexible, for example aliphatic polyurethane, which allows use in different temperature conditions, in particular lower temperatures in the case of an aliphatic polyurethane membrane than in the case of a silicone membrane.
  • the matrix gives a low capacity for recovery in bending and the behavior of the structure obtained is that of a membrane.
  • this membrane 58 One of the major properties of this membrane 58 is to be able to bend in a perfectly reversible manner (elastic or by sliding of fibers) with a very small radius of curvature relative to its surface, and to have a very low thickness, for example. example of the order of 0.1 to 3 mm. For information purposes, it is observed that this membrane 58 behaves like a boat sail or a parachute/flying wing when it is put under pressure.
  • first attachment means are provided connecting a first end 58a of the shutter membrane 58 to a rear frame 60 supporting the grids 32, this annular support or in the form of an annular section in effect connecting the rear end of several adjacent grids.
  • second means attachment connect a second end 58b of the sealing membrane 58, opposite the first membrane 58a, to the wall 18.
  • the option with contact corresponds to a minimized stroke of the reverser, while the option without contact generally corresponds to a smoother diaphragm shape in reverse jet, therefore more efficient from an aerodynamic point of view.
  • the part of the membrane 58 which is located radially outwards relative to its bearing zone on the wall 52 closes part of the axial opening upstream of the cavity 54, while the other part located radially towards the inside closes at least part of the secondary vein 21B, thereby deflecting at least part of the secondary flow 20B towards the passage opening 56 in the direction of the grids 32.
  • Another possibility, not shown, consists of attaching the membrane 58 radially externally to the radially external wall 50 of the sliding cover 33.
  • the end 58b of the membrane 58 has cables 70 connected to the wall 18. (also called IFS, from the English “Inner Fixed Structure”), by a connection which can advantageously exert a traction force on each cable 70 bringing it towards this wall 18, for example by means of an elastic connection.
  • the cables 70 themselves can be elastic, for example by using Kevlar cables, and these same cables can be put in tension when closing the sliding cover 33. Reinforcements can be integrated into the membrane 58 in the extension of these cables 70, up to the external attachment points with the rear grille support frame 60, or the external wall 50 of the sliding cover 33.
  • These cables 70 are advantageously positioned radially in the vein while being circumferentially spaced from each other. In the direct jet position, they tension the membrane 58 between its end 58a and the leading edge/the upstream end 52a of the wall 52 of the hood. During deployment, when the sliding cover 33 moves back, the cables 70 pull the membrane 58 towards the secondary vein so that it takes in air and gradually deploys there.
  • the second attachment means can be constituted by connecting rods 62, instead of the cables mentioned above.
  • a first end 62a of each of them is mounted on the wall 18, preferably via a pivot or ball joint 64.
  • This connection 64 can be made using a fitting fixed on the fixed wall 18 and cooperating with the first connecting rod end 62a.
  • the connecting rods 62 are spaced circumferentially from each other within the secondary vein 21B, and their number can for example vary from two to ten.
  • Each connecting rod 62 is designed to move from a position projecting radially in the secondary vein 21B, position shown in Figures 2 and 4 adopted when the mobile structure 29 occupies its advanced position of direct thrust, to a position folded towards the downstream, shown in Figures 3 and 5 adopted when the mobile structure 29 occupies its rearward thrust reversal position.
  • Elastic return means can be provided to tend to tilt each connecting rod 62 towards its folded/lying position in Figure 3, in particular when the connecting rod is in its projecting position corresponding to the flight position of the inverter.
  • each connecting rod 62 can be connected directly to the second end 58b of the membrane 58.
  • the cables 70 cooperate with the connecting rods 62 by each being fixed to the second end 62b of one of the connecting rods associated with this cable.
  • the cables 70 could pass through their associated connecting rods 62 to be fixed on the wall 52 of the radially internal delimitation of the secondary vein, for example via the fittings 66.
  • One of the particularities of the invention lies in the fact that the shutter membrane 58 of the inverter is equipped with a first seal 72, projected close to the second end 58b of the membrane d 'obturation 58.
  • This specificity is shown in Figures 6 and 7.
  • the first seal 72 is located on the side of a surface 58' of the membrane which is oriented towards the front, projecting from this surface 58' also towards the front in direct push configuration.
  • the first seal 72 is preferably continuous all along the membrane 58, extending in the circumferential direction 27.
  • the first seal 72 has a circular or substantially circular section. In the stressed state shown in Figure 7, it rests on the one hand against the deflection edge 46B, and on the other hand against the rounded upstream end 52a of the radially internal wall 52 of the movable cover. Still in the constrained state as adopted in direct thrust configuration, the first seal 72 is preferably located so as to extend radially outwards beyond the upstream end 52a. Also, it is located radially outwards relative to a minimum spacing zone 74 between the deflection edge 46B and the upstream end 52a of the wall 52.
  • the first seal 72 can be forced towards the minimum spacing zone 74 between the deflection edge 46B and the upstream end 52a, by the geometry of the assembly, and/or by the traction exerted by the connecting rods 62 during the end of the retraction phase of the mobile cover 33.
  • first seal 72 could be arranged, in the stressed state, radially inwards relative to the minimum spacing zone 74, or even straddling this same zone in s extending radially on either side of it.
  • this joint 72 it can simply be glued to the surface 58' of the membrane, sewn onto it, co-vulcanized, or even attached by any technique deemed appropriate for those skilled in the art.
  • the first seal 72 can be embedded in the membrane, namely inserted between the membrane 58 and another section of fabric lining this membrane, so as to ensure structural and geometric continuity around the joint.
  • the first seal 72 takes the general shape of a drop of water on a plane, but other shapes remain possible, without departing from the scope of the invention.
  • the membrane 58 can also be clamped between the deflection edge 46B and the rounded end 52a in the thrust configuration. direct, or a slight play can alternatively be observed, without departing from the scope of the invention.
  • the first seal remains located radially outward relative to the minimum spacing zone 74, and in which the membrane 58 carries plus one organ for reconstituting the secondary vein 76.
  • the reconstitution organ 76 also extends in the circumferential direction Tl, being continuous all along the membrane 58, or segmented, for example by being interrupted circumferentially at the level of each connecting rod connection 62.
  • the member 76 is also preferably located projecting from the surface 58' of the membrane, towards the front, and it is located radially inwards with respect to the minimum spacing zone 74.
  • the one or the other of the member 76 and the first seal 72 could be forced to deform through the minimum spacing zone 74, without departing from the scope of the invention.
  • the reconstitution member 76 forms a second seal which, in the stressed state, also rests on the one hand against the deflection edge 46B, and on the other hand against the end rounded upstream 52a of the wall 52 of the movable cover 33.
  • This sealing function is added to that conferred by the first seal 72, thus reinforcing the barrier with respect to the secondary flow 20B which must be maintained at best in the vein 21B, by limiting air leaks radially outwards between the edge 46B and the end 52a in direct thrust configuration.
  • the main function of the member 76 consists of filling all or part of a cavity 78 between the deflection edge 46B and the upstream end 52a, resulting from the rounded shape of these two elements resting one on the other or very close, in the reverse thrust configuration.
  • This cavity 78 referenced in Figure 10, therefore has a concave shape which flares going radially inwards. The more this cavity 78 is filled by the reconstitution member, the more the pressure losses are limited, and the aerodynamic performance increased.
  • a reinforcing insert can be integrated into the reconstitution member 76, along its surface 80, so as to more easily impose the desired shape on it for reconstitution of the vein.
  • This insert (not shown in Figure 12) can be housed inside the member 76, or form an exterior part thereof.
  • Figures 14 and 15 represent another embodiment in which an additional vein reconstitution member 82 is also provided.
  • This additional member 82 is arranged projecting on the membrane 58 which carries it, from a surface 58'' located from the side opposite to that of the surface 58' carrying the joints 72, 76, namely towards the rear.
  • This additional member 82 can also fulfill the function of a seal, by being forced to bear on the one hand against the second seal 76, and on the other hand against the rounded end 52a. Also, it can have a radially internal surface which best reconstitutes the shape of vein 21B, to limit pressure losses.
  • the additional vein reconstitution member 82 is preferably segmented in the circumferential direction Tl, as is visible in Figure 16. This segmentation is preferably carried out at the level of each connection of connecting rod 62 to the membrane 58, via the cables 70 which generate linear zones of tension on the membrane in thrust reversal configuration.
  • Figures 17 and 18 show another alternative in which only a single first seal 72 projects from the surface 58' of the membrane 58.
  • the seal 72 of section substantially rectangular in the unconstrained state, thus extends radially on either side of the minimum spacing zone 74, crossing it.
  • the seal 72 integrates, in the radially internal part filling all or part of the cavity 78, a reinforcing insert 86 located along the surface 80 reconstituting the vein 21B.
  • Figures 19 to 22 show the sealing obtained at a circumferential end of the membrane 58, here also corresponding to a circumferential end of the movable cover 33 and its wall 52, cooperating with a beam 88 of the fixed structure 31.
  • This beam 88 can be arranged in the clockwise position at 6 o'clock, or at 12 o'clock.
  • each of the seals 72, 76 bears circumferentially against an end seal 90 in the form of a block, and carried fixedly by a member for guiding the membrane 92 secured to the movable cover, in extending radially outwards relative to the annular front end 52a of the wall 52.
  • the end of the two seals comes into circumferential support against the seal end sealing 90, which also allows, during the exit and reentry of the membrane 58, to ensure even better guidance of the latter in association with the guide member 92.
  • the end seal 90 bears circumferentially against a fixed seal 94 carried by the fixed structure, when the mobile structure occupies its advanced direct thrust position.
  • the fixed joint 94 also in the form of a block, can be carried by the beam 88, preferably being located at the front end of a guide rail 96 secured to the beam 88 and serving to guide the movable shutter in translation 33.
  • the interface between the two joints 90, 94 can have an appropriate slope, so as to facilitate the axial docking of the movable cover, at the end of its closing stroke.
  • a multi-joint arrangement of this type is also provided at the opposite circumferential end of the cover 33 / membrane 58.
  • the thrust reverser 30 can alternatively have a “C” or “O” architecture.
  • the preferred embodiments described above relate to an inverter design with fixed deflection grids, these grids can alternatively be integrated into the movable structure of the inverter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sealing Devices (AREA)

