WO2024104171A1 - 一种资源配置方法和装置 - Google Patents

一种资源配置方法和装置 Download PDF

Info

Publication number
WO2024104171A1
WO2024104171A1 PCT/CN2023/129054 CN2023129054W WO2024104171A1 WO 2024104171 A1 WO2024104171 A1 WO 2024104171A1 CN 2023129054 W CN2023129054 W CN 2023129054W WO 2024104171 A1 WO2024104171 A1 WO 2024104171A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification information
communication device
control plane
plane protocol
protocol message
Prior art date
Application number
PCT/CN2023/129054
Other languages
English (en)
French (fr)
Inventor
黄金明
胡志波
胡永健
刘凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024104171A1 publication Critical patent/WO2024104171A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/06Notations for structuring of protocol data, e.g. abstract syntax notation one [ASN.1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing

Definitions

  • the present application relates to the field of communication technology, and in particular to a resource configuration method and device.
  • the segment routing (SR) node provides a flexible way to select forwarding paths based on the segment routing traffic engineering policy (SR-TE Policy, also known as SRv6 policy) based on Internet Protocol Version 6-Segment Routing (IPv6SR or SRv6), which can meet different forwarding requirements of users.
  • SR-TE Policy also known as SRv6 policy
  • IPv6SR or SRv6 Internet Protocol Version 6-Segment Routing
  • SRv6 path segment a commonly used SRv6 technology is SRv6 path segment.
  • SRv6 path segment technology different forwarding paths are distinguished based on path segments. Specifically, a path segment is associated with a forwarding path. The tail node in the forwarding path allocates a path segment to the forwarding path, and the head node in the forwarding path pushes the allocated path segment into the segment routing header (SRH) of the service message, so that the tail node can identify different forwarding paths. Based on the path segment, the tail node of the forwarding path can identify the forwarding path of the data flow, thereby supporting the measurement of performance parameters such as the delay and packet loss rate of the forwarding path, and then realizing real-time visualization of network performance.
  • SSH segment routing header
  • path segment is obtained by expanding SRv6 segment identifier (Segment ID, SID), and path segment is allocated by the tail node of the forwarding path.
  • SID Segment ID
  • the values of path segment allocated to different tail nodes may conflict, for example, tail node #1 allocates path segment #1 to forwarding path #1, and tail node #2 allocates path segment #1 to forwarding path #2. Therefore, the intermediate node cannot identify different forwarding paths based on path segment. Therefore, it is impossible to implement hop-by-hop path bandwidth reservation, hop-by-hop network performance measurement, or hop-by-hop network fault diagnosis in the forwarding path.
  • an embodiment of the present application provides a resource configuration method, which is applied to a first communication device, wherein the first communication device is used as an intermediate node or a tail node in a forwarding path, and includes: receiving a first control plane protocol message, the first control plane protocol message including first identification information and first resource configuration information, the first identification information being used to uniquely identify the forwarding path or a service flow transmitted on the forwarding path; configuring resources according to the first resource configuration information; and saving the correspondence between the first identification information and the resources.
  • the first identification information in the embodiment of the present application is used to uniquely identify a forwarding path or a service flow transmitted on the forwarding path.
  • the first identification information is represented by one or more bits, for example, a bitmap is used to represent the first identification information, or a binary value is used to represent the first identification information.
  • the resources involved in the embodiments of the present application can be understood as processing resources reserved by nodes (or reserved resources, or hop-by-hop reserved resources).
  • the resources include resources required when the node forwards messages or business flows, or resources required when the node counts performance parameters.
  • Each node in the forwarding path can configure the resource, so the resource can also be called a hop-by-hop reserved resource.
  • the resource indicates one or more of the following network functions: bandwidth reservation, statistical network performance, service level agreement (service level agreement, SLA) measurement, fault operation and maintenance, or fault detection.
  • the node in the forwarding path performs hop-by-hop network services according to the first identification information (carrying the first identification information). For example: hop-by-hop bandwidth reservation, hop-by-hop statistical network performance, hop-by-hop SLA measurement, hop-by-hop fault operation and maintenance, or hop-by-hop fault detection.
  • a first communication device receives the first control plane protocol message, and the first control plane protocol message carries first identification information and first resource configuration information.
  • the resources configured according to the first resource configuration information are hop-by-hop reserved resources.
  • the first communication device saves the correspondence between the first identification information and the resources.
  • the above method can reduce the redundancy of forwarding plane information, reduce the information carried by the message header of the service message, and improve communication efficiency.
  • the end-to-end forwarding path or service flow is assigned a unique first identification information, and the first identification information has a resource configuration information. Correspondence.
  • the intermediate node or the tail node receives the service message carrying the first identification information, it can find the resource according to the first identification information and then process the service message.
  • hop-by-hop resource reservation is realized without running the resource reservation protocol, thereby reducing the performance requirements of the communication device.
  • the first identification information is used to identify the service flow to which the service message belongs.
  • hop-by-hop resource reservation can be implemented for the service flow to which the service message belongs, where hop-by-hop resource reservation refers to reserving resources corresponding to the first identification information.
  • the first identification information is used to identify a tunnel for forwarding a service message.
  • hop-by-hop resource reservation can be implemented for the tunnel for forwarding the service message, where hop-by-hop resource reservation refers to reserving resources corresponding to the first identification information.
  • the first communication device may receive the first control plane protocol message from the second communication device, and the first control plane protocol message instructs the first communication device to configure the resource corresponding to the first identification information according to the first resource configuration information.
  • the second communication device is a head node in the forwarding path.
  • the first control plane protocol message carries a segment list indicating the forwarding path, and the head node implements the flow-based configuration of the resource through the first control plane protocol message.
  • the method before receiving the first control plane protocol message, the method further includes: when the first communication device has not locally configured resources corresponding to the first identification information, and the first communication device has not locally saved the correspondence between the first identification information and the resources, the first communication device may also send a second control plane protocol message to the second communication device.
  • the second control plane protocol message is used to request the configuration of resources corresponding to the first identification information.
  • the method further includes: sending a third control plane protocol message to a second communication device, the third control plane protocol message being used to report the configuration result of the resource to the second communication device, the second communication device being the head node in the forwarding path.
  • the first communication device may also notify the second communication device that the configuration is complete. This avoids the situation where the first communication device is not configured with the resource, and is unable to use the resource to process the service message after receiving the service message carrying the first identification information.
  • the first control plane protocol message includes a first option type length value option TLV field
  • the first option TLV field includes: an option type option type field, an option data length option data length field and an option data option data field
  • the option type field of the first option TLV field is used to carry type information of the first control plane protocol message
  • the type information of the first control plane protocol message indicates that the first control plane protocol message carries the first resource configuration information
  • the option data field of the first option TLV field is used to carry the first identification information and the first resource configuration information.
  • the second control plane protocol message includes a second option type length value option TLV field
  • the second option TLV field includes: an option type option type field, an option data length option data length field and an option data option data field
  • the option type field of the second option TLV field is used to carry type information of the second control plane protocol message
  • the type information of the second control plane protocol message indicates that the second control plane protocol message is used to request the resource corresponding to the first identification information
  • the option data field of the second option TLV field is used to carry the first identification information.
  • the third control plane protocol message includes a third option type length value option TLV field
  • the third option TLV field includes: an option type option type field, an option data length option data length field and an option data option data field
  • the option type field of the third option TLV field is used to carry type information of the third control plane protocol message
  • the type information of the third control plane protocol message indicates that the third control plane protocol message carries the configuration result of the resource
  • the option data field of the third option TLV field is used to carry the first identification information and the configuration result of the resource.
  • receiving the first control plane protocol message includes: a first node receiving the first control plane protocol message from a controller, the first control plane protocol message instructing the first communication device to configure the resource corresponding to the first identification information according to the first resource configuration information, and the controller is used to control multiple nodes in the forwarding path. In other words, the controller configures the resource and the first identification information for the intermediate node and the tail node in the forwarding path.
  • the first communication device before receiving the first control plane protocol message, when the first communication device has not locally configured resources corresponding to the first identification information, and the first communication device has not locally saved the correspondence between the first identification information and the resources, the first communication device may also send a second control plane protocol message to the controller.
  • the second control plane protocol message is used to request the configuration of resources corresponding to the first identification information.
  • receiving the first control plane protocol message sent by the controller includes: receiving the first control plane protocol message sent by the controller through a border gateway routing protocol BGP.
  • the first control plane protocol message is carried by a segment routing policy SR-POLICY tunnel status notification, or network layer reachability information (NLRI).
  • NLRI network layer reachability information
  • receiving the first control plane protocol message sent by the controller includes: acquiring the first control plane protocol message from the controller through a path computation unit communication protocol PCEP or a network configuration protocol NETCONF.
  • the method also includes: receiving the service message from a second communication device, the service message carrying the first identification information, and the second communication device being the head node in the forwarding path; determining the resource based on the first identification information; and processing the service message based on the resource.
  • the first identification information is "circuit ID 1", and the forwarding path corresponding to “circuit ID 1" is “circuit 1" for example.
  • the first resource configuration information instructs each node in the forwarding path “circuit 1" to perform the following actions when transmitting the service flow of the forwarding path "circuit 1": the committed information rate (CIR) of the service flow of "circuit 1" is 100 megabits per second (Mbps), the peak information rate (PIR) of the service flow of "circuit 1" is 1 gigabit per second (Gbps), the number of data packets or bytes of the forwarding path "circuit 1" is counted, and the service flow in the forwarding path "circuit 1" is detected along the flow.
  • the first resource configuration information can be: “CIR 100Mbps, PIR 1Gbps, counter enable (counter enable information), iFIT enable (on-flow detection enable information)”.
  • the first communication device configures the resource according to the first resource configuration information, which means that the first communication device reserves the resource according to the first resource configuration information. For example, if the first resource configuration information includes reserving 500Mbps bandwidth, the first communication device reserves 500Mbps bandwidth for the forwarding path corresponding to the first resource configuration information.
  • the first communication device also needs to save the correspondence between the first identification information and the resource.
  • the resource corresponding to the service message can be determined from one or more saved correspondences according to the first identification information carried in the service message.
  • the resource indicates one or more of the following network functions: bandwidth reservation, statistical network performance, service level agreement SLA measurement, fault operation and maintenance, or fault detection.
  • the first resource configuration information includes any one or more of the following: committed information rate CIR, peak information rate PIR, traffic statistics enabling information, or flow measurement enabling information.
  • the first identification information can be obtained according to the SID list in the SRH included in the SRv6 message.
  • the SID list can be calculated using a digest algorithm, and the calculated result is used as the first identification information.
  • the digest algorithm includes but is not limited to a hash algorithm.
  • the combination of the SID list and the source IP address can uniquely identify an end-to-end SRv6 path, and therefore, the first identification information can be obtained based on the SID list and the source IP address.
  • the SID list and the source IP address can be concatenated, and the content obtained after the concatenation can be calculated using a digest algorithm, and the calculated result is used as the first identification information.
  • the forwarding path when the message transmitted in the forwarding path is an SRv6 message, the forwarding path may correspond to an SRv6 policy.
  • the SRv6 policy may correspond to an SRv6 path, so the first identification information may be obtained according to the SRv6 policy corresponding to the SRv6 message.
  • the SRv6 policy may be calculated using a digest algorithm, and the calculated result may be used as the first identification information.
  • the first identification information can be the source IP address, destination IP address and color attribute corresponding to the SRv6 policy.
  • the source IP address, the destination IP address and the color attribute corresponding to the SRv6policy may be concatenated, and the concatenated content may be calculated using a digest algorithm, and the calculated result may be used as the first identification information.
  • the first identification information may be a random number.
  • a unique random number within a certain range may be generated according to a specific algorithm, and the random number may be used as the first identification information.
  • a unique random number within the first communication device may be generated according to a specific algorithm, and the random number may be used as the first identification information.
  • the first identification information is carried in a flow label field of an IPv6 message header in the SRv6 message.
  • the first identification information is a random number.
  • the first identification information is carried in a hop-by-hop HBH field.
  • the first identification information is carried in a destination options header DOH field.
  • the first identification information is carried in a segment routing extension header SRH.
  • an embodiment of the present application provides a resource configuration method, which is applied to a second communication device, and the second communication device is used as a head node in a forwarding path.
  • the method includes: obtaining first identification information and first resource configuration information sent by a controller, the first identification information is used to uniquely identify the forwarding path or a service flow transmitted on the forwarding path, and the controller is used to manage multiple nodes in the forwarding path; configuring the resources according to the first resource configuration information; saving the association relationship between the first identification information and the resources; sending a first control plane protocol message to the first communication device, the first control plane protocol message carrying the first identification information and the first resource configuration information, the first control plane protocol message instructing the first communication device to configure the resources corresponding to the first identification information according to the first resource configuration information, and the first communication device is used as an intermediate node or tail node in the forwarding path.
  • the first identification information in the embodiment of the present application is used to uniquely identify a forwarding path or a service flow transmitted on the forwarding path.
  • the first identification information is represented by one or more bits, for example, a bitmap is used to represent the first identification information, or a binary value is used to represent the first identification information.
  • the resources involved in the embodiments of the present application can be understood as processing resources (or reserved resources) reserved by nodes.
  • the resources include resources required when the node forwards messages or business flows, or resources required when the node counts performance parameters.
  • Each node in the forwarding path can configure the resource, so the resource can also be called a hop-by-hop reserved resource.
  • the resource indicates one or more of the following network functions: bandwidth reservation, statistical network performance, service level agreement (service level agreement, SLA) measurement, fault operation and maintenance, or fault detection.
  • SLA service level agreement
  • the node in the forwarding path performs hop-by-hop network services according to the first identification information (carrying the first identification information). For example: hop-by-hop bandwidth reservation, hop-by-hop statistical network performance, hop-by-hop SLA measurement, hop-by-hop fault operation and maintenance, or hop-by-hop fault detection.
  • the head node can also send the first control plane protocol message to the intermediate node or the tail node, and the first control plane protocol message carries the first identification information and the first resource configuration information.
  • the resources configured according to the first resource configuration information are hop-by-hop reserved resources.
  • the above method is used to implement hop-by-hop reserved resources with the flow configuration. The above method can reduce the redundancy of forwarding plane information, reduce the information carried by the message header of the service message, and improve communication efficiency.
  • the end-to-end forwarding path or service flow is assigned a unique first identification information, and the first identification information has a corresponding relationship with the resource.
  • the intermediate node or the tail node When the intermediate node or the tail node receives the service message carrying the first identification information, it can find the resource according to the first identification information, and then perform data processing on the service message. Through the above method, hop-by-hop resource reservation is achieved without running the resource reservation protocol, thereby reducing the performance requirements for the communication device.
  • the method further includes: sending the service message, the service message carries the first identification information, and the segment list carried by the service message indicates the forwarding path. Since the service message carries the first identification information, after the intermediate node or the tail node receives the service message, it can determine the resource corresponding to the first identification information according to the first identification information. Then the intermediate node or the tail node processes the service message according to the resource. Thereby, hop-by-hop resource reservation is achieved without running the resource reservation protocol, thereby reducing the performance requirements for the first communication device.
  • sending the first control plane protocol message to the first communication device includes: receiving a second control plane protocol message from the first communication device, the second control plane protocol message carrying the first identification information, the second control plane protocol message being used to request the resource corresponding to the first identification information from the second communication device; and sending the first control plane protocol message to the first communication device in response to the second control plane protocol message.
  • the head node may also respond to the intermediate node or the tail node.
  • the first identification information and the corresponding resources are configured for the intermediate node or the tail node to ensure smooth hop-by-hop resource reservation.
  • the method further includes: receiving a third control plane protocol message from the first communication device, the third control plane protocol message being used to report the configuration result of the resource to the second communication device.
  • the second communication device determines that the first communication device has configured the resources corresponding to the first identification information according to the third control plane protocol message. It is ensured that the first communication device uses the resources corresponding to the first identification information to perform data processing on the service message carrying the first identification information, thereby improving service reliability.
  • the first control plane protocol message includes a first option type length value option TLV field
  • the first option TLV field includes: an option type option type field, an option data length option data length field and an option data option data field
  • the option type field of the first option TLV field is used to carry type information of the first control plane protocol message
  • the type information of the first control plane protocol message indicates that the first control plane protocol message carries the first resource configuration information
  • the option data field of the first option TLV field is used to carry the first identification information and the first resource configuration information.
  • the second control plane protocol message includes a second option type length value option TLV field
  • the second option TLV field includes: an option type option type field, an option data length option data length field and an option data option data field
  • the option type field of the second option TLV field is used to carry type information of the second control plane protocol message
  • the type information of the second control plane protocol message indicates that the second control plane protocol message is used to request the resource corresponding to the first identification information
  • the option data field of the second option TLV field is used to carry the first identification information.
  • the third control plane protocol message includes a third option type length value option TLV field
  • the third option TLV field includes: an option type option type field, an option data length option data length field and an option data option data field
  • the option type field of the third option TLV field is used to carry type information of the third control plane protocol message
  • the type information of the third control plane protocol message indicates that the third control plane protocol message carries the configuration result of the resource
  • the option data field of the third option TLV field is used to carry the first identification information and the configuration result of the resource.
  • obtaining the first identification information and the first resource configuration information sent by the controller includes: obtaining the first identification information and the first resource configuration information sent by the controller through a border gateway routing protocol BGP.
  • the first identification information and the first resource configuration information are carried in a segment routing policy SR-POLICY tunnel status notification, or network layer reachability information (NLRI).
  • NLRI network layer reachability information
  • obtaining the first identification information and the first resource configuration information sent by the controller includes: obtaining the first identification information and the first resource configuration information sent by the controller through a path computation unit communication protocol PCEP or a network configuration protocol NETCONF.
  • the first identification information is obtained based on a segment identification list SID list, and the segment identification list is located in a segment routing header SRH of an Internet Protocol version 6 segment routing SRv6 message, and the SRv6 message is transmitted by a forwarding path identified by the first identification information.
  • the first identification information can be obtained according to the SID list in the SRH included in the SRv6 message.
  • the SID list can be calculated using a digest algorithm, and the calculated result is used as the first identification information.
  • the digest algorithm includes but is not limited to a hash algorithm.
  • the combination of the SID list and the source IP address can uniquely identify an end-to-end SRv6 path, and therefore, the first identification information can be obtained based on the SID list and the source IP address.
  • the SID list and the source IP address can be concatenated, and the content obtained after the concatenation can be calculated using a digest algorithm, and the calculated result is used as the first identification information.
  • the forwarding path when the message transmitted in the forwarding path is an SRv6 message, the forwarding path may correspond to an SRv6 policy. And the SRv6 policy may correspond to an SRv6 path. Therefore, the first identification information may be obtained according to the SRv6 policy corresponding to the SRv6 message. For example, the SRv6 policy may be calculated using a digest algorithm, and the calculated The result is used as the first identification information.
  • the first identification information can be obtained according to the source IP address, destination IP address and color attribute corresponding to the SRv6policy.
  • the source IP address, destination IP address and color attribute corresponding to the SRv6policy can be concatenated, and the concatenated content can be calculated using a digest algorithm, and the calculated result can be used as the first identification information.
  • the first identification information may be a random number.
  • a unique random number within a certain range may be generated according to a specific algorithm, and the random number may be used as the first identification information.
  • a unique random number within the first communication device may be generated according to a specific algorithm, and the random number may be used as the first identification information.
  • the first identification information is carried in a flow label field of an IPv6 message header in the SRv6 message.
  • the first identification information is a random number.
  • the first identification information is carried in a hop-by-hop HBH field.
  • the first identification information is carried in a destination options header DOH field.
  • the first identification information is carried in a segment routing extension header SRH.
  • an embodiment of the present application provides a resource configuration method, which is applied to a controller, and the controller is used to manage the head node, intermediate node and tail node in the forwarding path.
  • the method includes: sending first identification information and first resource configuration information, the first identification information is used to uniquely identify the forwarding path or a service flow transmitted on the forwarding path, the first resource configuration information is used to instruct a first communication device and/or a second communication device to configure resources according to the first resource configuration information, the first communication device is used as an intermediate node or tail node in the forwarding path, and the second communication device is used as a head node in the forwarding path, and the first identification information has a corresponding relationship with the resource.
  • the first identification information in the embodiment of the present application is used to uniquely identify a forwarding path or a service flow transmitted on the forwarding path.
  • the first identification information is represented by one or more bits, for example, a bitmap is used to represent the first identification information, or a binary value is used to represent the first identification information.
  • the resources involved in the embodiments of the present application can be understood as processing resources (or reserved resources) reserved by nodes.
  • the resources include resources required when the node forwards messages or business flows, or resources required when the node counts performance parameters.
  • Each node in the forwarding path can configure the resource, so the resource can also be called a hop-by-hop reserved resource.
  • the resource indicates one or more of the following network functions: bandwidth reservation, statistical network performance, service level agreement (service level agreement, SLA) measurement, fault operation and maintenance, or fault detection.
  • SLA service level agreement
  • the node in the forwarding path performs hop-by-hop network services according to the first identification information (carrying the first identification information). For example: hop-by-hop bandwidth reservation, hop-by-hop statistical network performance, hop-by-hop SLA measurement, hop-by-hop fault operation and maintenance, or hop-by-hop fault detection.
  • the controller may send first identification information and first resource configuration information to a head node, an intermediate node or a tail node, and the resources configured according to the first resource configuration information are hop-by-hop reserved resources.
  • the above method is used to configure hop-by-hop reserved resources for each node in the forwarding path.
  • the above method can reduce the redundancy of forwarding plane information, reduce the information carried in the message header of the service message, and improve communication efficiency.
  • the controller assigns unique first identification information to the end-to-end forwarding path or service flow, and the first identification information has a corresponding relationship with the resource.
  • the intermediate node or the tail node When the intermediate node or the tail node receives the service message carrying the first identification information, it can find the resource according to the first identification information, and then perform data processing on the service message. Through the above method, hop-by-hop resource reservation is achieved without running the resource reservation protocol, thereby reducing the performance requirements for the communication device.
  • the first identification information is used to identify the service flow to which the service message belongs.
  • hop-by-hop resource reservation can be implemented for the service flow to which the service message belongs, where hop-by-hop resource reservation refers to reserving resources corresponding to the first identification information.
  • the first identification information is used to identify a tunnel for forwarding a service message.
  • hop-by-hop resource reservation can be implemented for the tunnel for forwarding the service message, where hop-by-hop resource reservation refers to reserving resources corresponding to the first identification information.
  • sending the first identification information and the first resource configuration information includes: sending the first identification information and the first resource configuration information to the second communication
  • the communication device sends the first identification information and the first resource configuration information.
  • sending the first identification information and the first resource configuration information to the second communication device includes: sending the first identification information and the first resource configuration information to the second communication device through a border gateway routing protocol BGP.
  • the first identification information and the first resource configuration information are carried in a segment routing policy SR-POLICY tunnel status notification, or network layer reachability information (NLRI).
  • NLRI network layer reachability information
  • sending the first identification information and the first resource configuration information to the second communication device includes: sending the first identification information and the first resource configuration information to the second communication device through a path computation unit communication protocol PCEP or a network configuration protocol NETCONF.
  • sending the first identification information and the first resource configuration information includes: sending a first control plane protocol message to the first communication device, the first control plane protocol message carrying the first identification information and the first resource configuration information, the first control plane protocol message instructing the first communication device to configure the resource corresponding to the first identification information according to the first resource configuration information, and the segment list carried by the first control plane protocol message indicating the forwarding path.
  • the controller configures the resource and the first identification information for the intermediate node and the tail node in the forwarding path.
  • sending the first control plane protocol message to the first communication device includes: receiving a second control plane protocol message from the first communication device, the second control plane protocol message carrying the first identification information, the second control plane protocol message being used to request the resource corresponding to the first identification information from the controller; and sending the first control plane protocol message to the first communication device in response to the second control plane protocol message.
  • the second control plane protocol message is used to request configuration of resources corresponding to the first identification information.
  • the first control plane protocol message includes a first option type length value option TLV field
  • the first option TLV field includes: an option type option type field, an option data length option data length field and an option data option data field
  • the option type field of the first option TLV field is used to carry type information of the first control plane protocol message
  • the type information of the first control plane protocol message indicates that the first control plane protocol message carries the first resource configuration information
  • the option data field of the first option TLV field is used to carry the first identification information and the first resource configuration information.
  • the second control plane protocol message includes a second option type length value option TLV field
  • the second option TLV field includes: an option type option type field, an option data length option data length field and an option data option data field
  • the option type field of the second option TLV field is used to carry type information of the second control plane protocol message
  • the type information of the second control plane protocol message indicates that the second control plane protocol message is used to request the resource corresponding to the first identification information
  • the option data field of the second option TLV field is used to carry the first identification information.
  • the resource indicates one or more of the following network functions: bandwidth reservation, statistical network performance, service level agreement SLA measurement, fault operation and maintenance, or fault detection.
  • the first resource configuration information includes any one or more of the following: committed information rate CIR, peak information rate PIR, traffic statistics enabling information, or flow measurement enabling information.
  • the first identification information can be obtained according to the SID list in the SRH included in the SRv6 message.
  • the SID list can be calculated using a digest algorithm, and the calculated result is used as the first identification information.
  • the digest algorithm includes but is not limited to a hash algorithm.
  • the combination of the SID list and the source IP address can uniquely identify an end-to-end SRv6 path, and therefore, the first identification information can be obtained based on the SID list and the source IP address.
  • the SID list and the source IP address can be concatenated, and the content obtained after the concatenation can be calculated using a digest algorithm, and the calculated result is used as the first identification information.
  • the forwarding path may correspond to an SRv6 Policy.
  • SRv6policy can correspond to an SRv6 path, so the first identification information can be obtained according to the SRv6policy corresponding to the SRv6 message.
  • the SRv6policy can be calculated using a digest algorithm, and the calculated result is used as the first identification information.
  • the first identification information can be obtained according to the source IP address, destination IP address and color attribute corresponding to the SRv6policy.
  • the source IP address, destination IP address and color attribute corresponding to the SRv6policy can be concatenated, and the concatenated content can be calculated using a digest algorithm, and the calculated result can be used as the first identification information.
  • the first identification information may be a random number.
  • a unique random number within a certain range may be generated according to a specific algorithm, and the random number may be used as the first identification information.
  • a unique random number within the first communication device may be generated according to a specific algorithm, and the random number may be used as the first identification information.
  • the first identification information is carried in a flow label field of an IPv6 message header in the SRv6 message.
  • the first identification information is a random number.
  • the first identification information is carried in a hop-by-hop HBH field.
  • the first identification information is carried in a destination options header DOH field.
  • the first identification information is carried in a segment routing extension header SRH.
  • an embodiment of the present application provides a first communication device, where the first communication device is used as an intermediate node or a tail node in a forwarding path, and the first communication device includes:
  • a transceiver module configured to receive a first control plane protocol message, wherein the first control plane protocol message includes first identification information and first resource configuration information, wherein the first identification information is used to uniquely identify the forwarding path or a service flow transmitted on the forwarding path;
  • a processing module configured to configure resources according to the first resource configuration information
  • the transceiver module is also used to store the corresponding relationship between the first identification information and the resource.
  • the transceiver module is further used to receive the first control plane protocol message sent by the second communication device, and the first control plane protocol message instructs the first communication device to configure the resource corresponding to the first identification information according to the first resource configuration information.
  • the transceiver module is further used to receive the service message from the second communication device, where the service message carries the first identification information;
  • the processing module is also used to send a second control plane protocol message to the second communication device in response to determining that it has not saved the correspondence between the first identification information and the resource, the second control plane protocol message carrying the first identification information, and the second control plane protocol message being used to request the resource corresponding to the first identification information from the second communication device.
