WO2024104252A1 - 基于能量调频和负荷需求的共享储能调度方法及系统 - Google Patents

基于能量调频和负荷需求的共享储能调度方法及系统 Download PDF

Info

Publication number
WO2024104252A1
WO2024104252A1 PCT/CN2023/130847 CN2023130847W WO2024104252A1 WO 2024104252 A1 WO2024104252 A1 WO 2024104252A1 CN 2023130847 W CN2023130847 W CN 2023130847W WO 2024104252 A1 WO2024104252 A1 WO 2024104252A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage system
shared
shared energy
capacity device
Prior art date
Application number
PCT/CN2023/130847
Other languages
English (en)
French (fr)
Inventor
索克兰
李鹏
程林
张孜毅
郭永水
刘淑军
周旭艳
Original Assignee
中国长江三峡集团有限公司
中国三峡新能源(集团)股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国长江三峡集团有限公司, 中国三峡新能源(集团)股份有限公司, 清华大学 filed Critical 中国长江三峡集团有限公司
Priority to EP23817937.8A priority Critical patent/EP4398438A1/en
Priority to US18/391,374 priority patent/US20240170987A1/en
Publication of WO2024104252A1 publication Critical patent/WO2024104252A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to the field of energy storage technology, and in particular to a shared energy storage scheduling method and system based on energy frequency modulation and load demand.
  • the objective function of establishing the shared energy storage system to participate in the coordinated scheduling of energy frequency regulation and load demand includes:
  • the intraday cost function of leasing shared energy storage on the user side and purchasing electricity from the grid side, wherein the intraday cost function aims to minimize the intraday cost for the user.
  • the intraday profit objective function of the shared energy storage system participating in energy frequency regulation and energy coordinated scheduling of load demand is expressed as:
  • S efl is the daily income of the shared energy storage system participating in the grid energy frequency regulation and user-side energy optimization scheduling.
  • is the load shedding cost of user i in period t and are the charging power and discharging power of the shared energy storage system participating in grid-side energy arbitrage in period t, and are the upper reserve power and lower reserve power of the shared energy storage system participating in grid frequency regulation in period t, and are the charging power and discharging power of the shared energy storage system participating in the energy optimization scheduling of user i in time period t
  • T efl is the total number of daily scheduling periods in which the shared energy storage system participates in the energy frequency regulation on the grid side and the energy optimization scheduling on the user side
  • T ls is the total load shedding hours in a year
  • Z is the total number of users
  • is the power system electricity price and They are the unit price of the auxiliary service of upward frequency regulation and the unit price of the auxiliary service of downward frequency regulation when the shared energy storage system participates in the grid frequency regulation. It is the service
  • the intraday cost function of the user-side leasing shared energy storage and purchasing electricity from the grid is: Expressed as:
  • the objective function constraints include:
  • the third constraint condition is used to constrain the frequency regulation capacity declaration of the shared energy storage system.
  • the shared energy storage system includes a first energy storage capacity device and a second energy storage capacity device with the same capacity, wherein the first energy storage capacity device is initially in a charging state and the second energy storage capacity device is initially in a discharging state; and the switching condition includes:
  • the first energy storage capacity device and the second energy storage capacity device When the charge states of the first energy storage capacity device and the second energy storage capacity device simultaneously reach a minimum threshold or simultaneously reach a maximum threshold, the first energy storage capacity device and the second energy storage capacity device are forced to stop working.
  • the method further comprises:
  • loads are classified into different levels according to their importance. Users with low importance levels are given priority in load shedding, where the load importance of each user is obtained by solving the load importance evaluation index through the order relationship method of group evaluation.
  • a second aspect of an embodiment of the present invention discloses a shared energy storage scheduling system based on energy frequency modulation and load demand, the system comprising:
  • a hierarchical control strategy for shared energy storage is adopted to realize real-time dynamic charging and discharging switching of the shared energy storage system.
  • the number of switching times of charging and discharging of the shared energy storage system is reduced, the service life of the shared energy storage system is increased, and the safety of the shared energy storage system is ensured.
  • FIG1 is a flow chart of steps of a shared energy storage scheduling method based on energy frequency modulation and load demand provided by an embodiment of the present invention
  • FIG. 2 is an application flow chart of a shared energy storage scheduling method based on energy frequency modulation and load demand provided by an embodiment of the present invention
  • FIG3 is a schematic diagram of the structure of a shared energy storage scheduling system based on energy frequency modulation and load demand provided in an embodiment of the present invention.
  • FIG1 is a flow chart of steps of a shared energy storage scheduling method based on energy frequency modulation and load demand provided by an embodiment of the present invention, including steps S101 to S104:
  • Step S101 Establish an objective function for the shared energy storage system to participate in the coordinated scheduling of energy frequency regulation and load demand.
  • a shared energy storage system refers to a battery energy storage system with charging and discharging functions.
  • the shared energy storage system participates in the coordinated optimization scheduling of energy on the grid side and the user side at the same time. Specifically, it participates in the up and down frequency regulation on the grid side, that is, when the actual output frequency of the power on the grid side is higher or lower than the specified frequency, the frequency of the power output on the grid side is stabilized within the specified range by charging or discharging the shared energy storage system; it participates in energy arbitrage on the grid side, that is, according to the changes in electricity prices, during the period when the electricity prices are high Discharging through a shared energy storage system for use by the load side, charging the shared energy storage system during periods of low electricity prices, for use in periods of high electricity prices for discharge for use by the load side, and for use in frequency regulation services through discharge to increase frequency; participating in user-side energy optimization scheduling, that is, leasing a shared energy storage system to store electricity when the user's own renewable energy output is higher than the load demand, and leasing
  • an objective function for the shared energy storage system to participate in the coordinated scheduling of energy frequency regulation and load demand is established, and a specific shared energy storage scheduling scheme is solved based on the objective function.
  • the objective function of establishing the shared energy storage system to participate in the coordinated scheduling of energy frequency regulation and load demand includes steps A1 to A2:
  • Step A1 Determine the intraday profit objective function of the shared energy storage system participating in energy frequency regulation and energy coordinated scheduling of load demand, wherein the intraday profit objective function aims to maximize the intraday profit of the shared energy storage system.
  • an intraday profit objective function of the shared energy storage system participating in energy frequency regulation and energy coordinated scheduling of load demand is established.
  • the intraday profit objective function of the shared energy storage system participating in energy frequency regulation and energy coordinated scheduling of load demand includes: the profit obtained by the shared energy storage system from participating in grid frequency regulation, the profit obtained by the shared energy storage system from participating in grid energy arbitrage, the profit of the shared energy storage system from participating in energy optimization and scheduling on the user side, and the cost of shedding loads with low importance levels when the overall system is short of power.
  • the intraday profit objective function of the shared energy storage system participating in energy frequency regulation and energy coordinated scheduling of load demand is expressed as:
  • S efl is the daily income of the shared energy storage system participating in the grid energy frequency regulation and user-side energy optimization scheduling. is the load shedding cost of user i in period t, and are the charging power and discharging power of the shared energy storage system participating in grid-side energy arbitrage in period t, and Share The energy storage system participates in the upper and lower reserve power of the grid frequency regulation in time period t.
  • T efl is the total number of daily scheduling periods in which the shared energy storage system participates in the energy frequency regulation on the grid side and the energy optimization scheduling on the user side
  • T ls is the total load shedding hours in a year
  • Z is the total number of users
  • They are the unit price of the auxiliary service of upward frequency regulation and the unit price of the auxiliary service of downward frequency regulation when the shared energy storage system participates in the grid frequency regulation. It is the service unit price of the shared energy storage system participating in the user-side energy optimization scheduling at time t.
  • Step A2 Determine the intraday cost function of leasing shared energy storage on the user side and purchasing electricity from the grid side, wherein the intraday cost function aims to minimize the intraday cost for the user.
  • user i can rent a shared energy storage system to store electricity when the output of its own renewable energy is higher than the load demand, and rent a shared energy storage system to release electricity when the load is higher than the output of renewable energy.
  • user i also considers the fluctuation of electricity prices. If the cost of renting a shared energy storage system is higher than the cost of purchasing electricity from the superior power grid, user i should purchase electricity from the superior power grid during this period. Therefore, in order for users to rent a shared energy storage system to participate in energy optimization scheduling, the user side must also meet the lowest cost when performing energy collaborative scheduling.
  • the user's costs include: the cost of purchasing electricity from the superior power grid and the cost of renting a shared energy storage system to participate in energy optimization scheduling.
  • the intraday cost function of leasing shared energy storage on the user side and purchasing electricity from the grid side is expressed as:
  • an objective function for the shared energy storage system to participate in the coordinated scheduling of energy frequency regulation and load demand is established, and in subsequent steps, a specific shared energy storage scheduling plan is obtained based on the solution of the objective function.
  • Step S102 inputting relevant parameters of the grid side, the user side and the shared energy storage system into the objective function.
  • the relevant parameters on the grid side include: grid side power fluctuation data (grid side).
  • the relevant parameters on the user side include: the power demand data of each user's load, the output power data of new energy, and the relevant parameters of the shared energy storage system include: the charging and discharging efficiency of the shared energy storage system, the upper and lower limits of the state of charge, and other related parameters.
  • the power fluctuation data on the grid side refers to the actual output power data on the grid side during the day
  • the user load demand power data refers to the user's load demand power data during the day.
  • the power fluctuation data on the grid side and the user load power data are coupled to obtain the final power change data, and then the shared energy storage system is configured according to the final power change.
  • Step S103 solving the objective function according to the objective function constraints and the switching cost of the load importance in combination with a mixed integer linear programming algorithm to obtain a shared energy storage configuration solution based on energy frequency regulation and load demand.
  • the switching cost of load importance refers to the cost incurred by the shared energy storage system shedding loads with lower load importance levels in the event of a power outage.
  • the cost of load shedding needs to be taken into account to obtain a more accurate shared energy storage configuration plan.
  • the nonlinear constraints in the objective function constraints are converted into a mixed integer linear programming problem, and the objective function is solved.
  • the shared energy storage configuration plan is solved while satisfying the goals of maximizing the daily revenue of the shared energy storage system and minimizing the daily cost of the user.
  • the shared energy storage configuration scheme includes: the rated power and rated capacity of the shared energy storage system, the benefits of each part of the shared energy storage system (i.e., the benefits obtained from grid frequency regulation, the benefits obtained from the shared energy storage system participating in grid-side energy arbitrage, and the benefits obtained from the shared energy storage system participating in user-side energy optimization scheduling), the charging and discharging time period of the battery energy storage system (i.e., the time period for participating in grid-side up and down frequency regulation, the charging and discharging time period for participating in grid energy arbitrage, and the charging and discharging time period for participating in user-side energy optimization scheduling), the service unit price and user cost of users leasing shared energy storage for energy optimization scheduling, and the cost incurred by the shared energy storage system for shedding loads with lower load importance levels when the overall system is short of power.