Abstract

L'invention concerne un inverseur de poussée pour ensemble propulsif d'aéronef, l'inverseur comprenant une structure fixe (31) et une structure mobile (29) comprenant un capot mobile d'inverseur (33) présentant une paroi radialement interne (52), la structure mobile étant déplaçable en translation par rapport à la structure fixe selon un axe central longitudinal (A1) de l'inverseur, entre une position avancée de poussée directe et une position reculée d'inversion de poussée. Selon l'invention, une membrane (58) d'obturation de la veine secondaire porte un premier joint d'étanchéité (72) s'étendant selon une direction circonférentielle (27) de l'inverseur, en étant en appui contre la structure fixe (31) et contre l'extrémité amont (52a) de la paroi (52) du capot mobile, lorsque la structure mobile (29) occupe sa position avancée de poussée directe.

Description

DESCRIPTION
TITRE : INVERSEUR DE POUSSEE COMPRENANT UNE MEMBRANE D'OBTURATION EQUIPEE D'UN JOINT D'ETANCHEITE
Domaine technique
L'invention se rapporte au domaine des nacelles et des inverseurs de poussée pour ensemble propulsif d'aéronef, et, plus particulièrement, aux solutions permettant d'assurer l'étanchéité entre la structure fixe de l'inverseur et sa structure mobile, lorsque celle-ci occupe sa position avancée de poussée directe.
État de la technique antérieure
Les inverseurs de poussée sont des dispositifs permettant de dévier vers l'avant le flux d'air traversant l'ensemble propulsif, de manière à raccourcir les distances d'atterrissage, et à limiter la sollicitation des freins sur les atterrisseurs.
Les inverseurs à grilles actuellement exploités dans le secteur aéronautique comprennent généralement des grilles de déviation intégrées à une structure fixe de l'inverseur, destinée à être reliée à un carter de turbomachine. Une structure mobile de l'inverseur comporte un ou plusieurs capots mobiles d'inverseur, et elle est montée déplaçable en translation par rapport à la structure fixe entre une position avancée de poussée directe, et une position reculée d'inversion de poussée. En position avancée de poussée directe, les grilles de déviation sont agencées dans une cavité des capots mobiles d'inverseur, et elles sont isolées de la veine secondaire de l'ensemble propulsif par une paroi radialement interne des capots d'inverseur. En revanche, dans la position reculée d'inversion de poussée, la paroi radialement interne reculée des capots d'inverseur définit une ouverture de passage de la veine secondaire vers les grilles de déviation.
Pour dévier au moins une partie du flux secondaire vers cette ouverture de passage en direction des grilles, l'inverseur est en général également équipé de volets d'obturation, qui, lorsqu'ils sont déployés, obturent au moins partiellement la veine secondaire. De manière connue, cela force l'air du flux secondaire à traverser l'ouverture de passage et à rejoindre les grilles, qui génèrent alors le flux d'air de contre-poussée vers l'avant. Dans ces solutions conventionnelles, un joint d'étanchéité est porté à l'avant du capot mobile, par la paroi radialement interne, de manière à venir se plaquer contre un bord de déviation de la structure fixe de l'inverseur, lorsque la structure mobile adopte sa position avancée de poussée directe. Le joint se trouve alors dans une zone située radialement juste au-dessous des grilles de l'inverseur.
Plus récemment, il a été proposé des solutions d'obturation de la veine secondaire à l'aide de membranes déployables, en remplacement et/ou en combinaison avec les solutions à volets d'obturation décrites ci-dessus. Une telle conception à membranes est par exemple connue du document FR 3 076 864 Al.
En position avancée de poussée directe, la membrane d'obturation chemine entre le bord de déviation de la structure fixe, et l'extrémité amont de la paroi radialement interne du capot mobile. Cette membrane s'étend ensuite axialement vers l'aval, dans l'espace défini radialement entre la paroi radialement interne du capot mobile, et les grilles de déviation. Aussi, la solution de joint d'étanchéité, telle que présentée précédemment pour la conception à volets d'obturation, se révèle inadaptée pour la solution à membrane déployable d'obturation. En effet, une transposition de la solution existante conduirait la membrane à comprimer le joint d'étanchéité et à l'éloigner du bord de déviation, ce qui le rendrait inefficace.
Il existe par conséquent un besoin d'amélioration des solutions d'étanchéité dans les conceptions d'inverseurs à membranes déployables d'obturation.
Exposé de l'invention
Pour répondre au besoin mentionné ci-dessus, l'invention a tout d'abord pour objet un inverseur de poussée pour ensemble propulsif d'aéronef, l'inverseur comprenant une structure fixe équipée d'une paroi de délimitation radialement interne d'une veine secondaire de l'ensemble propulsif destinée à être traversée par un flux secondaire, l'inverseur comprenant également une structure mobile comprenant au moins un capot mobile d'inverseur présentant une cavité ouverte vers l'avant et délimitée entre une paroi radialement externe et une paroi radialement interne du capot mobile d'inverseur, la structure mobile étant déplaçable en translation par rapport à la structure fixe selon un axe central longitudinal de l'inverseur, entre une position avancée de poussée directe, et une position reculée d'inversion de poussée dans laquelle la structure fixe et une extrémité amont de la paroi radialement interne reculée du capot mobile d'inverseur laissent apparaître entre elles une ouverture de passage d'air à travers la veine secondaire, l'inverseur de poussée comprenant également des moyens d'obturation de la veine secondaire, conçus pour dévier au moins une partie du flux secondaire vers l'ouverture de passage, ces moyens comprenant au moins une membrane d'obturation déployable dans la veine secondaire et cheminant entre la structure fixe et l'extrémité amont de la paroi radialement interne lorsque la structure mobile occupe sa position avancée de poussée directe.
Selon l'invention, ladite au moins une membrane porte un premier joint d'étanchéité s'étendant selon une direction circonférentielle de l'inverseur, en étant en appui d'une part contre la structure fixe et d'autre part contre l'extrémité amont de la paroi radialement interne du capot mobile, lorsque la structure mobile occupe sa position avancée de poussée directe.
L'invention répond ainsi de manière satisfaisante au besoin exprimé précédemment, en proposant une solution simple, fiable et performante, dans laquelle le premier joint d'étanchéité est porté par la membrane elle-même. Outre le fait que cette solution remplisse la fonction d'étanchéité désirée en position avancée d'inversion de poussée, elle permet également, dans cette même position, de participer à la stabilisation de la membrane.
L'invention prévoit de préférence au moins l'une quelconque des caractéristiques techniques optionnelles suivantes, prises isolément ou en combinaison.