  • the transceiver module is also used to send a third control plane protocol message to the second communication device, where the third control plane protocol message is used to report the configuration result of the resource to the second communication device, and the second communication device is the head node in the forwarding path.
  • the transceiver module is also used to receive the first control plane protocol message sent by the controller, the first control plane protocol message instructs the first communication device to configure the resources corresponding to the first identification information according to the first resource configuration information, and the controller is used to control multiple nodes in the forwarding path.
  • the transceiver module is further used to receive the service message from a second communication device, where the service message carries the first identification information, and the second communication device is a head node in the forwarding path;
  • the processing module is also used to send a second control plane protocol message to the controller in response to determining that it has not saved the correspondence between the first identification information and the resource, wherein the second control plane protocol message carries the first identification information, and the second control plane protocol message is used to request the resource corresponding to the first identification information from the controller.
  • the transceiver module is further used to receive the service message from a second communication device, where the service message carries the first identification information, and the second communication device is a head node in the forwarding path;
  • the processing module is further used to determine the resource according to the first identification information
  • the processing module is also used to process the service message according to the resources.
  • the resource indicates one or more of the following network functions:
  • Bandwidth reservation Network performance statistics, service level agreement (SLA) measurement, fault operation and maintenance, or fault detection.
  • SLA service level agreement
  • the first resource configuration information includes any one or more of the following:
  • the first identification information is obtained based on a segment identification list SID list, and the segment identification list is located in a segment routing header SRH of an Internet Protocol version 6 segment routing SRv6 message, and the SRv6 message is transmitted by a forwarding path identified by the first identification information.
  • the first identification information is obtained based on the SID list and the source Internet Protocol IP address of the SRv6 message.
  • the first identification information is obtained according to the SRv6 policy corresponding to the SRv6 message.
  • the first identification information is obtained according to a source IP address, a destination IP address, and a color attribute corresponding to the SRv6policy.
  • the first identification information is carried in a flow label field of an IPv6 message header in the SRv6 message.
  • the first identification information is carried in a hop-by-hop HBH field.
  • the first identification information is carried in a destination options header DOH field.
  • the first identification information is carried in a segment routing extension header SRH.
  • an embodiment of the present application provides a second communication device, where the second communication device is used as a head node in a forwarding path, and the second communication device includes:
  • a transceiver module configured to obtain first identification information and first resource configuration information sent by a controller, wherein the first identification information is used to uniquely identify the forwarding path or a service flow transmitted on the forwarding path, and the controller is used to manage multiple nodes in the forwarding path;
  • a processing module configured to configure the resource according to the first resource configuration information
  • the transceiver module is further used to store the association relationship between the first identification information and the resource;
  • the transceiver module is also used to send a first control plane protocol message to a first communication device, wherein the first control plane protocol message carries the first identification information and the first resource configuration information, and the first control plane protocol message instructs the first communication device to configure the resources corresponding to the first identification information according to the first resource configuration information, and the first communication device is used as an intermediate node or a tail node in the forwarding path.
  • the transceiver module is also used to send the business message, the business message carries the first identification information, and the segment list carried by the business message indicates the forwarding path.
  • the transceiver module is further used to receive a second control plane protocol message from the first communication device, the second control plane protocol message carries the first identification information, and the second control plane protocol message is used to request the resource corresponding to the first identification information from the second communication device;
  • the processing module is further used to send the first control plane protocol message to the first communication device in response to the second control plane protocol message.
  • the transceiver module is further used to receive a third control plane protocol message from the first communication device, and the third control plane protocol message is used to report the configuration result of the resource to the second communication device.
  • the first identification information is carried in a flow label field of an IPv6 message header in the SRv6 message.
  • the first identification information is carried in a hop-by-hop HBH field.
  • the first identification information is carried in a destination options header DOH field.
  • the first identification information is carried in a segment routing extension header SRH.
  • an embodiment of the present application provides a controller, wherein the controller is used to manage a head node, an intermediate node, and a tail node in a forwarding path, and the controller includes:
  • a transceiver module configured to send first identification information and first resource configuration information
  • the first identification information is used to uniquely identify the forwarding path or a service flow transmitted on the forwarding path
  • the first resource configuration information is used to instruct the first communication device and/or the second communication device to configure resources according to the first resource configuration information, the first communication device is used as an intermediate node or a tail node in the forwarding path, and the second communication device is used as a head node in the forwarding path.
  • the first identification information has a corresponding relationship with the resource.
  • the transceiver module is further used to send the first identification information and the first resource configuration information to the second communication device.
  • the transceiver module is also used to send a first control plane protocol message to the first communication device, the first control plane protocol message carries the first identification information and the first resource configuration information, the first control plane protocol message instructs the first communication device to configure the resources corresponding to the first identification information according to the first resource configuration information, and the segment list carried by the first control plane protocol message indicates the forwarding path.
  • the transceiver module is further used to receive a second control plane protocol message from the first communication device, the second control plane protocol message carries the first identification information, and the second control plane protocol message is used to request the resource corresponding to the first identification information from the controller;
  • the transceiver module is further used to send the first control plane protocol message to the first communication device in response to the second control plane protocol message.
  • the first identification information is carried in a flow label field of an IPv6 message header in the SRv6 message.
  • the first identification information is carried in a hop-by-hop HBH field.
  • the first identification information is carried in a destination options header DOH field.
  • the first identification information is carried in a segment routing extension header SRH.
  • an embodiment of the present application provides a communication device, including: a processor and a memory;
  • the memory is used to store instructions; the processor is used to execute the instructions, so that the communication device executes the method described in any one of the first aspects, any one of the second aspects, or any one of the third aspects.
  • an embodiment of the present application provides a computer-readable storage medium, including instructions or a computer program, which, when executed on a processor, executes the method described in any one of the first aspect above, or any one of the second aspect above, or any one of the third aspect above.
  • an embodiment of the present application provides a computer program product, including a computer program product, which, when running on a processor, executes the method described in any one of the first aspect, any one of the second aspect, or any one of the third aspect.
  • an embodiment of the present application provides a communication system, comprising: a first communication device for executing the method described in the first aspect and any one of the first aspect, a second communication device for executing the method described in the second aspect and any one of the second aspect, and a controller for executing the method described in the third aspect and any one of the third aspect.
  • FIG1a is a schematic diagram of the architecture of a REVP-TE technology provided in an embodiment of the present application.
  • FIG1b is a schematic diagram of the architecture of an MPLS-TP technology provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a possible application scenario provided by an embodiment of the present application.
  • FIG3 is a schematic diagram of signaling interaction of a resource configuration method in an embodiment of the present application.
  • FIG4 is a schematic diagram of signaling interaction of a resource configuration method in an embodiment of the present application.
  • FIG5 is a schematic diagram of signaling interaction of a resource configuration method in an embodiment of the present application.
  • FIG6 is a schematic diagram of signaling interaction of a resource configuration method in an embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of the first option type length value option TLV field
  • FIG8 is a schematic diagram of the structure of the third option type length value option TLV field
  • FIG9 is a schematic diagram of the structure of the fourth option TLV field.
  • FIG10 is a schematic diagram of the structure of the second option type length value option TLV field
  • FIG11 is a schematic diagram of a structure of a control plane protocol message in an embodiment of the present application.
  • FIG12 is a schematic diagram of another structure of a control plane protocol message in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a first control plane protocol message in an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of a third control plane protocol message in an embodiment of the present application.
  • FIG15 is another schematic diagram of the structure of the first control plane protocol message in an embodiment of the present application.
  • FIG16 is another schematic diagram of the structure of the third control plane protocol message in an embodiment of the present application.
  • FIG17 is a schematic diagram of a structure of a first control plane protocol message in an embodiment of the present application.
  • FIG18 is a schematic diagram of a structure of a third control plane protocol message in an embodiment of the present application.
  • FIG19 is another schematic diagram of the structure of the first control plane protocol message in an embodiment of the present application.
  • FIG20 is another schematic diagram of the structure of the third control plane protocol message in an embodiment of the present application.
  • FIG21 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG22 is a schematic diagram of the architecture of another communication system provided in an embodiment of the present application.
  • FIG23 is a schematic diagram of the structure of a communication device 2300 provided in an embodiment of the present application.
  • FIG24 is a schematic diagram of the structure of a communication device 2400 provided in an embodiment of the present application.
  • FIG25 is a schematic diagram of the structure of a communication device 2500 provided in an embodiment of the present application.
  • FIG. 26 is a schematic diagram of a network system 2600 proposed in an embodiment of the present application.
  • the naming or numbering of the steps in the present application does not mean that the steps in the method flow must be executed in the time/logical sequence indicated by the naming or numbering.
  • the process steps that have been named or numbered can change the execution order according to the technical purpose to be achieved, as long as the same or similar technical effects can be achieved.
  • the division of units in this application is a logical division. There may be other division methods when it is implemented in actual applications. For example, multiple units can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, and the indirect coupling or communication connection between units can be electrical or other similar forms, which are not limited in this application.
  • the units or sub-units described as separate components may or may not be physically separated, may or may not be physical units, or may be distributed in multiple circuit units, and some or all of the units may be selected according to actual needs to achieve the purpose of the present application.
  • Fig. 1a is a schematic diagram of the architecture of a REVP-TE technology provided in an embodiment of the present application, as shown in Fig. 1a, the REVP-TE technology can be applied to the provider edge device (PE) and the provider backbone device (P) shown in Fig. 1a.
  • PE provider edge device
  • P provider backbone device
  • the message When a device using REVP-TE technology forwards a message, the message includes two layers of MPLS labels, as shown in Figure 1a, including a tunnel label and a pseudo wire (PW) label.
  • the outer tunnel label is exchanged hop by hop.
  • the tunnel source node generates the pseudo wire label, and the tunnel sink node terminates the pseudo wire label.
  • the tunnel source node initiates RSVP and applies to the intermediate node for MPLS labels, QoS bandwidth resources, etc. After applying for resources, the intermediate node continues to apply to the downstream for resources until it reaches the tunnel sink node.
  • MPLS-TP technology is applied to bearer networks such as packet transport network (PTN), secret private network (SPN), and multi-service transport platform (MSTP), see FIG1b, which is a schematic diagram of the architecture of an MPLS-TP technology provided in an embodiment of the present application. As shown in FIG1b, MPLS-TP technology can be applied to the PE and P shown in FIG1b.
  • PTN packet transport network
  • SPN secret private network
  • MSTP multi-service transport platform
  • the message When a device using MPLS-TP technology forwards a message, the message includes two layers of MPLS labels, as shown in Figure 1b, including a tunnel label and a pseudowire label.
  • the outer tunnel label is exchanged hop by hop.
  • the tunnel source node generates a pseudowire label, and the tunnel sink node terminates the pseudowire label.
  • the controller allocates MPLS labels, QoS bandwidth resources, etc. to devices on the MPLS-TP tunnel path, and centrally controls the entire resource allocation and release process.
  • MPLS-TP tunnels are static tunnels and do not support dynamic rerouting.
  • SR source routing technology allocates segments to each node or link.
  • the head node combines these segments into a segment sequence and guides the message to be forwarded according to the segment sequence.
  • SR source routing technology has the advantages of simplified control protocol, good scalability, programmability and high reliability, so its application is becoming more and more extensive. Specifically:
  • the simplification of the control protocol is reflected in the following aspects: only the Interior Gateway Protocol (IGP) is used as the control protocol. Unlike MPLS, it no longer needs to use Label Distribution Protocol (LDP), RSVP-TE and other protocols on the basis of IGP, which reduces the complexity of operation and maintenance.
  • IGP Interior Gateway Protocol
  • LDP Label Distribution Protocol
  • RSVP-TE RSVP-TE
  • other protocols on the basis of IGP, which reduces the complexity of operation and maintenance.
  • RSVP-TE is generally used in traditional implementation of path programming.
  • Each node in the network must sense the status of each path, which limits the specifications of TE tunnels and makes deployment and maintenance difficult.
  • SR path programming is performed at the head node. Massive paths all rely on the combination of limited segments.
  • the intermediate nodes in the network are almost unaware of the path status, which has high scalability.
  • the segments in SR are similar to computer instructions. By arranging the segments, functions similar to computer instructions can be realized. It has very good flexibility and can flexibly establish paths that meet different needs, fully reflecting the value of the network.
  • SR can provide fast re-route (FRR) protection with almost 100% network coverage, and can achieve complete reliability protection under the premise of high scalability.
  • Performance statistics cannot be performed based on SR tunnels.
  • tunnel intermediate nodes are lost, such as possible hop-by-hop delay measurement, service mirroring, service loopback and other extended capabilities.
  • SR technology may include MPLS SR technology and SRv6 technology.
  • the inband operation administration and maintenance (OAM) for MPLS SR technology can extend the identifier that identifies the service flow at the bottom of the SR List stack, so that the intermediate nodes of the tunnel can identify, identify, and process the service flow.
  • OAM inband operation administration and maintenance
  • the inband OAM for SRv6 technology can extend the identifier that identifies the service flow at the bottom of the segment routing header (SRH) stack, so that the intermediate nodes of the tunnel can identify, identify, and process the service flow.
  • SRH segment routing header
  • a method is currently proposed to add identification information of reserved resources to the message header of the service message.
  • the intermediate node After receiving the service message, the intermediate node configures the reserved resources according to the identification information of the reserved resources and uses the reserved resources to process the service message.
  • the message header of the service message needs to carry more information, resulting in redundancy of forwarding plane information.
  • the reserved resources are configured based on the identification information of the reserved resources, consuming a large amount of resources of the communication device. Therefore, the above method seriously affects the communication performance and causes a decrease in communication efficiency.
  • an embodiment of the present application provides a resource configuration method and device.
  • the resource configuration method and device provided in the embodiments of the present application can be applied to business scenarios carried by the fifth generation mobile communication technology (5G), business scenarios carried by government and enterprise dedicated lines, business scenarios carried by cloud networks or computing power, and business scenarios carried by home broadband.
  • 5G fifth generation mobile communication technology
  • business scenarios carried by government and enterprise dedicated lines business scenarios carried by government and enterprise dedicated lines
  • business scenarios carried by cloud networks or computing power business scenarios carried by home broadband.
  • FIG 2 is a schematic diagram of a possible application scenario provided by an embodiment of the present application.
  • PE1, PE2, P1, P2, P3 and P4 belong to IGP domain 1
  • PE3, PE4, P3, P4, P5 and P6 belong to IGP domain 2
  • P3 and P4 are cross-domain nodes of IGP domain 1 and IGP domain 2.
  • PE1 is connected to PE2 and P1 respectively, P1 is connected to PE1 and P3 respectively, P2 is connected to PE2 and P4 respectively, P3 is connected to P1, P4 and P5 respectively, P4 is connected to P2, P3 and P6 respectively, P5 is connected to P3 and PE3 respectively, P6 is connected to P4 and PE4 respectively, PE3 is connected to PE4 and P5 respectively, and PE4 is connected to PE3 and P6 respectively.
  • an end-to-end SR tunnel is deployed across IGP domain 1 and IGP domain 2.
  • the SR tunnel mentioned here can be an MPLS SR tunnel or an SRv6 path.
  • traffic can be directed to an MPLS SR tunnel through an MPLS SR policy, or to a corresponding SRv6 path through an SRv6 policy.
  • the first communication device in the embodiment of the present application refers to the head node in the forwarding path of the message, or the head node of the service flow path to which the message belongs, such as PE1 shown in Figure 2.
  • the second communication device in the embodiment of the present application refers to the intermediate node or tail node in the forwarding path of the message, or the intermediate node or tail node of the service flow path to which the message belongs, such as P1, P3, P4, P6, or PE4 shown in Figure 2.
  • the communication device mentioned in the embodiments of the present application can be a network device such as a switch, a router, or a component of a network device, such as a single board or a line card on the network device, or a functional module on the network device, or a chip for implementing the method of the present application, which is not specifically limited in the embodiments of the present application.
  • the communication devices can be directly connected, for example, but not limited to, via an Ethernet cable or an optical cable.
  • the controller mentioned in the embodiment of the present application may also be a device or network manager running a network management system (NMS).
  • NMS network management system
  • the source of the intermediate node obtaining the first resource configuration information it can be specifically divided into: A.
  • the intermediate node obtains the first resource configuration information from the head node; B.
  • the intermediate node obtains the first resource configuration information from the controller. The following are respectively described.
  • the intermediate node obtains the first resource configuration information from the head node.
  • FIG. 3 is a schematic diagram of signaling interaction of a resource configuration method in an embodiment of the present application.
  • a resource configuration method proposed in an embodiment of the present application includes:
  • a second communication device obtains first identification information and first resource configuration information from a controller.
  • the second communication device obtains the first identification information and the first resource configuration information from the controller, which may specifically include: the controller actively allocates the first identification information to the second communication device, and the configuration information of the resource having a corresponding relationship with the first identification information.
  • the configuration information of the resource having a corresponding relationship with the first identification information is referred to as the first resource configuration information.
  • the second communication device may also send a request to the controller (requesting to configure the resource corresponding to the first identification information), and the controller sends the first resource configuration information to the second communication device in response to the request.
  • the controller when the controller creates an SRv6policy forwarding path, the controller assigns first identification information to the SRv6policy forwarding path, and the controller assigns resources corresponding to the first identification information to the SRv6policy forwarding path. Specifically, the controller sends the first identification information and the first resource configuration information to the second communication device (i.e., the head node of the forwarding path).
  • the controller allocates the first identification information and the resources corresponding to the first identification information to the created SRv6policy forwarding path. For example, the user requires SRv6policy#1 to perform hop-by-hop bandwidth reservation and flow-by-flow SLA measurement. The controller, in response to the user's request, allocates the first identification information and the resources corresponding to the first identification information to SRv6policy#1.
  • the first identification information in the embodiment of the present application is used to uniquely identify a forwarding path or a service flow transmitted on the forwarding path.
  • the first identification information is represented by one or more bits, for example, a bitmap is used to represent the first identification information, or a binary value is used to represent the first identification information.
  • the first identification information can be obtained according to the SID list in the SRH included in the SRv6 message.
  • the SID list can be calculated using a digest algorithm, and the calculated result is used as the first identification information.
  • the digest algorithm includes but is not limited to a hash algorithm.
  • the combination of the SID list and the source IP address can uniquely identify an end-to-end SRv6 path, and therefore, the first identification information can be obtained based on the SID list and the source IP address.
  • the SID list and the source IP address can be concatenated, and the content obtained after the concatenation can be calculated using a digest algorithm, and the calculated result is used as the first identification information.
  • the forwarding path when the message transmitted in the forwarding path is an SRv6 message, the forwarding path may correspond to an SRv6 policy.
  • the SRv6 policy may correspond to an SRv6 path, so the first identification information may be obtained according to the SRv6 policy corresponding to the SRv6 message.
  • the SRv6 policy may be calculated using a digest algorithm, and the calculated result may be used as the first identification information.
  • the first identification information can be obtained according to the source IP address, destination IP address and color attribute corresponding to the SRv6policy.
  • the source IP address, destination IP address and color attribute corresponding to the SRv6policy can be concatenated, and the concatenated content can be calculated using a digest algorithm, and the calculated result can be used as the first identification information.
  • the first identification information may be a random number.
  • a unique random number within a certain range may be generated according to a specific algorithm, and the random number may be used as the first identification information.
  • a unique random number within the first communication device may be generated according to a specific algorithm, and the random number may be used as the first identification information.
  • the resources involved in the embodiments of the present application can be understood as processing resources (or reserved resources) reserved by nodes.
  • the resources include resources required when the node forwards messages or business flows, or resources required when the node counts performance parameters.
  • Each node in the forwarding path can configure the resource, so the resource can also be called a hop-by-hop reserved resource.
  • the resource indicates one or more of the following network functions: bandwidth reservation, statistical network performance, service level agreement (service level agreement, SLA) measurement, fault operation and maintenance, or fault detection.
  • SLA service level agreement
  • the node in the forwarding path performs hop-by-hop network services according to the first identification information (carrying the first identification information). For example: hop-by-hop bandwidth reservation, hop-by-hop statistical network performance, hop-by-hop SLA measurement, hop-by-hop fault operation and maintenance, or hop-by-hop fault detection.
  • the controller sends the first identification information and the first resource configuration information to the second communication device, including multiple possible implementations, which are not limited in the embodiments of the present application, and are described below by way of example:
  • the controller encapsulates the first identification information and the first resource configuration information into a control plane protocol message, and then sends the control plane protocol message to the second communication device.
  • the controller fills the first identification information and the first resource configuration information into a message (information or signaling). Then, the controller sends the message (information or signaling) filled with the first identification information and the first resource configuration information to the second communication device.
  • the above-mentioned message, message, information or signaling can be sent to the second communication device through a variety of protocols.
  • the first identification information and the first resource configuration information are transmitted through the following protocols: Path Computation Element Communication Protocol (PCEP), Border Gateway Protocol (BGP), Border Gateway Protocol-link state (BGP-LS) or Network Configuration (Netconf) protocol, etc.
  • the first identification information and the first resource configuration information sent by the controller to the second communication device are carried in the segment routing policy SR-POLICY tunnel status notification.
  • the first identification information and the first resource configuration information sent by the controller to the second communication device are carried in network layer reachability information (NLRI).
  • NLRI network layer reachability information
  • the first identification information and the first resource configuration information sent by the controller to the second communication device are carried in an object of the PCEP.
  • the first identification information and the first resource configuration information sent by the controller to the second communication device are carried in an SR message or an SRv6 message.
  • they are carried in a newly defined type length value (TLV) field of the SR message, or in a newly defined TLV field of the SRv6 message.
  • TLV type length value
  • the second communication device sends a first control plane protocol message to the first communication device, where the first control plane protocol message includes first identification information and first resource configuration information.
  • step 302 after the second communication device receives the first identification information and the first resource configuration information from the controller, the second communication device configures the resources according to the first resource configuration information, and the second communication device saves the correspondence between the first identification information and the resources. Then, the second communication device sends a first control plane protocol message to the first communication device, and the first control plane protocol message includes the first identification information and the first resource configuration information. The first control plane protocol message instructs the first communication device to configure the resources corresponding to the first identification information according to the first resource configuration information.
  • the first control plane protocol message is a request message. The first control plane protocol message needs to be sent along the forwarding path.
  • the first control plane protocol message carries the SID list corresponding to the forwarding path, and the first control plane protocol message is transmitted from the head node to the tail node along the forwarding path under the instruction of the SID list.
  • the SID list can be an SR list or an SRv6 list, which is not limited in the embodiments of the present application.
  • the first control plane protocol message to carry the first identification information and the first resource configuration information, which are described below respectively:
  • a newly added field of the first control plane protocol message carries the first identification information and the first resource configuration information.
  • a newly defined option type length value option TLV field in the first control plane protocol message carries the first identification information and the first resource configuration information.
  • the first control plane protocol message carries the first identification information and the first resource configuration information in different fields.
  • the flow label field of the first control plane protocol message carries the first identification information
  • the newly defined option TLV field in the first control plane protocol message carries the first resource configuration information.
  • the first control plane protocol message carries the first identification information and the first resource configuration information in a payload.
  • the following describes how the first control plane protocol message specifically carries the first identification information and the first resource configuration information.
  • control plane protocol message in the embodiment of the present application (including the first control plane protocol message, the second control plane protocol message and the third control plane protocol message) is introduced.
  • the control plane protocol message in the embodiment of the present application can be an SRv6 message.
  • the control plane protocol message includes: an IPv6 header, a hop-by-hop (HBH) option header and a segment routing header (Segment Routing Header, SRH), SRH is also called a segment routing extension header.
  • the SRH header includes a segment list of the control plane protocol message, and the segment list indicates the forwarding path of the control plane protocol message.
  • the newly defined option type length value option TLV field (including the first option TLV field, the second option TLV field and the third option TLV field) in the embodiment of the present application is carried in the HBH field or the DOH field.
  • the HBH header or DOH header may include a next header field, an extended header length (Hdr Ext Len) field, and an options field.
  • the next header field is used to indicate the type of the next header.
  • the next header field indicates HBH or DOH.
  • Hdr Ext Len indicates the length of other fields in the HBH header or DOH header except the next header field.
  • the options field can be a combination of a series of option fields and padding fields.
  • the options field can be embodied as an options type length value (TLV) field, which can specifically include an option type field, an option data length field, and an option data field.
  • TLV options type length value
  • the newly defined option type length value option TLV field (including the first option TLV field, the second option TLV field and the third option TLV field) in the embodiment of the present application is carried in the SRH header.
  • Figure 12 is a schematic diagram of another structure of a control plane protocol message in an embodiment of the present application.
  • Field, this newly added field carries the option type length value option TLV field newly defined in the embodiment of the present application.
  • the first option TLV field includes: an option type option type field, an option data length option data length field and an option data option data field; the option type field of the first option TLV field is used to carry the type information of the first control plane protocol message, and the type information of the first control plane protocol message indicates that the first control plane protocol message carries the first resource configuration information.
  • the option data field of the first option TLV field is used to carry the first identification information and the first resource configuration information.
  • the first option TLV field can be carried in the hop-by-hop (HBH) option header of the IPv6 header, or in the destination option header (DOH) of the IPv6 header.
  • HBH hop-by-hop
  • DOH destination option header
  • Figure 13 is a schematic diagram of the structure of the first control plane protocol message in an embodiment of the present application.
  • the next header field of the IPv6 header points to the HBH header or the DOH header.
  • the first option TLV field is included.
  • the option data field of the first option TLV field may include: the first resource configuration information.
  • FIG. 15 is another structural diagram of the first control plane protocol message in an embodiment of the present application.
  • the first option TLV field may also be carried in a segment routing header (Segment Routing Header, SRH), which is also called a segment routing extension header.
  • SRH Segment Routing Header
  • FIG17 is a schematic diagram of a structure of a first control plane protocol message in an embodiment of the present application.
  • the option data field of the first option TLV field may include: the first resource configuration information.
  • Figure 19 is another structural diagram of the first control plane protocol message in the embodiment of the present application.
  • the first communication device configures resources according to the first resource configuration information, and saves the correspondence between the first identification information and the resources.
  • step 303 after the first communication device receives the first control plane protocol message, the first communication device configures the resource according to the first identification information and the first resource configuration information carried in the first control plane protocol message. Then, the first communication device saves the corresponding relationship between the first identification information and the resource.
  • the first identification information is "circuit ID 1", and the forwarding path corresponding to “circuit ID 1" is “circuit 1" for example.
  • the first resource configuration information instructs each node in the forwarding path “circuit 1" to perform the following actions when transmitting the service flow of the forwarding path "circuit 1": the committed information rate (CIR) of the service flow of "circuit 1" is 100 megabits per second (Mbps), the peak information rate (PIR) of the service flow of "circuit 1" is 1 gigabit per second (Gbps), the number of data packets or bytes of the forwarding path "circuit 1" is counted, and the service flow in the forwarding path "circuit 1" is detected along the flow.
  • the first resource configuration information can be: “CIR 100Mbps, PIR 1Gbps, counter enable (counter enable information), iFIT enable (on-flow detection enable information)”.
  • the first communication device configures the resource according to the first resource configuration information, which means that the first communication device reserves the resource according to the first resource configuration information. For example, if the first resource configuration information includes reserving 500Mbps bandwidth, the first communication device reserves 500Mbps bandwidth for the forwarding path corresponding to the first resource configuration information.
  • the first communication device also needs to save the correspondence between the first identification information and the resource.
  • the resource corresponding to the service message can be determined from one or more saved correspondences according to the first identification information carried in the service message. For example, please refer to Table 1, which indicates the correspondence between the first identification information and the resource saved by the first communication device.
  • the first communication device sends a third control plane protocol message to the second communication device, where the third control plane protocol message reports a resource configuration result.
  • step 304 after the first communication device configures resources in response to the first control plane protocol message and maintains the corresponding relationship between the resources and the first identification information, the first communication device may report the resource configuration result to the second communication device.
  • the second communication device sends a third control plane protocol message, wherein the third control plane protocol message is used to report the configuration result of the resource to the second communication device.
  • the third control plane protocol message is a response message.
  • the first communication device uses the source IP address (SIP) of the service message transmitted in the forwarding path as the target IP address (DIP) of the third control plane protocol message, and the IP address is the IP address of the second communication device.
  • SIP source IP address
  • DIP target IP address
  • the transmission path carrying the first control plane protocol message is called forwarding path 1
  • the third control plane protocol message is transmitted to the second communication device through forwarding path 1'
  • forwarding path 1' is the reverse path of forwarding path 1.
  • the SID list carried by the third control plane protocol message indicates forwarding path 1'.
  • the third control plane protocol message carries the first identification information and the configuration result of the resource.
  • the configuration result of the resource includes any one or more of the following: bandwidth resources allocated by the first communication device to the forwarding path corresponding to the first identification information, flow statistics resources allocated by the first communication device to the forwarding path corresponding to the first identification information, or SLA detection resources allocated by the first communication device to the forwarding path corresponding to the first identification information, etc.
  • the third control plane protocol message Similar to the first control plane protocol message, there are multiple possible implementations for the third control plane protocol message to carry the first identification information and the configuration result of the resource, which are described below respectively:
  • a newly added field of the third control plane protocol message carries the first identification information and the configuration result of the resource.