  • the benefits of each part of the shared energy storage system i.e., the benefits obtained from grid frequency regulation, the benefits obtained from the shared energy storage system participating in grid-side energy arbitrage, and the benefits obtained from the shared
  • the objective function constraint condition includes: a first constraint condition, a second constraint condition and a third constraint condition.
  • the first constraint condition is used to control the charging and discharging function of the shared energy storage system.
  • the power balance between the power grid side and the user side is constrained and the rated power of the shared energy storage system is calculated.
  • the first constraint condition can be expressed as:
  • ⁇ up,t and ⁇ down,t are the energy coefficients of up-frequency regulation and down-frequency regulation on the grid side
  • ⁇ c,t and ⁇ d,t are the charging state and discharging state of the shared energy storage system, respectively.
  • the second constraint condition is used to constrain the state of charge of the shared energy storage system and calculate the rated capacity.
  • the second constraint condition can be expressed as:
  • SOC t is the state of charge of the shared energy storage system in time period t
  • SOC 0 and are the initial state of charge of the shared energy storage system and the state of charge of the next scheduling cycle, respectively
  • is the frequency modulation time set of the grid-side frequency modulation in the scheduling period t
  • They are respectively the up frequency regulation signal and the down frequency regulation signal of the power grid in the power grid side frequency regulation market at time ⁇ in period t.
  • the third constraint condition is used to control the frequency regulation capacity of the shared energy storage system.
  • the third constraint condition can be expressed as:
  • the relationship between the up and down frequency regulation power of the shared energy storage system and the charging and discharging power of the grid energy arbitrage hours is restricted, that is, the frequent power fluctuations are converted to 1 hour.
  • a shared energy storage configuration plan is solved by combining a mixed integer linear programming algorithm.
  • Step S104 configuring the shared energy storage system according to the shared energy storage configuration scheme, and controlling the shared energy storage system to participate in energy coordinated scheduling on the grid side and the user side according to the shared energy storage system hierarchical control strategy.
  • configuring the shared energy storage system according to the shared energy storage configuration scheme refers to configuring the rated power and rated capacity of the shared energy storage system according to the rated power and rated capacity.
  • Controlling the shared energy storage system to participate in the energy coordinated scheduling on the grid side and the power supply side refers to calling the shared energy storage system to charge and discharge in the corresponding time period according to the time period when the battery energy storage system participates in the up and down frequency regulation on the grid side, the charging and discharging time period when it participates in the energy arbitrage on the grid, and the charging and discharging time period when it participates in the energy optimization scheduling on the user side. Specifically, calling the shared energy storage system to charge and discharge in the corresponding time period according to the hierarchical control strategy of the shared energy storage system.
  • the shared energy storage system is configured using the shared energy storage configuration scheme, and the hierarchical control strategy is used to control the shared energy storage system to participate in the energy coordination of the grid side and the user side at the same time.
  • the shared energy storage system can be optimized in multiple scenarios, which reflects the application value of the shared energy storage system and improves the utilization efficiency of the shared energy storage system.
  • the adoption of the shared energy storage hierarchical control strategy due to the adoption of the shared energy storage hierarchical control strategy, the number of switching times of the shared energy storage system's charge and discharge is reduced, the service life of the shared energy storage system is increased, and the safety of the shared energy storage system is ensured.
  • the shared energy storage system includes two first energy storage capacity devices and second energy storage capacity devices with the same capacity, wherein the first energy storage capacity device is initially in a charging state, and the second energy storage capacity device is initially in a discharging state;
  • the shared energy storage system hierarchical control strategy is a strategy for dynamically switching the states of the first energy storage capacity device and the second energy storage capacity device in real time according to the switching conditions of the first energy storage capacity device and the second energy storage capacity device.
  • the rated capacity of the shared energy storage system is divided into two energy storage capacity devices with the same capacity, namely, the first energy storage capacity device and the second energy storage capacity device, and both the first energy storage capacity device and the second energy storage capacity device have the function of charging and discharging.
  • the initial state of the first energy storage capacity device is charging, which means that the initial charge state of the first energy storage capacity device is the smallest (initial power is the smallest), and the first energy storage capacity device is called for charging at the beginning, that is, when the grid side needs to adjust the frequency downward, when the electricity price is low, the power needs to be stored, and when the user's new energy output power is greater than the load demand, the shared energy storage system needs to be rented for energy storage, the first energy storage capacity device in the charging state is called for charging.
  • the initial state of the second energy storage capacity device is discharging, which means that the initial charge state of the second energy storage capacity device is the largest (initial power is the largest), and the second energy storage capacity device is called for discharging at the beginning, that is, when the grid side needs to adjust the frequency upward, when the electricity price is high, the power needs to be released for use, and when the user's new energy output power is less than the load demand, the shared energy storage system needs to be rented to release power for the user to use, the second energy storage capacity device in the discharging state is called for discharging.
  • the first energy storage capacity device or the second energy storage capacity device is called at the corresponding time point for charging and discharging, thereby avoiding the shared energy storage from participating in the energy coordinated optimization scheduling on the grid side and the user side in the state of infrequent switching of the shared energy storage charging and discharging.
  • the charging power of the first energy storage capacity device in time period t and the discharging power of the second energy storage capacity device in time period t are expressed as:
  • SOC min and SOC max are the minimum and maximum state of charge values of the shared energy storage system, respectively.
  • the charging and discharging switching conditions of the first energy storage capacity device and the second energy storage capacity device are set according to the state of charge.
  • the switching condition includes:
  • the first energy storage capacity device and the second energy storage capacity device When the charge states of the first energy storage capacity device and the second energy storage capacity device simultaneously reach a minimum threshold or simultaneously reach a maximum threshold, the first energy storage capacity device and the second energy storage capacity device are forced to stop working.
  • the power energy charged by the shared energy storage system is not necessarily the same as the power energy discharged, that is, the power energy charged by the first energy storage capacity device is not necessarily the same as the power energy discharged by the second energy storage capacity device.
  • the state of charge of the second energy storage device may not necessarily reach the maximum, or when the state of charge of the second energy storage device reaches the maximum, the state of charge of the first energy storage device may not necessarily reach the minimum, but as long as the state of charge of one energy storage capacity device reaches the maximum or minimum, energy scheduling cannot continue.
  • the charging and discharging working states of the two energy storage capacity devices must be switched, that is, the first energy storage capacity device in the charging state is switched to the discharging working state, and the second energy storage capacity device in the discharging state is switched to the charging state.
  • the first energy storage capacity device and the second energy storage capacity device when it is detected that the state of charge of the first energy storage capacity device and the second energy storage capacity device reaches the minimum threshold or the maximum threshold at the same time, it means that the shared energy storage system cannot continue to charge or discharge and cannot meet the needs of energy scheduling. Therefore, for the safety of the system, the first energy storage capacity device and the second energy storage capacity device must be forced to stop working.
  • the real-time dynamic switching conditions of the first energy storage capacity device and the second energy storage capacity device can be specifically expressed as follows: 1 When or The first energy storage capacity device and the second energy storage capacity device switch the charging and discharging functions; 2 When the charge state of the energy storage capacity devices reaches the minimum threshold SOC min or the maximum threshold SOC max at the same time, the shared energy storage system is forced to stop working.
  • the charge states of the first energy storage capacity device and the second energy storage capacity device are monitored in real time, and the charge and discharge states of the first energy storage capacity device and the second energy storage capacity device are dynamically switched according to the real-time charge states. This avoids frequent charge and discharge switching of the shared energy storage system during use, while ensuring the safety of the shared energy storage system.
  • the shared energy storage scheduling method based on energy frequency regulation and load demand also includes: in the case of power shortage, the loads are classified into different levels according to their importance, and users with low load importance levels are given priority in load shedding, wherein the load importance of each user is obtained by solving the load importance evaluation index through the ordinal relationship method of group evaluation.
  • the power shortage refers to the situation where the power grid cannot supply power to the user due to a fault, resulting in a power shortage for the user.
  • the shared energy storage system selects high-level users according to the load importance and gives priority to supplying power to high-level users.
  • the load cutting cost function model is:
  • three load importance evaluation indicators are established in this embodiment, and the three load importance evaluation indicators are solved by the order relationship method of group evaluation to obtain the load importance of each user. Specifically, it includes steps B1 to B2:
  • Step B1 Establish importance evaluation indicators.
  • the importance evaluation indicators include: load density, load rate and annual maximum load utilization hours, which are specifically expressed as:
  • Load density d i refers to the load demand on the user side within a day and the total land area in the area where it is located, expressed as:
  • d i is the load density of user i
  • S i is the land area of user i.
  • the load density index is:
  • xd ,i is the load density assessment index of user side i
  • dmax is the highest load density of user side i.
  • Load rate ⁇ i refers to the ratio of the average load to the maximum load of user i during the statistical period, expressed as:
  • ⁇ i is the load rate of user i, is the average load demand of user i during the statistical period, is the maximum load demand of user i during the statistical period.
  • the load factor assessment indicators are:
  • x ⁇ ,i is the load rate assessment index of user side i
  • ⁇ max is the highest load rate among user side i.
  • TIU i Annual maximum load utilization hours refers to the total time that user i consumes electricity in a year.
  • the annual maximum load utilization hour assessment index is:
  • x TIU,i is the assessment index of the annual maximum load utilization hours of the user side i
  • TIU max is the highest annual maximum load utilization hours among the user side i.
  • Step B2 Solve the load importance evaluation index based on the ordinal relationship method of group evaluation.
  • ⁇ k is the matrix of the ranking relationship between the evaluation indicators x d,i ,x ⁇ ,i ,x TIU,i and the relative contribution ratio of adjacent evaluation indicators given by the expert s k ; It represents the ranking relationship between the evaluation indicators given by the expert sk and the ratio of the relative contribution of adjacent evaluation indicators.
  • the ratio of the comprehensive contribution of each evaluation index x d,i ,x ⁇ ,i ,x TIU,i can be determined as r c , and then the weight value of each evaluation index can be used to calculate the ratio of the comprehensive contribution of each evaluation index x d,i ,x ⁇ ,i , x TIU,i and The calculation expression calculates the final weight value of each evaluation index
  • Yi is used to reflect the load importance of user i in a certain area. The larger the value of Yi , the more important the user is, and vice versa. Therefore, if there is a power shortage, the load importance can be divided into grades and levels, and the loads with lower grades and levels are prioritized for load shedding.