De préférence, le premier joint d'étanchéité se situe radialement vers l'extérieur par rapport à une zone d'écartement minimal entre la structure fixe et l'extrémité amont de la paroi radialement interne, ou radialement vers l'intérieur par rapport à cette zone d'écartement minimal, ou encore à cheval sur cette même zone en s'étendant radialement de part et d'autre de celle-ci. De préférence, le premier joint d'étanchéité se situe radialement vers l'extérieur par rapport à la zone d'écartement minimal, et ladite au moins une membrane d'obturation porte de plus un organe de reconstitution de la veine secondaire s'étendant selon la direction circonférentielle, en se situant radialement vers l'intérieur par rapport à la zone d'écartement minimal de manière à combler tout ou partie d'une cavité entre la structure fixe et l'extrémité amont de la paroi radialement interne, lorsque la structure mobile occupe sa position avancée de poussée directe.
La présence de l'organe de reconstitution de la veine permet de limiter la taille de la cavité précitée, voire de la supprimer entièrement. Cela améliore les performances aérodynamiques, en réduisant les pertes de charges sur le flux secondaire. De plus, l'association du premier joint d'étanchéité et de l'organe de reconstitution de la veine améliore encore davantage le maintien dans la membrane, en position avancée de poussée directe de la structure mobile de l'inverseur.
De préférence, l'organe de reconstitution de la veine comporte au moins un insert de renfort le long d'une surface de cet organe qui délimite radialement vers l'intérieur la veine secondaire, lorsque la structure mobile occupe sa position avancée de poussée directe. Cela permet de favoriser encore davantage une continuité aérodynamique ou une sensible continuité aérodynamique de cette surface de l'organe de reconstitution avec la structure fixe et/ou avec l'extrémité amont de la paroi radialement interne du capot mobile, toujours afin de limiter les pertes de charges au niveau de la jonction entre ces deux éléments.
De préférence, l'organe de reconstitution de la veine forme un second joint d'étanchéité en appui d'une part contre la structure fixe, et d'autre part contre l'extrémité amont de la paroi radialement interne, lorsque la structure mobile occupe sa position avancée de poussée directe.
De préférence, l'organe de reconstitution de la veine se situe du côté d'une surface orientée vers l'avant de la membrane d'obturation. Néanmoins, une implantation de l'autre côté reste possible, sans sortir du cadre de l'invention. De préférence, l'organe de reconstitution de la veine se situe d'un côté de la membrane d'obturation, et celle-ci porte en outre, du côté opposé, un organe de reconstitution de veine additionnel. Cela renforce encore davantage les aspects aérodynamiques.
Il est noté que toutes les caractéristiques préférentielles décrites ci-dessus pour l'organe de reconstitution de veine, peuvent s'appliquer au premier joint d'étanchéité.
En outre, il est noté que l'organe de reconstitution de la veine est par exemple segmenté sur la direction circonférentielle, bien qu'il pourrait être continu sur toute la longueur de la membrane, sans sortir du cadre de l'invention.
C'est en tout cas ce qui est préférentiellement prévu pour le premier joint d'étanchéité, à savoir continu tout le long de la membrane qui le porte, selon la direction circonférentielle.
De préférence, le premier joint d'étanchéité se situe du côté d'une surface orientée vers l'avant de la membrane d'obturation. Une intégration du côté opposé est ici aussi également possible, sans sortir du cadre de l'invention.
De préférence, le premier joint d'étanchéité est en appui d'une part contre un bord de déviation de la structure fixe, et d'autre part contre l'extrémité amont, de préférence arrondie, de la paroi radialement interne, lorsque la structure mobile occupe sa position avancée de poussée directe.
De préférence, au moins l'une des deux extrémités circonférentielles du premier joint d'étanchéité est en appui circonférentiel contre un joint d'étanchéité d'extrémité porté par un organe de guidage de la membrane solidaire du capot mobile, lorsque la structure mobile occupe sa position avancée de poussée directe.
La coopération entre les joints décrits ci-dessus permet non-seulement de maîtriser l'étanchéité au niveau de l'extrémité circonférentielle concernée de la membrane, mais elle renforce également le guidage de la membrane lors de son déploiement.
De préférence, le joint d'étanchéité d'extrémité est en appui circonférentiel contre un joint d'étanchéité fixe porté par la structure fixe, lorsque la structure mobile occupe sa position avancée de poussée directe.
De préférence, la structure fixe de l'inverseur comporte au moins une grille de déviation agencée, en position avancée de poussée directe de la structure mobile, dans la cavité du capot mobile, en étant isolée de la veine secondaire par la paroi radialement interne du capot d'inverseur. Alternativement, la/les grilles de déviation pourraient être intégrées à la structure mobile de l'inverseur, sans sortir du cadre de l'invention.
Il est noté que les grilles précitées peuvent être soit formées de manière classique, par exemple par des éléments rigides réalisés en matériau composite, soit remplacées par un ou plusieurs éléments souples, comme une voile ou une membrane déflectrice souple. L'invention a également pour objet un ensemble propulsif pour aéronef, comprenant une turbomachine et une nacelle comportant au moins un capot de soufflante, ainsi qu'un inverseur de poussée tel que décrit ci-dessus.
D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.
Brève description des dessins
La description détaillée qui suit fait référence aux dessins annexés sur lesquels :
[Fig. 1] est une demi-vue schématique en coupe longitudinale d'un ensemble propulsif, comprenant un inverseur de poussée selon un mode de réalisation préféré de l'invention, représenté en configuration de poussée directe ;
[Fig. 2] est une demi-vue schématique en coupe longitudinale de l'inverseur équipant l'ensemble propulsif montré sur la figure 1, avec l'inverseur représenté en configuration de poussée directe ;
[Fig. 3] est une demi-vue schématique de l'inverseur montré sur la figure 2, représenté en configuration d'inversion de poussée ;
[Fig. 3A] est une demi-vue schématique similaire à celle de la figure précédente, avec l'inverseur se présentant selon une forme alternative de réalisation ;
[Fig. 4] est une vue en perspective de l'inverseur montré sur les figures 2 et 3, représenté en configuration de poussée directe ;
[Fig. 5] est une vue en perspective de l'inverseur montré sur la figure 4, représenté en configuration d'inversion de poussée ; [Fig. 6] est une vue partielle agrandie et plus détaillée d'une partie de l'inverseur montré sur les figures précédentes, montrant le premier joint d'étanchéité porté par la membrane d'obturation, avec l'inverseur se trouvant dans une configuration intermédiaire entre la configuration de poussée directe et la configuration d'inversion de poussée ;
[Fig. 7] est une vue similaire à celle de la figure précédente, avec l'inverseur représenté en configuration de poussée directe ;
[Fig. 8] est une vue similaire à celle de la figure 7, avec le premier joint d'étanchéité se présentant selon une alternative de réalisation ;
[Fig. 9] montre le premier joint de la réalisation de la figure 8, à l'état non-contraint ;
[Fig. 10] est une vue similaire à celle de la figure 8, avec la membrane équipée de plus d'un organe de reconstitution de la veine ;