  • a newly defined option type length value option TLV field in the third control plane protocol message carries the first identification information and the configuration result of the resource.
  • the third control plane protocol message carries the first identification information and the resource configuration result in different fields.
  • the flow label field of the third control plane protocol message carries the first identification information
  • the newly defined option TLV field in the third control plane protocol message carries the resource configuration result.
  • the payload of the third control plane protocol message carries the first identification information and the resource configuration result.
  • the third option type length value option TLV field in order to facilitate distinction in the embodiment of the present application, it is called the third option type length value option TLV field.
  • the third control plane protocol message includes a third option type length value option TLV field, and the third option TLV field includes: an option type option type field, an option data length option data length field and an option data option data field;
  • the option type field of the third option TLV field is used to carry type information of the third control plane protocol message, and the type information of the third control plane protocol message indicates that the third control plane protocol message carries the configuration result of the resource; the option data field of the third option TLV field is used to carry the first identification information and the configuration result of the resource.
  • the third option TLV field can be carried in the hop-by-hop (HBH) option header of the IPv6 header, or in the destination option header (DOH) of the IPv6 header.
  • HBH hop-by-hop
  • DOH destination option header
  • Figure 14 is a schematic diagram of the structure of the third control plane protocol message in the embodiment of the present application.
  • the next header field of the IPv6 header points to the HBH header or the DOH header.
  • the third option TLV field is included.
  • the option data field of the third option TLV field may include: the configuration result of the resource.
  • Figure 16 is another structural diagram of the third control plane protocol message in the embodiment of the present application.
  • the third option TLV field may also be carried in a segment routing header (Segment Routing Header, SRH), which is also called a segment routing extension header.
  • SRH Segment Routing Header
  • FIG18 is a schematic diagram of a structure of a third control plane protocol message in an embodiment of the present application.
  • the option data field of the third option TLV field may include: the configuration result of the resource.
  • Figure 20 is another structural schematic diagram of the third control plane protocol message in the embodiment of the present application.
  • the second communication device sends a service message to the first communication device, where the service message includes first identification information.
  • step 305 the second communication device sends a service message to the first communication device, where the service message includes first identification information, and the transmission path of the service message is the forwarding path identified by the first identification information.
  • the second communication device may receive a service message from an upstream node.
  • the embodiment of the present application does not specifically limit the upstream node.
  • the node may be, for example, customer-premises equipment (CPE).
  • CPE customer-premises equipment
  • the second communication device fills the first identification information in the service message, and the second communication device forwards the service message carrying the first identification information to the first communication device.
  • a possible implementation method is as follows: the service message adds an option TLV field, and the newly added option TLV field is called the fourth option TLV field.
  • the option type field of the fourth option TLV field indicates that the service message needs to use the resource to perform data processing, for example, the option type field includes "circuit SRv6".
  • the option data field of the fourth option TLV field includes the first identification information.
  • Figure 9 is a schematic diagram of the structure of the fourth option TLV field.
  • the HBH header included in the service message carries the first identification information
  • the HBH header included in the service message carries the fourth option TLV field.
  • the DOH header included in the service message carries the first identification information
  • the DOH header included in the service message carries the fourth option TLV field.
  • the SRH header included in the service message carries the first identification information
  • the SRH header included in the service message carries the fourth option TLV field.
  • Another possible implementation method is as follows: the flow label field in the IPv6 header of the service message carries the first identification information.
  • the first communication device determines resources according to the first identification information carried in the service message.
  • the first communication device parses the service message to obtain the first identification information included in the service message.
  • the first communication device finds the resource corresponding to the first identification information from the corresponding relationship (the corresponding relationship between the first identification information and the resource) locally stored by the first communication device according to the first identification information included in the service message.
  • the first communication device uses the resource to process the service message.
  • the processing method is determined according to the network service indicated by the resource. For example, when the resource indicates the execution of SLA measurement, the first communication device performs SLA measurement on the service message or the service flow carrying the service message. For another example, when the resource indicates the reserved bandwidth, the first communication device transmits the service message in the reserved bandwidth indicated by the resource. For another example, when the resource indicates the bandwidth speed limit, when the first communication device transmits the service message, the bandwidth of the service message meets the bandwidth speed limit indicated by the resource.
  • a first communication device receives the first control plane protocol message, and the first control plane protocol message carries first identification information and first resource configuration information.
  • the resources configured according to the first resource configuration information are hop-by-hop reserved resources.
  • the first communication device saves the correspondence between the first identification information and the resources.
  • the above method can reduce the redundancy of forwarding plane information, reduce the information carried by the message header of the service message, and improve communication efficiency.
  • the controller allocates unique first identification information to the end-to-end forwarding path or service flow, and the first identification information has a corresponding relationship with the resource.
  • the intermediate node or the tail node receives the service message carrying the first identification information, it can find the resource according to the first identification information, and then perform data processing on the service message.
  • hop-by-hop resource reservation is realized without running the resource reservation protocol, thereby reducing the performance requirements for the communication device.
  • the first communication device After the first communication device receives the service message, it can also detect whether the local (first communication device) saves the correspondence between the first identification information and the resource. When the local of the first communication device does not save the correspondence between the first identification information and the resource, the first communication device can also request the second communication device to configure the resource corresponding to the first identification information.
  • Figure 4 is a signaling interaction diagram of a resource configuration method in an embodiment of the present application.
  • a resource configuration method proposed in an embodiment of the present application also includes:
  • a first communication device receives a service message from a second communication device, where the service message includes first identification information.
  • Step 401 is similar to the aforementioned step 305 and is not described in detail here.
  • step 402 after the first communication device receives the service message, it parses the service message to obtain the first identification information stored in the service message. Then the first communication device detects whether the correspondence between the first identification information and the resource is stored locally. When the first communication device stores the correspondence between the first identification information and the resource locally, it proceeds to step 404; when the first communication device does not store the correspondence between the first identification information and the resource locally, it proceeds to step 403.
  • the first communication device sends a second control plane protocol message to the second communication device, where the second control plane protocol message includes first identification information, and the second control plane protocol message is used to request the head node for resources corresponding to the first identification information.
  • step 403 since the first communication device does not locally store the correspondence between the first identification information and the resource, the first communication device cannot locally obtain the resource corresponding to the first identification information. Therefore, the first communication device can also request the second communication device to configure the resource corresponding to the first identification information. Specifically, the first communication device sends a second control plane protocol message to the second communication device, the second control plane protocol message includes the first identification information, and the second control plane protocol message is used to request the second communication device for the resource corresponding to the first identification information.
  • the second control plane protocol message includes the first identification information and indication information of requesting to configure the resources corresponding to the first identification information.
  • a new option TLV field is added in the second control plane protocol message, and the newly added option TLV field is called the second option TLV field.
  • the second option type length value option TLV field for example, please refer to Figure 10, which is a schematic diagram of the structure of the second option type length value option TLV field.
  • the second control plane protocol message includes a second option type length value option TLV field, and the second option TLV field includes: an option type option type field, an option data length option data length field and an option data option data field;
  • the option type field of the second option TLV field is used to carry type information of the second control plane protocol message, and the type information of the second control plane protocol message indicates that the second control plane protocol message is used to request the resource corresponding to the first identification information; the option data field of the second option TLV field is used to carry the first identification information.
  • the second option TLV field can be carried in the HBH field or the DOH field, and the second option TLV field can also be carried in the SRH header, which is not restricted in this application.
  • the first communication device processes the service message according to the resources.
  • step 404 the second communication device sends a first control plane protocol message to the first communication device in response to the second control plane protocol message.
  • the first communication device configures resources in response to the first control plane protocol message and saves the corresponding relationship between the resources and the first identification information.
  • the first communication device processes the service message (the service message carries the first identification information) according to the resources.
  • the specific method is similar to steps 303, 304 and 306 above, and will not be repeated here.
  • the first communication device when the first communication device has not locally configured resources corresponding to the first identification information, and the first communication device has not locally saved the corresponding relationship between the first identification information and the resources, the first communication device may also send a second control plane protocol message to the second communication device.
  • the second control plane protocol message is used to request the configuration of resources corresponding to the first identification information.
  • the intermediate node obtains the first resource configuration information from the controller.
  • a resource configuration method proposed in an embodiment of the present application includes:
  • a controller sends a first control plane protocol message to a first communication device, where the first control plane protocol message includes first identification information and first resource configuration information.
  • the first communication device obtains the first identification information and the first resource configuration information from the controller, which may specifically include: the controller actively allocates the first identification information to the first communication device, and the configuration information of the resource having a corresponding relationship with the first identification information.
  • the configuration information of the resource having a corresponding relationship with the first identification information is referred to as the first resource configuration information.
  • the first communication device may also send a request to the controller (requesting to configure the resource corresponding to the first identification information), and the controller sends the first resource configuration information to the first communication device in response to the request.
  • step 501 the controller sends the first identification information and the first resource configuration information to the first communication device in the form of a first control plane protocol message. Similarly, the controller sends the first control plane protocol message to the second communication device, and the second communication device responds to the first control plane protocol message, configures the resource and saves the corresponding relationship between the first identification information and the resource.
  • the controller sends a first control plane protocol message (including first identification information and first resource configuration information) to the first communication device, which is similar to the controller sending the first identification information and first resource configuration information to the second communication device in the aforementioned step 301, and is not repeated here.
  • the first communication device configures resources according to the first resource configuration information, and saves the correspondence between the first identification information and the resources.
  • Step 502 is similar to the aforementioned step 303 and will not be described in detail here.
  • the controller sends a service message to the first communication device, where the service message includes first identification information.
  • the first communication device determines resources according to the first identification information carried in the service message.
  • Step 503 - Step 504 are similar to the aforementioned step 305 - Step 306 and are not described in detail here.
  • the controller may also send a first control plane protocol message to the first communication device and the second communication device, and the first control plane protocol message carries first identification information and first resource configuration information.
  • the first communication device and the second communication device respond to the first control plane protocol message, reserve resources for hop-by-hop according to the resources configured by the first resource configuration information, and save the correspondence between the first identification information and the resources.
  • the above method can reduce the redundancy of forwarding plane information, reduce the information carried by the message header of the service message, and improve communication efficiency.
  • the controller assigns unique first identification information to the end-to-end forwarding path or service flow, and the first identification information has a corresponding relationship with the resource.
  • the intermediate node or the tail node When the intermediate node or the tail node receives the service message carrying the first identification information, it can find the resource according to the first identification information, and then Through the above method, hop-by-hop resource reservation is realized without running a resource reservation protocol, thereby reducing the performance requirements for the communication device.
  • the first communication device After the first communication device receives the service message, it can also detect whether the local (first communication device) saves the correspondence between the first identification information and the resource. When the local of the first communication device does not save the correspondence between the first identification information and the resource, the first communication device can also request the controller to configure the resource corresponding to the first identification information.
  • Figure 6 is a signaling interaction diagram of a resource configuration method in an embodiment of the present application.
  • a resource configuration method proposed in an embodiment of the present application also includes:
  • a first communication device receives a service message from a second communication device, where the service message includes first identification information.
  • Step 601 is similar to the aforementioned step 305 and is not described in detail here.
  • Step 602 is similar to the aforementioned step 402 and is not described in detail here.
  • the first communication device sends a second control plane protocol message to the controller, where the second control plane protocol message includes first identification information, and the second control plane protocol message is used to request the head node for resources corresponding to the first identification information.
  • step 603 since the first communication device does not locally store the correspondence between the first identification information and the resource, the first communication device cannot locally obtain the resource corresponding to the first identification information. Therefore, the first communication device can also request the controller to configure the resource corresponding to the first identification information. Specifically, the first communication device sends a second control plane protocol message to the controller, the second control plane protocol message includes the first identification information, and the second control plane protocol message is used to request the second communication device for the resource corresponding to the first identification information.
  • the first communication device processes the service message according to the resources.
  • Step 604 is similar to the aforementioned step 404 and is not described in detail here.
  • the first communication device when the first communication device has not locally configured resources corresponding to the first identification information, and the first communication device has not locally saved the correspondence between the first identification information and the resources, the first communication device may also send a second control plane protocol message to the controller.
  • the second control plane protocol message is used to request the configuration of resources corresponding to the first identification information.
  • Figure 21 is a schematic diagram of the architecture of a communication system provided by the embodiment of the present application
  • Figure 22 is a schematic diagram of the architecture of another communication system provided by the embodiment of the present application.
  • the communication system may include a controller and multiple network nodes.
  • the resource configuration method provided by the embodiment of the present application is introduced.
  • the head node of the forwarding path is PE1
  • the tail node of the forwarding path is PE4.
  • the message processing behavior of each intermediate node in the forwarding path is similar, and the following description is made by taking the intermediate node P1 as an example.
  • the method provided in the embodiment of the present application may include the following steps S1-S5.
  • a controller sends first resource configuration information and first identification information to each node in a forwarding path.
  • the user configures services based on the SRv6 path through the controller and configures resources (i.e., reserved resources), for example, configuring each node in the SRv6 path to perform hop-by-hop bandwidth reservation, hop-by-hop flow SLA detection, and/or hop-by-hop fault demarcation or diagnosis.
  • resources i.e., reserved resources
  • the controller sends the first resource configuration information and the first identification information to each node in the forwarding path (ie, the SRv6 path).
  • Each node in the forwarding path configures resources in response to the first identification information and the first resource configuration information, and saves the corresponding relationship between the first identification information and the resources.
  • the controller may send the first resource configuration information and the first identification information to each node in the forwarding path through Path Computation Element Communication Protocol (PCEP), Border Gateway Protocol Segment Routing (BGP SR), or network configuration (Netconf).
  • PCEP Path Computation Element Communication Protocol
  • BGP SR Border Gateway Protocol Segment Routing
  • Networkconf network configuration
  • PE1 ie, the head node
  • PE1 configures resources and saves the corresponding relationship between the first identification information and the resources.
  • Other nodes P1, P6, and PE4 in the forwarding path also perform step S2.
  • the service message encapsulates the first identification information.
  • PE1 After PE1 obtains a service message from the previous hop node (eg, CPE), when the transmission path of the service message is the forwarding path (PE1, P1, P6, and PE4) shown in the current figure, PE1 fills the first identification information in the service message.
  • CPE previous hop node
  • PE1, P1, P6, and PE4 the forwarding path
  • S4 and PE1 send service messages to P1.
  • P1 determines resources according to the first identification information carried in the service message, and uses the resources to process the service message.
  • P1 After P1 processes the service message, it forwards the service message to P6 according to the SID list carried in the service message. P6 executes step S5, and so on, to achieve hop-by-hop network service.
  • the method provided in the embodiment of the present application may include the following steps D1-D4, for example.
  • the controller sends first resource configuration information and first identification information to the head node.
  • the head node configures resources and saves the association between the first identification information and the resources in response to the first resource configuration information and the first identification information.
  • the head node After the head node completes configuring the resources and saves the association relationship, the head node sends a first control plane protocol message to the intermediate node.
  • the first control plane protocol message carries the first resource configuration information and the first identification information.
  • the intermediate node configures resources and saves the association between the first identification information and the first resource configuration information.
  • the intermediate node After completing resource configuration and saving the association relationship, the intermediate node sends a third control plane protocol message to the head node.
  • the third control plane protocol message is used to report the resource configuration result.
  • both the intermediate node and the tail node execute the above steps D3 to D5.
  • the first communication device, the second communication device or the controller includes a hardware structure and/or software module corresponding to each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the first communication device, the second communication device or the controller according to the above method example.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated module can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • the communication device described below has any function of the first communication device, the second communication device or the controller in the above method embodiment.
  • the communication device described in the present application may be a network device such as a switch or a router, or may be a component of a network device, such as an interface board or a line card on a network device, or may be a functional module on a network device, or may be a chip system for implementing the method of the present application, which is not specifically limited in the embodiment of the present application.
  • the communication devices may be directly connected, for example, but not limited to, via an Ethernet cable or an optical fiber.
  • the transceiver module in the communication device may be, for example, an interface circuit in the chip system
  • the processing module may be, for example, a processing circuit in the chip system for performing processing operations.
  • Figure 23 is a schematic diagram of the structure of a communication device 2300 provided in an embodiment of the present application.
  • the communication device 2300 includes: a transceiver module 2301 for executing steps 301, 302, 304 or 305; a processing module 2302 for executing steps 303 or 306.
  • the transceiver module 2301 is used to execute step 401, 403 or 404; the processing module 2302 is used to execute step 402.
  • the transceiver module 2301 is used to execute step 501 or 503; the processing module 2302 is used to execute step 502 or 504.
  • the transceiver module 2301 is used to execute step 601, 603 or 604; the processing module 2302 is used to execute step 602.
  • the communication device 2300 can correspond to the first communication device, the second communication device or the controller in the above-mentioned method embodiment.
  • the various units in the communication device 2300 and the above-mentioned other operations and/or functions are respectively for implementing the various steps and methods implemented by the first communication device, the second communication device or the controller in the method embodiment.
  • the specific details can be found in the above-mentioned method embodiment. For the sake of brevity, they will not be repeated here.
  • the communication device 2300 executes the above method embodiment, only the division of the above functional modules is used as an example.
  • the above functions can be assigned to different functional modules as needed, that is, the internal structure of the communication device 2300 is divided into different functional modules to complete all or part of the functions described above.
  • the communication device 2300 provided in the above embodiment and the embodiment method corresponding to Figure 3, Figure 4, Figure 5 or Figure 6 above belong to the same concept, and its specific implementation process is detailed in the above method embodiment, which will not be repeated here.
  • the present application also provides a communication device. Please refer to Figure 24, which is provided in the embodiment of the present application. A structural diagram of a communication device 2400 is shown.
  • the communication device 2400 shown in Figure 24 shows certain specific features, those skilled in the art will realize from the embodiments of the present application that, for the sake of brevity, various other features are not shown in Figure 24 to avoid confusing more relevant aspects of the embodiments disclosed in the embodiments of the present application.
  • the communication device 2400 includes one or more processors (e.g., CPU) 2401, a network interface 2402, a programming interface 2403, a memory 2404, and one or more communication buses 2405 for interconnecting various components.
  • the communication device 2400 can also omit or increase some functional components or units based on the above examples.
  • the network interface 2402 is used to connect to one or more other communication devices/servers in the network system.
  • the communication bus 2405 includes circuits for interconnecting and controlling communication between system components.
  • the memory 2404 may include non-volatile memory, such as read-only memory (ROM), programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), or flash memory.
  • the memory 2404 may also include volatile memory, which may be random access memory (RAM), which is used as an external cache.
  • memory 2404 or a non-temporary computer-readable storage medium of memory 2404 stores the following programs, modules, and data structures, or a subset thereof, including, for example, a transceiver unit (not shown), an acquisition unit 24041 , and a processing unit 24042 .
  • the communication device 2400 may have any functions of the first communication device, the second communication device or the controller in the method embodiments corresponding to FIG. 3 , FIG. 4 , FIG. 5 or FIG. 6 .
  • the communication device 2400 corresponds to the first communication device or the second communication device or the controller in the above-mentioned method embodiment, and the various modules in the communication device 2400 and the above-mentioned other operations and/or functions are respectively for realizing the various steps and methods implemented by the first communication device or the second communication device or the control management device in the above-mentioned method embodiment.
  • the method embodiments corresponding to the above-mentioned Figures 3, 4, 5 or 6. For the sake of brevity, they will not be repeated here.
  • the data sending and receiving operations can be completed by the network interface 2402 on the communication device 2400, or the processor can call the program code in the memory and cooperate with the network interface 2402 to implement the functions of the transceiver unit when necessary.
  • the communication device 2400 is used to execute the resource configuration method provided in the embodiments of the present application, for example, to execute the resource configuration method corresponding to the embodiments shown in Figures 3, 4, 5 or 6 above.
  • FIG. 25 is a schematic diagram of the structure of a communication device 2500 provided in an embodiment of the present application.
  • the communication device 2500 includes: a main control board 2525 and an interface board 2530 .
  • the main control board 2525 is also called a main processing unit (MPU) or a route processor.
  • the main control board 2525 is used to control and manage various components in the communication device 2500, including routing calculation, device management, device maintenance, and protocol processing functions.
  • the main control board 2525 includes: a central processing unit 2515 and a memory 2516.
  • the interface board 2530 is also called a line processing unit (LPU), a line card or a service board.
  • the interface board 2530 is used to provide various service interfaces and realize the forwarding of data packets.
  • the service interfaces include but are not limited to Ethernet interfaces, POS (Packet over SONET/SDH) interfaces, etc.
  • the interface board 2530 includes: a central processing unit 2531, a network processor 2532, a forwarding table memory 2534 and a physical interface card (PIC) 2533.
  • PIC physical interface card
  • the central processor 2531 on the interface board 2530 is used to control and manage the interface board 2530 and communicate with the central processor 2515 on the main control board 2525 .
  • the network processor 2532 is used to implement message forwarding processing.
  • the network processor 2532 may be in the form of a forwarding chip.
  • the physical interface card 2533 is used to implement the docking function of the physical layer, and the original traffic enters the interface board 2530 from it, and the processed message is sent from the physical interface card 2533.
  • the physical interface card 2533 includes at least one physical interface, which is also called a physical port.
  • the physical interface can be a Flexible Ethernet (FlexE) physical interface.
  • the physical interface card 2533 is also called a daughter card, which can be installed on the interface board 2530 and is responsible for converting the optical signal into a message and forwarding the message to the network processor 2532 for processing after checking the legitimacy of the message.
  • the central processor 2531 of the interface board 2530 can also perform the functions of the network processor 2532, such as implementing software forwarding based on a general-purpose CPU, so that the network processor 2532 is not required in the interface board 2530.
  • the communication device 2500 includes multiple interface boards.
  • the communication device 2500 also includes an interface board 2540 .
  • the interface board 2540 includes: a central processor 2541 , a network processor 2542 , a forwarding table entry memory 2544 , and a physical interface card 2543 .
  • the communication device 2500 further includes a switching fabric board 2520.
  • the switching fabric board 2520 may also be referred to as a switch fabric unit (SFU).
  • SFU switch fabric unit
  • the switching fabric board 2520 is used to complete data exchange between the interface boards.
  • the interface board 2530 and the interface board 2540 may communicate through the switching fabric board 2520.
  • the main control board 2525 is coupled to the interface board.
  • the main control board 2525, the interface board 2530, the interface board 2540, and the switching network board 2520 are connected to each other through a system bus and/or a system backplane to achieve intercommunication.
  • an inter-process communication (IPC) channel is established between the main control board 2525 and the interface board 2530, and the main control board 2525 and the interface board 2530 communicate through the IPC channel.
  • IPC inter-process communication
  • the communication device 2500 includes a control plane and a forwarding plane.
  • the control plane includes a main control board 2525 and a central processing unit 2531.
  • the forwarding plane includes various components for performing forwarding, such as a forwarding table entry memory 2534, a physical interface card 2533, and a network processor 2532.
  • the control plane performs functions such as publishing routes, generating forwarding tables, processing signaling and protocol messages, and configuring and maintaining the status of the device.
  • the control plane sends the generated forwarding table to the forwarding plane.
  • the network processor 2532 forwards the message received by the physical interface card 2533 based on the forwarding table sent by the control plane.
  • the forwarding table sent by the control plane can be stored in the forwarding table entry memory 2534. In some embodiments, the control plane and the forwarding plane can be completely separated and not on the same device.
  • the transceiver unit in the communication device 2400 can be equivalent to the physical interface card 2533 or the physical interface card 2543 in the communication device 2500; the acquisition unit 24041 and the processing unit 24042 in the communication device 2400 can be equivalent to the central processing unit 2515 or the central processing unit 2531 in the communication device 2500, and can also be equivalent to the program code or instructions stored in the memory 2516.
  • the operation on the interface board 2540 in the embodiment of the present application is consistent with the operation of the interface board 2530, and for the sake of brevity, it will not be repeated.
  • the communication device 2500 of this embodiment can correspond to the first communication device, the second communication device or the controller in the above-mentioned various method embodiments, and the main control board 2525, the interface board 2530 and/or the interface board 2540 in the communication device 2500 can implement the functions and/or various steps implemented by the first communication device, the second communication device or the controller in the above-mentioned various method embodiments, and for the sake of brevity, it will not be repeated here.
  • main control boards there may be one or more main control boards, and when there are multiple boards, they may include a main main control board and a standby main control board. There may be one or more interface boards. The stronger the data processing capability of the communication device, the more interface boards are provided. There may also be one or more physical interface cards on the interface board. There may be no switching network board, or there may be one or more switching network boards. When there are multiple switching network boards, load sharing and redundant backup can be achieved together. Under the centralized forwarding architecture, the communication device may not need a switching network board, and the interface board bears the processing function of the service data of the entire system.
  • the communication device may have at least one switching network board, and the data exchange between multiple interface boards is realized through the switching network board, providing large-capacity data exchange and processing capabilities.
  • the form of the communication device may also be only one board, that is, there is no switching network board, and the functions of the interface board and the main control board are integrated on the board.
  • the central processor on the interface board and the central processor on the main control board can be merged into one central processor on the board to perform the functions of the two superimposed. Which architecture is adopted depends on the specific networking deployment scenario, and it is not limited here.
  • the first communication device, the second communication device or the controller may be implemented as a virtualized device.
  • the virtualized device may be a virtual machine (VM), a virtual router or a virtual switch running a program for sending a message.
  • the virtualized device is deployed on a hardware device (e.g., a physical server).
  • a hardware device e.g., a physical server.
  • the first communication device, the second communication device or the controller may be implemented based on a general physical server in combination with network functions virtualization (NFV) technology.
  • NFV network functions virtualization
  • the communication devices in the above-mentioned various product forms respectively have any functions of the first communication device, the second communication device or the controller in the above-mentioned method embodiment, which will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, including instructions, which, when executed on a computer, enables the computer to control a network device to execute any one of the implementation methods shown in the aforementioned method embodiments.
  • the embodiments of the present application also provide a computer program product, which includes a computer program code.
  • the computer program code runs on a computer, the computer executes any one of the implementation methods shown in the aforementioned method embodiments.
  • an embodiment of the present application also provides a computer program product, which, when executed on a communication device, enables the communication device to execute the method executed by the first communication device, the second communication device, or the controller in the method embodiments corresponding to Figures 3, 4, 5, or 6.
  • the embodiment of the present application further provides a chip system, including a processor and an interface circuit, wherein the interface circuit is used to receive instructions and transmit them to the processor.
  • the processor is used to implement the method in any of the above method embodiments.
  • the chip system further includes a memory
  • the processor in the chip system may be one or more.
  • the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.
  • the processor may be a general-purpose processor that implements the method in any of the above method embodiments by reading the software code stored in the memory.
  • the memory in the chip system may be one or more.
  • the memory may be integrated with the processor or may be separately provided with the processor, which is not limited in this application.
  • the memory may be a non-transient processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip or may be provided on different chips. This application does not specifically limit the type of memory and the configuration of the memory and the processor.
  • FIG. 26 is a schematic diagram of a network system 2600 proposed in an embodiment of the present application.
  • the network system 2600 includes: a first communication device 2601, a second communication device 2602 and a controller 2603.
  • the first communication device 2601 and the second communication device 260 can be, for example, physical devices such as routers, switches or gateways, or virtual devices that support route publishing and message forwarding. This embodiment does not limit the specific types of the first communication device 2601 and the second communication device 2602.
  • the controller 2603 can be a server that manages the above-mentioned first communication device 2601 and the second communication device 2602.
  • the first communication device 2601 may be the communication device 2300 , the communication device 2400 , or the communication device 2500 .
  • the second communication device 2602 may be the communication device 2300 , the communication device 2400 , or the communication device 2500 .
  • the communication devices in the above-mentioned various product forms respectively have any functions of the network devices in the above-mentioned method embodiments, which will not be described in detail here.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B can also be determined according to A and/or other information.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例公开一种资源配置方法以及相关装置。该方法包括:第一通信装置接收第一控制面协议报文,第一控制面协议报文携带第一标识信息和第一资源配置信息。第一通信装置配置资源,第一标识信息与资源具有对应关系。第一通信装置保存第一标识信息与资源的对应关系。通过上述方法可以减少转发面信息的冗余,减少业务报文的报文头携带的信息,提升通信效率。通过上述方法,实现逐跳资源预留,无需运行资源预留协议,从而降低了对通信装置的性能需求。