  • the shared energy storage system participates in both grid-side energy frequency regulation and user-side energy optimization scheduling, there are many unpredictable safety and reliability issues, such as system failure leading to power shortage on the user side. Therefore, by calculating the load importance evaluation index, it can be determined that when unpredictable problems occur in the system, the shared energy storage system can select users with priority power supply, thereby improving the shared energy storage system.
  • the XIANG energy storage system still provides high utilization value to society in the event of power shortage.
  • the method further includes:
  • a net present value model of the shared energy storage system is established based on the cost model of the shared energy storage system and the intraday profit objective function of the shared energy storage system participating in energy frequency regulation and energy coordinated scheduling of load demand; and the net profit of the shared energy storage system over its entire life cycle is calculated based on the net present value model of the shared energy storage system.
  • the net present value of the shared energy storage system can reflect whether the system is profitable when participating in grid energy frequency regulation and user-side energy optimization scheduling.
  • the specific expression is:
  • Snpv is the net present value of the shared energy storage system
  • Dday is the number of operating days of the shared energy storage system in the ⁇ th year
  • S efl is the intraday income of the shared energy storage system participating in the grid energy frequency regulation and user-side energy optimization scheduling
  • represents the discount rate
  • C inv is the investment and construction cost of the shared energy storage system
  • C o&m is the maintenance cost of the shared energy storage system
  • C rest is the residual value recovery cost of the shared energy storage system.
  • the cost calculation of each part includes:
  • Investment and construction cost C inv the initial construction cost and replacement cost of the shared energy storage system are integrated and calculated, referred to as the investment and construction cost, and is expressed as:
  • Ce and Cp are the unit prices of the rated capacity and rated power cost of the shared energy storage system respectively, K is the number of times the shared energy storage system is replaced, and Tlcc is the total number of years of operation of the shared energy storage project.
  • the maintenance cost mainly ensures the relevant maintenance costs paid for the normal operation of the shared energy storage system, which is expressed as:
  • C p,o&m is the unit price of power maintenance cost of shared energy storage system.
  • ⁇ rest is the recovery value coefficient of the shared energy storage system.
  • the cost model of the shared energy storage system and the daily profit objective function of the shared energy storage system participating in energy frequency regulation and energy coordinated scheduling of load demand i.e., the daily profit of the shared energy storage system
  • the daily profit of the shared energy storage system are combined to calculate the net profit of the shared energy storage system during the entire project operation period.
  • the attenuation function model of the shared energy storage system and the objective function constraints are solved to obtain the capacity attenuation rate of the shared energy storage system, and then the number of replacement times of the shared energy storage system is obtained based on the capacity attenuation rate of the shared energy storage system.
  • the attenuation function model of the shared energy storage system mainly includes two parts: one is the capacity attenuation model of the shared energy storage system caused by the charge and discharge amount; the other is the model of the gradual attenuation of the capacity of the shared energy storage system as the operating time increases. Therefore, the function expression of the capacity attenuation rate of the shared energy storage system is:
  • the shared energy storage system is involved in the coordinated optimization scheduling of the grid side and the user side at the same time.
  • an objective function for the shared energy storage system to participate in the coordinated scheduling of energy frequency regulation and load demand and inputting the relevant parameters of the grid side, the user side and the shared energy storage system into the objective function, the switching cost solution based on the objective function constraints and the load importance is obtained, and the shared energy storage scheduling scheme based on energy frequency regulation and load demand is obtained, and a hierarchical control strategy is used to control the shared energy storage system to participate in the energy coordinated scheduling of the grid side and the user side at the same time, thereby realizing the coordinated optimization of shared energy storage in multiple scenarios.
  • the scheduling reflects the application value of the shared energy storage system and improves the utilization efficiency of the shared energy storage system. Due to the adoption of the shared energy storage hierarchical control strategy, the shared energy storage system can realize real-time dynamic charging and discharging switching, reduce the number of switching times of the shared energy storage system, increase the service life of the shared energy storage system, and ensure the safety of the shared energy storage system. At the same time, by calculating the load importance evaluation index, it can be determined that when unpredictable problems occur in the system, the shared energy storage system can screen out users who have priority in power supply, thereby improving the shared energy storage system in the case of power shortage, and still provide a higher utilization value to the society.
  • Figure 2 is an application flow chart of a shared energy storage scheduling method based on energy frequency modulation and load demand provided by an embodiment of the present invention.
  • the shared energy storage system is simultaneously involved in energy frequency modulation and load demand energy optimization scheduling process as follows:
  • the relevant parameters of the grid side, user side and shared energy storage system that is, input the grid side power fluctuation data (upward frequency modulation signal, downward frequency modulation signal), the service unit price and electricity price participating in the grid side frequency modulation, input the load demand of each user, the output power of new energy and the relevant parameters required for the importance of the load, etc.
  • the shared energy storage system it is necessary to input the battery charging and discharging efficiency, the upper and lower limits of the state of charge, the price of shared energy storage auxiliary services, the battery cost and parameters related to capacity attenuation, etc.
  • an objective function for the shared energy storage system to participate in the coordinated dispatching of energy frequency regulation and load demand is established (including: the intraday benefit objective function of the shared energy storage system participating in the energy coordinated dispatching of energy frequency regulation and load demand, and the intraday cost function of leasing shared energy storage on the user side and purchasing electricity from the grid side).
  • the intraday benefit objective function of the shared energy storage system participating in the energy coordinated dispatching of energy frequency regulation and load demand aims to maximize the intraday benefit of the shared energy storage system
  • the objective function includes the benefits obtained by the shared energy storage system from participating in grid frequency regulation, the benefits obtained by the shared energy storage system from participating in grid energy arbitrage, the shared energy storage system from participating in energy optimization dispatching on the user side, and the cost incurred by the shared energy storage system shedding the load with a lower level of importance when the overall system is short of power
  • the intraday cost function of leasing shared energy storage on the user side and purchasing electricity from the grid side aims to minimize the intraday cost of the user.
  • the shared energy storage system is divided into two energy storage capacity devices with the same capacity, namely energy storage capacity device A and energy storage capacity device B.
  • Energy storage capacity device A is for charging
  • energy storage capacity device B is for discharging
  • the conditions for switching the functions of energy storage capacity device A and energy storage capacity device B are set.
  • the comprehensive evaluation value of load importance is calculated to screen out the loads with low comprehensive evaluation value for load shedding.
  • the load shedding cost function is established to calculate the load shedding cost of the shared energy storage system.
  • the net income of the shared energy storage system during the entire project operation period is calculated in combination with the cost model of the shared energy storage system.
  • Figure 3 is a structural schematic diagram of a shared energy storage scheduling system based on energy frequency modulation and load demand provided by an embodiment of the present invention. As shown in Figure 3, the system includes:
  • Establishing module 31 for establishing an objective function of the shared energy storage system participating in the coordinated scheduling of energy frequency regulation and load demand;
  • An input module 32 used to input relevant parameters of the grid side regulation, the user side and the shared energy storage system into the objective function
  • a solution module 33 is used to solve the objective function according to the objective function constraint conditions and the switching cost of the load importance, in combination with a mixed integer linear programming algorithm, to obtain a shared energy storage configuration solution based on energy frequency regulation and load demand;
  • the scheduling module 34 is used to configure the shared energy storage system according to the shared energy storage configuration plan, and control the shared energy storage system to participate in the energy coordinated scheduling on the grid side and the user side according to the shared energy storage system hierarchical control strategy.
  • the establishing module includes:
  • the first module establishment submodule is used to determine the intraday profit objective function of the shared energy storage system participating in the energy frequency regulation and the energy coordinated dispatch of the load demand, wherein the intraday profit objective function aims to maximize the intraday profit of the shared energy storage system;
  • the second module submodule is used to determine the intraday cost function of leasing shared energy storage on the user side and purchasing electricity from the grid side, wherein the intraday cost function aims to minimize the user's intraday cost.
  • the solution module includes:
  • the first constraint condition submodule is used to determine the first constraint condition.
  • the first constraint condition is used Constraining the charging and discharging power of the shared energy storage system, the power balance between the grid side and the user side, and calculating the rated power of the shared energy storage system;
  • a second constraint condition submodule used to determine a second constraint condition, wherein the second constraint condition is used to constrain the state of charge of the shared energy storage system and calculate the rated capacity;
  • the third constraint condition submodule is used to determine the third constraint condition, and the third constraint condition is used to constrain the frequency regulation capacity declaration of the shared energy storage system.
  • the shared energy storage system includes two first energy storage capacity devices and second energy storage capacity devices with the same capacity, wherein the first energy storage capacity device is initially in a charging state and the second energy storage capacity device is initially in a discharging state; the scheduling module further includes:
  • a first switching module configured to switch the charge and discharge states of the first energy storage capacity device and the second energy storage capacity device when the charge state of the first energy storage capacity device meets a maximum threshold and/or the charge state of the second energy storage capacity device meets a minimum threshold;
  • the second switching module is used to force the first energy storage capacity device and the second energy storage capacity device to stop working when the charge states of the first energy storage capacity device and the second energy storage capacity device simultaneously reach a minimum threshold or simultaneously reach a maximum threshold.
  • system further includes:
  • the load shedding module is used to classify the loads according to their importance levels in the case of power shortage, and give priority to shedding the loads of users with low load importance levels.
  • the load importance of each user is obtained by solving the load importance evaluation index through the ordinal relationship method of group evaluation.
  • system further includes:
  • a net present value model establishment module used to establish a net present value model of the shared energy storage system according to the cost model of the shared energy storage system and the intraday profit objective function of the shared energy storage system participating in energy frequency regulation and energy coordinated scheduling of load demand;
  • the net present value calculation module is used to calculate the net income of the shared energy storage system over its entire life cycle according to the net present value model of the shared energy storage system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供了一种基于能量调频和负荷需求的共享储能调度方法及系统,所述方法包括:建立共享储能系统参与能量调频和负荷需求的协同调度的目标函数;将电网侧、用户侧以及共享储能系统的相关参数输入到所述目标函数;根据目标函数约束条件和负荷重要程度的切换成本,结合混合整数线性规划算法求解所述目标函数,得到共享储能配置方案;根据共享储能配置方案对共享储能系统进行配置,并根据共享储能系统分级控制策略控制所述共享储能系统参与电网侧和用户侧的能量协同调度。本发明将共享储能系统同时参与电网侧和用户侧的协同优化调度,通过分级控制策略来提高共享储能系统的使用寿命,体现了共享储能系统的应用价值和提高了共享储能系统利用效率。