[Fig. 11] montre le premier joint et l'organe de reconstitution de veine de la réalisation de la figure 10, à l'état non-contraint ;
[Fig. 12] est une vue similaire à celle de la figure 10, avec le premier joint d'étanchéité et l'organe de reconstitution de veine se présentant selon une alternative de réalisation ;
[Fig. 13] montre le premier joint et l'organe de reconstitution de veine de la réalisation de la figure 12, à l'état non-contraint ;
[Fig. 14] est une vue similaire à celle de la figure 12, avec la membrane équipée de plus d'un organe de reconstitution de veine additionnel ;
[Fig. 15] montre le premier joint, l'organe de reconstitution de veine, et l'organe de reconstitution de veine additionnel de la réalisation de la figure 14, à l'état non- contraint ;
[Fig. 16] montre une vue partielle en perspective de l'inverseur montré sur la figure 14, avec la membrane déployée telle qu'agencée dans la configuration d'inversion de poussée ; [Fig. 17] est une vue similaire à celle de la figure 7 , avec le premier joint d'étanchéité se présentant sous une forme alternative de réalisation ;
[Fig. 18] montre le premier joint de la figure 17, à l'état non-contraint ;
[Fig. 19] est une vue en perspective montrant une extrémité circonférentielle d'un capot mobile de l'inverseur montré sur la figure 10 ;
[Fig. 20] est une vue en perspective montrant l'extrémité circonférentielle du capot mobile d'inverseur de la figure 19, coopérant avec la structure fixe de l'inverseur ;
[Fig. 21] est une vue en perspective similaire à celle de la figure 20, sur laquelle il a de plus été rajouté la membrane d'obturation ; et
[Fig. 22] est une vue en perspective similaire à celle de la figure 21, sur laquelle il a de plus été rajouté, en transparence, un bord de déviation de la structure fixe de l'inverseur.
Description détaillée de modes de réalisation
Il est représenté sur la figure 1 un ensemble propulsif 1 d'aéronef, présentant un axe central longitudinal Al.
Par la suite, les termes « amont » et « aval » sont définis relativement à un sens général SI d'écoulement des gaz à travers l'ensemble propulsif 1, le long de l'axe Al lorsque celui-ci génère une poussée. Ces termes « amont » et « aval » pourraient respectivement être substitués par les termes « avant » et « arrière », avec la même signification.
L'ensemble propulsif 1 comprend une turbomachine 2, une nacelle 3 ainsi qu'un mât (non représenté), destiné à relier l'ensemble propulsif 1 à une aile (non représentée) de l'aéronef.
La turbomachine 2 est dans cet exemple un turboréacteur à double flux et à double corps comprenant, de l'avant vers l'arrière, une soufflante 5, un compresseur basse pression 6, un compresseur haute pression 7, une chambre de combustion 8, une turbine haute pression 9 et une turbine basse pression 10. Les compresseurs 6 et 7, la chambre de combustion 8 et les turbines 9 et 10 forment un générateur de gaz. Le turboréacteur 2 est doté d'un carter de soufflante 11 relié au générateur de gaz par des bras structuraux 12. La nacelle 3 comprend une section avant formant une entrée d'air 13, une section médiane qui comporte deux capots de soufflante 14 enveloppant le carter de soufflante 11, et une section arrière 15.
En fonctionnement, un écoulement d'air 20 pénètre dans l'ensemble propulsif 1 par l'entrée d'air 13, traverse la soufflante 5, puis se divise en un flux primaire 20A et un flux secondaire 20B. Le flux primaire 20A s'écoule dans une veine primaire 21A de circulation de gaz traversant le générateur de gaz. Le flux secondaire 20B s'écoule dans une veine secondaire 21B entourant le générateur de gaz. La veine secondaire 21B est délimitée radialement vers l'intérieur par un carénage interne fixe qui enveloppe le générateur de gaz. Dans cet exemple, le carénage interne fixe comprend un premier tronçon 17 appartenant à la section médiane 14, et un deuxième tronçon 18 s'étendant vers l'arrière à partir du premier tronçon 17, de manière à former une partie de la section arrière 15. Ce second tronçon 18 fait partie intégrante d'une structure fixe d'un inverseur de poussée qui sera décrit ci-après. Ce même tronçon sera par la suite dénommé paroi 18 de délimitation radialement interne de la veine secondaire 21B.
Radialement vers l'extérieur, la veine secondaire 21B est délimitée par le carter de soufflante 11, et, dans la configuration de la figure 1, par un ou plusieurs capots mobiles d'inverseur 33 formant une partie de la section arrière 15 de la nacelle 3, et qui seront décrits ultérieurement. Plus précisément, entre le carter de soufflante 11 et les capots d'inverseur 33, il est prévu une virole extérieure 40 d'un carter intermédiaire 42, ce dernier comprenant les bras structuraux 12 précités, dont l'extrémité radialement externe est fixée sur cette virole 40. Celle-ci participe donc également à délimiter la veine secondaire 21B radialement vers l'extérieur, en étant située dans le prolongement axial aval du carter de soufflante 11.
La nacelle 3 comporte donc un inverseur de poussée 30 centré sur l'axe Al et comprenant d'une part une structure fixe 31 solidaire du carter de soufflante 11, et d'autre part une structure 29 mobile par rapport é la structure fixe 31. La structure fixe 31 comporte par exemple un cadre avant 46 qui la raccorde fixement au carter de soufflante 11, de préférence via un assemblage en bride couteau situé en aval de la virole extérieure 11. Ce cadre avant 46 contient une partie aérodynamique profilée appelée bord de déviation 46B, qui guide l'écoulement en jet inversé.
Ici, la structure fixe 31 comporte aussi une pluralité de grilles de déviation 32 agencées de manière adjacente les unes aux autres autour de l'axe Al, selon une direction circonférentielle Tl de l'inverseur 30 et de l'ensemble propulsif 1. Par ailleurs, la structure mobile 29 comprend quant à elle les capots mobiles d'inverseur 33 précités, par exemple deux capots 33 s'étendant chacun sur une amplitude angulaire d'environ 180°. Cette configuration à deux capots 33 est particulièrement bien adaptée dans le cas d'une conception de nacelle dans laquelle les capots/parois 18 sont également montés articulés, l'inverseur 30 présentant alors une architecture dite « en D », connue sous l'appellation anglo-saxonne « D-Duct ». Dans cette architecture, les capots 18, 33 sont reliés de manière à s'ouvrir / se fermer simultanément lors des opérations de maintenance sur le moteur. Néanmoins, d'autres architectures sont possibles, comme par exemple une architecture dite « en C », connue sous l'appellation anglo-saxonne « C-Duct », ou encore une architecture dite « en O », connue sous l'appellation anglo-saxonne « 0- Duct ».
Chaque capot mobile d'inverseur 33 comporte une paroi radialement externe 50, formant une surface aérodynamique extérieure de l'inverseur et de la nacelle, cette surface étant épousée par l'air extérieur. Chaque capot 33 comprend également une paroi radialement interne 52 participant à la délimitation de la veine secondaire 21B radialement vers l'extérieur. Cette paroi 52 se situe dans la continuité aval du bord de déviation 46 B. Les deux parois 50, 52 définissent une cavité 54 ouverte axialement vers l'amont, à l'extrémité amont du capot d'inverseur 33.