Description

一种资源配置方法和装置
本申请要求于2022年11月17日提交国家知识产权局、申请号为CN202211441671.2、发明名称为“一种资源配置方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种资源配置方法和装置。
背景技术
在业务报文转发过程中,段路由(segment routing,SR)节点基于互联网协议第6版-段路由(Internet Protocol Version6-Segment Routing,IPv6SR或SRv6)的段路由流量工程策略(segment routing traffic engineering policy,SR-TE Policy,又称为SRv6policy)提供的灵活选择转发路径的方式,可满足用户不同的转发需求。当头节点与尾节点之间存在多条转发路径时,合理利用SR-TE Policy选择转发路径,不仅方便管理人员对网络进行管理和规划,还可有效地减轻网络设备的转发压力。
当前,一种常用的SRv6技术是SRv6路径段(SRv6path segment)。在SRv6path segment技术中,基于路径段(path segment)区分不同转发路径。具体的,path segment与一条转发路径关联。转发路径中的尾节点为该转发路径分配path segment,该转发路径中的头节点将该分配的path segment压入业务报文的段路由扩展头(segment routing header,SRH),实现尾节点识别不同的转发路径。基于path segment,转发路径的尾节点可以识别数据流的转发路径,从而支持对转发路径的时延和丢包率等性能参数的测量,进而实现网络性能的实时可视化。
申请人研究发现,在SRv6path segment中,由于path segment是基于SRv6段标识(Segment ID,SID)拓展得到,且path segment由转发路径的尾节点分配。对于不同的尾节点所分配的path segment的值可能发生冲突,例如尾节点#1为转发路径#1分配path segment#1,尾节点#2为转发路径#2分配path segment#1。因此,中间节点根据path segment无法识别不同的转发路径。进而,无法实现转发路径中逐跳的路径带宽预留、逐跳的网络性能测量或者逐跳的网络故障诊断等。
发明内容
第一方面,本申请实施例提供了一种资源配置方法,所述方法应用于第一通信装置,所述第一通信装置用作转发路径中的中间节点或尾节点,包括:接收第一控制面协议报文,所述第一控制面协议报文包括第一标识信息和第一资源配置信息,所述第一标识信息用于唯一标识所述转发路径或所述转发路径上传输的一条业务流;根据所述第一资源配置信息,配置资源;保存所述第一标识信息与所述资源的对应关系。
本申请实施例中的第一标识信息用于唯一标识转发路径或者转发路径上传输的一条业务流。该第一标识信息存在多种可能的实现方式,在一种可能的实现方式中,第一标识信息通过一个或多个比特表示,例如,采用位图(bitmap)来表示第一标识信息,或者采用二进制取值的方式来表示第一标识信息。
本申请实施例中涉及的资源,可以理解为节点预留的处理资源(或者预留资源,或者逐跳预留资源)。该资源包括节点转发报文或者业务流时所需要的资源,或者节点在统计性能参数时所需的资源。转发路径中的每个节点均可以配置该资源,因此,该资源也可以称为逐跳的预留资源。该资源指示以下一项或多项网络功能:带宽预留、统计网络性能、服务级别协议(service level agreement,SLA)测量、故障运维,或者,故障检测。转发路径中的任意节点配置该资源后,转发路径中的节点根据第一标识信息(携带第一标识信息的)执行逐跳的网络服务。例如:逐跳的带宽预留、逐跳的统计网络性能、逐跳的SLA测量、逐跳的故障运维,或者,逐跳的故障检测。
本申请实施例中,第一通信装置接收所述第一控制面协议报文,第一控制面协议报文携带第一标识信息和第一资源配置信息。根据第一资源配置信息配置的资源为逐跳预留资源。第一通信装置保存第一标识信息与资源的对应关系。通过上述方法可以减少转发面信息的冗余,减少业务报文的报文头携带的信息,提升通信效率。端到端转发路径或者业务流分配唯一的第一标识信息,第一标识信息与资源具有 对应关系。当中间节点或者尾节点收到携带第一标识信息的业务报文后,可以根据第一标识信息找到资源,然后对业务报文进行数据处理。通过上述方法,实现逐跳资源预留,无需运行资源预留协议,从而降低了对通信装置的性能需求。
在一种可能的实现方式中,所述第一标识信息用于标识业务报文所属的业务流。对于这种情况,可以针对该业务报文所属的业务流实现逐跳资源预留,这里的逐跳资源预留指的是预留第一标识信息对应的资源。
在一种可能的实现方式中,所述第一标识信息用于标识转发业务报文的隧道。对于这种情况,可以针对转发该业务报文的隧道实现逐跳资源预留,这里的逐跳资源预留指的是预留第一标识信息对应的资源。
在一种可能的实现方式中,第一通信装置可以从第二通信装置接收所述第一控制面协议报文,所述第一控制面协议报文指示所述第一通信装置根据所述第一资源配置信息配置与所述第一标识信息对应的所述资源。第二通信装置为所述转发路径中的头节点。第一控制面协议报文携带指示该转发路径的段列表,头节点通过第一控制面协议报文实现随流配置该资源。
在一种可能的实现方式中,接收所述第一控制面协议报文之前,所述方法还包括:当第一通信装置本地未配置与第一标识信息对应的资源,第一通信装置本地未保存第一标识信息与资源的对应关系时,第一通信装置还可以向第二通信装置发送第二控制面协议报文。第二控制面协议报文用于请求配置与第一标识信息对应的资源。通过上述方法,保证第一通信装置使用与第一标识信息对应的资源对携带第一标识信息的业务报文进行数据处理,提升业务可靠性。
在一种可能的实现方式中,在配置所述资源之后,所述方法还包括:向第二通信装置发送第三控制面协议报文,所述第三控制面协议报文用于向所述第二通信装置报告所述资源的配置结果,所述第二通信装置为所述转发路径中的头节点。第一通信装置在配置完成资源后,还可以通知第二通信装置已配置完成。避免在第一通信装置未配置该资源的情况下,接收携带第一标识信息的业务报文后无法使用该资源对该业务报文进行处理。
在一种可能的实现方式中,所述第一控制面协议报文包括第一选项类型长度值option TLV字段,所述第一option TLV字段包括:选项类型option type字段、选项数据长度option data length字段和选项数据option data字段;所述第一option TLV字段的option type字段用于携带所述第一控制面协议报文的类型信息,所述第一控制面协议报文的类型信息指示所述第一控制面协议报文携带所述第一资源配置信息;所述第一option TLV字段的option data字段用于携带所述第一标识信息和所述第一资源配置信息。
在一种可能的实现方式中,所述第二控制面协议报文包括第二选项类型长度值option TLV字段,所述第二option TLV字段包括:选项类型option type字段、选项数据长度option data length字段和选项数据option data字段;所述第二option TLV字段的option type字段用于携带所述第二控制面协议报文的类型信息,所述第二控制面协议报文的类型信息指示所述第二控制面协议报文用于请求与所述第一标识信息对应的所述资源;所述第二option TLV字段的option data字段用于携带所述第一标识信息。
在一种可能的实现方式中,所述第三控制面协议报文包括第三选项类型长度值option TLV字段,所述第三option TLV字段包括:选项类型option type字段、选项数据长度option data length字段和选项数据option data字段;所述第三option TLV字段的option type字段用于携带所述第三控制面协议报文的类型信息,所述第三控制面协议报文的类型信息指示所述第三控制面协议报文携带所述资源的配置结果;所述第三option TLV字段的option data字段用于携带所述第一标识信息和所述资源的配置结果。
在一种可能的实现方式中,接收所述第一控制面协议报文,包括:第一节点接收来自控制器的所述第一控制面协议报文,所述第一控制面协议报文指示所述第一通信装置根据所述第一资源配置信息配置与所述第一标识信息对应的所述资源,所述控制器用于控制所述转发路径中的多个节点。换言之,控制器对转发路径中的中间节点和尾节点配置该资源和第一标识信息。提升了方案的实现灵活性。
在一种可能的实现方式中,接收所述第一控制面协议报文之前,当第一通信装置本地未配置与第一标识信息对应的资源,第一通信装置本地未保存第一标识信息与资源的对应关系时,第一通信装置还可以向控制器发送第二控制面协议报文。第二控制面协议报文用于请求配置与第一标识信息对应的资源。通过上述方法,保证第一通信装置使用与第一标识信息对应的资源对携带第一标识信息的业务报文进行数据处理,提升业务可靠性。
在一种可能的实现方式中,接收所述控制器发送的所述第一控制面协议报文,包括:通过边界网关路由协议BGP接收所述控制器发送的所述第一控制面协议报文。
在一种可能的实现方式中,所述第一控制面协议报文承载于段路由策略SR-POLICY隧道状态通告,或者,网络层可达信息(network layer reachability information,NLRI)。
在一种可能的实现方式中,接收所述控制器发送的所述第一控制面协议报文,包括:通过路径计算单元通信协议PCEP或者网络配置协议NETCONF获取来自所述控制器的所述第一控制面协议报文。
在一种可能的实现方式中,所述方法还包括:接收来自第二通信装置的所述业务报文,所述业务报文携带所述第一标识信息,所述第二通信装置为所述转发路径中的头节点;根据所述第一标识信息,确定所述资源;根据所述资源,对所述业务报文进行处理。
示例性的,第一标识信息是“circuit ID 1”,“circuit ID 1”对应的转发路径是“circuit 1”为例。第一资源配置信息指示转发路径“circuit 1”中的各个节点在传输转发路径“circuit 1”的业务流时执行如下动作:“circuit 1”的业务流的承诺信息速率(committed information rate,CIR)为100兆比特每秒(Mbps),“circuit 1”的业务流的峰值信息速率(peak information rate,PIR)为1千兆比特每秒(Gbps),统计转发路径“circuit 1”的数据包数或者字节数,对转发路径“circuit 1”中的业务流进行随流检测。第一资源配置信息可以是:“CIR 100Mbps、PIR 1Gbps、counter enable(计数器使能信息),iFIT enable(随流检测使能信息)”。
第一通信装置根据第一资源配置信息,配置该资源,指的是第一通信装置根据第一资源配置信息预留资源。例如:第一资源配置信息包括预留500Mbps带宽,则第一通信装置为该第一资源配置信息对应的转发路径预留500Mbps带宽。
第一通信装置还需要保存第一标识信息与资源的对应关系。当第一通信装置传输业务报文时,可根据业务报文中携带的第一标识信息从保存的一个或多个对应关系中确定该业务报文所对应的资源。
在一种可能的实现方式中,所述资源指示以下一项或多项网络功能:带宽预留、统计网络性能、服务级别协议SLA测量、故障运维,或者,故障检测。
在一种可能的实现方式中,所述第一资源配置信息包括以下任意一项或多项:承诺信息速率CIR、峰值信息速率PIR、流量统计的使能信息,或者,随流测量的使能信息。
在一种可能的实现方式中,当转发路径中传输的报文为SRv6报文时,由于SRv6报文中包括的分段路由头(segment routing header,SRH)中的段标识列表(segment identifier list,SID list)可以唯一标识一条SRv6路径,因此,所述第一标识信息可以根据所述SRv6报文中包括的SRH中的SID list得到。例如,可以利用摘要算法对所述SID list进行计算,将计算得到的结果作为所述第一标识信息。在本申请实施例中,摘要算法包括但不限于哈希算法。
在一种可能的实现方式中,当转发路径中传输的报文为SRv6报文时,由于到SRv6报文中包括的SRH中的SID list和SRv6报文的源IP地址在报文转发过程中保持不变,因此,所述SID list和源IP地址的组合可以唯一标识一条端到端SRv6路径,因此,所述第一标识信息可以根据所述SID list和所述源IP地址得到。例如,可以对所述SID list和源IP地址进行拼接,并利用摘要算法对拼接后得到的内容进行计算,将计算得到的结果作为所述第一标识信息。
在一种可能的实现方式中,当转发路径中传输的报文为SRv6报文时,转发路径可以对应一个SRv6策略(policy)。而SRv6policy可以对应一条SRv6路径,因此,所述第一标识信息可以根据所述SRv6报文对应的SRv6policy得到。例如,可以利用摘要算法对所述SRv6policy进行计算,将计算得到的结果作为所述第一标识信息。
在一种可能的实现方式中,考虑到SRv6policy可以通过源IP地址、目的IP地址以及着色(color)属性来标识。因此,对于这种情况,所述第一标识信息可以是根据所述SRv6policy对应的源IP地址、 目的IP地址以及color属性得到的。例如,可以对所述SRv6policy对应的源IP地址、目的IP地址以及color属性进行拼接,并利用摘要算法对拼接后得到的内容进行计算,将计算得到的结果作为所述第一标识信息。
在一种可能的实现方式中,所述第一标识信息可以为随机数。作为一个示例,可以按照特定算法生成在一定范围内唯一的随机数,并将该随机数作为所述第一标识信息。例如,可以按照特定算法生成在第一通信装置内唯一的随机数,并将该随机数作为所述第一标识信息。
在一种可能的实现方式中,所述第一标识信息承载于所述SRv6报文中IPv6报文头的流标签flow label字段。
在一种可能的实现方式中,所述第一标识信息为随机数。
在一种可能的实现方式中,所述第一标识信息承载于逐跳HBH字段。
在一种可能的实现方式中,所述第一标识信息承载于目的地选项报头DOH字段。
在一种可能的实现方式中,所述第一标识信息承载于段路由拓展头SRH。
第二方面,本申请实施例提供了一种资源配置方法,所述方法应用于第二通信装置,所述第二通信装置用作转发路径中的头节点,所述方法包括:获取控制器发送的第一标识信息和第一资源配置信息,所述第一标识信息用于唯一标识所述转发路径或所述转发路径上传输的一条业务流,所述控制器用于管理所述转发路径中的多个节点;根据所述第一资源配置信息,配置所述资源;保存所述第一标识信息与所述资源的关联关系;向第一通信装置发送第一控制面协议报文,所述第一控制面协议报文携带所述第一标识信息和所述第一资源配置信息,所述第一控制面协议报文指示所述第一通信装置根据所述第一资源配置信息配置与所述第一标识信息对应的所述资源,所述第一通信装置用作所述转发路径中的中间节点或尾节点。
本申请实施例中的第一标识信息用于唯一标识转发路径或者转发路径上传输的一条业务流。该第一标识信息存在多种可能的实现方式,在一种可能的实现方式中,第一标识信息通过一个或多个比特表示,例如,采用位图(bitmap)来表示第一标识信息,或者采用二进制取值的方式来表示第一标识信息。
本申请实施例中涉及的资源,可以理解为节点预留的处理资源(或者预留资源)。该资源包括节点转发报文或者业务流时所需要的资源,或者节点在统计性能参数时所需的资源。转发路径中的每个节点均可以配置该资源,因此,该资源也可以称为逐跳的预留资源。该资源指示以下一项或多项网络功能:带宽预留、统计网络性能、服务级别协议(service level agreement,SLA)测量、故障运维,或者,故障检测。转发路径中的任意节点配置该资源后,转发路径中的节点根据第一标识信息(携带第一标识信息的)执行逐跳的网络服务。例如:逐跳的带宽预留、逐跳的统计网络性能、逐跳的SLA测量、逐跳的故障运维,或者,逐跳的故障检测。
本申请实施例中,头节点在控制器配置第一标识信息和对应的资源后,还可以向中间节点或者尾节点发送所述第一控制面协议报文,第一控制面协议报文携带第一标识信息和第一资源配置信息。根据第一资源配置信息配置的资源为逐跳预留资源。通过上述方法实现随流配置逐跳预留资源。通过上述方法可以减少转发面信息的冗余,减少业务报文的报文头携带的信息,提升通信效率。端到端转发路径或者业务流分配唯一的第一标识信息,第一标识信息与资源具有对应关系。当中间节点或者尾节点收到携带第一标识信息的业务报文后,可以根据第一标识信息找到资源,然后对业务报文进行数据处理。通过上述方法,实现逐跳资源预留,无需运行资源预留协议,从而降低了对通信装置的性能需求。
在一种可能的实现方式中,所述方法还包括:发送所述业务报文,所述业务报文携带所述第一标识信息,所述业务报文携带的段列表指示所述转发路径。由于业务报文携带第一标识信息,因此中间节点或者尾节点收到业务报文后,根据第一标识信息可确定与第一标识信息具有对应关系的资源。然后中间节点或尾节点根据该资源对业务报文进行处理。从而实现逐跳资源预留,无需运行资源预留协议,从而降低了对第一通信装置的性能需求。
在一种可能的实现方式中,向所述第一通信装置发送所述第一控制面协议报文,包括:接收来自所述第一通信装置的第二控制面协议报文,所述第二控制面协议报文携带所述第一标识信息,所述第二控制面协议报文用于向所述第二通信装置请求与所述第一标识信息对应的所述资源;响应于所述第二控制面协议报文,向所述第一通信装置发送所述第一控制面协议报文。头节点还可以响应于中间节点或尾节 点的请求,为中间节点或尾节点配置第一标识信息和对应的资源,保证顺利实现逐跳资源预留。
在一种可能的实现方式中,所述方法还包括:接收来自所述第一通信装置的第三控制面协议报文,所述第三控制面协议报文用于向所述第二通信装置报告所述资源的配置结果。通过上述方法,第二通信装置根据第三控制面协议报文确定第一通信装置已配置与第一标识信息对应的资源。保证第一通信装置使用与第一标识信息对应的资源对携带第一标识信息的业务报文进行数据处理,提升业务可靠性。
在一种可能的实现方式中,所述第一控制面协议报文包括第一选项类型长度值option TLV字段,所述第一option TLV字段包括:选项类型option type字段、选项数据长度option data length字段和选项数据option data字段;所述第一option TLV字段的option type字段用于携带所述第一控制面协议报文的类型信息,所述第一控制面协议报文的类型信息指示所述第一控制面协议报文携带所述第一资源配置信息;所述第一option TLV字段的option data字段用于携带所述第一标识信息和所述第一资源配置信息。
在一种可能的实现方式中,所述第二控制面协议报文包括第二选项类型长度值option TLV字段,所述第二option TLV字段包括:选项类型option type字段、选项数据长度option data length字段和选项数据option data字段;所述第二option TLV字段的option type字段用于携带所述第二控制面协议报文的类型信息,所述第二控制面协议报文的类型信息指示所述第二控制面协议报文用于请求与所述第一标识信息对应的所述资源;所述第二option TLV字段的option data字段用于携带所述第一标识信息。
在一种可能的实现方式中,所述第三控制面协议报文包括第三选项类型长度值option TLV字段,所述第三option TLV字段包括:选项类型option type字段、选项数据长度option data length字段和选项数据option data字段;所述第三option TLV字段的option type字段用于携带所述第三控制面协议报文的类型信息,所述第三控制面协议报文的类型信息指示所述第三控制面协议报文携带所述资源的配置结果;所述第三option TLV字段的option data字段用于携带所述第一标识信息和所述资源的配置结果。
在一种可能的实现方式中,获取所述控制器发送的所述第一标识信息和所述第一资源配置信息,包括:通过边界网关路由协议BGP获取所述控制器发送的所述第一标识信息和所述第一资源配置信息。
在一种可能的实现方式中,所述第一标识信息和所述第一资源配置信息承载于段路由策略SR-POLICY隧道状态通告,或者,网络层可达信息(network layer reachability information,NLRI)。
在一种可能的实现方式中,获取所述控制器发送的所述第一标识信息和所述第一资源配置信息,包括:通过路径计算单元通信协议PCEP或者网络配置协议NETCONF获取所述控制器发送的所述第一标识信息和所述第一资源配置信息。
在一种可能的实现方式中,所述第一标识信息是根据段标识列表SID list得到,所述段标识列表位于互联网协议第6版段路由SRv6报文的分段路由头SRH中,所述SRv6报文由所述第一标识信息标识的转发路径传输。
在一种可能的实现方式中,当转发路径中传输的报文为SRv6报文时,由于SRv6报文中包括的分段路由头(segment routing header,SRH)中的段标识列表(segment identifier list,SID list)可以唯一标识一条SRv6路径,因此,所述第一标识信息可以根据所述SRv6报文中包括的SRH中的SID list得到。例如,可以利用摘要算法对所述SID list进行计算,将计算得到的结果作为所述第一标识信息。在本申请实施例中,摘要算法包括但不限于哈希算法。
在一种可能的实现方式中,当转发路径中传输的报文为SRv6报文时,由于到SRv6报文中包括的SRH中的SID list和SRv6报文的源IP地址在报文转发过程中保持不变,因此,所述SID list和源IP地址的组合可以唯一标识一条端到端SRv6路径,因此,所述第一标识信息可以根据所述SID list和所述源IP地址得到。例如,可以对所述SID list和源IP地址进行拼接,并利用摘要算法对拼接后得到的内容进行计算,将计算得到的结果作为所述第一标识信息。
在一种可能的实现方式中,当转发路径中传输的报文为SRv6报文时,转发路径可以对应一个SRv6策略(policy)。而SRv6policy可以对应一条SRv6路径,因此,所述第一标识信息可以根据所述SRv6报文对应的SRv6policy得到。例如,可以利用摘要算法对所述SRv6policy进行计算,将计算得到的 结果作为所述第一标识信息。
在一种可能的实现方式中,考虑到SRv6policy可以通过源IP地址、目的IP地址以及着色(color)属性来标识。因此,对于这种情况,所述第一标识信息可以是根据所述SRv6policy对应的源IP地址、目的IP地址以及color属性得到的。例如,可以对所述SRv6policy对应的源IP地址、目的IP地址以及color属性进行拼接,并利用摘要算法对拼接后得到的内容进行计算,将计算得到的结果作为所述第一标识信息。
在一种可能的实现方式中,所述第一标识信息可以为随机数。作为一个示例,可以按照特定算法生成在一定范围内唯一的随机数,并将该随机数作为所述第一标识信息。例如,可以按照特定算法生成在第一通信装置内唯一的随机数,并将该随机数作为所述第一标识信息。
在一种可能的实现方式中,所述第一标识信息承载于所述SRv6报文中IPv6报文头的流标签flow label字段。
在一种可能的实现方式中,所述第一标识信息为随机数。
在一种可能的实现方式中,所述第一标识信息承载于逐跳HBH字段。
在一种可能的实现方式中,所述第一标识信息承载于目的地选项报头DOH字段。
在一种可能的实现方式中,所述第一标识信息承载于段路由拓展头SRH。
第三方面,本申请实施例提供了一种资源配置方法,所述方法应用于控制器,所述控制器用于管理转发路径中的头节点、中间节点和尾节点,所述方法包括:发送第一标识信息和第一资源配置信息,所述第一标识信息用于唯一标识所述转发路径或所述转发路径上传输的一条业务流,所述第一资源配置信息用于指示第一通信装置和/或第二通信装置根据所述第一资源配置信息配置资源,所述第一通信装置用作所述转发路径中的中间节点或者尾节点,所述第二通信装置用作所述转发路径中的头节点,所述第一标识信息与所述资源具有对应关系。