Description

基于能量调频和负荷需求的共享储能调度方法及系统
本申请要求于2022年11月16日提交中国专利局、申请号为202211432485.2、申请名称为“基于能量调频和负荷需求的共享储能调度方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及储能技术领域,特别涉及一种基于能量调频和负荷需求的共享储能调度方法及系统。
背景技术
随着“双碳”战略目标的推进,高比例可再生能源装机容量持续上升,可再生能源具有随机性、波动性以及间歇性等特征,给电力系统频率稳定以及能源高效利用带来许多巨大的挑战。同时,在“双碳”战略目标研究热度持续上升的背景下,电池储能系统大规模发展,而多数电池储能系统闲置的时间比较长,导致其利用效率低、经济性差。
为了提高电池储能系统的利用效率,提出了共享储能系统,针对共享储能系统参与电网侧调频、用户侧能量优化调度成为国内外研究的热点,但是大多数研究未挖掘共享储能系统同时参与电网侧和用户侧的协同优化,导致整体系统未能充分利用已有的可再生能源资源。此外,电网侧和用户侧之间进行协同优化调度会导致共享储能系统充放电状态频繁切换,引起共享储能系统的额定容量快速下降,进而存在不可预测的安全问题。
因此,挖掘共享储能系统同时参与多场景(电网侧、用户侧)的协同优化是提高共享储能系统应用价值和提高储能系统效率的关键。
发明内容
鉴于上述问题,本发明实施例提供了一种基于能量调频和负荷需求的共享储能调度方法及系统,以便克服上述问题或者至少部分地解决上述问题。
本发明实施例的第一方面,公开了一种基于能量调频和负荷需求的共享储能调度方法,所述方法包括:
建立共享储能系统参与能量调频和负荷需求的协同调度的目标函数;
将电网侧、用户侧以及共享储能系统的相关参数输入到所述目标函数;
根据目标函数约束条件和负荷重要程度的切换成本,结合混合整数线性规划算法求解所述目标函数,得到基于能量调频和负荷需求的共享储能配置方案;
根据所述共享储能配置方案对共享储能系统进行配置,并根据共享储能系统分级控制策略控制所述共享储能系统参与电网侧和用户侧的能量协同调度。
可选地,所述建立共享储能系统参与能量调频和负荷需求的协同调度的目标函数,包括:
确定共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数,所述日内收益目标函数以共享储能系统日内收益最大为目标;
确定用户侧租赁共享储能和从电网侧购买电量的日内成本函数,所述日内成本函数以用户日内成本最低为目标。
可选地,所述共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数表示为:
其中,Sefl为共享储能系统参与电网能量调频、用户侧能量优化调度的日内收益,为用户i在时段t内的切负荷成本,分别为共享储能系统在时段t参与电网侧能量套利的充电功率和放电功率,分别为共享储能系统在时段t参与电网调频的上备用功率和下备用功率,分别为共享储能系统在时段t参与用户i能量优化调度的充电功率和放电功率,Tefl为共享储能系统参与电网侧能量调频、参与用户侧能量优化调度的日内调度时段总数,Tls为一年内切负荷总利用小时,Z为用户总数,为电力系统电力电价,分别为共享储能系统参与电网调频的上调频辅助服务单价和下调频辅助服务单价,为共享储能系统在t时刻参与用户侧能量优化调度的服务单价。
可选地,所述用户侧租赁共享储能和从电网侧购买电量的日内成本函数 表示为:
其中,为用户i的日内电成本,Pg,t为用户i从电网侧购买功率,为电力系统电力电价,Z为用户总数。
可选地,所述目标函数约束条件包括:
第一约束条件,所述第一约束条件用于对所述共享储能系统的充放电功率、电网侧和用户侧之间的功率平衡进行约束与所述共享储能系统的额定功率计算;
第二约束条件,所述第二约束条件用于对所述共享储能系统的荷电状态进行约束与额定容量计算;
第三约束条件,所述第三约束条件用于对所述共享储能系统的调频容量申报进行约束。
可选地,所述共享储能系统包括两个容量相同的第一储能容量装置和第二储能容量装置,其中,所述第一储能容量装置初始状态为充电,所述第二储能容量装置初始状态为放电;
所述共享储能系统分级控制策略为:根据所述第一储能容量装置和第二储能容量装置的切换条件,对所述第一储能容量装置和第二储能容量装置的状态进行实时动态切换的策略。
可选地,所述共享储能系统包括两个容量相同的第一储能容量装置和第二储能容量装置,其中,所述第一储能容量装置初始状态为充电,所述第二储能容量装置初始状态为放电;所述切换条件包括:
当所述第一储能容量装置的荷电状态满足最大阈值,和/或所述第二储能容量装置的荷电状态满足最小阈值时,对所述第一储能容量装置和所述第二储能容量装置进行充放电状态进行切换;
当所述第一储能容量装置和所述第二储能容量装置的荷电状态同时达到最小阈值或同时达到最大阈值时,所述第一储能容量装置和所述第二储能容量装置强制停止工作。
可选地,所述方法还包括:
在缺电的情况下,按照负荷重要程度的高低等级进行分档分级,将负荷 重要程度等级低的用户优先进行切负荷,其中,每个用户的负荷重要程度是通过群体评价的序关系法,对负荷重要程度评价指标进行求解得到的。
可选地,所述方法还包括:
根据所述共享储能系统的成本模型、所述共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数,建立共享储能系统的净现值模型;
根据所述共享储能系统的净现值模型计算所述共享储能系统在全生命周期内的净收益。
本发明实施例的第二方面,公开了一种基于能量调频和负荷需求的共享储能调度系统,所述系统包括:
建立模块,用于建立共享储能系统参与能量调频和负荷需求的协同调度的目标函数;
输入模块,用于将电网侧调、用户侧以及共享储能系统的相关参数输入到所述目标函数;
求解模块,用于根据目标函数约束条件和负荷重要程度的切换成本,结合混合整数线性规划算法求解所述目标函数,得到基于能量调频和负荷需求的共享储能配置方案;
调度模块,用于根据所述共享储能配置方案对共享储能系统进行配置,并根据共享储能系统分级控制策略控制所述共享储能系统参与电网侧和用户侧的能量协同调度。
本发明实施例包括以下优点:
在本发明实施例中,将共享储能系统同时参与电网侧和用户侧的协同优化调度,通过构建共享储能系统参与能量调频和负荷需求的协同调度的目标函数,根据目标函数约束条件和负荷重要程度的切换成本求解得到基于能量调频和负荷需求的共享储能配置方案,并利用分级控制策略来控制共享储能系统同时参与电网侧和用户侧的能量协同调度,进而实现了共享储能在多场景的协同优化调度,体现了共享储能系统的应用价值和提高了共享储能系统利用效率;由于考虑了根据负荷重要程度进行调度,更加符合实际工程的需求,采用共享储能分级控制策略,实现共享储能系统实时动态充放电切换, 减少了共享储能系统充放电的切换次数,提高了共享储能系统的使用寿命,保证了共享储能系统的安全性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种基于能量调频和负荷需求的共享储能调度方法步骤流程图;
图2是本发明实施例提供的一种基于能量调频和负荷需求的共享储能调度方法应用流程图;
图3是本发明实施例提供的一种基于能量调频和负荷需求的共享储能调度系统的结构示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明实施例提供了一种基于能量调频和负荷需求的共享储能调度方法,如图1所示,图1为本发明实施例提供的一种基于能量调频和负荷需求的共享储能调度方法步骤流程图,包括步骤S101至步骤S104:
步骤S101:建立共享储能系统参与能量调频和负荷需求的协同调度的目标函数。
共享储能系统是指具有充电和放电功能的电池储能系统,该共享储能系统同时参与电网侧的和用户侧的能量协同优化调度,具体地,参与电网侧上下调频,即当电网侧实际的输出电能的频率高于或低于规定的频率时,通过共享储能系统充电或放电的方式使电网侧输出的电能的频率稳定在规定的范围;参与电网侧能量套利,即根据电力电价的变化,在电力电价高的时间段 通过共享储能系统放电以供负荷端使用,在电力电价低的时间段通过对共享储能系统充电,以用于在电力电价高的时间段放电以供负荷端使用,以及用于在调频服务中通过放电实现频率上调;参与用户侧能量优化调度,即当用户侧自身新能源输出电量高于负荷需求时租赁共享储能系统存储电能,在负荷高于新能源输出电量时租赁共享储能系统释放电能。
在本实施例中,为了准确配置共享储能系统满足能量调度需求的额定功率和额定容量,同时实现共享储能系统经济效益最大化,通过建立共享储能系统参与能量调频和负荷需求的协同调度的目标函数,基于该目标函数求解具体的共享储能调度方案。
在一种可选的实施例中,所述建立共享储能系统参与能量调频和负荷需求的协同调度的目标函数,包括步骤A1至步骤A2:
步骤A1:确定共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数,所述日内收益目标函数以共享储能系统日内收益最大为目标。
根据参与电网侧上下调频辅助服务单价、电力系统电力电价、参与用户侧参侧能量优化调度服务单价、以及根据负荷重要程度进行切负荷的成本,建立共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数,共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数中包括:共享储能系统参与电网调频获得的收益、共享储能系统参与电网能量套利获得的收益、共享储能系统参与用户侧能量优化调度收益、以及整体系统缺电的情况下将负荷重要程度级别低者进行切负荷产生的成本。
示例地,所述共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数表示为:
其中,Sefl为共享储能系统参与电网能量调频、用户侧能量优化调度的日内收益,为用户i在时段t内的切负荷成本,分别为共享储能系统在时段t参与电网侧能量套利的充电功率和放电功率,分别为共享 储能系统在时段t参与电网调频的上备用功率和下备用功率,分别为共享储能系统在时段t参与用户i能量优化调度的充电功率和放电功率,Tefl为共享储能系统参与电网侧能量调频、参与用户侧能量优化调度的日内调度时段总数,Tls为一年内切负荷总利用小时,Z为用户总数,为电力系统电力电价,分别为共享储能系统参与电网调频的上调频辅助服务单价和下调频辅助服务单价,为共享储能系统在t时刻参与用户侧能量优化调度的服务单价。
步骤A2:确定用户侧租赁共享储能和从电网侧购买电量的日内成本函数,所述日内成本函数以用户日内成本最低为目标。
在实际的应用场景中,用户i可在自身新能源输出电量高于负荷需求时租赁共享储能系统存储电能,在负荷高于新能源输出电量时租赁共享储能系统释放电能。此外,考虑租赁共享储能系统来存储或者释放电能的同时,用户侧i也考虑电力电价的波动,若租赁共享储能系统带来的成本高于从上级电网购电成本,该时段用户i应向上级电网购电量。因此,为了使用户租赁共享储能系统参与能量优化调度,在进行能量协同调度时,还需要满足用户侧的成本最低。用户的成本包括:向上级电网购电量的成本和租赁共享储能系统参与能量优化调度的成本。
示例地,用户侧租赁共享储能和从电网侧购买电量的日内成本函数表示为:
其中,为用户i的日内电成本,Pg,t为用户i从电网侧购买功率,为电力系统电力电价,Z为用户总数。
在本实施例中,为了准确配置共享储能系统满足能量调度需求的额定功率和额定容量,同时实现共享储能系统经济效益最大化,建立了共享储能系统参与能量调频和负荷需求的协同调度的目标函数,并在后续步骤中基于该目标函数求解得到具体的共享储能调度方案。
步骤S102:将电网侧、用户侧以及共享储能系统的相关参数输入到所述目标函数。
在本实施例中,电网侧的相关参数包括:电网侧功率波动数据(电网侧 上调频信号和下调频信号)、电力电价、参与电网侧调频的服务单价(包括上调频的服务单价和下调频的服务单价)、以及负荷重要程度所需要的相关参数等;用户侧的相关参数包括:各用户负荷需求功率数据、新能源输出功率数据,共享储能系统相关参数包括:共享储能系统充放电效率、荷电状态的上下限值等相关参数。其中,电网侧功率波动数据是指电网侧日内的实际的输出功率数据,用户负荷需求功率数据是指用户日内的负荷需求功率数据,在后续计算过程中,将电网侧功率波动数据和用户负荷功率数据进行耦合,得到最终的功率变化数据,进而根据最终的功率变化来对共享储能系统进行配置。
步骤S103:根据目标函数约束条件和负荷重要程度的切换成本,结合混合整数线性规划算法求解所述目标函数,得到基于能量调频和负荷需求的共享储能配置方案。
在本实施例中,负荷重要程度的切换成本是指在缺电的情况下,共享储能系统将负荷重要程度级别低者进行切负荷产生的成本,在对目标函数进行求解时,需要将切负荷产生的成本考虑进去,进而得到更为准确的共享储能配置方案。在进行求解时将目标函数约束条件中的非线性约束条件转换成混合整数线性规划问题,对目标函数进行求解。具体地,以目标函数约束条件为约束,在满足共享储能系统日内收益最大和用户日内成本最低的目标情况下,求解得到共享储能配置方案。其中,所述共享储能配置方案包括:共享储能系统的额定功率和额定容量,共享储能系统的各部分的收益(即电网调频获得的收益、共享储能系统参与电网侧能量套利获得的收益、共享储能系统参与用户侧能量优化调度收益),电池储能系统充放电时间段(即参与电网侧上下调频的时间段、参与电网能量套利的充放电时间段、参与用户侧能量优化调度的充放电时间段),用户租赁共享储能进行能量优化调度的服务单价和用户成本,以及在整体系统缺电的情况下共享储能系统将负荷重要程度级别低者进行切负荷产生的成本。
在一种可选的实施例中,所述目标函数约束条件包括:第一约束条件、第二约束条件和第三约束条件。
第一约束条件,所述第一约束条件用于对所述共享储能系统的充放电功 率、电网侧和用户侧之间的功率平衡进行约束与所述共享储能系统的额定功率计算。示例地,所述第一约束条件可表示为:
其中,为用户i在时段t的新能源功率输出功率,τup,t和τdown,t分别为电网侧上调频的能量系数和下调频的能量系数,ψc,t和ψd,t分别为共享储能系统充电状态和放电状态,当ψc,t=1表示共享储能系统在时段t处于充电状态,此时ψd,t=0,当ψd,t=1表示共享储能系统在时段t处于放电状态,此时ψc,t=0,分别为共享储能系统在时段t参与用户i能量优化调度的充电功率和放电功率,分别为共享储能系统在时段t参与电网调频的上备用功率和下备用功率。分别为共享储能系统在时段t参与电网侧能量套利的充电功率和放电功率。
第二约束条件,所述第二约束条件用于对所述共享储能系统的荷电状态进行约束与额定容量计算。示例地,所述第二约束条件可表示为:

其中,SOCt为共享储能系统在时段t的荷电状态,SOC0分别为共享储能系统初始荷电状态和下一个调度周期的荷电状态,Ω为电网侧调频在调度时段t内的调频时刻集合,分别为电网侧调频市场在时段t下ε时刻电网上调频信号和下调频信号。
第三约束条件,所述第三约束条件用于对所述共享储能系统的调频容量 申报进行约束。示例地,所述第三约束条件可表示为:


在本实施例中,为了避免共享储能系统参与电网能量调频调度出现频繁充放电情况,将共享储能系统上、下调频功率与电网能量套利小时的充、放电功率的关系进行限制,即将频繁的功率波动折算到1小时,例如,有两个共享储能系统A和B,当1小时内有20个充放电状态不连续的充放电时间段,在这1个小时内,只调用共享储能系统A进行充电,只调用共享储能系统B进行放电,进而就避免了功率频换切换导致共享储能系统充放电状态频繁切换。
在本实施例中,以第一约束条件、第二约束条件和第三约束条件为约束,在满足共享储能系统日内收益最大和用户日内成本最低的目标情况下,结合混合整数线性规划算法求解得到共享储能配置方案。
步骤S104:根据所述共享储能配置方案对共享储能系统进行配置,并根据共享储能系统分级控制策略控制所述共享储能系统参与电网侧和用户侧的能量协同调度。
在本实施例中,根据所述共享储能配置方案对共享储能系统进行配置,是指根据额定功率和额定容量配置共享储能系统的额定功率和额定容量。控制所述共享储能系统参与电网侧和电源侧的能量协同调度,是指根据电池储能系统参与电网侧上下调频的时间段、参与电网能量套利的充放电时间段、参与用户侧能量优化调度的充放电时间段,来调用共享储能系统在相应的时间段进行充放电,具体地,根据共享储能系统分级控制策略来调用共享储能系统在相应的时间段进行充放电。
在本实施例中,利用共享储能配置方案对共享储能系统进行配置,并利用分级控制策略来控制共享储能系统同时参与电网侧和用户侧的能量协同调 度,实现了共享储能在多场景的协同优化调度,体现了共享储能系统的应用价值和提高了共享储能系统利用效率。此外,由于采用共享储能分级控制策略,减少了共享储能系统充放电的切换次数,提高了共享储能系统的使用寿命,保证了共享储能系统的安全性。
在一种可选的实施例中,所述共享储能系统包括两个容量相同的第一储能容量装置和第二储能容量装置,其中,所述第一储能容量装置初始状态为充电,所述第二储能容量装置初始状态为放电;
所述共享储能系统分级控制策略为:根据所述第一储能容量装置和第二储能容量装置的切换条件,对所述第一储能容量装置和第二储能容量装置的状态进行实时动态切换的策略。
在本实施例中,为了避免共享储能系统频繁充放电切换以及提高系统的可靠性,将共享储能系统的额定容量分为两个容量相同的储能容量装置,即第一储能容量装置和第二储能容量装置,第一储能容量装置和第二储能容量装置都具有充放电的功能。第一储能容量装置初始状态为充电是指第一储能容量装置的初始荷电状态最小(初始电量最小),在开始时调用第一储能容量装置用于充电,即在电网侧需要向下调频、在电力电价较低时需要将电量存储起来、在用户新能源输出功率大于负荷需求时需要租赁共享储能系统储能的情况下,调用处于充电状态的第一储能容量装置进行充电。第二储能容量装置初始状态为放电是指第二储能容量装置的初始荷电状态最大(初始电量最大),在开始时调用第二储能容量装置用于放电,即在电网侧需要向上调频、在电力电价较高时释放电能以供使用、在用户新能源输出功率小于负荷需求时需要租赁共享储能系统释放电能以供用户使用的情况下,调用处于放电状态的第二储能容量装置进行放电。
在实际应用场景中,根据配置方案中共享储能系统的充放电时间段,在相应的时间点调用第一储能容量装置或第二储能容量装置进行充放电,进而避免了在不频繁切换共享储能充放电的状态下,实现了共享储能参与电网侧的和用户侧的能量协同优化调度。此外,考虑到随着第一储能容量装置和第二储能容量装置(共享储能系统)的调用,第一储能容量装置和第二储能容量装置的荷电状态会变化,当处于充电状态的第一储能容量装置荷电状态达 到最大,此时无法继续对第一储能容量装置进行充电,或者当处于放电状态的第一储能容量装置荷电状态达到最小,此时无法继续对第二储能容量装置进行放电。因此,需要设置相应的切换条件来实现对第一储能容量装置和第二储能容量装置的充放电工作状态动态切换,进而在使用过程中避免了共享储能系统频繁的充放电切换,同时保证了共享储能系统的安全性。
示例地,第一储能容量装置在时段t的充电功率和第二储能容量装置在时段t的放电功率表示为:

其中,分别为第一储能容量装置和第二储能容量装置在时段t的充电功率和放电功率,分别为第一储能容量装置和第二储能容量装置在时段t的荷电状态,SOCmin和SOCmax分别为共享储能系统最低和最高荷电状态值。
当第一储能容量装置的荷电状态得到最大时,则不能继续进行充电,当第二储能容量装置的荷电状态得到最小时,不能继续进行放电。因此根据荷电状态的来设置第一储能容量装置和第二储能容量装置的充放电切换条件。
具体地,所述切换条件包括:
当所述第一储能容量装置的荷电状态满足最大阈值,和/或所述第二储能容量装置的荷电状态满足最小阈值时,对所述第一储能容量装置和所述第二储能容量装置进行充放电状态进行切换;
当所述第一储能容量装置和所述第二储能容量装置的荷电状态同时达到最小阈值或同时达到最大阈值时,所述第一储能容量装置和所述第二储能容量装置强制停止工作。
在本实施例中,由于进行电网侧上下调频的电能、电网套利充放电的电能以及用户租赁共享储能系统进行能量优化调度的充放电能是随机的,因此,共享储能系统充电的电能与放电的电能不一定相同,即第一储能容量装置充电的电能和第二储能容量装置放电的电能不一定相同。当第一储能装置的荷 电状态达到最小时,第二储能装置的荷电状态不一定达到最大,或者当第二储能装置的荷电状态达到最大时,第一储能装置的荷电状态不一定达到达到最小,但只要有一个储能容量装置的荷电状态达到最大或最小,就不能在继续进行能量调度,此时必须对两个储能容量装置的充放电工作状态进行切换,即将处于充电状态的第一储能容量装置切换为放电工作状态,将处于放电状态的第二储能容量装置切换为充电状态。此外,当检测到第一储能容量装置和第二储能容量装置的荷电状态同时达到最小阈值或同时达到最大阈值时,说明共享储能系统不能继续充电或放电,无法满足能量调度的需求,因此为了系统的安全,必须强制第一储能容量装置和第二储能容量装置停止工作。
示例地,第一储能容量装置和第一储能容量装置的实时动态切换条件,具体可表示为:①当或者第一储能容量装置和第一储能容量装置进行充放电功能切换;②当储能容量装置的荷电状态同时达到最低阈值SOCmin或最高阈值SOCmax,此时共享储能系统强制停止工作。
在实际应用场景中,实时的对第一储能容量装置和第二储能容量装置的荷电状态进行监控,根据实时的荷电状态情况,对第一储能容量装置和第二储能容量装置的充放电状态进行动态的切换。进而在使用过程中避免了共享储能系统频繁的充放电切换,同时保证了共享储能系统的安全性。
在一种可选的实施例中,基于能量调频和负荷需求的共享储能调度方法还包括:在缺电的情况下,按照负荷重要程度的高低等级进行分档分级,将负荷重要程度等级低的用户优先进行切负荷,其中,每个用户的负荷重要程度是通过群体评价的序关系法,对负荷重要程度评价指标进行求解得到的。
在本实施例中,缺电的情况是指由于故障问题导致电网侧无法向用户供电,进而使得用户缺电。此时,共享储能系统根据负荷重要程度筛选出等级高的用户,优先为等级高的用户供电。在缺电的情况下,为了优先为等级高的用户供电,即需要将负荷重要程度等级低的用户进行切负荷(切断为等级低的用户供电),进而会产生切负荷成本。示例地,切负荷成本函数模型为:、
其中,为常数,可通过共享储能系统企业与用户i协商确定的 常数,为共享储能系统企业与用户i中断协议的补偿系数,为用户i在时段t的切负荷功率。
为了得到每个用户的负荷重要程度,在本实施例中建立了三个负荷重要程度的评价指标,并通过群体评价的序关系法对三个负荷重要程度评价指标进行求解,进而得到每个用户的负荷重要程度。具体地,包括步骤B1至步骤B2:
步骤B1:建立重要程度评价指标。重要程度评价指标包括:负荷密度、负荷率和年最大负荷利用小时,具体表示为:
(1)负荷密度di是指用户侧一天内的负荷需求与其所在区域的总用地面积,表示为:
其中,di为用户i的负荷密度,Si为用户i用地面积。
负荷密度指标为:
其中,xd,i为用户侧i负荷密度考核指标,dmax为用户侧i中最高的负荷密度。
(2)负荷率φi是指统计期间用户i的平均负荷和最大负荷之比,表示为:
其中,φi为用户i的负荷率,为用户i在统计期间内的平均负荷需求,为用户i在统计期间内的最大负荷需求。
负荷率考核指标为:
其中,xφ,i为用户侧i负荷率考核指标,φmax为用户侧i中最高的负荷率。
(3)年最大负荷利用小时TIUi指用户i一年内用电量总时间。
年最大负荷利用小时考核指标为:
其中,xTIU,i为用户侧i负荷年最大负荷利用小时考核指标,TIUmax为用户侧i中最高的年最大负荷利用小时。
步骤B2:基于群体评价的序关系法求解负荷重要程度评价指标。
设s1,s2,...,sk专家给各评价指标xd,i,xφ,i,xTIU,i、的序关系为:并且各专家给出相邻评价指标之间的贡献度之比为因此可通过序关系法求各评价指标的权重值具体计算为:

(1)从评价指标的排序关系计算各专家的权重值表示为:
其中,为专家sk对各评价指标xd,i,xφ,i,xTIU,i给出的排序值向量;为各评价指标xd,i,xφ,i,xTIU,i的综合排序值向量,且
时,说明各专家对各评价指标排序问题掌握的信息相同,当时,说明各专家对评价指标的排序关系掌握的信息不同,此时越大说明专家sk对各评价指标掌握的信息较多。
(2)从评价指标的权重计算各专家的权重值,表示为:
其中,为专家sk对各评价指标xd,i,xφ,i,xTIU,i按序关系法求出来的权重值向量,为各评价指标xd,i,xφ,i,xTIU,i的综合权重值向量,且
当μk=1时,说明各专家对评价指标权重问题掌握的信息相同,当μk≤1时,说明各专家对评价指标的权重问题掌握的信息不同,此时μk越大说明专家sk对各评价指标权重掌握的信息较全面。
(3)综合各专家的权重值ξk为:
其中,ξk越大说明专家sk对评价指标的综合评价指标掌握信息较全面,ξk越小说明专家sk对评价指标的综合评价指标掌握信息较少。
(4)确定各专家给出各评价指标的贡献度之比矩阵βk

其中,βk为由专家sk给出各评价指标xd,i,xφ,i,xTIU,i之间的排序关系和相邻评价指标相对的贡献程度比值的矩阵;表示由专家sk给出的各评价指标之间的排序关系和相邻评价指标相对的贡献程度的比值。
将βk集结成群判断矩阵β,具体为:

根据alj的计算表达式可确定各评价指标xd,i,xφ,i,xTIU,i的综合贡献度之比为rc,然后再通过上述各评价指标的权重值的计算表达式计算各评价指标最终的权重值
(5)确定负荷重要程度的综合评价值Yi,表示为:
Yi用来反映用户i在某个区域的负荷重要程度,Yi的值越大说明该用户越重要,反之亦然。因此,若出现缺电的情况,可将负荷重要程度分档分级,档位、级别低者优先切负荷。
在本实施例中,由于共享储能系统同时参与电网侧能量调频以及用户侧时能量优化调度时,存在很多不可预测的安全可靠性问题,例如,系统故障导致用户侧缺电等。因此,通过计算负荷重要程度评价指标可确定系统出现不可预测的问题时,共享储能系统可筛选出优先供电的用户,进而提高了共 享储能系统在缺电的情况下,对社会仍提供较高的利用价值。
在一种可选的实施例中,所述方法还包括:
根据所述共享储能系统的成本模型、所述共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数,建立共享储能系统的净现值模型;根据所述共享储能系统的净现值模型计算所述共享储能系统在全生命周期内的净收益。
共享储能系统的净现值可体现该系统参与电网能量调频、用户侧能量优化调度时是否盈利,具体表达式为:
其中,Snpv为共享储能系统净现值,Dday,ι为共享储能系统在第ι年的运行天数,Sefl为共享储能系统参与电网能量调频、用户侧能量优化调度的日内收益,γ表示折现率,Cinv为共享储能系统的投建成本,Co&m为共享储能系统的维护成本,Crest为共享储能系统的残值回收成本。
具体地,各部分的成本计算包括:
(1)投建成本Cinv,共享储能系统的初始构建成本和更换成本整合计算,简称投建成本,表示为:
其中,Ce和Cp分别为共享储能系统额定容量和额定功率成本单价,K为共享储能系统更换次数,Tlcc为共享储能项目运行的总年限。
(2)维护成本Co&m,维护成本主要保障共享储能系统正常运行所支付的相关维护费用,表示为:
其中,Cp,o&m为共享储能系统功率维护成本单价。
(3)残值回收成本Crest,当共享储能系统不具备参与调度的能力时,需进行更换或者报废回收,此时共享储能系统仍存在一定的价值,因此残值回收的成本表示为:
Crest=-βrestCinv
其中,βrest为共享储能系统回收价值系数。
在本实施例中,结合共享储能系统的成本模型和共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数(即共享储能系统的日内收益)计算共享储能系统在整个项目运行期间的净收益。
在一种可选的实施例中,根据共享储能系统参与能量调频和负荷需求的协同调度的目标函数,结合共享储能系统衰减函数模型和目标函数约束条件进行求解,还可以得到共享储能系统容量衰减率,进而根据共享储能系统容量衰减率得到共享储能系统的更换次数。
具体地,共享储能系统衰减函数模型主要包含两部分:一是充放电量引起共享储能系统的容量衰减模型;二是共享储能系统随着运行时间的增加,其容量的逐渐衰减的模型。因此,共享储能系统的容量衰减率的函数表达式为:
其中,为共享储能系统容量衰减率,为共享储能系统在放电深度等于1时的老化率,Pc,t和Pd,t分别为共享储能系统在时段t的充电功率和放电功率,Erate和Prate分别为共享储能系统的额定容量和额定功率,ηc和ηd分别表示共享储能系统充电转换效率和放电转换效率,为共享储能系统在第l阶段运行时间对应的日历老化率,αl和bl分别为共享储能系统在第l阶段充电老化的线性函数的参数和放电老化的线性函数的参数,χl为共享储能系统在第l阶段运行时间对应的日历老化系数,Δt为共享储能系统调度时间间隔,在本实施例中,Δt=1h。当共享储能系统容量衰减率时,共享储能系统更换一次电池,K=1。
在本实施例中,将共享储能系统同时参与电网侧和用户侧的协同优化调度,通过构建共享储能系统参与能量调频和负荷需求的协同调度的目标函数,并将电网侧调、用户侧和共享储能系统的相关参数输入到目标函数中,根据目标函数约束条件和负荷重要程度的切换成本求解得到基于能量调频和负荷需求的共享储能调度方案,并利用分级控制策略来控制共享储能系统同时参与电网侧和用户侧的能量协同调度,进而实现了共享储能在多场景的协同优 化调度,体现了共享储能系统的应用价值和提高了共享储能系统利用效率;由于采用共享储能分级控制策略,实现共享储能系统实时动态充放电切换,减少了共享储能系统充放电的切换次数,提高了共享储能系统的使用寿命,保证了共享储能系统的安全性。同时,通过计算负荷重要程度评价指标可确定系统出现不可预测的问题时,共享储能系统可筛选出优先供电的用户,进而提高了共享储能系统在缺电的情况下,对社会仍提供较高的利用价值。
示例地,如图2所示,图2是本发明实施例提供的一种基于能量调频和负荷需求的共享储能调度方法应用流程图。在实际应用场景中,将共享储能系统同时参与能量调频和负荷需求能量优化调度流程为:
首先,输入电网侧、用户侧以及共享储能系统的相关参数,即输入电网侧电网侧功率波动数据(上调频信号、下调频信号)、参与电网侧调频的服务单价和电力电价,输入各用户的负荷需求、新能源输出功率以及负荷重要程度所需要的相关参数等,在共享储能系统方面,需输入电池充放电效率、荷电状态的上下限值、共享储能辅助服务价格、电池成本以及容量衰减相关的参数等。
其次,在调频价格、电力电价、参与电网侧调频的服务单价、参与用户侧参侧能量优化调度服务单价、以及切负荷成本的引导下建立建立共享储能系统参与能量调频和负荷需求的协同调度的目标函数(包括:共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数、用户侧租赁共享储能和从电网侧购买电量的日内成本函数)。其中,共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数以共享储能系统日内收益最大为目标,该目标函数中包括共享储能系统参与电网调频获得的收益、共享储能系统参与电网能量套利获得的收益、共享储能系统参与用户侧能量优化调度、以及在整体系统缺电的情况下共享储能系统将负荷重要程度级别低者进行切负荷产生的成本;用户侧租赁共享储能和从电网侧购买电量的日内成本函数以用户日内成本最低为目标。
然后,建立目标函数相关的约束条件,并将约束条件中的非线性约束条件转换成混合整数线性规划问题。此外,基于总容量将共享储能系统分为两个容量相同的储能容量装置,分别为储能容量装置A和储能容量装置B。储 能容量装置A为充电,储能容量装置B为放电,并且设置储能容量装置A与储能容量装置B功能切换的条件,通过该根据共享储能系统分级控制策略可实现储能容量装置A与储能容量装置B的实时动态切换,减少了共享储能系统充放电的切换次数,进而提高了共享储能系统的使用寿命。
另外,为了提高共享储能系统在缺电的情况下,对社会仍提供较高的利用价值,通过计算负荷重要程度综合评价值来筛选出负荷重要程度综合评价值低者优先进行切负荷。通过建立了切负荷成本函数,以计算共储能系统的切负荷成本。最后,结合共享储能系统的成本模型计算共享储能系统在整个项目运行期间的净收益。
如图3所示,图3为本发明实施例提供的一种基于能量调频和负荷需求的共享储能调度系统的结构示意图。如图3所示,所述系统包括:
建立模块31,用于建立共享储能系统参与能量调频和负荷需求的协同调度的目标函数;
输入模块32,用于将电网侧调、用户侧以及共享储能系统的相关参数输入到所述目标函数;
求解模块33,用于根据目标函数约束条件和负荷重要程度的切换成本,结合混合整数线性规划算法求解所述目标函数,得到基于能量调频和负荷需求的共享储能配置方案;
调度模块34,用于根据所述共享储能配置方案对共享储能系统进行配置,并根据共享储能系统分级控制策略控制所述共享储能系统参与电网侧和用户侧的能量协同调度。
在一种可选的实施例中,所述建立模块包括:
第一建立模块子模块,用于确定共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数,所述日内收益目标函数以共享储能系统日内收益最大为目标;
第二建立模块子模块,用于确定用户侧租赁共享储能和从电网侧购买电量的日内成本函数,所述日内成本函数以用户日内成本最低为目标。
在一种可选的实施例中,所述求解模块包括:
第一约束条件子模块,用于确定第一约束条件,所述第一约束条件用于 对所述共享储能系统的充放电功率、电网侧和用户侧之间的功率平衡进行约束与所述共享储能系统的额定功率计算;
第二约束条件子模块,用于确第二约束条件,所述第二约束条件用于对所述共享储能系统的荷电状态进行约束与额定容量计算;
第三约束条件子模块,用于确第三约束条件,所述第三约束条件用于对所述共享储能系统的调频容量申报进行约束。
在一种可选的实施例中,所述共享储能系统包括两个容量相同的第一储能容量装置和第二储能容量装置,其中,所述第一储能容量装置初始状态为充电,所述第二储能容量装置初始状态为放电;所述调度模块还包括:
第一切换模块,用于当所述第一储能容量装置的荷电状态满足最大阈值,和/或所述第二储能容量装置的荷电状态满足最小阈值时,对所述第一储能容量装置和所述第二储能容量装置进行充放电状态进行切换;
第二切换模块,用于当所述第一储能容量装置和所述第二储能容量装置的荷电状态同时达到最小阈值或同时达到最大阈值时,所述第一储能容量装置和所述第二储能容量装置强制停止工作。
在一种可选的实施例中,所述系统还包括:
切负荷模块,用于在缺电的情况下,按照负荷重要程度的高低等级进行分档分级,将负荷重要程度等级低的用户优先进行切负荷,其中,每个用户的负荷重要程度是通过群体评价的序关系法,对负荷重要程度评价指标进行求解得到的。
在一种可选的实施例中,所述系统还包括:
净现值模型建立模块,用于根据所述共享储能系统的成本模型、所述共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数,建立共享储能系统的净现值模型;
净现值计算模块,用于根据所述共享储能系统的净现值模型计算所述共享储能系统在全生命周期内的净收益。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种基于能量调频和负荷需求的共享储能调度方法及系统进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种基于能量调频和负荷需求的共享储能调度方法,其特征在于,所述方法包括:
    建立共享储能系统参与能量调频和负荷需求的协同调度的目标函数;
    将电网侧、用户侧以及共享储能系统的相关参数输入到所述目标函数;
    根据目标函数约束条件和负荷重要程度的切换成本,结合混合整数线性规划算法求解所述目标函数,得到基于能量调频和负荷需求的共享储能配置方案;
    根据所述共享储能配置方案对共享储能系统进行配置,并根据共享储能系统分级控制策略控制所述共享储能系统参与电网侧和用户侧的能量协同调度。
  2. 根据权利要求1所述的方法,其特征在于,所述建立共享储能系统参与能量调频和负荷需求的协同调度的目标函数,包括:
    确定共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数,所述日内收益目标函数以共享储能系统日内收益最大为目标;
    确定用户侧租赁共享储能和从电网侧购买电量的日内成本函数,所述日内成本函数以用户日内成本最低为目标。
  3. 根据权利要求2所述的方法,其特征在于,所述共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数表示为:
    其中,Sefl为共享储能系统参与电网能量调频、用户侧能量优化调度的日内收益,为用户i在时段t内的切负荷成本,分别为共享储能系统在时段t参与电网侧能量套利的充电功率和放电功率,分别为共享储能系统在时段t参与电网调频的上备用功率和下备用功率,分别为共享储能系统在时段t参与用户i能量优化调度的充电功率和放电功率,Tefl为共享储能系统参与电网侧能量调频、参与用户侧能量优化调度的日内调度时 段总数,Tls为一年内切负荷总利用小时,Z为用户总数,为电力系统电力电价,分别为共享储能系统参与电网调频的上调频辅助服务单价和下调频辅助服务单价,为共享储能系统在t时刻参与用户侧能量优化调度的服务单价。
  4. 根据权利要求2所述的方法,其特征在于,所述用户侧租赁共享储能和从电网侧购买电量的日内成本函数表示为:
    其中,为用户i的日内电成本,Pg,t为用户i从电网侧购买功率,为电力系统电力电价,Z为用户总数。
  5. 根据权利要求1所述的方法,其特征在于,所述目标函数约束条件包括:
    第一约束条件,所述第一约束条件用于对所述共享储能系统的充放电功率、电网侧和用户侧之间的功率平衡进行约束与所述共享储能系统的额定功率计算;
    第二约束条件,所述第二约束条件用于对所述共享储能系统的荷电状态进行约束与额定容量计算;
    第三约束条件,所述第三约束条件用于对所述共享储能系统的调频容量申报进行约束。
  6. 根据权利要求1所述的方法,其特征在于,所述共享储能系统包括两个容量相同的第一储能容量装置和第二储能容量装置,其中,所述第一储能容量装置初始状态为充电,所述第二储能容量装置初始状态为放电;
    所述共享储能系统分级控制策略为:根据所述第一储能容量装置和第二储能容量装置的切换条件,对所述第一储能容量装置和第二储能容量装置的状态进行实时动态切换的策略。
  7. 根据权利要求1所述的方法,其特征在于,所述共享储能系统包括两 个容量相同的第一储能容量装置和第二储能容量装置,其中,所述第一储能容量装置初始状态为充电,所述第二储能容量装置初始状态为放电;所述切换条件包括:
    当所述第一储能容量装置的荷电状态满足最大阈值,和/或所述第二储能容量装置的荷电状态满足最小阈值时,对所述第一储能容量装置和所述第二储能容量装置进行充放电状态进行切换;
    当所述第一储能容量装置和所述第二储能容量装置的荷电状态同时达到最小阈值或同时达到最大阈值时,所述第一储能容量装置和所述第二储能容量装置强制停止工作。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在缺电的情况下,按照负荷重要程度的高低等级进行分档分级,将负荷重要程度等级低的用户优先进行切负荷,其中,每个用户的负荷重要程度是通过群体评价的序关系法,对负荷重要程度评价指标进行求解得到的。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述共享储能系统的成本模型、所述共享储能系统参与能量调频和负荷需求的能量协同调度的日内收益目标函数,建立共享储能系统的净现值模型;
    根据所述共享储能系统的净现值模型计算所述共享储能系统在全生命周期内的净收益。
  10. 一种基于能量调频和负荷需求的共享储能调度系统,其特征在于,所述系统包括:
    建立模块,用于建立共享储能系统参与能量调频和负荷需求的协同调度的目标函数;
    输入模块,用于将电网侧调、用户侧以及共享储能系统的相关参数输入到所述目标函数;
    求解模块,用于根据目标函数约束条件和负荷重要程度的切换成本,结 合混合整数线性规划算法求解所述目标函数,得到基于能量调频和负荷需求的共享储能配置方案;
    调度模块,用于根据所述共享储能配置方案对共享储能系统进行配置,并根据共享储能系统分级控制策略控制所述共享储能系统参与电网侧和用户侧的能量协同调度。
PCT/CN2023/130847 2022-11-16 2023-11-09 基于能量调频和负荷需求的共享储能调度方法及系统 WO2024104252A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23817937.8A EP4398438A1 (en) 2022-11-16 2023-11-09 Shared energy storage scheduling method and system based on energy frequency modulation and load demand
US18/391,374 US20240170987A1 (en) 2022-11-16 2023-12-20 Shared energy storage scheduling method and system based on energy frequency regulation and load demand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211432485.2A CN115733189A (zh) 2022-11-16 2022-11-16 基于能量调频和负荷需求的共享储能调度方法及系统
CN202211432485.2 2022-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/391,374 Continuation US20240170987A1 (en) 2022-11-16 2023-12-20 Shared energy storage scheduling method and system based on energy frequency regulation and load demand