La figure 1 montre l'inverseur 30 dans une configuration de poussée vers l'avant, dit « jet direct », correspondant à une configuration standard de vol. Dans cette configuration, les capots 33 de la structure mobile 29 sont dans une position de fermeture, dite position avancée de poussée ou de « jet direct », dans laquelle ces capots d'inverseur 33 sont en appui sur la structure fixe 31, en particulier sur le bord de déviation 46B faisant partie intégrante de cette dernière. En effet, dans la configuration de poussée directe, l'extrémité amont 52a de la paroi radialement interne 52 de chaque capot 33 est en appui axial contre le bord de déviation 46B, ici via un système d'étanchéité spécifique à l'invention, et qui sera décrit ci-après.
Le maintien du capot mobile 33 dans la position avancée de poussée directe est assuré par des moyens de verrouillage de ce capot sur la structure fixe 31 de l'inverseur. Ces moyens commandés de verrouillage (non représentés) sont conventionnels, donc ils ne seront pas davantage décrits.
La structure mobile 29 est ainsi déplaçable en translation par rapport à la structure fixe 31 selon l'axe Al de l'inverseur, entre la position avancée de poussée directe montrée sur la figure 1, et une position reculée d'inversion de poussée qui sera décrite ultérieurement. Dans la position avancée de poussée directe de la structure mobile 29, les grilles de déviation 32 sont agencées dans la cavité 54 des capots d'inverseur 33, en étant isolées de la veine secondaire 21B par la paroi radialement interne 52 de ces capots coulissant 29 d'inverseur. Cette paroi 52, formant la paroi externe de la veine secondaire, est également appelée panneau interne acoustique.
Cette configuration de poussée directe est également représentée sur les figures 2 et 4, tandis que la position reculée d'inversion de poussée de la structure mobile 29 est représentée sur les figures 3 et 5. Sur la figure 3, il est montré que le panneau acoustique interne reculé 52 des capots mobiles d'inverseur laisse apparaître en amont une ouverture de passage 56 de la veine secondaire 21B vers les grilles de déviation 32. L'ouverture 56 est donc également délimitée vers l'amont par le bord de déviation 46B, qui s'évase radialement vers l'extérieur en allant vers l'arrière, pour canaliser un écoulement d'air destiné à traverser les grilles 32 lorsque le système mobile se trouve dans cette position reculée d'inversion de poussée. En d'autres termes, le bord de déviation 46B s'éloigne progressivement de l'axe Al en allant de l'avant vers l'arrière, pour guider / dévier l'air vers les grilles 32 en configuration d'inversion de poussée. A l'aval, l'ouverture de passage 56 est délimitée en particulier par l'extrémité amont 52a de la paroi radialement interne 52. Afin de dévier au moins une partie du flux secondaire 20B vers l'ouverture de passage 56 définie axialement entre le bord de déviation 46B et l'extrémité amont 52a de la paroi radialement interne 52 de chaque capot 33, l'inverseur 30 comporte dans ce mode de réalisation préféré une ou plusieurs membranes d'obturation 58. Par la suite, il sera décrit une réalisation dans laquelle une seule membrane 58 est associée à chaque capot d'inverseur 33 en présentant une amplitude angulaire identique ou similaire, mais il reste envisageable de prévoir plusieurs membranes circonférentiellement adjacentes associées à chaque capot 33. De même, seule la coopération entre une membrane 58 et son capot associé 33 sera décrite ci-après, étant entendu que cette coopération est identique ou similaire pour tous les capots de l'inverseur 33.
La membrane 58 peut être réalisée dans un matériau connu de l'homme du métier pour ce type d'application. Par exemple, il peut s'agir d'un tissu non imprégné, par exemple de fibres d'aramide. La membrane 58 peut également être réalisée à l'aide d'un matériau composite dont la matrice est particulièrement souple, par exemple en polyuréthane aliphatique, ce qui permet l'utilisation dans des conditions de températures différentes, notamment des températures plus faibles dans le cas d'une membrane en polyuréthane aliphatique que dans le cas d'une membrane en silicone. La matrice donne une faible capacité de reprise en flexion et le comportement de la structure obtenue est bien celui d'une membrane. L'une des propriétés majeures de cette membrane 58 est de pouvoir se plier de manière parfaitement réversible (élastique ou par glissement de fibres) avec un rayon de courbure très faible par rapport à sa surface, et d'avoir une épaisseur très faible, par exemple de l'ordre de 0,1 à 3 mm. A titre informatif, il est observé que cette membrane 58 se comporte comme une voile de bateau ou un parachute / une aile volante quand elle est mise sous pression.
Toujours en référence aux figures 1 à 5, il est prévu des premiers moyens d'accrochage reliant une première extrémité 58a de la membrane d'obturation 58 à un cadre arrière 60 de support des grilles 32, ce support annulaire ou en forme de tronçon annulaire reliant en effet l'extrémité arrière de plusieurs grilles adjacentes. De plus, des seconds moyens d'accrochage relient une seconde extrémité 58b de la membrane d'obturation 58, opposée à la première membrane 58a, à la paroi 18.
En outre, comme cela est visible sur les figures 1, 2 et 4, lorsque la structure mobile 29 occupe sa position avancée de poussée directe, au moins une partie de la membrane d'obturation 58 se trouve agencée radialement entre les grilles de déviation 32 et la paroi radialement interne 52 du capot d'inverseur 33, dans la cavité 54. De préférence, la partie de la membrane 58 qui se trouve dans cette cavité 54 du capot d'inverseur 33, recouvre radialement l'intégralité de la longueur des grilles 32. De ce fait, lorsque la structure mobile 29 adopte sa position avancée de poussée directe, la seconde extrémité 58b de la membrane 58 est pincée ou simplement agencée entre l'extrémité amont de la paroi 52, et le bord de déviation 46B.
Egalement, comme cela est visible sur la figure 3, lorsque la structure mobile 29 se déplace et qu'elle occupe sa position reculée d'inversion de poussée à la fin de ce déplacement, la membrane d'obturation 58 se trouve en partie en appui contre l'extrémité amont 52a de la paroi radialement interne 52 du capot d'inverseur, correspondant donc au panneau acoustique. Plus précisément, au cours du déplacement vers l'arrière de la structure mobile 29, la membrane 58 glisse sur cette l'extrémité amont 52a de la paroi radialement interne 52.
En position reculée d'inversion de poussée de la figure 3, la membrane 58 est donc en appui axial vers l'aval contre l'extrémité amont 52a. Il est à noter que selon l'étendue de la course axiale de l'inverseur, la membrane 58 peut ne plus être en contact avec le panneau interne acoustique 52 dans la position totalement déployée de l'inverseur, où le capot 33 est dans sa position la plus reculée. Une telle configuration est représentée sur la figure 3A, sur laquelle il est bien montré que la membrane 58 se trouve en amont et à distance de l'extrémité amont 52a de la paroi 52 du capot d'inverseur. L'option avec contact correspond à une course minimisée de l'inverseur, tandis que l'option sans contact correspond en général à une forme de membrane plus lisse en jet inversé, donc plus performante d'un point de vue aérodynamique. Ainsi, la partie de la membrane 58 qui se situe radialement vers l'extérieur par rapport à sa zone d'appui sur la paroi 52 obture une partie de l'ouverture axiale amont de la cavité 54, tandis que l'autre partie située radialement vers l'intérieur obture au moins une partie de la veine secondaire 21B, déviant de la sorte au moins une partie du flux secondaire 20B vers l'ouverture de passage 56 en direction des grilles 32.