本申请实施例中的第一标识信息用于唯一标识转发路径或者转发路径上传输的一条业务流。该第一标识信息存在多种可能的实现方式,在一种可能的实现方式中,第一标识信息通过一个或多个比特表示,例如,采用位图(bitmap)来表示第一标识信息,或者采用二进制取值的方式来表示第一标识信息。
本申请实施例中涉及的资源,可以理解为节点预留的处理资源(或者预留资源)。该资源包括节点转发报文或者业务流时所需要的资源,或者节点在统计性能参数时所需的资源。转发路径中的每个节点均可以配置该资源,因此,该资源也可以称为逐跳的预留资源。该资源指示以下一项或多项网络功能:带宽预留、统计网络性能、服务级别协议(service level agreement,SLA)测量、故障运维,或者,故障检测。转发路径中的任意节点配置该资源后,转发路径中的节点根据第一标识信息(携带第一标识信息的)执行逐跳的网络服务。例如:逐跳的带宽预留、逐跳的统计网络性能、逐跳的SLA测量、逐跳的故障运维,或者,逐跳的故障检测。
本申请实施例中,控制器可以向头节点、中间节点或者尾节点发送第一标识信息和第一资源配置信息,根据第一资源配置信息配置的资源为逐跳预留资源。通过上述方法实现为转发路径中各个节点配置逐跳预留资源。通过上述方法可以减少转发面信息的冗余,减少业务报文的报文头携带的信息,提升通信效率。控制器为端到端转发路径或者业务流分配唯一的第一标识信息,第一标识信息与资源具有对应关系。当中间节点或者尾节点收到携带第一标识信息的业务报文后,可以根据第一标识信息找到资源,然后对业务报文进行数据处理。通过上述方法,实现逐跳资源预留,无需运行资源预留协议,从而降低了对通信装置的性能需求。
在一种可能的实现方式中,所述第一标识信息用于标识业务报文所属的业务流。对于这种情况,可以针对该业务报文所属的业务流实现逐跳资源预留,这里的逐跳资源预留指的是预留第一标识信息对应的资源。
在一种可能的实现方式中,所述第一标识信息用于标识转发业务报文的隧道。对于这种情况,可以针对转发该业务报文的隧道实现逐跳资源预留,这里的逐跳资源预留指的是预留第一标识信息对应的资源。
在一种可能的实现方式中,发送所述第一标识信息和所述第一资源配置信息,包括:向所述第二通 信装置发送所述第一标识信息和所述第一资源配置信息。
在一种可能的实现方式中,向所述第二通信装置发送所述第一标识信息和所述第一资源配置信息,包括:通过边界网关路由协议BGP向所述第二通信装置发送所述第一标识信息和所述第一资源配置信息。
在一种可能的实现方式中,所述第一标识信息和所述第一资源配置信息承载于段路由策略SR-POLICY隧道状态通告,或者,网络层可达信息(network layer reachability information,NLRI)。
在一种可能的实现方式中,向所述第二通信装置发送所述第一标识信息和所述第一资源配置信息,包括:通过路径计算单元通信协议PCEP或者网络配置协议NETCONF向所述第二通信装置发送所述第一标识信息和所述第一资源配置信息。
在一种可能的实现方式中,发送所述第一标识信息和所述第一资源配置信息,包括:向所述第一通信装置发送第一控制面协议报文,所述第一控制面协议报文携带所述第一标识信息和所述第一资源配置信息,所述第一控制面协议报文指示所述第一通信装置根据所述第一资源配置信息配置与所述第一标识信息对应的所述资源,所述第一控制面协议报文携带的段列表指示所述转发路径。换言之,控制器对转发路径中的中间节点和尾节点配置该资源和第一标识信息。提升了方案的实现灵活性。
在一种可能的实现方式中,向所述第一通信装置发送所述第一控制面协议报文,包括:接收来自所述第一通信装置的第二控制面协议报文,所述第二控制面协议报文携带所述第一标识信息,所述第二控制面协议报文用于向所述控制器请求与所述第一标识信息对应的所述资源;响应于所述第二控制面协议报文,向所述第一通信装置发送所述第一控制面协议报文。第二控制面协议报文用于请求配置与第一标识信息对应的资源。通过上述方法,保证第一通信装置使用与第一标识信息对应的资源对携带第一标识信息的业务报文进行数据处理,提升业务可靠性。
在一种可能的实现方式中,所述第一控制面协议报文包括第一选项类型长度值option TLV字段,所述第一option TLV字段包括:选项类型option type字段、选项数据长度option data length字段和选项数据option data字段;所述第一option TLV字段的option type字段用于携带所述第一控制面协议报文的类型信息,所述第一控制面协议报文的类型信息指示所述第一控制面协议报文携带所述第一资源配置信息;所述第一option TLV字段的option data字段用于携带所述第一标识信息和所述第一资源配置信息。
在一种可能的实现方式中,所述第二控制面协议报文包括第二选项类型长度值option TLV字段,所述第二option TLV字段包括:选项类型option type字段、选项数据长度option data length字段和选项数据option data字段;所述第二option TLV字段的option type字段用于携带所述第二控制面协议报文的类型信息,所述第二控制面协议报文的类型信息指示所述第二控制面协议报文用于请求与所述第一标识信息对应的所述资源;所述第二option TLV字段的option data字段用于携带所述第一标识信息。
在一种可能的实现方式中,所述资源指示以下一项或多项网络功能:带宽预留、统计网络性能、服务级别协议SLA测量、故障运维,或者,故障检测。
在一种可能的实现方式中,所述第一资源配置信息包括以下任意一项或多项:承诺信息速率CIR、峰值信息速率PIR、流量统计的使能信息,或者,随流测量的使能信息。
在一种可能的实现方式中,当转发路径中传输的报文为SRv6报文时,由于SRv6报文中包括的分段路由头(segment routing header,SRH)中的段标识列表(segment identifier list,SID list)可以唯一标识一条SRv6路径,因此,所述第一标识信息可以根据所述SRv6报文中包括的SRH中的SID list得到。例如,可以利用摘要算法对所述SID list进行计算,将计算得到的结果作为所述第一标识信息。在本申请实施例中,摘要算法包括但不限于哈希算法。
在一种可能的实现方式中,当转发路径中传输的报文为SRv6报文时,由于到SRv6报文中包括的SRH中的SID list和SRv6报文的源IP地址在报文转发过程中保持不变,因此,所述SID list和源IP地址的组合可以唯一标识一条端到端SRv6路径,因此,所述第一标识信息可以根据所述SID list和所述源IP地址得到。例如,可以对所述SID list和源IP地址进行拼接,并利用摘要算法对拼接后得到的内容进行计算,将计算得到的结果作为所述第一标识信息。
在一种可能的实现方式中,当转发路径中传输的报文为SRv6报文时,转发路径可以对应一个SRv6 策略(policy)。而SRv6policy可以对应一条SRv6路径,因此,所述第一标识信息可以根据所述SRv6报文对应的SRv6policy得到。例如,可以利用摘要算法对所述SRv6policy进行计算,将计算得到的结果作为所述第一标识信息。
在一种可能的实现方式中,考虑到SRv6policy可以通过源IP地址、目的IP地址以及着色(color)属性来标识。因此,对于这种情况,所述第一标识信息可以是根据所述SRv6policy对应的源IP地址、目的IP地址以及color属性得到的。例如,可以对所述SRv6policy对应的源IP地址、目的IP地址以及color属性进行拼接,并利用摘要算法对拼接后得到的内容进行计算,将计算得到的结果作为所述第一标识信息。
在一种可能的实现方式中,所述第一标识信息可以为随机数。作为一个示例,可以按照特定算法生成在一定范围内唯一的随机数,并将该随机数作为所述第一标识信息。例如,可以按照特定算法生成在第一通信装置内唯一的随机数,并将该随机数作为所述第一标识信息。
在一种可能的实现方式中,所述第一标识信息承载于所述SRv6报文中IPv6报文头的流标签flow label字段。
在一种可能的实现方式中,所述第一标识信息为随机数。
在一种可能的实现方式中,所述第一标识信息承载于逐跳HBH字段。
在一种可能的实现方式中,所述第一标识信息承载于目的地选项报头DOH字段。
在一种可能的实现方式中,所述第一标识信息承载于段路由拓展头SRH。
第四方面,本申请实施例提出一种第一通信装置,第一通信装置用作转发路径中的中间节点或者尾节点,第一通信装置包括:
收发模块,用于接收第一控制面协议报文,所述第一控制面协议报文包括第一标识信息和第一资源配置信息,所述第一标识信息用于唯一标识所述转发路径或所述转发路径上传输的一条业务流;
处理模块,用于根据所述第一资源配置信息,配置资源;
收发模块,还用于保存所述第一标识信息与所述资源的对应关系。
在一种可能的实现方式中,
收发模块,还用于接收第二通信装置发送的所述第一控制面协议报文,所述第一控制面协议报文指示所述第一通信装置根据所述第一资源配置信息配置与所述第一标识信息对应的所述资源。
在一种可能的实现方式中,
收发模块,还用于接收来自所述第二通信装置的所述业务报文,所述业务报文携带所述第一标识信息;
处理模块,还用于响应于确定自身未保存所述第一标识信息与所述资源的对应关系,向所述第二通信装置发送第二控制面协议报文,所述第二控制面协议报文携带所述第一标识信息,所述第二控制面协议报文用于向所述第二通信装置请求与所述第一标识信息对应的所述资源。
在一种可能的实现方式中,
收发模块,还用于向第二通信装置发送第三控制面协议报文,所述第三控制面协议报文用于向所述第二通信装置报告所述资源的配置结果,所述第二通信装置为所述转发路径中的头节点。
在一种可能的实现方式中,
收发模块,还用于接收控制器发送的所述第一控制面协议报文,所述第一控制面协议报文指示所述第一通信装置根据所述第一资源配置信息配置与所述第一标识信息对应的所述资源,所述控制器用于控制所述转发路径中的多个节点。
在一种可能的实现方式中,
收发模块,还用于接收来自第二通信装置的所述业务报文,所述业务报文携带所述第一标识信息,所述第二通信装置为所述转发路径中的头节点;
处理模块,还用于响应于确定自身未保存所述第一标识信息与所述资源的对应关系,向所述控制器发送第二控制面协议报文,所述第二控制面协议报文携带所述第一标识信息,所述第二控制面协议报文用于向所述控制器请求与所述第一标识信息对应的所述资源。
在一种可能的实现方式中,
收发模块,还用于接收来自第二通信装置的所述业务报文,所述业务报文携带所述第一标识信息,所述第二通信装置为所述转发路径中的头节点;
处理模块,还用于根据所述第一标识信息,确定所述资源;
处理模块,还用于根据所述资源,对所述业务报文进行处理。
在一种可能的实现方式中,所述资源指示以下一项或多项网络功能:
带宽预留、统计网络性能、服务级别协议SLA测量、故障运维,或者,故障检测。
在一种可能的实现方式中,所述第一资源配置信息包括以下任意一项或多项:
承诺信息速率CIR、峰值信息速率PIR、流量统计的使能信息,或者,随流测量的使能信息。
在一种可能的实现方式中,所述第一标识信息是根据段标识列表SID list得到,所述段标识列表位于互联网协议第6版段路由SRv6报文的分段路由头SRH中,所述SRv6报文由所述第一标识信息标识的转发路径传输。
在一种可能的实现方式中,所述第一标识信息是根据所述SID list和所述SRv6报文的源互联网协议IP地址得到的。
在一种可能的实现方式中,所述第一标识信息是根据所述SRv6报文对应的SRv6策略policy得到的。
在一种可能的实现方式中,所述第一标识信息是根据所述SRv6policy对应的源IP地址、目的IP地址以及着色color属性得到的。
在一种可能的实现方式中,所述第一标识信息承载于所述SRv6报文中IPv6报文头的流标签flow label字段。
在一种可能的实现方式中,所述第一标识信息承载于逐跳HBH字段。
在一种可能的实现方式中,所述第一标识信息承载于目的地选项报头DOH字段。
在一种可能的实现方式中,所述第一标识信息承载于段路由拓展头SRH。
第五方面,本申请实施例提出一种第二通信装置,所述第二通信装置用作转发路径中的头节点,第二通信装置包括:
收发模块,用于获取控制器发送的第一标识信息和第一资源配置信息,所述第一标识信息用于唯一标识所述转发路径或所述转发路径上传输的一条业务流,所述控制器用于管理所述转发路径中的多个节点;
处理模块,用于根据所述第一资源配置信息,配置所述资源;
收发模块,还用于保存所述第一标识信息与所述资源的关联关系;
收发模块,还用于向第一通信装置发送第一控制面协议报文,所述第一控制面协议报文携带所述第一标识信息和所述第一资源配置信息,所述第一控制面协议报文指示所述第一通信装置根据所述第一资源配置信息配置与所述第一标识信息对应的所述资源,所述第一通信装置用作所述转发路径中的中间节点或尾节点。
在一种可能的实现方式中,
收发模块,还用于发送所述业务报文,所述业务报文携带所述第一标识信息,所述业务报文携带的段列表指示所述转发路径。
在一种可能的实现方式中,
收发模块,还用于接收来自所述第一通信装置的第二控制面协议报文,所述第二控制面协议报文携带所述第一标识信息,所述第二控制面协议报文用于向所述第二通信装置请求与所述第一标识信息对应的所述资源;
处理模块,还用于响应于所述第二控制面协议报文,向所述第一通信装置发送所述第一控制面协议报文。
在一种可能的实现方式中,
收发模块,还用于接收来自所述第一通信装置的第三控制面协议报文,所述第三控制面协议报文用于向所述第二通信装置报告所述资源的配置结果。
在一种可能的实现方式中,所述第一标识信息承载于所述SRv6报文中IPv6报文头的流标签flow label字段。
在一种可能的实现方式中,所述第一标识信息承载于逐跳HBH字段。
在一种可能的实现方式中,所述第一标识信息承载于目的地选项报头DOH字段。
在一种可能的实现方式中,所述第一标识信息承载于段路由拓展头SRH。
第六方面,本申请实施例提出一种控制器,所述控制器用于管理转发路径中的头节点、中间节点和尾节点,控制器包括:
收发模块,用于发送第一标识信息和第一资源配置信息,
所述第一标识信息用于唯一标识所述转发路径或所述转发路径上传输的一条业务流,
所述第一资源配置信息用于指示第一通信装置和/或第二通信装置根据所述第一资源配置信息配置资源,所述第一通信装置用作所述转发路径中的中间节点或者尾节点,所述第二通信装置用作所述转发路径中的头节点,
所述第一标识信息与所述资源具有对应关系。
在一种可能的实现方式中,
收发模块,还用于向所述第二通信装置发送所述第一标识信息和所述第一资源配置信息。
在一种可能的实现方式中,
收发模块,还用于向所述第一通信装置发送第一控制面协议报文,所述第一控制面协议报文携带所述第一标识信息和所述第一资源配置信息,所述第一控制面协议报文指示所述第一通信装置根据所述第一资源配置信息配置与所述第一标识信息对应的所述资源,所述第一控制面协议报文携带的段列表指示所述转发路径。
在一种可能的实现方式中,
收发模块,还用于接收来自所述第一通信装置的第二控制面协议报文,所述第二控制面协议报文携带所述第一标识信息,所述第二控制面协议报文用于向所述控制器请求与所述第一标识信息对应的所述资源;
收发模块,还用于响应于所述第二控制面协议报文,向所述第一通信装置发送所述第一控制面协议报文。
在一种可能的实现方式中,所述第一标识信息承载于所述SRv6报文中IPv6报文头的流标签flow label字段。
在一种可能的实现方式中,所述第一标识信息承载于逐跳HBH字段。
在一种可能的实现方式中,所述第一标识信息承载于目的地选项报头DOH字段。
在一种可能的实现方式中,所述第一标识信息承载于段路由拓展头SRH。
第七方面,本申请实施例提供了一种通信装置,包括:处理器和存储器;
所述存储器,用于存储指令;所述处理器,用于执行所述指令,使得所述通信装置执行以上第一方面任意一项、或者以上第二方面任意一项、或者以上第三方面任意一项所述的方法。
第八方面,本申请实施例提供了一种计算机可读存储介质,包括指令或计算机程序,当其在处理器上运行时,执行以上第一方面任意一项、或者以上第二方面任意一项、或者以上第三方面任意一项所述的方法。
第九方面,本申请实施例提供了一种计算机程序产品,包括计算机程序产品,当其在处理器上运行时,执行以上第一方面任意一项、或者以上第二方面任意一项、或者以上第三方面任意一项所述的方法。
第十方面,本申请实施例提供了一种通信系统,所述通信系统包括:执行以上第一方面以及以上第一方面任意一项所述的方法的第一通信装置、以及执行以上第二方面以及以上第二方面任意一项所述的方法的第二通信装置、以及执行以上第三方面以及以上第三方面任意一项所述的方法的控制器。
附图说明
图1a为本申请实施例提供的一种REVP-TE技术的架构示意图;
图1b为本申请实施例提供的一种MPLS-TP技术的架构示意图;
图2为本申请实施例提供的一种可能的应用场景示意图;
图3为本申请实施例中一种资源配置方法的信令交互示意图;
图4为本申请实施例中一种资源配置方法的信令交互示意图;
图5为本申请实施例中一种资源配置方法的信令交互示意图;
图6为本申请实施例中一种资源配置方法的信令交互示意图;
图7为第一选项类型长度值option TLV字段的结构示意图;
图8为第三选项类型长度值option TLV字段的结构示意图;
图9为第四option TLV字段的结构示意图;
图10为第二选项类型长度值option TLV字段的结构示意图;
图11为本申请实施例中一种控制面协议报文的一种结构示意图;
图12为本申请实施例中一种控制面协议报文的又一种结构示意图;
图13为本申请实施例中第一控制面协议报文的结构示意图;
图14为本申请实施例中第三控制面协议报文的结构示意图;
图15为本申请实施例中第一控制面协议报文的又一种结构示意图;
图16为本申请实施例中第三控制面协议报文的又一种结构示意图;
图17为本申请实施例中第一控制面协议报文的一种结构示意图;
图18为本申请实施例中一种第三控制面协议报文的一种结构示意图;
图19为本申请实施例中第一控制面协议报文的又一种结构示意图;
图20为本申请实施例中第三控制面协议报文的又一种结构示意图;
图21为本申请实施例提供的一种通信系统的架构示意图;
图22为本申请实施例提供的又一种通信系统的架构示意图;
图23为本申请实施例提供的一种通信装置2300的结构示意图;
图24为本申请实施例提供的一种通信装置2400的结构示意图;
图25为本申请实施例提供的一种通信装置2500的结构示意图;
图26为本申请实施例提出的一种网络系统2600示意图。
具体实施方式
下面,对本申请实施例进行描述。显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的描述在适当情况下可以互换,以便使实施例能够以除了在本申请图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行顺序,只要能达到相同或者相类似的技术效果即可。本申请中所出现的单元的划分,是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个单元可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的单元或子单元可以是也可以不是物理上的分离,可以是也可以不是物理单元,或者可以分布到多个电路单元中,可以根据实际的需要选择其中的部分或全部单元来实现本申请方案的目的。
为方便理解,首先对REVP-TE技术和基于MPLS-TP的资源预留技术进行简单介绍。
参见图1a,该图为本申请实施例提供的一种REVP-TE技术的架构示意图。如图1a所示,REVP-TE技术可以应用于图1a所示的运营商边缘设备(provider edge,PE)以及运营商骨干设备(provider,P)。
在转发面:应用了REVP-TE技术的设备在进行报文转发时,报文中包括两层MPLS标签,如图1a所示,包括隧道(tunnel)标签和伪线(pseudo wire,PW)标签。报文在转发的过程中,逐跳交换外层隧道标签,隧道源节点生成伪线标签,隧道宿节点终结伪线标签。
在控制面:应用了REVP-TE技术的节点均需要运行RSVP。隧道源节点发起RSVP,向中间节点申请占用MPLS标签、QoS带宽资源等,中间节点在申请占用资源后继续向下游申请占用资源,直至隧道宿端节点。
正是由于应用了REVP-TE技术的节点均需要运行RSVP,因此,应用了REVP-TE技术的节点需要维护RSVP的协议状态,从而导致对网络节点的性能需求较高。而对中间节点的性能需求高,则会提升网络部署成本。
MPLS-TP技术应用于分组传送网(packet transport network,PTN)、加密虚拟网络(secret private network,SPN)、多业务传送平台(multi-service transport platform,MSTP)等承载网络中,参见图1b,该图为本申请实施例提供的一种MPLS-TP技术的架构示意图。如图1b所示,MPLS-TP技术可以应用于图1b所示的PE以及P。
在转发面:应用了MPLS-TP技术的设备在进行报文转发时,报文中包括两层MPLS标签,如图1b所示,包括隧道标签和伪线标签。报文在转发的过程中,逐跳交换外层隧道标签,隧道源节点生成伪线标签,隧道宿节点终结伪线标签。
在控制面:控制器为MPLS-TP隧道路径上的设备分配MPLS标签、QoS带宽资源等,并由控制器集中控制整个资源分配及释放过程。
对于MPLS-TP技术而言,虽然中间节点无需运行RSVP,但是MPLS-TP隧道为静态隧道,其不支持动态重路由。
目前,SR源路由技术为每个节点或链路分配segment,头节点把这些segment组合起来形成segment序列,指引报文按照segment序列进行转发。SR源路由技术由于具备简化控制协议、良好的扩展性、可编程性以及高可靠性等优点,因此,其应用也越来越广泛。具体而言:
简化控制协议体现为:只采用内部网关协议(Interior Gateway Protocol,IGP)作为控制协议,不再像MPLS那样在采用IGP的基础还要采用标签分发协议(Label Distribution Protocol,LDP)、RSVP-TE等协议,降低了运维的复杂度。
良好的扩展性体现为:传统实现路径编程时一般采用RSVP-TE,网络中的每个节点都要感知到每条路径的状态限制了TE隧道的规格,难以部署和维护。SR路径编程则是在头节点进行,海量的路径都是依赖于有限的segment的组合,网络中间节点几乎不感知路径状态,具备很高的扩展性。
可编程性体现为:SR中的segment类似于计算机的指令,通过对segment的编排可以实现类似于计算机指令的功能,具备非常好的灵活性,可以非常灵活地建立满足不同需求的路径,充分体现网络的价值。
高可靠性:SR能提供几乎100%网络覆盖的快速重路由(Fast Re-Route,FRR)保护,能够在高可扩展性的前提下,又可以达到完全的可靠性保护。
但是,SR技术并不支持逐跳资源预留能力,进而带来如下问题:
1.无法基于SR隧道做逐节点带宽限速,使得隧道中间点带宽无法保障,其他业务拥塞可能会导致SR隧道承载高品质业务丢包。
2.无法基于SR隧道做性能统计。
3.丧失隧道中间节点其他扩展能力,如可能的逐跳时延测量、业务镜像、业务环回等扩展能力。
在本申请实施例中,SR技术可以包括MPLS SR技术和SRv6技术。
目前,带内(inband)操作管理维护(operation administration and maintenance,OAM)for MPLS SR技术,可以在SR List栈底扩展携带标识业务流的标识,使得隧道中间节点可以对业务流进行识别、标识、处理。但是,由于SR List栈深度大,转发设备的转发芯片识别处理前述标识的难度大,难以常态化推广应用。类似的,inband OAM for SRv6技术,可以在分段路由头(segment routing header,SRH)栈底扩展携带标识业务流的标识,使得隧道中间节点可以对业务流进行识别、标识、处理。但是,由于SRH栈深度大,转发设备的转发芯片识别处理前述标识的难度大,难以常态化推广应用。