Publications (1)

Publication Number Publication Date
WO2024104252A1 true WO2024104252A1 (zh) 2024-05-23

Family

ID=85296090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130847 WO2024104252A1 (zh) 2022-11-16 2023-11-09 基于能量调频和负荷需求的共享储能调度方法及系统

Country Status (2)

Country Link
CN (1) CN115733189A (zh)
WO (1) WO2024104252A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118365103A (zh) * 2024-06-19 2024-07-19 国网山西省电力公司运城供电公司 一种共享储能电站对台区综合运行效能贡献度的分配方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115733189A (zh) * 2022-11-16 2023-03-03 中国长江三峡集团有限公司 基于能量调频和负荷需求的共享储能调度方法及系统
CN116316739A (zh) * 2023-04-12 2023-06-23 湖南经研电力设计有限公司 基于充放电潮流优化的共享储能站日协同调度方法及系统
CN118229331A (zh) * 2024-05-23 2024-06-21 国网甘肃省电力公司营销服务中心 一种用户侧储能设备的电价引导控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111064188A (zh) * 2019-12-26 2020-04-24 上海电力大学 一种基于净现值计算的光储系统容量配置方法
CN113315143A (zh) * 2021-04-25 2021-08-27 国网信息通信产业集团有限公司北京分公司 一种发电机组的储能调频装置及系统
CN114065109A (zh) * 2021-11-17 2022-02-18 国网浙江省电力有限公司杭州供电公司 一种电力系统需求响应聚合用户的优选方法
CN114330909A (zh) * 2021-12-31 2022-04-12 西安交通大学 一种共享储能与多微网分布式协调优化运行方法
US20220284458A1 (en) * 2021-02-25 2022-09-08 Mitsubishi Electric Research Laboratories, Inc. Risk-constrained Optimization of Virtual Power Plants in Pool and Future Markets
CN115733189A (zh) * 2022-11-16 2023-03-03 中国长江三峡集团有限公司 基于能量调频和负荷需求的共享储能调度方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111064188A (zh) * 2019-12-26 2020-04-24 上海电力大学 一种基于净现值计算的光储系统容量配置方法
US20220284458A1 (en) * 2021-02-25 2022-09-08 Mitsubishi Electric Research Laboratories, Inc. Risk-constrained Optimization of Virtual Power Plants in Pool and Future Markets
CN113315143A (zh) * 2021-04-25 2021-08-27 国网信息通信产业集团有限公司北京分公司 一种发电机组的储能调频装置及系统
CN114065109A (zh) * 2021-11-17 2022-02-18 国网浙江省电力有限公司杭州供电公司 一种电力系统需求响应聚合用户的优选方法
CN114330909A (zh) * 2021-12-31 2022-04-12 西安交通大学 一种共享储能与多微网分布式协调优化运行方法
CN115733189A (zh) * 2022-11-16 2023-03-03 中国长江三峡集团有限公司 基于能量调频和负荷需求的共享储能调度方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118365103A (zh) * 2024-06-19 2024-07-19 国网山西省电力公司运城供电公司 一种共享储能电站对台区综合运行效能贡献度的分配方法

Also Published As

Publication number Publication date
CN115733189A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2024104252A1 (zh) 基于能量调频和负荷需求的共享储能调度方法及系统
CN105790309A (zh) 利用分布式能源和临时附加电价协同优化控制的方法
CN107248010A (zh) 计及负荷聚合商和电动汽车响应可靠性的优化调度方法
CN112907129A (zh) 储能综合效益评估指标体系
Wang et al. Configuration optimization of energy storage and economic improvement for household photovoltaic system considering multiple scenarios
Jin et al. Impacts of carbon trading and wind power integration on carbon emission in the power dispatching process
CN116191556A (zh) 考虑新能源消纳和机组组合的5g基站需求响应方法及系统
Qiu et al. Pricing model of reactive power services of shared energy storage considering baseline power for renewable energy accommodation
Jiang et al. Electricity charge saved for industrial and commercial utilizing cloud energy storage services
CN110247392A (zh) 计及风电备用能力与需求侧响应的多备用资源鲁棒优化方法
Shi et al. Optimal allocation of energy storage capacity for hydro-wind-solar multi-energy renewable energy system with nested multiple time scales
Tian et al. Coordinated RES and ESS Planning Framework Considering Financial Incentives Within Centralized Electricity Market
CN116961044A (zh) 基于模糊机会约束规划广义共享储能优化配置方法及系统
CN116231692A (zh) 一种城市分布式储能系统
Wang et al. Cooperative Optimization Model of" Source-Grid-Load-Storage" for Active Distribution Network
EP4398438A1 (en) Shared energy storage scheduling method and system based on energy frequency modulation and load demand
Lin et al. Two-stage multi-strategy decision-making framework for capacity configuration optimization of grid-connected PV/battery/hydrogen integrated energy system
Fang et al. Economic benefit evaluation model of distributed energy storage system considering custom power services
CN113746105B (zh) 电力需求响应的优化控制方法、装置、设备和存储介质
CN109214597A (zh) 一种微电网功率和运行储备容量的优化规划方法
Zhang et al. Research on the market trading model of ancillary services of diversified flexible ramping
Shi et al. Research on distributed energy storage operation mode and technical economy under the background of energy internet
Zhang et al. Research on VPP's Participation in Yunnan Auxiliary Service Market Mechanism
Ye et al. Application Status and Economic Feasibility Analysis of Distributed Energy Storage Technology
Dian-Gang et al. Rresearch on Operating mechanism and business mode for virtual power plant considering demand response

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023817937

Country of ref document: EP

Effective date: 20231214