Une autre possibilité, non représentée, consiste à réaliser l'accrochage radialement externe de la membrane 58 sur la paroi radialement externe 50 du capot coulissant 33. L'extrémité 58b de la membrane 58 a quant à elle des câbles 70 reliés à la paroi 18 (également dénommée IFS, de l'anglais « Inner Fixed Structure »), par une liaison qui peut avantageusement exercer une force de traction sur chaque câble 70 le ramenant vers cette paroi 18, par exemple au moyen d'une liaison élastique. Les câbles 70 eux-mêmes peuvent être élastiques, par exemple en utilisant des câbles en kevlar, et ces mêmes câbles peuvent être mis en tension lors de la fermeture du capot coulissant 33. Des renforts peuvent être intégrés à la membrane 58 dans le prolongement de ces câbles 70, jusqu'aux points d'accroche externes avec le cadre arrière de support de grilles 60, ou la paroi externe 50 du capot coulissant 33.
Ces câbles 70 sont avantageusement positionnés radialement dans la veine en étant circonférentiellement espacés les uns des autres. En position de jet direct, ils tendent la membrane 58 entre son extrémité 58a et le bord d'attaque / l'extrémité amont 52a de la paroi 52 du capot. Lors du déploiement, quand le capot coulissant 33 recule, les câbles 70 viennent tirer la membrane 58 vers la veine secondaire de façon à ce qu'elle y prenne l'air et s'y déploie progressivement.
Selon le but recherché, les seconds moyens d'accrochage peuvent être constitués par des bielles 62, à la place des câbles cités précédemment. Une première extrémité 62a de chacune d'elles est montée sur la paroi 18, de préférence par l'intermédiaire d'une liaison pivot ou rotule 64. Cette liaison 64 peut être réalisée à l'aide d'une ferrure fixée sur la paroi fixe 18 et coopérant avec la première extrémité de bielle 62a.
Les bielles 62 sont espacées circonférentiellement les unes des autres au sein de la veine secondaire 21B, et leur nombre peut par exemple varier de deux à dix. Chaque bielle 62 est conçue pour se déplacer d'une position en saillie radialement dans la veine secondaire 21B, position montrée sur les figures 2 et 4 adoptée lorsque la structure mobile 29 occupe sa position avancée de poussée directe, à une position rabattue vers l'aval, montrée sur les figures 3 et 5 adoptée lorsque la structure mobile 29 occupe sa position reculée d'inversion de poussée.
Des moyens élastiques de rappel peuvent être prévus pour tendre à incliner chaque bielle 62 vers sa position rabattue / couchée de la figure 3, en particulier quand la bielle est dans sa position en saillie correspondant à la position de vol de l'inverseur.
La seconde extrémité 62b de chaque bielle 62, opposée à la première extrémité 62a, peut être raccordée directement sur la seconde extrémité 58b de la membrane 58.
Néanmoins, d'autres solutions préférentielles sont retenues, comme celles visant à intégrer des câbles ou des sangles de renforts au sein des seconds moyens d'accrochage.
Dans le mode de réalisation représenté sur les figures 1 à 5, les câbles 70 coopèrent avec les bielles 62 en étant chacun fixé à la seconde extrémité 62b de l'une des bielles associée à ce câble. Alternativement, les câbles 70 pourraient traverser leurs bielles associées 62 pour être fixés sur la paroi 52 de délimitation radialement interne de la veine secondaire, par exemple via les ferrures 66.
L'une des particularités de l'invention réside dans le fait que la membrane d'obturation 58 de l'inverseur est équipée d'un premier joint d'étanchéité 72, porté en saillie à proximité de la seconde extrémité 58b de la membrane d'obturation 58. Cette spécificité est montrée sur les figures 6 et 7. Le premier joint 72 se situe du côté d'une surface 58' de la membrane qui est orientée vers l'avant, en faisant saillie de cette surface 58' également vers l'avant en configuration de poussée directe. Le premier joint 72 est préférentiellement continu tout le long de la membrane 58, en s'étendant selon la direction circonférentielle 27.
A l'état non-contraint représenté sur la figure 6, le premier joint d'étanchéité 72 présente une section circulaire ou sensiblement circulaire. A l'état contraint représenté sur la figure 7, il est en appui d'une part contre le bord de déviation 46B, et d'autre part contre l'extrémité amont arrondie 52a de la paroi radialement interne 52 du capot mobile. Toujours à l'état contraint tel qu'adopté en configuration de poussée directe, le premier joint 72 se situe préférentiellement de manière à s'étendre radialement vers l'extérieur au-delà de l'extrémité amont 52a. Aussi, il se situe radialement vers l'extérieur par rapport à une zone d'écartement minimal 74 entre le bord de déviation 46B et l'extrémité amont 52a de la paroi 52. Comme cela est schématisé sur la figure 7, le premier joint 72 peut être forcé en direction de la zone d'écartement minimal 74 entre le bord de déviation 46B et l'extrémité amont 52a, de par la géométrie de l'ensemble, et/ou de par la traction exercée par les bielles 62 lors de la fin de la phase de rentrée du capot mobile 33.
Il est noté qu'alternativement, le premier joint d'étanchéité 72 pourrait être agencé, à l'état contraint, radialement vers l'intérieur par rapport à la zone d'écartement minimal 74, ou encore à cheval sur cette même zone en s'étendant radialement de part et d'autre de celle-ci.
Pour la réalisation de ce joint 72, il peut être simplement collé sur la surface 58' de la membrane, cousu sur celle-ci, co-vulcanisé, ou encore rapporté par toute technique réputée appropriée pour l'homme du métier.
A titre d'exemple représenté sur les figures 8 et 9, le premier joint 72 peut être enchâssé dans la membrane, à savoir inséré entre la membrane 58 et un autre pan de tissu doublant cette membrane, de manière à assurer une continuité structurale et géométrique autour du joint. Dans l'exemple représenté, le premier joint 72 prend la forme générale d'une goutte d'eau sur un plan, mais d'autres formes restent possibles, sans sortir du cadre de l'invention.
Il est noté que dans les réalisations qui viennent d'être décrites, tout comme dans celles qui seront exposées ci-après, la membrane 58 peut de plus être enserrée entre le bord de déviation 46B et l'extrémité arrondie 52a dans la configuration de poussée directe, ou bien un faible jeu peut alternativement être observé, sans sortir du cadre de l'invention.
En référence à présent aux figures 10 et 11, il est montré une autre réalisation dans laquelle le premier joint d'étanchéité reste situé radialement vers l'extérieur par rapport à la zone d'écartement minimal 74, et dans laquelle la membrane 58 porte de plus un organe de reconstitution de la veine secondaire 76. Ici, l'organe de reconstitution 76 s'étend également selon la direction circonférentielle Tl , en étant continu tout le long de la membrane 58, ou bien segmenté, par exemple en étant interrompu circonférentiellement au niveau de chaque rattachement de bielle 62.