基于上述问题,当前提出一种方法,在业务报文的报文头增加预留资源的标识信息。中间节点收到该业务报文后,根据预留资源的标识信息配置预留资源,并使用预留资源对该业务报文进行处理。
申请人研究发现,上述方法中,业务报文的报文头需要携带较多信息,造成转发面信息冗余。通信装置每接收一个业务报文后,都会基于预留资源的标识信息配置预留资源,消耗通信装置大量的资源。因此,上述方法严重影响通信性能,造成通信效率的下降。
鉴于此,本申请实施例提供了一种资源配置方法及装置。
本申请实施例提供的资源配置方法及装置,可以应用于第五代移动通信技术(5th generation mobile communication technology,5G)承载的业务场景,也可以应用于政企专线承载的业务场景,还可以应用于云网络或者算力承载的业务场景,还可以应用于家庭宽带承载的业务场景,利用本方案,可以实现由业务接入到网络长距传输以及业务落地的端到端资源保障。
请参见图2,图2为本申请实施例提供的一种可能的应用场景示意图。在图2所示的场景中,PE1、PE2、P1、P2、P3和P4属于IGP域1,PE3、PE4、P3、P4、P5和P6属于IGP域2,P3和P4为IGP域1和IGP域2的跨域节点。PE1分别与PE2以及P1相连,P1分别与PE1以及P3相连,P2分别与PE2以及P4相连,P3分别与P1、P4以及P5相连,P4分别与P2、P3以及P6相连,P5分别与P3以及PE3相连,P6分别与P4以及PE4相连,PE3分别与PE4以及P5相连,PE4分别与PE3以及P6相连。
在一个示例中,部署了跨越IGP域1和IGP域2的端到端SR隧道。此处提及的SR隧道,可以是MPLS SR隧道,也可以是SRv6路径。作为一个示例,可以通过MPLS SR policy引流至MPLS SR隧道,或者通过SRv6policy引流至相应的SRv6路径。
接下来,以业务报文通过路径PE1→P1→P3→P4→P6→PE4转发为例,对本申请实施例提供的资源配置方法进行介绍。本申请实施例中的第一通信装置,指的是报文的转发路径中的头节点,或者,报文所属的业务流途径的头节点,例如是图2示意的PE1。本申请实施例中的第二通信装置,指的是报文的转发路径中的中间节点或者尾节点,或者,报文所属的业务流途径的中间节点或者尾节点,例如是图2示意的P1、P3、P4、P6,或者PE4。
本申请实施例中提及的通信装置,例如本申请实施例中第一通信装置或者第二通信装置,可以是交换机、路由器等网络设备,也可以是网络设备上的一部分组件,例如是网络设备上的单板,线卡,还可以是网络设备上的一个功能模块,还可以是用于实现本申请方法的芯片,本申请实施例不做具体限定。通信装置之间例如可以但不限于通过以太网线或光缆直接连接。
本申请实施例中提及的控制器,还可以是运行了网络管理系统(network manage system,NMS)的设备或者网管。
本申请实施例中,按照中间节点获取第一资源配置信息的来源,具体可以分为:A、中间节点从头节点获取第一资源配置信息;B、中间节点从控制器获取第一资源配置信息。下面分别进行说明。
首先,介绍A、中间节点从头节点获取第一资源配置信息。
请参阅图3,图3为本申请实施例中一种资源配置方法的信令交互示意图。本申请实施例提出的一种资源配置方法,包括:
301、第二通信装置获取来自控制器的第一标识信息和第一资源配置信息。
步骤301中,第二通信装置从控制器获取第一标识信息和第一资源配置信息,具体可以包括:控制器主动为第二通信装置分配第一标识信息,以及与第一标识信息具有对应关系的资源的配置信息,在本申请实施例中,将与第一标识信息具有对应关系的资源的配置信息称为第一资源配置信息。第二通信装置也可以向控制器发送请求(请求配置与第一标识信息对应的资源)后,控制器响应于该请求向第二通信装置发送第一资源配置信息。
在一种可能的实现方式中,控制器创建SRv6policy转发路径时,控制器为该SRv6policy转发路径分配第一标识信息,控制器为SRv6policy转发路径分配第一标识信息对应的资源。具体的,控制器向第二通信装置(即转发路径的头节点)发送第一标识信息和第一资源配置信息。
在另一种可能的实现方式中,控制器为已经创建好的SRv6policy转发路径分配第一标识信息和第一标识信息对应的资源。例如,用户需要SRv6policy#1执行逐跳的带宽预留以及随流SLA测量。则控制器响应于用户的请求,为SRv6policy#1分配第一标识信息和第一标识信息对应的资源。
本申请实施例中的第一标识信息用于唯一标识转发路径或者转发路径上传输的一条业务流。
该第一标识信息存在多种可能的实现方式,在一种可能的实现方式中,第一标识信息通过一个或多个比特表示,例如,采用位图(bitmap)来表示第一标识信息,或者采用二进制取值的方式来表示第一标识信息。
在一种可能的实现方式中,当转发路径中传输的报文为SRv6报文时,由于SRv6报文中包括的分段路由头(segment routing header,SRH)中的段标识列表(segment identifier list,SID list)可以唯一标识一条SRv6路径,因此,所述第一标识信息可以根据所述SRv6报文中包括的SRH中的SID list得到。例如,可以利用摘要算法对所述SID list进行计算,将计算得到的结果作为所述第一标识信息。在本申请实施例中,摘要算法包括但不限于哈希算法。
在一种可能的实现方式中,当转发路径中传输的报文为SRv6报文时,由于到SRv6报文中包括的SRH中的SID list和SRv6报文的源IP地址在报文转发过程中保持不变,因此,所述SID list和源IP地址的组合可以唯一标识一条端到端SRv6路径,因此,所述第一标识信息可以根据所述SID list和所述源IP地址得到。例如,可以对所述SID list和源IP地址进行拼接,并利用摘要算法对拼接后得到的内容进行计算,将计算得到的结果作为所述第一标识信息。
在一种可能的实现方式中,当转发路径中传输的报文为SRv6报文时,转发路径可以对应一个SRv6策略(policy)。而SRv6policy可以对应一条SRv6路径,因此,所述第一标识信息可以根据所述SRv6报文对应的SRv6policy得到。例如,可以利用摘要算法对所述SRv6policy进行计算,将计算得到的结果作为所述第一标识信息。
在一种可能的实现方式中,考虑到SRv6policy可以通过源IP地址、目的IP地址以及着色(color)属性来标识。因此,对于这种情况,所述第一标识信息可以是根据所述SRv6policy对应的源IP地址、目的IP地址以及color属性得到的。例如,可以对所述SRv6policy对应的源IP地址、目的IP地址以及color属性进行拼接,并利用摘要算法对拼接后得到的内容进行计算,将计算得到的结果作为所述第一标识信息。
在一种可能的实现方式中,所述第一标识信息可以为随机数。作为一个示例,可以按照特定算法生成在一定范围内唯一的随机数,并将该随机数作为所述第一标识信息。例如,可以按照特定算法生成在第一通信装置内唯一的随机数,并将该随机数作为所述第一标识信息。
本申请实施例中涉及的资源,可以理解为节点预留的处理资源(或者预留资源)。该资源包括节点转发报文或者业务流时所需要的资源,或者节点在统计性能参数时所需的资源。转发路径中的每个节点均可以配置该资源,因此,该资源也可以称为逐跳的预留资源。该资源指示以下一项或多项网络功能:带宽预留、统计网络性能、服务级别协议(service level agreement,SLA)测量、故障运维,或者,故障检测。转发路径中的任意节点配置该资源后,转发路径中的节点根据第一标识信息(携带第一标识信息的)执行逐跳的网络服务。例如:逐跳的带宽预留、逐跳的统计网络性能、逐跳的SLA测量、逐跳的故障运维,或者,逐跳的故障检测。
控制器向第二通信装置发送第一标识信息和第一资源配置信息,包括多种可能的实现方式,本申请实施例对此不作限制,下面进行举例说明:
一种可能的实现方式中,控制器将第一标识信息和第一资源配置信息封装为控制面协议报文。然后,控制器将该控制面协议报文发送至第二通信装置。
另一种可能的实现方式中,控制器将第一标识信息和第一资源配置信息填充至消息(信息、或者信令)中。然后,控制器将填充了第一标识信息和第一资源配置信息的消息(信息、或者信令)发送至第二通信装置。
进一步的,上述报文、消息、信息或者信令,可以通过多种协议下发至第二通信装置。例如:第一标识信息和第一资源配置信息通过以下协议传输:路径计算单元通信协议(Path Computation Element Communication Protocol,PCEP)、边界网关协议(Border Gateway Protocol,BGP)、边界网关协议链路状态(Border Gateway Protocol-link state,BGP-LS)或网络配置(Netconf)协议等。
一种示例中,控制器向第二通信装置发送的第一标识信息和第一资源配置信息,承载于段路由策略SR-POLICY隧道状态通告。
又一种示例中,控制器向第二通信装置发送的第一标识信息和第一资源配置信息,承载于网络层可达信息(network layer reachability information,NLRI)。
又一种示例中,控制器向第二通信装置发送的第一标识信息和第一资源配置信息,承载于PCEP的对象(object)。
又一种示例中,控制器向第二通信装置发送的第一标识信息和第一资源配置信息,承载于SR报文或者SRv6报文。例如,承载于SR报文的新定义类型长度值(type length value,TLV)字段,或者承载于SRv6报文的新定义TLV字段。
302、第二通信装置向第一通信装置发送第一控制面协议报文,第一控制面协议报文包括第一标识信息和第一资源配置信息。
步骤302中,当第二通信装置接收来自控制器的第一标识信息和第一资源配置信息之后,第二通信装置根据第一资源配置信息配置资源,第二通信装置保存第一标识信息与资源的对应关系。然后,第二通信装置向第一通信装置发送第一控制面协议报文,第一控制面协议报文包括第一标识信息和第一资源配置信息。第一控制面协议报文指示第一通信装置根据第一资源配置信息配置与第一标识信息对应的资源。该第一控制面协议报文是一种请求报文。第一控制面协议报文需要沿转发路径发送,例如,第一控制面协议报文携带该转发路径对应的SID list,第一控制面协议报文在SID list的指示下沿转发路径从头节点传输至尾节点。该SID list可以是SR list也可以是SRv6list,本申请实施例不做限制。
第一控制面协议报文携带第一标识信息和第一资源配置信息存在多种可能的实现方式,下面分别进行说明:
一种可能的实现方式中,第一控制面协议报文的新增字段携带第一标识信息和第一资源配置信息。例如,第一控制面协议报文中新定义的选项类型长度值option TLV字段携带第一标识信息和第一资源配置信息。
一种可能的实现方式中,第一控制面协议报文在不同字段分别携带第一标识信息和第一资源配置信息。例如,第一控制面协议报文的流标识flow label字段携带第一标识信息,第一控制面协议报文中新定义的option TLV字段携带第一资源配置信息。
一种可能的实现方式中,第一控制面协议报文的有效载荷(payload)中携带第一标识信息和第一资源配置信息。
下面结合第一控制面协议报文的结构,介绍第一控制面协议报文具体是如何携带第一标识信息和第一资源配置信息。
首先,介绍本申请实施例中的控制面协议报文(包括第一控制面协议报文、第二控制面协议报文以及第三控制面协议报文)。本申请实施例中的控制面协议报文可以是一种SRv6报文。具体的,该控制面协议报文包括:IPv6头、逐跳(hop-by-hop,HBH)选项头以及分段路由头(Segment Routing Header,SRH),SRH也称为段路由扩展头。SRH头包括该控制面协议报文的段列表,该段列表指示控制面协议报文的转发路径。
一种示例中,本申请实施例中新定义的选项类型长度值option TLV字段(包括第一option TLV字段、第二option TLV字段以及第三option TLV字段)承载于HBH字段或者DOH字段。
请参阅图11,图11为本申请实施例中一种控制面协议报文的一种结构示意图。该HBH头或者DOH头可以包括下一报文头(next header)字段、扩展头长度(Hdr Ext Len)字段以及选项(options)字段。其中,next header字段用于指示下一个报文头的类型,在图11中,该next header字段指示HBH或者DOH。Hdr Ext Len指示HBH头或者DOH头中除next header字段之外的其它字段的长度。
options字段可以是一系列选项字段和填充字段的组合。在一个示例中:options字段可以体现为options类型长度值(type length value,TLV)字段,具体可以包括选项类型option type字段、选项option数据(data)长度length字段以及选项数据option data字段。
又一种示例中,本申请实施例中新定义的选项类型长度值option TLV字段(包括第一option TLV字段、第二option TLV字段以及第三option TLV字段)承载于SRH头。
请参阅图12,图12为本申请实施例中一种控制面协议报文的又一种结构示意图。在SRH头中新增 字段,该新增字段承载本申请实施例中新定义的选项类型长度值option TLV字段。
关于第一控制面协议报文中新增的选项类型长度值option TLV字段,在本申请实施例中为了便于区分,称为第一选项类型长度值option TLV字段。示例性的,请参阅图7,图7为第一选项类型长度值option TLV字段的结构示意图。所述第一option TLV字段包括:选项类型option type字段、选项数据长度option data length字段和选项数据option data字段;所述第一option TLV字段的option type字段用于携带所述第一控制面协议报文的类型信息,所述第一控制面协议报文的类型信息指示所述第一控制面协议报文携带所述第一资源配置信息。所述第一option TLV字段的option data字段用于携带所述第一标识信息和所述第一资源配置信息。
结合前文描述,关于第一option TLV字段可以承载于IPv6头的逐跳(hop-by-hop,HBH)选项头、也可以承载于IPv6头的目的地选项报头(Destination option header,DOH)。例如图13所示,图13为本申请实施例中第一控制面协议报文的结构示意图。图13中,IPv6头的next header字段指向HBH头或者DOH头。在HBH头或者DOH头中,包括第一option TLV字段。
进一步的,在又一种可能的实现方式中,当第一标识信息承载于流标签flow label字段时,第一option TLV字段的option data字段可以包括:所述第一资源配置信息。例如图15所示,图15为本申请实施例中第一控制面协议报文的又一种结构示意图。
或者,关于第一option TLV字段还可以承载于分段路由头(Segment Routing Header,SRH),SRH也称为段路由扩展头。例如图17所示,图17为本申请实施例中第一控制面协议报文的一种结构示意图。
进一步的,在又一种可能的实现方式中,当第一标识信息承载于流标签flow label字段时,第一option TLV字段的option data字段可以包括:所述第一资源配置信息。例如图19所示,图19为本申请实施例中第一控制面协议报文的又一种结构示意图。
303、第一通信装置根据第一资源配置信息,配置资源,保存第一标识信息与资源的对应关系。
步骤303中,第一通信装置接收第一控制面协议报文后,第一通信装置根据第一控制面协议报文中携带的第一标识信息和第一资源配置信息,配置该资源。然后,第一通信装置保存第一标识信息和该资源的对应关系。
示例性的,第一标识信息是“circuit ID 1”,“circuit ID 1”对应的转发路径是“circuit 1”为例。第一资源配置信息指示转发路径“circuit 1”中的各个节点在传输转发路径“circuit 1”的业务流时执行如下动作:“circuit 1”的业务流的承诺信息速率(committed information rate,CIR)为100兆比特每秒(Mbps),“circuit 1”的业务流的峰值信息速率(peak information rate,PIR)为1千兆比特每秒(Gbps),统计转发路径“circuit 1”的数据包数或者字节数,对转发路径“circuit 1”中的业务流进行随流检测。第一资源配置信息可以是:“CIR 100Mbps、PIR 1Gbps、counter enable(计数器使能信息),iFIT enable(随流检测使能信息)”。
第一通信装置根据第一资源配置信息,配置该资源,指的是第一通信装置根据第一资源配置信息预留资源。例如:第一资源配置信息包括预留500Mbps带宽,则第一通信装置为该第一资源配置信息对应的转发路径预留500Mbps带宽。
第一通信装置还需要保存第一标识信息与资源的对应关系。当第一通信装置传输业务报文时,可根据业务报文中携带的第一标识信息从保存的一个或多个对应关系中确定该业务报文所对应的资源。示例性的,请参阅表1,表1指示第一通信装置保存的第一标识信息与资源的对应关系。
表1
304、第一通信装置向第二通信装置发送第三控制面协议报文,第三控制面协议报文报告资源的配置结果。
步骤304中,当第一通信装置响应于第一控制面协议报文,配置资源并保持该资源和第一标识信息的对应关系后,第一通信装置可以向第二通信装置报告该资源的配置结果。具体的,第一通信装置向第 二通信装置发送第三控制面协议报文,所述第三控制面协议报文用于向所述第二通信装置报告所述资源的配置结果。该第三控制面协议报文是一种响应报文。
一种可能的实现方式中,第一通信装置根据该转发路径中传输的业务报文的源IP地址(SIP),作为第三控制面协议报文的目标IP地址(DIP),该IP地址为第二通信装置的IP地址。
另一种可能的实现方式中,将承载第一控制面协议报文的传输路径称为转发路径1,第三控制面协议报文通过转发路径1’传输至第二通信装置,转发路径1’是转发路径1的反向路径。第三控制面协议报文携带的SID list指示转发路径1’。
第三控制面协议报文携带第一标识信息和该资源的配置结果,具体的,该资源的配置结果包括以下任意一项或多项:第一通信装置为第一标识信息对应的转发路径分配的带宽资源、第一通信装置为第一标识信息对应的转发路径分配的流统计资源,或者,第一通信装置为第一标识信息对应的转发路径分配的SLA检测资源等。
类似第一控制面协议报文,第三控制面协议报文携带第一标识信息和该资源的配置结果存在多种可能的实现方式,下面分别进行说明:
一种可能的实现方式中,第三控制面协议报文的新增字段携带第一标识信息和资源的配置结果。例如,第三控制面协议报文中新定义的选项类型长度值option TLV字段携带第一标识信息和资源的配置结果。
一种可能的实现方式中,第三控制面协议报文在不同字段分别携带第一标识信息和资源的配置结果。例如,第三控制面协议报文的流标识flow label字段携带第一标识信息,第三控制面协议报文中新定义的option TLV字段携带资源的配置结果。
一种可能的实现方式中,第三控制面协议报文的有效载荷(payload)中携带第一标识信息和资源的配置结果。
关于第三控制面协议报文中新增的选项类型长度值option TLV字段,在本申请实施例中为了便于区分,称为第三选项类型长度值option TLV字段。示例性的,请参阅图8,图8为第三选项类型长度值option TLV字段的结构示意图。所述第三控制面协议报文包括第三选项类型长度值option TLV字段,所述第三option TLV字段包括:选项类型option type字段、选项数据长度option data length字段和选项数据option data字段;
所述第三option TLV字段的option type字段用于携带所述第三控制面协议报文的类型信息,所述第三控制面协议报文的类型信息指示所述第三控制面协议报文携带所述资源的配置结果;所述第三option TLV字段的option data字段用于携带所述第一标识信息和所述资源的配置结果。
结合前文描述,关于第三option TLV字段可以承载于IPv6头的逐跳(hop-by-hop,HBH)选项头、也可以承载于IPv6头的目的地选项报头(Destination option header,DOH)。例如图14所示,图14为本申请实施例中第三控制面协议报文的结构示意图。图14中,IPv6头的next header字段指向HBH头或者DOH头。在HBH头或者DOH头中,包括第三option TLV字段。
进一步的,在又一种可能的实现方式中,当第一标识信息承载于流标签flow label字段时,第三option TLV字段的option data字段可以包括:资源的配置结果。例如图16所示,图16为本申请实施例中第三控制面协议报文的又一种结构示意图。
或者,关于第三option TLV字段还可以承载于分段路由头(Segment Routing Header,SRH),SRH也称为段路由扩展头。例如图18所示,图18为本申请实施例中一种第三控制面协议报文的一种结构示意图。
进一步的,在又一种可能的实现方式中,当第一标识信息承载于流标签flow label字段时,第三option TLV字段的option data字段可以包括:资源的配置结果。例如图20所示,图20为本申请实施例中第三控制面协议报文的又一种结构示意图。
305、第二通信装置向第一通信装置发送业务报文,业务报文包括第一标识信息。
在步骤301之后,步骤305中,第二通信装置向第一通信装置发送业务报文,该业务报文包括第一标识信息,该业务报文的传输路径为第一标识信息所标识的转发路径。
第二通信装置可以从上游节点处接收业务报文,本申请实施例不具体限定所述上游节点,所述上游 节点例如可以是客户终端设备(customer-premises equipment,CPE)。然后,第二通信装置在业务报文中填充第一标识信息,第二通信装置将携带第一标识信息的业务报文转发至第一通信装置。
关于业务报文携带第一标识信息,一种可能的实现方式如下:业务报文新增option TLV字段,该新增option TLV字段称为第四option TLV字段。该第四option TLV字段的option type字段指示业务报文需要使用所述资源执行数据处理,例如该option type字段包括“circuit SRv6”。该第四option TLV字段的option data字段包括第一标识信息。示例性的,请参阅图9,图9为第四option TLV字段的结构示意图。
示例性的,业务报文包括的HBH头携带第一标识信息,业务报文包括的HBH头携带第四option TLV字段。或者,业务报文包括的DOH头携带第一标识信息,业务报文包括的DOH头携带第四option TLV字段。或者,业务报文包括的SRH头携带第一标识信息,业务报文包括的SRH头携带第四option TLV字段。
另一种可能的实现方式如下:在业务报文的IPv6头中流标签flow label字段携带第一标识信息。
306、第一通信装置根据业务报文携带的第一标识信息,确定资源。
步骤306中,第一通信装置接收业务报文后,对业务报文进行解析,得到业务报文包括的第一标识信息。第一通信装置根据业务报文包括的第一标识信息。从第一通信装置本地保存的对应关系(第一标识信息与资源的对应关系)中,找到与第一标识信息对应的资源。
然后,第一通信装置使用该资源处理业务报文。具体的,根据该资源所指示的网络服务,确定处理方式。例如,当该资源指示执行SLA测量时,第一通信装置对该业务报文或者承载该业务报文的业务流进行SLA测量。又例如,当该资源指示预留带宽时,第一通信装置在该资源指示的预留带宽中传输该业务报文。又例如,当该资源指示进行带宽限速时,第一通信装置在传输该业务报文时,该业务报文的带宽满足该资源指示的带宽限速。
本申请实施例中,第一通信装置接收所述第一控制面协议报文,第一控制面协议报文携带第一标识信息和第一资源配置信息。根据第一资源配置信息配置的资源为逐跳预留资源。第一通信装置保存第一标识信息与资源的对应关系。通过上述方法可以减少转发面信息的冗余,减少业务报文的报文头携带的信息,提升通信效率。控制器为端到端转发路径或者业务流分配了唯一的第一标识信息,第一标识信息与资源具有对应关系。当中间节点或者尾节点收到携带第一标识信息的业务报文后,可以根据第一标识信息找到资源,然后对业务报文进行数据处理。通过上述方法,实现逐跳资源预留,无需运行资源预留协议,从而降低了对通信装置的性能需求。
进一步的,当第一通信装置收到业务报文后,还可以检测本地(第一通信装置)是否保存第一标识信息与资源的对应关系。当第一通信装置的本地未保存第一标识信息与资源的对应关系,第一通信装置还可以向第二通信装置请求配置与第一标识信息对应的资源。具体的,请参阅图4,图4为本申请实施例中一种资源配置方法的信令交互示意图。本申请实施例提出的一种资源配置方法,还包括:
401、第一通信装置接收来自第二通信装置的业务报文,业务报文包括第一标识信息。
步骤401类似前述步骤305,此处不作赘述。
402、检测第一通信装置是否保存第一标识信息与资源的对应关系。
步骤402中,当第一通信装置接收业务报文后,对业务报文进行解析,得到业务报文中保存的第一标识信息。然后第一通信装置检测本地是否保存该第一标识信息与资源的对应关系。当第一通信装置本地保存了第一标识信息与资源的对应关系,则进入步骤404;当第一通信装置本地未保存第一标识信息与资源的对应关系,进入步骤403。
403、第一通信装置向第二通信装置发送第二控制面协议报文,第二控制面协议报文包括第一标识信息,第二控制面协议报文用于向头节点请求与第一标识信息对应的资源。
步骤403中,由于第一通信装置本地未保存第一标识信息与资源的对应关系,第一通信装置无法在本地获取与第一标识信息对应的资源。因此,第一通信装置还可以向第二通信装置请求配置与第一标识信息对应的资源。具体的,第一通信装置向第二通信装置发送第二控制面协议报文,该第二控制面协议报文包括第一标识信息,第二控制面协议报文用于向第二通信装置请求与第一标识信息对应的资源。
一种可能的实现方式中,第二控制面协议报文包括第一标识信息和请求配置第一标识信息对应的资源的指示信息。例如:在第二控制面协议报文中新增option TLV字段,该新增的option TLV字段称为第二option TLV字段。关于第二选项类型长度值option TLV字段,示例性的,请参阅图10,图10为第二选项类型长度值option TLV字段的结构示意图。所述第二控制面协议报文包括第二选项类型长度值option TLV字段,所述第二option TLV字段包括:选项类型option type字段、选项数据长度option data length字段和选项数据option data字段;
所述第二option TLV字段的option type字段用于携带所述第二控制面协议报文的类型信息,所述第二控制面协议报文的类型信息指示所述第二控制面协议报文用于请求与所述第一标识信息对应的所述资源;所述第二option TLV字段的option data字段用于携带所述第一标识信息。
类似的,第二option TLV字段可以承载于HBH字段或者DOH字段,第二option TLV字段也可以承载于SRH头,本申请对此不作限制。
404、第一通信装置根据资源处理业务报文。
步骤403之后,步骤404中,第二通信装置响应于第二控制面协议报文,向第一通信装置发送第一控制面协议报文。第一通信装置响应于第一控制面协议报文,配置资源并保存资源与第一标识信息的对应关系。然后,第一通信装置根据该资源处理业务报文(该业务报文携带第一标识信息)。具体的方法类似前文步骤303、304和306,此处不作赘述。
本申请实施例中,当第一通信装置本地未配置与第一标识信息对应的资源,第一通信装置本地未保存第一标识信息与资源的对应关系时,第一通信装置还可以向第二通信装置发送第二控制面协议报文。第二控制面协议报文用于请求配置与第一标识信息对应的资源。通过上述方法,保证第一通信装置使用与第一标识信息对应的资源对携带第一标识信息的业务报文进行数据处理,提升业务可靠性。
其次,介绍B、中间节点从控制器获取第一资源配置信息。
请参阅图5,图5为本申请实施例中一种资源配置方法的信令交互示意图。本申请实施例提出的一种资源配置方法,包括:
501、控制器向第一通信装置发送第一控制面协议报文,第一控制面协议报文包括第一标识信息和第一资源配置信息。
步骤501中,第一通信装置从控制器获取第一标识信息和第一资源配置信息,具体可以包括:控制器主动为第一通信装置分配第一标识信息,以及与第一标识信息具有对应关系的资源的配置信息,在本申请实施例中,将与第一标识信息具有对应关系的资源的配置信息称为第一资源配置信息。第一通信装置也可以向控制器发送请求(请求配置与第一标识信息对应的资源)后,控制器响应于该请求向第一通信装置发送第一资源配置信息。
在步骤501中,控制器将第一标识信息和第一资源配置信息以第一控制面协议报文的形式,发送至第一通信装置。类似的,控制器将第一控制面协议报文发送至第二通信装置,第二通信装置响应于第一控制面协议报文,配置资源并保存第一标识信息和该资源的对应关系。
具体的,控制器向第一通信装置发送第一控制面协议报文(包括第一标识信息和第一资源配置信息),与前述步骤301中控制器向第二通信装置发送第一标识信息和第一资源配置信息类似,此处不作赘述。
502、第一通信装置根据第一资源配置信息,配置资源,保存第一标识信息与资源的对应关系。
步骤502与前述步骤303类似,此处不做赘述。
503、控制器向第一通信装置发送业务报文,业务报文包括第一标识信息。
504、第一通信装置根据业务报文携带的第一标识信息,确定资源。
步骤503-步骤504与前述步骤305-步骤306类似,此处不做赘述。
本申请实施例中,控制器还可以向第一通信装置和第二通信装置发送第一控制面协议报文,第一控制面协议报文携带第一标识信息和第一资源配置信息。第一通信装置和第二通信装置响应于第一控制面协议报文,根据第一资源配置信息配置的资源为逐跳预留资源,并保存第一标识信息与资源的对应关系。通过上述方法可以减少转发面信息的冗余,减少业务报文的报文头携带的信息,提升通信效率。控制器为端到端转发路径或者业务流分配了唯一的第一标识信息,第一标识信息与资源具有对应关系。当中间节点或者尾节点收到携带第一标识信息的业务报文后,可以根据第一标识信息找到资源,然后对业务报 文进行数据处理。通过上述方法,实现逐跳资源预留,无需运行资源预留协议,从而降低了对通信装置的性能需求。
进一步的,当第一通信装置收到业务报文后,还可以检测本地(第一通信装置)是否保存第一标识信息与资源的对应关系。当第一通信装置的本地未保存第一标识信息与资源的对应关系,第一通信装置还可以向控制器请求配置与第一标识信息对应的资源。具体的,请参阅图6,图6为本申请实施例中一种资源配置方法的信令交互示意图。本申请实施例提出的一种资源配置方法,还包括:
601、第一通信装置接收来自第二通信装置的业务报文,业务报文包括第一标识信息。
步骤601类似前述步骤305,此处不作赘述。
602、检测第一通信装置是否保存第一标识信息与资源的对应关系。
步骤602类似前述步骤402,此处不作赘述。
603、第一通信装置向控制器发送第二控制面协议报文,第二控制面协议报文包括第一标识信息,第二控制面协议报文用于向头节点请求与第一标识信息对应的资源。
步骤603中,由于第一通信装置本地未保存第一标识信息与资源的对应关系,第一通信装置无法在本地获取与第一标识信息对应的资源。因此,第一通信装置还可以向控制器请求配置与第一标识信息对应的资源。具体的,第一通信装置向控制器发送第二控制面协议报文,该第二控制面协议报文包括第一标识信息,第二控制面协议报文用于向第二通信装置请求与第一标识信息对应的资源。
关于第二控制面协议报文,请参阅前述步骤403的描述,此处不作赘述。
604、第一通信装置根据资源处理业务报文。
步骤604类似前述步骤404,此处不作赘述。
本申请实施例中,当第一通信装置本地未配置与第一标识信息对应的资源,第一通信装置本地未保存第一标识信息与资源的对应关系时,第一通信装置还可以向控制器发送第二控制面协议报文。第二控制面协议报文用于请求配置与第一标识信息对应的资源。通过上述方法,保证第一通信装置使用与第一标识信息对应的资源对携带第一标识信息的业务报文进行数据处理,提升业务可靠性。
接下来,从系统角度对本申请实施例提供的资源配置方法进行介绍。参见图21和图22,图21为本申请实施例提供的一种通信系统的架构示意图,图22为本申请实施例提供的又一种通信系统的架构示意图。如图21或图22所示,所述通信系统可以包括控制器和多个网络节点。
以业务报文的转发路径为图21或图22所示的转发路径为例,对本申请实施例提供的资源配置方法进行介绍。在图21或图22中,转发路径的头节点为PE1,转发路径的尾节点为PE4。转发路径中的各个中间节点的报文处理行为是类似的,下文以中间节点P1为例进行说明。
首先介绍图21所示的通信系统。本申请实施例提供的方法,例如可以包括如下步骤S1-S5。
S1、控制器向转发路径中的各个节点下发第一资源配置信息和第一标识信息。
具体的,用户通过控制器配置基于SRv6路径的业务,并配置资源(即预留资源),例如配置该SRv6路径中的各个节点执行逐跳带宽预留、逐跳随流SLA检测和/或逐跳故障定界或诊断。
然后控制器向转发路径(即该SRv6路径)中的各个节点下发第一资源配置信息和第一标识信息。该转发路径中的各个节点响应于第一标识信息和第一资源配置信息,配置资源,并保存第一标识信息与资源的对应关系。
示例性的,控制器可以通过路径计算单元通信协议(Path Computation Element Communication Protocol,PCEP)、边界网关协议段路由(Border Gateway Protocol Segment Routing,BGP SR)或网络配置(Netconf)向转发路径中的各个节点发送第一资源配置信息和第一标识信息。
S2、配置资源,并保存第一标识信息和资源的对应关系。
以PE1(即头节点)为例,PE1接收第一标识信息和第一资源配置信息后,配置资源,并保存第一标识信息和资源的对应关系。该转发路径中的其他节点(P1、P6和PE4)同样执行步骤S2。
S3、业务报文封装第一标识信息。
PE1从上一跳节点(例如CPE)获取业务报文后,当该业务报文的传输路径为当前图示的转发路径(PE1、P1、P6和PE4),则PE1在该业务报文中填充第一标识信息。
S4、PE1向P1发送业务报文。
S5、P1根据业务报文携带的第一标识信息,确定资源,并使用资源处理该业务报文。
当P1处理完业务报文后,根据业务报文携带的SID list将该业务报文转发至P6。P6执行步骤S5,依次类推,实现逐跳的网络服务。
其次,介绍图22所示的通信系统。本申请实施例提供的方法,例如可以包括如下步骤D1-D4。
D1、控制器向头节点下发第一资源配置信息和第一标识信息。
D2、头节点响应于第一资源配置信息和第一标识信息,配置资源并保存第一标识信息和资源的关联关系。
D3、当头节点完成配置资源并保存该关联关系后,头节点向中间节点发送第一控制面协议报文,该第一控制面协议报文携带第一资源配置信息和第一标识信息。
D4、响应于第一控制面协议报文,中间节点配置资源并保存第一标识信息和第一资源配置信息的关联关系。
D5、中间节点完成配置资源并保存该关联关系后,向头节点发送第三控制面协议报文,第三控制面协议报文用于报告资源的配置结果。
具体的,中间节点和尾节点均执行上述步骤D3~步骤D5。
上述主要以方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,第一通信装置、第二通信装置或者控制器为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一通信装置、第二通信装置或者控制器进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
以下介绍本申请实施例的通信装置,以下介绍的通信装置具有上述方法实施例中的第一通信装置、第二通信装置或者控制器的任意功能。本申请所述的通信装置,可以是交换机、路由器等网络设备,也可以是网络设备上的一部分组件,例如是网络设备上的接口板,线卡,还可以是网络设备上的一个功能模块,还可以是用于实现本申请方法的芯片系统,本申请实施例不做具体限定。通信装置之间例如可以但不限于通过以太网线或光纤直接连接。当通信装置是芯片系统时,通信装置中的收发模块例如可以是芯片系统中的接口电路,处理模块例如可以是芯片系统中用于执行处理操作的处理电路。图23为本申请实施例提供的一种通信装置2300的结构示意图,如图23所示,通信装置2300包括:收发模块2301,用于执行步骤301、302、304或者305;处理模块2302,用于执行步骤303或者306。又例如,收发模块2301,用于执行步骤401、403或者404;处理模块2302,用于执行步骤402。又例如,收发模块2301,用于执行步骤501或者503;处理模块2302,用于执行步骤502或504。又例如,收发模块2301,用于执行步骤601、603或者604;处理模块2302,用于执行步骤602。
通信装置2300可以对应于上述方法实施例中的第一通信装置、第二通信装置或者控制器,通信装置2300中的各单元和上述其他操作和/或功能分别为了实现方法实施例中的第一通信装置、第二通信装置或者控制器所实施的各种步骤和方法,具体细节可参见上述方法实施例,为了简洁,在此不再赘述。
通信装置2300执行上述方法实施例时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将通信装置2300的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的通信装置2300与上述图3、图4、图5或者图6对应的实施例方法属于同一构思,其具体实现过程详见上述方法实施例,这里不再赘述。
为了实现上述实施例,本申请还提供了一种通信装置。可以参阅图24,图24为本申请实施例提供 的一种通信装置2400的结构示意图。
图24所示的通信装置2400尽管示出了某些特定特征,但是本领域的技术人员将从本申请实施例中意识到,为了简洁起见,图24未示出各种其他特征,以免混淆本申请实施例所公开的实施方式的更多相关方面。为此,作为示例,在一些实现方式中,通信装置2400包括一个或多个处理器(如,CPU)2401、网络接口2402、编程接口2403、存储器2404和一个或多个通信总线2405,用于将各种组件互连。在另一些实现方式中,通信装置2400也可以在上述示例基础上省略或增加部分功能部件或单元。
在一些实现方式中,网络接口2402用于在网络系统中和一个或多个其他的通信装置/服务器连接。在一些实现方式中,通信总线2405包括互连和控制系统组件之间的通信的电路。存储器2404可以包括非易失性存储器,例如,只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。存储器2404也可以包括易失性存储器,易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
在一些实现中,存储器2404或存储器2404的非暂时性计算机可读存储介质存储以下程序、模块和数据结构,或其子集,例如包括收发单元(图中未示出)、获取单元24041和处理单元24042。
在一个可能的实施例中,该通信装置2400可以具有上述图3、图4、图5或者图6对应的方法实施例中的第一通信装置、第二通信装置或者控制器中的任意功能。
应理解,通信装置2400对应于上述方法实施例中的第一通信装置或者第二通信装置或控制器,通信装置2400中的各模块和上述其他操作和/或功能分别为了实现上述方法实施例中的第一通信装置或者第二通信装置或控制管理装置所实施的各种步骤和方法,具体细节可参见上述图3、图4、图5或者图6对应的方法实施例,为了简洁,在此不再赘述。
应理解,本申请可以是由通信装置2400上的网络接口2402来完成数据的收发操作,也可以是由处理器调用存储器中的程序代码,并在需要时配合网络接口2402来实现收发单元的功能。
在各种实现中,通信装置2400用于执行本申请实施例提供的资源配置方法,例如是执行上述图3、图4、图5或者图6所示的实施例所对应的资源配置方法。
本申请图24所述的通信装置具体结构可以为图25所示。
图25为本申请实施例提供的一种通信装置2500的结构示意图,通信装置2500包括:主控板2525和接口板2530。
主控板2525也称为主处理单元(main processing unit,MPU)或路由处理器(route processor),主控板2525用于对通信装置2500中各个组件的控制和管理,包括路由计算、设备管理、设备维护、协议处理功能。主控板2525包括:中央处理器2515和存储器2516。
接口板2530也称为线路处理单元(line processing unit,LPU)、线卡(line card)或业务板。接口板2530用于提供各种业务接口并实现数据包的转发。业务接口包括但不限于以太网接口、POS(Packet over SONET/SDH)接口等。接口板2530包括:中央处理器2531、网络处理器2532、转发表项存储器2534和物理接口卡(physical interface card,PIC)2533。
接口板2530上的中央处理器2531用于对接口板2530进行控制管理并与主控板2525上的中央处理器2515通信。
网络处理器2532用于实现报文的转发处理。网络处理器2532的形态可以是转发芯片。
物理接口卡2533用于实现物理层的对接功能,原始的流量由此进入接口板2530,以及处理后的报文从该物理接口卡2533发出。物理接口卡2533包括至少一个物理接口,物理接口也称物理口,物理接口可以为灵活以太(Flexible Ethernet,FlexE)物理接口。物理接口卡2533也称为子卡,可安装在接口板2530上,负责将光电信号转换为报文并对报文进行合法性检查后转发给网络处理器2532处理。在一些实施例中,接口板2530的中央处理器2531也可执行网络处理器2532的功能,比如基于通用CPU实现软件转发,从而接口板2530中不需要网络处理器2532。
可选的,通信装置2500包括多个接口板,例如通信装置2500还包括接口板2540,接口板2540包括:中央处理器2541、网络处理器2542、转发表项存储器2544和物理接口卡2543。
可选的,通信装置2500还包括交换网板2520。交换网板2520也可以称为交换网板单元(switch fabric unit,SFU)。在通信装置有多个接口板2530的情况下,交换网板2520用于完成各接口板之间的数据交换。例如,接口板2530和接口板2540之间可以通过交换网板2520通信。
主控板2525和接口板耦合。例如,主控板2525、接口板2530和接口板2540,以及交换网板2520之间通过系统总线和/或系统背板相连实现互通。在一种可能的实现方式中,主控板2525和接口板2530之间建立进程间通信协议(inter-process communication,IPC)通道,主控板2525和接口板2530之间通过IPC通道进行通信。
在逻辑上,通信装置2500包括控制面和转发面,控制面包括主控板2525和中央处理器2531,转发面包括执行转发的各个组件,比如转发表项存储器2534、物理接口卡2533和网络处理器2532。控制面执行发布路由、生成转发表、处理信令和协议报文、配置与维护设备的状态等功能,控制面将生成的转发表下发给转发面,在转发面,网络处理器2532基于控制面下发的转发表对物理接口卡2533收到的报文查表转发。控制面下发的转发表可以保存在转发表项存储器2534中。在有些实施例中,控制面和转发面可以完全分离,不在同一设备上。
应理解,通信装置2400中的收发单元可以相当于通信装置2500中的物理接口卡2533或物理接口卡2543;通信装置2400中的获取单元24041和处理单元24042可以相当于通信装置2500中的中央处理器2515或中央处理器2531,也可以相当于存储器2516中存储的程序代码或指令。
应理解,本申请实施例中接口板2540上的操作与接口板2530的操作一致,为了简洁,不再赘述。应理解,本实施例的通信装置2500可对应于上述各个方法实施例中的第一通信装置、第二通信装置或者控制器,该通信装置2500中的主控板2525、接口板2530和/或接口板2540可以实现上述各个方法实施例中的第一通信装置、第二通信装置或者控制器所具有的功能和/或所实施的各种步骤,为了简洁,在此不再赘述。
值得说明的是,主控板可能有一块或多块,有多块的时候可以包括主用主控板和备用主控板。接口板可能有一块或多块,通信装置的数据处理能力越强,提供的接口板越多。接口板上的物理接口卡也可以有一块或多块。交换网板可能没有,也可能有一块或多块,有多块的时候可以共同实现负荷分担冗余备份。在集中式转发架构下,通信装置可以不需要交换网板,接口板承担整个系统的业务数据的处理功能。在分布式转发架构下,通信装置可以有至少一块交换网板,通过交换网板实现多块接口板之间的数据交换,提供大容量的数据交换和处理能力。可选的,通信装置的形态也可以是只有一块板卡,即没有交换网板,接口板和主控板的功能集成在该一块板卡上,此时接口板上的中央处理器和主控板上的中央处理器在该一块板卡上可以合并为一个中央处理器,执行两者叠加后的功能。具体采用哪种架构,取决于具体的组网部署场景,此处不做唯一限定。
在一些可能的实施例中,上述第一通信装置、第二通信装置或者控制器可以实现为虚拟化设备。虚拟化设备可以是运行有用于发送报文功能的程序的虚拟机(virtual machine,VM),虚拟路由器或虚拟交换机。虚拟化设备部署在硬件设备上(例如,物理服务器)。例如,可以基于通用的物理服务器结合网络功能虚拟化(network functions virtualization,NFV)技术来实现第一通信装置、第二通信装置或者控制器。
应理解,上述各种产品形态的通信装置,分别具有上述方法实施例中第一通信装置、第二通信装置或者控制器的任意功能,此处不再赘述。
本申请实施例还提供的一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机控制网络装置执行如前述方法实施例所示任一项实现方式。
本申请实施例还提供的一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如前述方法实施例所示任一项实现方式。
进一步地,本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在通信装置上运行时,使得通信装置执行上述图3、图4、图5或者图6对应的方法实施例中第一通信装置、第二通信装置或者控制器或控制器执行的方法。
本申请实施例还提供了一种芯片系统,包括处理器和接口电路,接口电路,用于接收指令并传输至处理器。其中,所述处理器用于实现上述任一方法实施例中的方法。
可选的,该芯片系统还包括存储器,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现上述任一方法实施例中的方法。
可选的,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
请参阅图26,图26为本申请实施例提出的一种网络系统2600示意图。该网络系统2600包括:第一通信装置2601、第二通信装置2602和控制器2603。第一通信装置2601、第二通信装置260例如可以为路由器、交换机或网关等物理设备,也可以是支持路由发布和报文转发的虚拟设备等。本实施例对第一通信装置2601和第二通信装置2602的具体类型不做限定。控制器2603可以是管理上述第一通信装置2601、第二通信装置2602的服务器。
可选的,第一通信装置2601可以是通信装置2300、通信装置2400或者通信装置2500。可选的,第二通信装置2602可以是通信装置2300、通信装置2400或者通信装置2500。
上述各种产品形态的通信装置,分别具有上述方法实施例中网络设备的任意功能,此处不再赘述。
以上对本申请实施例进行了详细介绍,本申请实施例方法中的步骤可以根据实际需要进行顺序调度、合并或删减;本申请实施例装置中的模块可以根据实际需要进行划分、合并或删减。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。