L'organe 76 se situe également de préférence en saillie depuis la surface 58' de la membrane, vers l'avant, et elle se trouve radialement vers l'intérieur par rapport à la zone d'écartement minimal 74. Bien entendu, l'un ou l'autre de l'organe 76 et du premier joint 72 pourrait être forcé jusqu'à se déformer à travers la zone d'écartement minimal 74, sans sortir du cadre de l'invention.
Dans cette réalisation, l'organe de reconstitution 76 forme un second joint d'étanchéité qui, à l'état contraint, se trouve aussi en appui d'une part contre le bord de déviation 46B, et d'autre part contre l'extrémité amont arrondie 52a de la paroi 52 du capot mobile 33. Cette fonction d'étanchéité s'ajoute à celle conférée par le premier joint d'étanchéité 72, renforçant ainsi la barrière vis-à-vis du flux secondaire 20B qu'il faut maintenir au mieux dans la veine 21B, en limitant les fuites d'air radialement vers l'extérieur entre le bord 46B et l'extrémité 52a en configuration de poussée directe. De plus, le fait d'avoir deux éléments 72, 76 de part et d'autre radialement de la zone d'écartement minimal 74, chacun contraint entre le bord fixe 46B et l'extrémité arrondie 52a, renforce le maintien de la membrane 58 stockée dans la cavité 54 du capot mobile 33.
La fonction principale de l'organe 76 consiste bien à combler tout ou partie d'une cavité 78 entre le bord de déviation 46B et l'extrémité amont 52a, résultant de la forme arrondie de ces deux éléments en appui l'un sur l'autre ou à forte proximité, dans la configuration d'inversion de poussée. Cette cavité 78, référencée sur la figure 10, présente donc une forme concave qui s'évase en allant radialement vers l'intérieur. Plus cette cavité 78 est remplie par l'organe de reconstitution, plus les pertes de charges sont limitées, et les performances aérodynamiques accrues.
Ce principe vaut quelle que soit la forme des joints ni, 76, de section circulaire ou sensiblement circulaire à l'état non-contraint comme sur la réalisation des figures 10 et 11, ou encore de section plus complexe comme sur la réalisation des figures 12 et 13. Sur ces figures 12 et 13, le premier joint ni présente une section en forme de goutte d'eau sur un plan, tandis que l'organe de reconstitution 76 présente une forme plus complexe. En effet, celle-ci est telle qu'à l'état contraint en configuration de poussée directe, la surface 80 de cet organe qui se trouve la plus vers l'intérieur selon la direction radiale, et qui participe donc à délimiter radialement vers l'intérieur la veine secondaire 21B, assure une continuité aérodynamique ou une sensible continuité aérodynamique avec le bord de déviation 46B, et/ou avec la surface radialement interne de l'extrémité 52a. En particulier, dans la réalisation de la figure 12, la surface 80 de l'organe 76 se trouve dans la sensible continuité axiale de l'entrée du bord de déviation 46B, seule une cavité 78 de très faible dimension pouvant subsister entre elles.
Un insert de renfort peut être intégré à l'organe de reconstitution 76, le long de sa surface 80, de façon à lui imposer plus facilement la forme désirée pour la reconstitution de la veine. Cet insert (non représenté sur la figure 12), peut être logé à l'intérieur de l'organe 76, ou bien former une partie extérieure de celui-ci.
Les figures 14 et 15 représentent une autre réalisation dans laquelle il est de plus prévu un organe de reconstitution de veine additionnel 82. Cet organe additionnel 82 est agencé en saillie sur la membrane 58 qui le porte, depuis une surface 58'' se situant du côté opposé à celui de la surface 58' portant les joints 72, 76, à savoir vers l'arrière. Cet organe additionnel 82 peut aussi remplir une fonction de joint d'étanchéité, en étant contraint en appui d'une part contre le second joint 76, et d'autre part contre l'extrémité arrondie 52a. Egalement, il peut présenter une surface radialement interne qui reconstitue au mieux la forme de la veine 21B, pour limiter les pertes de charges.
L'organe de reconstitution de veine additionnel 82 est préférentiellement segmenté selon la direction circonférentielle Tl , comme cela est visible sur la figure 16. Cette segmentation s'effectue de préférence au niveau de chaque rattachement de bielle 62 à la membrane 58, via les câbles 70 qui génèrent des zones linéaires de tension sur la membrane en configuration d'inversion de poussée.
Les figures 17 et 18 montrent une autre alternative dans laquelle seul un unique premier joint 72 est en saillie depuis la surface 58' de la membrane 58. Le joint 72, de section sensiblement rectangulaire à l'état non-contraint, s'étend ainsi radialement de part et d'autre de la zone d'écartement minimal 74, en la traversant. Dans cette réalisation, le joint 72 intègre, en partie radialement interne comblant tout ou partie de la cavité 78, un insert de renfort 86 situé le long de la surface 80 reconstituant la veine 21B.
Les figures 19 à 22 montrent l'étanchéité obtenue au niveau d'une extrémité circonférentielle de la membrane 58, correspondant ici aussi à une extrémité circonférentielle du capot mobile 33 et de sa paroi 52, coopérant avec une poutre 88 de la structure fixe 31. Cette poutre 88 peut être agencée dans la position horaire à 6h, ou à 12h.
L'extrémité circonférentielle de chacun des joints 72, 76 est en appui circonférentiel contre un joint d'étanchéité d'extrémité 90 en forme de bloc, et porté fixement par un organe de guidage de la membrane 92 solidaire du capot mobile, en s'étendant radialement vers l'extérieur par rapport à l'extrémité avant annulaire 52a de la paroi 52. Ainsi, lorsque le capot mobile 33 occupe sa position avancée de poussée directe, l'extrémité des deux joints vient en appui circonférentiel contre le joint d'étanchéité d'extrémité 90, ce qui permet également, lors de la sortie et de la rentrée de la membrane 58, d'assurer encore un meilleur guidage de celle-ci en association avec l'organe de guidage 92.
Pour compléter l'étanchéité avec la structure fixe 31, le joint d'étanchéité d'extrémité 90 est en appui circonférentiel contre un joint d'étanchéité fixe 94 porté par la structure fixe, lorsque la structure mobile occupe sa position avancée de poussée directe. Le joint fixe 94, également en forme de bloc, peut être porté par la poutre 88, de préférence en étant situé à l'extrémité avant d'un rail de guidage 96 solidaire de la poutre 88 et servant au guidage en translation du volet mobile 33.
L'interface entre les deux joints 90, 94 peut présenter une pente appropriée, de manière à faciliter l'accostage axial du capot mobile, lors de la fin de sa course de fermeture.
Un agencement multi-joints de ce type est également prévu à l'extrémité circonférentielle opposée du capot 33 / de la membrane 58. Diverses modifications peuvent être apportées par l'homme du métier à l'invention qui vient d'être décrite, uniquement à titre d'exemples non limitatifs, et dont la portée est définie par les revendications annexées. Par exemple, l'inverseur de poussée 30 peut alternativement présenter une architecture en « C » ou en « O ». En outre, si les modes de réalisation préférés décrits ci-dessus concernent une conception d'inverseur à grilles de déviation fixes, ces grilles peuvent alternativement être intégrées à la structure mobile de l'inverseur. Enfin, les caractéristiques techniques des différentes réalisations décrites ci-dessus sont interchangeables, et combinables.