Claims (39)

  1. 一种资源配置方法,其特征在于,所述方法应用于第一通信装置,所述第一通信装置用作转发路径中的中间节点或尾节点,所述方法包括:
    接收第一控制面协议报文,所述第一控制面协议报文包括第一标识信息和第一资源配置信息,所述第一标识信息用于唯一标识所述转发路径或所述转发路径上传输的一条业务流;
    根据所述第一资源配置信息,配置资源;
    保存所述第一标识信息与所述资源的对应关系。
  2. 根据权利要求1所述的方法,其特征在于,接收所述第一控制面协议报文,包括:
    接收第二通信装置发送的所述第一控制面协议报文,所述第一控制面协议报文指示所述第一通信装置根据所述第一资源配置信息配置与所述第一标识信息对应的所述资源,第二通信装置为所述转发路径中的头节点。
  3. 根据权利要求2所述的方法,其特征在于,接收所述第一控制面协议报文之前,所述方法还包括:
    接收来自所述第二通信装置的所述业务报文,所述业务报文携带所述第一标识信息;
    响应于确定自身未保存所述第一标识信息与所述资源的对应关系,向所述第二通信装置发送第二控制面协议报文,所述第二控制面协议报文携带所述第一标识信息,所述第二控制面协议报文用于向所述第二通信装置请求与所述第一标识信息对应的所述资源。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,在配置所述资源之后,所述方法还包括:
    向第二通信装置发送第三控制面协议报文,所述第三控制面协议报文用于向所述第二通信装置报告所述资源的配置结果,所述第二通信装置为所述转发路径中的头节点。
  5. 根据权利要求1所述的方法,其特征在于,接收所述第一控制面协议报文,包括:
    接收控制器发送的所述第一控制面协议报文,所述第一控制面协议报文指示所述第一通信装置根据所述第一资源配置信息配置与所述第一标识信息对应的所述资源,所述控制器用于控制所述转发路径中的多个节点。
  6. 根据权利要求5所述的方法,其特征在于,接收所述第一控制面协议报文之前,所述方法还包括:
    接收来自第二通信装置的所述业务报文,所述业务报文携带所述第一标识信息,所述第二通信装置为所述转发路径中的头节点;
    响应于确定自身未保存所述第一标识信息与所述资源的对应关系,向所述控制器发送第二控制面协议报文,所述第二控制面协议报文携带所述第一标识信息,所述第二控制面协议报文用于向所述控制器请求与所述第一标识信息对应的所述资源。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自第二通信装置的所述业务报文,所述业务报文携带所述第一标识信息,所述第二通信装置为所述转发路径中的头节点;
    根据所述第一标识信息,确定所述资源;
    根据所述资源,对所述业务报文进行处理。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述资源指示以下一项或多项网络功能:
    带宽预留、统计网络性能、服务级别协议SLA测量、故障运维,或者,故障检测。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一资源配置信息包括以下任意一项 或多项:
    承诺信息速率CIR、峰值信息速率PIR、流量统计的使能信息,或者,随流测量的使能信息。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述第一标识信息是根据段标识列表SID list得到,所述段标识列表位于互联网协议第6版段路由SRv6报文的分段路由头SRH中,所述SRv6报文由所述第一标识信息标识的转发路径传输。
  11. 根据权利要求10所述的方法,其特征在于,所述第一标识信息是根据所述SID list和所述SRv6报文的源互联网协议IP地址得到的。
  12. 根据权利要求11所述的方法,其特征在于,所述第一标识信息是根据所述SRv6报文对应的SRv6策略policy得到的。
  13. 根据权利要求12所述的方法,其特征在于,所述第一标识信息是根据所述SRv6 policy对应的源IP地址、目的IP地址以及着色color属性得到的。
  14. 根据权利要求10-13中任一项所述的方法,其特征在于,所述第一标识信息承载于所述SRv6报文中IPv6报文头的流标签flow label字段。
  15. 根据权利要求1-13中任一项所述的方法,其特征在于,所述第一标识信息承载于逐跳HBH字段。
  16. 根据权利要求1-13中任一项所述的方法,其特征在于,所述第一标识信息承载于目的地选项报头DOH字段。
  17. 根据权利要求1-13中任一项所述的方法,其特征在于,所述第一标识信息承载于段路由拓展头SRH。
  18. 一种资源配置方法,其特征在于,所述方法应用于第二通信装置,所述第二通信装置用作转发路径中的头节点,所述方法包括:
    获取控制器发送的第一标识信息和第一资源配置信息,所述第一标识信息用于唯一标识所述转发路径或所述转发路径上传输的一条业务流,所述控制器用于管理所述转发路径中的多个节点;
    根据所述第一资源配置信息,配置所述资源;
    保存所述第一标识信息与所述资源的关联关系;
    向第一通信装置发送第一控制面协议报文,所述第一控制面协议报文携带所述第一标识信息和所述第一资源配置信息,所述第一控制面协议报文指示所述第一通信装置根据所述第一资源配置信息配置与所述第一标识信息对应的所述资源,所述第一通信装置用作所述转发路径中的中间节点或尾节点。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    发送所述业务报文,所述业务报文携带所述第一标识信息,所述业务报文携带的段列表指示所述转发路径。
  20. 根据权利要求18或19所述的方法,其特征在于,向所述第一通信装置发送所述第一控制面协议报文,包括:
    接收来自所述第一通信装置的第二控制面协议报文,所述第二控制面协议报文携带所述第一标识信息,所述第二控制面协议报文用于向所述第二通信装置请求与所述第一标识信息对应的所述资源;
    响应于所述第二控制面协议报文,向所述第一通信装置发送所述第一控制面协议报文。
  21. 根据权利要求18-20中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一通信装置的第三控制面协议报文,所述第三控制面协议报文用于向所述第二通信装置报告所述资源的配置结果。
  22. 根据权利要求18-21中任一项所述的方法,其特征在于,所述第一标识信息承载于所述SRv6报文中IPv6报文头的流标签flow label字段。
  23. 根据权利要求18-21中任一项所述的方法,其特征在于,所述第一标识信息承载于逐跳HBH字段。
  24. 根据权利要求18-21中任一项所述的方法,其特征在于,所述第一标识信息承载于目的地选项报头DOH字段。
  25. 根据权利要求18-21中任一项所述的方法,其特征在于,所述第一标识信息承载于段路由拓展 头SRH。
  26. 一种资源配置方法,其特征在于,所述方法应用于控制器,所述控制器用于管理转发路径中的头节点、中间节点和尾节点,所述方法包括:
    发送第一标识信息和第一资源配置信息,
    所述第一标识信息用于唯一标识所述转发路径或所述转发路径上传输的一条业务流,
    所述第一资源配置信息用于指示第一通信装置和/或第二通信装置根据所述第一资源配置信息配置资源,所述第一通信装置用作所述转发路径中的中间节点或者尾节点,所述第二通信装置用作所述转发路径中的头节点,
    所述第一标识信息与所述资源具有对应关系。
  27. 根据权利要求26所述的方法,其特征在于,发送所述第一标识信息和所述第一资源配置信息,包括:
    向所述第二通信装置发送所述第一标识信息和所述第一资源配置信息。
  28. 根据权利要求26或27所述的方法,其特征在于,发送所述第一标识信息和所述第一资源配置信息,包括:
    向所述第一通信装置发送第一控制面协议报文,所述第一控制面协议报文携带所述第一标识信息和所述第一资源配置信息,所述第一控制面协议报文指示所述第一通信装置根据所述第一资源配置信息配置与所述第一标识信息对应的所述资源,所述第一控制面协议报文携带的段列表指示所述转发路径。
  29. 根据权利要求28所述的方法,其特征在于,向所述第一通信装置发送所述第一控制面协议报文,包括:
    接收来自所述第一通信装置的第二控制面协议报文,所述第二控制面协议报文携带所述第一标识信息,所述第二控制面协议报文用于向所述控制器请求与所述第一标识信息对应的所述资源;
    响应于所述第二控制面协议报文,向所述第一通信装置发送所述第一控制面协议报文。
  30. 根据权利要求26-29中任一项所述的方法,其特征在于,所述第一标识信息承载于所述SRv6报文中IPv6报文头的流标签flow label字段。
  31. 根据权利要求26-29中任一项所述的方法,其特征在于,所述第一标识信息承载于逐跳HBH字段。
  32. 根据权利要求26-29中任一项所述的方法,其特征在于,所述第一标识信息承载于目的地选项报头DOH字段。
  33. 根据权利要求26-29中任一项所述的方法,其特征在于,所述第一标识信息承载于段路由拓展头SRH。
  34. 一种第一通信装置,其特征在于,所述装置包括:
    收发单元和处理单元;
    所述收发单元,用于执行权利要求1-17任意一项所述的由第一通信装置执行的接收和/或发送操作;
    所述处理单元用于执行权利要求1-17任意一项所述的由第一通信装置执行的接收和/或发送操作之外的操作。
  35. 一种第二通信装置,其特征在于,所述装置包括:
    收发单元和处理单元;
    所述收发单元,用于执行权利要求18-25任意一项所述的由第二通信装置执行的接收和/或发送操作;
    所述处理单元用于执行权利要求18-25任意一项所述的由第二通信装置执行的接收和/或发送操作之外的操作。
  36. 一种控制器,其特征在于,所述装置包括:
    收发单元和处理单元;
    所述收发单元,用于执行权利要求26-33任意一项所述的由控制器执行的接收和/或发送操作;
    所述处理单元用于执行权利要求26-33任意一项所述的由控制器执行的接收和/或发送操作之外的操作。
  37. 一种通信装置,其特征在于,包括:处理器和存储器;
    所述存储器,用于存储指令;
    所述处理器,用于执行所述指令,使得所述通信装置执行权利要求1-33任意一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,包括指令或计算机程序,当其在处理器上运行时,执行以上权利要求1-33任意一项所述的方法。
  39. 一种通信系统,其特征在于,所述系统包括:
    执行以上权利要求1-17任意一项所述的方法的第一通信装置、以及执行权利要求18-25任意一项所述的方法的第二通信装置、以及执行权利要求26-33任意一项所述的方法的控制器。
PCT/CN2023/129054 2022-11-17 2023-11-01 一种资源配置方法和装置 WO2024104171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211441671.2A CN118055455A (zh) 2022-11-17 2022-11-17 一种资源配置方法和装置
CN202211441671.2 2022-11-17

Publications (1)

Publication Number Publication Date
WO2024104171A1 true WO2024104171A1 (zh) 2024-05-23

Family

ID=91052674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129054 WO2024104171A1 (zh) 2022-11-17 2023-11-01 一种资源配置方法和装置

Country Status (2)

Country Link
CN (1) CN118055455A (zh)
WO (1) WO2024104171A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113395735A (zh) * 2020-03-11 2021-09-14 华为技术有限公司 一种报文传输方法、装置和网络设备
CN113839870A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 路径创建方法、装置及系统
CN114915585A (zh) * 2019-03-11 2022-08-16 华为技术有限公司 报文处理方法、装置、设备及系统
CN115004656A (zh) * 2020-11-27 2022-09-02 华为技术有限公司 一种报文发送方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915585A (zh) * 2019-03-11 2022-08-16 华为技术有限公司 报文处理方法、装置、设备及系统
CN113395735A (zh) * 2020-03-11 2021-09-14 华为技术有限公司 一种报文传输方法、装置和网络设备
CN113839870A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 路径创建方法、装置及系统
CN115004656A (zh) * 2020-11-27 2022-09-02 华为技术有限公司 一种报文发送方法、设备及系统

Also Published As

Publication number Publication date
CN118055455A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
US10412019B2 (en) Path computation element central controllers (PCECCs) for network services
US20220407802A1 (en) Packet processing method and apparatus, network device, and storage medium
US10250459B2 (en) Bandwidth on-demand services in multiple layer networks
US9036476B2 (en) Maintaining load balancing after service application with a network device
US9461906B2 (en) Method for exchanging information for establishing a path between two nodes of a communication network
US20130232193A1 (en) Control-Plane Interface Between Layers in a Multilayer Network
EP1983701A1 (en) Method and apparatus for reserving network resources for pseudo point-to-point connection
WO2021258823A1 (zh) 路径创建方法、装置及系统
WO2021179718A1 (zh) 一种报文传输方法、装置和网络设备
US8897295B2 (en) Method and system for providing traffic engineering interworking
US20220124023A1 (en) Path Switching Method, Device, and System
US20230208751A1 (en) Packet forwarding method, device, and system
EP4293982A1 (en) Packet processing method, network device, and controller
JP2009519666A (ja) ネットワーク・トンネル間の資源共有
WO2024104171A1 (zh) 一种资源配置方法和装置
WO2022166465A1 (zh) 一种报文处理方法及相关装置
WO2024067084A1 (zh) 一种路径故障检测的方法以及相关装置
Ward et al. MPLS architectural considerations for a transport profile
WO2023213216A1 (zh) 一种报文处理的方法及相关设备
US20230370293A1 (en) Multicast Communication Method and Related Apparatus
US20230379246A1 (en) Method and Apparatus for Performing Protection Switching in Segment Routing SR Network
CN114915518A (zh) 一种报文传输方法、系统及设备
CN117692405A (zh) 一种报文处理方法及装置
CN117061406A (zh) 一种报文处理的方法及相关设备
CN117955814A (zh) 一种报文处理方法及相关设备