Claims

REVENDICATIONS
1. Inverseur de poussée (30) pour ensemble propulsif d'aéronef, l'inverseur comprenant une structure fixe (31) équipée d'une paroi de délimitation radialement interne (18) d'une veine secondaire (21B) de l'ensemble propulsif destinée à être traversée par un flux secondaire (20B), l'inverseur comprenant également une structure mobile (29) comprenant au moins un capot mobile d'inverseur (33) présentant une cavité (54) ouverte vers l'avant et délimitée entre une paroi radialement externe (50) et une paroi radialement interne (52) du capot mobile d'inverseur (33), la structure mobile étant déplaçable en translation par rapport à la structure fixe selon un axe central longitudinal (Al) de l'inverseur, entre une position avancée de poussée directe, et une position reculée d'inversion de poussée dans laquelle la structure fixe (31) et une extrémité amont (52a) de la paroi radialement interne reculée (52) du capot mobile d'inverseur laissent apparaître entre elles une ouverture de passage (56) d'air à travers la veine secondaire (21B), l'inverseur de poussée comprenant également des moyens d'obturation (58) de la veine secondaire, conçus pour dévier au moins une partie du flux secondaire (20B) vers l'ouverture de passage (56), ces moyens comprenant au moins une membrane d'obturation (58) déployable dans la veine secondaire (21B) et cheminant entre la structure fixe (31) et l'extrémité amont (52a) de la paroi radialement interne lorsque la structure mobile occupe sa position avancée de poussée directe, caractérisé en ce que ladite au moins une membrane (58) porte un premier joint d'étanchéité (72) s'étendant selon une direction circonférentielle (27) de l'inverseur, en étant en appui d'une part contre la structure fixe (31) et d'autre part contre l'extrémité amont (52a) de la paroi radialement interne (52) du capot mobile, lorsque la structure mobile (29) occupe sa position avancée de poussée directe.
2. Inverseur de poussée selon la revendication 1, caractérisé en ce que le premier joint d'étanchéité (72) se situe radialement vers l'extérieur par rapport à une zone d'écartement minimal (74) entre la structure fixe (31) et l'extrémité amont (52a) de la paroi radialement interne (52), ou radialement vers l'intérieur par rapport à cette zone d'écartement minimal (74), ou encore à cheval sur cette même zone (74) en s'étendant radialement de part et d'autre de celle-ci.
3. Inverseur de poussée selon la revendication 2, caractérisé en ce que le premier joint d'étanchéité (72) se situe radialement vers l'extérieur par rapport à la zone d'écartement minimal (74), et en ce que ladite au moins une membrane d'obturation (58) porte de plus un organe de reconstitution de la veine secondaire (76) s'étendant selon la direction circonférentielle (27), en se situant radialement vers l'intérieur par rapport à la zone d'écartement minimal (74) de manière à combler tout ou partie d'une cavité (78) entre la structure fixe (31) et l'extrémité amont (52a) de la paroi radialement interne (52).
4. Inverseur de poussée selon la revendication 3, caractérisé en ce que l'organe de reconstitution de la veine (76) se situe du côté d'une surface (58') orientée vers l'avant de la membrane d'obturation (58).
5. Inverseur de poussée selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier joint d'étanchéité (72) se situe du côté d'une surface (58') orientée vers l'avant de la membrane d'obturation (58).
6. Inverseur de poussée selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier joint d'étanchéité (72) est en appui d'une part contre un bord de déviation (46B) de la structure fixe, et d'autre part contre l'extrémité amont (52a) de la paroi radialement interne (52), lorsque la structure mobile occupe sa position avancée de poussée directe.
7. Inverseur de poussée selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins l'une des deux extrémités circonférentielles du premier joint d'étanchéité (72) est en appui circonférentiel contre un joint d'étanchéité d'extrémité (90) porté par un organe de guidage de la membrane (92) solidaire du capot mobile (33), lorsque la structure mobile occupe sa position avancée de poussée directe.
8. Inverseur de poussée selon la revendication précédente, caractérisé en ce que le joint d'étanchéité d'extrémité (90) est en appui circonférentiel contre un joint d'étanchéité fixe (94) porté par la structure fixe (31), lorsque la structure mobile occupe sa position avancée de poussée directe.
9. Inverseur de poussée selon l'une quelconque des revendications précédentes, caractérisé en ce que la structure fixe (31) de l'inverseur comporte au moins une grille de déviation (32) agencée, en position avancée de poussée directe de la structure mobile, dans la cavité (54) du capot mobile, en étant isolée de la veine secondaire par la paroi radialement interne (52) du capot d'inverseur (33).
10. Ensemble propulsif (1) pour aéronef, comprenant une turbomachine (2) et une nacelle (3) comportant au moins un capot de soufflante (14), ainsi qu'un inverseur de poussée (30) selon l'une quelconque des revendications précédentes.
PCT/FR2023/051785 2022-11-16 2023-11-14 Inverseur de poussee comprenant une membrane d'obturation equipee d'un joint d'etancheite WO2024105332A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2211903A FR3141969A1 (fr) 2022-11-16 2022-11-16 Inverseur de poussee comprenant une membrane d’obturation equipee d’un joint d’etancheite
FRFR2211903 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024105332A1 true WO2024105332A1 (fr) 2024-05-23

Family

ID=85018788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051785 WO2024105332A1 (fr) 2022-11-16 2023-11-14 Inverseur de poussee comprenant une membrane d'obturation equipee d'un joint d'etancheite

Country Status (2)

Country Link
FR (1) FR3141969A1 (fr)
WO (1) WO2024105332A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960029A1 (fr) * 2010-05-17 2011-11-18 Aircelle Sa Inverseur de poussee a grilles ou a cascade, pour un turboreacteur d’avion
FR2999239A1 (fr) * 2012-12-12 2014-06-13 Aircelle Sa Inverseur de poussee de nacelle et nacelle equipee d'au moins un inverseur
FR3076864A1 (fr) 2018-01-16 2019-07-19 Safran Nacelles Inverseur de poussee optimise pour ensemble propulsif d’aeronef
FR3087848A1 (fr) * 2018-10-30 2020-05-01 Safran Nacelles Inverseur de poussee comprenant une membrane souple de deviation d'air

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960029A1 (fr) * 2010-05-17 2011-11-18 Aircelle Sa Inverseur de poussee a grilles ou a cascade, pour un turboreacteur d’avion
FR2999239A1 (fr) * 2012-12-12 2014-06-13 Aircelle Sa Inverseur de poussee de nacelle et nacelle equipee d'au moins un inverseur
FR3076864A1 (fr) 2018-01-16 2019-07-19 Safran Nacelles Inverseur de poussee optimise pour ensemble propulsif d’aeronef
FR3087848A1 (fr) * 2018-10-30 2020-05-01 Safran Nacelles Inverseur de poussee comprenant une membrane souple de deviation d'air

Also Published As

Publication number Publication date
FR3141969A1 (fr) 2024-05-17

Similar Documents

Publication Publication Date Title
EP0898063B1 (fr) Ensemble réducteur de bruit pour turboréacteur d'aéronef
FR3067406B1 (fr) Systeme d'inverseur de poussee presentant des perturbations aerodynamiques limitees
CA2810204A1 (fr) Inverseur de poussee
EP2344385B1 (fr) Nacelle pour turboreacteur a capot amont translatable
FR3068081A1 (fr) Systeme d'inverseur de poussee presentant des perturbations aerodynamiques limitees
FR3087848A1 (fr) Inverseur de poussee comprenant une membrane souple de deviation d'air
WO1999015771A1 (fr) Inverseur de poussee de turboreacteur a coquilles internes
EP2737193B1 (fr) Ensemble propulsif d'aéronef
EP0174255B1 (fr) Structure d'anneau et dispositif de décharge de compresseur comportant cet anneau
WO2024105332A1 (fr) Inverseur de poussee comprenant une membrane d'obturation equipee d'un joint d'etancheite
WO2020229232A1 (fr) Porte pour inverseur de poussee d'ensemble propulsif d'aeronef, comportant un deflecteur souple
EP4085189A1 (fr) Inverseur de poussée à portes comprenant au moins un déflecteur escamotable pour obturer une ouverture latérale
WO2023131761A1 (fr) Inverseur de poussee comprenant des grilles fixes et une membrane d'obturation
WO2023131762A1 (fr) Inverseur de poussee comprenant des grilles mobiles et une membrane d'obturation
WO2024069110A1 (fr) Inverseur de poussee comprenant un systeme ameliore de deplacement de la structure mobile vers sa position reculee d'inversion de poussee
WO2024062174A1 (fr) Inverseur de poussee comprenant des moyens facilitant le montage d'une membrane d'obturation de la veine secondaire
WO2024069111A1 (fr) Inverseur de poussee comprenant un systeme ameliore de deplacement de la structure mobile vers sa position reculee d'inversion de poussee
WO2023222972A1 (fr) Inverseur de poussee comprenant une membrane d'obturation a deploiement simplifie
WO2024126934A1 (fr) Inverseur de poussee comprenant un systeme ameliore de deploiement d'une membrane d'obturation de la veine secondaire
WO2023148449A1 (fr) Ensemble propulsif pour aeronef comprenant un inverseur de poussee a grilles mobiles et a actionneur monte de maniere optimisee
WO2023247883A1 (fr) Inverseur de poussee comprenant au moins une membrane deployable de deviation
EP4341545A1 (fr) Inverseur de poussee a grilles mobiles, comprenant une structure arriere de support de grilles integrant une fonction acoustique
WO2024069109A1 (fr) Inverseur de poussee comprenant un systeme ameliore de deplacement de la structure mobile vers sa position reculee d'inversion de poussee
EP4323631A1 (fr) Inverseur de poussee a grilles mobiles comprenant une structure fixe plurifonctionnelle
FR3127479A1 (fr) Nacelle pour ensemble propulsif d’aéronef, comprenant un inverseur de poussée à grilles mobiles, et de préférence au moins un capot de soufflante pivotant